Relativistic blast waves in two dimensions. I - The adiabatic case
NASA Technical Reports Server (NTRS)
Shapiro, P. R.
1979-01-01
Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.
Dynamics of relativistic magnetized blast waves
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2002-03-01
The dynamics of a relativistic blast wave propagating through a magnetized medium is considered, taking into account possible inhomogeneities of density and magnetic field and additional energy supply. Under the simplifying assumption of a spherically symmetric explosion in a medium with toroidal magnetic field self-similar solutions for the internal dynamics of the flow are derived. In the weakly magnetized case, when the bulk of the flow may be described by the unmagnetized solutions, there is a strongly magnetized sheath near the contact discontinuity (when it exists). Self-similar solutions inside the sheath are investigated. In the opposite limit of strongly magnetized upstream plasma new analytical self-similar solutions are found. Possible application to the physics of gamma-ray bursts is discussed.
Synchrotron signature of a relativistic blast wave with decaying microturbulence
NASA Astrophysics Data System (ADS)
Lemoine, M.
2013-01-01
Microphysics of weakly magnetized relativistic collisionless shock waves, corroborated by recent high performance numerical simulations, indicates the presence of a microturbulent layer of large magnetic field strength behind the shock front, which must decay beyond some hundreds of skin depths. This paper discusses the dynamics of such microturbulence, borrowing from these same numerical simulations, and calculates the synchrotron signature of a power law of shock accelerated particles. The decaying microturbulent layer is found to leave distinct signatures in the spectro-temporal evolution of the spectrum Fν ∝ t-αν-β of a decelerating blast wave, which are potentially visible in early multiwavelength follow-up observations of gamma-ray bursts. This paper also discusses the influence of the evolving microturbulence on the acceleration process, with particular emphasis on the maximal energy of synchrotron afterglow photons, which falls in the GeV range for standard gamma-ray burst parameters. Finally, this paper argues that the evolving microturbulence plays a key role in shaping the spectra of recently observed gamma-ray bursts with extended GeV emission, such as GRB 090510.
A SEMI-ANALYTIC FORMULATION FOR RELATIVISTIC BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK
Uhm, Z. Lucas
2011-06-01
This paper performs a semi-analytic study of relativistic blast waves in the context of gamma-ray bursts. Although commonly used in a wide range of analytical and numerical studies, the equation of state (EOS) with a constant adiabatic index is a poor approximation for relativistic hydrodynamics. Adopting a more realistic EOS with a variable adiabatic index, we present a simple form of jump conditions for relativistic hydrodynamical shocks. Then we describe in detail our technique of modeling a very general class of GRB blast waves with a long-lived reverse shock. Our technique admits an arbitrary radial stratification of the ejecta and ambient medium. We use two different methods to find dynamics of the blast wave: (1) customary pressure balance across the blast wave and (2) the 'mechanical model'. Using a simple example model, we demonstrate that the two methods yield significantly different dynamical evolutions of the blast wave. We show that the pressure balance does not satisfy the energy conservation for an adiabatic blast wave while the mechanical model does. We also compare two sets of afterglow light curves obtained with the two different methods.
Nonlinear collisionless damping of Weibel turbulence in relativistic blast waves
NASA Astrophysics Data System (ADS)
Lemoine, Martin
2015-01-01
The Weibel/filamentation instability is known to play a key role in the physics of weakly magnetized collisionless shock waves. From the point of view of high energy astrophysics, this instability also plays a crucial role because its development in the shock precursor populates the downstream with a small-scale magneto-static turbulence which shapes the acceleration and radiative processes of suprathermal particles. The present work discusses the physics of the dissipation of this Weibel-generated turbulence downstream of relativistic collisionless shock waves. It calculates explicitly the first-order nonlinear terms associated to the diffusive nature of the particle trajectories. These corrections are found to systematically increase the damping rate, assuming that the scattering length remains larger than the coherence length of the magnetic fluctuations. The relevance of such corrections is discussed in a broader astrophysical perspective, in particular regarding the physics of the external relativistic shock wave of a gamma-ray burst.
NASA Technical Reports Server (NTRS)
Marscher, A. P.
1978-01-01
A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.
Revisiting the emission from relativistic blast waves in a density-jump medium
Geng, J. J.; Huang, Y. F.; Dai, Z. G.; Wu, X. F.; Li, Liang E-mail: dzg@nju.edu.cn
2014-09-01
Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.
Revisiting the Emission from Relativistic Blast Waves in a Density-jump Medium
NASA Astrophysics Data System (ADS)
Geng, J. J.; Wu, X. F.; Li, Liang; Huang, Y. F.; Dai, Z. G.
2014-09-01
Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (<104 s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.
Tang Zebo; Xu Yichun; Ruan Lijuan; Buren, Gene van; Xu Zhangbu; Wang Fuqiang
2009-05-15
We have implemented the Tsallis statistics in a Blast-Wave model (TBW) and applied it to midrapidity transverse-momentum spectra of identified particles measured at BNL Relativistic Heavy Ion Collider (RHIC). This new TBW function fits the RHIC data very well for p{sub T}<3 GeV/c. We observed that the collective flow velocity starts from zero in p+p and peripheral Au+Au collisions and grows to 0.470{+-}0.009c in central Au+Au collisions. The resulting (q-1) parameter, which characterizes the degree of nonequilibrium in a system, indicates an evolution from a highly nonequilibrated system in p+p collisions toward an almost thermalized system in central Au+Au collisions. The temperature and collective velocity are well described by a quadratic dependence on (q-1). Two sets of parameters in our TBW are required to describe the meson and baryon groups separately in p+p collisions while one set appears to fit all spectra in central Au+Au collisions.
The synchrotron self-Compton spectrum of relativistic blast waves at large Y
NASA Astrophysics Data System (ADS)
Lemoine, Martin
2015-11-01
Recent analyses of multiwavelength light curves of gamma-ray bursts afterglows point to values of the magnetic turbulence well below the canonical ˜1 per cent of equipartition, in agreement with theoretical expectations of a microturbulence generated in the shock precursor, which then decays downstream of the shock front through collisionless damping. As a direct consequence, the Compton parameter Y can take large values in the blast. In the presence of decaying microturbulence and/or as a result of the Klein-Nishina suppression of inverse Compton cooling, the Y parameter carries a non-trivial dependence on the electron Lorentz factor, which modifies the spectral shape of the synchrotron and inverse Compton components. This paper provides detailed calculations of this synchrotron self-Compton spectrum in this large Y regime, accounting for the possibility of decaying microturbulence. It calculates the expected temporal and spectral indices α and β customarily defined by F_ν ∝ t_obs^{-α }ν ^{-β } in various spectral domains. This paper also makes predictions for the very high energy photon flux; in particular, it shows that the large Y regime would imply a detection rate of gamma-ray bursts at >10 GeV several times larger than currently anticipated.
Curved characteristics behind blast waves.
NASA Technical Reports Server (NTRS)
Laporte, O.; Chang, T. S.
1972-01-01
The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.
Riley, Nathan; Geissel, Matthias; Lewis, Sean M; Porter, John L.
2015-03-01
The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.
Self-similar Ultrarelativistic Jetted Blast Wave
NASA Astrophysics Data System (ADS)
Keshet, Uri; Kogan, Dani
2015-12-01
Following a suggestion that a directed relativistic explosion may have a universal intermediate asymptotic, we derive a self-similar solution for an ultrarelativistic jetted blast wave. The solution involves three distinct regions: an approximately paraboloid head where the Lorentz factor γ exceeds ˜ 1/2 of its maximal, nose value; a geometrically self-similar, expanding envelope slightly narrower than a paraboloid; and an axial core in which the (cylindrically, henceforth) radial flow {{u}} converges inward toward the axis. Most (˜80%) of the energy lies well beyond the leading, head region. Here, a radial cross section shows a maximal γ (separating the core and the envelope), a sign reversal in {{u}}, and a minimal γ, at respectively ˜1/6, ˜1/4, and ˜3/4 of the shock radius. The solution is apparently unique, and approximately agrees with previous simulations, of different initial conditions, that resolved the head. This suggests that unlike a spherical relativistic blast wave, our solution is an attractor, and may thus describe directed blast waves such as in the external shock phase of a γ-ray burst.
Blast waves in rotating media.
NASA Technical Reports Server (NTRS)
Rossner, L. F.
1972-01-01
The model investigated involves a cylindrically symmetric blast wave generated by an infinitely long line explosion in a cold and homogeneous gas rotating rigidly in its self-gravitational field. It is found that within the context of rotation in a gravitational field a blast wave will not adopt the one-zone form familiar from similarity solutions but, rather, a two-zone form. The inner compression zone arises as a response to the presence of the restoring force, which drives a rarefaction wave into the outer compression zone.
ERIC Educational Resources Information Center
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
Laboratory blast wave driven instabilities
NASA Astrophysics Data System (ADS)
Kuranz, Carolyn
2008-04-01
This presentation discusses experiments well-scaled to the blast wave driven instabilities during the explosion phase of SN1987A. Blast waves occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low density foam layer. A blast wave structure similar to those in supernovae, is created in the plastic layer. The blast wave crosses a perturbed interface, which produces nonlinear, unstable growth dominated by the Rayleigh-Taylor (RT) instability. Recent experiments have been performed using complex initial conditions featuring a three-dimensional interface structure with a wavelength of 71 μm in two orthogonal directions, at times supplemented by an additional sinusoidal mode of 212 μm or 424 μm. We have detected the interface structure under these conditions, using dual orthogonal radiographs on some shots, and will show some of the resulting data. Recent advancements in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed. Current simulations do not show this phenomenon. This presentation will discuss the amount of mass in these spike extensions as well as the error analysis of this calculation. Future experiments will also be discussed. They will be focusing on realistic initial conditions based on 3D stellar evolution models. This research was sponsored by the Stewardship Science Academic Alliances Program through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064, and other grants and contracts.
Simulation of Blast Waves with Headwind
NASA Technical Reports Server (NTRS)
Olsen, Michael E.; Lawrence, Scott W.; Klopfer, Goetz H.; Mathias, Dovan; Onufer, Jeff T.
2005-01-01
The blast wave resulting from an explosion was simulated to provide guidance for models estimating risks for human spacecraft flight. Simulations included effects of headwind on blast propagation, Blasts were modelled as an initial value problem with a uniform high energy sphere expanding into an ambient field. Both still air and cases with headwind were calculated.
Blast wave parameters at diminished ambient pressure
NASA Astrophysics Data System (ADS)
Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.
2015-04-01
Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.
Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.
1987-01-01
Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.
Cygnus Loop Supernova Blast Wave
NASA Technical Reports Server (NTRS)
1993-01-01
This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to
Detonation waves in relativistic hydrodynamics
Cissoko, M. )
1992-02-15
This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.
Interactions of Blast Waves with Perturbed Interfaces
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc; Johnsen, Eric
2015-11-01
Richtmyer-Meshkov and Rayleigh-Taylor instabilities induce hydrodynamic mixing in many important physical systems such as inertial confinement fusion, supernova collapse, and scramjet combustion. Blast waves interacting with perturbed interfaces are prevelant in such applications and dictate the mixing dynamics. This study increases our understanding of blast-driven hydrodynamic instabilities by providing models for the time-dependent perturbation growth and vorticity production mechanisms. The strength and length of the blast wave determine the different growth regimes and the importance of the Richtmyer-Meshkov or Rayleigh-Taylor growth. Our analysis is based on simulations of a 2D planar blast wave, modeled by a shock (instantaneous acceleration) followed by a rarefaction (time-dependent deceleration), interacting with a sinusoidal perturbation at an interface between two fluids. A high-order accurate Discontinuous Galerkin method is used to solve the multifluid Euler equations.
Corrugation of Relativistic Magnetized Shock Waves
NASA Astrophysics Data System (ADS)
Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent
2016-08-01
As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.
On the Propagation and Interaction of Spherical Blast Waves
NASA Technical Reports Server (NTRS)
Kandula, Max; Freeman, Robert
2007-01-01
The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.
Relativistic Bernstein waves in a degenerate plasma
Ali, Muddasir; Hussain, Azhar; Murtaza, G.
2011-09-15
Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.
Unsteady relativistic shock-wave diffraction by cylinders and spheres.
Tsai, I-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J Y
2012-02-01
The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases. PMID:22463327
Unsteady relativistic shock-wave diffraction by cylinders and spheres
NASA Astrophysics Data System (ADS)
Tsai, I.-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J. Y.
2012-02-01
The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases.
Relativistic electron acceleration by oblique whistler waves
Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun
2013-11-15
Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.
Isothermal blast wave model of supernova remnants
NASA Technical Reports Server (NTRS)
Solinger, A.; Buff, J.; Rappaport, S.
1975-01-01
The validity of the 'adiabatic' assumption in supernova-remnant calculations is examined, and the alternative extreme of an isothermal blast wave is explored. It is concluded that, because of thermal conductivity, the large temperature gradients predicted by the adiabatic model probably are not maintained in nature. Self-similar solutions to the hydrodynamic equations for an isothermal blast wave have been found and studied. These solutions are then used to determine the relationship between X-ray observations and inferred parameters of supernova remnants. A comparison of the present results with those for the adiabatic model indicates differences which are less than present observational uncertainties. It is concluded that most parameters of supernova remnants inferred from X-ray measurements are relatively insensitive to the specifics of the blast-wave model.
Computation of blast wave-obstacle interactions
NASA Technical Reports Server (NTRS)
Champney, J. M.; Chaussee, D. S.; Kutler, P.
1982-01-01
Numerical simulations of the interaction of a planar blast wave with various obstacles are presented. These obstacles are either ground structures or vehicles flying in the atmosphere. For a structure on the ground, the blast wave encounter is side-on, while for the flying vehicles the encounter is either head-on or oblique. Second-order accurate, finite-difference, and shock-capturing procedures are employed to solve the two-dimensional, axisymmetric, and three-dimensional unsteady Euler equations. Results are presented for the flow field consisting of blast wave striking obstacles that are at rest, moving subsonically and moving supersonically. Comparison of the numerical results with experimental data for a configuration at rest substantiates the validity of this approach and its potential as a flow analysis tool.
The blast wave mitigation effects of a magnetogasdynamic decelerator
Baty, Roy S; Lundgren, Ronald G; Tucker, Don H
2009-01-01
This work computes shock wave jump functions for viscous blast waves propagating in a magnetogasdynamic decelerator. The decelerator is assumed to be a one-dimensional channel with sides that are perfect conductors. An electric field applied on the walls of the channel produces a magnetogasdynamic pump, which decelerates the flow field induced by a blast wave. The blast wave jump functions computed here are compared to magnetogasdynamic results for steady supersonic channel flow to quantify potential blast mitigation effects. Theoretical shock wave jump functions are also presented for inviscid blast waves propagating in a one-dimensional channel with an electromagnetic field.
Blast-wave characteristics near Site 300
Kang, Sang-Wook; Kleiber, J.C. Jr.
1993-08-01
The blast-wave overpressures propagating in the atmosphere near the Lawrence Livermore National Laboratory (LLNL) Site 300 have been measured at selected locations to determine whether the Site 300 blast operations will be hindered by the proposed construction of a residential development adjacent to its border.We tested high-explosives (HE) weights ranging from 14 to 545 lb under various weather conditions. Although more tests should be conducted before a definitive statement can be made on the blast propagation near Site 300, we offer the following preliminary interpretation of the results obtained to date. The readings at the closest locations show that the blast-wave overpressures exceed the 126-decibel (dB) level established by LLNL at about 250 lb of HE detonation. The weather conditions do not materially affect the pressure levels at these locations. Insufficient test data exist along the Corral Hollow Road perimeter, making it difficult to reasonably predict HE blast effects along the southern border. Therefore, we recommend that additional measurements be made along this and other boundaries in future tests, to provide more comprehensive data to help determine the blast-wave propagation characteristics in the proposed development areas. Blast-wave focusing may occur in the proposed residential development area under certain weather conditions. We recommend that this possibility should be addressed for its potentially adverse impact on the proposed residential area. Because the testing ground controlled by Physics International, Inc. (PI) is adjacent to Site 300, it is important to be aware of PI`s detonation activities. Peak overpressure measurements near PI`s Corral Hollow Road entrance reveal that PI shots over 25 lb HE have exceeded 126 dB, the limit established by LLNL for safe operations.
Study of High Mach Number Laser Driven Blast Waves
Edens, A; Ditmire, T; Hansen, J F; Edwards, M J; Adams, R G; Rambo, P; Ruggles, L; Smith, I C; Porter, J L
2004-02-26
The study of blast waves produced by intense lasers in gases is motivated by the desire to explore astrophysically relevant hydrodynamic phenomena in the laboratory. We have performed a systematic scan of laser produced blast waves and have examined the blast wave structure over a wide range of drive laser energy. Lasers with energies ranging from 10J-1000J illuminated a pin target in either xenon or nitrogen gas, creating a spherical blast wave. We observe a strongly radiating blast wave in xenon gas while blast waves in nitrogen more closely approximate a pure Taylor-Sedov wave. We also find that at all laser energies, blast waves traveling through xenon gas had their hydrodynamic evolution significantly affected by the passage of the illumination laser.
Relativistic helix traveling wave tube amplifiers
Freund, H.P.; Vanderplaats, N.R.; Kodis, M.A. )
1992-07-01
A relativistic field theory of a helix traveling wave tube (TWT) is described for the case in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. The theory is applied to the study of a TWT with an intense relativistic electron beam. The analysis implicitly includes beam space-charge effects and is valid for arbitrary azimuthal mode number, and the coupled-wave Pierce theory is recovered in the [ital near]-[ital resonant] limit. The results indicate that impressive gains and efficiencies are possible in this regime. In addition, the interaction is relatively insensitive to the effects of a beam energy spread.
