Science.gov

Sample records for relativistic dissipative fluid

  1. Kinetic foundations of relativistic dissipative fluid dynamics

    NASA Astrophysics Data System (ADS)

    Denicol, G. S.

    2014-12-01

    In this contribution we discuss in detail the most widespread formalisms employed to derive relativistic dissipative fluid dynamics from the Boltzmann equation: Chapman-Enskog expansion and Israel-Stewart theory. We further point out the drawbacks of each theory and explain possible ways to circumvent them. Recent developments in the derivation of fluid dynamics from the Boltzmann equation are also discussed.

  2. New developments in relativistic dissipative fluid dynamics

    NASA Astrophysics Data System (ADS)

    Muronga, Azwinndini

    2010-09-01

    The recent notion of the perfect fluid created at the relativistic heavy ion collider (RHIC) has been embraced by many experimentalists and theorists alike. However, much of the evidence to this notion has been based on the success of describing some experimental observables by non-viscous hydrodynamics or by small shear viscosity to entropy density ratio. Developments on viscous hydrodynamics evolved from (0+1) dimensions (Bjorken scaling solution) over (1+1) dimensions (Bjorken + transverse flow) to (2+1) dimensions (elliptic flow) and currently (3+1) dimensions. There still exist some formal issues concerning the allowed form of the relativistic viscous hydrodynamic equations and what effects the new additional or higher order terms will have on the spacetime evolution and the experimental observables. Starting with a brief introduction of the basics of relativsitic fluid dynamics, I will discuss our current knowledge of relativistic theory of fluid dynamics in the presence of dissipative fluxes.

  3. The Relaxation Effect in Dissipative Relativistic Fluid Theories

    NASA Astrophysics Data System (ADS)

    Lindblom, Lee

    1996-04-01

    The dynamics of the fluid fields in a large class of causal dissipative fluid theories is studied. It is shown that the physical fluid states in these theories must relax (on a time scale that is characteristic of the microscopic particle interactions) to ones that are essentially indistinguishable from the simple relativistic Navier-Stokes descriptions of these states. Thus, for example, in the relaxed form of a physical fluid state the stress energy tensor is in effect indistinguishable from a perfect fluid stress tensor plus small dissipative corrections proportional to the shear of the fluid velocity, the gradient of the temperature, etc.

  4. Heat dissipation in relativistic single charged fluids

    NASA Astrophysics Data System (ADS)

    Garcia-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.

    2015-11-01

    When the temperature of a fluid is increased its out of equilibrium behavior is significantly modified. In particular kinetic theory predicts that the heat flux is not solely driven by a temperature gradient but can also be coupled to other thermodynamic vector forces. We explore the nature of heat conduction in a single component charged fluid in special relativity, where the electromagnetic field is introduced as an external force. We obtain an electrothermal effect, similar to the mixture's cross-effect, which is not present in the non-relativistic simple fluid. The general lines of the corresponding calculation will be shown, emphasizing the importance of reference frame invariance and the origin of the extra heat sources, in particular the role of the modified inertia and the difference in fluid's and molecules' proper times. The constitutive equation for the heat flux obtained using Chapman-Enskog's expansion in Marle's approximation will be analyzed together with the corresponding transport coefficients.The impact of this effect in the overall dynamics of the system here considered will be briefly discussed. The authors acknowledge support from CONACyT through grant CB2011/167563.

  5. Thermodynamics and flow-frames for dissipative relativistic fluids

    SciTech Connect

    Ván, P.; Biró, T. S.

    2014-01-14

    A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.

  6. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-01

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  7. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  8. Experimental Confirmation of a Causal, Covariant, Relativistic Theory of Dissipative Fluid Flow

    NASA Astrophysics Data System (ADS)

    Scofield, Dillon; Huq, Pablo

    2015-11-01

    Using newtonian viscous dissipation stress in covariant, relativistic fluid flow theories leads to a violation of the second law of thermodynamics and to acausality of their predictions. E.g., the Landau & Lifshitz theory, a Lorentz covariant formulation, suffers from these defects. These problems effectively limit such theories to time-independent flow régimes. Thus, these theories are of little fundamental interest to astrophysical, geophysical, or thermonuclear flow modeling. We discuss experimental confirmation of the new geometrodynamical theory of fluids solving these problems. This theory is derived from recent results of geometrodynamics showing current conservation implies gauge field creation; the vortex field lemma.

  9. Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang; Kodama, Takeshi; Koide, Tomoi; Rischke, Dirk H.

    2011-02-01

    The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τΠ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and τΠ and ζ are related as τΠ=ζ/[β{(1/3-cs2)(ɛ+P)-2(ɛ-3P)/9}], where ɛ, P, and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τΠ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.

  10. Stability, Causality, and Shock Waves in the Israel - Theory of Relativistic Dissipative Fluids.

    NASA Astrophysics Data System (ADS)

    Olson, Timothy Scott

    1990-08-01

    The stability, causality, and hyperbolicity properties were analyzed for the Israel-Stewart theory of relativistic dissipative fluids formulated in the energy frame. The equilibria of the theory which are stable for small perturbations were found by constructing a Liapunov functional. The conditions which guarantee that small perturbations about equilibrium will propagate with velocities less than the speed of light and will obey a system of hyperbolic differential equations were determined by calculating the characteristic velocities. It was shown that the stability conditions are equivalent to the causality and hyperbolicity conditions. The behavior of the theory far from equilibrium was studied by considering the plane symmetric motions of an inviscid ultrarelativistic Boltzmann gas. The theory was shown to be hyperbolic for large deviations from equilibrium, and acausality implies instability in this example. The plane steady shock wave solutions were also studied for the Israel-Stewart theory formulated in the Eckart frame. The theory was shown to fail to adequately describe the structure of strong shock waves. Physically acceptable solutions do not exist above a maximum upstream Mach number in any thermally nonconducting and viscous fluid described by the theory because the solutions become multiple-valued when the characteristic velocity is exceeded. It was also proven that physically acceptable solutions do not exist for thermally conducting and viscous fluids above either a maximum upstream Mach number, or else below a minimum downstream Mach number (or both). These limiting Mach numbers again correspond to the characteristic velocities of the fluid. Only extremely weak plane steady shock solutions can be single-valued in the Israel-Stewart theory for the ultrarelativistic Boltzmann gas or for the degenerate free Fermi gas.

  11. Relativistic second-order dissipative fluid dynamics at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof

    2016-07-01

    We employ a Chapman-Enskog like expansion for the distribution function close to equilibrium to solve the Boltzmann equation in the relaxation time approximation and subsequently derive second-order evolution equations for dissipative charge currentand shear stress tensor for a system of massless quarks and gluons. We use quantum statistics for the phase space distribution functions to calculate the transport coefficients. We show that, the second-order evolution equations for the dissipative charge current and the shear stress tensor can be decoupled. We find that, for large chemical potential, the charge conductivity is small compared to the shear viscosity. Moreover, we demonstrate that the limiting behaviour of the ratio of heat conductivity to shear viscosity is identicalto that obtained for a strongly coupled conformal plasma.

  12. Shear viscosity, bulk viscosity, and relaxation times of causal dissipative relativistic fluid-dynamics at finite temperature and chemical potential

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang; Koide, Tomoi

    2012-09-01

    The microscopic formulas for the shear viscosity η, the bulk viscosity ζ, and the corresponding relaxation times τπ and τΠ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potential by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure. We show that, when the operator definition for the bulk viscous pressure Π is appropriately chosen, the leading-order result of the ratio, ζ over τΠ, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al. (2008) [8] by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.

  13. Relativistic fluid dynamics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Choquet-Bruhat, Y.

    Contents: 1. Covariant theory of conductivity in ideal fluid or solid media (B. Carter). 2. Hamiltonian techniques for relativistic fluid dynamics and stability theory (D. D. Holm). 3. Covariant fluid mechanics and thermodynamics: an introduction (W. Israel). 4. Relativistic plasmas (H. Weitzner). 5. An improved relativistic warm plasma model (A. M. Anile, S. Pennisi). 6. Relativistic extended thermodynamics II (I. Müller). 7. Relativistic extended thermodynamics: general assumptions and mathematical procedure (T. Ruggeri). 8. Relativistic hydrodynamics and heavy ion reactions (D. Strottman). 9. Some problems in relativistic hydrodynamics (C. G. van Weert).

  14. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  15. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  16. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  17. Relativistic fluids: fundamentals and recent developments

    NASA Astrophysics Data System (ADS)

    Sandoval-Villalbazo, A.; García-Perciante, A. L.

    2014-11-01

    Relativistic thermodynamics and kinetic theory have been subjects of intense research and debate recently. The topic has gained attention primarily due to its application in both astrophysical and experimental scenarios. In this talk I will review some of the challenges theorists have faced in search of a successful formalism capable of describing these systems and the alternatives proposed in order to avoid the well known instabilities and causality problems present in the first works on the subject published more than fifty years ago. Among these proposals I will focus on the first order in the gradients version of relativistic kinetic theory in order to describe special relativistic single component fluids in the presence of external forces. The main results obtained following this path will be shown including the relativistic expressions for dissipative fluxes and entropy production. Some consequences of relativistic modifications in the hydrodynamic equations will also be discussed. This work is supported by CONACyT through Grant CB2011/167563.

  18. Kinetic analysis of thermally relativistic flow with dissipation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  19. Kinetic analysis of thermally relativistic flow with dissipation

    SciTech Connect

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-15

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  20. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Molnár, Etele; Niemi, Harri; Rischke, Dirk H.

    2016-06-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.

  1. Solving the heat-flow problem with transient relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Denicol, G. S.; Niemi, H.; Bouras, I.; Molnár, E.; Xu, Z.; Rischke, D. H.; Greiner, C.

    2014-04-01

    Israel-Stewart theory is a causal, stable formulation of relativistic dissipative fluid dynamics. This theory has been shown to give a decent description of the dynamical behavior of a relativistic fluid in cases where shear stress becomes important. In principle, it should also be applicable to situations where heat flow becomes important. However, it has been shown that there are cases where Israel-Stewart theory cannot reproduce phenomena associated with heat flow. In this paper, we derive a relativistic dissipative fluid-dynamical theory from kinetic theory which provides a good description of all dissipative phenomena, including heat flow. We explicitly demonstrate this by comparing this theory with numerical solutions of the relativistic Boltzmann equation.

  2. Dissipative charged fluid in a magnetic field

    NASA Astrophysics Data System (ADS)

    Abbasi, Navid; Davody, Ali

    2016-05-01

    We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  3. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  4. Entropy current for non-relativistic fluid

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash; Roychowdhury, Dibakar

    2014-08-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermodynamics. Therefore, we need to add two parity-odd vectors to the entropy current with arbitrary coefficients. Upon demanding the validity of second law, we see that one can fix these two coefficients exactly.

  5. Forced Turbulence in Relativistic Conformal Fluids

    NASA Astrophysics Data System (ADS)

    Westernacher-Schneider, John Ryan; Green, Stephen; Lehner, Luis; Canon, Kipp; Oz, Yaron

    2015-04-01

    Given the renewed interest arising both from AdS/CFT and astrophysics, we revisit the phenomenon of relativistic turbulence. We build on some recent work which extends known non-relativistic results in turbulence to the case of relativistic (and thus compressible) fluids. In particular, we derive the scaling behaviour of two-point correlation functions in 2+1 dimensions--holographically dual to 3+1 dimensional gravity. Turbulence in 2+1 dimensions also approximates several astrophysical situations, such as thin accretion disks around black holes. We perform numerical simulations of forced steady-state turbulence to verify our derived correlation functions.

  6. Kinetic analysis of thermally relativistic flow with dissipation. II. Relativistic Boltzmann equation versus its kinetic models

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro

    2011-06-01

    Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.

  7. Nuclear Dissipation via Peripheral Collisions with Relativistic Radioactive Actinides Beams

    SciTech Connect

    Schmitt, C.; Heinz, A.; Jurado, B.; Kelic, A.; Schmidt, K.-H.

    2007-05-22

    Peripheral collisions with radioactive actinide beams at relativistic energies are proposed as a relevant approach for the study of dissipation in nuclear matter. The characteristics of the systems resulting from the primary fragmentation of such beams are particularly well suited for probing the controversial existence of a sizeable delay in fission. Thanks to the radioactive beam facility at GSI an unusually large set of data involving about 60 secondary unstable projectiles between At and U has been collected under identical conditions. The properties of the set-up enabled the coincident measurement of the atomic number of both fission fragments, permitting a judicious classification of the data. The width of the fission-fragment charge distribution is shown to establish a thermometer at the saddle point which is directly related to the transient delay caused by the friction force. From a comparison with realistic model calculations, the dissipation strength at small deformation and the transient time are inferred. The present strategy is promoted as a complementary approach that avoids some complex problems inherent to conventional techniques. Combined to the paramount size of the data set, it sheds light on contradictory conclusions that have been published in the past. There is at this point no definite consensus on our understanding of the damping process in fission.

  8. Magnetohydrodynamics of chiral relativistic fluids

    NASA Astrophysics Data System (ADS)

    Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg

    2015-08-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  9. Instabilities in a Relativistic Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  10. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  11. Kubo formulas for relativistic fluids in strong magnetic fields

    SciTech Connect

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-12-15

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: > Strong magnetic fields can make charged fluids behave anisotropically. > Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. > We derive Kubo formulas for these transport coefficients.

  12. A covariant action principle for dissipative fluid dynamics: from formalism to fundamental physics

    NASA Astrophysics Data System (ADS)

    Andersson, N.; Comer, G. L.

    2015-04-01

    We present a new variational framework for dissipative general relativistic fluid dynamics. The model extends the convective variational principle for multi-fluid systems to account for a range of dissipation channels. The key ingredients in the construction are (i) the use of a lower dimensional matter space for each fluid component, and (ii) an extended functional dependence for the associated volume forms. In an effort to make the concepts clear, the formalism is developed step-by-step with model examples considered at each level. Thus we consider a model for heat flow, derive the relativistic Navier-Stokes equations and discuss why the individual dissipative stress tensors need not be spacetime symmetric. We argue that the new formalism, which notably does not involve an expansion away from an assumed equilibrium state, provides a conceptual breakthrough in this area of research. We also provide an ambitious list of directions in which one may want to extend it in the future. This involves an exciting set of problems, relating to both applications and foundational issues.

  13. A two-fluid model for relativistic heat conduction

    SciTech Connect

    López-Monsalvo, César S.

    2014-01-14

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  14. Relativistic second-order dissipative hydrodynamics at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof

    2015-12-01

    Starting from the Boltzmann equation in the relaxation time approximation and employing a Chapman-Enskog like expansion for the distribution function close to equilibrium, we derive second-order evolution equations for the shear stress tensor and the dissipative charge current for a system of massless quarks and gluons. The transport coefficients are obtained exactly using quantum statistics for the phase space distribution functions at non-zero chemical potential. We show that, within the relaxation time approximation, the second-order evolution equations for the shear stress tensor and the dissipative charge current can be decoupled. We find that, for large values of the ratio of chemical potential to temperature, the charge conductivity is small compared to the coefficient of shear viscosity. Moreover, we show that in the relaxation-time approximation, the limiting behaviour of the ratio of heat conductivity to shear viscosity is qualitatively similar to that obtained for a strongly coupled conformal plasma.

  15. Holographic forced fluid dynamics in non-relativistic limit

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Li, Li; Nie, Zhang-Yu; Zhang, Yun-Long

    2012-11-01

    We study the thermodynamics and non-relativistic hydrodynamics of the holographic fluid on a finite cutoff surface in the Gauss-Bonnet gravity. It is shown that the isentropic flow of the fluid is equivalent to a radial component of gravitational field equations. We use the non-relativistic fluid expansion method to study the Einstein-Maxwell-dilaton system with a negative cosmological constant, and obtain the holographic incompressible forced Navier-Stokes equations of the dual fluid at AdS boundary and at a finite cutoff surface, respectively. The concrete forms of external forces are given.

  16. Time-dependent closure relations for relativistic collisionless fluid equations.

    PubMed

    Bendib-Kalache, K; Bendib, A; El Hadj, K Mohammed

    2010-11-01

    Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units. PMID:21230596

  17. Time-dependent closure relations for relativistic collisionless fluid equations

    SciTech Connect

    Bendib-Kalache, K.; Bendib, A.; El Hadj, K. Mohammed

    2010-11-15

    Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space ({omega},k), where {omega} and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter {omega}/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc{sup 2}/T, where m is the particle rest mass and T, the plasma temperature in energy units.

  18. Axially symmetric dissipative fluids in the quasi-static approximation

    NASA Astrophysics Data System (ADS)

    Herrera, L.; di Prisco, A.; Ospino, J.; Carot, J.

    2016-01-01

    Using a framework based on the 1 + 3 formalism, we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi-static regime. We first derive a set of invariantly defined “velocities”, which allow for an inambiguous definition of the quasi-static approximation. Next, we rewrite all the relevant equations in this approximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular, we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of “velocities” change their sign within the fluid distribution with respect to their sign on the boundary surface. It is shown that states of gravitational radiation are not a priori incompatible with the quasi-static regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.

  19. A Causal, Covariant Theory of Dissipative Fluid Flow

    NASA Astrophysics Data System (ADS)

    Scofield, Dillon; Huq, Pablo

    2015-04-01

    The use of newtonian viscous dissipation theory in covariant fluid flow theories is known to lead to predictions that are inconsistent with the second law of thermodynamics and to predictions that are acausal. For instance, these problems effectively limit the covariant form of the Navier-Stokes theory (NST) to time-independent flow regimes. Thus the NST, the work horse of fluid dynamical theory, is limited in its ability to model time-dependent turbulent, stellar or thermonuclear flows. We show how such problems are avoided by a new geometrodynamical theory of fluids. This theory is based on a recent result of geometrodynamics showing current conservation implies gauge field creation, called the vortex field lemma and classification of flows by their Pfaff dimension. Experimental confirmation of the theory is reviewed.

  20. Dissipative spherical collapse of charged anisotropic fluid in gravity

    NASA Astrophysics Data System (ADS)

    Kausar, H. Rizwana; Noureen, Ifra

    2014-02-01

    This manuscript is devoted to the study of the combined effect of a viable model and the electromagnetic field on the instability range of gravitational collapse. We assume the presence of a charged anisotropic fluid that dissipates energy via heat flow and discuss how the electromagnetic field, density inhomogeneity, shear, and phase transition of astrophysical bodies can be incorporated by a locally anisotropic background. The dynamical equations help to investigate the evolution of self-gravitating objects and lead to the conclusion that the adiabatic index depends upon the electromagnetic background, mass, and radius of the spherical objects.

  1. General-relativistic rotation laws in rotating fluid bodies

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Malec, Edward

    2015-06-01

    We formulate new general-relativistic extensions of Newtonian rotation laws for self-gravitating stationary fluids. They have been used to rederive, in the first post-Newtonian approximation, the well-known geometric dragging of frames. We derive two other general-relativistic weak-field effects within rotating tori: the recently discovered dynamic antidragging and a new effect that measures the deviation from the Keplerian motion and/or the contribution of the fluids self-gravity. One can use the rotation laws to study the uniqueness and the convergence of the post-Newtonian approximations as well as the existence of the post-Newtonian limits.

  2. Nonlinear waves and shocks in relativistic two-fluid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.

    2012-06-01

    Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.

  3. Selective decay by Casimir dissipation in inviscid fluids

    NASA Astrophysics Data System (ADS)

    Gay-Balmaz, François; Holm, Darryl D.

    2013-02-01

    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional (2D) incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in three-dimensional flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in Sadourny and Basdevant (1981 C. R. Acad. Sci. Paris 292 1061-4, 1985 J. Atm. Sci. 2.0.CO2"42 1353-63). Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parametrizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies.

  4. Relativistic elasticity of stationary fluid branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  5. A Landau fluid model for dissipative trapped electron modes

    SciTech Connect

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths.

  6. Instabilities in relativistic two-component (super)fluids

    NASA Astrophysics Data System (ADS)

    Haber, Alexander; Schmitt, Andreas; Stetina, Stephan

    2016-01-01

    We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a nonentrainment coupling. We analyze the onset of the various instabilities systematically and point out that the dynamical two-stream instability can occur only beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and are of potential relevance for (super)fluids in neutron stars and, in the nonrelativistic limit of our results, in the laboratory.

  7. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  8. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  9. Extrema principles of entropy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appear to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  10. Dissipativity analysis of the base isolated benchmark structure with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Erkus, Baris; Johnson, Erik A.

    2011-10-01

    This paper investigates the dissipativity and performance characteristics of the semiactive control of the base isolated benchmark structure with magnetorheological (MR) fluid dampers. Previously, the authors introduced the concepts of dissipativity and dissipativity indices in the semiactive control of structures with smart dampers and studied the dissipativity characteristics of simple structures with idealized dampers. To investigate the effects of semiactive controller dissipativity characteristics on the overall performance of the base isolated benchmark building, a clipped optimal control strategy with a linear quadratic Gaussian (LQG) controller and a 20 ton MR fluid damper model is used. A cumulative index is proposed for quantifying the overall dissipativity of a control system with multiple control devices. Two control designs with different dissipativity and performance characteristics are considered as the primary controller in clipped optimal control. Numerical simulations reveal that the dissipativity indices can be classified into two groups that exhibit distinct patterns. It is shown that the dissipativity indices identify primary controllers that are more suitable for application with MR dampers and provide useful information in the semiactive design process that complements other performance indices. The computational efficiency of the proposed dissipativity indices is verified by comparing computation times.

  11. Energy Spectrum in the Dissipation Range of Fluid Turbulence

    NASA Technical Reports Server (NTRS)

    Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.

    1996-01-01

    High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.

  12. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGESBeta

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  13. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.

  14. Relativistic MHD Simulations of Collision-induced Magnetic Dissipation in Poynting-flux-dominated Jets/outflows

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-06-01

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.

  15. Stopping of relativistic electrons in a partially degenerate electron fluid.

    PubMed

    Starikov, K V; Deutsch, C

    2005-02-01

    The stopping mechanisms of relativistic electron beams in superdense and partially degenerate electron fluid targets are investigated in the framework of the fast ignitor concept for inertial confinement fusion. In order to comply with specific demands in this area, we focus attention on the target partial degeneracy parameter theta= T(e) / T(f) , in terms of the thermal to Fermi temperature ratio. The target electron fluid is thus modeled very accurately with a random phase approximation dielectric function. The stopping results are shown to be very weakly theta dependent. However, a quantum target description is needed to recover their correct increasing trend with increasing projectile energy. The ranges and effective penetration depths in precompressed thermonuclear fuels are shown to be nearly a factor of 2 shorter than earlier classical estimates in the same conditions. The overall conclusions pertaining to the feasibility of fast ignition thus remain unchanged. PMID:15783429

  16. Gravitational collapse of dissipative fluid as a source of gravitational waves

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sanjukta; Chakraborty, Subenoy

    2016-01-01

    Gravitational collapse of cylindrical anisotropic fluid has been considered in analogy with the work of Misner and Sharp. Using Darmois matching conditions, the interior cylindrical dissipative fluid (in the form of shear viscosity and heat flux) is matched to an exterior vacuum Einstein-Rosen space-time. It is found that on the bounding 3-surface the radial pressure of the anisotropic perfect fluid is linearly related to the shear viscosity and the heat flux of the dissipative fluid on the boundary. This non-zero radial pressure on the bounding surface may be considered as the source of gravitational waves outside the collapsing matter distribution.

  17. Dissipative collapse of axially symmetric, general relativistic sources: A general framework and some applications

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Di Prisco, A.; Ibáñez, J.; Ospino, J.

    2014-04-01

    We carry out a general study on the collapse of axially (and reflection-)symmetric sources in the context of general relativity. All basic equations and concepts required to perform such a general study are deployed. These equations are written down for a general anisotropic dissipative fluid. The proposed approach allows for analytical studies as well as for numerical applications. A causal transport equation derived from the Israel-Stewart theory is applied, to discuss some thermodynamic aspects of the problem. A set of scalar functions (the structure scalars) derived from the orthogonal splitting of the Riemann tensor are calculated and their role in the dynamics of the source is clearly exhibited. The characterization of the gravitational radiation emitted by the source is discussed.

  18. A multidimensional numerical scheme for two-fluid relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim; Komissarov, Serguei S.; Korolev, Vitaly; Zankovich, Andrey

    2014-02-01

    This paper describes an explicit multidimensional numerical scheme for special relativistic two-fluid magnetohydrodynamics of electron-positron plasma and a suit of test problems. The scheme utilizes Cartesian grid and the third-order weighted essentially non-oscillatory interpolation. Time integration is carried out using the third-order total variation diminishing method of Runge-Kutta type, thus ensuring overall third-order accuracy on smooth solutions. The magnetic field is kept near divergence-free by means of the method of generalized Lagrange multiplier. The test simulations, which include linear and non-linear continuous plasma waves, shock waves, strong explosions and the tearing instability, show that the scheme is sufficiently robust and confirm its accuracy.

  19. Effects of f(R) Model on Dynamics of Axial Shear-Free Dissipative Fluids

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Zunaira, Nasir

    2016-04-01

    We present a general analysis on non-static axial system with dissipative shear-free anisotropic fluid using polynomial inflationary f(R) model. We study the effects of dissipation on the dynamics of geodesic matter distribution. This leads the system either to rotation-free or expansion-free but not both simultaneously under geodesic condition. It is found that the system preserves its symmetry in both cases. For the rotation-free case, when there is no dissipation and Ricci scalar is constant, the axial system reduces to FRW universe model. This is exactly the same result obtained in general relativity.

  20. Relativistic tearing and drift-kink instabilities in two-fluid simulations

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim V.; Komissarov, Serguei S.

    2016-05-01

    The stability of current sheets in collisionless relativistic pair plasma was studied via two-dimensional two-fluid relativistic magnetohydrodynamic simulations with vanishing internal friction between fluids. In particular, we investigated the linear growth of the tearing and drift-kink modes in the current sheets both with and without the guide field and obtained the growth rates which are very similar to what has been found in the corresponding particle in cell (PIC) simulations. This suggests that the two-fluid simulations can be useful in studying the large-scale dynamics of astrophysical relativistic plasmas in problems involving magnetic reconnection.

  1. Spectral Energy Transfer and Dissipation of Magnetic Energy from Fluid to Kinetic Scales

    SciTech Connect

    Bowers, K.; Li, H.

    2007-01-19

    We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.

  2. Spectral energy transfer and dissipation of magnetic energy from fluid to kinetic scales.

    PubMed

    Bowers, K; Li, H

    2007-01-19

    We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated. PMID:17358690

  3. Mechanisms of Surface Wave Energy Dissipation over a Fluid Mud Sediment Suspension

    NASA Astrophysics Data System (ADS)

    Traykovski, P.; Trowbridge, J. H.; Kineke, G. C.

    2014-12-01

    Field observations from the spring of 2008 on the Louisiana shelf were used to elucidate the mechanisms of wave energy dissipation over a muddy seafloor. After a period of high discharge from the Atchafalaya River acoustic measurements showed the presence of 20 cm thick mobile fluid mud layers during and after wave events. While total wave energy dissipation (D) was greatest during the high energy periods, these periods had relatively low normalized attenuation rates (Κ = Dissipation/Energy Flux). During declining wave energy conditions, as the fluid mud layer settled, the attenuation process became more efficient with high Κ and low D. The transition from high D and low Κ to high Κ and low D was caused by a transition from turbulent to laminar flow in the fluid mud layer as measured by a Pulse-coherent Doppler profiler. Measurements of the oscillatory boundary layer velocity profile in the fluid mud layer during laminar flow reveal a very thick wave boundary layer with curvature filling the entire fluid mud layer, suggesting a kinematic viscosity two to three orders of magnitude greater than clear water. This high viscosity is also consistent with a high wave attenuation rates measured by across shelf energy flux differences. The transition to turbulence was forced by instabilities on the lutocline, with wavelengths consistent with the dispersion relation for this two layer system. The measurements also provide new insight into the dynamics of wave supported turbidity flows during the transition from a laminar to turbulent fluid mud layer.

  4. Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum

    NASA Astrophysics Data System (ADS)

    Jang, Juhi; LeFloch, Philippe G.; Masmoudi, Nader

    2016-03-01

    We study the evolution of a compressible fluid surrounded by vacuum and introduce a new symmetrization in Lagrangian coordinates that allows us to encompass both relativistic and non-relativistic fluid flows. The problem under consideration is a free boundary problem of central interest in compressible fluid dynamics and, from the mathematical standpoint, the main challenge to be overcome lies in the loss of regularity in the fluid variables near the free boundary. Based on our Lagrangian formulation, we establish the necessary a priori estimates in weighted Sobolev spaces which are adapted to this loss of regularity.

  5. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σb,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σb,i - σb,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.

  6. Slow and long-ranged dynamical heterogeneities in dissipative fluids.

    PubMed

    Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette

    2016-06-28

    A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution. PMID:27230572

  7. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions

    NASA Astrophysics Data System (ADS)

    Jung, Gerhard; Schmid, Friederike

    2016-05-01

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions — one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid.

  8. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions.

    PubMed

    Jung, Gerhard; Schmid, Friederike

    2016-05-28

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions - one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid. PMID:27250276

  9. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  10. Waves in general relativistic two-fluid plasma around a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Rahman, M. Atiqur

    2012-10-01

    Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation.

  11. “Ripples” on a relativistically expanding fluid

    DOE PAGESBeta

    Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2014-12-29

    Recent studies have shown that fluctuations of various types play important roles in the evolution of the fireball created in relativistic heavy ion collisions and bear many phenomenological consequences for experimental observables. In addition, the bulk dynamics of the fireball is well described by relativistic hydrodynamic expansion and the fluctuations on top of such expanding background can be studied within the linearized hydrodynamic framework. In this paper we present complete and analytic sound wave solutions on top of both Bjorken flow and Hubble flow backgrounds.

  12. Assessing the numerical dissipation rate and viscosity in CFD simulations of fluid flows

    NASA Astrophysics Data System (ADS)

    Schranner, F. S.; Domaradzki, J. A.; Hickel, S.; Adams, N. A.

    2014-11-01

    We describe a method for quantifying the effective numerical dissipation rate and the effective numerical viscosity in Computational Fluid Dynamics simulations. Differently from the previous approach that was formulated in spectral space, the proposed method is developed in a physical-space representation and allows for determining numerical dissipation rates and viscosities locally, i.e., at the individual cell level or for arbitrary subdomains of the computational domain. The method is self-contained using only results produced by the Navier-Stokes solver being investigated. Since no extraneous information is required, the method is suitable for a straightforward quantification of the numerical dissipation as a post-processing step. We demonstrate the method's capabilities on the example of implicit large-eddy simulations of three-dimensional Taylor-Green vortex flows that exhibit laminar, transitional, and turbulent flow behavior at different stages of time evolution. For validation, we compare the numerical dissipation rate obtained using this method with exact reference data obtained with an accurate, spectral-space approach. Supported by Deutsche Forschungsgemeinschaft and Alexander von Humboldt Foundation.