Wave interaction in relativistic harmonic gyro-traveling-wave devices
Ngogang, R.; Nusinovich, G. S.; Antonsen, T. M. Jr.; Granatstein, V. L.
2006-05-15
In gyro-traveling-wave devices, several waves can be excited at different cyclotron harmonics simultaneously. This paper analyzes the interaction between three waves synchronous with gyrating electrons at different cyclotron harmonics in two relativistic gyro-amplifier configurations; viz., gyro-traveling-wave tubes and gyrotwystrons. Two types of nonlinear interactions are considered: (a) excitation of two waves at cyclotron harmonics by a wave excited at the fundamental resonance, and (b) excitation of a wave at the fundamental resonance and another wave at the third harmonic by a wave excited at the second cyclotron harmonic. The effect of the overlapping of electron cyclotron resonances on the performance of relativistic gyrodevices is investigated as well.
Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves
NASA Astrophysics Data System (ADS)
Meli, A.
We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field
Blast waves and how they interact with structures.
Cullis, I G
2001-02-01
The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge. PMID:11307674
Boundary-layer theory for blast waves
NASA Technical Reports Server (NTRS)
Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.
1975-01-01
It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.
Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard
2015-01-01
Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910
Significance of blast wave studies to propulsion.
NASA Technical Reports Server (NTRS)
Oppenheim, A. K.
1971-01-01
Brief survey of experimental methods currently used for the study of blast wave phenomena with emphasis on high rate exothermic processes. The experimental techniques have used such devices as divergent test sections in shock or detonation tubes, employment of proper test gases, as in marginal detonations, and a variety of explosion systems from finite source explosion apparatus to devices where virtually point explosions are obtained by local breakdown initiated by means of focused laser irradiation. Other methods used are detonation tubes where pressure waves are generated by accelerating flames or by exothermic reactions developed behind reflected shocks, as well as a variety of converging shock and implosion vessels.
Electron cyclotron wave generation by relativistic electrons
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1994-01-01
We show that an energetic electron distribution which has a temperature anisotropy (T perpendicular to b is greater than T parallel to b), or which is gyrating about a DC magnetic field, can generate electron cyclotron waves with frequencies below the electron cyclotron frequency. Relativistic effects are included in solving the dispersion equation and are shown to be quantitatively important. The basic idea of the mechanism is the coupling of the beam mode to slow waves. The unstable electron cyclotron waves are predominantly electromagnetic and right-hand polarized. For a low-density plasma in which the electron plasma frequency is less than the electron cyclotron frequency, the excited waves can have frequencies above or below the electron plasma frequency, depending upon the parameters of the energetic electron distribution. This instability may account for observed Z mode waves in the polar magnetosphere of the Earth and other planets.
General-relativistic astrophysics. [gravitational wave astronomy
NASA Technical Reports Server (NTRS)
Thorne, K. S.
1978-01-01
The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.
Studies of laser-driven radiative blast waves
Edwards, M J; Hansen, J; Edens, A; Ditmire, T; Adams, R; Rambo, P; Ruggles, L; Smith, I; Porter, J
2004-04-29
We have performed two sets of experiments looking at laser-driven radiating blast waves. In one set of experiments the effect of a drive laser's passage through a background gas on the hydrodynamical evolution of blast waves was examined. It was found that the laser's passage heats a channel in the gas, creating a region where a portion of the blast wave front had an increased velocity, leading to the formation of a bump-like protrusion on the blast wave. The second set of experiments involved the use of regularly spaced wire arrays to induce perturbations on a blast wave surface. The decay of these perturbations as a function of time was measured for various wave number perturbations and found to be in good agreement with theoretical predictions.
Relativistic nonlinear plasma waves in a magnetic field
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Pellat, R.
1975-01-01
Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.
Computation of viscous blast wave flowfields
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1991-01-01
A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.
Non-equilibrium ionized blast wave
NASA Technical Reports Server (NTRS)
Wu, S. T.
1974-01-01
The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.
Effect of cavitation on spherical blast waves
NASA Astrophysics Data System (ADS)
Kumar, S.
1984-09-01
For spherical blast waves propagating through a self-gravitating gas with an energy input Eα = E0tβ, where Eα is the energy released up to time t, E0 is a functional constant, and β is a constant, kinetic, internal heat, and gravitational potential energies have been computed. Taking the parameter A2, which characterises the gravitational field, equal to 2, variations of the percentages of these energies for β = 0, 1/2, 4/3, and 3 with shock strength have been presented. For β = 3, the effect of cavitation on the percentages of kinetic energy and internal heat energies has been explored.
On the Interaction and Coalescence if Spherical Blast Waves
NASA Technical Reports Server (NTRS)
Kandula, Max; Freeman, Robert J.
2005-01-01
The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.
Note: Device for underwater laboratory simulation of unconfined blast waves
NASA Astrophysics Data System (ADS)
Courtney, Elijah; Courtney, Amy; Courtney, Michael
2015-06-01
Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.
Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling
NASA Astrophysics Data System (ADS)
Chandra, N.; Ganpule, S.; Kleinschmit, N. N.; Feng, R.; Holmberg, A. D.; Sundaramurthy, A.; Selvan, V.; Alai, A.
2012-09-01
Shock tubes have been extensively used in the study of blast traumatic brain injury due to increased incidence of blast-induced neurotrauma in Iraq and Afghanistan conflicts. One of the important aspects in these studies is how to best replicate the field conditions in the laboratory which relies on reproducing blast wave profiles. Evolution of the blast wave profiles along the length of the compression-driven air shock tube is studied using experiments and numerical simulations with emphasis on the shape and magnitude of pressure time profiles. In order to measure dynamic pressures of the blast, a series of sensors are mounted on a cylindrical specimen normal to the flow direction. Our results indicate that the blast wave loading is significantly different for locations inside and outside of the shock tube. Pressure profiles inside the shock tube follow the Friedlander waveform fairly well. Upon approaching exit of the shock tube, an expansion wave released from the shock tube edges significantly degrades the pressure profiles. For tests outside the shock tube, peak pressure and total impulse reduce drastically as we move away from the exit and majority of loading is in the form of subsonic jet wind. In addition, the planarity of the blast wave degrades as blast wave evolves three dimensionally. Numerical results visually and quantitatively confirm the presence of vortices, jet wind and three-dimensional expansion of the planar blast wave near the exit. Pressure profiles at 90° orientation show flow separation. When cylinder is placed inside, this flow separation is not sustained, but when placed outside the shock tube this flow separation is sustained which causes tensile loading on the sides of the cylinder. Friedlander waves formed due to field explosives in the intermediate-to far-field ranges are replicated in a narrow test region located deep inside the shock tube.
Reactive Blast Waves from Composite Charges
Kuhl, A L; Bell, J B; Beckner, V E
2009-10-16
Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuing Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track
RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES
Gao Yang; Law, Chung K.
2012-12-01
As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index {Gamma} < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.
Percolation of Blast Waves though Sand
NASA Astrophysics Data System (ADS)
Proud, William
2013-06-01
Previous research has concentrated on the physical processes occurring when samples of sand, of varying moisture content, were shock compressed. In this study quartz sand samples are subjected to blast waves over a range of pressure and duration. Aspects of particle movement are discussed; the global movement of a bed hundreds of particles thick is a fraction of particle width. The main diagnostics used are pressure sensors and high-speed photography. Results are presented for a range of particle sizes, aspect ratio, density and moisture content. While the velocity of the percolation through the bed is primarily controlled by density and porosity the effect of moisture reveals a more complex dependence. The ISP acknowledges the support of the Atomic Weapons Establishment and Imperial College London.
NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE
Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew
2013-08-10
Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.
Characterising the acceleration phase of blast wave formation
Fox, T. E. Pasley, J.; Robinson, A. P. L.; Schmitz, H.
2014-10-15
Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K
2010-06-01
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534
Close-in Blast Waves from Spherical Charges*
NASA Astrophysics Data System (ADS)
Howard, William; Kuhl, Allen
2011-06-01
We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.
Rehman, M. A.; Qureshi, M. N. S.; Shah, H. A.; Masood, W.
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
Relativistic and non-relativistic analysis of whistler-mode waves in a hot anisotropic plasma
NASA Astrophysics Data System (ADS)
Sazhin, S. S.; Sumner, A. E.; Temme, N. M.
1992-02-01
The dispersion equation for parallel whistler-mode propagation in a hot anisotropic plasma is analysed numerically in both weakly relativistic and nonrelativistic approximations under the assumption that wave growth or damping does not influence the wave refractive index. The results of this analysis are compared with the results of an asymptotic analysis of the same equation, and the range of applicability of the latter results is specified. It is pointed out that relativistic effects lead to a decrease in the range of frequencies for which instability occurs. For a moderately anisotropic plasma (T/T = 2) relativistic effects lead to an increase in the maximum value of the increment of instability.
Relativistic electron beam acceleration by Compton scattering of extraordinary waves
Sugaya, R.
2006-05-15
Relativistic transport equations, which demonstrate that relativistic and nonrelativistic particle acceleration along and across a magnetic field and the generation of an electric field transverse to the magnetic field, are induced by nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of almost perpendicularly propagating electromagnetic waves in a relativistic magnetized plasma were derived from the relativistic Vlasov-Maxwell equations. The relativistic transport equations show that electromagnetic waves can accelerate particles in the k{sup ''} direction (k{sup ''}=k-k{sup '}). Simultaneously, an intense cross-field electric field, E{sub 0}=B{sub 0}xv{sub d}/c, is generated via the dynamo effect owing to perpendicular particle drift to satisfy the generalized Ohm's law, which means that this cross-field particle drift is identical to the ExB drift. On the basis of these equations, acceleration and heating of a relativistic electron beam due to nonlinear wave-particle scattering of electromagnetic waves in a magnetized plasma were investigated theoretically and numerically. Two electromagnetic waves interact nonlinearly with the relativistic electron beam, satisfying the resonance condition of {omega}{sub k}-{omega}{sub k{sup '}}-(k{sub perpendicular}-k{sub perpendicula=} r{sup '})v{sub d}-(k{sub parallel}-k{sub parallel}{sup '})v{sub b}{approx_equal}m{omega}{sub ce}, where v{sub b} and v{sub d} are the parallel and perpendicular velocities of the relativistic electron beam, respectively, and {omega}{sub ce} is the relativistic electron cyclotron frequency. The relativistic transport equations using the relativistic drifted Maxwellian momentum distribution function of the relativistic electron beam were derived and analyzed. It was verified numerically that extraordinary waves can accelerate the highly relativistic electron beam efficiently with {beta}m{sub e}c{sup 2} < or approx. 1 GeV, where {beta}=(1-v{sub b}{sup 2}/c{sup 2}){sup -1/2}.
Measurement of Blast Waves from Bursting Pressureized Frangible Spheres
NASA Technical Reports Server (NTRS)
Esparza, E. D.; Baker, W. E.
1977-01-01
Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.
Nonlinear positron-acoustic waves in fully relativistic degenerate plasmas
NASA Astrophysics Data System (ADS)
Hossen, M. A.; Mamun, A. A.
2016-03-01
The nonlinear positron-acoustic (PA) waves propagating in a fully relativistic electron-positron-ion (EPI) plasma (containing degenerate electrons and positrons, and immobile heavy ions) have been theoretically investigated. A fully relativistic hydrodynamic model, which is consistent with the relativistic principle has been used, and the reductive perturbation method is employed to derive the dynamical Korteweg-de Vries equation. The dynamics of electrons as well as positrons, and the presence of immobile heavy ions are taken into account. It is found that the effects of relativistic degeneracy of electrons and positrons, static heavy ions, plasma particles velocity, enthalpy, etc have significantly modified the basic properties of the PA solitary waves propagating in the fully relativistic EPI plasmas. The application of the results of our present work in astrophysical compact objects such as white dwarfs and neutron stars, etc are briefly discussed.
Tailored blast wave formation: Developing experiments pertinent to laboratory astrophysics
NASA Astrophysics Data System (ADS)
Moore, Alastair S.; Symes, Daniel R.; Smith, Roland A.
2005-05-01
The first production of ``tailored'' blast waves in a cluster media using an intense, 2×1016 W cm-2, laser pulse is reported. This new technique produces cylindrical blast waves with a strong axial modulation of variable spatial frequency as a seed for instability growth. Spherical or cylindrical colliding blast waves can also be produced. Energy deposition in the cluster medium was modified using moderate-power (<1015 W cm-2) ``laser-machining,'' which destroyed clusters in selected regions while keeping the atomic density constant. Electron density profiles track the time evolution showing the production of strongly modulated blast waves and the development of a thin shell after ~6 ns in H2. Similarity parameters suggest that the hydrogen results are hydrodynamically scalable, but instabilities are precluded by the lack of radiation and low Reynolds number. Similar argon and xenon experiments do not form blast waves on the studied time scale, but indicate that radiation might become influential later in the evolution.
Tailored blast wave formation: Developing experiments pertinent to laboratory astrophysics
Moore, Alastair S.; Symes, Daniel R.; Smith, Roland A.
2005-05-15
The first production of 'tailored' blast waves in a cluster media using an intense, 2x10{sup 16} W cm{sup -2}, laser pulse is reported. This new technique produces cylindrical blast waves with a strong axial modulation of variable spatial frequency as a seed for instability growth. Spherical or cylindrical colliding blast waves can also be produced. Energy deposition in the cluster medium was modified using moderate-power (<10{sup 15} W cm{sup -2}) 'laser-machining', which destroyed clusters in selected regions while keeping the atomic density constant. Electron density profiles track the time evolution showing the production of strongly modulated blast waves and the development of a thin shell after {approx_equal}6 ns in H{sub 2}. Similarity parameters suggest that the hydrogen results are hydrodynamically scalable, but instabilities are precluded by the lack of radiation and low Reynolds number. Similar argon and xenon experiments do not form blast waves on the studied time scale, but indicate that radiation might become influential later in the evolution.
Wave-breaking phenomena in a relativistic magnetized plasma.
Maity, Chandan; Sarkar, Anwesa; Shukla, Padma Kant; Chakrabarti, Nikhil
2013-05-24
We study the wave-breaking phenomenon of relativistic upper-hybrid (UH) oscillations in a cold magnetoplasma. For our purposes, we use the electron continuity and relativistic electron momentum equations, together with Maxwell's equations, as well as introduce Lagrangian coordinates to obtain an exact nonstationary solution of the governing nonlinear equations. It is found that bursts in the electron density appear in a finite time as a result of relativistic electron mass variations in the UH electric field, indicating a phase mixing or breaking of relativistic UH oscillations. We highlight the relevance of our investigation of the UH wave phase-mixing or UH wave-breaking process to electron energization and plasma particle heating. PMID:23745888
Micro-blast waves using detonation transmission tubing
NASA Astrophysics Data System (ADS)
Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.
2013-07-01
Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.
Blast-Wave-Driven Instability Experiments Relevant To Supernova Hydrodynamics
NASA Astrophysics Data System (ADS)
Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Budde, A.; Remington, B.; Robey, H.; Arnett, D.; Meakin, C.; Plewa, T.
2011-05-01
This presentation discusses experiments scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface with a drop in density and a precision-machined interface with multiple modes. The specific modal structure is based on simulation results of the evolution of the progenitor star. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-FG52-09NA29034.
Hussain, S.; Mahmood, S.; Rehman, Aman-ur-
2014-11-15
Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.
Some properties of adiabatic blast waves in preexisting cavities
NASA Technical Reports Server (NTRS)
Cox, D. P.; Franco, J.
1981-01-01
Cox and Anderson (1982) have conducted an investigation regarding an adiabatic blast wave in a region of uniform density and finite external pressure. In connection with an application of the results of the investigation to a study of interstellar blast waves in the very hot, low-density matrix, it was found that it would be desirable to examine situations with a positive radial density gradient in the ambient medium. Information concerning such situations is needed to learn about the behavior of blast waves occurring within preexisting, presumably supernova-induced cavities in the interstellar mass distribution. The present investigation is concerned with the first steps of a study conducted to obtain the required information. A review is conducted of Sedov's (1959) similarity solutions for the dynamical structure of any explosion in a medium with negligible pressure and power law density dependence on radius.
Rapid miniature fiber optic pressure sensors for blast wave measurements
NASA Astrophysics Data System (ADS)
Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei
2013-02-01
Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.
Blast wave diagnostic for the petawatt laser system
Budil, K. S., LLNL
1998-06-03
We report on a diagnostic to measure the trajectory of a blast wave propagating through a plastic target 400 {micro}m thick. This blast wave is generated by the irradiation of the front surface of the target with {approximately} 400 J of 1 {micro}m laser radiation in a 20 ps pulse focused to a {approximately} 50 {micro}m diameter spot, which produces an intensity in excess of 1O{sup 18} W/cm{sup 2}. These conditions approximate a point explosion and a blast wave is predicted to be generated with an initial pressure nearing 1 Gbar which decays as it travels approximately radially outward from the interaction region We have utilized streaked optical pyrometry of the blast front to determine its time of arrival at the rear surface of the target Applications of a self-similar Taylor-Sedov blast wave solution allows the amount of energy deposited to be estimated The experiment, LASNEX design simulations and initial results are discussed.
Relativistic scattered wave calculations on UF6
NASA Technical Reports Server (NTRS)
Case, D. A.; Yang, C. Y.
1980-01-01
Self-consistent Dirac-Slater multiple scattering calculations are presented for UF6. The results are compared critically to other relativistic calculations, showing that the results of all molecular orbital calculations are in qualitative agreement, as measured by energy levels, population analyses, and spin-orbit splittings. A detailed comparison is made to the relativistic X alpha(RX alpha) method of Wood and Boring, which also uses multiple scattering theory, but incorporates relativistic effects in a more approximate fashion. For the most part, the RX alpha results are in agreement with the present results.
Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.
2015-06-15
In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.
Stress Wave Interaction Between Two Adjacent Blast Holes
NASA Astrophysics Data System (ADS)
Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali
2016-05-01
Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.
Relativistic wave-breaking limit of electrostatic waves in cold electron-positron-ion plasmas
NASA Astrophysics Data System (ADS)
Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil; Sengupta, Sudip
2016-06-01
A one-dimensional nonlinear propagation of relativistically strong electrostatic waves in cold electron-positron-ion (EPI) plasmas has been analyzed. The motion of all the three species, namely, electron, positron, and ion has been treated to be relativistic. The maximum permissible electric field amplitude - so called "wave-breaking limit" of such an electrostatic wave before wave-breaking has been derived, showing its dependence on the relativistic Lorentz factor associated with the phase velocity of the plasma wave, on the electron/positron to ion mass ratio, and on the ratio of equilibrium ion density to equilibrium electron/positron density.
Investigating EMIC Waves as a Precipitation Mechanism for Relativistic Electrons
NASA Astrophysics Data System (ADS)
Li, Z.; Millan, R. M.; Woodger, L. A.
2012-12-01
Evidence has indicated that EMIC waves may be one of the major causes of relativistic electron precipitation (REP). We solved the pitch-angle diffusion equation for the scattering of relativistic electrons by EMIC waves, and generated flux-energy spectra of the precipitating electrons. After being converted into Bremsstrahlung X-ray counts, these spectra can be directly compared with previous (e.g. MAXIS, MINIS, BARREL test campaigns) and future (e.g. BARREL) balloon spectra measurements to determine if EMIC waves are the causes of the REP events. Parameter studies have also been conducted to investigate the influence of various geomagnetic parameters and environmental conditions on the REP spectra.
Bernstein-Greene-Kruskal waves in relativistic cold plasma
NASA Astrophysics Data System (ADS)
Singh Verma, Prabal; Sengupta, Sudip; Kaw, Predhiman
2012-03-01
We construct the longitudinal traveling wave solution [Akhiezer and Polovin, Sov. Phys. JETP 3, 696 (1956)] from the exact space and time dependent solution of relativistic cold electron fluid equations [Infeld and Rowlands, Phys. Rev. Lett. 62, 1122 (1989)]. Ions are assumed to be static. We also suggest an alternative derivation of the Akhiezer Polovin solution after making the standard traveling wave Ansatz.
Negative energy waves and quantum relativistic Buneman instabilities.
Haas, F; Eliasson, B; Shukla, P K
2012-09-01
The quantum relativistic Buneman instability is investigated theoretically using a collective Klein-Gordon model for the electrons and a cold fluid model for the ions. The growth rate and unstable wave spectrum is investigated in different parameter regimes corresponding to various degrees of relativistic and quantum effects. The results may be important for streaming instabilities involving ion dynamics in very dense plasmas. PMID:23031033
Relativistic wave and particle mechanics formulated without classical mass
Fry, J.L.; Musielak, Z.E.; Chang, Trei-wen
2011-08-15
Highlights: > Formal derivation of the Klein-Gordon equation with an invariant frequency. > Formal derivation of the relativistic version of Newton's equation. > The classical mass is replaced by the invariant frequency. > The invariant frequencies for selected elementary particles are deduced. > The choice of natural units resulting from the developed theories is discussed. - Abstract: The fact that the concept of classical mass plays an important role in formulating relativistic theories of waves and particles is well-known. However, recent studies show that Galilean invariant theories of waves and particles can be formulated with the so-called 'wave mass', which replaces the classical mass and allows attaining higher accuracy of performing calculations [J.L. Fry and Z.E. Musielak, Ann. Phys. 325 (2010) 1194]. The main purpose of this paper is to generalize these results and formulate fundamental (Poincare invariant) relativistic theories of waves and particles without the classical mass. In the presented approach, the classical mass is replaced by an invariant frequency that only involves units of time. The invariant frequencies for various elementary particles are deduced from experiments and their relationship to the corresponding classical and wave mass for each particle is described. It is shown that relativistic wave mechanics with the invariant frequency is independent of the Planck constant, and that such theory can attain higher accuracy of performing calculations. The choice of natural units resulting from the developed theories of waves and particles is also discussed.
Blast waves produced by interactions of femtosecond laser pulses with water.
Li, Y T; Zhang, J; Teng, H; Li, K; Peng, X Y; Jin, Z; Lu, X; Zheng, Z Y; Yu, Q Z
2003-05-01
The behaviors of the blast waves produced by femtosecond laser-water interactions, and the blast waves induced by laser self-focusing in air, have been investigated using optical shadowgraphy at a maximum intensity of 1 x 10(16) W/cm(2). The temporal evolution of the blast wave launched by the water plasma can be described by a planar blast wave model including source mass. An aneurismlike structure, due to the quick propagation inside a hollow channel formed by laser self-focusing, is observed. The expansion of the channel in air is found to agree with a cylindrical self-similar blast wave solution. PMID:12786283
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
On wave stability in relativistic cosmic-ray hydrodynamics
NASA Technical Reports Server (NTRS)
Webb, G. M.
1989-01-01
Wave stability of a two-fluid hydrodynamical model describing the acceleration of cosmic rays by the first-order Fermi mechanism in relativistic, cosmic-ray-modified shocks is investigated. For a uniform background state, the short- and long-wavelength wave speeds are shown to interlace, thus assuring wave stability in this case. A JWKB analysis is performed to investigate the stability of short-wavelength thermal gas sound waves in the smooth, decelerating supersonic flow upstream of a relativistic, cosmic-ray-modified shock. The stability of the waves is assessed both in terms of the fluid velocity and density perturbations, as well as in terms of the wave action. The stability and interaction of the short-wavelength cosmic-ray coherent mode with the background flow is also studied.
Kinetic theory of electromagnetic ion waves in relativistic plasmas
Marklund, Mattias; Shukla, Padma K.
2006-09-15
A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by a ponderomotive force-like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.
Investigation of Relativistic Electron Resonance with EMIC Waves
NASA Astrophysics Data System (ADS)
Woodger, L. A.; Millan, R. M.; Denton, R. E.
2008-12-01
Wave-particle interaction of relativistic electrons with EMIC waves has been proposed as an important loss mechanism for radiation belt electrons (e.g. Thorne and Andreoli, 1980). Lorentzen et al (2000) and Millan et al (2002) suggested this mechanism to be responsible for dusk side relativistic electron precipitation (REP) detected by balloon borne instrumentation. This study will use the linear electromagnetic dispersion code WHAMP to investigate the effects of density, magnetic field, anisotropy, and heavy ions on the minimum resonance energy for relativistic electrons with EMIC waves. Results will be compared with observations of REP during the MAXIS balloon campaign on Jan. 19, 2000 and the MINIS balloon campaign on Jan. 21, 2005.
Testing the blast wave model with Swift GRBs
NASA Astrophysics Data System (ADS)
Curran, P. A.; Starling, R. L. C.; van der Horst, A. J.; Wijers, R. A. M. J.; de Pasquale, M.; Page, M.
2011-04-01
The complex structure of the light curves of Swift GRBs (e.g. superimposed flares and shallow decay) has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of a Swift sample to the predictions of the blast wave model.We can successfully interpret all of the bursts in our multi-wavelength sample of 10, except two, within the framework of the blast wave model, and we can estimate with confidence the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in almost half of the bursts. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. This is in agreement with our results for a larger sample of X-ray only afterglows which we summarise here.
Modeling of Laser-generated Radiative Blast Waves
Keilty, K. A.; Liang, E. P.; Ditmire, T.; Remington, B. A.; Shigemori, K.; Rubenchik, A. M.
2000-08-01
We simulate experiments performed with the Falcon laser at Lawrence Livermore National Laboratory to generate strong, cylindrically diverging blast waves of relevance to astrophysics. In particular, we are interested in producing and modeling radiative shocks. We compare numerical simulations with the data and with an analytic approximation to blast-wave propagation with a radiative-loss term included. Our goal is to develop a laboratory setting for studying radiative shocks of relevance to supernova remnants, gamma-ray burst afterglows, and other high-energy astrophysics phenomena. We will show that a good degree of agreement exists between the experimental data and the numerical simulations, demonstrating that it is indeed possible to generate radiative shocks in the laboratory using tabletop femtosecond lasers. In addition, we show how we can determine the energy-loss rate from the blast-wave evolution. This analytic method is independent of the exact mechanism of radiative cooling and is scalable to both the laboratory and astrophysical radiative blast waves. (c) 2000 The American Astronomical Society.
A systematic exposition of the conservation equations for blast waves.
NASA Technical Reports Server (NTRS)
Oppenheim, A. K.; Lundstrom, E. A.; Kuhl, A. L.; Kamel, M. M.
1971-01-01
In order to provide a rational background for the analysis of experimental observations of blast wave phenomena, the conservation equations governing their nonsteady flow field are formulated in a general manner, without the usual restrictions imposed by an equation of state, and with proper account taken, by means of source terms, of other effects which, besides the inertial terms that conventionally dominate these equations, can affect the flow. Taking advantage of the fact that a blast wave can be generally considered as a spatially one-dimensional flow field whose nonsteady behavior can be regarded, consequently, as a function of just two independent variables, two generalized blast wave coordinates are introduced, one associated with the front of the blast wave and the other with its flow field. The conservation equations are accordingly transformed into this coordinate system, acquiring thereby a comprehensive character, in that they refer then to any frame of reference, being applicable, in particular, to problems involving either space or time profiles of the gas-dynamic parameters in the Eulerian system, or time profiles in the Lagrangian system.
Explosively-Driven Blast Waves in Small-Diameter Tubes
NASA Astrophysics Data System (ADS)
Cooper, M. A.; Marinis, R. T.; Oliver, M. S.
Studies on blast waves are motivated by the need to understand dynamic pressure loadings in accident scenarios associated with rapid energy release in confined geometries. Explosions from fuel-air mixtures, explosives and industrial accidents often occur within a range of length scales associated with ducts, pipes, corridors, and tunnels [1, 2].
Analysis of Blast Wave Interaction with a Rock Joint
NASA Astrophysics Data System (ADS)
Li, Jianchun; Ma, Guowei
2010-11-01
The interaction between rock joints and blast waves is crucial in rock engineering when rock mass is suffered from artificial or accidental explosions, bursts or weapon attacks. Based on the conservation of momentum at the wave fronts and the displacement discontinuity method, quantitative analysis for the interaction between obliquely incident P- or S-blast wave and a linear elastic rock joint is carried out in the present study, so as to deduce a wave propagation equation. For some special cases, such as normal or tangential incidence, rigid or weak joint, the analytical solution of the stress wave interaction with a rock joint is obtained by simplifying the wave propagation equation. By verification, it is found that the transmission and reflection coefficients from the wave propagation equation agree very well with the existing results. Parametric studies are then conducted to evaluate the effects of the joint stiffness and incident waves on wave transmission and reflection. The wave propagation equation derived in the present study can be straightforwardly extended for different incident waveforms and nonlinear rock joints to calculate the transmitted and reflected waves without mathematical methods such as the Fourier and inverse Fourier transforms.
Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.
Taylor, Paul Allen; Ford, Corey C.
2008-04-01
U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.
Navier-Stokes analysis of muzzle-blast-type waves
NASA Astrophysics Data System (ADS)
Baysal, O.
1986-05-01
A Navier-Stokes solution is presented as a mathematical model to muzzle-blast-type waves. The study has two novel features. First, it is a combined internal/external analysis relating barrel flow parameters to muzzle environment parameters. Second, the dissipative and dispersive effects of viscosity on the propagation phenomenon are captured. The investigation also serves as a numerical analysis of axisymmetric, high-pressure waves in an unsteady, viscous flow. Conservation-form Navier-Stokes equations are integrated by a two-step, explicit finite-difference scheme. The shocks are captured and treated by the inclusion of artificial dissipative terms. Turbulence is accounted for by an algebraic eddy-viscosity model. The internal flow is solved by a predictor-corrector method of characteristics with the shock fitted in; its results compare very well with the experimental data available. The numerical results obtained simulate the muzzle blast waves and show the effects of viscosity. Comparison with the classical spherical blast wave theory shows the deviation in propagation patterns of the axisymmetric and spherical waves.
Blast Wave Driven Instabilities In Laboratory Astrophysics Experiments
NASA Astrophysics Data System (ADS)
Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Robey, H.; Hansen, J.; Miles, A.; Knauer, J.; Arnett, D.; Plewa, T.; Hearn, N.; Meakin, C.
2008-05-01
This presentation discusses experiments well scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses a three-dimensional interface with a wavelength of 71 µm in two orthogonal directions. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. Recent advancements in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed. Current simulations do not show this phenomenon. This presentation will discuss the amount of mass in these spike extensions. Recent results from an experiment using more realistic initial conditions based on stellar evolution models will also be shown. This research was sponsored by the Stewardship Science Academic Alliance through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064.
Existence and Stability of Relativistic Solitary Waves in Warm Plasmas
Maza-Palacios, Marco A.; Herrera-Velazquez, J. Julio E.
2006-12-04
A variational mehod for one dimensional relativistic solitons is established, within the two fluid model framework, including finite temperature effects. Our starting point is a Lagrangian for a two species fluid plasma, which allows the deduction of the conserved quantities of the system by means of Noether's theorem, as well as the model equations. At a first stage, travelling wave solutions are studied with the usual shape of envelope solitary waves. It is found that bounded travelling waves (bright solitons) exist for most velocities, if both ions and electrons are assumed to be relativistic, except for a window at small values of v/c. In order to study their stability, we obtain the evolution equations of the solitary wave parameters, along those of radiation.
A relativistic solitary wave in electron-positron ion plasma
Berezhiani, V.I.; Mahajan, S.M. |
1994-03-01
The nonlinear propagation of circularly polarized electromagnetic (CPEM) waves with relativistically strong amplitude in an unmagnetized cold electron-positron ion plasma is investigated. The possibility of finding soliton solutions in such a plasma is explored. In one- and two-dimensions it is shown that the presence of a small fraction of massive ions in the plasma leads to stable localized solutions.
Gravitational Wave Science: Challenges for Numerical Relativistic Astrophysics
NASA Technical Reports Server (NTRS)
Cenrella, Joan
2005-01-01
Gravitational wave detectors on earth and in space will open up a new observational window on the universe. The new information about astrophysics and fundamental physics these observations will bring is expected to pose exciting challenges. This talk will provide an overview of this emerging area of gravitational wave science, with a focus on the challenges it will bring for numerical relativistic astrophysics and a look at some recent results.
Relationship between orientation to a blast and pressure wave propagation inside the rat brain.
Chavko, Mikulas; Watanabe, Tomas; Adeeb, Saleena; Lankasky, Jason; Ahlers, Stephen T; McCarron, Richard M
2011-01-30
Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (~35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain. PMID:21129403
Review of methods to attenuate shock/blast waves
NASA Astrophysics Data System (ADS)
Igra, O.; Falcovitz, J.; Houas, L.; Jourdan, G.
2013-04-01
Quick and reliable shock wave attenuation is the goal of every protection facility and therefore it is not surprising that achieving this has drawn much attention during the past hundred years. Different options have been suggested; their usefulness varying from a reasonable protection to the opposite, a shock enhancement. An example for a suggestion for shock mitigation that turned out to be an enhancement of the impinging shock wave was the idea to cover a protected object with a foam layer. While the pressure behind the reflected shock wave from the foam frontal surface was smaller than that recorded in a similar reflection from a rigid wall [25], the pressure on the “protected” surface, attached to the foam's rear-surface, was significantly higher than that recorded in a similar reflection from a bare, rigid wall [11]. In protecting humans and installations from destructive shock and/or blast waves the prime goal is to reduce the wave amplitude and the rate of pressure increase across the wave front. Both measures result in reducing the wave harmful effects. During the past six decades several approaches for achieving the desired protection have been offered in the open literature. We point out in this review that while some of the suggestions offered are practical, others are impractical. In our discussion we focus on recent schemes for shock/blast wave attenuation, characterized by the availability of reliable measurements (notably pressure and optical diagnostics) as well as high-resolution numerical simulations.
Relativistic particle motion in nonuniform electromagnetic waves
NASA Technical Reports Server (NTRS)
Schmidt, G.; Wilcox, T.
1973-01-01
It is shown that a charged particle moving in a strong nonuniform electromagnetic wave suffers a net acceleration in the direction of the negative intensity gradient of the wave. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities can result.
Relativistic particle motion in nonuniform electromagnetic waves
NASA Technical Reports Server (NTRS)
Schmidt, G.; Wilcox, T.
1973-01-01
A charged particle moving in a strong nonuniform electromagnetic wave which suffers a net acceleration in the direction of the negative intensity gradient of the wave was investigated. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities result.
RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES
Zankovich, A. M.; Kovalenko, I. G.
2015-02-10
We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.
Resonant Amplification of Turbulence by the Blast Waves
NASA Astrophysics Data System (ADS)
Zankovich, A. M.; Kovalenko, I. G.
2015-02-01
We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ~ 1), meso- (l ~ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.
Blast waves from violent explosive activity at Yasur volcano, Vanuatu
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.
2013-12-01
The violent Strombolian activity at Yasur volcano (Vanuatu) was recorded with infrasonic, seismic and thermal sensors. Infrasound array allowed to identify and stack ~3000 infrasonic and seismic transiensts of explosions from two distinct vents. The stacked seismic signals evidence a low-frequency (0.15 Hz) signal preceding of ~5-6 s the explosion that was hidden by the high seismic tremor and microseism. Infrasonic signals are self-similar presenting a stable strong asymmetry, with a sharp positive pressure (5-106 Pa) onset followed by a longer lasting negative rarefaction phase. Self-similarity and asymmetry of the recorded pressure waveforms are recalling blast waves. Regardless the pressure amplitude, ratio between the positive and negative phase is constant. This fit the Friedland waveform and support the blast wave model. Thermal imagery detects this pressure wave as soon as it exits the vent as a relative ~20 m thick cold front, which radiates spherically from the source. This front of apparent cold temperature is moving before the volcanic hot gas/fragments cloud at a velocity ranging between 342 and 403 m/s. We interpret this cold front as produced by the change of the atmospheric refraction index induced by the passage of the shock front. Assuming a supersonic dynamics, we calculate that the mean acoustic pressure (25 Pa) recorded at the array is generated by a a gas expansion velocity of 372 m/s equivalent to Mach number of 1.1. Our data are then suggesting that explosive activity at Yasur is able to generate blast waves indicating supersonic gas expansion. Blast waves are expected and well documented for Plinian and Vulcanian eruptions, but have never been recorded during Strombolian events. This evidence has a direct consequence on the source modeling of infrasonic transients explosions as it requires non-linear source dynamics to explain also small scale (VEI<2) explosive processes.