  13. Probing the rheology of viscous fluids using microcantilevers and the fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Robbins, Brian; Radiom, Milad; Walz, John; Ducker, William; Paul, Mark

    2013-11-01

    A microscopic understanding of the rheology of fluids at high frequencies remains an important and open challenge. Current microrheology approaches include the use of micron-scale beads held in optical traps as well as micron-scale cantilevers. Typically, these approaches have been limited in their range of accessible frequencies and dynamic viscosities. In this talk we are interested in the high-frequency regime for very viscous fluids where one must include inertial effects and the frequency dependence of the viscous damping. We present experimental results of the noise spectrum in displacement of the tip of a microcantilever for a variety of fluids that cover a range of viscosities. Using analytical predictions based upon the fluctuation-dissipation theorem, we present an approach to quantify the density and viscosity of the fluid from measurements of the noise spectrum. We are particularly interested in exploring fluids much more viscous than water. We use insights from this study to explore the dynamics of an oscillating elastic object in a power-law fluid to probe the rheology of a non-Newtonian fluid at high frequency. NSF Award CBET-0959228.

  14. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  15. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    SciTech Connect

    Zrake, Jonathan

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  16. Inverse Cascade of Nonhelical Magnetic Turbulence in a Relativistic Fluid

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan

    2014-10-01

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum PM (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and -2, respectively. The magnetic coherence scale is found to grow in time as t 2/5, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  17. The Stabilizing Effect of Spacetime Expansion on Relativistic Fluids With Sharp Results for the Radiation Equation of State

    NASA Astrophysics Data System (ADS)

    Speck, Jared

    2013-07-01

    In this article, we study the 1 + 3-dimensional relativistic Euler equations on a pre-specified conformally flat expanding spacetime background with spatial slices that are diffeomorphic to {R}^3. We assume that the fluid verifies the equation of state {p = c2s ρ,} where {0 ≤ cs ≤ √{1/3}} is the speed of sound. We also assume that the reciprocal of the scale factor associated with the expanding spacetime metric verifies a c s -dependent time-integrability condition. Under these assumptions, we use the vector field energy method to prove that an explicit family of physically motivated, spatially homogeneous, and spatially isotropic fluid solutions are globally future-stable under small perturbations of their initial conditions. The explicit solutions corresponding to each scale factor are analogs of the well-known spatially flat Friedmann-Lemaître-Robertson-Walker family. Our nonlinear analysis, which exploits dissipative terms generated by the expansion, shows that the perturbed solutions exist for all future times and remain close to the explicit solutions. This work is an extension of previous results, which showed that an analogous stability result holds when the spacetime is exponentially expanding. In the case of the radiation equation of state p = (1/3)ρ, we also show that if the time-integrability condition for the reciprocal of the scale factor fails to hold, then the explicit fluid solutions are unstable. More precisely, we show the existence of an open family of initial data such that (i) it contains arbitrarily small smooth perturbations of the explicit solutions' data and (ii) the corresponding perturbed solutions necessarily form shocks in finite time. The shock formation proof is based on the conformal invariance of the relativistic Euler equations when {c2s = 1/3,} which allows for a reduction to a well-known result of Christodoulou.

  18. Local thermodynamical equilibrium and the frame for a quantum relativistic fluid

    NASA Astrophysics Data System (ADS)

    Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo

    2015-05-01

    We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector , which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the frame and Landau frame and present an instance where they differ.

  19. Open/closed string duality and relativistic fluids

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2016-07-01

    We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.

  20. Simulating the Rayleigh-Taylor instability in polymer fluids with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Zhuang, Xin; Wang, Lihua; Ouyang, Jie

    2016-04-01

    The Rayleigh-Taylor (RT) instability that occurs in the flow of polymer fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase flow, the Flory-Huggins parameter is introduced to model binary fluids. And the polymer chains in fluids are described by the modified FENE model that depicts both the elastic tension and the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Besides, a bead repulsive potential is employed to capture entanglements between polymer chains. Through our model and numerical simulation, we research the dynamics behaviors of the RT instability in polymer fluid medium. Furthermore, we also explore the effects of polymer volume concentration, chain length, and extensibility on the evolution of RT instability. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the saturation length of spikes becomes longer, and the two polymer fluids have less mixture. On the contrary, for the case of low concentration, or short chain, or small extensibility, the spikes easily split and break up, and the RT instability pattern evolves into chaotic structure. These observations indicate that the polymer and its properties drastically modify the RT instability pattern.

  1. Conduction and dissipation in the shearing flow of granular materials modeled as non-Newtonian fluids

    SciTech Connect

    Massoudi, M.C.; Tran, P.X.

    2007-06-15

    After providing a brief review of the constitutive modeling of the stress tensor for granular materials using non-Newtonian fluid models, we study the flow between two horizontal flat plates. It is assumed that the granular media behaves as a non-Newtonian fluid (of the Reiner–Rivlin type); we use the constitutive relation derived by Rajagopal and Massoudi [Rajagopal, K. R. and M. Massoudi, “A Method for measuring material moduli of granular materials: flow in an orthogonal rheometer,” Topical Report, DOE/PETC/TR-90/3, 1990] which can predict the normal stress differences. The lower plate is fixed and heated, and the upper plate (which is at a lower temperature than the lower plate) is set into motion with a constant velocity. The steady fully developed flow and the heat transfer equations are made dimensionless and are solved numerically; the effects of different dimensionless numbers and viscous dissipation are discussed.

  2. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect

    Paul Meakin; Zhijie Xu

    2008-06-01

    Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included

  3. Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns

    PubMed Central

    Wan, Jiang-bo; Zhang, Guo-an; Qiu, Yu-xuan; Wen, Chun-quan; Fu, Tai-ran

    2016-01-01

    This study was designed to explore whether mucosal fluid evaporation represents a method of heat dissipation from thermal air inhalation injury and to assess laryngopharyngeal tissue damage according to heat quantity changes of dry air and vapour. Fifteen adult male beagles were divided into five groups to inhale heated air or vapour for 10 min as follows: control group (ordinary air), group I (91–110 °C heated air), group II (148–175 °C heated air), group III (209–227 °C heated air), and group IV (96 °C saturated vapour). The heat quantity changes of the dry air and vapour were calculated via thermodynamic formulas. The macroscopic and histological features of the laryngopharynxes were examined and assessed by various tissue damage grading systems. Group IV exhibited the most serious laryngopharyngeal damage, including cilia exfoliation, submucosal thrombosis, glandular atrophy, and chondrocyte degeneration, which is indicative of fourth-degree injury. The quality, heat quantity, and proportional reduction of heat quantity of vapour in group IV were all higher than those in the other groups. Furthermore, we found that mucosal fluid evaporation is not the method of heat dissipation from thermal air inhalation injury used by the airways. Laryngopharyngeal tissue damage depends chiefly on the heat quantity of vapour in the air. PMID:27349685

  4. Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns.

    PubMed

    Wan, Jiang-Bo; Zhang, Guo-An; Qiu, Yu-Xuan; Wen, Chun-Quan; Fu, Tai-Ran

    2016-01-01

    This study was designed to explore whether mucosal fluid evaporation represents a method of heat dissipation from thermal air inhalation injury and to assess laryngopharyngeal tissue damage according to heat quantity changes of dry air and vapour. Fifteen adult male beagles were divided into five groups to inhale heated air or vapour for 10 min as follows: control group (ordinary air), group I (91-110 °C heated air), group II (148-175 °C heated air), group III (209-227 °C heated air), and group IV (96 °C saturated vapour). The heat quantity changes of the dry air and vapour were calculated via thermodynamic formulas. The macroscopic and histological features of the laryngopharynxes were examined and assessed by various tissue damage grading systems. Group IV exhibited the most serious laryngopharyngeal damage, including cilia exfoliation, submucosal thrombosis, glandular atrophy, and chondrocyte degeneration, which is indicative of fourth-degree injury. The quality, heat quantity, and proportional reduction of heat quantity of vapour in group IV were all higher than those in the other groups. Furthermore, we found that mucosal fluid evaporation is not the method of heat dissipation from thermal air inhalation injury used by the airways. Laryngopharyngeal tissue damage depends chiefly on the heat quantity of vapour in the air. PMID:27349685

  5. Applicability of fluid-dynamical modeling of nucleus-nucleus collisions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Hazineh, Dean; Auvinen, Jussi; Nahrgang, Marlene; Bass, Steffen

    2015-10-01

    At sufficiently high temperatures and densities, similar to the conditions found in the early universe, QCD matter forms a deconfined state called the quark gluon plasma (QGP). This state of matter can be created in collisions of ultra-relativistic heavy-ions, and RHIC data suggests that this QGP behaves similar to an ideal fluid. Viscous relativistic fluid dynamics therefore is one of the preferred theoretical tools to model the time-evolution and properties of the QGP. As the collision energy or the system size is decreased, the range of applicability of viscous fluid dynamics becomes smaller as the length scale of the interaction among the basic constituents is similar to the overall scale of the collision system itself. In order to investigate the validity of fluid-dynamical modeling of proton-nucleus and nucleus-nucleus collisions at LHC and RHIC, we conduct an analysis of the spatial and temporal evolution of the Knudsen number, i.e. the ratio of the microscopic mean free path to the macroscopic length scale of the system. We show results for large and small collision systems, as a function of the specific shear viscosity, and discuss the range of applicability of fluid-dynamical modeling in relativistic proton-nucleus and nucleus-nucleus collisions at different energies.

  6. Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity

    NASA Astrophysics Data System (ADS)

    Auclair Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-09-01

    Context. Tidal dissipation in planets and stars is one of the key physical mechanisms driving the evolution of star-planet and planet-moon systems. Several signatures of its action are observed in planetary systems thanks to their orbital architecture and the rotational state of their components. Aims: Tidal dissipation inside the fluid layers of celestial bodies is intrinsically linked to the dynamics and physical properties of those bodies. This complex dependence must be characterized. Methods: We compute the tidal kinetic energy dissipated by viscous friction and thermal diffusion in a rotating local fluid Cartesian section of a star, planet, or moon submitted to a periodic tidal forcing. The properties of tidal gravito-inertial waves excited by the perturbation are derived analytically as explicit functions of the tidal frequency and local fluid parameters (i.e. the rotation, the buoyancy frequency characterizing the entropy stratification, viscous and thermal diffusivities) for periodic normal modes. Results: The sensitivity of the resulting dissipation frequency-spectra, which could be highly resonant, to a control parameter of the system is either important or negligible depending on the position in the regime diagram relevant for planetary and stellar interiors. For corresponding asymptotic behaviours of tidal gravito-inertial waves dissipated by viscous friction and thermal diffusion, scaling laws for the frequencies, number, width, height, and contrast with the non-resonant background of resonances are derived to quantify these variations. Conclusions: We characterize the strong impact of the internal physics and dynamics of fluid planetary layers and stars on the dissipation of tidal kinetic energy in their bulk. We point out the key control parameters that really play a role in tidal dissipation and demonstrate how it is now necessary to develop ab initio modelling for tidal dissipation in celestial bodies. Appendices are available in electronic form

  7. Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks

    NASA Astrophysics Data System (ADS)

    Liu, Moubin; Meakin, Paul; Huang, Hai

    2007-03-01

    Multiphase fluid motion in microchannels and microchannel networks involves complicated fluid dynamics and is fundamentally important to diverse practical engineering applications such as ink-jet printing, DNA and protein micro-/nano-arraying, and fabrication of particles and capsules for controlled release of medicines. This paper presented the simulations of multiphase fluid motion in microchannels and microchannel networks using a modified dissipative particle dynamics method that employs a new conservative particle-particle interaction combining short-range repulsive and long-range attractive interactions to simulate multiphase systems. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids, and solids to be simulated. Three numerical examples that are closely related to engineering applications were simulated. These examples involve multiple fluid motions in (i) a simple microchannel within two parallel plates; (ii) an inverted Y-shaped microchannel junction consisting of a vertical channel that divides into two branch channels with the same aperture; and (iii) a microchannel network. The numerical results obtained by using DPD agreed well with those from other sources, and clearly demonstrated the potential value of this DPD method for modeling and analyzing multiphase flow in microchannels and microchannel networks.

  8. Topological sigma models & dissipative hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund

    2016-04-01

    We outline a universal Schwinger-Keldysh effective theory which describes macroscopic thermal fluctuations of a relativistic field theory. The basic ingredients of our construction are three: a doubling of degrees of freedom, an emergent abelian symmetry associated with entropy, and a topological (BRST) supersymmetry imposing fluctuationdissipation theorem. We illustrate these ideas for a non-linear viscous fluid, and demonstrate that the resulting effective action obeys a generalized fluctuation-dissipation theorem, which guarantees a local form of the second law.

  9. Comparison between experimental and analytical results for seesaw energy dissipation systems using fluid viscous dampers

    NASA Astrophysics Data System (ADS)

    Kang, Jae-Do; Tagawa, Hiroshi

    2016-03-01

    This paper presents results of experimental and numerical investigations of a seesaw energy dissipation system (SEDS) using fluid viscous dampers (FVDs). To confirm the characteristics of the FVDs used in the tests, harmonic dynamic loading tests were conducted in advance of the free vibration tests and the shaking table tests. Shaking table tests were conducted to demonstrate the damping capacity of the SEDS under random excitations such as seismic waves, and the results showed SEDSs have sufficient damping capacity for reducing the seismic response of frames. Free vibration tests were conducted to confirm the reliability of simplified analysis. Time history response analyses were also conducted and the results are in close agreement with shaking table test results.

  10. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction.

    PubMed

    Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul

    2016-06-01

    We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E(k), when the wave number k is large; this enhancement leads to dissipation reduction. PMID:27415366

  11. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul

    2016-06-01

    We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E (k ) , when the wave number k is large; this enhancement leads to dissipation reduction.

  12. Tidal dissipation in stars and fluid planetary layers and its impact on the evolution of star-planet systems

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-09-01

    Tidal dissipation in stars and planets is one of the key physical mechanisms that drive the evolution of planetary systems. It intrinsically depends on the nature of the tidal response of celestial bodies, which is directly linked to their internal structure and friction. Indeed, it is highly resonant in the case of fluids. In this work, we present a local analytical modeling of tidal gravito-inertial waves, which can be excited in stars and fluid planetary layers. This model allows us to understand the properties of their resonant dissipation as a function of the excitation frequencies, the rotation, the stratification, and the viscous and thermal properties of the studied fluid regions. Next, we introduce such a complex tidal dissipation frequency-spectra in a celestial mechanics numerical code to give a qualitative overview of its impact on the evolution of planetary systems. We consider the example of a two-body coplanar system with a punctual perturber orbiting a central fluid body. We demonstrate how the viscous dissipation of tidal waves can lead to a strongly erratic orbital evolution. Finally, we characterize such a non-regular dynamics as a function of the properties of resonances, which have been determined thanks to our local fluid model.

  13. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation. PMID:23679540

  14. Soliton solutions and their stability for the flow of relativistic fluids through channels

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Wiita, P. J.

    1980-01-01

    The flow of a perfect relativistic fluid through channels of various cross-sections is considered with reference to models of radio galaxies. Soliton-like solutions are found and their topologies are discussed. The calculations show that these solutions are unstable. It is suggested that under realistic astrophysical conditions the growth rate of the instabilities is so slow that soliton-type blobs may persist for a significant time.

  15. High order numerical simulations of the Richtmyer- Meshkov instability in a relativistic fluid

    NASA Astrophysics Data System (ADS)

    Zanotti, O.; Dumbser, M.

    2015-07-01

    We study the Richtmyer-Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme combines a finite volume reconstruction in space, a local space-time discontinuous Galerkin predictor method, a high order one-step time update scheme, and a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number A > 0) and for the case in which a heavy fluid penetrates into a lower density one (Atwood number A < 0). We find that for large Lorentz factors γs of the incident shock wave, the relativistic RM instability is substantially weakened and ultimately suppressed. More specifically, the growth rate of the RM instability in the linear phase has a local maximum which occurs at a critical value of γs ≈ [1.2, 2]. Moreover, we have also revealed a genuinely relativistic effect, absent in Newtonian hydrodynamics, which arises in three dimensional configurations with a non-zero velocity component tangent to the incident shock front. In particular, in A > 0 models, the tangential velocity has a net magnification effect, while in A < 0 models, the tangential velocity has a net suppression effect.

  16. Dynamic and thermodynamic stability of relativistic, perfect fluid stars

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Schiffrin, Joshua S.; Wald, Robert M.

    2014-02-01

    We consider perfect fluid bodies (‘stars’) in general relativity, with the local state of the fluid specified by its 4-velocity, ua, its ‘particle number density’, n, and its ‘entropy per particle’, s. A star is said to be in dynamic equilibrium if it is a stationary, axisymmetric solution to the Einstein-fluid equations with circular flow. A star is said to be in thermodynamic equilibrium if it is in dynamic equilibrium and its total entropy, S, is an extremum for all variations of initial data that satisfy the Einstein constraint equations and have fixed total mass, M, particle number, N, and angular momentum, J. We prove that for a star in dynamic equilibrium, the necessary and sufficient condition for thermodynamic equilibrium is constancy of angular velocity, Ω, redshifted temperature, \\widetilde{T}, and redshifted chemical potential, \\widetilde{\\mu }. A star in dynamic equilibrium is said to be linearly dynamically stable if all physical, gauge invariant quantities associated with linear perturbations of the star remain bounded in time; it is said to be mode stable if there are no exponentially growing solutions that are not pure gauge. A star in thermodynamic equilibrium is said to be linearly thermodynamically stable if δ2S < 0 for all variations at fixed M, N, and J; equivalently, a star in thermodynamic equilibrium is linearly thermodynamically stable if \\delta ^2 M - \\widetilde{T} \\delta ^2 S -\\widetilde{\\mu } \\delta ^2 N - \\Omega \\delta ^2 J > 0 for all variations that, to first order, satisfy δM = δN = δJ = 0 (and, hence, δS = 0). Friedman previously identified positivity of canonical energy, {E}, as a criterion for dynamic stability and argued that all rotating stars are dynamically unstable to sufficiently non-axisymmetric perturbations (the CFS instability), so our main focus is on axisymmetric stability (although we develop our formalism and prove many results for non-axisymmetric perturbations as well). We show that

  17. Assessment of the energy dissipation parameters inside the draft tube of a liquid spout-fluid bed.

    PubMed

    Erbíl, Ayşe Ceçen; Turan, Mustafa

    2005-04-15

    Spouted beds are fluid-particle contactors in which the fluid is introduced centrally through a nozzle instead of a distributor plate, resulting in a regular particle circulation pattern. To assess the suitability of such sytems to environmental engineering applications such as filter backwashing and biofilm systems, a priori knowledge of the energy dissipation parameters is essential. A new model is developed for evaluating the energy dissipation parameters inside the draft tube of spout-fluid beds. The shear stress, velocity gradient, and turbulence fluctuation parameters in the draft tube of a liquid spout-fluid bed are calculated with the help of an energy equation for flows carrying suspensions and the experimentally determined pressure losses inside the draft tube and compared with results for particulately fluidized beds. A spout-fluid bed with a draft tube provides higher shear stress inside the draft tube than a fluidized bed. The mean velocity gradient in the draft tube is comparable to and higher than in a fluidized bed and increases with solids fraction. The turbulence dissipation coefficient decreases very slightlywith increasing solids fraction for both systems. Consequently, according to the model calculations, a spout-fluid bed with a draft tube can be an alternative to the classical fluidized bed filter backwashing system. PMID:15884391

  18. Relativistic model of anisotropic charged fluid sphere in general relativity

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj; Pradhan, N.; Bansal, Rajeev K.

    2016-01-01

    In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E and pressure anisotropy factor Δ which involve parameters K (charge) and α (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353-359, 2010). Our solution is well behaved in all respects for all values of X lying in the range 0< X ≤ 0.18, α lying in the range 0 ≤ α ≤6.6, K lying in the range 0< K ≤ 6.6 and Schwarzschild compactness parameter "u" lying in the range 0< u ≤ 0.38. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088, α=0.6 and K=4.3 for which u=0.2054 and by assuming surface density ρb = 4.6888 × 10^{14} g/cm3 the mass and radius are found to be 1.51 M_{\\varTheta} and 10.90 km respectively. Assuming surface density ρb = 2 × 10^{14} g/cm3 the mass and radius for a neutron star candidate are found to be 2.313 M_{\\varTheta} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.

  19. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow

    PubMed Central

    Fedosov, Dmitry A.; Karniadakis, George Em; Caswell, Bruce

    2010-01-01

    Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees–Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method. PMID:20405981

  20. Derivation of electrostatic Korteweg-deVries equation in fully relativistic two-fluid plasmas

    SciTech Connect

    Lee, Nam C.

    2008-08-15

    A second order Korteweg-deVries (KdV) equation that describes the evolution of nonlinear electrostatic waves in fully relativistic two-fluid plasmas is derived without any assumptions restricting the magnitudes of the flow velocity and the temperatures of each species. In the derivation, the positive and negative species of plasmas are treated with equal footings, not making any species specific assumptions. Thus, the resulting equation, which is expressed in transparent form symmetric in particle species, can be applied to any two-fluid plasmas having arbitrarily large flow velocity and ultrarelativistically high temperatures. The phase velocity of the nonlinear electrostatic waves found in this paper is shown to be related to the flow velocity and the acoustic wave velocity through the Lorentz addition law of velocities, revealing the relativistic nature of the formulation in the present study. The derived KdV equation is applied to some limiting cases, and it is shown that it can be reduced to existing results in nonrelativistic plasmas, while there are some discrepancies from the results in the weak relativistic approximations.

  1. Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; Boromand, Arman; Khani, Shaghayegh; Wagner, Jacob; Yamanoi, Mikio; Maia, Joao

    2015-04-01

    In this work, a generalized relation between the fluid compressibility, the Flory-Huggins interaction parameter (χ), and the simulation parameters in multi-body dissipative particle dynamics (MDPD) is established. This required revisiting the MDPD equation of state previously reported in the literature and developing general relationships between the parameters used in the MDPD model. We derive a relationship to the Flory-Huggins χ parameter for incompressible fluids similar to the work previously done in dissipative particle dynamics by Groot and Warren. The accuracy of this relationship is evaluated using phase separation in small molecules and the solubility of polymers in dilute solvent solutions via monitoring the scaling of the radius of gyration (Rg) for different solvent qualities. Finally, the dynamics of the MDPD fluid is studied with respect to the diffusion coefficient and the zero shear viscosity.

  2. Higher order solutions to ion-acoustic solitons in a weakly relativistic two-fluid plasma

    SciTech Connect

    Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder

    2008-12-15

    The nonlinear wave structure of small amplitude ion-acoustic solitary waves (IASs) is investigated in a two-fluid plasma consisting of weakly relativistic streaming ions and electrons. Using the reductive perturbation theory, the basic set of governing equations is reduced to the Korteweg-de Vries (KdV) equation for the lowest order perturbation. This analysis is further extended using the renormalization technique for the inclusion of higher order nonlinear and dispersive effects for better accuracy. The effect of higher order correction and various parameters on the soliton characteristics is investigated and also discussed.

  3. Rigid rotor equilibria with non-neutral plasma: analytical relativistic two fluid model

    NASA Astrophysics Data System (ADS)

    Braga, Filipe L.; Soares, Diego N.; Lourenço, Weslley A.

    2016-07-01

    The analysis of non-neutral plasmas using fluid models in general implies on the resolutions of coupled differential equations, in particular the so-called rigid-rotor plasma equilibrium involves the solution of the Poisson-Ampère and moment equations. The present work shows an analytical solution for this model at a relativistic cold adiabatic plasma approximation considering a two species plasma where electric field gives an important contribution for the plasma confinement. According to the present study the most important plasma parameters responsible for confinement are the particles angular velocities, as expected, and mass ratio between the species.

  4. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model.

    PubMed

    Dzwinel, Witold; Yuen, David A; Boryczko, Krzysztof

    2002-01-01

    We report results of numerical simulations of complex fluids, using a combination of discrete-particle methods. Our molecular modeling repertoire comprises three simulation techniques: molecular dynamics (MD), dissipative particle dynamics (DPD), and the fluid particle model (FPM). This type of model can depict multi-resolution molecular structures found in complex fluids ranging from single micelle, colloidal crystals, large-scale colloidal aggregates up to the mesoscale processes of hydrodynamical instabilities in the bulk of colloidal suspensions. We can simulate different colloidal structures in which the colloidal beds are of comparable size to the solvent particles. This undertaking is accomplished with a two-level discrete particle model consisting of the MD paradigm with a Lennard-Jones (L-J) type potential for defining the colloidal particle system and DPD or FPM for modeling the solvent. We observe the spontaneous emergence of spherical or rod-like micelles and their crystallization in stable hexagonal or worm-like structures, respectively. The ordered arrays obtained by using the particle model are similar to the 2D colloidal crystals observed in laboratory experiments. The micelle shape and its hydrophobic or hydrophilic character depend on the ratio between the scaling factors of the interactions between colloid-colloid to colloid-solvent. Unlike the miscellar arrays, the colloidal aggregates involve the colloid-solvent interactions prescribed by the DPD forces. Different from the assumption of equilibrium growth, the two-level particle model can display much more realistic molecular physics, which allows for the simulation of aggregation for various types of colloids and solvent liquids over a very broad range of conditions. We discuss the potential prospects of combining MD, DPD, and FPM techniques in a single three-level model. Finally, we present results from large-scale simulation of the Rayleigh-Taylor instability and dispersion of colloidal slab

  5. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Tran, P.X.

    2008-09-22

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed

  6. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Phuoc, Tran X.

    2008-09-25

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed.

  7. Propagation of an ultra-short, intense laser in a relativistic fluid

    SciTech Connect

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlap with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.

  8. Dissipative Nonlinear Schrödinger Equation with External Forcing in Rotational Stratified Fluids and Its Solution

    NASA Astrophysics Data System (ADS)

    Shi, Yun-Long; Yang, Hong-Wei; Yin, Bao-Shu; Yang, De-Zhou; Xu, Zhen-Hua; Feng, Xing-Ru

    2015-10-01

    The dissipative nonlinear Schrödinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dissipation effect and external forcing in rotational stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt-Vaisala frequency and β effect are important factors in forming the envelope solitary Rossby waves. By employing Jacobi elliptic function expansion method and Hirota's direct method, the analytic solutions of dissipative nonlinear Schrödinger equation and forced nonlinear Schrödinger equation are derived, respectively. With the help of these solutions, the effects of dissipation and external forcing on the evolution of envelope solitary Rossby wave are also discussed in detail. The results show that dissipation causes slowly decrease of amplitude of envelope solitary Rossby waves and slowly increase of width, while it has no effect on the propagation speed and different types of external forcing can excite the same envelope solitary Rossby waves. It is notable that dissipation and different types of external forcing have certain influence on the carrier frequency of envelope solitary Rossby waves. Supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No. 41421005, National Natural Science Foundation of China under Grant Nos. 41376030, 41376029, 41476019, NSFC-Shandong Joint Fund for Marine Science Research Centers Grant (U1406401), Special Funds for Theoretical Physics of the National Natural Science Foundation of China under Grant No. 11447205

  9. Non-linear curvature inhomogeneities and backreaction for relativistic viscous fluids

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2015-08-01

    The non-perturbative curvature inhomogeneities induced by relativistic viscous fluids are not conserved in the large-scale limit. However, when the bulk viscosity is a function of the total energy density of the plasma (or of the trace of the extrinsic curvature), the relevant evolution equations develop a further symmetry preventing the nonlinear growth of curvature perturbations. In this situation the fully inhomogeneous evolution can be solved to leading order in the gradient expansion. Over large scales, both the acceleration and the curvature inhomogeneities are determined by the bulk viscosity coefficients. Conversely the shear viscosity does not affect the evolution of the curvature and does not produce any acceleration. The curvature modes analyzed here do not depend on the choice of time hypersurfaces and are invariant for infinitesimal coordinate transformations in the perturbative regime.

  10. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    PubMed

    Wakou, Jun'ichi; Isobe, Masaharu

    2012-06-01

    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system. PMID:23005089

  11. Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas.

    PubMed

    Soto-Chavez, A R; Mahajan, S M; Hazeltine, R D

    2010-02-01

    A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfvénic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfvén mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described. PMID:20365661

  12. A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2016-05-01

    A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.

  13. Solvation force induced by short range, exact dissipative particle dynamics effective surfaces on a simple fluid and on polymer brushes.

    PubMed

    Goicochea, Armando Gama; Alarcón, Francisco

    2011-01-01

    The thermodynamic properties of a simple fluid confined by effective wall forces are calculated using Monte Carlo simulations in the grand canonical ensemble. The solvation force produced by polymer brushes of two different lengths is obtained also. For the particular type of model interactions used, known as the dissipative particle dynamics method, we find that it is possible to obtain an exact, simple expression for the effective force induced by a planar wall composed of identical particles that interact with those in the fluid. We show that despite the short range of all forces in the model, the solvation force can be finite at relatively large distances and therefore does not depend only on the range of the interparticle or solvent-surface forces. As for the polymer brushes, we find that the shape of the solvation force profiles is in fair agreement with scaling and self-consistent field theories. The applications and possible extensions of this work are discussed. PMID:21219016

  14. Mixed Convection Boundary Layer Flow over a Moving Vertical Flat Plate in an External Fluid Flow with Viscous Dissipation Effect

    PubMed Central

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface. PMID:23577156

  15. Radiation from relativistic jets in blazars and the efficient dissipation of their bulk energy via photon breeding

    NASA Astrophysics Data System (ADS)

    Stern, Boris E.; Poutanen, Juri

    2008-02-01

    High-energy photons propagating in the magnetized medium with large velocity gradients can mediate energy and momentum exchange. Conversion of these photons into electron-positron pairs in the field of soft photons with the consequent isotropization and emission of new high-energy photons by Compton scattering can lead to the runaway cascade of the high-energy photons and electron-positron pairs fed by the bulk energy of the flow. This is the essence of the photon breeding mechanism. We study the problem of high-energy emission of relativistic jets in blazars via photon breeding mechanism using 2D ballistic model for the jet with the detailed treatment of particle propagation and interactions. Our numerical simulations from first principles demonstrate that a jet propagating in the soft radiation field of broad emission-line region can convert a significant fraction (up to 80 per cent) of its total power into radiation. We show that the gamma-ray background of similar energy density as observed at Earth is sufficient to trigger the photon breeding. The considered mechanism produces a population of high-energy leptons and, therefore, alleviates the need for Fermi-type particle acceleration models in relativistic flows. The mechanism reproduces basic spectral features observed in blazars including the blazar sequence (shift of spectral peaks towards lower energies with increasing luminosity). The significant deceleration of the jet at subparsec scales and the transversal gradient of the Lorentz factor (so-called structured jet) predicted by the model reconcile the discrepancy between the high Doppler factors determined by the fits to the spectra of TeV blazars and the low apparent velocities observed at very long baseline interferometry (VLBI) scales. The mechanism produces significantly broader angular distribution of radiation than that predicted by a simple model assuming the isotropic emission in the jet frame. This helps to reconcile the observed statistics and

  16. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method

    PubMed Central

    Kojic, Milos; Filipovic, Nenad; Tsuda, Akira

    2012-01-01

    A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322

  17. Finite reductions for dissipative systems and viscous fluid-dynamic models on

    NASA Astrophysics Data System (ADS)

    Cardin, Franco; Tebaldi, Claudio

    2008-09-01

    We reconsider the reduction method introduced for Hamiltonian systems by Amann, Conley and Zehnder. We propose an extension of these techniques to evolutive PDE systems of dissipative type and prove that, under suitable regularity conditions, a finite number of spectral modes controls exactly the time evolution of the complete problem. The problem of finite reduction for a two-dimensional modified Navier-Stokes equations is considered and an estimate of the dimension of the reduced space is given, valid for any time t>0. Comparison is made with the asymptotic finite dimension that has been obtained for the true Navier-Stokes equations.