Towards a fast-running method for blast-wave mitigation by a prismatic blast wall
NASA Astrophysics Data System (ADS)
Éveillard, Sébastien; Lardjane, Nicolas; Vinçont, Jean-Yves; Sochet, Isabelle
A procedure aimed at developing a fast-running method for blast-wave effects characterization behind a protection barrier is presented. Small-scale experiments of a hemispherical gaseous charge (stoichiometric propane-oxygen mixture) without and with a prismatic protective barrier are used to validate the use of an in-house CFD code for gaseous detonation. From numerical experiments, pressure loss of a blast wave at a corner is quantified. These fits, in conjunction with TM5-1300 reflection charts, are used to estimate the maximum overpressure around a protective barrier through geometrical and empirical laws. The results show good agreement with numerical and experimental data from the ANR-BARPPRO research project.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.
Channeling of relativistic laser pulses, surface waves, and electron acceleration.
Naseri, N; Pesme, D; Rozmus, W; Popov, K
2012-03-01
The interaction of a high-energy relativistic laser pulse with an underdense plasma is studied by means of 3-dimensional particle in cell simulations and theoretical analysis. For powers above the threshold for channeling, the laser pulse propagates as a single mode in an electron-free channel during a time of the order of 1 picosecond. The steep laser front gives rise to the excitation of a surface wave along the sharp boundaries of the ion channel. The surface wave first traps electrons at the channel wall and preaccelerates them to relativistic energies. These particles then have enough energy to be further accelerated in a second stage through an interplay between the acceleration due to the betatron resonance and the acceleration caused by the longitudinal part of the surface wave electric field. It is necessary to introduce this two-stage process to explain the large number of high-energy electrons observed in the simulations. PMID:22463415
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Impact of complex blast waves on the human head: a computational study.
Tan, Long Bin; Chew, Fatt Siong; Tse, Kwong Ming; Chye Tan, Vincent Beng; Lee, Heow Pueh
2014-12-01
Head injuries due to complex blasts are not well examined because of limited published articles on the subject. Previous studies have analyzed head injuries due to impact from a single planar blast wave. Complex or concomitant blasts refer to impacts usually caused by more than a single blast source, whereby the blast waves may impact the head simultaneously or consecutively, depending on the locations and distances of the blast sources from the subject, their blast intensities, the sequence of detonations, as well as the effect of blast wave reflections from rigid walls. It is expected that such scenarios will result in more serious head injuries as compared to impact from a single blast wave due to the larger effective duration of the blast. In this paper, the utilization of a head-helmet model for blast impact analyses in Abaqus(TM) (Dassault Systemes, Singapore) is demonstrated. The model is validated against studies published in the literature. Results show that the skull is capable of transmitting the blast impact to cause high intracranial pressures (ICPs). In addition, the pressure wave from a frontal blast may enter through the sides of the helmet and wrap around the head to result in a second impact at the rear. This study recommended better protection at the sides and rear of the helmet through the use of foam pads so as to reduce wave entry into the helmet. The consecutive frontal blasts scenario resulted in higher ICPs compared with impact from a single frontal blast. This implied that blast impingement from an immediate subsequent pressure wave would increase severity of brain injury. For the unhelmeted head case, a peak ICP of 330 kPa is registered at the parietal lobe which exceeds the 235 kPa threshold for serious head injuries. The concurrent front and side blasts scenario yielded lower ICPs and skull stresses than the consecutive frontal blasts case. It is also revealed that the additional side blast would only significantly affect ICPs at
Simulation of the Reflected Blast Wave froma C-4 Charge
Howard, W M; Kuhl, A L; Tringe, J W
2011-08-01
The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Schmitz, H.; Fox, T. E.; Pasley, J.; Symes, D. R.
2015-03-01
When strong shocks interact with transverse density gradients, it is well known that vorticity deposition occurs. When two non-planar blast waves interact, a strong shock will propagate through the internal structure of each blast wave where the shock encounters such density gradients. There is therefore the potential for the resulting vorticity to produce pronounced density structures long after the passage of these shocks. If the two blast waves have evolved to the self-similar (Sedov) phase this is not a likely prospect, but for blast waves at a relatively early stage of their evolution this remains possible. We show, using 2D numerical simulations, that the interactions of two 'marginally young' blast waves can lead to strong vorticity deposition which leads to the generation of a strong protrusion and vortex ring as mass is driven into the internal structure of the weaker blast wave.
Study of high Mach number laser driven blast waves in gases
Edens, A. D.; Adams, R. G.; Rambo, P.; Ruggles, L.; Smith, I. C.; Porter, J. L.; Ditmire, T.
2010-11-15
A series of experiments were performed examining the evolution of blast waves produced by laser irradiation of a target immersed in gas. Blast waves were produced by illumination of wires by 1 kJ, 1 ns laser pulses from the Z-Beamlet laser at Sandia National Laboratories. The blast waves were imaged by probe laser pulses at various times to examine the trajectory, radiative precursor, and induced perturbations on the blast wave front. Well defined perturbations were induced on the blast wave front with arrays of wires placed in the gas and the results of the experiments are compared to the theoretical predictions for the Vishniac overstability. It is found that the experimental results are in general agreement with these theoretical predictions on thin blast wave shells and are in quantitative agreement in the simplest case.
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Sapountzis, Konstantinos Vlahakis, Nektarios
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
IMAGING HIGH SPEED PARTICLES IN EXPLOSIVE DRIVEN BLAST WAVES
Jenkins, C. M.; Horie, Y.; Ripley, R. C.; Wu, C.-Y.
2009-12-28
This research describes a new application of a commercially available particle image velocimetry (PIV) instrument adapted for imaging particles in a blast wave. Powder was dispersed through the PIV light sheet using a right circular cylindrical charge containing aluminum powder filled in the annular space between the explosive core and exterior paper tube wall of the charge. Images acquired from each shot showed particle agglomeration and unique structures with the smaller particle diameters having developed structured appearances.
A thoracic mechanism of mild traumatic brain injury due to blast pressure waves.
Courtney, A C; Courtney, M W
2009-01-01
The mechanisms by which blast pressure waves cause mild-to-moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. An experiment is proposed which isolates the thoracic mechanism from cranial mechanisms of mTBI due to blast wave exposure. Results have implications for evaluating risk of mTBI due to blast exposure and for developing effective protection. PMID:18829180
Impulse characteristics of laser-induced blast wave in monoatomic gases
NASA Astrophysics Data System (ADS)
Yu, X. L.; Ohtani, T.; Sasoh, A.; Kim, S.; Urabe, N.; Jeung, I.-S.
The paper focuses on physical gas-dynamic characteristics of impulse generation by laser Induced blast wave (LIBW) in a laser-driven in tube accelerator (LITA). Propagation, reflection of blast wave and wave structure were intensively studied by using an ICCD camera system through shadowgraph.
GAMMA-RAY BURST AFTERGLOW SCALING RELATIONS FOR THE FULL BLAST WAVE EVOLUTION
Van Eerten, Hendrik J.; MacFadyen, Andrew I.
2012-03-10
We demonstrate that gamma-ray burst afterglow spectra and light curves can be calculated for arbitrary explosion and radiation parameters by scaling the peak flux and the critical frequencies connecting different spectral regimes. Only one baseline calculation needs to be done for each jet opening angle and observer angle. These calculations are done numerically using high-resolution relativistic hydrodynamical afterglow blast wave simulations which include the two-dimensional dynamical features of expanding and decelerating afterglow blast waves. Any light curve can then be generated by applying scaling relations to the baseline calculations. As a result, it is now possible to fully fit for the shape of the jet break, e.g., at early-time X-ray and optical frequencies. In addition, late-time radio calorimetry can be improved since the general shape of the transition into the Sedov-Taylor regime is now known for arbitrary explosion parameters so the exact moment when the Sedov-Taylor asymptote is reached in the light curve is no longer relevant. When calculating the baselines, we find that the synchrotron critical frequency {nu}{sub m} and the cooling break frequency {nu}{sub c} are strongly affected by the jet break. The {nu}{sub m} temporal slope quickly drops to the steep late-time Sedov-Taylor slope, while the cooling break {nu}{sub c} first steepens and then rises to meet the level of its shallow late-time asymptote.
Gamma-Ray Burst Afterglow Scaling Relations for the Full Blast Wave Evolution
NASA Astrophysics Data System (ADS)
van Eerten, Hendrik J.; MacFadyen, Andrew I.
2012-03-01
We demonstrate that gamma-ray burst afterglow spectra and light curves can be calculated for arbitrary explosion and radiation parameters by scaling the peak flux and the critical frequencies connecting different spectral regimes. Only one baseline calculation needs to be done for each jet opening angle and observer angle. These calculations are done numerically using high-resolution relativistic hydrodynamical afterglow blast wave simulations which include the two-dimensional dynamical features of expanding and decelerating afterglow blast waves. Any light curve can then be generated by applying scaling relations to the baseline calculations. As a result, it is now possible to fully fit for the shape of the jet break, e.g., at early-time X-ray and optical frequencies. In addition, late-time radio calorimetry can be improved since the general shape of the transition into the Sedov-Taylor regime is now known for arbitrary explosion parameters so the exact moment when the Sedov-Taylor asymptote is reached in the light curve is no longer relevant. When calculating the baselines, we find that the synchrotron critical frequency ν m and the cooling break frequency ν c are strongly affected by the jet break. The ν m temporal slope quickly drops to the steep late-time Sedov-Taylor slope, while the cooling break ν c first steepens and then rises to meet the level of its shallow late-time asymptote.
Parametric instability of a relativistically strong electromagnetic wave.
NASA Technical Reports Server (NTRS)
Max, C. E.
1973-01-01
The stability of a circularly polarized electromagnetic wave that is strong enough to make plasma electrons, but not ions, relativistic is studied. Small perturbations are considered which propagate parallel to the large-amplitude driver. A relativistically strong wave can be unstable on time scales as short as twice its own oscillation period, and decays into a forward-going plasma oscillation and either one or two electromagnetic waves. Ion motion introduces an additional instability which can be important at short perturbation wavelengths, where the driver would otherwise be stable. The unstable ion and electron modes both have potential for producing anomalously large acceleration of relativistic particles, as well as significant amounts of backscattered light. These effects may be important in two applications: (1) the use of intense lasers to heat or compress plasma, and (2) the plasma surrounding a pulsar, if the pulsar is losing energy by radiation of electromagnetic waves at its rotation frequency. Instability persists in the nonrelativistic regime, reducing to stimulated Raman scattering as a special case.
Investigation of blast wave characteristics for layered thermobaric charges
NASA Astrophysics Data System (ADS)
Trzciński, W. A.; Barcz, K.
2012-03-01
The explosion of an annular charge composed of a hexogen core and a layer consisting of a mixture of ammonium nitrate and aluminum particles was studied. X-ray photography was used to trace the curvature of the shock wave in the external layer. The pressure blast characteristics and the light output of the explosion cloud were investigated using bunkers of different sizes and varying levels of the opening (the ratio of the hole surface to the total bunker surface). Overpressure peaks, the impulses of incident waves, and the impulses determined for the specified time duration were analyzed.
A viscous blast-wave model for high energy heavy-ion collisions
NASA Astrophysics Data System (ADS)
Jaiswal, Amaresh; Koch, Volker
2016-07-01
Employing a viscosity-based survival scale for initial geometrical perturbations formed in relativistic heavy-ion collisions, we model the radial flow velocity at freeze-out. Subsequently, we use the Cooper-Frye freeze-out prescription, with viscous corrections to the distribution function, to extract the transverse momentum dependence of particle yields and flow harmonics. We fit the model parameters for central collisions, by fitting the spectra of identified particles at the Large Hadron Collider (LHC), and estimate them for other centralities using simple hydrodynamic relations. We use the results of Monte Carlo Glauber model for initial eccentricities. We demonstrate that this improved viscous blast-wave model leads to good agreement with transverse momentum distribution of elliptic and triangular flow for all centralities and estimate the shear viscosity to entropy density ratio η/s ≃ 0.24 at the LHC.
Interactions between Blast Waves and V-Shaped and Cone-Shaped Structures
NASA Astrophysics Data System (ADS)
Peng, W.; Zhang, Z. Y.; Gogos, G.; Gazonas, G.
2011-09-01
A 2-D numerical model of interactions between a blast wave and a V-shaped or a cone-shaped structure is developed. The model simulates the blast wave reflection from a V-shaped or a cone-shaped structure, the movement of the structure due to the blast impact and the induced shock wave behind the structure. Elliptic grid generation and coordinate transformation are utilized to solve the flow fields in the irregular physical domain. Different types of blast wave reflections, such as normal reflection, oblique reflection and Mach stem reflection, are captured by the numerical model. It is found that the reflected pressure and impulse transmitted to the structure decrease with the increase of incident angle. On the other hand, with the increase of incident angle, the effects of fluid structure interactions (FSI) in reducing the blast loads decreases. The FSI coupled with oblique or Mach stem reflection improves the blast wave mitigation.
NASA Astrophysics Data System (ADS)
Clare, P. M.
1980-03-01
The mechanisms by which blast waves are generated by a helical charge of detonating fuse in a 4.9 m diameter nuclear air blast simulator were studied in order to achieve control over the waveform produced. The problem of producing low pressure blast waves with long duration was overcome by immersing the charge in an aqueous foam in the firing chamber. A comparison is made with pressure-time profiles of a 1 kton nuclear shot, concluding that an accurate simulation involves a combination of techniques rather than the simple firing of an axially placed charge.
A parametric study of self-similar blast waves.
NASA Technical Reports Server (NTRS)
Oppenheim, A. K.; Kuhl, A. L.; Lundstrom, E. A.; Kamel, M. M.
1972-01-01
Comprehensive examination of self-similar blast waves with respect to two parameters, one describing the front velocity and the other the variation of the ambient density immediately ahead of the front. All possible front trajectories are taken into account, including limiting cases of the exponential and logarithmic form. The structure of the waves is analyzed by means of a phase plane defined in terms of two reduced coordinates. Loci of extrema of the integral curves in the phase plane are traced, and loci of singularities are determined on the basis of their intersections. Boundary conditons are introduced for the case where the medium into which the waves propagate is at rest. Representative solutions, pertaining to all the possible cases of blast waves bounded by shock fronts propagating into an atmosphere of uniform density, are obtained by evaluating the integral curves and determining the corresponding profiles of the gasdynamic parameters. Particular examples of integral curves for waves bounded by detonations are given, and all the degenerate solutions corresponding to cases where the integral curve is reduced to a point are delineated.
Dynamic Modelling of Fault Slip Induced by Stress Waves due to Stope Production Blasts
NASA Astrophysics Data System (ADS)
Sainoki, Atsushi; Mitri, Hani S.
2016-01-01
Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can
Cylindrically converging blast waves in air
NASA Astrophysics Data System (ADS)
Matsuo, H.; Nakamura, Y.
1981-07-01
Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.
Blast wave attenuation by lightly destructable granular materials
NASA Astrophysics Data System (ADS)
Golub, V. V.; Lu, F. K.; Medin, S. A.; Mirova, O. A.; Parshikov, A. N.; Petukhov, V. A.; Volodin, V. V.
Terrorist bombings are a dismal reality nowadays. One of the most effective ways for protection against blast overpressure is the use of lightly compacted materials such as sand [1] and aqueous foam [2] as a protective envelope or barrier. According to [1], shock wave attenuation in a mine tunnel (one-dimensional case) behind a destroyed object is given by q_e ≈ q {1}/{1 + 4(S/q)^{1/6} bρ _{mat} /L^{1/3} }where qe — effective charge, S — exposed area of the obstacle, q — TNT equivalent (grams), L — distance between charge and obstacle, b — obstacle thickness and ρ mat — material density. This empirical equation is applicable only in a one-dimensional case but not for a less confined environment. Another way of protecting a structure against blast is to coat the surface with a sacrificial layer. In [3] full-scale experiments were carried out to investigate the behaviour of a covering of aluminum foam under the effect of a blast wave.
Blast wave fits to elliptic flow data at √{sNN}=7.7 - 2760 GeV
NASA Astrophysics Data System (ADS)
Sun, X.; Masui, H.; Poskanzer, A. M.; Schmah, A.
2015-02-01
We present blast wave fits to elliptic flow [v2(pT) ] data in minimum bias collisions from √{sNN}=7.7 - 200 GeV at the BNL Relativistic Heavy Ion Collider, and also at the CERN Large Hadron Collider energy of 2.76 TeV. The fits are performed separately for particles and corresponding antiparticles. The mean transverse velocity parameter β shows an energy-dependent difference between particles and corresponding antiparticles, which increases as the beam energy decreases. Possible effects of feed down, baryon stopping, antiparticle absorption, and early production times for antiparticles are discussed.
Langmuir waves in semi-relativistic spinless quantum plasmas
NASA Astrophysics Data System (ADS)
Ivanov, A. Yu.; Andreev, P. A.; Kuzmenkov, L. S.
2015-06-01
Many-particle quantum hydrodynamics based on the Darwin Hamiltonian (the Hamiltonian corresponding to the Darwin Lagrangian) is considered. A force field appearing in the corresponding Euler equation is considered in detail. Contributions from different terms of the Darwin Hamiltonian in the Euler equation are traced. For example, the relativistic correction to the kinetic energy of particles leads to several terms in the Euler equation; these terms have different form. One of them has a form similar to a term appearing from the Darwin term. Hence, the two different mechanisms give analogous contributions in wave dispersion. A microscopic analog of the Biot-Savart law, called the current-current interaction, describing an interaction of moving charges via the magnetic field, is also included in our description. The semi-relativistic generalization of the quantum Bohm potential is obtained. Contribution of the relativistic effects in the spectrum of plasma collective excitations is considered. The contributions of the spin-spin, spin-current, and spin-orbit interactions in this model are considered. The contribution of the spin evolution in the Langmuir wave spectrum is calculated at the propagation of wave perpendicular to the external magnetic field.
Chaotic motion of relativistic electrons driven by whistler waves
NASA Astrophysics Data System (ADS)
Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, Tatiana K.
2007-04-01
Canonical equations governing an electron motion in the electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies of up to 50 MeV in the Jovian magnetosphere.
Chaotic Motion of Relativistic Electrons Driven by Whistler Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.
2007-01-01
Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.
Whistler wave generation by non-gyrotropic, relativistic, electron beams
NASA Astrophysics Data System (ADS)
Skender, M.; Tsiklauri, D.
2014-04-01
Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes.
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, M.; Tsiklauri, D.
2014-04-15
Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes.
Model for small arms fire muzzle blast wave propagation in air
NASA Astrophysics Data System (ADS)
Aguilar, Juan R.; Desai, Sachi V.
2011-11-01
Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.
Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D.; Miller, Mark C.; Wood, Adam R.; Vipperman, Jeffrey S.
2014-01-01
Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts. PMID:25409326
Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D; Miller, Mark C; Wood, Adam R; Vipperman, Jeffrey S
2014-01-01
Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts. PMID:25409326
The blast wave of the Shuttle plume at ionospheric heights
Li, Y.Q.; Jacobson, A.R.; Carlos, R.C.; Massey, R.S.; Taranenko, Y.N.; Wu, G.
1994-12-01
The main engine burn (MEB) of the Space Shuttle deposits {approximately} 2 x 10{sup 12} joules of explosive energy and {approximately} 3 x 10{sup 5} kg of exhaust in almost horizontal flight at 105-110 km altitude during the period 300-550 s into the ascent. This extremely robust perturbation provides a potential active-excitation source for a variety of geophysical processes, including (1) the effects of aurora-like localized heating on the generation of gravity waves in the thermosphere, (2) the ducting mechanisms for long-period infrasound in the upper atmosphere, (3) dynamo effects associated with transient charge separation, (4) interactions with ambient midlatitude current systems at E-layer heights, and (5) effects in the Earth-ionosphere waveguide of transient electron-density perturbations in the D-region. The sine qua non of such an agenda is to gain a quantitative understanding of the near-field behavior of the MEB exhaust-plume`s quasi-cylindrical expansion, which generates a blast wave propagating away from the explosion. The authors report on observed electron-density signatures of this blast wave as manifested on lines-of-sight (LOSs) from a very-long-baseline interferometer (VLBI) illuminated by 137-MHz beacon signals from the MARECS-B satellite. They also compare the observations to a preliminary three-dimensional neutral-air acoustic model coupled to the ionospheric electron density. 7 refs., 5 figs., 1 tab.
Weakly nonlinear kink-type solitary waves in a fully relativistic plasma
Tribeche, Mouloud; Boukhalfa, Soufiane; Zerguini, Taha Houssine
2010-08-15
A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study small but finite amplitude solitary waves. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. A kink-solitary wave solution is outlined. Due to electron relativistic effect, the localized structure may experience either a spreading or a compression. This latter phenomenon (compression) becomes less effective and less noticeable as the relativistic character of the ions becomes important. Our results may be relevant to cosmic relativistic double-layers and relativistic plasma structures that involve energetic plasma flows.
Experiments on cylindrically converging blast waves in atmospheric air
NASA Astrophysics Data System (ADS)
Matsuo, Hideo; Nakamura, Yuichi
1980-06-01
Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.
Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma
Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi
2008-04-28
Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies.
Confirmation of EMIC wave-driven relativistic electron precipitation
NASA Astrophysics Data System (ADS)
Hendry, Aaron T.; Rodger, Craig J.; Clilverd, Mark A.; Engebretson, Mark J.; Mann, Ian R.; Lessard, Marc R.; Raita, Tero; Milling, David K.
2016-06-01
Electromagnetic ion cyclotron (EMIC) waves are believed to be an important source of pitch angle scattering driven relativistic electron loss from the radiation belts. To date, investigations of this precipitation have been largely theoretical in nature, limited to calculations of precipitation characteristics based on wave observations and small-scale studies. Large-scale investigation of EMIC wave-driven electron precipitation has been hindered by a lack of combined wave and precipitation measurements. Analysis of electron flux data from the POES (Polar Orbiting Environmental Satellites) spacecraft has been suggested as a means of investigating EMIC wave-driven electron precipitation characteristics, using a precipitation signature particular to EMIC waves. Until now the lack of supporting wave measurements for these POES-detected precipitation events has resulted in uncertainty regarding the driver of the precipitation. In this paper we complete a statistical study comparing POES precipitation measurements with wave data from several ground-based search coil magnetometers; we further present a case study examining the global nature of this precipitation. We show that a significant proportion of the precipitation events correspond with EMIC wave detections on the ground; for precipitation events that occur directly over the magnetometers, this detection rate can be as high as 90%. Our results demonstrate that the precipitation region is often stationary in magnetic local time, narrow in L, and close to the expected plasmapause position. Predominantly, the precipitation is associated with helium band rising tone Pc1 waves on the ground. The success of this study proves the viability of POES precipitation data for investigating EMIC wave-driven electron precipitation.
Using traveling wave structures to extract power from relativistic klystrons
Ryne, R.D.; Yu, S.S.
1990-09-19
The purpose of this note is to analyze the excitation of traveling wave (TW) output structures by an RF current. Such structures are being used in relativistic klystron experiments at Lawrence Livermore National Laboratory. First we will preset a set of difference equations that describes the excitation of the cells of a TW structure. Next we will restrict our attention to structures that have identical cells, except possibly for the first and last cells. Under these circumstances one can obtain difference equations that have constant coefficients, and we will present the general solution of these equations. Lastly we will apply our results to the analysis of a TW output structure. We will show that, by appropriate choice of the quality factors (Qs) and eigenfrequencies of the first and last cells, it is possible to obtain a traveling wave solution for which there is no reflected wave and where the excitation grows linearly with cell number.
Reduction of optically observed artillery blast wave trajectories using low dimensionality models
NASA Astrophysics Data System (ADS)
Steward, Bryan J.; Gross, Kevin C.; Perram, Glen P.
2011-05-01
Muzzle blast trajectories from firings of a 152 mm caliber gun howitzer were obtained with high-speed optical imagers and used to assess the fidelity with which low dimensionality models can be used for data reduction. Characteristic flow regions were defined for the blast waves. The near-field region was estimated to extend to 0.98 - 1.25 meters from the muzzle and the far-field region was estimated to begin at 2.61 - 3.31 meters. Blast wave geometries and radial trajectories were collected in the near through far-fields with visible imagers operating at 1,600 Hz. Beyond the near-field the blast waves exhibited a near-spherical geometry in which the major axis of the blast lay along the axis of the gun barrel and measured within 95% of the minor axis. Several blast wave propagation models were applied to the mid and far-field data to determine their ability to reduce the blast wave trajectories to fewer parameters while retaining the ability to distinguish amongst three munitions configurations. A total of 147 firings were observed and used to assess within-configuration variability relative to separation between configurations. Results show that all models perform well, and drag and point blast model parameters additionally provide insight into phenomenology of the blast.
Observations Of Particle Acceleration In The Blast Waves Of Gamma-ray Bursts
NASA Astrophysics Data System (ADS)
Curran, Peter A.; van der Horst, A. J.; Evans, P. A.
2010-03-01
The electron energy distribution index, p, is a fundamental parameter of the process by which electrons are accelerated to relativistic speeds and by which they radiate, via synchrotron emission. This acceleration process is applicable to a myriad of astronomical sources, from jet sources such as AGN, X-ray binaries and gamma-ray bursts, to particle acceleration in the solar wind and supernovae, and the acceleration of cosmic rays. The accurate measurement of the distribution of p is of fundamental importance to differentiate between the possible theories of electron acceleration at any relativistic shock front. There is division as to whether the electron energy distribution index has a universal value or whether it has a distribution, and if so, what that distribution is. In this presentation we examine one such source of synchrotron emission: the blast waves of gamma-ray bursts. Using our unique Monte Carlo method, we examine the constraints placed on the distribution of p by the observed spectral indices of gamma-ray bursts and parametrize the distribution. We find that the observed distribution of spectral indices is inconsistent with a discrete value of p, but consistent with a Gaussian distribution centred at p 2.4 and having a width of 0.6. This finding rules out the theoretical work that argues for a single, universal value of p, but also demonstrates that the width of the distribution is not as wide as has been suggested by some authors.
Electrostatic rogue-waves in relativistically degenerate plasmas
Akbari-Moghanjoughi, M.
2014-10-15
In this paper, we investigate the modulational instability and the possibility of electrostatic rogue-wave propagations in a completely degenerate plasma with arbitrary degree of degeneracy, i.e., relativistically degenerate plasma, ranging from solid density to the astrophysical compact stars. The hydrodynamic approach along with the perturbation method is used to reduce the governing equations to the nonlinear Schrödinger equation from which the modulational instability, the growth rate of envelope excitations and the occurrence of rogue as well as super-rogue waves in the plasma, is evaluated. It is observed that the modulational instability in a fully degenerate plasma can be quite sensitive to the plasma number-density and the wavenumber of envelop excitations. It is further revealed that the relativistically degeneracy plasmas (R{sub 0} > 1) are almost always modulationally unstable. It is found, however, that the highly energetic sharply localized electrostatic rogue as well as super-rogue waves can exist in the astrophysical compact objects like white dwarfs and neutron star crusts. The later may provide a link to understand many physical processes in such stars and it may lead us to the origin of the random-localized intense short gamma-ray bursts, which “appear from nowhere and disappear without a trace” quite similar to oceanic rogue structures.
Investigating EMIC Waves as a Precipitation Mechanism for Relativistic Electrons
NASA Astrophysics Data System (ADS)
Woodger, Leslie A.
Loss processes greatly impact the dynamics of the Earth's radiation belts. In 1996, a balloon-borne germanium detector flown over Kiruna, Sweden detected the first terrestrial X-rays with energies on the order of 1 MeV. The spectrum for these bursts was very flat, consistent with bremsstrahlung emissions from relativistic electron precipitation (REP) into Earth's atmosphere. A subsequent balloon campaign, MAXIS, launched from Antarctica in Jan. of 2000, showed that REP represents a significant loss process in the outer radiation belts. Because of the duskside location of these events, it was hypothesized that electromagnetic ion cyclotron (EMIC) waves may be the scattering mechanism. Theoretical studies have indicated wave-particle interactions of electron with EMIC waves as a major precipitation mechanism. However, observational studies have not conclusively demonstrated that EMIC waves are the primary loss mechanism for duskside REP. This dissertation investigates whether EMIC waves are the precipitation mechanism for duskside relativistic electron precipitation. As part of this investigation, the MINIS balloon campaign was conducted in January of 2005 to obtain the first multi-point measurements, of REP. Two REP events, one from MAXIS and one from the MINIS balloon observations, are selected for a detailed study. Supporting spacecraft wave observations show magnetospheric conditions are favorable for wave growth. A linear dispersion code solver, WHAMP, along with satellite measurements are used to show what conditions are needed to drive the minimum resonant electron energy low enough to be comparable with REP observations. Comparison of these energies with results from the cold dispersion relation shows the cold plasma approximation is a good approximation for frequencies far from the ion cyclotron frequency. Evidence that supports EMIC waves as the precipitation mechanism for REP such as proton precipitation concurrent with MINIS REP events and relative
Spike penetration in blast-wave-driven instabilities
NASA Astrophysics Data System (ADS)
Drake, R. P.
2009-11-01
Recent experiments by C. Kuranz and collaborators, motivated by structure in supernovae, have studied systems in which planar blast waves encounter interfaces where the density decreases. During the Rayleigh-Taylor (RT) phase of such experiments, they observed greater penetration of the RT spikes than tends to be seen in simulations. Here we seek to employ semi-analytic theory to understand the general nature and regimes of spike penetration for blast-wave-driven instabilities. This problem is not trivial as one must account for the initial vorticity deposition at the interface, for its time-dependent deceleration, for the expansion of the shocked material in time and space, and for the drag on the broadened tips of the spikes. One can hope that such models will increase our ability to interpret the behavior of simulations of such systems, in both the laboratory and astrophysics. Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03--00SF22021.
Spike Penetration in Blast-Wave-Driven Instabilities
NASA Astrophysics Data System (ADS)
Drake, R. Paul
2010-05-01
Recent experiments by C. Kuranz and collaborators, motivated by structure in supernovae, have studied systems in which planar blast waves encounter interfaces where the density decreases. During the Rayleigh-Taylor (RT) phase of such experiments, they observed greater penetration of the RT spikes than tends to be seen in simulations. Here we seek to employ semi-analytic theory to understand the general nature and regimes of spike penetration for blast-wave-driven instabilities. This problem is not trivial as one must account for the initial vorticity deposition at the interface, for its time-dependent deceleration, for the expansion of the shocked material in time and space, and for the drag on the broadened tips of the spikes. We offer here an improved evaluation of the material expansion in comparison to past work. The goal is to use such models to increase our ability to interpret the behavior of simulations of such systems, in both the laboratory and astrophysics. Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.
Self-similar blast waves incorporating deflagrations of variable speed
NASA Technical Reports Server (NTRS)
Guirguis, R. H.; Kamel, M. M.; Oppenheim, A. K.
1983-01-01
The present investigation is concerned with the development of a systematic approach to the problem of self-similar blast waves incorporating nonsteady flames. The regime covered by the presented solutions is bounded on one side by an adiabatic strong explosion and, on the other, by deflagration propagating at an infinite acceleration. Results for a representative set of accelerations are displayed, taking into account the full range of propagation speeds from zero to velocities corresponding to the Chapman-Jouguet deflagration. It is found that the distribution of stored energy in the undisturbed medium determines the acceleration of the deflagration-shock wave system. The obtained results reveal the existence of a simple relation between the location of the deflagration and its Mach number.
Blast wave exposure impairs memory and decreases axon initial segment length.
Baalman, Kelli L; Cotton, R James; Rasband, S Neil; Rasband, Matthew N
2013-05-01
Exposure to a blast wave has been proposed to cause mild traumatic brain injury (mTBI), with symptoms including altered cognition, memory, and behavior. This idea, however, remains controversial, and the mechanisms of blast-induced brain injury remain unknown. To begin to resolve these questions, we constructed a simple compressed air shock tube, placed rats inside the tube, and exposed them to a highly reproducible and controlled blast wave. Consistent with the generation of a mild injury, 2 weeks after exposure to the blast, we found that motor performance was unaffected, and a panel of common injury markers showed little or no significant changes in expression in the cortex, corpus callosum, or hippocampus. Similarly, we were unable to detect elevated spectrin breakdown products in brains collected from blast-exposed rats. Using an object recognition task, however, we found that rats exposed to a blast wave spent significantly less time exploring a novel object when compared with control rats. Intriguingly, we also observed a significant shortening of the axon initial segment (AIS) in both the cortex and hippocampus of blast-exposed rats, suggesting altered neuronal excitability after exposure to a blast. A computational model showed that shortening the AIS increased both threshold and the interspike interval of repetitively firing neurons. These results support the conclusion that exposure to a single blast wave can lead to mTBI with accompanying cognitive impairment and subcellular changes in the molecular organization of neurons. PMID:23025758
Blast Wave Exposure Impairs Memory and Decreases Axon Initial Segment Length
Baalman, Kelli L.; Cotton, R. James; Rasband, S. Neil
2013-01-01
Abstract Exposure to a blast wave has been proposed to cause mild traumatic brain injury (mTBI), with symptoms including altered cognition, memory, and behavior. This idea, however, remains controversial, and the mechanisms of blast-induced brain injury remain unknown. To begin to resolve these questions, we constructed a simple compressed air shock tube, placed rats inside the tube, and exposed them to a highly reproducible and controlled blast wave. Consistent with the generation of a mild injury, 2 weeks after exposure to the blast, we found that motor performance was unaffected, and a panel of common injury markers showed little or no significant changes in expression in the cortex, corpus callosum, or hippocampus. Similarly, we were unable to detect elevated spectrin breakdown products in brains collected from blast-exposed rats. Using an object recognition task, however, we found that rats exposed to a blast wave spent significantly less time exploring a novel object when compared with control rats. Intriguingly, we also observed a significant shortening of the axon initial segment (AIS) in both the cortex and hippocampus of blast-exposed rats, suggesting altered neuronal excitability after exposure to a blast. A computational model showed that shortening the AIS increased both threshold and the interspike interval of repetitively firing neurons. These results support the conclusion that exposure to a single blast wave can lead to mTBI with accompanying cognitive impairment and subcellular changes in the molecular organization of neurons. PMID:23025758
Dust acoustic solitary waves in a charge varying relativistic dusty plasma
Tribeche, Mouloud; Boukhalfa, Soufiane; Zerguini, Taha Houssine
2010-06-15
The problem of nonlinear variable charge dust acoustic solitary waves in dusty plasma with relativistic electrons and ions is addressed. The appropriate relativistic charging currents, derived within the theoretical framework of the orbit-limited motion theory, are used. Our results show that in such a plasma, rarefactive spatially localized dust acoustic waves can exist. Their spatial patterns are significantly modified by the relativistic effects. In particular, it may be noted that relativistic effects make the solitary structure spikier. Our results should help to understand the salient features of coherent nonlinear structures that may occur in relativistic space plasmas.