  18. Quantization of the relativistic fluid in physical phase space on Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Holender, L.; Santos, M. A.; Vancea, I. V.

    2008-02-01

    We discuss the quantization of a class of relativistic fluid models defined in terms of one real and two complex conjugate potentials with values on a Kähler manifold, and parametrized by the Kähler potential K(z,z¯) and a real number λ. In the Hamiltonian formulation, the canonical conjugate momenta of the potentials are subjected to second-class constraints which allow us to apply the symplectic projector method in order to find the physical degrees of freedom and the physical Hamiltonian. We construct the quantum theory for that class of models by employing the canonical quantization methods. We also show that a semiclassical theory in which the Kähler and the complex potentials are not quantized has a highly degenerate vacuum. We define and compute the quantum topological number (quantum linking number) operator which has nonvanishing contributions from the Kähler and complex potentials only. Also, we show that the vacuum and the states formed by tensoring the number operators eigenstates have zero linking number, and show that linear combinations of the tensor product of number operators eigenstates which have the form of entangled states have nonzero linking number.

  19. Fluid simulation of relativistic electron beam driven wakefield in a cold plasma

    SciTech Connect

    Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita

    2015-07-15

    Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density (n{sub b}) less than or equal to half the plasma density (n{sub 0}), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58, 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, if the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for l{sub b} > λ{sub p}) and compression of the beam (for l{sub b} < λ{sub p}), l{sub b} and λ{sub p}, respectively, being the initial beam length and plasma wavelength.

  20. On the role of mass diffusion and fluid dynamics in the dissipation of chunk mix

    SciTech Connect

    Cloutman, L D

    1999-03-01

    When numerically simulating multicomponent turbulent flows, subgrid-scale diffusion of chemical species requires closure. This mixing of chemical species at the molecular level dissipates concentration uctuations, which limits possible demixing and affects other pro- cesses such as energy transport and reaction rates at the subgrid level. We discuss some of the physical processes that reduce small chunks of a heavy material in a light gas or plasma to a mixture at the atomic level. Preliminary direct numerical simulations of these processes are presented using the dissipation of small spheres of heavy gas in a light gas as an archetypal process in turbulent micromixing in multicomponent ows, including classical uid instabilities and shock ejecta. We use a detailed approach for the diffusion process, directly solving the Stefan-Maxwell equations for the mass fluxes. We discuss the dissipa- tion of a 24µm sphere of xenon in helium in three different flow regimes, and we present suggestions for future work intended as input to improved subgrid-scale turbulence models.

  1. Perturbative analysis of sheared flow Kelvin-Helmholtz instability in a weakly relativistic magnetized electron fluid

    SciTech Connect

    Sundar, Sita; Das, Amita; Kaw, Predhiman

    2012-05-15

    In the interaction of intense lasers with matter/plasma, energetic electrons having relativistic energies get created. These energetic electrons can often have sheared flow profiles as they propagate through the plasma medium. In an earlier study [Phys. Plasmas 17, 022101 (2010)], it was shown that a relativistic sheared electron flow modifies the growth rate and threshold condition of the conventional Kelvin-Helmholtz instability. A perturbative analytic treatment for the case of weakly relativistic regime has been provided here. It provides good agreement with the numerical results obtained earlier.

  2. A Lattice-Boltzmann model to simulate diffractive nonlinear ultrasound beam propagation in a dissipative fluid medium

    NASA Astrophysics Data System (ADS)

    Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan

    2012-12-01

    Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.

  3. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  4. Relativistic solitons and shocks in magnetized e(-)-e(+)-p(+) fluids

    NASA Technical Reports Server (NTRS)

    Chiueh, Tzihong

    1989-01-01

    A new type of relativistic magnetosonic soliton, which is electrically charged with a gigavolt potential, is found to exist in a magnetized electron-positron-proton plasma. Relativistic collisionless shocks resulting from such solitons can carry an even larger electric potential at the shock front. GeV electrons and positrons in some active astrophsyical sources may be produced due to acceleration by these electric fields.

  5. The combined non-relativistic and quasi-neutral limit of two-fluid Euler-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Li, Yachun; Peng, Yue-Jun; Xi, Shuai

    2015-12-01

    We consider two-fluid Euler-Maxwell equations for magnetized plasmas composed of electrons and ions. By using the method of asymptotic expansions, we analyze the combined non-relativistic and quasi-neutral limit for periodic problems with well-prepared initial data. It is shown that the small parameter problems have a unique solution existing in a finite time interval where the corresponding limit problems (compressible Euler equations) have smooth solutions. The proof is based on energy estimates for symmetrizable hyperbolic equations and on the exploration of the coupling between the Euler equations and the Maxwell equations.

  6. Self-Gravitating Relativistic Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Hard to Soft

    NASA Astrophysics Data System (ADS)

    Christodoulou, Demetrios; Lisibach, André

    2016-06-01

    In the 1990s Christodoulou introduced an idealized fluid model intended to capture some of the features of the gravitational collapse of a massive star to form a neutron star or a black hole. This was the two-phase model introduced in `Self-gravitating relativistic fluids: a two phase model' (Demeterios, Arch Ration Mech Anal 130:343-400, 1995). The present work deals with the formation of a free phase boundary in the phase transition from hard to soft in this model. In this case the phase boundary has corners at the null points; the points which separate the timelike and spacelike components of the interface between the two phases. We prove the existence and uniqueness of a free phase boundary. Also the local form of the shock near the null point is established.

  7. Relativistic and non-relativistic magnetohydrodynamic flows around compact stars

    NASA Astrophysics Data System (ADS)

    Mobarry, Clark Matthew

    A set of theoretical tools are developed for studying the magnetized accretion disks and astrophysical jets in active galaxies. A general theory is developed for the steady axisymmetric flow of an ideal general-relativistic fluid around a Schwarzschild black hole. The theory leads to a second-order partial differential equation, a Grad-Shafranov equation, for the magnetic flux function psi(R, theta). The magnetic surface functions of the Grad-Shafranov method are shown to be the Lagrange multipliers of an energy principle. Thus, the magnetic surface functions are not arbitrary functions, but must be chosen consistent with physically stable equilibria. From the energy principle, a numerical artificial friction method is developed to solve the general relativistic Grad-Shafranov equation with fluid flow. This method is suited for the internal boundaries between elliptic and hyperbolic behavior present in magnetospheres with fluid flow. The friction method is shown to be compatible with a theory for the slow dissipative evolution of a nearly ideal MagnetoHydroDynamic (MHD) fluid. A virial theorem is derived from the basic equations of general relativistic MHD. It is used to obtain an upper bound on the total energy in the electromagnetic field in terms of the total gravitational binding energy between the black hole and the matter (and energy) outside it. An analysis is made of the motion of a charged test particle in the electromagnetic field of a magnetized accretion disk surrounding a black hole. The results are consistent with stable orbits close to the event horizon. A semi-analytical model is developed for the evolution and dissipation of narrow magnetized jets from an active galaxy. This model exhibits the acceleration and expansion of the jets with increasing axial distance from the central object.

  8. A Class of Super Dense Stars Models Using Charged Analogues of Hajj-Boutros Type Relativistic Fluid Solutions

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj; Pradhan, N.; Murad, Mohammad Hassan

    2014-11-01

    We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for perfect charged fluid, compatible with a super dense star modeling. The solution is well behaved for all the values of Schwarzschild parameter u lying in the range 0 < u < 0.1727 for the maximum value of charge parameter K = 0.08163. The maximum mass of the fluid distribution is calculated by using stellar surface density as ρ b = 4.6888×1014g cm-3. Corresponding to K = 0.08 and u max = 0.1732, the resulting well behaved solution has a maximum mass M = 0.9324 M ⊙ and radius R = 8.00 and by assuming ρ b = 2×1014g cm-3 the solution results a stellar configuration with maximum mass M = 1.43 M ⊙ and radius R b = 12.25 km. The maximum mass is found increasing with increasing K up to 0.08. The well behaved class of relativistic stellar models obtained in this work might has astrophysical significance in the study of internal structure of compact star such as neutron star or self-bound strange quark star like Her X-1.

  9. Heavy quark diffusion with relativistic Langevin dynamics in the quark-gluon fluid

    SciTech Connect

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2009-05-15

    The relativistic diffusion process of heavy quarks is formulated on the basis of the relativistic Langevin equation in Ito discretization scheme. The drag force inside the quark-gluon plasma (QGP) is parametrized according to the formula for the strongly coupled plasma obtained by the anti-de-Sitter space/conformal field theory (AdS/CFT) correspondence. The diffusion dynamics of charm and bottom quarks in QGP is described by combining the Langevin simulation under the background matter described by the relativistic hydrodynamics. Theoretical calculations of the nuclear modification factor R{sub AA} and the elliptic flow v{sub 2} for the single electrons from the charm and bottom decays are compared with the experimental data from the relativistic heavy-ion collisions. The R{sub AA} for electrons with large transverse momentum (p{sub T}>3 GeV) indicates that the drag force from the QGP is as strong as the AdS/CFT prediction.

  10. Giant strain-sensitivity of local acoustic dissipation near inner wavy contacts in dry and fluid-saturated cracks

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. Yu.; Matveev, L. A.

    2012-05-01

    Presently, experimental evidence for extremely high strain-sensitivity of dissipation in rocks and similar microstructured materials is obtained both in laboratory and field conditions, in particular observations of pronounced amplitude modulation of the radiation of high-stability seismo-acoustic sources by tidal deformations of rocks with typical strains ~ 10-8. Such data indicate the presence of some thresholdless in amplitude and very efficient mechanism of strain-dependent dissipation. Conventionally, its origin is discussed in the context of frictional or adhesion-hysteretic loss at cracks in rocks. However, such dissipation mechanisms are not relevant to weak perturbations with displacements smaller than atomic size. Here, we revise thresholdless thermoelastic loss in dry cracks and viscous loss in saturated cracks taking into account wavy asperities typical of real cracks, which can create elongated (strip-like) contacts or almost closed "waists" in cracks. Thermoelastic loss at these contacts can be very efficient. Besides, the state of such contacts can already be strongly perturbed by the average strain which yet practically does not change the mean opening of the entire crack. Thus the dissipation localized at such contacts can be significantly affected by quite small average strain (e.g., 10-8), which is usually believed to be unable to produce any appreciable effect on the dissipation. Next, for liquid-saturated cracks, the presence of inner elongated asperities also drastically changes the character of squirt-type viscous dissipation. Velocity gradients and consequently the dissipation are localized in the vicinity of the nearly-closed waists which almost harness the liquid flow in the crack. This dissipation can be comparable in magnitude with viscous dissipation at the entire crack with smooth interface, but the decrement maximum is strongly shifted downwards on the frequency axis. Since near the waist the gap is much smaller than the average crack

  11. Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state

    NASA Astrophysics Data System (ADS)

    Harko, T.; Mak, M. K.

    2016-09-01

    Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.

  12. Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study

    NASA Astrophysics Data System (ADS)

    Malik, M. Y.; Hussain, Arif; Salahuddin, T.; Awais, M.; Bilal, S.; Khan, Farzana

    2016-04-01

    In present analysis boundary layer flow of Sisko fluid over stretching cylinder is analyzed. Combined effects of variable thermal conductivity and viscous dissipation are assumed in heat transfer. The modeled boundary layer partial differential equations are transfigured into ordinary differential equations by using suitable transformations. These nonlinear ordinary differential equations are solved numerically by Runge-Kutta-Fehlberg method. The accuracy of computed results is certified by comparing with existing literature. To interpret the effects of flow parameters on velocity and temperature profiles graphs are developed. The influence of all physical parameters on skin friction coefficient and local Nusselt number are discussed via tabular and graphical form.

  13. Mass transfer effects on an unsteady MHD free convective flow of an incompressible viscous dissipative fluid past an infinite vertical porous plate

    NASA Astrophysics Data System (ADS)

    Prabhakar Reddy, B.

    2016-02-01

    In this paper, a numerical solution of mass transfer effects on an unsteady free convection flow of an incompressible electrically conducting viscous dissipative fluid past an infinite vertical porous plate under the influence of a uniform magnetic field considered normal to the plate has been obtained. The non-dimensional governing equations for this investigation are solved numerically by using the Ritz finite element method. The effects of flow parameters on the velocity, temperature and concentration fields are presented through the graphs and numerical data for the skin-friction, Nusselt and Sherwood numbers are presented in tables and then discussed.

  14. Recent results in relativistic heavy ion collisions: from 'a new state of matter' to 'the perfect fluid'

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2006-07-01

    Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<~1A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, \\sqrt{s_NN}=200\\,GeV , total cm energy 200 A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.

  15. Two new exact solutions for relativistic perfect fluid spheres through Lake's algorithm

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Jasim, M. K.

    2015-02-01

    Two new exact solutions of Einstein's field equations for perfect fluid distribution are obtained using Lake's (Phys. Rev. D 67:104015, 2003) algorithm. The same are utilized to construct stellar models of physical relevance and possessing the maximum mass 2.6956 M Θ (quark star) and 0.9643 M Θ (white dwarfs) with the corresponding radius 20.5489 km and 3.1699 km respectively.

  16. Driven-dissipative Euler{close_quote}s equations for a rigid body: A chaotic system relevant to fluid dynamics

    SciTech Connect

    Turner, L.

    1996-11-01

    Adhering to the lore that vorticity is a critical ingredient of fluid turbulence, a triad of coupled helicity (vorticity) states of the incompressible Navier-Stokes fluid are followed. Effects of the remaining states of the fluid on the triad are then modeled as a simple driving term. Numerical solution of the equations yield attractors that seem strange and chaotic. This suggests that the unpredictability of nonlinear fluid dynamics (i.e., turbulence) may be traced back to the most primordial structure of the Navier-Stokes equation; namely, the driven triadic interaction. {copyright} {ital 1996 The American Physical Society.}

  17. Two-dimensional s-polarized solitary waves in relativistic plasmas. I. The fluid plasma model

    SciTech Connect

    Sanchez-Arriaga, G.; Lefebvre, E.

    2011-09-15

    The properties of two-dimensional linearly s-polarized solitary waves are investigated by fluid-Maxwell equations and particle-in-cell (PIC) simulations. These self-trapped electromagnetic waves appear during laser-plasma interactions, and they have a dominant electric field component E{sub z}, normal to the plane of the wave, that oscillates at a frequency below the electron plasma frequency {omega}{sub pe}. A set of equations that describe the waves are derived from the plasma fluid model in the case of cold or warm plasma and then solved numerically. The main features, including the maximum value of the vector potential amplitude, the total energy, the width, and the cavitation radius are presented as a function of the frequency. The amplitude of the vector potential increases monotonically as the frequency of the wave decreases, whereas the width reaches a minimum value at a frequency of the order of 0.82 {omega}{sub pe}. The results are compared with a set of PIC simulations where the solitary waves are excited by a high-intensity laser pulse.

  18. Quantum fluid model of coherent stimulated radiation by a dense relativistic cold electron beam

    SciTech Connect

    Monteiro, L. F.; Serbeto, A.; Tsui, K. H.; Mendonça, J. T.; Galvão, R. M. O.

    2013-07-15

    Using a quantum fluid model, the linear dispersion relation for FEL pumped by a short wavelength laser wiggler is deduced. Subsequently, a new quantum corrected resonance condition is obtained. It is shown that, in the limit of low energy electron beam and low frequency pump, the quantum recoil effect can be neglected, recovering the classical FEL resonance condition, k{sub s}=4k{sub w}γ{sup 2}. On the other hand, for short wavelength and high energy electron beam, the quantum recoil effect becomes strong and the resonance condition turns into k{sub s}=2√(k{sub w}/λ{sub c})γ{sup 3/2}, with λ{sub c} being the reduced Compton wavelength. As a result, a set of nonlinear coupled equations, which describes the quantum FEL dynamics as a three-wave interaction, is obtained. Neglecting wave propagation effects, this set of equations is solved numerically and results are presented.

  19. MHD Effects on Non-Newtonian Power-Law Fluid Past a Continuously Moving Porous Flat Plate with Heat Flux and Viscous Dissipation

    NASA Astrophysics Data System (ADS)

    Kishan, N.; Shashidar Reddy, B.

    2013-06-01

    The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.

  20. Comments on ''theory of dissipative density-gradient-driven turbulence in the tokamak edge'' (Phys. Fluids 28, 1419 (1985))

    SciTech Connect

    Krommes, J.A.

    1985-11-01

    The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs. (WRF)

  1. Nano-batteries in a carry fluid as power supply: Freeform geometry, superfast refilling, and heat self-dissipation

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Powell, Patrick; Lu, Wei

    2014-12-01

    This letter proposes and analyzes a system composed of many micro- or nano-scale batteries. Each battery is a self-contained Li-ion micro-battery enclosed in an insulating shell, and can charge/ discharge wirelessly or through contacts. Thousands of such batteries are carried by an inert fluid to form a power fluid to drive an electric vehicle. This power fluid can be stored in the tank and replaced easily with a fully charged fluid by refilling once its energy is depleted. The system can provide better energy density, higher power density, and extremely fast "charging" within minutes. The architecture eliminates the large over-capacity design in the current battery packs, significantly reducing the weight and cost. It would also enable progressive improvements of vehicle performance by replacing the micro-batteries. The battery system has flexible geometry, and therefore can essentially go into a storage space of any geometry, allowing uniform design of battery configurations for diverse applications.

  2. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II - Dissipative fluid electrodynamics

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.

    1986-01-01

    Using the results of Scudder et al. (1986) on the bow shock wave observed by ISEE satellites, a quantitative description is presented of the electrodynamics of ion and electron fluids, and phase-standing wave interaction which manifests itself as a supercritical MHD shock. The cross-shock electrical profile was determined in both the normal incidence frame and in the deHoffman-Teller frame by two different methods, and the results were compared with dc electric field measurements.

  3. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones. PMID:26083027

  4. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study

    PubMed Central

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones. PMID:26083027

  5. Dissipation from a Drifter

    NASA Astrophysics Data System (ADS)

    Thomson, J. M.; Talbert, J.

    2010-12-01

    Wave breaking and the associated dissipation of turbulent kinetic energy are important processes in accurately describing wave evolution and air-sea interaction. Quantitative observations of wave breaking dissipation are difficult because of rapid changes in surface elevation and advection of turbulence by wave orbital motions. A quasi-Lagrangian reference frame can mitigate these challenges, as demonstrated with the new Surface Wave Instrumentation Float with Tracking, or "SWIFT". The primary goal of SWIFT deployments is to observe near-surface turbulent fluid velocities using pulse-coherent acoustic Doppler current profilers (Nortek Aquadopp HR). Tests of SWIFT prototypes for both deep-water (whitecap) breaking and shallow-water (surfzone) breaking will be presented, in which dissipation is inferred from fitting velocity profiles to a spatial structure function, assuming isotropic turbulence. The drifters are tracked in realtime with the Automated Information System (AIS) used for commercial vessel traffic, and drifter motion is logged with onboard GPS and accelerometers. Onboard video recordings are used to confirm breaking events, which coincide with elevated dissipation rates. Breaking events also coincide with elevated acoustic backscatter, consistent with bubble injection by breaking waves. Example profiles of vertical velocity (upper panel) and dissipation rate (lower panel) versus time. The breaking wave at t = 54 s coincides with an elevated dissipation rate, compared with both background levels and larger non-breaking waves.

  6. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho

    2016-08-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This

  7. Kinetic analysis of ultrarelativistic flow with dissipation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2012-10-01

    The ultrarelativistic shock layer around the triangle prism is numerically analyzed using the relativistic Boltzmann equation to investigate the dissipation process under two types of ultrarelativistic limits: namely, the Lorentz contraction limit, in which the uniform flow velocity approximates to the speed of light, and the thermally relativistic limit, in which the temperature of the uniform flow approximates to infinity. The relativistic Boltzmann equation is numerically solved using the direct simulation Monte Carlo method. We discuss dissipation process in the flow field by focusing on profiles of the dynamic pressure and heat flux along the stagnation streamline under the Lorentz contraction limit or the thermally relativistic limit. Our numerical results confirm that profiles of the dynamic pressure and heat flux along the stagnation streamline strongly depend on the Lorentz contraction and thermally relativistic effects under their ultrarelativistic limits, as predicted by Chapman-Enskog expansion on the basis of the generic Knudsen number.

  8. Non-dissipative cloud transport in Eulerian grid models by the volume-of-fluid (VOF) method

    NASA Astrophysics Data System (ADS)

    Hinneburg, Detlef; Knoth, Oswald

    The formation of clouds is coupled to the vapour saturation condition. Cloud modelling is therefore dramatically disturbed by dilution processes, which are induced by recurrent interpolations on the fixed (Eulerian) grid. The numerical diffusion gives rise to degeneration and premature disappearance of the modelled clouds. The difficulties increase, if sectional mass representation in the drop microphysics and aerosol chemistry is considered. To tackle this problem, stringently defined and tracked phase boundaries are required. The numerical diffusion of clouds can be totally suppressed by the volume-of-fluid (VOF) method, which is applied here in connection with an atmospheric model. The cloud phase is distinguished by prognosing the partial cloud volume in all grid cells near the cloud boundary. Adopting elementary geometrical forms for the intracellular cloud volume and simple diagnostic rules of their alignment, the standard transport fluxes can be used in the new equation. Separate variables for the cloud and environmental phase complete the transport scheme. The VOF method and its realisation are described in detail. Advection, condensation, evaporation, and turbulent diffusion are considered within the VOF framework. The variation of the grid resolution and turbulence conditions for a rising thermal leads to striking arguments in favour of the VOF method, resulting in higher intensity, lifting, and lifetime as well as clear boundaries of the simulated clouds (even for low grid resolution).

  9. Energy dissipator

    NASA Technical Reports Server (NTRS)

    Delafuente, Horacio M. (Inventor); Nagy, Kornel (Inventor); Wesselski, Clarence J. (Inventor)

    1993-01-01

    An all metal energy dissipator construction is disclosed for dissipating kinetic energy force (F) by rolling balls which are forced by a tapered surface on an expandable sleeve to frictionally load a force rod. The balls are maintained in an initial position by a plate member which is biased by a spring member. A spring member returns the force rod to its initial position after a loading force is removed.

  10. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.

    PubMed

    Xu, Zhijie; Meakin, Paul

    2009-06-21

    Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries. PMID:19548707

  11. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  12. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  13. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  14. Simulation of Relativistic Electron Transport and Energy Deposition in Fast Ignitor ICF(Inertial Confinement Fusion) using GaPH (a Fluid Element Particle in Cell)

    NASA Astrophysics Data System (ADS)

    Shon, J. W.; Bateson, W. B.; Hewett, D. W.; Tabak, M.; Baldis, H. A.

    1997-11-01

    Ultrahigh intensity lasers can ignite ICF capsules with a total energy of a few tens of kilo joules of laser light, and can possibly lead to high gain with as little as 100 kJ(M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks and R. J. Mason, Phys. Plasmas, 1, (1994), 1626.). The energy deposition by relativistic electrons, produced in the high-intensity laser-plasma interactions, is a critical issue for the fuel ignition. A new plasma/fluid transport algorithm called GaPH method(W. B. Bateson and D. W. Hewett, J. Comput. Phys., submitted.) is applied to simulate the propagation of suprathermal electrons and their interactions with background plasma. A field solver using Darwin approximation(D. W. Hewett, J. Comput. Phys., 38, (1980), 378.) provides all components of electromagnetic fields. The initial investigation is focused at hot electron transport to the high density core and the characterization of localized energy deposition. The penetration of energetic electrons depends on the formation of charge-neutralising return current, which is a strong function of the electrical conductivity of the background plasma. *Work performed under the auspices of the U.S. DOE by the LLNL under contract no. W-7405-ENG-48.

  15. Unravelling tidal dissipation in gaseous giant planets

    NASA Astrophysics Data System (ADS)

    Guenel, M.; Mathis, S.; Remus, F.

    2014-06-01

    Context. Tidal dissipation in planetary interiors is one of the key physical mechanisms that drive the evolution of star-planet and planet-moon systems. New constraints on this dissipation are now obtained both in the solar and exo-planetary systems. Aims: Tidal dissipation in planets is intrinsically related to their internal structure. Indeed, the dissipation behaves very differently when we compare its properties in solid and fluid planetary layers. Since planetary interiors consist of both types of regions, it is necessary to be able to assess and compare the respective intensity of the reservoir of dissipation in each type of layers. Therefore, in the case of giant planets, the respective contribution of the potential central dense rocky/icy core and of the deep convective fluid envelope must be computed as a function of the mass and the radius of the core. This will allow us to obtain their respective strengths. Methods: Using a method that evaluates the reservoir of dissipation associated to each region, which is a frequency-average of complex tidal Love numbers, we compared the respective contributions of the central core and of the fluid envelope. Results: For Jupiter- and Saturn-like planets, we show that the viscoelastic dissipation in the core could dominate the turbulent friction acting on tidal inertial waves in the envelope. However, the fluid dissipation would not be negligible. This demonstrates that it is necessary to build complete models of tidal dissipation in planetary interiors from their deep interior to their surface without any arbitrary assumptions. Conclusions: We demonstrate how important it is to carefully evaluate the respective strength of each type of dissipation mechanism in planetary interiors and to go beyond the usually adopted ad-hoc models. We confirm the significance of tidal dissipation in the potential dense core of gaseous giant planets.

  16. A relativistic spherical vortex

    PubMed Central

    Pekeris, C. L.

    1976-01-01

    This investigation is concerned with stationary relativistic flows of an inviscid and incompressible fluid. In choosing a density-pressure relation to represent relativistic “incompressibility,” it is found that a fluid in which the velocity of sound equals the velocity of light is to be preferred for reasons of mathematical simplicity. In the case of axially symmetric flows, the velocity field can be derived from a stream function obeying a partial differential equation which is nonlinear. A transformation of variables is found which makes the relativistic differential equation linear. An exact solution is obtained for the case of a vortex confined to a stationary sphere. One can make all three of the components of velocity vanish on the surface of the sphere, as in the nonrelativistic Hicks spherical vortex. In the case of an isolated vortex on whose surface the pressure is made to vanish, it is found that the pressure at the center of the sphere becomes negative, as in the nonrelativistic case. A solution is also obtained for a relativistic vortex advancing in a fluid. The sphere is distorted into an oblate spheroid. The maximum possible velocity of advance of the vortex is (2/3) c. PMID:16578745

  17. Dissipative superfluid dynamics from gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Jyotirmoy; Bhattacharyya, Sayantani; Minwalla, Shiraz

    2011-04-01

    Charged asymptotically AdS 5 black branes are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperature and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzog's construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Putterman's equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.

  18. From a complex scalar field to the two-fluid picture of superfluidity

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Mallavarapu, S. Kumar; Schmitt, Andreas; Stetina, Stephan

    2013-03-01

    The hydrodynamic description of a superfluid is usually based on a two-fluid picture. We compute the basic properties of the relativistic two-fluid system from the underlying microscopic physics of a relativistic φ4 complex scalar field theory. We work at nonzero but small temperature and weak coupling, and we neglect dissipation. We clarify the relationship between different formulations of the two-fluid model and how they are parametrized in terms of partly redundant current and momentum four-vectors. As an application, we compute the velocities of first and second sound at small temperatures and in the presence of a superflow. While our results are of a very general nature, we also comment on their interpretation as a step towards the hydrodynamics of the color-flavor locked state of quark matter, which, particularly in the presence of kaon condensation, appears to be a complicated multicomponent fluid.

  19. Energy Dissipation by Tides and Librations in Synchronous Satellites

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ray, R. D.

    2000-01-01

    Energy dissipation associated with physical librations of large synchronous satellites may be important for maintaining internal fluid layers. Depending on the depth and viscosity of the fluid layer, viscous heating from librations may exceeed that from tides.

  20. An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot

    2015-09-01

    Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel–Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.

  1. Wave dissipation by muddy seafloors

    NASA Astrophysics Data System (ADS)

    Elgar, Steve; Raubenheimer, Britt

    2008-04-01

    Muddy seafloors cause tremendous dissipation of ocean waves. Here, observations and numerical simulations of waves propagating between 5- and 2-m water depths across the muddy Louisiana continental shelf are used to estimate a frequency- and depth-dependent dissipation rate function. Short-period sea (4 s) and swell (7 s) waves are shown to transfer energy to long-period (14 s) infragravity waves, where, in contrast with theories for fluid mud, the observed dissipation rates are highest. The nonlinear energy transfers are most rapid in shallow water, consistent with the unexpected strong increase of the dissipation rate with decreasing depth. These new results may explain why the southwest coast of India offers protection for fishing (and for the 15th century Portuguese fleet) only after large waves and strong currents at the start of the monsoon move nearshore mud banks from about 5- to 2-m water depth. When used with a numerical nonlinear wave model, the new dissipation rate function accurately simulates the large reduction in wave energy observed in the Gulf of Mexico.

  2. On the convexity of relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ibáñez, José M.; Cordero-Carrión, Isabel; Martí, José M.; Miralles, Juan A.