Relativistic shock waves and the excitation of plerions
Arons, J. ); Gallant, Y.A. . Dept. of Physics); Hoshino, Masahiro; Max, C.E. . Inst. of Geophysics and Planetary Physics); Langdon, A.B. )
1991-01-07
The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.
A powerful reflector in relativistic backward wave oscillator
NASA Astrophysics Data System (ADS)
Cao, Yibing; Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua
2014-09-01
An improved TM021 resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM021 resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25 ns to over 27 ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.
Radiative precursors driven by converging blast waves in noble gases
Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Swadling, G. F.; Suzuki-Vidal, F.; Hall, G. N.; Khoory, E.; Pickworth, L.; Bland, S. N.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Bennett, M.; Niasse, N. P. L.; Williams, R. J. R.; Blesener, K.; Atoyan, L.; Cahill, A.; Hoyt, C.; Potter, W.; and others
2014-03-15
A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s{sup −1} blast waves through gases of densities of the order 10{sup −5} g cm{sup −3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicular to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.
Radiative precursors driven by converging blast waves in noble gases
NASA Astrophysics Data System (ADS)
Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Swadling, G. F.; Suzuki-Vidal, F.; Hall, G. N.; Khoory, E.; Pickworth, L.; Bland, S. N.; de Grouchy, P.; Skidmore, J.; Suttle, L.; Bennett, M.; Niasse, N. P. L.; Williams, R. J. R.; Blesener, K.; Atoyan, L.; Cahill, A.; Hoyt, C.; Potter, W.; Rosenberg, E.; Schrafel, P.; Kusse, B.
2014-03-01
A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s-1 blast waves through gases of densities of the order 10-5 g cm-3 (see Burdiak et al. [High Energy Density Phys. 9(1), 52-62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicular to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.
Steady-state solutions for relativistically strong electromagnetic waves in plasmas.
NASA Technical Reports Server (NTRS)
Max, C. E.
1973-01-01
New steady-state solutions are derived which describe electromagnetic waves strong enough to make plasma ions and electrons relativistic. A two-fluid model is used throughout. The following solutions are studied: (1) linearly polarized waves with phase velocity much greater than c; (2) arbitrarily polarized waves with phase velocity near c, in a cold uniform plasma; (3) circularly polarized waves in a uniform plasma characterized by a scalar pressure tensor. All of these waves are capable of propagating in normally overdense plasmas, due to nonlinearities introduced by relativistic effects. The propagation of relativistically strong waves in a density gradient is examined, for the example of a circularly polarized wave strong enough to make electrons but not ions relativistic. It is shown that such a wave propagates at constant energy flux despite the nonlinearity of the system.
On the magnetization of gamma-ray burst blast waves
NASA Astrophysics Data System (ADS)
Lemoine, Martin; Li, Zhuo; Wang, Xiang-Yu
2013-11-01
The origin of magnetic fields that permeate the blast waves of gamma-ray bursts (GRBs) is a long-standing problem. The present paper argues that in four GRBs revealing extended emission at >100 MeV, with follow-up in the radio, optical and X-ray domains at later times, this magnetization can be described as the partial decay of the micro-turbulence that is generated in the shock precursor. Assuming that the bulk of the extended emission >100 MeV can be interpreted as synchrotron emission of shock-accelerated electrons, we model the multi-wavelength light curves of GRB 090902B, GRB 090323, GRB 090328 and GRB 110731A, using a simplified then a full synchrotron calculation with power-law-decaying micro-turbulence ɛB ≈ tαt (t denotes the time since injection through the shock, in the comoving blast frame). We find that these models point to a consistent value of the decay exponent -0.5 ≲ αt ≲ -0.4.
Bubble merger model for the nonlinear Rayleigh-Taylor instability driven by a strong blast wave
Miles, A R
2004-03-18
A bubble merger model is presented for the nonlinear evolution of the Rayleigh-Taylor instability driven by a strong blast wave. Single bubble motion is determined by an extension of previous buoyancy-drag models extended to the blast wave driven case, and a simple bubble merger law in the spirit of the Sharp-Wheeler model allows for the generation of larger scales. The blast wave driven case differs in several respects from the classical case of incompressible fluids in a uniform gravitational field. Because of material decompression in the rarefaction behind the blast front, the asymptotic bubble velocity and the merger time depend on time as well as the transverse scale and the drive. For planar blast waves, this precludes the emergence of a self-similar regime independent of the initial conditions. With higher-dimensional blast waves, divergence restores the properties necessary for the establishment of the self-similar state, but its establishment requires a very high initial characteristic mode number and a high Mach number for the incident blast wave.
Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator
Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan
2014-09-15
Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.
Supernova blast wave within a stellar cluster outflow
NASA Astrophysics Data System (ADS)
Rodríguez-Ramírez, J. C.; Raga, A. C.; Velázquez, P. F.; Rodríguez-González, A.; Toledo-Roy, J. C.
2014-11-01
In this paper, we develop a semi-analytic model of a supernova which goes off in the centre of a stellar cluster. The supernova remnant interacts with a stratified, pre-existent outflow produced by the winds of the cluster stars. We compare our semi-analytic model with numerical simulations using the spherically symmetric Euler equations with appropriate mass and energy source terms. We find good agreement between these two approaches, and we find that for typical parameters the blast wave is likely to reach the Taylor-Sedov regime outside the cluster radius. We also calculate the predicted X-ray luminosity of the flow as a function of time, and we obtain its dependence on the outer radius and the number of stars of the cluster.
Spike Penetration in Blast-wave-driven Instabilities
NASA Astrophysics Data System (ADS)
Drake, R. P.
2012-01-01
The problem of interest is the unstable growth of structure at density transitions affected by blast waves, which arise in natural environments such as core-collapse supernovae and in laboratory experiments. The resulting spikes of dense material, which penetrate the less dense material, develop broadened tips, but the degree of broadening varies substantially across both experiments and simulations. The variable broadening presumably produces variations in the drag experienced by the spike tips as they penetrate the less dense material. The present work has used semianalytic theory to address the question of how the variation in drag might affect the spike penetration, for cases in which the post-shock interface deceleration can be described by a power law in a normalized time variable. It did so by following the evolution of structure on the interface through the initial shock passage, the subsequent small-amplitude phase of Rayleigh-Taylor instability growth, and the later phase in which the spike growth involves the competition of buoyancy and drag. In all phases, the expansion of the system during its evolution was accounted for and was important. The calculated spike length is strongly affected by the drag attributed to spike tip broadening. One finds from such a calculation that it is not unreasonable for narrow spikes to keep up with the shock front of the blast wave. The implication is that the accuracy of prediction of spike penetration and consequent structure by simulations very likely depends on how accurately they treat the broadening of the spike tips and the associated drag. Experimental validation of spike morphology in simulations would be useful.
SPIKE PENETRATION IN BLAST-WAVE-DRIVEN INSTABILITIES
Drake, R. P.
2012-01-10
The problem of interest is the unstable growth of structure at density transitions affected by blast waves, which arise in natural environments such as core-collapse supernovae and in laboratory experiments. The resulting spikes of dense material, which penetrate the less dense material, develop broadened tips, but the degree of broadening varies substantially across both experiments and simulations. The variable broadening presumably produces variations in the drag experienced by the spike tips as they penetrate the less dense material. The present work has used semianalytic theory to address the question of how the variation in drag might affect the spike penetration, for cases in which the post-shock interface deceleration can be described by a power law in a normalized time variable. It did so by following the evolution of structure on the interface through the initial shock passage, the subsequent small-amplitude phase of Rayleigh-Taylor instability growth, and the later phase in which the spike growth involves the competition of buoyancy and drag. In all phases, the expansion of the system during its evolution was accounted for and was important. The calculated spike length is strongly affected by the drag attributed to spike tip broadening. One finds from such a calculation that it is not unreasonable for narrow spikes to keep up with the shock front of the blast wave. The implication is that the accuracy of prediction of spike penetration and consequent structure by simulations very likely depends on how accurately they treat the broadening of the spike tips and the associated drag. Experimental validation of spike morphology in simulations would be useful.
Spike morphology in blast-wave-driven instability experiments
Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.
2010-05-15
The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 {mu}m thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 {mu}m and a wavelength of 71 {mu}m. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.
Ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma
NASA Astrophysics Data System (ADS)
Tribeche, Mouloud; Boukhalfa, Soufiane
2011-04-01
A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. Our results may be relevant to cosmic relativistic double- layers and relativistic plasma structures involving energetic plasma flows that may occur in space plasmas. Furthermore, they may complement and provide new insights into recently published results (G. Lu et al. in Astrophys. Space Sci., doi: 10.1007/s10509-010-0363-5, 2010).
Numerical investigation on optimizing blast wave focusing effects for multiple munitions
NASA Astrophysics Data System (ADS)
Qiu, Shi; Eliasson, Veronica
2015-11-01
The phenomenon of blast wave focusing onto a specified target has been studied. Simulations were performed in which multiple munitions were placed in a circular pattern around a target. The number of munitions was varied through multiple cases while the total energy distributed among all munitions was held constant. Previous research shows that there exits an optimal number of munitions to produce the most extreme conditions at the target while simultaneously reducing collateral damage. Two numerical approaches, inviscid Euler equations and geometrical shock dynamics were used to study the interaction between blast waves in order to further investigate the optimization problem. To generate initial conditions for geometrical shock dynamics simulations on interaction between blast waves, it was found that a transition point between regular reflection and irregular reflection needs to be determined in advance. Both experimental and theoretical investigation is included to study the transition condition. Optimization strategy for focusing blast waves is also discussed.
Ex vivo Characterization of Blast Wave Impact and Spinal Cord Tissue Deformation
NASA Astrophysics Data System (ADS)
Chen, Jun; Gao, Jian; Connell, Sean; Shi, Riyi
2010-11-01
Primary blast injury on central nervous system is responsible for many of the war related casualties and mortalities. An ex vivo model system is developed to introduce a blast wave, generated from a shock tube, directly to spinal cord tissue sample. A high-speed shadowgraph system is utilized to visualize the development of the blast wave and its interaction with tissue sample. Surface deformation of the tissue sample is also measured for the analysis of internal stress and possible injury occurred within the tissue sample. Understanding the temporal development of the blast-tissue interaction provides valuable input for modeling blast-induced neurotrauma. Tracking the sample surface deformation as a function of time provides realistic boundary conditions for numerical simulation of injury process.
NASA Astrophysics Data System (ADS)
Nguyen-Dinh, Maxime; Gainville, Olaf; Lardjane, Nicolas
2015-10-01
We present new results for the blast wave propagation from strong shock regime to the weak shock limit. For this purpose, we analyse the blast wave propagation using both Direct Numerical Simulation and an acoustic asymptotic model. This approach allows a full numerical study of a realistic pyrotechnic site taking into account for the main physical effects. We also compare simulation results with first measurements. This study is a part of the french ANR-Prolonge project (ANR-12-ASTR-0026).
Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves
Abbas, Gohar; Bashir, M. F.; Murtaza, G.
2011-10-15
Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].
Gravitational-wave observations as a tool for testing relativistic gravity
NASA Technical Reports Server (NTRS)
Eardley, D. M.; Lee, D. L.; Lightman, A. P.; Wagoner, R. V.; Will, C. M.
1973-01-01
Approaches regarding the role of gravitational wave observations in the investigation of relativistic theories of gravity are treated as providing greater potential in the prediction of wave propagation speed and the polarization properties of gravitational waves. The invariant classes of waves discussed have the same post-Newtonian limit as general relativity for a reasonable choice of cosmological models.
Whistler wave generation by non-gyrotropic, relativistic, electron beams
NASA Astrophysics Data System (ADS)
Skender, Marina; Tsiklauri, David
2014-05-01
]. In this study [5], for the first time, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented. Features of the wave component propagating backwards from the front of the non-gyrotropic, relativistic, beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile are studied by using the Particle-In-Cell code EPOCH. Magnetic field in the 1.5-dimensional system is varied in order to prove that the backwards propagating wave is harmonic of the electron cyclotron frequency. The analysis has lead to the identification of the backwards travelling waves as whistlers. Moreover, the whistlers are shown to be generated by the normal and anomalous Doppler resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011). [2] D. Tsiklauri, H. Schmitz, Geophys. Res. Abs. 15, EGU2013-5403 (2013). [3] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013). [4] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012). [5] M. Skender, D. Tsiklauri, submitted to Phys. Plasmas (2013): http://astro.qmul.ac.uk/ tsiklauri/
Modeling of weak blast wave propagation in the lung.
D'yachenko, A I; Manyuhina, O V
2006-01-01
Blast injuries of the lung are the most life-threatening after an explosion. The choice of physical parameters responsible for trauma is important to understand its mechanism. We developed a one-dimensional linear model of an elastic wave propagation in foam-like pulmonary parenchyma to identify the possible cause of edema due to the impact load. The model demonstrates different injury localizations for free and rigid boundary conditions. The following parameters were considered: strain, velocity, pressure in the medium and stresses in structural elements, energy dissipation, parameter of viscous criterion. Maximum underpressure is the most suitable wave parameter to be the criterion for edema formation in a rabbit lung. We supposed that observed scattering of experimental data on edema severity is induced by the physiological variety of rabbit lungs. The criterion and the model explain this scattering. The model outlines the demands for experimental data to make an unambiguous choice of physical parameters responsible for lung trauma due to impact load. PMID:16214154
Dynamics and Afterglow Light Curves of Gamma-Ray Burst Blast Waves with a Long-lived Reverse Shock
NASA Astrophysics Data System (ADS)
Uhm, Z. Lucas; Zhang, Bing; Hascoët, Romain; Daigne, Frédéric; Mochkovitch, Robert; Park, Il H.
2012-12-01
We perform a detailed study on the dynamics of a relativistic blast wave with the presence of a long-lived reverse shock (RS). Although a short-lived RS has been widely considered, the RS is believed to be long-lived as a consequence of a stratification expected on the ejecta Lorentz factors. The existence of a long-lived RS causes the forward shock (FS) dynamics to deviate from a self-similar Blandford-McKee solution. Employing the "mechanical model" that correctly incorporates the energy conservation, we present an accurate solution for both the FS and RS dynamics. We conduct a sophisticated calculation of the afterglow emission. Adopting a Lagrangian description of the blast wave, we keep track of an adiabatic evolution of numerous shells between the FS and RS. An evolution of the electron spectrum is also followed individually for every shell. We then find the FS and RS light curves by integrating over the entire FS and RS shocked regions, respectively. Exploring a total of 20 different ejecta stratifications, we explain in detail how a stratified ejecta affects its blast wave dynamics and afterglow light curves. We show that, while the FS light curves are not sensitive to the ejecta stratifications, the RS light curves exhibit much richer features, including steep declines, plateaus, bumps, re-brightenings, and a variety of temporal decay indices. These distinctive RS features may be observable if the RS has higher values of the microphysics parameters than the FS. We discuss possible applications of our results in understanding the gamma-ray burst afterglow data.
DYNAMICS AND AFTERGLOW LIGHT CURVES OF GAMMA-RAY BURST BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK
Uhm, Z. Lucas; Zhang Bing; Hascoeet, Romain; Daigne, Frederic; Mochkovitch, Robert; Park, Il H.
2012-12-20
We perform a detailed study on the dynamics of a relativistic blast wave with the presence of a long-lived reverse shock (RS). Although a short-lived RS has been widely considered, the RS is believed to be long-lived as a consequence of a stratification expected on the ejecta Lorentz factors. The existence of a long-lived RS causes the forward shock (FS) dynamics to deviate from a self-similar Blandford-McKee solution. Employing the ''mechanical model'' that correctly incorporates the energy conservation, we present an accurate solution for both the FS and RS dynamics. We conduct a sophisticated calculation of the afterglow emission. Adopting a Lagrangian description of the blast wave, we keep track of an adiabatic evolution of numerous shells between the FS and RS. An evolution of the electron spectrum is also followed individually for every shell. We then find the FS and RS light curves by integrating over the entire FS and RS shocked regions, respectively. Exploring a total of 20 different ejecta stratifications, we explain in detail how a stratified ejecta affects its blast wave dynamics and afterglow light curves. We show that, while the FS light curves are not sensitive to the ejecta stratifications, the RS light curves exhibit much richer features, including steep declines, plateaus, bumps, re-brightenings, and a variety of temporal decay indices. These distinctive RS features may be observable if the RS has higher values of the microphysics parameters than the FS. We discuss possible applications of our results in understanding the gamma-ray burst afterglow data.
Spectral properties of blast-wave models of gamma-ray burst sources
NASA Technical Reports Server (NTRS)
Meszaros, P.; Rees, M. J.; Papathanassiou, H.
1994-01-01
We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.
NASA Astrophysics Data System (ADS)
Abubakirov, É. B.; Denisenko, A. N.; Konyushkov, A. P.; Soluyanov, E. I.; Yastrebov, V. V.
2014-10-01
We study operation of a relativistic backward-wave oscillator driven by an external electromagnetic signal. Such operation regimes as hard excitation of self-oscillations and amplification of the external signal are implemented experimentally. The conditions for possible synchronization of the relativistic backward-wave oscillator by an external signal is discussed. The possibility of accelerating the onset of oscillations by the action of an external signal is confirmed experimentally. The conditions of realization of the amplification regime and the main effects, which limit the amplification coefficient, are determined. The obtained results can be used to optimize the parameters of generators and amplifiers based on relativistic backward-wave oscillators.
Challenging Some Contemporary Views of Coronal Mass Ejections. I. The Case for Blast Waves
NASA Astrophysics Data System (ADS)
Howard, T. A.; Pizzo, V. J.
2016-06-01
Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.
Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology
Chen, Yun; Huang, Wei; Constantini, Shlomi
2012-01-01
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740
Blast shock wave mitigation using the hydraulic energy redirection and release technology.
Chen, Yun; Huang, Wei; Constantini, Shlomi
2012-01-01
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740
Numerical simulations of blast/shock wave propagations after nuclear explosions
NASA Astrophysics Data System (ADS)
Song, Seungho; Choi, Jung-Il; Li, Yibao; Lee, Changhoon
2013-11-01
Pressure waves develop immediately after nuclear explosions and start to move outward from the fireball. The most of initial damages are caused by the blast waves. We performed the blast wave propagations by solving two-dimensional and axisymmetric Euler equations. For shock capturing, inviscid fluxes are discretized using a variant of the piecewise parabolic method (PPM) and an approximate Riemann solver based on Roe's method is used. A clean air burst of fireball above the ground zero is considered. The initial condition of fireball is given at the point of breakaway that shock waves are appeared on the surface of the fireball. The growth of fireball is also calculated by solving one-dimensional radiation hydrodynamics (RHD) equation from point explosion. Characteristics of the blast wave propagations due to the various heights of burst and amount of the nuclear detonations are investigated. The results of parametric studies will be shown in the final presentation. Supported by Agency for Defense Development.
Computation of viscous blast wave solutions with an upwind finite volume method
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1987-01-01
A fully conservative, viscous, implicit, upwind, finite-volume scheme for the thin-layer Navier-Stokes equations is described with application to blast wave flow fields. In this scheme, shocks are captured without the oscillations typical of central differencing techniques and wave speeds are accurately predicted. The finite volume philosophy ensures conservation and since boundary conditions are also treated conservatively, accurate reflections of waves from surfaces are assured. Viscous terms in the governing equations are treated in a manner consistent with the finite volume philosophy, resulting in very accurate prediction of boundary layer quantities. Numerical results are presented for four viscous problems: a steady boundary layer, a shock-induced boundary layer, a blast wave/cylinder interaction and a blast wave/supersonic missile interaction. Comparisons of the results with an established boundary layer code, similarity solution, and experimental data show excellent agreement.
Moore, A. S.; Gumbrell, E. T.; Lazarus, J.; Hohenberger, M.; Robinson, J. S.; Smith, R. A.; Plant, T. J. A.; Symes, D. R.; Dunne, M.
2008-02-08
Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, {epsilon}, as a function of time for comparison with radiation-hydrodynamics simulations.
Moore, A S; Gumbrell, E T; Lazarus, J; Hohenberger, M; Robinson, J S; Smith, R A; Plant, T J A; Symes, D R; Dunne, M
2008-02-01
Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations. PMID:18352379
NASA Astrophysics Data System (ADS)
Krause, G.; Cécere, M.; Francile, C.; Costa, A.; Elaskar, S.; Schneiter, M.
2015-11-01
We examine the capability of a blast-wave scenario - associated with a coronal flare or to the expansion of CME flanks - to reproduce a chromospheric Moreton phenomenon. We also simulate the Moreton event of 2006 December 06, considering both the corona and the chromosphere. To obtain a sufficiently strong coronal shock - able to generate a detectable chromospheric Moreton wave - a relatively low magnetic field intensity is required, in comparison with the active region values. Employing reasonable coronal constraints, we show that a flare ignited blast-wave or the expansion of the CME flanks emulated as an instantaneous or a temporal piston model, respectively, are capable to reproduce the observations.
Imaging High Speed Particles in Explosive Driven Blast Waves
NASA Astrophysics Data System (ADS)
Jenkins, Charles; Horie, Yasuyuki
2009-06-01
Researchers Mr. Charles Jenkins and Dr. Yasuyuki Horie at the High Explosive Research & Development (HERD) facility at Eglin AFB with sponsorship from DTRA has successfully imaged high speed explosively driven metallic particles. The process uses an adapted, commercially available Particle Image Velocimetry (PIV) instrument. Regional and particle flow vectors are determined from particle displacement between two images taken in rapid succession. The instrument consists of a 120 mJ, pulsed Nd:YAG laser, camera system, synchronizer, and proprietary imaging software. The new PIV capability provides the ability for scientists and engineers to map explosively driven metallic particles in a blast wave. Characteristics of particle motion, interaction and dispersion can be determined by this method, providing measurements of key parameters such as particle size, shape, velocity, and concentration. This new capability to image and track small (from a few microns to as large as several hundred microns) high-speed particles without direct intervention by physical means, ensures that the particles are unchanged in their environment and provides greater measurement accuracy of particle dynamics in very short time scales. The capability can also be used to map large areas (square feet) or to zoom down at higher magnifications to study particle features such as particle agglomeration.
Oscillations in the wake of a flare blast wave
NASA Astrophysics Data System (ADS)
Tothova, D.; Innes, D. E.; Stenborg, G.
2011-04-01
Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif
NASA Astrophysics Data System (ADS)
Zhu, Zhenni; Wu, Zhengwei; Li, Chunhua; Yang, Weihong
2014-11-01
A model for the nonlinear properties of obliquely propagating electron acoustic solitary waves in a two-electron populated relativistically quantum magnetized plasma is presented. By using the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived and this equation gives the solitary wave solution. It is observed that the relativistic effects, the ratio of the cold to hot electron unperturbed number density and the magnetic field normalized by electron cyclotron frequency significantly influence the solitary structures.
Analysis of reflected blast wave pressure profiles in a confined room
NASA Astrophysics Data System (ADS)
Sauvan, P. E.; Sochet, I.; Trélat, S.
2012-05-01
To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real and small scales. To study the interactions and propagations of the reflected shock waves, the present study was conducted by progressively building a confined volume around the charge. In this way, the influence of each wall and the origins of the reflected shock waves can be determined. The purpose of this paper is to report the blast wave interactions that resulted from the detonation of a stoichiometric propane-oxygen mixture in a confined room.
Prospects for studying how high-intensity compression waves cause damage in human blast injuries
NASA Astrophysics Data System (ADS)
Brown, Katherine; Bo, Chiara; Ramaswamy, Arul; Masouros, Spiros; Newell, Nicolas; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William
2011-06-01
Blast injuries arising from improvised explosive devices are often complex leading to long-term disability in survivors. There is an urgent need to mitigate against the effects of blast that lead to these injuries, and to also improve post-traumatic therapeutic treatments related to problems associated with damage and healing processes and infections. We have initiated multidisciplinary studies to develop experimental facilities and strategies for analyzing the effects blast waves upon the human body, from cellular through to skeletal functions. This work is supported by the Atomic Weapons Establishment and the Defence Science and Technology Laboratory, UK.
Revisiting geometrical shock dynamics for blast wave propagation in complex environment
NASA Astrophysics Data System (ADS)
Ridoux, J.; Lardjane, N.; Gomez, T.; Coulouvrat, F.
2015-10-01
A new fast-running model for blast wave propagation in air is described. This model is an extension of Whitham's Geometrical Shock Dynamics with specific closure to non sustained shock waves. The numerical procedure relies on a Cartesian fast-marching like algorithm with immersed boundary method for complex boundaries. Comparison to academic results underline the capacity of this model.
Waves in general relativistic two-fluid plasma around a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Rahman, M. Atiqur
2012-10-01
Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation.
NASA Astrophysics Data System (ADS)
Gross, Jonathan; Eliasson, Veronica
2015-11-01
Work has been performed to experimentally characterize the interaction of a multiple blast waves. The blast waves were generated using an exploding wire system. This system can store up to 400 J of energy in a high voltage capacitor bank. By discharging the capacitors through wires of a diameter of 150 μm it was possible to produce blast waves with Mach numbers as high as 2.3 at a distance of 40 mm from the center of the blast. A parametric study was performed to measure the behavior of the shocks for a variety of wire thicknesses, voltages, and separation distances. Additionally a background oriented schlieren system was used to quantify the flowfield behind the shocks. The interaction of the shocks featured expected nonlinear phenomena such as the presence of Mach stems, and showed good agreement with results in the shock wave literature. This investigation lays the groundwork for subsequent research that will use exploding wires to experimentally reproduce conditions investigated numerically, in which the effects of multiple converging blast waves on a central target were investigated.
POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D
Tappe, A.; Rho, J.; Micelotta, E. R.
2012-08-01
We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edge of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.
EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
NASA Astrophysics Data System (ADS)
Zhang, J.; Halford, A.; Huang, C. L.; Spence, H. E.; Reeves, G. D.; Millan, R. M.; Redmon, R. J.; Smith, C. W.; Torbert, R. B.; Kurth, W. S.; Kletzing, C.; Claudepierre, S. G.; Blake, J. B.; Fennell, J. F.; Baker, D. N.
2014-12-01
It has been well established that electromagnetic ion cyclotron (EMIC) waves can resonantly interact with relativistic (E > 1 MeV) electrons and result in pitch angle scattering of the electrons. Through this wave-particle resonant interaction, significant electron losses to the atmosphere over some drift orbits are expected. Nevertheless, the direct observation evidence of precipitating electrons by EMIC wave scattering is limited, because the resonant interactions between EMIC waves and relativistic electrons are not fully understood and simultaneously measuring the relativistic electrons at low altitudes and the EMIC waves in the magnetosphere is often difficult. Using measurements from the Van Allen Probes, BARREL, and NOAA/POES, we perform a data-analysis study of EMIC waves and associated relativistic electron precipitation (REP) observed on 25-26 January 2013. The Van Allen Probe-B detected significant EMIC wave activity at L=2.1-3.9 and MLT=21.0-23.4 from 2353 UT, 25 January 2013 to 0046 UT, 26 January 2013. Meanwhile, NOAA/POES and BARREL detected REP events. Particularly, BARREL-1T observed clear precipitation of relativistic electrons at L~4.1 and MLT~20.7 for 33 minutes from 2342 UT, 25 January 2013. The total radiation belt electron content, estimated from local relativistic electron measurements on the Van Allen Probes, also demonstrates internal losses of the electrons around the EMIC wave activity. To further confirm the conjunction of the EMIC waves and REP, we calculate the electron minimum resonant energy (Emin) and pitch angle diffusion coefficient (Dαα) of the EMIC wave packets by using nominal ion composition, derived total ion density from the frequencies of upper hybrid resonance, and measured ambient and wave magnetic field.
Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.
2016-07-01
Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.
NASA Technical Reports Server (NTRS)
Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.
2011-01-01
We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; et al
2015-12-22
The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.
2015-12-22
The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R
2015-01-01
Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.
2015-01-01
Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250
Blast wave formation of the extended stellar shells surrounding elliptical galaxies
NASA Technical Reports Server (NTRS)
Williams, R. E.; Christiansen, W. A.
1985-01-01
The existence of stellar shells at large distances from isolated elliptical galaxies is explained in terms of a blast wave associated with an active nucleus phase early in the history of the galaxy. The blast wave sweeps the initial interstellar medium out of the galaxy into an expanding shell which radiatively cools behind its leading shock front. Cooling of the shell following turnoff of the nucleus activity, which keeps the shell photoionized, leads to a brief epoch of star formation which is terminated by heating of the shell from supernovae and UV radiation from massive stars. The stars so formed follow similar, highly radial, bound orbits, moving in phase with each other and spending much of their time near apogalacteum, thus taking on the appearance of a shell. Multiple shells may be produced when conditions allow repeated episodes of shell cooling and supernovae heating to occur in the blast wave.
Near-Field Characterization of Radial and Axial Blast Waves From a Cylindrical Explosive Charge
NASA Astrophysics Data System (ADS)
McNesby, Kevin; Homan, Barrie
This paper uses experiment (high speed imaging) and simulation (ALE-3D) to investigate radial and axial blast waves produced by uncased, cylindrical charges of TNT (trinitrotoluene). Recently there has been work reported on predicting secondary blast waves in the explosive mid-field (approximately 1 meter from charge center of mass) for cylindrical charges of RDX (trimethylenetrinitramine)/binder formulations. The work we will present seeks to provide complementary information in the explosive near-field, including the approach to chemical ``freeze out'', for end-detonated, right circular cylinders of TNT. Additionally, this work attempts to retrieve state variables (temperature, pressure, velocities) from high-definition images of the explosive event. Keywords: cylindrical charges, blast, shock waves
Blast waves in inhomogeneous atmospheres including real gas and heat transfer effects
NASA Astrophysics Data System (ADS)
Gretler, W.
1994-10-01
The real gas and heat transfer effects, particularly at the early state of the propagation of a very strong blast wave resulting from a point explosion in an atmosphere whose density varies with altitude, are addressed by numerical computation. The new twist in this classical blast wave problem is that the simplistic perfect gas equation of state is abandoned, and replaced with a set of realistic, albeit approximate equilibrium gas properties, including internal energy for intermolecular forces, vibration, exitation of electrons, dissociation, ionization and conductive and radiative heat transfer. The whole complex problem is then solved by the method of characteristics. The computations are carried out for blast waves propagating upward and downward in an isothermal atmosphere. The results are compared with results obtained using a perfect gas model. From the comparison it appears that temperature profiles and, accordingly, density profiles are affected most by the real gas.
Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments
Menninger, W.L.; Danly, B.G.; Temkin, R.J.
1996-06-01
The first multimegawatt harmonic relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. Experimental operation involving both a second-harmonic interaction with the TE{sub 21} mode and a third-harmonic interaction with the TE{sub 31} mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to {approximately}8%. The best measured phase stability of the TE{sub 31} amplified pulse was {+-}10{degree} over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE{sub 21} had a peak amplified power of 2 MW corresponding to 40-dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power.
Compression-amplified EMIC waves and their effects on relativistic electrons
NASA Astrophysics Data System (ADS)
Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.
2016-06-01
During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6RE). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT2/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT2/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (˜850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.
Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W
2012-04-01
This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile. PMID:22559580
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects
NASA Astrophysics Data System (ADS)
Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.
2012-04-01
This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.
Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.
Taylor, Paul A; Ford, Corey C
2009-06-01
The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI. PMID:19449961
Twin traveling-wave tube amplifiers driven by a relativistic backward-wave oscillator
Butler, J.M.; Wharton, C.B.
1996-06-01
Experiments demonstrate stable frequency and relative-phase angle output from twin traveling-wave tube (TWT) amplifiers driven with the redirected signal from a high-power backward-wave oscillator (BWO). The experimental X-band apparatus employs a single generator to produce three independent electron beams which simultaneously drive the BWO and TWT sources. The BWO spontaneously generates up to 14.1 MW peak, 25 to 15-ns long pulses over a current-tunable bandwidth of 9.6%. The BWO power extracted upstream is split and redirected into twin TWT`s for amplification. The TWT`s produce up to 9.0 MW pulses over an 800 MHz instantaneous bandwidth. Across the amplifier`s full-width half-maximum pulse duration of 10 to 20 ns, a relative-phase angle of better than 15{degree} is maintained between TWT`s for an 11.0 to 11.7 GHz range. Experiments characterize the gain, relative-phase angle, and efficiency of twin-TWT output as a function of RF-drive frequency and beam current. These experiments are the first to demonstrate the feasibility of relativistic TWT`s for phased-array applications, and increase the limited data base documenting relativistic-TWT operation.
Effects of internal heat transfer on the structure of self-similar blast waves
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Berger, S. A.; Oppenheim, A. K.; Kamel, M. M.
1982-01-01
An analysis of the problem of self-similar, nonadiabatic blast waves, where both conduction and radiation are allowed to take place, show the problem to be reducible to the integration of a system of six coupled nonlinear ordinary differential equations. Consideration of these equations shows that although radiation tends to produce uniform fields through temperature gradient attenuation, all the energy carried by radiation is deposited on the front and the bounding shock becomes increasingly overdriven. When conduction is taken into account, the distribution of gasdynamic parameters in blast waves in the case of Rosseland diffusion radiation is more uniform than in the case of the Planck emission radiation.
Nonlinear waves and shocks in relativistic two-fluid hydrodynamics
NASA Astrophysics Data System (ADS)
Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.
2012-06-01
Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.
Ata-ur-Rahman,; Qamar, A.; Masood, W.; Eliasson, B.
2013-09-15
In this paper, small but finite amplitude electrostatic solitary waves in a relativistic degenerate magnetoplasma, consisting of relativistically degenerate electrons and non-degenerate cold ions, are investigated. The Zakharov-Kuznetsov equation is derived employing the reductive perturbation technique and its solitary wave solution is analyzed. It is shown that only compressive electrostatic solitary structures can propagate in such a degenerate plasma system. The effects of plasma number density, ion cyclotron frequency, and direction cosines on the profiles of ion acoustic solitary waves are investigated and discussed at length. The relevance of the present investigation vis-a-vis pulsating white dwarfs is also pointed out.
Plasma waves in a relativistic, strongly anisotropic plasma propagated along a strong magnetic field
NASA Technical Reports Server (NTRS)
Onishchenko, O. G.
1980-01-01
The dispersion properties of plasma waves in a relativistic homogeneous plasma propagated along a strong magnetic field are studied. It is shown that the non-damping plasma waves exist in the frequency range omega sub p or = omega or = omega sub L. The values of omega sub p and omega sub L are calculated for an arbitrary homogeneous relativistic function of the particle distribution. In the case of a power ultrarelativistic distribution, it is shown that, if the ultrarelativistic tail of the distribution drops very rapidly, slightly damping plasma waves are possible with the phase velocity (omega/K)c.
Causal Wave Propagation for Relativistic Massive Particles: Physical Asymptotics in Action
ERIC Educational Resources Information Center
Berry, M. V.
2012-01-01
Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than…
Investigation of EMIC Waves During Balloon Detected Relativistic Electron Precipitation Events
NASA Astrophysics Data System (ADS)
Woodger, L. A.; Millan, R. M.