    2013-03-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla

  3. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Dynamic Behavior of Entanglement Between Two Spatially Separated Atoms in Two Dissipative and Driven Cavity Fields

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Ping; Li, Jian; Liu, Jin; Li, Jun-Gang

    2009-03-01

    We consider two two-level atoms, interacting with two independent dissipative cavities, each of which is driven by an external source. The two cavity fields are both initially prepared in the coherent states, and the two two-level atoms are initially prepared in the singlet state |Ψ-rangle = (|egrangle - |gerangle)/√2. We investigate the influence of the damping constant κ, the intensity of the external sources F, and the relative difference of the atomic couplings r on the entanglement between the two atoms. In the dispersive approximation, we find that the entanglement between the two atoms decreases with the time evolution, and the decreasing rate of entanglement depends on the values of F/κ, κ/ω, and r. For the given small values of F/κ and κ/ω, on the one hand, the increasing of r favors entanglement decreasing of the atomic system, on the other hand, when r → 1 the entanglement decreasing becomes slower. With the increasing of the value of κ/ω, the influence of r on the decreasing rate of entanglement becomes smaller, and gradually disappears for the big value of κ/ω.

  4. Laser hosing in relativistically hot plasmas.

    PubMed

    Li, G; Mori, W B; Ren, C

    2013-04-12

    Electron response in an intense laser is studied in the regime where the electron temperature is relativistic. Equations for laser envelope and plasma density evolution, both in the electron plasma wave and ion acoustic wave regimes, are rederived from the relativistic fluid equations to include relativistic plasma temperature effect. These equations are used to study short-pulse and long-pulse laser hosing instabilities using a variational method approach. The analysis shows that relativistic electron temperatures reduce the hosing growth rates and shift the fastest-growing modes to longer wavelengths. These results resolve a long-standing discrepancy between previous nonrelativistic theory and simulations or experiments on hosing. PMID:25167277

  5. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  6. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  7. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  8. Dissipation effects in mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  9. Dynamics of dissipative gravitational collapse

    SciTech Connect

    Herrera, L.; Santos, N.O.

    2004-10-15

    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel-Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.

  10. Dissipation of atmospheric waves: An asymptotic approach

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.

    2014-05-01

    Wave energy dissipation through irreversible thermodynamic processes is a major factor influencing propagation of acoustic and gravity waves in the Earth's atmosphere. Accurate modeling of the wave dissipation is important in a wide range of problems from understanding the momentum and energy transport by waves into the upper atmosphere to predicting long-range propagation of infrasound to the acoustic remote sensing of mesospheric and thermospheric winds. Variations with height of the mass density, kinematic viscosity, and other physical parameters of the atmosphere have a profound effect on the wave dissipation and its frequency dependence. To characterize the wave dissipation, it is typical to consider an idealized environment, which admits plane-wave solutions. For instance, kinematic viscosity is often assumed to be constant in derivations of dispersion equations of acoustic-gravity waves in the atmosphere. While the assumption of constant shear viscosity coefficient would be much more realistic, it does not lead to plane-wave solutions. Here, we use an asymptotic approach to derivation of dispersion equations of acoustic-gravity waves in dissipative fluids. The approach does not presuppose existence of any plane-wave solutions and relies instead on the assumption that spatial variations of environmental parameters are gradual. The atmosphere is modeled as a neutral, horizontally stratified, moving ideal gas of variable composition. Linearized hydrodynamic equations for compressible fluids in a gravity field are solved asymptotically, leading to a self-consistent version of the Wentzel-Kramers-Brillouin approximation for acoustic-gravity waves. Dissipative processes are found to affect both the eikonal and the geometric (Berry) phase of the wave. Newly found expressions for acoustic-gravity wave attenuation due to viscosity and thermal conductivity of the air are compared to results previously reported in the literature. Effects of the wind on the wave

  11. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  12. (Non)-dissipative hydrodynamics on embedded surfaces

    NASA Astrophysics Data System (ADS)

    Armas, Jay

    2014-09-01

    We construct the theory of dissipative hydrodynamics of uncharged fluids living on embedded space-time surfaces to first order in a derivative expansion in the case of codimension-1 surfaces (including fluid membranes) and the theory of non-dissipative hydrodynamics to second order in a derivative expansion in the case of codimension higher than one under the assumption of no angular momenta in transverse directions to the surface. This construction includes the elastic degrees of freedom, and hence the corresponding transport coefficients, that take into account transverse fluctuations of the geometry where the fluid lives. Requiring the second law of thermodynamics to be satisfied leads us to conclude that in the case of codimension-1 surfaces the stress-energy tensor is characterized by 2 hydrodynamic and 1 elastic independent transport coefficient to first order in the expansion while for codimension higher than one, and for non-dissipative flows, the stress-energy tensor is characterized by 7 hydrodynamic and 3 elastic independent transport coefficients to second order in the expansion. Furthermore, the constraints imposed between the stress-energy tensor, the bending moment and the entropy current of the fluid by these extra non-dissipative contributions are fully captured by equilibrium partition functions. This analysis constrains the Young modulus which can be measured from gravity by elastically perturbing black branes.

  13. Relativistic hydrodynamics on graphic cards

    NASA Astrophysics Data System (ADS)

    Gerhard, Jochen; Lindenstruth, Volker; Bleicher, Marcus

    2013-02-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  14. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  15. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  16. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    SciTech Connect

    Mamun, A. A.; Zobaer, M. S.

    2014-02-15

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it “M-Z equation”). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers’ equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  17. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.; Zobaer, M. S.

    2014-02-01

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it "M-Z equation"). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers' equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  18. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  19. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    SciTech Connect

    Gao Yang; Law, Chung K.

    2012-12-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index {Gamma} < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  20. Particle acceleration, magnetization and radiation in relativistic shocks

    NASA Astrophysics Data System (ADS)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  1. Noncommutative fluid dynamics in the Kähler parametrization

    NASA Astrophysics Data System (ADS)

    Holender, L.; Santos, M. A.; Orlando, M. T. D.; Vancea, I. V.

    2011-11-01

    In this paper, we propose a first-order action functional for a large class of systems that generalize the relativistic perfect fluids in the Kähler parametrization to noncommutative spacetimes. The noncommutative action is parametrized by two arbitrary functions K(z,z¯) and f(-j2) that depend on the fluid potentials and represent the generalization of the Kähler potential of the complex surface parametrized by z and z¯, respectively, and the characteristic function of each model. We calculate the equations of motion for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative parameter. The density current does not receive any noncommutative corrections and it is conserved under the action of the commutative generators Pμ but the energy-momentum tensor is not. Therefore, we determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under the generalization of the volume preserving transformations of the noncommutative spacetime. We show that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor in the familiar fluid form and identifying the corresponding energy and momentum densities. In the commutative limit, they are identical to the corresponding quantities of the relativistic perfect fluids. The energy-momentum tensor contains a dissipative term that is due to the noncommutative spacetime and vanishes in the commutative limit. Finally, we particularize the theory to the case when the complex fluid potentials are characterized by a function K(z,z¯) that is a deformation of the complex plane and show that this model has important common features with the commutative fluid such as infinitely many conserved currents and a conserved axial current that in the commutative case is associated to the topologically conserved linking number.

  2. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  3. Local equilibrium hypothesis and Taylor’s dissipation law

    NASA Astrophysics Data System (ADS)

    Goto, Susumu; Vassilicos, J. C.

    2016-04-01

    To qualitatively investigate the validity of Kolmogorov local equilibrium hypothesis and the Taylor dissipation law, we conduct direct numerical simulations of the three-dimensional turbulent Kolmogorov flow. Since strong scale-by-scale (i.e. Richardson-type) energy cascade events occur quasi-periodically, the kinetic energy of the turbulence and its dissipation rate evolve quasi-periodically too. In this unsteady turbulence driven by a steady force, instantaneous values of the dissipation rate obey the scaling recently discovered in wind tunnel experiments (Vassilicos 2015 Ann. Rev. Fluid Mech. 47 95-114) instead of the Taylor dissipation law. The Taylor dissipation law does not hold because the local equilibrium hypothesis does not hold in a relatively low wave-number range. The breakdown of this hypothesis is caused by the finite time needed for the energy at such large scales to reach the dissipative scale by the scale-by-scale energy cascade.

  4. Resistive dissipation and magnetic field topology in the stellar corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    Tangential discontinuities, or current sheets, in a magnetic field embedded in a fluid with vanishing resistivity are created by discontinuous fluid motion. Tangential discontinuities are also created when a magnetic field is allowed to relax to magnetostatic equilibrium after mixing by fluid motions (either continuous or discontinuous) into any but the simplest topologies. This paper shows by formal examples that the current sheets arising solely from discontinuous fluid motions do not contribute significantly to the dissipation of magnetic free energy when a small resistivity is introduced. Dissipation that is significant under coronal conditions occurs only by rapid reconnection, which arises when, and only when, the current sheets are required by the field topology. Hence it is topological dissipation that is primarily responsible for heating tenuous coronal gases in astronomical settings, whether the fluid displacements of the field are continuous or discontinuous.

  5. Dissipative Field Theory

    SciTech Connect

    Kheirandish, F.; Amooshahi, M.

    2008-11-18

    Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.

  6. Relativistic effects on nonlinear lower hybrid oscillations in cold plasma

    SciTech Connect

    Maity, Chandan; Chakrabarti, Nikhil

    2011-04-15

    Nonlinear lower hybrid mode in a quasineutral magnetized plasma is analyzed in one space dimension using Lagrangian coordinates. In a cold fluid, we treat electron fluid relativistically, whereas ion fluid nonrelativistically. The homotopy perturbation method is employed to obtain the nonlinear solution which also finds the frequency-amplitude relationship for the lower hybrid mode. The solution indicates that the amplitude of oscillation increases due to the weak relativistic effects. The appearance of density spikes is not ruled out in a magnetized plasma.

  7. Modulational instabilities in relativistic pair plasmas

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.

    2016-05-01

    We study the modulational instability of an intense photon beam in a relativistic pair plasma. We use the wave-kinetic description of the photon field and relativistic fluid equations for electrons and positrons. This allows us to consider the influence of the photon spectral distribution and photon recoil effects on the instability threshold and growth rates. The case of very low frequencies modulations, well below plasma frequency, is compared to that of high-frequency modulations corresponding to the plasmon decay instability.

  8. Intrinsic dissipation in atomic force microscopy cantilevers.

    PubMed

    Zypman, Fredy

    2011-07-01

    In this paper we build a practical modification to the standard Euler-Bernoulli equation for flexural modes of cantilever vibrations most relevant for operation of AFM in high vacuum conditions. This is done by the study of a new internal dissipation term into the Euler-Bernoulli equation. This term remains valid in ultra-high vacuum, and becomes particularly relevant when viscous dissipation with the fluid environment becomes negligible. We derive a compact explicit equation for the quality factor versus pressure for all the flexural modes. This expression is used to compare with corresponding extant high vacuum experiments. We demonstrate that a single internal dissipation parameter and a single viscosity parameter provide enough information to reproduce the first three experimental flexural resonances at all pressures. The new term introduced here has a mesoscopic origin in the relative motion between adjacent layers in the cantilever. PMID:21741914

  9. Basin topology in dissipative chaotic scattering.

    PubMed

    Seoane, Jesús M; Aguirre, Jacobo; Sanjuán, Miguel A F; Lai, Ying-Cheng

    2006-06-01

    Chaotic scattering in open Hamiltonian systems under weak dissipation is not only of fundamental interest but also important for problems of current concern such as the advection and transport of inertial particles in fluid flows. Previous work using discrete maps demonstrated that nonhyperbolic chaotic scattering is structurally unstable in the sense that the algebraic decay of scattering particles immediately becomes exponential in the presence of weak dissipation. Here we extend the result to continuous-time Hamiltonian systems by using the Henon-Heiles system as a prototype model. More importantly, we go beyond to investigate the basin structure of scattering dynamics. A surprising finding is that, in the common case where multiple destinations exist for scattering trajectories, Wada basin boundaries are common and they appear to be structurally stable under weak dissipation, even when other characteristics of the nonhyperbolic scattering dynamics are not. We provide numerical evidence and a geometric theory for the structural stability of the complex basin topology. PMID:16822004

  10. Momentum relaxation of a relativistic Brownian particle.

    PubMed

    Felderhof, B U

    2012-12-01

    The momentum relaxation of a relativistic Brownian particle immersed in a fluid is studied on the basis of the Fokker-Planck equation for the relativistic Ornstein-Uhlenbeck process. An analytical expression is derived for the short-time relaxation rate. The relaxation spectrum has both discrete and continuum components. It is shown that the Fokker-Planck equation under consideration is closely related to the Schrödinger equation for the hydrogen atom. Hence it follows that there is an infinite number of discrete states. The momentum autocorrelation function is calculated numerically for a strongly relativistic particle. PMID:23367889

  11. Radiation-Dominated Relativistic Current Sheets

    SciTech Connect

    Jaroschek, C. H.; Hoshino, M.

    2009-08-14

    Relativistic current sheets (RCSs) feature plasma instabilities considered as the potential key to magnetic energy dissipation in Poynting-flux-dominated plasma flows. Kinetic plasma simulations show that the physical nature of RCS evolution changes in the presence of radiation losses: In the ultrarelativistic regime (i.e., magnetization parameter sigma=10{sup 4} defined as the ratio of magnetic to plasma rest frame energy density), the combined effect of nonlinear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the relativistic tearing mode. In contrast to previous studies of the RCS with sigmaapprox1, the relativistic tearing mode then prevails over the drift kink mode. The ultrarelativistic RCS shows a typical life cycle from radiation-induced collapse towards a radiation-quiescent phase with topology analogous to that introduced by Sweet and Parker.

  12. Energy dissipation in sheared granular flows

    SciTech Connect

    Karion, A.; Hunt, M.L.

    1999-11-01

    Granular material flows describe flows of solid particles in which the interstitial fluid plays a negligible role in the flow mechanics. Examples include the transport of coal, food products, detergents, pharmaceutical tablets, and toner particles in high-speed printers. Using a two-dimensional discrete element computer simulation of a bounded, gravity-free Couette flow of particles, the heat dissipation rate per unit area is calculated as a function of position in the flow as well as overall solid fraction. The computation results compare favorably with the kinetic theory analysis for rough disks. The heat dissipation rate is also measured for binary mixtures of particles for different small to large solid fraction ratios, and for diameter ratios of ten, five, and two. The dissipation rates increase significantly with overall solid fraction as well as local strain rates and granular temperatures. The thermal energy equation is solved for a Couette flow with one adiabatic wall and one at constant temperature. Solutions use the simulation measurements of the heat dissipation rate, solid fraction, and granular temperature to show that the thermodynamic temperature increases with solid fraction and decreases with particle conductivity. In mixtures, both the dissipation rate and the thermodynamic temperature increase with size ratio and with decreasing ratio of small to large particles.

  13. Global Solutions to the Ultra-Relativistic Euler Equations

    NASA Astrophysics Data System (ADS)

    Wissman, B. D.

    2011-09-01

    We show that when entropy variations are included and special relativity is imposed, the thermodynamics of a perfect fluid leads to two distinct families of equations of state whose relativistic compressible Euler equations are of Nishida type. (In the non-relativistic case there is only one.) The first corresponds exactly to the Stefan-Boltzmann radiation law, and the other, emerges most naturally in the ultra-relativistic limit of a γ-law gas, the limit in which the temperature is very high or the rest mass very small. We clarify how these two relativistic equations of state emerge physically, and provide a unified analysis of entropy variations to prove global existence in one space dimension for the two distinct 3 × 3 relativistic Nishida-type systems. In particular, as far as we know, this provides the first large data global existence result for a relativistic perfect fluid constrained by the Stefan-Boltzmann radiation law.

  14. Energy dissipation in substorms

    NASA Technical Reports Server (NTRS)

    Weiss, Loretta A.; Reiff, P. H.; Moses, J. J.; Heelis, R. A.; Moore, B. D.

    1992-01-01

    The energy dissipated by substorms manifested in several ways is discussed: the Joule dissipation in the ionosphere; the energization of the ring current by the injection of plasma sheet particles; auroral election and ion acceleration; plasmoid ejection; and plasma sheet ion heating during the recovery phase. For each of these energy dissipation mechanisms, a 'rule of thumb' formula is given, and a typical dissipation rate and total energy expenditure is estimated. The total energy dissipated as Joule heat (approximately) 2 x 10(exp 15) is found about twice the ring current injection term, and may be even larger if small scale effects are included. The energy expended in auroral electron precipitation, on the other hand, is smaller than the Joule heating by a factor of five. The energy expended in refilling and heating the plasma sheets is estimated to be approximately 5 x 10(exp 14)J, while the energy lost due to plasmoid ejection is between (approximately) (10 exp 13)(exp 14)J.

  15. A covariant Fokker-Planck equation for a simple gas from relativistic kinetic theory

    SciTech Connect

    Chacon-Acosta, Guillermo; Dagdug, Leonardo; Morales-Tecotl, Hugo A.

    2010-12-14

    A manifestly covariant Fokker-Planck differential equation is derived for the case of a relativistic simple gas by taking a small momentum transfer approximation within the collision integral of the relativistic Boltzmann equation. We follow closely previous work, with the main difference that we keep manifest covariance at every stage of the analysis. In addition, we use the covariant Juettner distribution function to find a relativistic generalization of the Einstein's fluctuation-dissipation relation.

  16. Weakly nonlinear kink-type solitary waves in a fully relativistic plasma

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane; Zerguini, Taha Houssine

    2010-08-15

    A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study small but finite amplitude solitary waves. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. A kink-solitary wave solution is outlined. Due to electron relativistic effect, the localized structure may experience either a spreading or a compression. This latter phenomenon (compression) becomes less effective and less noticeable as the relativistic character of the ions becomes important. Our results may be relevant to cosmic relativistic double-layers and relativistic plasma structures that involve energetic plasma flows.

  17. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  18. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  19. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    NASA Astrophysics Data System (ADS)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  20. Dissipative Work in Thermodynamics

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Pereira, Mario G.; Ferreira, J. M.

    2011-01-01

    This work explores the concept of dissipative work and shows that such a kind of work is an invariant non-negative quantity. This feature is then used to get a new insight into adiabatic irreversible processes; for instance, why the final temperature in any adiabatic irreversible process is always higher than that attained in a reversible process…

  1. Dissipative work in thermodynamics

    NASA Astrophysics Data System (ADS)

    Anacleto, Joaquim; Pereira, Mário G.; Ferreira, J. M.

    2011-01-01

    This work explores the concept of dissipative work and shows that such a kind of work is an invariant non-negative quantity. This feature is then used to get a new insight into adiabatic irreversible processes; for instance, why the final temperature in any adiabatic irreversible process is always higher than that attained in a reversible process having the same initial state and equal final pressure or volume. Based on the concept of identical processes, numerical simulations of adiabatic irreversible compression and expansion were performed, enabling a better understanding of differences between configuration and dissipative work. The positive nature of the dissipative work was used to discuss the case where the dissipated energy ends up in the surroundings, while the invariance of such work under a system-surroundings interchange enabled the resulting modification in thermodynamical quantities to be determined. The ideas presented in this study are primarily intended for undergraduate students with a background in thermodynamics, but they may also be of interest to graduate students and teachers.

  2. Tidal Dissipation in Mercury

    NASA Technical Reports Server (NTRS)

    Bills, B. G.

    2002-01-01

    The spatial pattern and total inventory of tidal dissipation within Mercury depends sensitively on internal structure and on orbital eccentricity. Surface heat flow from this source may exceed 3 mW/sq m, and will vary with time as the orbital eccentricity fluctuates. Additional information is contained in the original extended abstract.

  3. A Note on Kinetic Energy, Dissipation and Enstrophy

    NASA Technical Reports Server (NTRS)

    Wu, Jie-Zhi; Zhou, Ye; Fan, Meng

    1998-01-01

    The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.

  4. A model of heat dissipation for MR based brake

    NASA Astrophysics Data System (ADS)

    Wiehe, A.; Noack, V.; Maas, J.

    2009-02-01

    In contrast to conventional brakes actuators based on magnetorheological fluids (MRF) offer an advantage in short term, peak load decelerating. The dissipation of a high amount of energy in a short period of time results in a thermal destruction of conventional brakes. Due to the volume based energy dissipation of MR actuators, instead of the surface based energy dissipation of conventional brakes, the rise of temperature and the distribution of energy shows significant advantages. In this paper a design rule for special peak load MR actuators is derived. Furthermore the simplified model, which is the basis of the design rule, is compared to several simulation models, with different levels of detail.

  5. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  6. Pederson Current Dissipation In Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, M. G.

    2011-05-01

    Pederson current dissipation in emerging active regions. Certain regions of the solar atmosphere, such as the photosphere and chromosphere, as well as prominences, contain a significant amount of neutral atoms, and a complete description of the plasma requires including the effects of partial ionization. In the chromosphere the dissipation of Pederson currents is important for the evolution of emerging magnetic fields. Due to the relatively high number density in the chromosphere, the ion-neutral collision time-scale is much smaller than timescales associated with flux emergence. Hence we use a single-fluid approach to model the partially ionized plasma. Looking at both the emergence of large-scale sub-surface structures, and the emergence and reconnection of undulatory fields, we investigate the effect of Pederson current dissipation on the state of the emerging field, on magnetic reconnection and on dissipative heating of the atmosphere. Specifically we examine the effect of motions across fieldlines in the partially ionized regions, and how this can increase the free energy supplied to the corona by flux emergence. We also look at reconnection associated with flux emergence in the partially ionized atmosphere, and how this can account for observed small-scale brightenings (Ellerman Bombs).

  7. Viscosity measurement techniques in Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  8. Intermittency, coherent structures and dissipation in plasma turbulence

    NASA Astrophysics Data System (ADS)

    Wan, M.; Matthaeus, W. H.; Roytershteyn, V.; Parashar, T. N.; Wu, P.; Karimabadi, H.

    2016-04-01

    Collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been an intensively studied subject recently, with new insights often emerging from numerical simulation. Here we report results from high resolution, fully kinetic simulations of plasma turbulence in both two (2D) and three (3D) dimensions, studying the relationship between intermittency and dissipation. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. An approximate dissipation measure is employed, based on work done by the electromagnetic field in the local electron fluid frame. This surrogate dissipation measure is highly concentrated in small subvolumes in both 2D and 3D simulations. Fully kinetic simulations are also compared with magnetohydrodynamics (MHD) simulations in terms of coherent structures and dissipation. The interesting result emerges that the conditional averages of dissipation measure scale very similarly with normalized current density J in 2D and 3D particle-in-cell and in MHD. To the extent that the surrogate dissipation measure is accurate, this result implies that on average dissipation scales as ˜J2 in turbulent kinetic plasma. Multifractal intermittency is seen in the inertial range in both 2D and 3D, but at scales ˜ion inertial length, the scaling is closer to monofractal.

  9. Ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Boukhalfa, Soufiane

    2011-04-01

    A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. Our results may be relevant to cosmic relativistic double- layers and relativistic plasma structures involving energetic plasma flows that may occur in space plasmas. Furthermore, they may complement and provide new insights into recently published results (G. Lu et al. in Astrophys. Space Sci., doi: 10.1007/s10509-010-0363-5, 2010).

  10. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  11. Flux-limited diffusion with relativistic corrections

    SciTech Connect

    Pomraning, G.C.

    1983-03-15

    A recently reported flux-limited diffusion theory is extended to include relativistic terms, correct to first order in the fluid velocity. We show that this diffusion theory is fully flux limited, and yields the correct result for the radiative flux in the classical diffusion limit, namely a Fick's law component plus a v/c convective term.

  12. Asymptotic theory of relativistic, magnetized jets

    SciTech Connect

    Lyubarsky, Yuri

    2011-01-15

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  13. Quantum dissipative Higgs model

    SciTech Connect

    Amooghorban, Ehsan Mahdifar, Ali

    2015-09-15

    By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.

  14. Theoretical Consolidation of Acoustic Dissipation

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Zoladz, T. F.

    2012-01-01

    In many engineering problems, the effects of dissipation can be extremely important. Dissipation can be represented by several parameters depending on the context and the models that are used. Some examples of dissipation-related parameters are damping ratio, viscosity, resistance, absorption coefficients, pressure drop, or damping rate. This Technical Memorandum (TM) describes the theoretical consolidation of the classic absorption coefficients with several other dissipation parameters including linearized resistance. The primary goal of this TM is to theoretically consolidate the linearized resistance with the absorption coefficient. As a secondary goal, other dissipation relationships are presented.

  15. A hydrodynamical model for relativistic spin quantum plasmas

    SciTech Connect

    Asenjo, Felipe A.; Munoz, Victor; Valdivia, J. Alejandro; Mahajan, Swadesh M.

    2011-01-15

    Based on the one-body particle-antiparticle Dirac theory of electrons, a set of relativistic quantum fluid equations for a spin half plasma is derived. The particle-antiparticle nature of the relativistic particles is explicit in this fluid theory, which also includes quantum effects such as spin. The nonrelativistic limit is shown to be in agreement with previous attempts to develop a spin plasma theory derived from the Pauli Hamiltonian. Harnessing the formalism to the study of electromagnetic mode propagation, conceptually new phenomena are revealed; the particle-antiparticle effects increase the fluid opacity to these waves, while the spin effects tend to make the fluid more transparent.

  16. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel D.; Newman, William I.

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number MA. We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  17. Blast Dynamics in a Dissipative Gas

    NASA Astrophysics Data System (ADS)

    Barbier, M.; Villamaina, D.; Trizac, E.

    2015-11-01

    The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves.

  18. Magnetoacoustic shock waves in dissipative degenerate plasmas

    SciTech Connect

    Hussain, S.; Mahmood, S.

    2011-11-15

    Quantum magnetoacoustic shock waves are studied in homogenous, magnetized, dissipative dense electron-ion plasma by using two fluid quantum magneto-hydrodynamic (QMHD) model. The weak dissipation effects in the system are taken into account through kinematic viscosity of the ions. The reductive perturbation method is employed to derive Korteweg-de Vries Burgers (KdVB) equation for magnetoacoustic wave propagating in the perpendicular direction to the external magnetic field in dense plasmas. The strength of magnetoacoustic shock is investigated with the variations in plasma density, magnetic field intensity, and ion kinematic viscosity of dense plasma system. The necessary condition for the existence of monotonic and oscillatory shock waves is also discussed. The numerical results are presented for illustration by using the data of astrophysical dense plasma situations such as neutron stars exist in the literature.

  19. Blast Dynamics in a Dissipative Gas.

    PubMed

    Barbier, M; Villamaina, D; Trizac, E

    2015-11-20

    The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves. PMID:26636851

  20. Relativistic theory for localized electrostatic excitations in degenerate electron-ion plasmas.

    PubMed

    Mc Kerr, Michael; Haas, Fernando; Kourakis, Ioannis

    2014-09-01

    A self-consistent relativistic two-fluid model is proposed for electron-ion plasma dynamics. A one-dimensional geometry is adopted. Electrons are treated as a relativistically degenerate fluid, governed by an appropriate equation of state. The ion fluid is also allowed to be relativistic, but is cold, nondegenerate, and subject only to an electrostatic potential. Exact stationary-profile solutions are sought, at the ionic scale, via the Sagdeev pseudopotential method. The analysis provides the pulse existence region, in terms of characteristic relativistic parameters, associated with the (ultrahigh) particle density. PMID:25314552

  1. ENHANCED DISSIPATION RATE OF MAGNETIC FIELD IN STRIPED PULSAR WINDS BY THE EFFECT OF TURBULENCE

    SciTech Connect

    Takamoto, Makoto; Inoue, Tsuyoshi; Inutsuka, Shu-ichiro E-mail: inouety@phys.aoyama.ac.jp

    2012-08-10

    In this paper, we report on turbulent acceleration of the dissipation of the magnetic field in the post-shock region of a Poynting flux-dominated flow, such as the Crab pulsar wind nebula. We have performed two-dimensional resistive relativistic magnetohydrodynamics simulations of subsonic turbulence driven by the Richtmyer-Meshkov instability at the shock fronts of the Poynting flux-dominated flows in pulsar winds. We find that turbulence stretches current sheets which substantially enhances the dissipation of the magnetic field, and that most of the initial magnetic field energy is dissipated within a few eddy-turnover times. We also develop a simple analytical model for turbulent dissipation of the magnetic field that agrees well with our simulations. The analytical model indicates that the dissipation rate does not depend on resistivity even in the small resistivity limit. Our findings can possibly alleviate the {sigma}-problem in the Crab pulsar wind nebulae.

  2. Generalized magnetofluid connections in relativistic magnetohydrodynamics.

    PubMed

    Asenjo, Felipe A; Comisso, Luca

    2015-03-20

    The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept. PMID:25839284

  3. Scaling laws to quantify tidal dissipation in star-planet systems

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-12-01

    Planetary systems evolve over secular time scales. One of the key mechanisms that drive this evolution is tidal dissipation. Submitted to tides, stellar and planetary fluid layers do not behave like rocky ones. Indeed, they are the place of resonant gravito-inertial waves. Therefore, tidal dissipation in fluid bodies strongly depends on the excitation frequency while this dependence is smooth in solid ones. Thus, the impact of the internal structure of celestial bodies must be taken into account when studying tidal dynamics. The purpose of this work is to present a local model of tidal gravito-inertial waves allowing us to quantify analytically the internal dissipation due to viscous friction and thermal diffusion, and to study the properties of the resonant frequency spectrum of the dissipated energy. We derive from this model scaling laws characterizing tidal dissipation as a function of fluid parameters (rotation, stratification, diffusivities) and discuss them in the context of star-planet systems.

  4. Dissipation of Tidal Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  5. Floating hydrometer with energy dissipating baffle

    SciTech Connect

    Kownurko, W.A.

    1987-11-24

    This patent describes a floating hydrometer employable for purposes of obtaining measurements of the presence of suspended solids in a fluid substance contained in a receptacle comprising: a. a probe portion operative as an instrument-bearing housing; b. an elongated tubular element having a hollow interior and at least one open end so as to enable the flow into the hollow interior of the elongated tubular element through the open end; and c. energy dissipating baffle means having a first mode of action and a second mode of action and including a member having a hollow interior.

  6. Polarizable water model for Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peter, Emanuel

    2015-11-01

    Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.

  7. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    force, such that we obtain an increased stability of relativistic flows. Accordingly, the non-axisymmetric modes applied to the field-line foot-points saturate quickly, with no signs of enhanced dissipation or disruption near the jet launching site.

  8. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  9. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  10. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Joynt, R.

    2003-07-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of “relativistic”: relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro’s number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.

  11. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    SciTech Connect

    Hamlin, Nathaniel D.; Seyler, Charles E.

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  12. Non-relativistic leptogenesis

    NASA Astrophysics Data System (ADS)

    Bödeker, Dietrich; Wörmann, Mirco

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ~ 20%) effects compared to previous computations.

  13. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    SciTech Connect

    Khan, S. A.

    2012-01-15

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  14. Sound speed and viscosity of semi-relativistic relic neutrinos

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence; Long, Andrew J.

    2016-07-01

    Generalized fluid equations, using sound speed ceff2 and viscosity cvis2 as effective parameters, provide a convenient phenomenological formalism for testing the relic neutrino "null hypothesis," i.e. that that neutrinos are relativistic and free-streaming prior to recombination. In this work, we relax the relativistic assumption and ask "to what extent can the generalized fluid equations accommodate finite neutrino mass?" We consider both the mass of active neutrinos, which are largely still relativistic at recombination m2 / T2 ~ 0.2, and the effect of a semi-relativistic sterile component. While there is no one-to-one mapping between mass/mixing parameters and ceff2 and cvis2, we demonstrate that the existence of a neutrino mass could induce a bias to measurements of ceff2 and cvis2 at the level of 0.01 m2 / T2 ~ 10‑3.

  15. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  16. Flucutations in power dissipation in a gravity driven system

    NASA Astrophysics Data System (ADS)

    Greguric, Zrinka; Cervoni, Miguel; Cressman, John

    2010-03-01

    We have studied the three dimensional motion of a disk falling through a column of water. The disk's position and orientation are measured with a high speed video camera enabling an analysis of the fluid forces acting on the disk. On average the fluid exerts a dissipative drag on the falling body. However, these forces are dynamic and lead to fluctuations in the kinetic energy of the disk. The resulting power fluctuations are of the same magnitude as the mean power dissipated by the fluid and can be large enough to cause the disk to move upward against the force of gravity. We have analyzed these fluctuations and compared their statistics to those predicted by non-equilibrium statistical theory.

  17. Negative energy waves and quantum relativistic Buneman instabilities.

    PubMed

    Haas, F; Eliasson, B; Shukla, P K

    2012-09-01

    The quantum relativistic Buneman instability is investigated theoretically using a collective Klein-Gordon model for the electrons and a cold fluid model for the ions. The growth rate and unstable wave spectrum is investigated in different parameter regimes corresponding to various degrees of relativistic and quantum effects. The results may be important for streaming instabilities involving ion dynamics in very dense plasmas. PMID:23031033

  18. Hydrodynamics of ultra-relativistic bubble walls

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-04-01

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  19. Entanglement Created by Dissipation

    SciTech Connect

    Alharbi, Abdullah F.; Ficek, Zbigniew

    2011-10-27

    A technique for entangling closely separated atoms by the process of dissipative spontaneous emission is presented. The system considered is composed of two non-identical two-level atoms separated at the quarter wavelength of a driven standing wave laser field. At this atomic distance, only one of the atoms can be addressed by the laser field. In addition, we arrange the atomic dipole moments to be oriented relative to the inter-atomic axis such that the dipole-dipole interaction between the atoms is zero at this specific distance. It is shown that an entanglement can be created between the atoms on demand by tuning the Rabi frequency of the driving field to the difference between the atomic transition frequencies. The amount of the entanglement created depends on the ratio between the damping rates of the atoms, but is independent of the frequency difference between the atoms. We also find that the transient buildup of an entanglement between the atoms may differ dramatically for different initial atomic conditions.

  20. Relativistic thermodynamics with an invariant energy scale

    SciTech Connect

    Das, Sudipta; Ghosh, Subir; Roychowdhury, Dibakar

    2009-12-15

    A particular framework for quantum gravity is the doubly special relativity (DSR) formalism that introduces a new observer independent scale, the Planck energy. Our aim in this paper is to study the effects of this energy upper bound in relativistic thermodynamics. We have explicitly computed the modified equation of state for an ideal fluid in the DSR framework. In deriving our result we exploited the scheme of treating DSR as a nonlinear representation of the Lorentz group in special relativity.

  1. Constraints on dissipative unified dark matter

    SciTech Connect

    Velten, Hermano; Schwarz, Dominik J. E-mail: dschwarz@physik.uni-bielefeld.de

    2011-09-01

    Modern cosmology suggests that the Universe contains two dark components — dark matter and dark energy — both unkown in laboratory physics and both lacking direct evidence. Alternatively, a unified dark sector, described by a single fluid, has been proposed. Dissipation is a common phenomenon in nature and it thus seems natural to consider models dominated by a viscous dark fluid. We focus on the study of bulk viscosity, as isotropy and homogeneity at large scales implies the suppression of shear viscosity, heat flow and diffusion. The generic ansatz ξ∝ρ{sup ν} for the coefficient of bulk viscosity (ρ denotes the mass/energy density), which for ν = −1/2 mimics the ΛCDM background evolution, offers excellent fits to supernova and H(z) data. We show that viscous dark fluids suffer from large contributions to the integrated Sachs-Wolfe effect (generalising a previous study by Li and Barrow) and a suppression of structure growth at small-scales (as seen from a generalized Meszaros equation). Based on recent observations, we conclude that viscous dark fluid models (with ξ∝ρ{sup ν} and neglecting baryons) are strongly challenged.

  2. Thermal Dissipation in Quantum Turbulence

    SciTech Connect

    Kobayashi, Michikazu; Tsubota, Makoto

    2006-10-06

    The microscopic mechanism of thermal dissipation in quantum turbulence is numerically studied by solving the coupled system involving the Gross-Pitaevskii equation and the Bogoliubov-de Gennes equation. At low temperatures, the obtained dissipation does not work at scales greater than the vortex core size. However, as the temperature increases, dissipation works at large scales and it affects the vortex dynamics. We successfully obtain the mutual friction coefficients of the vortex in dilute Bose-Einstein condensates dynamics as functions of temperature.

  3. On the stability and energy dissipation in magnetized radio galaxy jets.

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-07-01

    It is commonly accepted that the relativistic jets observed in radio galaxies are launched magnetically and are powered by the rotational energy of the central supermassive black hole. Such jets carry most of their energy in the form of electromagnetic Poynting flux. However by the time the ejecta reach the emission zone most of that energy is transferred to relativistic motions of the jet material with a large fraction given to non-thermal particles, which calls for an efficient dissipation mechanism to work within the jet without compromising its integrity. Understanding the energy dissipation mechanisms and stability of Poynting flux dominated jets is therefore crucial for modeling these astrophysical objects. In this talk I will present the first self consistent 3D simulations of the formation and propagation of highly magnetized (σ ˜25), relativistic jets in a medium. We find that the jets develop two types of instability: i) a local, "internal" kink mode which efficiently dissipates half of the magnetic energy into heat, and ii) a global "external" mode that grows on longer time scales and causes the jets to bend sideways and wobble. Low power jets propagating in media with flat density profiles, such as galaxy cluster cores, are susceptible to the global mode, and develop FRI like morphology. High power jets remain stable as they cross the cores, break out and accelerate to large distances, appearing as FRII jets. Thus magnetic kink instability can account for both the magnetic energy dissipation and the population dichotomy in radio galaxy jets.

  4. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  5. Magnetogenesis through Relativistic Velocity Shear

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  6. Magnetogenesis through a Relativistic Biermann Effect

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    2012-10-01

    In a 2010 Physical Review Letter, Mahajan and Yoshida proposed a relativistic correction to the well-known Biermann Battery. The Biermann Battery allows for the generation of magnetic fields in a plasma fluid from orthogonal gradients in temperature and entropy (Bt ∇T x∇σ). The proposed correction would result in an additional term, proportional to the gradient of velocity squared crossed with the gradient of entropy (Bt ∇v^2 x∇σ). This new effect can in some cases provide the dominate source of magnetic field growth, even when the fluid is only mildly relativistic. This could in turn help explain the dynamics of certain relativistic plasmas, including modern laser plasmas and astrophysical jets. It is possible it could even provide a primordial source for the seed fields needed to explain the cosmological magnetic fields that appear to permeate most galaxies. In my poster, I will explain the theory underlying this new correction and present simulations demonstrating magnetic field growth in a variety of test cases, performed using both a particle-in-cell code and a fluid model.

  7. Nonlinear r-modes in rapidly rotating relativistic stars.

    PubMed

    Stergioulas, N; Font, J A

    2001-02-12

    The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications, provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3D general-relativistic hydrodynamical evolutions. We find that (1) on dynamical time scales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one-the maximum r-mode amplitude is of order unity. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes. (3) The kinematical drift associated with r-modes appears to be present in our simulations, but confirmation requires more precise initial data. PMID:11178031

  8. Flow around spheres by dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Phan-Thien, Nhan; Khoo, Boo Cheong; Fan, Xi Jun

    2006-10-01

    The dissipative particle dynamics (DPD) method is used to study the flow behavior past a sphere. The sphere is represented by frozen DPD particles while the surrounding fluids are modeled by simple DPD particles (representing a Newtonian fluid). For the surface of the sphere, the conventional model without special treatment and the model with specular reflection boundary condition proposed by Revenga et al. [Comput. Phys. Commun. 121-122, 309 (1999)] are compared. Various computational domains, in which the sphere is held stationary at the center, are investigated to gage the effects of periodic conditions and walls for Reynolds number (Re)=0.5 and 50. Two types of flow conditions, uniform flow and shear flow are considered, respectively, to study the drag force and torque acting on the stationary sphere. It is found that the calculated drag force imposed on the sphere based on the model with specular reflection is slightly lower than the conventional model without special treatment. With the conventional model the drag force acting on the sphere is in better agreement with experimental correlation obtained by Brown and Lawler [J. Environ. Eng. 129, 222 (2003)] for the case of larger radius up to Re of about 5. The computed torque also approaches the analytical Stokes value when Re <1. For a force-free and torque-free sphere, its motion in the flow is captured by solving the translational and rotational equations of motion. The effects of different DPD parameters (a, γ, and σ) on the drag force and torque are studied. It shows that the dissipative coefficient (γ) mainly affects the drag force and torque, while random and conservative coefficient have little influence on them. Furthermore the settling of a single sphere in square tube is investigated, in which the wall effect is considered. Good agreement is found with the experiments of Miyamura et al. [Int. J. Multiphase Flow 7, 31 (1981)] and lattice-Boltzmann simulation results of Aidun et al. [J. Fluid Mech

  9. Dissipative Forces and Quantum Mechanics

    ERIC Educational Resources Information Center

    Eck, John S.; Thompson, W. J.

    1977-01-01

    Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)

  10. Satellite Movie Shows Erika Dissipate

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from Aug. 27 to 29 shows Tropical Storm Erika move through the Eastern Caribbean Sea and dissipate near eastern Cuba. ...

  11. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  12. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  13. Eightfold Classification of Hydrodynamic Dissipation.

    PubMed

    Haehl, Felix M; Loganayagam, R; Rangamani, Mukund

    2015-05-22

    We provide a complete characterization of hydrodynamic transport consistent with the second law of thermodynamics at arbitrary orders in the gradient expansion. A key ingredient in facilitating this analysis is the notion of adiabatic hydrodynamics, which enables isolation of the genuinely dissipative parts of transport. We demonstrate that most transport is adiabatic. Furthermore, in the dissipative part, only terms at the leading order in gradient expansion are constrained to be sign definite by the second law (as has been derived before). PMID:26047219

  14. Relativistic Hall effect.

    PubMed

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes. PMID:22540559

  15. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  16. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  17. Melting the core of giant planets: impact on tidal dissipation

    NASA Astrophysics Data System (ADS)

    Mathis, S.

    2015-12-01

    Giant planets are believed to host central dense rocky/icy cores that are key actors in the core-accretion scenario for their formation. In the same time, some of their components are unstable in the temperature and pressure regimes of central regions of giant planets and only ab-initio EOS computations can address the question of the state of matter. In this framework, several works demonstrated that erosion and redistribution of core materials in the envelope must be taken into account. These complex mechanisms thus may deeply modify giant planet interiors for which signatures of strong tidal dissipation have been obtained for Jupiter and Saturn. The best candidates to explain this dissipation are the viscoelastic dissipation in the central dense core and turbulent friction acting on tidal inertial waves in their fluid convective envelope. In this work, we study the consequences of the possible melting of central regions for the efficiency of each of these mechanisms.

  18. Derivation of the lattice Boltzmann model for relativistic hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-11-15

    A detailed derivation of the lattice Boltzmann scheme for relativistic fluids recently proposed in M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys. Rev. Lett. 105, 014502 (2010) is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid-dynamic problems, namely, shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast wave on massive interstellar clouds. Close to second-order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time steps, are reported.

  19. Macroscopic approximation to relativistic kinetic theory from a nonlinear closure

    NASA Astrophysics Data System (ADS)

    Peralta-Ramos, J.; Calzetta, E.

    2013-02-01

    We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0+1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.

  20. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.

    2015-05-01

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.

  1. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  2. Finite dissipation and intermittency in magnetohydrodynamics.

    PubMed

    Mininni, P D; Pouquet, A

    2009-08-01

    We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow. PMID:19792189

  3. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  4. Polarizable protein model for Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel; Lykov, Kirill; Pivkin, Igor

    2015-11-01

    In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.

  5. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  6. Rheology of Deformable Particle Suspensions by Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2007-03-01

    Understanding the behavior of colloidal suspensions, emulsions, and other complex fluids under shear flow is important in liquid crystal switching, lab-on-chip processing of biological fluids, self-assembly of polymer structures, and other areas of soft matter physics. Various analytical and computational approaches, including Brownian dynamics, dissipative particle dynamics, and Stokesian dynamics, have been applied to study the rheology of rigid particle suspensions. Still lacking are methods capable of treating suspensions containing deformable particles such as blood cells or macromolecules. Here we present a new, dissipative particle dynamics-based computational method with this capability. This method is used to calculate the shear rate dependence of viscosity for suspensions of deformable particles with varying stiffnesses.

  7. Dissipative structures and related methods

    SciTech Connect

    Langhorst, Benjamin R; Chu, Henry S

    2013-11-05

    Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.

  8. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  9. Model of dissipative dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiang Foo, Choon; Cai, Shengqiang; Jin Adrian Koh, Soo; Bauer, Siegfried; Suo, Zhigang

    2012-02-01

    The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.

  10. Dispersive and dissipative nonlinear structures in degenerate Fermi-Dirac Pauli quantum plasma

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2016-09-01

    We study the interplay between dispersion due to the electron degeneracy parameter and dissipation caused by plasma resistivity, in degenerate Fermi-Dirac Pauli quantum plasma. Considering relativistic degeneracy pressure for electrons, we investigate both arbitrary and small amplitude nonlinear structures. The corresponding trajectories are also plotted in the phase plane. The linear analysis for the dispersion relation yields interesting features. The present work is anticipated to be of physical relevance in the study of compact magnetized astrophysical objects like white dwarfs.

  11. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts. PMID:20866862

  12. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  13. High dissipative nonminimal warm inflation

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Shoukrani, Masoomeh

    2016-09-01

    We study a model of warm inflation in which both inflaton field and its derivatives are coupled nonminimally to curvature. We survey the spectrum of the primordial perturbations in high dissipative regime. By expanding the action up to the third order, the amplitude of the non-Gaussianity is studied both in the equilateral and orthogonal configurations. Finally, by adopting four sort of potentials, we compare our model with the Planck 2015 released observational data and obtain some constraints on the model's parameters space in the high dissipation regime.

  14. Quantum Dissipation in Nanomechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Zolfagharkhani, G.; Gaidarzhy, A.; Badzey, R. L.; Mohanty, P.

    2004-03-01

    Dissipation or energy relaxation of a resonant mode in a nanomechanical device occurs by its coupling to environment degrees of freedom, which also acquire quantum mechanical correlations at millikelvin temperatures. We report measurements of temperature and magnetic field dependence of dissipation in single crystal silicon nanobeams in MHz up to 1 GHz frequency range. We extend our measurements down to temperatures of 20 millikelvin and up to fields of 16 tesla. The fabrication of our Nano-Electro-Mechanical Systems (NEMS) involves e-beam lithography, as well as various deposition and plasma etching processes. This work is supported by NSF and the Sloan Foundation.

  15. Zero temperature dissipation and holography

    NASA Astrophysics Data System (ADS)

    Banerjee, Pinaki; Sathiapalan, B.

    2016-04-01

    We use holographic techniques to study the zero-temperature limit of dissipation for a Brownian particle moving in a strongly coupled CFT at finite temperature in various space-time dimensions. The dissipative term in the boundary theory for ω → 0, T → 0 with ω/ T held small and fixed, does not match the same at T = 0, ω → 0. Thus the T → 0 limit is not smooth for ω < T. This phenomenon appears to be related to a confinement-deconfinement phase transition at T = 0 in the field theory.

  16. Dissipative heavy-ion collisions

    SciTech Connect

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs. (WRF)

  17. Dissipative nonlinear dynamics in holography

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Ghosh, Archisman

    2014-02-01

    We look at the response of a nonlinearly coupled scalar field in an asymptotically AdS black brane geometry and find a behavior very similar to that of known dissipative nonlinear systems like the chaotic pendulum. Transition to chaos proceeds through a series of period-doubling bifurcations. The presence of dissipation, crucial to this behavior, arises naturally in a black hole background from the ingoing conditions imposed at the horizon. AdS/CFT translates our solution to a chaotic response of O, the operator dual to the scalar field. Our setup can also be used to study quenchlike behavior in strongly coupled nonlinear systems.

  18. Dissipative processes in galaxy formation.

    PubMed Central

    Silk, J

    1993-01-01

    A galaxy commences its life in a diffuse gas cloud that evolves into a predominantly stellar aggregation. Considerable dissipation of gravitational binding energy occurs during this transition. I review here the dissipative processes that determine the critical scales of luminous galaxies and the generation of their morphology. The universal scaling relations for spirals and ellipticals are shown to be sensitive to the history of star formation. Semiphenomenological expressions are given for star-formation rates in protogalaxies and in starbursts. Implications are described for elliptical galaxy formation and for the evolution of disk galaxies. PMID:11607396

  19. Fluid mixing from viscous fingering.

    PubMed

    Jha, Birendra; Cueto-Felgueroso, Luis; Juanes, Ruben

    2011-05-13

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and enhance mixing. Here we describe the dissipative structure of miscible viscous fingering, and propose a two-equation model for the scalar variance and its dissipation rate. Our analysis predicts the optimum range of viscosity contrasts that, for a given Péclet number, maximizes interfacial area and minimizes mixing time. In the spirit of turbulence modeling, the proposed two-equation model permits upscaling dissipation due to fingering at unresolved scales. PMID:21668165

  20. On kinetic dissipation in collisionless turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Parashar, Tulasi Nandan

    Plasma turbulence is a phenomenon that is present in astrophysical as well as terrestrial plasmas. The earth is embedded in a turbulent plasma, emitting from the sun, called the solar wind. It is important to understand the nature of this plasma in order to understand space weather. A critical unsolved problem is that of the source of dissipation in turbulent plasmas. It is believed to play a central role in the heating of the solar corona which in turn drives the solar wind. The solar wind itself is observed to be highly turbulent and hotter than predicted through adiabatic expansion models. Turbulence and its associated dissipation have been studied extensively through the use of MHD models. However, the solar wind and large regions of the solar corona have very low collisionality, which calls into question the use of simple viscosity and resistivity in most MHD models. A kinetic treatment is needed for a better understanding of turbulent dissipation. This thesis studies the dissipation of collisionless turbulence using direct numerical hybrid simulations of turbulent plasmas. Hybrid simulations use kinetic ions and fluid electrons. Having full kinetic ion physics, the dissipation in these simulations at the ion scales is self consistent and requires no assumptions. We study decaying as well as quasi steady state systems (driven magnetically). Initial studies of the Orszag-Tang vortex [Orszag, JFM, 1979] (which is an initial condition that quickly generates decaying strong turbulence) showed preferential perpendicular heating of protons (with T_perp /T_|| > 1). An energy budget analysis showed that in the turbulent regime, almost all the dissipation occurs through magnetic interactions. We study the energy budget of waves using the k - o spectra (energy in the wavenumber-frequency space). The k - o spectra of this study and subsequent studies of driven turbulent plasmas do not show any significant power in the linear wave modes of the system. This suggests that

  1. Energy Dissipation Processes in Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, F. S.; Feng, X. S.; Xu, X. J.; Zhang, J.; Sun, T. R.; Zuo, P. B.

    2015-12-01

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  2. Dissipative-particle-dynamics model of biofilm growth

    SciTech Connect

    Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-06-13

    A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.

  3. Relativistic nuclear dynamics

    SciTech Connect

    Coester, F.

    1985-01-01

    A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.

  4. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts. PMID:22519307

  5. Ion-acoustic shock waves in a plasma with weakly relativistic warm ions, thermal positrons and a background electron nonextensivity

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Pakzad, Hamid Reza

    2012-06-01

    A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries-Burgers-like equation for small, but finite amplitude, ion-acoustic waves in a dissipative plasma consisting of weakly relativistic ions, thermal positrons and nonextensive electrons. The travelling wave solution has been acquired by employing the tangent hyperbolic method. Our results show that in a such plasma, ion-acoustic shock waves, the strength and steepness of which are significantly modified by relativistic, nonextensive and dissipative effects, may exist. Interestingly, we found that because of ion kinematic viscosity, an initial solitonic profile develops into a shock wave. This later evolves towards a monotonic profile (dissipation-dominant case) as the electrons deviate from their Maxwellian equilibrium. Our investigation may help to understand the dissipative structures that may occur in high-energy astrophysical plasmas.

  6. Relativistic Pulsar Winds with Pressure Anisotropy and Heat Flow

    NASA Astrophysics Data System (ADS)

    Tenbarge, Jason; Hazeltine, Richard; Mahajan, Swadesh

    2008-11-01

    A newly developed covariant fluid model for magnetized plasmas, incorporating anisotropy in both temperature and heat flow, is used to study equatorial radial profiles of density, velocity, magnetic field, pressure, and heat flow in the hot, strongly magnetized wind region beyond the light cylinder of pulsar magnetospheres. Radiative losses are assumed to have isotropized the wind region plasma so that PP. Fluid velocities are taken as mildly relativistic, while temperatures are ultra-relativistic. This study of pulsar magnetospheres extends the work by Tsikarishvili et al. to a more general fluid closure including heat flow. The general covariant fluid model in spherical geometry and equations of state for arbitrary temperature will also be presented for more general applicability. J. M. TenBarge, R. D. Hazeltine, and S. M. Mahajan, Phys. Plasmas 15, 062112 (2008)., E. G. Tsikarishvili, A. D. Rogava, and D. G. Tsiklauri, Ap. J. 439, 822 (1995).

  7. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  8. A First Approach to Hydrodynamics in General Relativistic Systems Using SPH

    NASA Astrophysics Data System (ADS)

    Cruz-Pérez, J. P.; González, J. A.; Montoya, E.

    2010-07-01

    In this work we present the Lagrangian formulation of the general relativistic ideal fluid equations. With the help of the standard Smoothed Particle Hydrodynamics (SPH) method we obtain a discretization of the motion equations. Having in mind that several of the most interesting astrophysical systems that we observe in the universe have been shaped by fluid dynamical processes, we want to use this method to study them. We present the first steps to implement such general relativistic SPH codes.

  9. Interaction of a relativistic soliton with a nonuniform plasma.

    PubMed

    Rouhani, M R; Abbasi, H; Pajouh, H Hakimi; Shukla, P K; Tsintsadze, N L

    2002-06-01

    By using a relativistic fluid model, a nonlinear theory for the propagation of an intense laser pulse in an inhomogeneous cold plasma is developed. Assuming that the radiation spot size is larger than the plasma wavelength, we derive an envelope equation for the momentum of the electron fluid, taking into account relativistic electron mass variation and finite amplitude electron density perturbations that are driven by the relativistic ponderomotive force of light. Localized solutions of the envelope equation are discussed from an energy integral containing an effective potential. Numerical results for envelope solitons are obtained in a quasistationary approximation. The dependency of these localized solutions on the amplitude and the group velocity of the laser pulse is discussed. Also derived is an equation that governs the dynamics of the pulse center. PMID:12188834

  10. On the importance of viscous dissipation in Io

    NASA Technical Reports Server (NTRS)

    Ross, M. N.; Schubert, G.

    1985-01-01

    A model of Io is presented that consists of an elastic inner core, a low strength asthenosphere, and a thin elastic outer shell. The middle layer is ssumed to posses negligible shear strength and to be characterized by a Newtonian viscosity. The fluid in the viscous layer is forced to circulate mainly by the tidal distortion in the outer shell, modeled here as a variation in the distortion amplitude. As a result, heat is generated in the fluid by viscous dissipation. There are three important unconstrained parameters in the model: the fluid viscosity, the thickness of the fluid layer, and the degree to which the distortion of the outer shell is affected by the fluid viscosity. For a wide range of these model parameters viscous heating can generate just as much or even more heat than does elastic dissipation is the outer shell. The model suggests that much of Io's heat flow may be generated below the outer shell and could provide a source of energy for any silicate volcanism on the satellite.

  11. Squirming propulsion in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    de Corato, Marco; Greco, Francesco; Maffettone, Pier Luca

    2015-11-01

    The locomotion of organisms in Newtonian fluids at low-Reynolds numbers displays very different features from that at large Reynolds numbers; indeed, in this regime the viscous forces are dominant over the inertial ones and propulsion is possible only with non-time-reversible swimming strokes. In many situations of biological interest, however, small organisms are propelling themselves through non-Newtonian fluids such as mucus or biofilms, which display highly viscoelastic properties. Fluid viscoelasticity affects in a complex way both the micro-organisms' swimming velocity and dissipated power, possibly affecting their collective behavior. In our work, we employ the so called ``squirmer'' model to study the motion of spherical ciliated organisms in a viscoelastic fluid. We derive analytical formulas for the squirmer swimming velocity and dissipated power that show a complex interplay between the fluid constitutive behavior and the propulsion mechanism.

  12. Multifractal-cascade model for inertial and dissipation ranges based on the wavelet reconstruction method.

    PubMed

    Zhou, Long; Rauh, Cornelia; Delgado, Antonio

    2015-07-01

    The discrete wavelet is introduced to construct the turbulent velocity fields. The simple binary cascade model p model is served as the inertial range model for velocity increments. The dissipation model, which follows Foias et al. [Phys. Fluids A 2, 464 (1990)] takes the form of exp(-gk). The length of inertial and dissipation ranges is computed according to the different construction levels. Based on the binary cascade theory and the proposed dissipation model, the Reynolds number regarding to the cascade process can be estimated. The dissipation rate calculated from the proposed model not only agrees with the existing experiment data, but also suggests that the dissipation rate is not an independent variable with respect to the Reynolds number. PMID:26274272

  13. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    NASA Astrophysics Data System (ADS)

    McKerr, M.; Haas, F.; Kourakis, I.

    2016-05-01

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  14. Impacts on Dissipative Sonic Vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Yichao; Nesterenko, Vitali

    We investigate the propagating compression bell shape stress waves generated by the strikers with different masses impacting the sonic vacuum - the discrete dissipative strongly nonlinear metamaterial with zero long wave sound speed. The metamaterial is composed of alternating steel disks and Nitrile O-rings. Being a solid material, it has exceptionally low speed of the investigated stress waves in the range of 50 - 74 m/s, which is a few times smaller than the speed of sound or shock waves in air generated by blast. The shape of propagating stress waves was dramatically changed by the viscous dissipation. It prevented the incoming pulses from splitting into trains of solitary waves, a phenomenon characteristic of the non-dissipative strongly nonlinear discrete systems when the striker mass is larger than the cell mass. Both high-speed camera images and numerical simulations demonstrate the unusual rattling behavior of the top disk between the striker and the rest of the system. The linear momentum and energy from the striker were completely transferred to the metamaterial. This strongly nonlinear dissipative metamaterial can be designed for the optimal attenuation of dynamic loads generated by impact or contact explosion. Author 1 wants to acknowledge the support provided by UCSD.

  15. Spacecraft detumbling through energy dissipation

    NASA Technical Reports Server (NTRS)

    Fitz-Coy, Norman; Chatterjee, Anindya

    1993-01-01

    The attitude motion of a tumbling, rigid, axisymmetric spacecraft is considered. A methodology for detumbling the spacecraft through energy dissipation is presented. The differential equations governing this motion are stiff, and therefore an approximate solution, based on the variation of constants method, is developed and utilized in the analysis of the detumbling strategy. Stability of the detumbling process is also addressed.

  16. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  17. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2 Ⓧ S2

    DOE PAGESBeta

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2 Ⓧ S2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not matchmore » the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.« less

  18. Bernstein-Greene-Kruskal waves in relativistic cold plasma

    NASA Astrophysics Data System (ADS)

    Singh Verma, Prabal; Sengupta, Sudip; Kaw, Predhiman

    2012-03-01

    We construct the longitudinal traveling wave solution [Akhiezer and Polovin, Sov. Phys. JETP 3, 696 (1956)] from the exact space and time dependent solution of relativistic cold electron fluid equations [Infeld and Rowlands, Phys. Rev. Lett. 62, 1122 (1989)]. Ions are assumed to be static. We also suggest an alternative derivation of the Akhiezer Polovin solution after making the standard traveling wave Ansatz.

  19. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion. PMID:21929132

  20. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  1. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  2. Multiscale modeling with smoothed dissipative particle dynamics.

    PubMed

    Kulkarni, Pandurang M; Fu, Chia-Chun; Shell, M Scott; Leal, L Gary

    2013-06-21

    In this work, we consider two issues related to the use of Smoothed Dissipative Particle Dynamics (SDPD) as an intermediate mesoscale model in a multiscale scheme for solution of flow problems when there are local parts of a macroscopic domain that require molecular resolution. The first is to demonstrate that SDPD with different levels of resolution can accurately represent the fluid properties from the continuum scale all the way to the molecular scale. Specifically, while the thermodynamic quantities such as temperature, pressure, and average density remain scale-invariant, we demonstrate that the dynamic properties are quantitatively consistent with an all-atom Lennard-Jones reference system when the SDPD resolution approaches the atomistic scale. This supports the idea that SDPD can serve as a natural bridge between molecular and continuum descriptions. In the second part, a simple multiscale methodology is proposed within the SDPD framework that allows several levels of resolution within a single domain. Each particle is characterized by a unique physical length scale called the smoothing length, which is inversely related to the local number density and can change on-the-fly. This multiscale methodology is shown to accurately reproduce fluid properties for the simple problem of steady and transient shear flow. PMID:23802949

  3. Relativistic hydrodynamics of quark-gluon plasma and stability of scaling solutions

    NASA Astrophysics Data System (ADS)

    Kouno, Hiroaki; Maruyama, Masahiro; Takagi, Fujio; Saito, Koichi

    1990-05-01

    The scaling solutions of the relativistic hydrodynamics are expected to play an important role in describing the expansion stage of a quark-gluon plasma which may be formed in nucleus-nucleus collisions at high energies. After summarizing some general properties of the scaling solutions, we study in detail their stability against small perturbations. In some typical cases of the two-dimensional scaling solution it is found that (i) the scaling solution is stable if the Reynolds number R defined in terms of the viscosity coefficients is larger than a critical value Rc (=1), (ii) it is also stable for a long-wavelength perturbation if R is small enough, and (iii) it becomes unstable when R approaches Rc from below. It is also shown that these results are related to the time dependence of the Reynolds number, the entropy density, and the temperature, and the point R=Rc corresponds to a critical instant when the heating due to the dissipative processes balances with the cooling due to the expansion of the fluid. The stability of the scaling solution of the quark-gluon plasma is examined for typical ranges of the relevant parameters.

  4. Smoothed dissipative particle dynamics with angular momentum conservation

    SciTech Connect

    Müller, Kathrin Fedosov, Dmitry A. Gompper, Gerhard

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  5. Smoothed dissipative particle dynamics with angular momentum conservation

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2015-01-01

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  6. Field theory for string fluids

    NASA Astrophysics Data System (ADS)

    Schubring, Daniel; Vanchurin, Vitaly

    2015-08-01

    We develop a field theory description of nondissipative string fluids and construct an explicit mapping between field theory degrees of freedom and hydrodynamic variables. The theory generalizes both a perfect particle fluid and pressureless string fluid to what we call a perfect string fluid. Ideal magnetohydrodynamics is shown to be an example of the perfect string fluid whose equations of motion can be obtained from a particular choice of the Lagrangian. The Lagrangian framework suggests a straightforward extension of the perfect string fluid to more general anisotropic fluids describing higher dimensional branes such as domain walls. Other modifications of the Lagrangian are discussed which may be useful in describing relativistic superfluids and fluids containing additional currents.

  7. Dynamics of relativistic jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.

    1998-12-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  8. Transparency parameters from relativistically expanding outflows

    SciTech Connect

    Bégué, D.; Iyyani, S.

    2014-09-01

    In many gamma-ray bursts a distinct blackbody spectral component is present, which is attributed to the emission from the photosphere of a relativistically expanding plasma. The properties of this component (temperature and flux) can be linked to the properties of the outflow and have been presented in the case where there is no sub-photospheric dissipation and the photosphere is in coasting phase. First, we present the derivation of the properties of the outflow for finite winds, including when the photosphere is in the accelerating phase. Second, we study the effect of localized sub-photospheric dissipation on the estimation of the parameters. Finally, we apply our results to GRB 090902B. We find that during the first epoch of this burst the photosphere is most likely to be in the accelerating phase, leading to smaller values of the Lorentz factor than the ones previously estimated. For the second epoch, we find that the photosphere is likely to be in the coasting phase.

  9. DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES

    SciTech Connect

    Parfrey, Kyle; Beloborodov, Andrei M.; Hui, Lam

    2013-09-10

    Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.

  10. Dynamics of Dissipative Temporal Solitons

    NASA Astrophysics Data System (ADS)

    Peschel, U.; Michaelis, D.; Bakonyi, Z.; Onishchukov, G.; Lederer, F.

    The properties and the dynamics of localized structures, frequently termed solitary waves or solitons, define, to a large extent, the behavior of the relevant nonlinear system [1]. Thus, it is a crucial and fundamental issue of nonlinear dynamics to fully characterize these objects in various conservative and dissipative nonlinear environments. Apart from this fundamental point of view, solitons (henceforth we adopt this term, even for localized solutions of non-integrable systems) exhibit a remarkable potential for applications, particularly if optical systems are considered. Regarding the type of localization, one can distinguish between temporal and spatial solitons. Spatial solitons are self-confined beams, which are shape-invariant upon propagation. (For an overview, see [2, 3]). It can be anticipated that they could play a vital role in all-optical processing and logic, since we can use their complex collision behavior [4]. Temporal solitons, on the other hand, represent shapeinvariant (or breathing) pulses. It is now common belief that robust temporal solitons will play a major role as elementary units (bits) of information in future all-optical networks [5, 6]. Until now, the main emphasis has been on temporal and spatial soliton families in conservative systems, where energy is conserved. Recently, another class of solitons, which are characterized by a permanent energy exchange with their environment, has attracted much attention. These solitons are termed dissipative solitons or auto-solitons. They emerge as a result of a balance between linear (delocalization and losses) and nonlinear (self-phase modulation and gain/loss saturation) effects. Except for very few cases [7], they form zero-parameter families and their features are entirely fixed by the underlying optical system. Cavity solitons form a prominent type. They appear as spatially-localized transverse peaks in transmission or reflection, e.g. from a Fabry-Perot cavity. They rely strongly on the

  11. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.

    PubMed

    Hamlin, Nathaniel D; Newman, William I

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  12. Analytic solutions of the relativistic Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen

    2015-04-01

    We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.

  13. Hydrodynamical scaling laws to explore the physics of tidal dissipation in star-planet systems

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-10-01

    Fluid celestial bodies can be strongly affected by tidal perturbations, which drive the evolution of close planetary systems over long timescales. While the tidal response of solid bodies varies smoothly with the tidal frequency, fluid bodies present a highly frequency-resonant tidal dissipation resulting from the complex hydrodynamical response. In these bodies, tides have the form of a combination of inertial waves restored by the Coriolis acceleration and gravity waves in the case of stably stratified layers, which are restored by the Archimedean force. Because of processes such as viscous friction and thermal diffusion, the energy given by the tidal forcing is dissipated. This directly impact the architecture of planetary systems. In this study, we detail a local analytical model which makes us able to characterize the internal dissipation of fluid bodies as functions of identified control parameters such as the inertial, Brunt-Väisälä and tidal frequencies, and the Ekman and Prandtl numbers.

  14. Polarization swings reveal magnetic energy dissipation in blazars

    SciTech Connect

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; Guo, Fan; Li, Hui

    2015-04-30

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.

  15. Polarization swings reveal magnetic energy dissipation in blazars

    DOE PAGESBeta

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; Guo, Fan; Li, Hui

    2015-04-30

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less

  16. SPHS: smoothed particle hydrodynamics with a higher order dissipation switch

    NASA Astrophysics Data System (ADS)

    Read, J. I.; Hayfield, T.

    2012-06-01

    We present a novel implementation of smoothed particle hydrodynamics that uses the spatial derivative of the velocity divergence as a higher order dissipation switch. Our switch - which is second order accurate - detects flow convergence before it occurs. If particle trajectories are going to cross, we switch on the usual SPH artificial viscosity, as well as conservative dissipation in all advected fluid quantities (e.g. the entropy). The viscosity and dissipation terms (that are numerical errors) are designed to ensure that all fluid quantities remain single valued as particles approach one another, to respect conservation laws, and to vanish on a given physical scale as the resolution is increased. SPHS alleviates a number of known problems with 'classic' SPH, successfully resolving mixing, and recovering numerical convergence with increasing resolution. An additional key advantage is that - treating the particle mass similarly to the entropy - we are able to use multimass particles, giving significantly improved control over the refinement strategy. We present a wide range of code tests including the Sod shock tube, Sedov-Taylor blast wave, Kelvin-Helmholtz Instability, the 'blob test' and some convergence tests. Our method performs well on all tests, giving good agreement with analytic expectations.

  17. Hamiltonian analysis of interacting fluids

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Ghosh, Subir; Mitra, Arpan Krishna

    2015-05-01

    Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed.

  18. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  19. Dissipative chaos in semiconductor superlattices

    SciTech Connect

    Alekseev, K.N.; Berman, G.P. ||; Campbell, D.K.; Cannon, E.H.; Cargo, M.C.

    1996-10-01

    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use a semiclassical, balance-equation approach, which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free-electron lasers, chaos may be observable in SSL{close_quote}s. We clarify the nature of this interesting nonlinear dynamics in the superlattice{endash}external-field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field, and to Josephson junctions. {copyright} {ital 1996 The American Physical Society.}

  20. Nonlinear collisionless damping of Weibel turbulence in relativistic blast waves

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin

    2015-01-01

    The Weibel/filamentation instability is known to play a key role in the physics of weakly magnetized collisionless shock waves. From the point of view of high energy astrophysics, this instability also plays a crucial role because its development in the shock precursor populates the downstream with a small-scale magneto-static turbulence which shapes the acceleration and radiative processes of suprathermal particles. The present work discusses the physics of the dissipation of this Weibel-generated turbulence downstream of relativistic collisionless shock waves. It calculates explicitly the first-order nonlinear terms associated to the diffusive nature of the particle trajectories. These corrections are found to systematically increase the damping rate, assuming that the scattering length remains larger than the coherence length of the magnetic fluctuations. The relevance of such corrections is discussed in a broader astrophysical perspective, in particular regarding the physics of the external relativistic shock wave of a gamma-ray burst.

  1. Relativistic radiative transfer and relativistic plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-04-01

    Relativistic radiative transfer and relativistic plane-parallel flows accelerated from their base like accretion disk winds are numerically examined under the special relativistic treatment. We first solve the relativistic transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained flux, we then solve the hydrodynamical equation, and obtain the new velocity field and the mass-loss rate as an eigen value. We repeat these double-iteration processes until both the intensity and velocity profiles converge. Under this double iteration, we solve the relativistic radiative transfer equation and relativistic flows in the vertical direction, simultaneously. The flows are gradually accelerated, as the optical depth decreases towards the surface. The mass-loss rate dot{J} is roughly expressed in terms of the optical depth τb and terminal speed βs of the flow as dot{J} ˜ 10 τ_b β _s^{-3/4}.

  2. Transient chaotic transport in dissipative drift motion

    NASA Astrophysics Data System (ADS)

    Oyarzabal, R. S.; Szezech, J. D.; Batista, A. M.; de Souza, S. L. T.; Caldas, I. L.; Viana, R. L.; Sanjuán, M. A. F.

    2016-04-01

    We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.

  3. Local relativistic exact decoupling.

    PubMed

    Peng, Daoling; Reiher, Markus

    2012-06-28

    We present a systematic hierarchy of approximations for local exact decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and for selected molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary exact-decoupling transformation--called local approximation to the unitary decoupling transformation (DLU)--provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-N(2) scaling can be further reduced to linear scaling by employing a neighboring-atomic-blocks approximation. Therefore, DLU is an efficient relativistic method well suited for relativistic calculations on large molecules. If a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can be further reduced by employing a well-defined nonrelativistic approximation for these light atoms without significant loss of accuracy. We also demonstrate that the standard and straightforward transformation of only the atomic block-diagonal entries in the Hamiltonian--denoted diagonal local approximation to the Hamiltonian (DLH) in this paper--introduces an error that is on the order of the error of second-order Douglas-Kroll-Hess (i.e., DKH2) when compared with exact-decoupling results. Hence, the local DLH approximation would be pointless in an exact-decoupling framework, but can be efficiently employed in combination with the fast to evaluate DKH2 Hamiltonian in order to speed up calculations

  4. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  5. Power Dissipation in the Subtectorial Space of the Mammalian Cochlea Is Modulated by Inner Hair Cell Stereocilia

    PubMed Central

    Prodanovic, Srdjan; Gracewski, Sheryl; Nam, Jong-Hoon

    2015-01-01

    The stereocilia bundle is the mechano-transduction apparatus of the inner ear. In the mammalian cochlea, the stereocilia bundles are situated in the subtectorial space (STS)—a micrometer-thick space between two flat surfaces vibrating relative to each other. Because microstructures vibrating in fluid are subject to high-viscous friction, previous studies considered the STS as the primary place of energy dissipation in the cochlea. Although there have been extensive studies on how metabolic energy is used to compensate the dissipation, much less attention has been paid to the mechanism of energy dissipation. Using a computational model, we investigated the power dissipation in the STS. The model simulates fluid flow around the inner hair cell (IHC) stereocilia bundle. The power dissipation in the STS because of the presence IHC stereocilia increased as the stimulating frequency decreased. Along the axis of the stimulating frequency, there were two asymptotic values of power dissipation. At high frequencies, the power dissipation was determined by the shear friction between the two flat surfaces of the STS. At low frequencies, the power dissipation was dominated by the viscous friction around the IHC stereocilia bundle—the IHC stereocilia increased the STS power dissipation by 50- to 100-fold. There exists a characteristic frequency for STS power dissipation, CFSTS, defined as the frequency where power dissipation drops to one-half of the low frequency value. The IHC stereocilia stiffness and the gap size between the IHC stereocilia and the tectorial membrane determine the characteristic frequency. In addition to the generally assumed shear flow, nonshear STS flow patterns were simulated. Different flow patterns have little effect on the CFSTS. When the mechano-transduction of the IHC was tuned near the vibrating frequency, the active motility of the IHC stereocilia bundle reduced the power dissipation in the STS. PMID:25650916

  6. The cosmic-ray shock structure problem for relativistic shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  7. The Poisson equation at second order in relativistic cosmology

    SciTech Connect

    Hidalgo, J.C.; Christopherson, Adam J.; Malik, Karim A. E-mail: Adam.Christopherson@nottingham.ac.uk

    2013-08-01

    We calculate the relativistic constraint equation which relates the curvature perturbation to the matter density contrast at second order in cosmological perturbation theory. This relativistic ''second order Poisson equation'' is presented in a gauge where the hydrodynamical inhomogeneities coincide with their Newtonian counterparts exactly for a perfect fluid with constant equation of state. We use this constraint to introduce primordial non-Gaussianity in the density contrast in the framework of General Relativity. We then derive expressions that can be used as the initial conditions of N-body codes for structure formation which probe the observable signature of primordial non-Gaussianity in the statistics of the evolved matter density field.

  8. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  9. Coalescence cascade of dissipative solitons in parametrically driven systems.

    PubMed

    Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473

  10. Efficient Schmidt number scaling in dissipative particle dynamics.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-12-28

    Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies. PMID:26723591

  11. Efficient Schmidt number scaling in dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.; García, Angel E.

    2015-12-01

    Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies.

  12. Distinct optical properties of relativistically degenerate matter

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-06-01

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  13. Distinct optical properties of relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  14. Relativistic kinetic theory of magnetoplasmas

    SciTech Connect

    Beklemishev, Alexei; Nicolini, Piero; Tessarotto, Massimo

    2005-05-16

    Recently, an increasing interest in astrophysical as well as laboratory plasmas has been manifested in reference to the existence of relativistic flows, related in turn to the production of intense electric fields in magnetized systems. Such phenomena require their description in the framework of a consistent relativistic kinetic theory, rather than on relativistic MHD equations, subject to specific closure conditions. The purpose of this work is to apply the relativistic single-particle guiding-center theory developed by Beklemishev and Tessarotto, including the nonlinear treatment of small-wavelength EM perturbations which may naturally arise in such systems. As a result, a closed set of relativistic gyrokinetic equations, consisting of the collisionless relativistic kinetic equation, expressed in hybrid gyrokinetic variables, and the averaged Maxwell's equations, is derived for an arbitrary four-dimensional coordinate system.

  15. Dissipative effects in nonlinear Klein-Gordon dynamics

    NASA Astrophysics Data System (ADS)

    Plastino, A. R.; Tsallis, C.

    2016-03-01

    We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.

  16. Relativistic klystron afterburner simulation techniques

    SciTech Connect

    Ryne, R.D.; Jong, R.A.; Westenskow, G.A.; Yu, S.S.

    1990-01-24

    We are developing computer codes for the numerical simulations of relativistic klystrons and relativistic klystron afterburners''. The purpose of this note is to discuss the main features of our numerical model. A relativistic klystron afterburner'' is a scheme to extract power from a spent FEL electron beam. Power is extracted from the beam by passing it through klystron output cavities. To study the feasibility of this concept, we are developing computer codes for the numerical simulation of relativistic klystrons and afterburners. The purpose of this note is to discuss the main features of our numerical model.

  17. Relativistic interactions and realistic applications

    SciTech Connect

    Hoch, T.; Madland, D.; Manakos, P.; Mannel, T.; Nikolaus, B.A.; Strottman, D. |

    1992-12-31

    A four-fermion-coupling Lagrangian (relativistic Skyrme-type) interaction has been proposed for relativistic nuclear structure calculations. This interaction, which has the merit of simplicity, is from the outset tailored as an effective interaction for relativistic Hartree-Fock calculations. Various extensions of such a model are discussed and compared with Walecka`s meson-nucleon mean field approach. We also present results of the calculation of nuclear ground state properties with an extended (density dependent) version of the four fermion interaction in a relativistic Hartree-Fock approximation.

  18. Modelling of relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Berwick, Stuart James

    In order to characterise the propagation and stability of linearly polarised laser pulses of arbitrary intensity interacting with underdense plasma, a one-dimensional, fully relativistic, covariant electron fluid model is derived. As a first step, the model is Lorentz transformed into a frame moving with the group velocity of the laser pulse. A linear instability analysis is undertaken which generates an infinite hierarchy of homogeneous mode-coupling equations describing the decay of the laser pump via stimulated Raman forward scattering (SRFS), stimulated Raman back scattering (SRBS) and the relativistic modulational instability (RMI). SRFS and RMI are seen to merge into a hybrid instability at high intensities (1>1018Wcm-2) and a 6-wave analysis (rather than the conventional 3 or 4-wave) is required to accurately predict growth. Next, an Eulerian fluid code is developed in order to evolve the full non- linear equations. The method of characteristics is used to integrate the electromagnetic wave equation and a predictor-corrector algorithm is used to integrate the equations of continuity and momentum. After testing, this code is used to simulate the propagation and stability of ultra-short (<200fs), 'table-top' and cos2 modulated laser pulses of relativistic intensities in underdense plasma. Comparison is made to the predictions of the dispersion relation and growth rates obtained in each case are reconciled. The spatiotemporal behaviour is discussed with reference to the results of a 3-wave WKB model of the interaction. The importance of seeding mechanisms, pulse shape and relativity on the evolution of the instabilities is also discussed.

  19. Harnessing spin precession with dissipation

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.

  20. Harnessing spin precession with dissipation

    PubMed Central

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors. PMID:26816050

  1. Conservation-dissipation formalism of irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Hong, Liu; Yang, Zaibao; Yong, Wen-An

    2015-06-01

    We propose a conservation-dissipation formalism (CDF) for coarse-grained descriptions of irreversible processes. This formalism is based on a stability criterion for non-equilibrium thermodynamics. The criterion ensures that non-equilibrium states tend to equilibrium in long time. As a systematic methodology, CDF provides a feasible procedure in choosing non-equilibrium state variables and determining their evolution equations. The equations derived in CDF have a unified elegant form. They are globally hyperbolic, allow a convenient definition of weak solutions, and are amenable to existing numerics. More importantly, CDF is a genuinely nonlinear formalism and works for systems far away from equilibrium. With this formalism, we formulate novel thermodynamics theories for heat conduction in rigid bodies and non-isothermal compressible Maxwell fluid flows as two typical examples. In these examples, the non-equilibrium variables are exactly the conjugate variables of the heat fluxes or stress tensors. The new theory generalizes Cattaneo's law or Maxwell's law in a regularized and nonlinear fashion.

  2. Relativistic Quantum Communication

    NASA Astrophysics Data System (ADS)

    Hosler, Dominic

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tends to zero. We investigate the observers' abilities to precisely measure the parameter of a state that is communicated between Alice and Rob. This parameter was encoded to either the amplitudes of a single excitation state or the phase of a NOON state. With NOON states the dual rail encoding provided greater precision, which is different to the results for the other situations. The precision was maximum for a particular number of excitations in the NOON state. We calculated the bipartite communication for Alice-Rob and Alice-AntiRob beyond the single mode approximation. Rob and AntiRob are causally disconnected counter-accelerating observers. We found that Alice must choose in advance with whom, Rob or AntiRob she wants to create entanglement using a particular setup. She could communicate classically to both.

  3. Null fluids: A new viewpoint of Galilean fluids

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash

    2016-05-01

    In this article, we study a Galilean fluid with a conserved U (1 ) current up to anomalies. We construct a relativistic system, which we call a null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincaré symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in the derivative expansion. We also devise a mechanism to introduce U (1 ) anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean fluid.

  4. Viscous dissipation and radiative transport in magnetic reconnection of collisionless magnetized plasma

    NASA Astrophysics Data System (ADS)

    Yun, Gunsu; Ji, Jeong-Young; Thatipamula, Shekar; Kstar Team

    2015-11-01

    Viscous dissipation rate of magnetic field energy due to wave-like fluctuations in collisionless magnetized plasma is obtained analytically using the exact integral closure for electron fluid viscosity [Ji, Phys. Plasmas 21 (2014)]. For typical high-temperature tokamak plasma, the viscous resistivity is several orders larger than the Spitzer (collisional) resistivity. For magnetic reconnection, it is also found that the radiative transport (i.e. Poynting flux) of the field energy of Alfven waves [Bellan, Phys. Plasmas 5, 3081 (1998)] is comparable to the viscous dissipation. The viscous dissipation is more effective for shorter wavelength fluctuation. The importance of viscous dissipation is supported by broadband emission and chirping-down phenomena observed in the ion cyclotron harmonic frequency range at the crash onset of edge-localized mode on the KSTAR tokamak. Work supported by the National Research Foundation of Korea and the Asia-Pacific Center for Theoretical Physics.

  5. Frequency agile relativistic magnetrons

    SciTech Connect

    Levine, J.S.; Harteneck, B.D.; Price, H.D.

    1995-11-01

    The authors are developing a family of frequency agile relativistic magnetrons to continuously cover the bands from 1 to 3 GHz. They have achieved tuning ranges of > 33%. The magnetrons have been operated repetitively in burst mode at rates up to 100 pps for 10 sec. Power is extracted from two resonators, and is in the range of 400--600 MW, fairly flat across the tuning bandwidth. They are using a network of phase shifters and 3-dB hybrids to combine the power into a single arm and to provide a continuously adjustable attenuator.

  6. Republication of: Relativistic cosmology

    NASA Astrophysics Data System (ADS)

    Robertson, H. P.

    2012-08-01

    This is a reprinting of the paper by Howard Percy Robertson, first published in 1933 in Rev. Mod. Phys., that is a very authoritative summary of relativistic cosmology at the stage at which it was up to 1933. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by George Ellis, and by Robertson's biography, compiled by Andrzej Krasinski from printed sources.

  7. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  8. Relativistic nuclear collisions: theory

    SciTech Connect

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures.

  9. Ultrabaric relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Papini, G.; Weiss, M.

    1985-09-01

    Ultrabaric superfluid solutions are obtained for Einstein's equations to examine the possibility of the existence of superluminal sound speeds. The discussion is restricted only by requiring the energy-momentum tensor and the equation of state of matter to be represented by full relativistic equations. Only a few universes are known to satisfy the conditions, and those exhibit tension and are inflationary. Superluminal sound velocities are shown, therefore, to be possible for the interior Schwarzchild metric, which has been used to explain the red shift of quasars, and the Stephiani solution (1967). The latter indicates repeated transitions between superluminal and subliminal sound velocities in the hyperbaric superfluid of the early universe.

  10. Dissipative effects on quantum sticking.

    PubMed

    Zhang, Yanting; Clougherty, Dennis P

    2012-04-27

    Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s~E((1+α)/2(1-α)); for a charged particle, we obtain s~E(α/2(1-α)). Thus, "quantum mirrors"-surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero-can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon. PMID:22680861

  11. Dissipative Effects on Quantum Sticking

    NASA Astrophysics Data System (ADS)

    Zhang, Yanting; Clougherty, Dennis P.

    2012-04-01

    Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s˜E(1+α)/2(1-α); for a charged particle, we obtain s˜Eα/2(1-α). Thus, “quantum mirrors”—surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero—can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon.

  12. Natural approach to quantum dissipation

    NASA Astrophysics Data System (ADS)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  13. Power dissipation of air turbine VT - 400

    NASA Astrophysics Data System (ADS)

    Noga, Tomas; Žitek, Pavel

    2016-06-01

    This article provides an overview of ongoing systematic research of a turbine stage efficiency on a model air turbine VT 400. It contains an analysis of existing mathematical relations for a rotor friction dissipation calculation, on which basis a practical procedure of a calculation of those dissipations is recommended. Friction dissipations in the turbine rotor were divided into three main tasks: disc friction dissipations, shaft friction dissipations and dissipations in bearings. A contribution of performed work lies in the fact, that there is a dependence of rotor friction losses on its speed and a stage reaction has been revealed. This knowledge is completely essential for a further research, and will lead to more precise results of experiments. For the future, we plan to adjust the measuring track by adding a moment collar. We also assume an experimental verification of calculated friction losses.

  14. Nonlinear absorption of Alfven wave in dissipative plasma

    SciTech Connect

    Taiurskii, A. A. Gavrikov, M. B.

    2015-10-28

    We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.

  15. Numerical solution of boundary layer MHD flow with viscous dissipation.

    PubMed

    Mishra, S R; Jena, S

    2014-01-01

    The present paper deals with a steady two-dimensional laminar flow of a viscous incompressible electrically conducting fluid over a shrinking sheet in the presence of uniform transverse magnetic field with viscous dissipation. Using suitable similarity transformations the governing partial differential equations are transformed into ordinary differential equations and then solved numerically by fourth-order Runge-Kutta method with shooting technique. Results for velocity and temperature profiles for different values of the governing parameters have been discussed in detail with graphical representation. The numerical evaluation of skin friction and Nusselt number are also given in this paper. PMID:24672367

  16. Onset of Area-Dependent Dissipation in Droplet Spreading

    NASA Astrophysics Data System (ADS)

    Ilton, Mark; Bäumchen, Oliver; Dalnoki-Veress, Kari

    2015-07-01

    We probe the viscous relaxation of structured liquid droplets in the partial wetting regime using a diblock copolymer system. The relaxation time of the droplets is measured after a step change in temperature as a function of three tunable parameters: droplet size, equilibrium contact angle, and the viscosity of the fluid. Contrary to what is typically observed, the late-stage relaxation time does not scale with the radius of the droplet—rather, relaxation scales with the radius squared. Thus, the energy dissipation depends on the contact area of the droplet, rather than the contact line.

  17. Matter-wave solitons supported by dissipation

    SciTech Connect

    Alexandrescu, Adrian; Perez-Garcia, Victor M.

    2006-05-15

    We show how long-lived self-localized matter waves can exist in Bose-Einstein condensates with a nonlinear dissipative mechanism. The ingredients leading to such structures are a spatial phase generating a flux of atoms toward the condensate center and the dissipative mechanism provided by the inelastic three-body collisions in atomic Bose-Einstein condensates. The outcome is a striking example of nonlinear structure supported by dissipation.

  18. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  19. Nonlinear optics in relativistic plasmas.

    PubMed

    Umstadter, D; Chen, S Y; Wagner, R; Maksimchuk, A; Sarkisov, G

    1998-03-30

    We review our recent work on the various nonlinear optical processes that occur as an intense laser propagates through a relativistic plasma. These include the experimental observations of electron acceleration driven by laser-wakefield generation, relativistic self-focusing, waveguide formation and laser self-channeling. PMID:19377614

  20. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  1. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas

    PubMed Central

    Matthaeus, W. H.; Wan, Minping; Servidio, S.; Greco, A.; Osman, K. T.; Oughton, S.; Dmitruk, P.

    2015-01-01

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085

  2. Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Chung, T. J.

    2002-03-01

    Computational fluid dynamics (CFD) techniques are used to study and solve complex fluid flow and heat transfer problems. This comprehensive text ranges from elementary concepts for the beginner to state-of-the-art CFD for the practitioner. It discusses and illustrates the basic principles of finite difference (FD), finite element (FE), and finite volume (FV) methods, with step-by-step hand calculations. Chapters go on to examine structured and unstructured grids, adaptive methods, computing techniques, and parallel processing. Finally, the author describes a variety of practical applications to problems in turbulence, reacting flows and combustion, acoustics, combined mode radiative heat transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows. Students and practitioners--particularly in mechanical, aerospace, chemical, and civil engineering--will use this authoritative text to learn about and apply numerical techniques to the solution of fluid dynamics problems.

  3. Relativistic jets in astrophysics

    NASA Astrophysics Data System (ADS)

    Derishev, E. V.; Zheleznyakov, V. V.; Koryagin, S. A.; Kocharovsky, Vl. V.

    The properties of the plasma state of matter are determined by the motion and the electromagnetic emission of the non-bound electrically charged particles --- electrons, positrons, protons and ions. It is not easy to create plasma in a laboratory. However this state is typical for the cosmic conditions --- at the stars and in the interstellar space. The properties of the laboratory as well as the space plasma are investigated at the Institute of Applied Physics of the Russian Academy of Sciences. The research is focused on the mechanisms of generation and propagation of the electromagnetic radiation --- from the radio waves to the gamma-rays --- in the planetary and stellar atmospheres and at the other astrophysical objects. The extreme physical conditions for a plasma are realized near the compact objects like black holes, neutron stars and collapsing nuclei of the massive stars. The plasma could be strongly non-equlibrium and can produce strong electromagnetic fields. Its bulk motion as well as the chaotic motion of the constituting particles can be relativistic, i. e. the motion can achieve velocities close to the speed of light. The relativistic plasma is frequently observed in the form of jets.

  4. A relativistic trolley paradox

    NASA Astrophysics Data System (ADS)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  5. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  6. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  7. Kinetic responses of Dunaliella in moving fluids.

    PubMed

    Chengala, Ahammed Anwar; Hondzo, Miki; Troolin, Dan; Lefebvre, Paul A

    2010-09-01

    The objective of this work was to quantify the kinetic behavior of Dunaliella primolecta (D. primolecta) subjected to controlled fluid flow under laboratory conditions. In situ velocities of D. primolecta were quantified by micron-resolution particle image velocimetry and particle tracking velocimetry. Experiments were performed under a range of velocity gradients and corresponding energy dissipation levels at microscopic scales similar to the energy dissipation levels of natural aquatic ecosystems. An average swimming velocity of D. primolecta in a stagnant fluid was 41 microm/s without a preferential flow direction. In a moving fluid, the sample population velocities of D. primolecta follow a log-normal distribution. The variability of sample population velocities was maximal at the highest fluid flow velocity in the channel. Local fluid velocity gradients inhibited the accrual of D. primolecta by twofold 5 days after the initiation of the experiment in comparison to the non-moving fluid control experiment. PMID:20506336

  8. Spectral wave dissipation over a barrier reef

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Bandet, Marion D.; Pawlak, Geno; Atkinson, Marlin J.; Monismith, Stephen G.; Koseff, Jeffrey R.

    2005-04-01

    A 2 week field experiment was conducted to measure surface wave dissipation on a barrier reef at Kaneohe Bay, Oahu, Hawaii. Wave heights and velocities were measured at several locations on the fore reef and the reef flat, which were used to estimate rates of dissipation by wave breaking and bottom friction. Dissipation on the reef flat was found to be dominated by friction at rates that are significantly larger than those typically observed at sandy beach sites. This is attributed to the rough surface generated by the reef organisms, which makes the reef highly efficient at dissipating energy by bottom friction. Results were compared to a spectral wave friction model, which showed that the variation in frictional dissipation among the different frequency components could be described using a single hydraulic roughness length scale. Surveys of the bottom roughness conducted on the reef flat showed that this hydraulic roughness length was comparable to the physical roughness measured at this site. On the fore reef, dissipation was due to the combined effect of frictional dissipation and wave breaking. However, in this region the magnitude of dissipation by bottom friction was comparable to wave breaking, despite the existence of a well-defined surf zone there. Under typical wave conditions the bulk of the total wave energy incident on Kaneohe Bay is dissipated by bottom friction, not wave breaking, as is often assumed for sandy beach sites and other coral reefs.

  9. Dissipation in deforming chaotic billiards

    NASA Astrophysics Data System (ADS)

    Barnett, Alexander Harvey

    Chaotic billiards (hard-walled cavities) in two or more dimensions are paradigm systems in the fields of classical and quantum chaos. We study the dissipation (irreversible heating) rate in such billiard systems due to general shape deformations which are periodic in time. We are motivated by older studies of one-body nuclear dissipation and by anticipated mesoscopic applications. We review the classical and quantum linear response theories of dissipation rate and demonstrate their correspondence in the semiclassical limit. In both pictures, heating is a result of stochastic energy spreading. The heating rate can be expressed as a frequency-dependent friction coefficient μ(ω), which depends on billiard shape and deformation choice. We show that there is a special class of deformations for which μ vanishes as like a power law in the small- ω limit. Namely, for deformations which cause translations and dilations μ ~ ω4 whereas for those which cause rotations μ ~ ω2. This contrasts the generic case for which μ ~ ω4 We show how a systematic treatment of this special class leads to an improved version of the `wall formula' estimate for μ(0). We show that the special nature of dilation (a new result) is semiclassically equivalent to a quasi- orthogonality relation between the (undeformed) billiard quantum eigenstates on the boundary. This quasi- orthogonality forms the heart of a `scaling method' for the numerical calculation of quantum eigenstates, invented recently by Vergini and Saraceno. The scaling method is orders of magnitude more efficient than any other known billiard quantization method, however an adequate explanation for its success has been lacking until now. We explain the scaling method, its errors, and applications. We also present improvements to Heller's plane wave method. Two smaller projects conclude the thesis. Firstly, we give a new formalism for quantum point contact (QPC) conductance in terms of scattering cross-section in the half

  10. Dissipative Structures and Educational Contexts: Transforming Schooling for the 21st Century.

    ERIC Educational Resources Information Center

    Fleener, M. Jayne

    Chaos theory, dissipative structures analysis, and complexity theory have all been used in various branches of the sciences to examine patterns of change in complex systems. This paper considers how educational theory and research can benefit from changes in scientific fields as diverse as quantum mechanics, fluid dynamics, geology, and economics…

  11. Global solutions of the relativistic Euler equations

    NASA Astrophysics Data System (ADS)

    Smoller, Joel; Temple, Blake

    1993-09-01

    We demonstrate the existence of solutions with shocks for the equations describing a perfect fluid in special relativity, namely, div T=0, where T ij =( p+ ρc 2) u i u j + pη ij is the stress energy tensor for the fluid. Here, p denotes the pressure, u the 4-velocity, φ the mass-energy density of the fluid, η ij the flat Minkowski metric, and c the speed of light. We assume that the equation of state is given by p= σ 2 ρ, where σ 2, the sound speed, is constant. For these equations, we construct bounded weak solutions of the initial value problem in two dimensional Minkowski spacetime, for any initial data of finite total variation. The analysis is based on showing that the total variation of the variable ln(ρ) is non-increasing on approximate weak solutions generated by Glimm's method, and so this quantity, unique to equations of this type, plays a role similar to an energy function. We also show that the weak solutions (ρ( x 0, x 1), v( x 0, x 1)) themselves satisfy the Lorentz invariant estimates Var{ln(ρ( x 0,·)}< V 0 andleft\\{ {In{c + v(x^0 , \\cdot )}/{c - v(x^0 , \\cdot )}} right\\}< V_1 for all x 0≧0, where V 0 and V 1 are Lorentz invariant constants that depend only on the total variation of the initial data, and v is the classical velocity. The equation of state p=( c 2/3)ρ describes a gas of highly relativistic particles in several important general relativistic models which describe the evolution of stars.

  12. Upper and lower dissipative bounds for THMC Coupling

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Karrech, A.; Chua, H.; Poulet, T.; Trefry, M. G.; Western Australian Geothermal Centre of Excellence

    2011-12-01

    The ability to understand and predict how thermal, hydrological, mechanical and chemical (THMC) processes interact is fundamental to the exploration, stimulation and exploitation of natural and enhanced geothermal systems. Because of the complexity of THMC coupling exact solutions are hard or impossible to find. Therefore, a new perspective is required for assessing upper and lower bounds of dissipation in such simulations. We present (i) such a new Thermal-Hydrological-Mechanical-Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (ii) show how THMC feedback is incorporated in the thermodynamics approach; (iii) suggest a unifying thermodynamic framework for coupling across scales and (iv) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. Using forward simulations these bounds can be used for assessing uncertainties of material properties as a function of independent variables (e.g. temperature, pressure, damage, grain size, chemistry, strain...). At the large scale the bounds can be used to characterize uncertainties of geothermal fluid extraction from natural and stimulated geothermal reservoirs.
    Upper and lower bounds of dissipation Boundary conditions applied to the model boundary for THMC coupling

  13. Dissipative Effects on Quantum Sticking

    NASA Astrophysics Data System (ADS)

    Zhang, Yanting; Clougherty, Dennis

    2011-03-01

    Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral particles are examined. For the case of an ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain an analytic expression for the rate of sticking as an asymptotic expansion in the incident energy E . The low-energy threshold law for quantum sticking is found to be robust with respect to many-body effects and remains a universal scaling law to leading order in E . Non-universal many-body effects alter the coefficient of the rate law and the exponent of a subdominant term. We gratefully acknowledge support from NSF under DMR-0814377.

  14. Rotational chaos in dissipative systems

    NASA Astrophysics Data System (ADS)

    Casdagli, Martin

    1988-01-01

    An investigation is made into chaotic attractors arising from a quasiperiodic transition to chaos, using a quantity called the rotation interval. The rotation interval describes the short term rotation rates available to the attractor. We present algorithms to calculate it given an appropriate map, differential equation or time series. We find that the rotation interval has a very robust parameter dependence: its endpoints are almost always phase locked. Our numerical ideas are based on the theory of dissipative twist maps, which is reviewed. This theory is also used to prove a theorem about the non-existence of certain strange attractors in nearly conservative systems. Finally, an investigation is made into the relationship between the rotation interval and topological entropy, and the breakup of invariant circles.

  15. Dissipation Bound for Thermodynamic Control

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin B.

    2015-12-01

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol.

  16. Dissipation Bound for Thermodynamic Control.

    PubMed

    Machta, Benjamin B

    2015-12-31

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol. PMID:26764981

  17. Internal dissipation of a polymer

    SciTech Connect

    Deutsch, J. M.

    2010-06-15

    The dynamics of flexible polymer molecules are often assumed to be governed by hydrodynamics of the solvent. However there is considerable evidence that internal dissipation of a polymer contributes as well. Here we investigate the dynamics of a single chain in the absence of solvent to characterize the nature of this internal friction. We model the chains as freely hinged but with localized bond angles and threefold symmetric dihedral angles. We show that the damping is close but not identical to Kelvin damping, which depends on the first temporal and second spatial derivative of monomer position. With no internal potential between monomers, the magnitude of the damping is small for long wavelengths and weakly damped oscillatory time dependent behavior is seen for a large range of spatial modes. When the size of the internal potential is increased, such oscillations persist, but the damping becomes larger. However underdamped motion is present even with quite strong dihedral barriers for long enough wavelengths.

  18. Oscillations of general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Andersson, N.; Comer, G. L.; Langlois, D.

    2002-11-01

    We develop a general formalism to treat, in general relativity, the nonradial oscillations of a superfluid neutron star about static (non-rotating) configurations. The matter content of these stars can, as a first approximation, be described by a two-fluid model: one fluid is the neutron superfluid, which is believed to exist in the core and inner crust of mature neutron stars; the other fluid is a conglomerate of all charged constituents (crust nuclei, protons, electrons, etc.). We use a system of equations that governs the perturbations both of the metric and of the matter variables, whatever the equation of state for the two fluids. The entrainment effect is explicitly included. We also take the first step towards allowing for the superfluid to be confined to a part of the star by allowing for an outer envelope composed of ordinary fluid. We derive and implement the junction conditions for the metric and matter variables at the core-envelope interface, and briefly discuss the nature of the involved phase transition. We then determine the frequencies and gravitational-wave damping times for a simple model equation of state, incorporating entrainment through an approximation scheme which extends present Newtonian results to the general relativistic regime. We investigate how the quasinormal modes of a superfluid star are affected by changes in the entrainment parameter, and unveil a series of avoided crossings between the various modes. We provide a proof that, unless the equation of state is very special, all modes of a two-fluid star must radiate gravitationally. We also discuss the future detectability of pulsations in a superfluid star and argue that it may be possible (given advances in the relevant technology) to use gravitational-wave data to constrain the parameters of superfluid neutron stars.

  19. Relativistic perturbations in ΛCDM: Eulerian & Lagrangian approaches

    NASA Astrophysics Data System (ADS)

    Villa, Eleonora; Rampf, Cornelius

    2016-01-01

    We study the relativistic dynamics of a pressure-less and irrotational fluid of dark matter (CDM) with a cosmological constant (Λ), up to second order in cosmological perturbation theory. In our analysis we also account for vector and tensor perturbations and include primordial non-Gaussianity. We consider three gauges: the synchronous-comoving gauge, the Poisson gauge and the total matter gauge, where the first is the unique relativistic Lagrangian frame of reference, and the latters are convenient gauge choices for Eulerian frames. Our starting point is the metric and fluid variables in the Poisson gauge up to second order. We then perform the gauge transformations to the synchronous-comoving gauge and subsequently to the total matter gauge. Our expressions for the metrics, densities, velocities, and the gauge generators are novel and coincide with known results in the limit of a vanishing cosmological constant.

  20. Existence and Stability of Relativistic Solitary Waves in Warm Plasmas

    SciTech Connect

    Maza-Palacios, Marco A.; Herrera-Velazquez, J. Julio E.

    2006-12-04

    A variational mehod for one dimensional relativistic solitons is established, within the two fluid model framework, including finite temperature effects. Our starting point is a Lagrangian for a two species fluid plasma, which allows the deduction of the conserved quantities of the system by means of Noether's theorem, as well as the model equations. At a first stage, travelling wave solutions are studied with the usual shape of envelope solitary waves. It is found that bounded travelling waves (bright solitons) exist for most velocities, if both ions and electrons are assumed to be relativistic, except for a window at small values of v/c. In order to study their stability, we obtain the evolution equations of the solitary wave parameters, along those of radiation.

  1. On wave stability in relativistic cosmic-ray hydrodynamics

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1989-01-01

    Wave stability of a two-fluid hydrodynamical model describing the acceleration of cosmic rays by the first-order Fermi mechanism in relativistic, cosmic-ray-modified shocks is investigated. For a uniform background state, the short- and long-wavelength wave speeds are shown to interlace, thus assuring wave stability in this case. A JWKB analysis is performed to investigate the stability of short-wavelength thermal gas sound waves in the smooth, decelerating supersonic flow upstream of a relativistic, cosmic-ray-modified shock. The stability of the waves is assessed both in terms of the fluid velocity and density perturbations, as well as in terms of the wave action. The stability and interaction of the short-wavelength cosmic-ray coherent mode with the background flow is also studied.

  2. Effects of relativistic electron temperature on parametric instabilities for intense laser propagation in underdense plasma

    SciTech Connect

    Zhao, Yao; Zheng, Jun; Chen, Min; Yu, Lu-Le; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming E-mail: zhengming.sheng@strath.ac.uk

    2014-11-15

    Effects of relativistic electron temperature on stimulated Raman scattering and stimulated Brillouin scattering instabilities for high intensity lasers propagating in underdense plasma are studied theoretically and numerically. The dispersion relations for these instabilities are derived from the relativistic fluid equation. For a wide range of laser intensity and electron temperature, it is found that the maximum growth rate and the instability region in k-space can be reduced at relativistic electron temperature. Particle-in-cell simulations are carried out, which confirm the theoretical analysis.

  3. Relativistic astrophysics explorer

    NASA Astrophysics Data System (ADS)

    Kaaret, P.

    2004-01-01

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m 2 equal to 10 times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  4. The Relativistic Astrophysics Explorer

    NASA Astrophysics Data System (ADS)

    Kaaret, P.

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 60,000 cm2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  5. Relativistic Jets in Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqun; Woosley, S. E.; MacFadyen, A. I.

    2003-04-01

    We examine the propagation of two-dimensional relativistic jets through the stellar progenitor in the collapsar model for gamma-ray bursts. In agreement with previous studies, we find that the jet is collimated by its passage. Moreover, interaction of the jet with the star causes mixing that sporadically decelerates the jet, leading to a highly variable Lorentz factor. The jet that finally emerges has a moderate Lorentz factor, but a very large internal energy loading. In a second series of calculations we follow the emergence of such enegy-loaded jets from the star. For the initial conditions chosen, conversion of the remaining internal energy gives a terminal Lorentz factor of approximately 150. Implications of our calculations for GRB light curves, the luminosity-variability relation, and the GRB-supernova association are discussed.

  6. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  7. Relativistic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.; Nazin, S. S.

    2003-07-01

    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistitic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not empoly collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of "antedate" coding).

  8. Relativistic Heavy Ion Collider

    SciTech Connect

    Willen, E.H.

    1986-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.

  9. Hydrodynamics of Relativistic Fireballs

    NASA Technical Reports Server (NTRS)

    Piran, Tsvi; Shemi, Amotz; Narayan, Ramesh

    1993-01-01

    Many models of gamma-ray bursts involve a fireball, which is an optically thick concentration of radiation energy with a high ratio of energy density to rest mass. We examine analytically and numerically the evolution of a relativistic fireball. We show that, after an early rearrangement phase, most of the matter and energy in the fireball is concentrated within a narrow shell. The shell propagates at nearly the speed of light, with a frozen radial profile, and according to a simple set of scaling laws. The spectrum of the escaping radiation is harder at early times and softer later on. Depending on the initial energy-to-mass ratio, the final outcome of a fireball is either photons with roughly the initial temperature or ultrarelativistic baryons. In the latter case, the energy could be converted back to gamma-rays via interaction with surrounding material.

  10. Sudden Viscous Dissipation of Compressing Turbulence

    NASA Astrophysics Data System (ADS)

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-01

    Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  11. Sudden Viscous Dissipation of Compressing Turbulence.

    PubMed

    Davidovits, Seth; Fisch, Nathaniel J

    2016-03-11

    Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion. PMID:27015488

  12. Sudden Viscous Dissipation of Compressing Turbulence

    DOE PAGESBeta

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-11

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  13. Electrical Dissipation Measurement of Polymer Phase Transitions

    NASA Technical Reports Server (NTRS)

    Long, E. R., R; Schuszler, A., II

    1983-01-01

    Technique measures solid/solid, glass/rubber, and liquid/liquid transition temperatures in polymers having dipole moments. Technique based on change in dipole packing that occurs with each transition and measured as change in electrical dissipation factor. Change in dipole packing occuring with each transition sensed by effect on dissipation factor.

  14. Scaling relations in two-dimensional relativistic hydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Westernacher-Schneider, John Ryan; Lehner, Luis; Oz, Yaron

    2015-12-01

    We derive exact scaling relations for two-dimensional relativistic hydrodynamic turbulence in the inertial range of scales. We consider both the energy cascade towards large scales and the enstrophy cascade towards small scales. We illustrate these relations by numerical simulations of turbulent weakly compressible flows. Intriguingly, the fluid-gravity correspondence implies that the gravitational field in black hole/black brane spacetimes with anti-de Sitter asymptotics should exhibit similar scaling relations.

  15. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2 Ⓧ S2

    SciTech Connect

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2 Ⓧ S2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.

  16. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2⊗S2

    NASA Astrophysics Data System (ADS)

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-01

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2⊗S2 . We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.

  17. Material Systems for Blast-Energy Dissipation

    SciTech Connect

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  18. Exploring quantum phases by driven dissipation

    NASA Astrophysics Data System (ADS)

    Lang, Nicolai; Büchler, Hans Peter

    2015-07-01

    Dephasing and decay are the intrinsic dissipative processes prevalent in any open quantum system and the dominant mechanisms for the loss of coherence and entanglement. This inadvertent effect not only can be overcome but can even be capitalized on in a dissipative quantum simulation by means of tailored couplings between the quantum system and the environment. In this context it has been demonstrated that universal quantum computation can be performed using purely dissipative elements, and furthermore, the efficient preparation of highly entangled states is possible. In this article, we are interested in nonequilibrium phase transitions appearing in purely dissipative systems and the exploration of quantum phases in terms of a dissipative quantum simulation. To elucidate these concepts, we scrutinize exemplarily two paradigmatic models: the transverse-field Ising model and the considerably more complex Z2 lattice gauge theory. We show that the nonequilibrium phase diagrams parallel the quantum phase diagrams of the Hamiltonian "blueprint" theories.

  19. Entanglement and dephasing of quantum dissipative systems

    SciTech Connect

    Stauber, T.; Guinea, F.

    2006-04-15

    The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.

  20. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  1. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    SciTech Connect

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  2. Finite Element Method for Capturing Ultra-relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2003-01-01

    While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.

  3. Uncontrollable dissipative systems: observability and embeddability

    NASA Astrophysics Data System (ADS)

    Karikalan, Selvaraj; Belur, Madhu N.; Athalye, Chirayu D.; Razak, Rihab Abdul

    2014-01-01

    The theory of dissipativity is well developed for controllable systems. A more appropriate definition of dissipativity in the context of uncontrollable systems is in terms of the existence of a storage function, namely a function such that, along every system trajectory, its rate of change at each time instant is at most the power supplied to the system at that time. However, even when the supplied power is expressible in terms of just the external variables, the dissipativity property for uncontrollable systems crucially hinges on whether or not the storage function depends on variables unobservable/hidden from the external variables: this paper investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. These three definitions are compared: we show that drawbacks of one definition are addressed by another. Dealing first with observable storage functions, under the conditions that no two uncontrollable poles add to zero and that dissipativity is strict as frequency tends to infinity, we prove that the dissipativities of a system and its controllable part are equivalent. We use the behavioural approach for formalising key notions: a system behaviour is the set of all system trajectories. We prove that storage functions have to be unobservable for 'lossless' uncontrollable systems. It is known, however, that unobservable storage functions result in certain 'fallacious' examples of lossless systems. We propose an intuitive definition of dissipativity: a system/behaviour is called dissipative if it can be embedded in a controllable dissipative superbehaviour. We prove embeddability results and use them to resolve the fallacy in the example termed 'lossless' due to unobservable storage functions. We next show that, quite unreasonably, the embeddability definition admits behaviours that are both strictly dissipative and strictly antidissipative. Drawbacks of the embeddability definition in the context of RLC circuits are

  4. Ion acoustic shock and solitary waves in highly relativistic plasmas with nonextensive electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-01-01

    The Korteweg-de Vries Burgers (KdVB) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.

  5. Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?

    SciTech Connect

    Cerutti, B.; Werner, G. R. Uzdensky, D. A.; Begelman, M. C.

    2014-05-15

    The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.

  6. The Radiation Hydrodynamics of Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  7. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  8. Relativistic spin effects in the baryon spectrum

    SciTech Connect

    Garcilazo, Humberto

    2005-04-01

    We study the nonstrange baryon spectrum within a three-body theory that treats relativistically both the space and the spin variables. The relativistic effects of the spin are about one order of magnitude smaller than those due to the use of relativistic momentum variables. The relativistic treatment of the spin breaks the degenerancy that is present in the nonrelativistic model and in the model with only relativistic momentum variables.

  9. Electrovacuum static counterrotating relativistic dust disks

    NASA Astrophysics Data System (ADS)

    García R., Gonzalo; González, Guillermo A.

    2004-06-01

    A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We also find explicit expressions for the energy densities, charge densities and velocities of the counterrotating fluids. We then show that this constraint can be satisfied if we take the two counterrotating streams as circulating along electrogeodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electrogeodesics nor take the two counterrotating tangential velocities as equal and opposite. Four simple families of models of counterrotating charged disks based on Chazy-Curzon-type, Zipoy-Voorhees-type, Bonnor-Sackfield-type, and Kerr-type electrovacuum solutions are considered where we obtain some disks with a CRM well behaved. The models are constructed using the well-known “displace, cut and reflect” method extended to solutions of vacuum Einstein-Maxwell equations.

  10. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  11. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  12. Conductivity of a relativistic plasma

    SciTech Connect

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  13. Relativistic HD and MHD modelling for AGN jets

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  14. Gaussian-inspired auxiliary non-equilibrium thermostat (GIANT) for Dissipative Particle Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; Boromand, Arman; Khani, Shaghayegh; Maia, Joao

    2015-12-01

    We present in this letter an auxiliary thermostat for non-equilibrium simulations in Dissipative Particle Dynamics based on the Gaussian distribution of particle velocities in the fluid. We demonstrate the ability of the thermostat to maintain the temperature under a wide range of shear rates and dissipative parameters, and to extend the shear rate window accessible by DPD significantly. The effect of proposed method on the viscosity of a DPD fluid is studied which is particularly of interest when the rheological behavior of a complex fluids is subject of DPD simulations. Furthermore, performance of the proposed method is compared to the ones from the well-known Lowe-Andersen scheme in regards to temperature and viscosity measurements.

  15. Gold Alignment and Internal Dissipation

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    1997-07-01

    The measures of mechanical alignment are obtained for both prolate and oblate grains whose temperatures are comparable to the grain kinetic energy divided by k, the Boltzmann constant. For such grains, the alignment of angular momentum, J, with the axis of maximal inertia, a, is only partial, which substantially alters the mechanical alignment as compared with the results obtained by Lazarian and Roberge, Hanany, & Messinger under the assumption of perfect alignment. We also describe Gold alignment when the Barnett dissipation is suppressed and derive an analytical expression that relates the measure of alignment to the parameters of grain nonsphericity and the direction of the gas-grain drift. This solution provides the lower limit for the measure of alignment, while the upper limit is given by the method derived by Lazarian. Using the results of a recent study of incomplete internal relaxation by Lazarian & Roberge, we find measures of alignment for the whole range of ratios of grain rotational energy to kTs, where Ts is the grain temperature. To describe alignment for mildly supersonic drifts, we suggest an analytical approach that provides good correspondence with the results of direct numerical simulations by Roberge, Hanany, & Messinger. We also extend our approach to account for simultaneous action of the Gold and Davis-Greenstein mechanisms.

  16. Effects of an impermeable wall in dissipative dynamics of saturated porous media

    NASA Astrophysics Data System (ADS)

    Artale Harris, P.

    2016-06-01

    A phase transition model for porous media in consolidation is studied. The model is able to describe the phenomenon of fluid-segregation during the consolidation process, i.e., the coexistence of two phases di?ering from fluid content inside the porous medium under static load. Considering pure Darcy dissipation, the dynamics is described by a Cahn-Hilliard-like system of partial differential equations (PDE). The goal, here, is to study the dynamics of the formation of stationary fluid-rich bubbles. The evolution of the strain and fluid density pro?files of the porous medium is analyzed in two physical situation: fluid free to flow through the boundaries of the medium and fluid flow prevented at one of the two boundaries. Morover, an analytic result on the position of the interface between the two phases is provided.

  17. The Role of Magnetic Fields in Relativistic Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Newman, W. I.

    2012-05-01

    We explore, analytically and by numerical simulation, the evolution of the Kelvin-Helmholtz (KH) instability in a relativistic magnetized astrophysical jet. Our results successfully reproduce numerous magnetohydrodynamic features observed in relativistic astrophysical environments. The KH instability arises from a variation in flow speed orthogonal to the flow. Many astrophysical jets are relativistic, evidenced by apparent superluminal motion, and are likely collimated by a magnetic field, according to commonly accepted models. We find convergence of our numerical results between the hydrodynamic, magnetohydrodynamic, relativistic hydrodynamic, and relativistic magnetohydrodynamic regimes. We observe complementarity between fluid flow and magnetic field behavior. The early nonlinear regime corresponds to the formation of large vortices connected by a dual filamentary structure reminiscent of the cosmic double helix in the extragalactic jet 3C 273. These vortices are disrupted by the field, followed by a complex turbulent regime, and then an approach to an equilibrium configuration consisting of flow-aligned filaments. For stronger fields, this process occurs more rapidly, and sufficiently strong fields suppress vortices entirely. The jet also widens and decelerates by an amount depending on field strength. These results are in qualitative agreement with observations of numerous jets, including NGC 5128, 3C 273, and HH 30. Relativistic flows break synchronicity between longitudinal and transverse motions, thereby destabilizing the system, and enhancing the complexity of vortex disruption and turbulent breakdown. This desynchronization also causes early numerical breakdown at high Lorentz factors, a long-standing problem. Using a uniform-flow model, we provide the first mathematical analysis showing that for sufficiently high Lorentz factors, artificial diffusion not only fails to suppress numerical instability, but introduces growing modes which destabilize the

  18. Ohmic Dissipation in Mini-Neptunes

    NASA Astrophysics Data System (ADS)

    Valencia, Diana; Pu, Michael

    2015-12-01

    In the quest of characterizing low-mass exoplanets, it is important to consider all sources that may contribute to the interpretation of planetary composition given mass and a radius measurements. While it has been firmly established that inferring the composition of super-Earths and mini-Neptunes suffers from the inherent problem of compositional degeneracy, the effect from ohmic dissipation on these planets and its connection to compositional interpretation has not been studied so far. Ohmic dissipation is arguably the leading theory that aims to explain the large radii seen in highly-irradiated exo-Jupiters. In this study, we determine the strength of ohmic dissipation on mini-Neptunes and its effect on their H/He envelope structure as a function of insolation temperature and planetary mass. We find that ohmic dissipation is strong enough to halt the contraction of mini-Neptunes during their thermal evolution and therefore, inflate their radii in comparison to planets that do not suffer dissipation. This means that the radius of highly irradiated of this class of planets may be explained by the presence of volatiles and ohmic dissipation. In other words, there is a trade-off between ohmic dissipation and H/He content for hot mini-Neptunes.

  19. Interference in multilayer relativistic mirrors

    NASA Astrophysics Data System (ADS)

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Babaei, Javad; Taghipour, Meisam; Mohammadzadeh, Zahra

    2015-10-01

    In this paper, reflection coefficient of a relativistic ultra-thin electron multilayer is calculated using electromagnetic interference procedures. The relativistic electron layers are assumed to be formed by nonlinear plasma wake waves that constitute the electron density cusps. It is shown that the interference between successive relativistic mirrors is restricted by the condition, τ p ≫ ( 2 γ 0 ) 5 / 2 / ω p 0 , where τp is the laser pulse duration. The results showed that tailoring the pulse amplitude, incident wave frequency value, incidence angle, and plasma density leads to increasing reflection coefficient a few orders of magnitudes. This constructive interference condition can be used for increasing conversion efficiency in the reflected energy from relativistic mirrors for the purpose of generating ultra-short coherence pulses in the extreme ultraviolet and x-ray regions. We also performed reflection from relativistic thin electron layers using relativistic 1D3V electromagnetic particle-in-cell (PIC) simulation. It was found that the results of PIC simulation are in agreement with analytical considerations.

  20. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation. PMID:22463331

  1. Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Arakawa, Akio; Hsu, Yueh-Jiuan G.

    1990-01-01

    To incorporate potential enstrophy dissipation into discrete shallow water equations with no or arbitrarily small energy dissipation, a family of finite-difference schemes have been derived with which potential enstrophy is guaranteed to decrease while energy is conserved (when the mass flux is nondivergent and time is continuous). Among this family of schemes, there is a member that minimizes the spurious impact of infinite potential vorticities associated with infinitesimal fluid depth. The scheme is, therefore, useful for problems in which the free surface may intersect with the lower boundary.

  2. Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.

    2015-04-01

    In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).

  3. Dissipative processes in superfluid quark matter

    NASA Astrophysics Data System (ADS)

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2010-12-01

    We present some results about dissipative processes in fermionic superfluids that are relevant for compact stars. At sufficiently low temperatures the transport properties of a superfluid are dominated by phonons. We report the values of the bulk viscosity, shear viscosity and thermal conductivity of phonons in quark matter at extremely high density and low temperature. Then, we present a new dissipative mechanism that can operate in compact stars and that is named "rocket term". The effect of this dissipative mechanism on superfluid r-mode oscillations is sketched.

  4. The Dissipation Range in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1999-01-01

    The dissipation range energy balance of the direct interaction approximation is applied to rotating turbulence when rotation effects persist well into the dissipation range. Assuming that RoRe (exp 1/2) is much less than 1 and that three-wave interactions are dominant, the dissipation range is found to be concentrated in the wavevector plane perpendicular to the rotation axis. This conclusion is consistent with previous analyses of inertial range energy transfer in rotating turbulence, which predict the accumulation of energy in those scales.

  5. Single photons from dissipation in coupled cavities

    NASA Astrophysics Data System (ADS)

    Flayac, H.; Savona, V.

    2016-07-01

    We propose a single-photon source based on a pair of weakly nonlinear optical cavities subject to a one-directional dissipative coupling. When both cavities are driven by mutually coherent fields, sub-Poissonian light is generated in the target cavity even when the nonlinear energy per photon is much smaller than the dissipation rate. The sub-Poissonian character of the field holds over a delay measured by the inverse photon lifetime, as in the conventional photon blockade, thus allowing single-photon emission under pulsed excitation. We discuss a possible implementation of the dissipative coupling relevant to photonic platforms.

  6. Dissipative processes in superfluid quark matter

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2010-12-22

    We present some results about dissipative processes in fermionic superfluids that are relevant for compact stars. At sufficiently low temperatures the transport properties of a superfluid are dominated by phonons. We report the values of the bulk viscosity, shear viscosity and thermal conductivity of phonons in quark matter at extremely high density and low temperature. Then, we present a new dissipative mechanism that can operate in compact stars and that is named 'rocket term'. The effect of this dissipative mechanism on superfluid r-mode oscillations is sketched.

  7. Melting of Io by tidal dissipation

    NASA Technical Reports Server (NTRS)

    Peale, S. J.; Cassen, P.; Reynolds, R. T.

    1979-01-01

    The resonant structure of Io leads to forced eccentricities that are considerably larger than the free values. Although still modest by all standards, these forced eccentricities coupled with the enormous tides induced by Jupiter lead to magnitudes of tidal dissipation that are large enough to completely dominate the thermal history of Io. In the present paper, the forced eccentricities are calculated and then substituted into an expression for the total tidal dissipation. The results point to the possibility that the dissipation of tidal energy in Io may have melted a major fraction of Io's mass.

  8. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.

  9. Interaction of Relativistic Jets with Their Environments

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Begelman, M. C.

    2014-01-01

    Relativistic jets such as those emitted by active galactic nuclei are observed to be collimated over great distances, but the cause of this collimation is uncertain. Also not fully understood are the means by which these jets become accelerated to their extreme velocities. To probe these questions, I examine the possibility of collimation and acceleration of relativistic jets by the pressure of the ambient medium surrounding the jet base, in the limit in which the jet interior has lost causal contact with its surroundings. I model the jet with an ultrarelativistic equation of state, injected into an ambient medium that has a pressure that decreases as a power of spherical radius, p ~ r^-n. Within the range 2fluid equations within this boundary layer, I examine the impact of the external pressure profile on the behavior of the fluid in the layer. I determine both the structure of the jet and the rate of energy conversion from internal to kinetic as the jet propagates outward, establishing both the collimation and acceleration profiles of the jet. I will discuss the differences in predicted jet behavior based on whether the jet is purely hydrodynamic or whether the model also includes the effects of a toroidal magnetic field threading the jet interior. I will also describe the conditions that create specific observed jet morphology, such as the "hollow cone" structure seen in jets such as M87. Finally, I will discuss the specific application of these models to describe the relativistic jets that are created by some tidal disruption events --- events in which a star passing near a supermassive black hole (SMBH) is torn apart by tidal forces, and the star material then accretes back onto the SMBH --- such as in the observations of Swift

  10. Fuel system bubble dissipation device

    SciTech Connect

    Iseman, W.J.

    1987-11-03

    This patent describes a bubble dissipation device for a fuel system wherein fuel is delivered through a fuel line from a fuel tank to a fuel control with the pressure of the fuel being progressively increased by components including at least one pump stage and an ejector in advance of the pump state. The ejector an ejector casing with a wall defining an elongate tubular flow passage which forms a portion of the fuel line to have all of the fuel flow through the tubular flow passage in flowing from the fuel tank to the fuel control, a nozzle positioned entirely within the tubular flow passage and spaced from the wall to permit fuel flow. The nozzle has an inlet and an outlet with the inlet connected to the pump stage to receive fuel under pressure continuously from the pump stage, a bubble accumulation chamber adjoining and at a level above the ejector casing and operatively connected to the fuel line in advance of the ejector casing. The bubble accumulation chamber is of a size to function as a fuel reservoir and hold an air bubble containing vapor above the level of fuel therein and having an outlet adjacent the bottom thereof operatively connected to the tubular flow passage in the ejector casing at an inlet end, a bubble accumulation chamber inlet above the level of the bubble accumulation chamber outlet whereby fuel can flow through the bubble accumulation chamber from the inlet to the outlet thereof with a bubble in the fuel rising above the fuel level in the bubble accumulation chamber.

  11. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  12. Relativistic runaway electrons above thunderstorms

    NASA Astrophysics Data System (ADS)

    Lehtinen, Nikolai G.

    A three-dimensional Monte Carlo model of the uniform relativistic runaway electron breakdown in air in the presence of static electric and magnetic fields is developed and used to calculate electron distribution functions, avalanche rates and the direction and velocity of avalanche propagation. The Monte Carlo simulation results are used in a fluid model of a runaway electron beam in the middle atmosphere accelerated by quasi-electrostatic fields following a positive lightning stroke. We consider the case of lightning discharges which drain positive charge from remote regions of a laterally extensive (>100 km) thundercloud in a thunderstorm located at ~45° geomagnetic latitude, using a translationally invariant two-dimensional model. We also consider a cylindrically symmetric model with a vertical axis of symmetry, constrained to a vertical geomagnetic field. In both models, the optical emission intensities produced by the runaway electrons are found to be negligible compared to the emissions produced by thermal electrons heated in the conventional type of breakdown. The calculated γ-ray flux is of the same order as the terrestrial γ-ray flashes observed by the BATSE detector on the Compton Gamma Ray Observatory. The energetic electrons leaving the atmosphere undergo intense interactions with the background magnetospheric plasma, leading to rapid growth of Langmuir waves with rate found based on the energy electron distribution and intense scattering of the electrons. In the nonlinear stage, beam electrons acquire an isotropic thermal distribution with a typical energy of ~1 MeV within one interhemispheric traverse along the Earth's magnetic field lines. While the electrons within the loss cone precipitate out, most of the electrons get trapped and form detectable energetic electron curtains surrounding the Earth. Electrons with pitch angles below the loss cone encounter the Earth's atmosphere at the conjugate point, are scattered and produce light, ionization

  13. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  14. Open Boundary Conditions for Dissipative MHD

    SciTech Connect

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  15. Relativistic helicity and link in Minkowski space-time

    SciTech Connect

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-04-15

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves.

  16. Energy dissipation in multifrequency atomic force microscopy.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2014-01-01

    The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip-sample interaction. PMID:24778976

  17. Dissipation, correlation and lags in heat engines

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Fazio, Rosario

    2016-08-01

    By modelling heat engines as driven multi-partite system we show that their dissipation can be expressed in terms of the lag (relative entropy) between the perturbed state of each partition and their equilibrium state, and the correlations that build up among the partitions. We show that the non-negativity of the overall dissipation implies Carnot formulation of the second law. We illustrate the rich interplay between correlations and lags with a two-qubit device driven by a quantum gate.

  18. Relativistic dynamical collapse model

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    2015-05-01

    A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schrödinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter s which labels a foliation of spacelike hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the continuous spontaneous localization (CSL) theory of dynamical collapse is applied. The collapse-generating operator is chosen to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter Λ which represents the collapse rate/volume and a scale factor ℓ. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of nonrelativistic CSL when the GRW-CSL choice of ℓ=a =1 0-5 cm , is made, along with Λ =λ /a3 (GRW-CSL choice λ =1 0-16s-1). The collapse rate is also satisfactory with the choice ℓ as the size of the Universe, with Λ =λ /ℓa2. Because the collapse narrows wave functions in space and time, it increases a particle's momentum and energy, altering its mass. It is shown that, with ℓ=a , the change of mass of a nucleon is unacceptably large but, when ℓ is the size of the Universe, the change of mass over the age of the Universe is acceptably small.

  19. A Mechanism of Energy Dissipation in Cyanobacteria

    PubMed Central

    Berera, Rudi; van Stokkum, Ivo H.M.; d'Haene, Sandrine; Kennis, John T.M.; van Grondelle, Rienk; Dekker, Jan P.

    2009-01-01

    When grown under a variety of stress conditions, cyanobacteria express the isiA gene, which encodes the IsiA pigment-protein complex. Overexpression of the isiA gene under iron-depletion stress conditions leads to the formation of large IsiA aggregates, which display remarkably short fluorescence lifetimes and thus a strong capacity to dissipate energy. In this work we investigate the underlying molecular mechanism responsible for chlorophyll fluorescence quenching. Femtosecond transient absorption spectroscopy allowed us to follow the process of energy dissipation in real time. The light energy harvested by chlorophyll pigments migrated within the system and eventually reaches a quenching site where the energy is transferred to a carotenoid-excited state, which dissipates it by decaying to the ground state. We compare these findings with those obtained for the main light-harvesting complex in green plants (light-harvesting complex II) and artificial light-harvesting antennas, and conclude that all of these systems show the same mechanism of energy dissipation, i.e., one or more carotenoids act as energy dissipators by accepting energy via low-lying singlet-excited S1 states and dissipating it as heat. PMID:19289052

  20. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow.

    PubMed

    Saw, E-W; Kuzzay, D; Faranda, D; Guittonneau, A; Daviaud, F; Wiertel-Gasquet, C; Padilla, V; Dubrulle, B

    2016-01-01

    The three-dimensional incompressible Navier-Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier-Stokes equation. PMID:27578459

  1. Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy.

    PubMed

    de Beer, Sissi; van den Ende, Dirk; Mugele, Frieder

    2010-08-13

    We determine conservative and dissipative tip-sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat surfaces of highly ordered pyrolytic graphite. Taking into account the base motion and the frequency-dependent added mass and hydrodynamic damping on the AFM cantilever, we develop a reliable force inversion procedure that allows for extracting tip-sample interaction forces for a wide range of drive frequencies. We systematically eliminate the effect of finite drive amplitudes. Dissipative tip-sample forces are consistent with the bulk viscosity down to a thickness of 2-3 nm. Dissipation measurements far below resonance, which we argue to be the most reliable, indicate the presence of peaks in the damping, corresponding to an enhanced 'effective' viscosity, upon expelling the last and second-last molecular layer. PMID:20639584

  2. Mixed convection with viscous dissipation in an inclined porous channel with isoflux impermeable walls

    NASA Astrophysics Data System (ADS)

    Barletta, A.; Magyari, E.; Pop, I.; Storesletten, L.

    2008-06-01

    Combined forced and free convection flow in a fluid saturated inclined plane channel is investigated by taking into account the effect of viscous dissipation. Steady parallel flow is considered assuming that the temperature gradient in the parallel flow direction is constant, and the channel walls are subject to uniform symmetric heat fluxes. Two possible formulations of the Darcy Boussinesq scheme are considered, based on two different choices of the reference temperature for modelling buoyancy. The first choice is a constant temperature, while the second is a streamwise changing temperature. It is shown that both approaches substantially agree in the formulation of the balance equations for the range of values of the Darcy Rayleigh number such that viscous dissipation is important. The boundary value problem is solved analytically for any tilt angle, revealing that it admits dual solutions for assigned values of the governing parameters. The rather important effect of viscous dissipation in the special case of adiabatic channel walls is outlined.

  3. [The design of heat dissipation of the field low temperature box for storage and transportation].

    PubMed

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design. PMID:23488142

  4. High-Temperature Liquid Metal Infusion Considering Surface Tension-Viscosity Dissipation

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Harris, Christopher K.; Bronson, Arturo; Shantha-Kumar, Sanjay; Medina, Arturo

    2016-02-01

    In considering the significant effect of the surface tension-viscosity dissipation driving the fluid flow within a capillary, high-temperature liquid metal infusion was analyzed for titanium, yttrium, hafnium, and zirconium penetrating into a packed bed. A model of the dissipation considers the momentum balance within the capillary to determine the rate of infusion, which is compared with the Semlak-Rhines model developed for liquid metal penetration into a packed bed assumed as a bundle of tubes mimicking the porosity of a packed bed. For liquid Ti, the penetration rate was calculated from 0.2 µs to 1 ms and rose to a maximum of 7 m/s at approximately 1 µs; after which, the rate decreased to 0.7 m/s at 1 ms. Beyond 10 µs, the decreasing trend of the rate of penetration determined by the model of dissipation compared favorably with the Semlak-Rhines equation.

  5. Amniotic fluid

    MedlinePlus

    Amniotic fluid is a clear, slightly yellowish liquid that surrounds the unborn baby (fetus) during pregnancy. It is ... in the womb, the baby floats in the amniotic fluid. The amount of amniotic fluid is greatest at ...

  6. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  7. Theory of relativistic cyclotron masers

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Latham, P. E.; Dumbrajs, O.

    1995-07-01

    In this paper we have made an attempt to review the present status of the theory of cyclotron masers with relativistic electron beams. After discussing the basic features of electron-cyclotron radiation under conditions of normal and anomalous Doppler frequency shifts, we consider particle deceleration by a constant amplitude electromagnetic wave in a constant magnetic field using the formalism developed earlier for cyclotron autoresonance acceleration of electrons. An optimal cyclotron resonance mismatch was found that corresponds to the possibility of complete deceleration of relativistic electrons. Then, interaction of relativistic electrons with resonator fields is considered and the efficiency increase due to electron prebunching is demonstrated in a simple model. Since an efficient interaction of relativistic electrons with the large amplitude electromagnetic field of a resonator occurs at a short distance, where electrons make a small number of electron orbits, the issue of the simultaneous interaction of electrons with the field at several cyclotron harmonics is discussed. Finally, we consider deceleration of a prebunched electron beam by a traveling electromagnetic wave in a tapered magnetic field. This simple modeling is illustrated with a number of simulations of relativistic gyroklystrons and gyrotwistrons (gyrodevices in which the bunching cavity of the gyroklystron is combined with the output waveguide of the gyro-traveling-wave-tube).

  8. Equilibrium configurations of degenerate fluid spheres

    SciTech Connect

    Whitman, P.G.

    1985-04-01

    Equilibrium configurations of degenerate fluid spheres which assume a polytropic form in the ultrahigh-density regime are considered. We show that analytic solutions more general than those of Misner and Zapolsky exist which possess the asymptotic equation of state. Simple expressions are derived which indicate this nature of the fluids in the extreme relativistic limit, and the stability of these interiors is considered in the asymptotic region.

  9. DISSIPATION WAVENUMBERS FOR TURBULENCE IN ELECTRON-POSITRON PLASMAS

    SciTech Connect

    Peter Gary, S.; Roytershteyn, Vadim S.; Karimabadi, Homa E-mail: roytersh@lanl.gov

    2009-08-20

    Many astrophysical systems involve turbulent electron-positron plasmas. Linear kinetic theory of electromagnetic fluctuations in homogeneous, magnetized, collisionless, non-relativistic electron-positron plasmas predicts that two lightly damped modes propagate at relatively long wavelengths: an Alfven-like mode with dispersion {omega}{sub r}=k{sub ||}v-tilde{sub A} and a magnetosonic-like mode with dispersion {omega}{sub r}{approx_equal}kv-tilde{sub A} if {beta} {sub e} << 1. Here, v-tilde{sub A} is the Alfven speed in an electron-positron plasma and || refers to the direction parallel to the background magnetic field B{sub o}. The dissipation wavenumber k{sub d} is defined as the value of k at which the damping rate equals the rate of energy transfer by the turbulent cascade. Using linear theory and a basic turbulent cascade model, k{sub d} is predicted for turbulence at propagation quasi parallel to B{sub o}, for quasi-perpendicular magnetosonic-like turbulence, and for quasi-perpendicular Alfven-like turbulence. In the latter case, the model predicts that an increase in the turbulent energy should correspond to an increase in k{sub d} . The assumptions and predictions of the model may be tested by particle-in-cell simulations.

  10. Consistent formulation of solid dissipative effects in stability analysis of flow past a deformable solid

    NASA Astrophysics Data System (ADS)

    Giribabu, D.; Shankar, V.

    2016-07-01

    The linear stability of plane Couette flow past a deformable solid is analyzed in the creeping-flow limit with an objective towards elucidating the consequences of employing two widely different formulations for the dissipative stresses in the deformable solid. One of the formulations postulates that the dissipative stress is proportional to the strain-rate tensor based on the left Cauchy-Green tensor, while in the other the dissipative stress in the solid is proportional to the rate-of-deformation tensor. However, it is well known in continuum mechanics that the rate-of-deformation tensor obeys the fundamental principle of material-frame indifference while the strain-rate-tensor formulation does not and hence it is more appropriate to employ the rate-of-deformation tensor in the description of dissipative stresses in deformable solids. In this work we consider the specific context of stability of plane Couette flow past a deformable solid and demonstrate that the results concerning the stability of the system from both models differ drastically. In the rate-of-deformation formulation for the dissipative stress, there is a range of solid-fluid thickness ratios (between 1.21 and 1.46) wherein the system is always stable for nonzero values of solid viscosity, unlike the strain-rate-tensor formulation wherein the system is unstable at all values of solid thickness. Further, for a solid-fluid thickness ratio less than 1, incorporation of dissipative effects in the solid using the rate-of-deformation formulation shows that the flow is more unstable compared to a purely elastic neo-Hookean solid, while for strain-rate-tensor formulation the flow is stabilized with an increase in viscosity of the solid. Using the fundamentally correct dissipative stress formulation, we also address the stability of pressure-driven flow in a deformable channel, wherein previous work carried out for an elastic neo-Hookean solid has shown that only the short-wave instability (driven by the

  11. Pseudo-Newtonian models for the equilibrium structures of rotating relativistic stars

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Il Kim, Hee; Mok Lee, Hyung

    2009-10-01

    We obtain equilibrium solutions for rotating compact stars, including special relativistic effects. The gravity is assumed to be Newtonian, but we use the active mass density, which takes into account all energies such as the motion of the fluid, internal energy and pressure energy in addition to the rest-mass energy, in computing the gravitational potential using Poisson's equation. Such a treatment could be applicable to neutron stars with relativistic motions or a relativistic equation of state. We applied Hachisu's self-consistent field (SCF) method to find spheroidal as well as toroidal sequences of equilibrium solutions. Our solutions show better agreement with general relativistic solutions than the Newtonian relativistic hydrodynamic approach, which does not take into account the active mass. Physical quantities such as the peak density and equatorial radii in our solutions agree with the general relativistic ones to within 5 per cent. Therefore our approach can be used as a simple alternative to the fully relativistic one when a large number of model calculations is necessary, as it requires much fewer computational resources.

  12. Steady-state solutions for relativistically strong electromagnetic waves in plasmas.

    NASA Technical Reports Server (NTRS)

    Max, C. E.

    1973-01-01

    New steady-state solutions are derived which describe electromagnetic waves strong enough to make plasma ions and electrons relativistic. A two-fluid model is used throughout. The following solutions are studied: (1) linearly polarized waves with phase velocity much greater than c; (2) arbitrarily polarized waves with phase velocity near c, in a cold uniform plasma; (3) circularly polarized waves in a uniform plasma characterized by a scalar pressure tensor. All of these waves are capable of propagating in normally overdense plasmas, due to nonlinearities introduced by relativistic effects. The propagation of relativistically strong waves in a density gradient is examined, for the example of a circularly polarized wave strong enough to make electrons but not ions relativistic. It is shown that such a wave propagates at constant energy flux despite the nonlinearity of the system.

  13. Fluctuations in relativistic causal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.

    2014-05-01

    Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.

  14. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  15. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  16. Post-Newtonian reference ellipsoid for relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  17. The Dissipation Range of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Buffo, J. J.

    2013-06-01

    Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  18. Dissipative particle dynamics simulation of a colloidal micropump

    NASA Astrophysics Data System (ADS)

    De Palma, Pietro; Valentini, P.; Napolitano, M.

    2006-02-01

    Dissipative particle dynamics (DPD) is a recently developed model for computing complex fluid flows at mesoscopic scales. This article provides a novel DPD simulation of complex microfluidic devices involving the momentum exchange between a body moving with a prescribed law of motion and the surrounding fluid. To this purpose, a DPD computational method is developed and equipped with an elastic collision model between the moving body and the DPD fluid particles surrounding it. The method is first validated versus well known theoretical, numerical, and experimental results, providing a sensitivity analysis of the dependence of continuum-flow properties on DPD parameters, as well as verifying its reliability for well known continuum-flow test cases. The method is then applied to its main goal, namely, the simulation of the flow driven by a peristaltic micropump, constructed by assembling several colloidal spheres. The DPD fluid model provides quite accurate results with respect to the experimental data and gives a detailed description of local flow properties. It is found that a careful choice of the DPD parameters is needed to avoid spurious compressibility effects and to match the real fluid characteristics; furthermore, due to the very coarse graining used in the present simulation, the thermal kinetic energy of the DPD particles needs to be reduced, in order to correctly evaluate their displacement, which is determined mainly by the momentum driving the flow. Finally, thanks to such a very coarse graining, the proposed DPD method provides an accurate prediction of local mesoscale flow properties with a dramatic reduction of the computational cost with respect to molecular dynamics simulations.

  19. Numerical Investigation of Viscous Dissipation in Elliptic Microducts

    NASA Astrophysics Data System (ADS)

    Vocale, P.; Puccetti, G.; Morini, G. L.; Spiga, M.

    2014-11-01

    In this work a numerical analysis of heat transfer in elliptical microchannels heated at constant and uniform heat flux is presented. A gaseous flow has been considered, in laminar steady state condition, in hydrodynamically and thermally fully developed forced convection, accounting for the rarefaction effects. The velocity and temperature distributions have been determined in the elliptic cross section, for different values of aspect ratio, Knudsen number and Brinkman number, solving the Navier-Stokes and energy equations within the Comsol Multiphysics® environment. The numerical procedure has been validated resorting to data available in literature for slip flow in elliptic cross sections with Br =0 and for slip flow in circular ducts with Br > 0. The comparison between numerical results and data available in literature shows a perfect agreement. The velocity and temperature distributions thus found have been used to calculate the average Nusselt number in the cross section. The numerical results for Nusselt number are presented in terms of rarefaction degree (Knudsen number), of viscous dissipation (Brinkman number), and of the aspect ratio. The results point out that the thermal fluid behavior is significantly affected by the viscous dissipation for low rarefaction degrees and for aspect ratios of the elliptic cross-section higher than 0.2.

  20. Energy flow and energy dissipation in a free surface.

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cressman, John

    2005-11-01

    Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.

  1. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  2. Theory of the relativistic gyrotwistron

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Li, H.

    1992-04-01

    A generalized theory of the relativistic gyrotwistron, the device combining the elements of the gyroklystron and the gyro-traveling wave tube, is presented. A modulation of electrons in the input cavity is considered with the account of modulation in an electron axial momentum that is important for relativistic particles passing through a short cavity. A comprehensive study of large-signal operation of the output waveguide section in the cases of gyroresonance at the fundamental and second cyclotron harmonics has demonstrated a wide variety of electron bunching phenomena and the possibility of achieving high electron efficiency in a wide range of gyrotwistron parameters.

  3. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  4. Transition in the Equilibrium Distribution Function of Relativistic Particles

    PubMed Central

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  5. Transition in the Equilibrium Distribution Function of Relativistic Particles

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-08-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  6. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-02-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  7. A Lagrangian PDF Model for the Scalar Dissipation in Homogeneous Turbulence

    NASA Astrophysics Data System (ADS)

    Fox, Rodney O.

    1996-11-01

    The scalar dissipation is a key quantity in the description of turbulent mixing. The spectral relaxation model (SRM) was developed to account for the effect of the evolution of the scalar spectrum on the mean scalar dissipation < ɛ_φ >, and it successfully predicts the observed (DNS, grid turbulence) dependence on Re, Sc (>= 1), and the initial scalar spectrum without recourse to fitting parameters. In this work, we present a Lagrangian PDF version (LSRM) for the PDF of ɛ_φ conditioned on the turbulent vortex stretching history of Kolmogorov-scale fluid particles. In homogeneous turbulence, the LSRM is coupled to a Lagrangian PDF model for the turbulent dissipation (ɛ) which strongly influences the statistics of ɛ_φ. Closure of scalar molecular dissipation term (< Γ nabla^2 φ | φ, ɛ^*_φ, ɛ^* >) is carried out using the Fokker-Planck model that was developed earlier for the joint scalar, scalar gradient PDF following fluid particles with the identical vortex stretching histories. Model predictions for inert scalar mixing in homogeneous turbulence with and without a uniform mean scalar gradient are compared to DNS data. In particular, the effect of the mean scalar gradient on the correlation between ɛ_φ and ɛ (i.e. local anisotropy) is examined, as well as the effect of the initial scalar spectrum and small-scale random vortex stretching on non-Gaussian behavior of the scalar PDF.

  8. Dissipation of Turbulence in the Solar Wind as Measured by Cluster

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn

    2012-01-01

    Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.

  9. Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas

    SciTech Connect

    Karimabadi, H.; Roytershteyn, V.; Wan, M.; Matthaeus, W. H.; Wu, P.; Shay, M.; Daughton, W.; Nakamura, T. K. M.; Loring, B.; Borovsky, J.; Leonardis, E.; Chapman, S. C.

    2013-01-15

    An unsolved problem in plasma turbulence is how energy is dissipated at small scales. Particle collisions are too infrequent in hot plasmas to provide the necessary dissipation. Simulations either treat the fluid scales and impose an ad hoc form of dissipation (e.g., resistivity) or consider dissipation arising from resonant damping of small amplitude disturbances where damping rates are found to be comparable to that predicted from linear theory. Here, we report kinetic simulations that span the macroscopic fluid scales down to the motion of electrons. We find that turbulent cascade leads to generation of coherent structures in the form of current sheets that steepen to electron scales, triggering strong localized heating of the plasma. The dominant heating mechanism is due to parallel electric fields associated with the current sheets, leading to anisotropic electron and ion distributions which can be measured with NASA's upcoming Magnetospheric Multiscale mission. The motion of coherent structures also generates waves that are emitted into the ambient plasma in form of highly oblique compressional and shear Alfven modes. In 3D, modes propagating at other angles can also be generated. This indicates that intermittent plasma turbulence will in general consist of both coherent structures and waves. However, the current sheet heating is found to be locally several orders of magnitude more efficient than wave damping and is sufficient to explain the observed heating rates in the solar wind.

  10. Sonic black holes in a one-dimensional relativistic flow

    NASA Astrophysics Data System (ADS)

    Carbonaro, P.

    2015-09-01

    The analogy between sound propagation in a fluid background and light propagation in a curved spacetime, discovered by Unruh in 1981, does not work in general when considering the motion of a fluid which is confined in one spatial dimension being unable in (1+1) dimensions to introduce in a coherent manner an effective acoustic metric, barring some exceptional cases. In this paper a relativistic fluid is considered and the general condition for the existence of an acoustic metric in strictly one-dimensional systems is found. Attention is also paid to the physical meaning of the equations of state characterizing such systems and to the remarkable symmetry of structure taken by the basic equations. Finally the Hawking temperature is calculated in an artificial de Laval nozzle.

  11. Quantum fluids in the Kähler parametrization

    NASA Astrophysics Data System (ADS)

    Holender, L.; Santos, M. A.; Vancea, I. V.

    2012-03-01

    In this Letter we address the problem of the quantization of the perfect relativistic fluids formulated in terms of the Kähler parametrization. This fluid model describes a large set of interesting systems such as the power law energy density fluids, Chaplygin gas, etc. In order to maintain the generality of the model, we apply the BRST method in the reduced phase space in which the fluid degrees of freedom are just the fluid potentials and the fluid current is classically resolved in terms of them. We determine the physical states in this setting, the time evolution and the path integral formulation.

  12. Friction and particle-hole pairs. [in dissipative quantum phenomena

    NASA Technical Reports Server (NTRS)

    Guinea, F.

    1984-01-01

    The effect induced by dissipation on quantum phenomena has recently been considered, taking into account as a starting point a phenomenological Hamiltonian in which the environment is simulated by an appropriately chosen set of harmonic oscillators. It is found that this approach should be adequate to describe the low-energy behavior of a wide class of environments. The present investigation is concerned with an analysis of the case in which the environment is a gas (or liquid) of fermions, and the relevant low-energy excitations are particle-hole pairs. A study is conducted regarding the extent to which the quantum results obtained for harmonic oscillators are also valid in the considered situation. Linear-response theory is used to derive an effective action which describes the motion of an external particle coupled to a normal Fermi fluid.

  13. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics.

    PubMed

    Petsev, Nikolai D; Leal, L Gary; Shell, M Scott

    2016-02-28

    Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales. PMID:26931689

  14. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2016-02-01

    Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales.

  15. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  16. Relativistic treatment of inertial spin effects

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    1998-03-01

    A relativistic spin operator for Dirac particles is identified and it is shown that a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

  17. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2016-08-01

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  18. Dissipative compensators for flexible spacecraft control

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Maghami, P. G.

    1990-01-01

    The problem of controller design for flexible spacecraft is addressed. Model-based compensators, which rely on the knowledge of the system parameters to tune the state estimator, are considered. The instability mechanisms resulting from high sensitivity to parameter uncertainties are investigated. Dissipative controllers, which use collocated actuators and sensors, are also considered, and the robustness properties of constant-gain dissipative controllers in the presence of unmodeled elastic-mode dynamics, sensor/actuator nonlinearities, and actuator dynamics are summarized. In order to improve the performance without sacrificing robustness, a class of dissipative dynamic compensators is proposed and is shown to retain robust stability in the presence of second-order actuator dynamics if acceleration feedback is employed. A class of dissipative dynamic controllers is proposed which consists of a low-authority, constant-gain controller and a high-authority dynamic compensator. A procedure for designing an optimal dissipative dynamic compensator is given which minimizes a quadratic performance criterion. Such compensators offer the promise of better performance while still retaining robust stability.

  19. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    SciTech Connect

    Lopez, Rodrigo A.; Munoz, Victor; Asenjo, Felipe A.; Alejandro Valdivia, J.

    2012-08-15

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  20. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    NASA Astrophysics Data System (ADS)

    López, Rodrigo A.; Asenjo, Felipe A.; Muñoz, Víctor; Alejandro Valdivia, J.

    2012-08-01

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfvén one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfvén branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  1. Nonconventional fluctuation dissipation process in non-Hamiltonian dynamical systems

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco

    2016-08-01

    Here, we introduce a statistical approach derived from dynamics, for the study of the geophysical fluid dynamics phenomena characterized by a weak interaction among the variables of interest and the rest of the system. The approach is reminiscent of the one developed some years ago [M. Bianucci, R. Mannella, P. Grigolini and B. J. West, Phys. Rev. E 51, 3002 (1995)] to derive statistical mechanics of macroscopic variables on interest starting from Hamiltonian microscopic dynamics. However, in the present work, we are interested to generalize this approach beyond the context of the foundation of thermodynamics, in fact, we take into account the cases where the system of interest could be non-Hamiltonian (dissipative) and also the interaction with the irrelevant part can be of a more general type than Hamiltonian. As such example, we will refer to a typical case from geophysical fluid dynamics: the complex ocean-atmosphere interaction that gives rise to the El Niño Southern Oscillation (ENSO). Here, changing all the scales, the role of the “microscopic” system is played by the atmosphere, while the ocean (or some ocean variables) plays the role of the intrinsically dissipative macroscopic system of interest. Thus, the chaotic and divergent features of the fast atmosphere dynamics remains in the decaying properties of the correlation functions and of the response function of the atmosphere variables, while the exponential separation of the perturbed (or close) single trajectories does not play a direct role. In the present paper, we face this problem in the frame of a not formal Langevin approach, limiting our discussion to physically based rather than mathematics arguments. Elsewhere, we obtain these results via a much more formal procedure, using the Zwanzing projection method and some elements from the Lie Algebra field.

  2. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  3. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  4. Relativistic Transverse Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Mayer, A. F.

    2012-12-01

    symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.

  5. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas

    SciTech Connect

    Heidari, E.; Aslaninejad, M.; Eshraghi, H.; Rajaee, L.

    2014-03-15

    Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric and anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.

  6. New modified weight function for the dissipative force in the DPD method to increase the Schmidt number

    NASA Astrophysics Data System (ADS)

    Yaghoubi, S.; Shirani, E.; Pishevar, A. R.; Afshar, Y.

    2015-04-01

    To simulate liquid fluid flows with high Schmidt numbers (Sc), one needs to use a modified version of the Dissipative Particle Dynamics (DPD) method. Recently the modifications made by others for the weight function of dissipative forces, enables DPD simulations for Sc, up to 10. In this paper, we introduce a different dissipative force weight function for DPD simulations that allows achieving a solution with higher values of Sc and improving the dynamic characteristics of the simulating fluid. Moreover, by reducing the energy of DPD