2009-12-01
Multiple relativistic electron precipitation (REP) events were detected by balloon-borne instrumentation during the MAXIS 2000 and MINIS 2005 campaigns. It has been suggested that resonance with EMIC waves caused these precipitation events (Lorentzen et al, 2000 and Millan et al, 2002) due to their location in the dusk sector. We present observations of dusk-side relativistic electron precipitation events, and use supporting satellite and theoretical data to investigate the relationship between EMIC waves and the detected REP. Satellite data can provide direct measurements of not only the waves themselves but also important resonance condition parameters. The data will be presented collectively with each event to showcase similarities and differences between events and the challenges that arise in trying to understand the relationship between dusk-side relativistic electron precipitation and EMIC waves.
NASA Astrophysics Data System (ADS)
Hafez, M. G.; Talukder, M. R.
2015-09-01
This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.
Simplified modeling of blast waves from metalized heterogeneous explosives
NASA Astrophysics Data System (ADS)
Zarei, Z.; Frost, D. L.
2011-09-01
The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.
Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T.
2013-12-15
Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.
NASA Astrophysics Data System (ADS)
Georgiou, Marina; Daglis, Ioannis; Zesta, Eftyhia; Katsavrias, Christos; Balasis, Georgios; Mann, Ian; Tsinganos, Kanaris
2015-04-01
Geospace magnetic storms are associated with either enhancements or decreases of the fluxes of electrons in the outer radiation belt. We examine the response of relativistic and ultra-relativistic electrons to 39 moderate and intense magnetic storms and compare these with concurrent observations of ULF wave power and of the plasmapause location. Following 27 of the magnetic storms, the ultra-relativistic electron population of the outer radiation belt was enhanced in the 2 - 6 MeV electron fluxes, as observed by SAMPEX. This enhancement was also seen in the electron phase space density derived from electron fluxes observed by the geosynchronous GOES satellites. On the other hand, the remaining 12 magnetic storms were not followed by enhancements in the relativistic electron population. We compare relativistic and ultra-relativistic electrons observations with the concurrent latitudinal and global distribution of wave power enhancements at Pc5 frequencies as detected by the CARISMA and IMAGE magnetometer arrays, as well as by magnetic stations collaborating in SuperMAG. During the main phase of both sets of magnetic storms, there is a marked penetration of Pc5 wave power to L shells as low as 2 -- especially during magnetic storms characterised by enhanced post-storm electron fluxes. Later in the recovery phase, Pc5 wave activity returns to more typical values and radial distribution with a peak at outer L shells. Pc5 wave activity was found to persist longer for the electron-enhanced storms than for those that do not produce such enhancements. We put our Pc5 wave observations in the context of the plasmapause location, as determined by IMAGE EUV observations. Specifically, we discuss the growth and decay characteristics of Pc5 waves in association with the plasmapause location, as a controlling factor for wave power penetration deep into the magnetosphere.
The Construction of a 'Relativistic' Wave-Particle: The Soliton.
ERIC Educational Resources Information Center
Isenberg, Cyril
1982-01-01
Although most waves studied by students satisfy the linear equation, particle physicists have become interested in nonlinear waves--those not satisfying the superposition principle. A mechanical wave system, satisfying the sine-Gordon equation, can be constructed using a modified transverse wave system to demonstrate nonlinear wave-particle…
Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas
Hussain, Azhar; Stefan, Martin; Brodin, Gert
2014-03-15
We have derived the electrostatic dispersion relation in a magnetized plasma using a recently developed quantum kinetic model based on the Dirac equation. The model contains weakly relativistic spin effects such as Thomas precession, the polarization currents associated with the spin and the spin-orbit coupling. It turns out that for strictly electrostatic perturbations the non-relativistic spin effects vanish, and the modification of the classical dispersion relation is solely associated with the relativistic terms. Several new wave modes appear due the electron spin effects, and an example for astrophysical plasmas are given.
Fully relativistic theory of the ponderomotive force in an ultraintense standing wave.
Kaplan, A E; Pokrovsky, A L
2005-07-29
A relativistic field-gradient (ponderomotive) force in a laser standing wave ceases to exist in a familiar form; e.g., the adiabatic Hamiltonian is not separable into kinetic and potential energies for electrons moving in the antinode planes. We show that the force in the direction across the initial motion of an electron reverses its sign and makes the high-field areas attractive for electrons, opposite to a regular ponderomotive force. The reversal occurs at a relativistic-scale incident momentum, and represents the only effect known so far that pins down a distinct borderline between relativistic and nonrelativistic motion. PMID:16090874
Fully Relativistic Theory of the Ponderomotive Force in an Ultraintense Standing Wave
Kaplan, A.E.; Pokrovsky, A.L.
2005-07-29
A relativistic field-gradient (ponderomotive) force in a laser standing wave ceases to exist in a familiar form; e.g., the adiabatic Hamiltonian is not separable into kinetic and potential energies for electrons moving in the antinode planes. We show that the force in the direction across the initial motion of an electron reverses its sign and makes the high-field areas attractive for electrons, opposite to a regular ponderomotive force. The reversal occurs at a relativistic-scale incident momentum, and represents the only effect known so far that pins down a distinct borderline between relativistic and nonrelativistic motion.
Relativistic Harmonic Gyrotron Traveling-Wave Tube Amplifier Experiments.
NASA Astrophysics Data System (ADS)
Menninger, William Libbey
1995-01-01
The first multi-megawatt (4 MW, eta = 8%) harmonic (omega = sOmega _{c}, s = 2 or 3) relativistic gyrotron traveling-wave tube amplifier (gyro-twt) experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third harmonic gyro-twt results, are presented. The first detailed phase measurements of a gyro-twt are also reported. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulse width is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. The imparted beam pitch is alpha equivbeta_bot/beta_ |~1. Experimental operation involving both a second harmonic interaction with the TE_{21 } mode and a third harmonic interaction with the TE_{31} mode has been characterized. The third harmonic interaction resulted in 4 MW output power and 50 dB single-pass gain, with an efficiency of up to ~8% (for 115 A beam current). The best measured phase stability of the TE_{31} amplified pulse was +/-10^circ over a 9 ns period. The phase stability was limited because the maximum rf power was attained when operating far from wiggler resonance. The second harmonic, TE_ {21} had a peak amplified power of 2 MW corresponding to 40 dB single-pass gain and 4% efficiency. The second harmonic interaction showed stronger superradiant emission than the third harmonic interaction. Characterizations of the second and third harmonic gyro-twt experiments presented in this thesis include measurement of far-field radiation patterns, gain and phase versus interaction length, frequency spectrum, phase, and output power versus input power. The absolute power measurements are based both on angular radiation scans with a calibrated horn and diode, and on propagation of the TE_{31} mode through an efficient in-guide converter and measurement of the converted TE
Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter
NASA Technical Reports Server (NTRS)
Cox, D. P.; Anderson, P. R.
1981-01-01
An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.
Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing
NASA Astrophysics Data System (ADS)
Loubeau, Alexandra
Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models
Wave-breaking amplitudes of relativistic upper-hybrid oscillations in a cold magnetized plasma
NASA Astrophysics Data System (ADS)
Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil
2016-06-01
A travelling wave solution is presented for relativistic upper-hybrid oscillations (RUHOs) in a cold magnetized plasma. An expression for the wave-breaking amplitudes of RUHOs is derived. The wave-breaking amplitudes of RUHOs are found to decrease with the increase of the strength of an ambient magnetic field. These results will be of relevance to the laboratory context of particle acceleration by wake-fields in which magnetic field plays a central role.
Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves
Schroeder, Carl B.; Esarey, Eric
2010-06-30
A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.
Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave
Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi
2016-01-01
The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021
Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave.
Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi
2016-01-01
The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021
Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.
2015-01-01
Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6). PMID:26136722
Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M
2015-01-01
Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6). PMID:26136722
Two dimensional electrostatic shock waves in relativistic electron positron ion plasmas
Masood, W.; Rizvi, H.
2010-05-15
Ion-acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons and hot ions. In this regard, Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude perturbation expansion method. The dependence of the IASWs on various plasma parameters is numerically investigated. It is observed that ratio of ion to electron temperature, kinematic viscosity, positron concentration, and the relativistic ion streaming velocity affect the structure of the IASW. Limiting case of the KPB equation is also discussed. Stability of KPB equation is also presented. The present investigation may have relevance in the study of electrostatic shock waves in relativistic electron-positron-ion plasmas.
Excitation of dust kinetic Alfven waves by semi-relativistic ion beams
NASA Astrophysics Data System (ADS)
Rubab, N.; Jaffer, G.
2016-05-01
The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.
Search for non-thermal radio emission from Eta Carina's outer blast wave with ATCA
NASA Astrophysics Data System (ADS)
Ohm, Stefan; Urquhart, James; Skilton, Joanna Lucy; Hinton, Jim; Domainko, Wilfried
2010-10-01
Non-thermal hard X-ray and high-energy (HE; 1 MeV < E < 100 GeV) gamma-ray emission in the direction of Eta Carina has been recently detected using the INTEGRAL, AGILE and Fermi satellites. This emission can be either interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars or in the very fast moving blast wave which originates in the historical 1843 "Great Eruption". The detection of a radio shell at the location of the shock would support the latter scenario and confirm Eta Carina as prime example of a new source type, namely, an LBV star whose massive ejecta accelerates electrons to non-thermal energies. While Fermi and INTEGRAL do not provide sufficient angular resolution to resolve the blast wave, high resolution radio observations using ATCA will be able to test non-thermal radio emission from this acceleration site. The current sensitivity of ATCA is such that a relatively modest observation time of 12 hours will be sufficient to image the synchrotron emission from the blast region down to magnetic field strengths well below typical ISM values and hence prove or reject our blast-wave hypothesis for the high energy emission.
Prospects for studying how high-intensity compression waves cause damage in human blast injuries
NASA Astrophysics Data System (ADS)
Brown, Katherine; Bo, Chiara; Masouros, Spyros; Ramasamy, Arul; Newell, Nicolas; Bonner, Timothy; Balzer, Jens; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William
2012-03-01
Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.
Indoor propagation and assessment of blast waves from weapons using the alternative image theory
NASA Astrophysics Data System (ADS)
Kong, B.; Lee, K.; Lee, S.; Jung, S.; Song, K. H.
2016-03-01
Blast waves generated from the muzzles of various weapons might have significant effects on the human body, and these effects are recognized as being more severe when weapons are fired indoors. The risk can be assessed by various criteria, such as waveform, exposed energy, and model-based types. This study introduces a prediction model of blast wave propagation for estimating waveform parameters related to damage risk assessment. To simulate indoor multiple reflections in a simple way, the model is based on the alternative image theory and discrete wavefront method. The alternative theory is a kind of modified image theory, but it uses the image space concept from a receiver's perspective, so that it shows improved efficiency for indoor problems. Further, the discrete wavefront method interprets wave propagation as the forward movement of a finite number of wavefronts. Even though the predicted results show slight differences from the measured data, the locations of significant shock waves indicate a high degree of correlation between them. Since the disagreement results not from the proposed techniques but from the assumptions used, it is concluded that the model is appropriate for analysis of blast wave propagation in interior spaces.
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
El-Shamy, E F
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons. PMID:25871222
Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts
NASA Astrophysics Data System (ADS)
Brüggen, Marcus; Bykov, Andrei; Ryu, Dongsu; Röttgering, Huub
2012-05-01
It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel'dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.
A study of combined particle and blast wave loading of structures
NASA Astrophysics Data System (ADS)
Elgy, I. D.; Pope, D. J.; Pickup, I. M.
2006-08-01
In structural dynamics there are many instances where an appreciation of the combined effect of particulate and air blast loading are essential if an accurate prediction of structural response is to be attained. Examples include: the loading of structures via the detonation of cased munitions; the interaction of blast waves and secondary fragmentation with internal building components after an external contact explosion and the loading of vehicle bellies via the detonation of mines buried in soil. As an analytical simplification, engineers often incorporate the effect of particulate loading by applying a load factor to calculations of the blast component alone. In some cases the fragmentation, can indeed be considered as merely incidental but in others, analysis and experiments have indicated that the presence of inert matter within or in close proximity to a detonated explosive can alter the magnitude, spatial distribution and duration of loading applied to a structure. This paper describes a series of numerical simulations, conducted using the AUTODYN hydrocode, in which the effect of detonating an explosive within a matrix of particles, and the subsequent blast and particulate interaction with a target, was simulated. The total momentum transferred to a target and the spatial momentum distribution is evaluated for both mines buried under soil and confined air blasts. The momentum transferred is investigated as a function of the technique used to model particulation and detonation proximity. These comparisons offer an insight into the mechanisms by which buried blast mines load structures and lead to explanations of differences observed in thin plates deforming under simulated mine blast attacks.
Wave-driven butterfly distribution of Van Allen belt relativistic electrons
Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.
2015-10-05
Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.
Wave-driven butterfly distribution of Van Allen belt relativistic electrons.
Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B
2015-01-01
Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770
Wave-driven butterfly distribution of Van Allen belt relativistic electrons
Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.
2015-01-01
Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770
Wave-driven butterfly distribution of Van Allen belt relativistic electrons
NASA Astrophysics Data System (ADS)
Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.
2015-10-01
Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.
NASA Astrophysics Data System (ADS)
Gebel, G. C.; Mosbach, T.; Meier, W.; Aigner, M.
2015-07-01
Weak spherical blast waves in static air and their breakup of ethanol and Jet A-1 kerosene droplets were investigated. The blast waves were created by laser-induced air breakdowns at ambient temperature and pressure. In the first part of this study, they were visualized with schlieren imaging, and their trajectories were tracked with high temporal resolution. The laser pulse energy was varied to create blast waves of different strengths. Their initial energies were determined by the application of a numerical and a semi-empirical blast wave model. In the second part, monodisperse ethanol and kerosene droplet chains were injected. Their interaction with the blast waves was visualized by the application of shadowgraph imaging. The perpendicular distance of the breakdown origin toward the droplet chains was varied to study the effect on the fuel droplets as a function of the distance. Droplets within a few millimeters around the breakdown origin were disintegrated into two to three secondary droplets. The blast-induced flow velocities on the post-shock side and the corresponding Weber numbers were calculated from the data of a non-dimensional numerical simulation, and a close look was taken at the breakup process of the droplets. The analysis showed that the aerodynamic force of the blast-induced flow was sufficient to deform the droplets into disk-like shapes, but diminished too fast to accomplish breakup. Due to the release of strain energy, the deformed droplets relaxed, stretched into filaments and finally disintegrated by capillary pinching.
THE EARLY BLAST WAVE OF THE 2010 EXPLOSION OF U SCORPII
Drake, J. J.; Orlando, S.
2010-09-10
Three-dimensional hydrodynamic simulations exploring the first 18 hr of the 2010 January 28 outburst of the recurrent nova U Scorpii have been performed. Special emphasis was placed on capturing the enormous range in spatial scales in the blast. The pre-explosion system conditions included the secondary star and a flared accretion disk. These conditions can have a profound influence on the evolving blast wave. The blast itself is shadowed by the secondary star, which itself gives rise to a low-temperature bow shock. The accretion disk is completely destroyed in the explosion. A model with a disk gas density of 10{sup 15} cm{sup -3} produced a blast wave that is collimated and with clear bipolar structures, including a bipolar X-ray emitting shell. The degree of collimation depends on the initial mass of ejecta, energy of explosion, and circumstellar gas density distribution. It is most pronounced for a model with the lowest explosion energy (10{sup 43} erg) and mass of ejecta (10{sup -8} M {sub sun}). The X-ray luminosities of three of six models computed are close to, but consistent with, an upper limit to the early blast X-ray emission obtained by the Swift satellite, the X-ray luminosity being larger for higher circumstellar gas density and higher ejecta mass. The latter consideration, together with estimates of the blast energy from previous outbursts, suggests that the mass of ejecta in the 2010 outburst was not larger than 10{sup -7} M {sub sun}.
NASA Astrophysics Data System (ADS)
Sengupta, Sudip
2014-02-01
Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.
Sengupta, Sudip
2014-02-11
Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.
Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations
NASA Astrophysics Data System (ADS)
Choi, Woocheol; Seok, Jinmyoung
2016-02-01
In this paper, we study standing waves for pseudo-relativistic nonlinear Schrödinger equations. In the first part, we find ground state solutions. We also prove that they have one sign and are radially symmetric. The second part is devoted to take nonrelativistic limit of the ground state solutions in H1(ℝn) space.
Dynamics of Relativistic Magnetized Explosions
NASA Astrophysics Data System (ADS)
Lyutikov, M.
2001-11-01
The dynamics of (i) relativistic blast waves propagating through magnetized medium, (ii) magnetic explosions (when most energy is released in a form of toroidal magnetic field) is considered taking into account possible inhomogeneities of density and external magnetic field and additional energy supply. Self-similar solutions for the internal structure in the bulk flow and in the strongly magnetized sheath near contact discontinuity are found.
NASA Astrophysics Data System (ADS)
Singh, Arvinder; Gupta, Naveen
2015-06-01
A scheme for beat wave excitation of electron plasma wave (EPW) is proposed by relativistic cross-focusing of two coaxial Cosh-Gaussian (ChG) laser beams in an under dense plasma. The plasma wave is generated on account of beating of two coaxial laser beams of frequencies ω1 and ω2 . The mechanism for laser produced nonlinearity is assumed to be relativistic nonlinearity in electron mass. Following moment theory approach in Wentzel Kramers Brillouin (W.K.B) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The relativistic nonlinearity depends not only on the intensity of first laser beam but also on the intensity of second laser beam. Therefore, propagation dynamics of one laser beam affect that of second beam and hence cross-focusing of the two laser beams takes place. Due to non uniform intensity distribution of pump laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, thus gets nonlinearly coupled with the laser beams. The effects of relativistic electron mass nonlinearity and the cross-focusing of pump beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW.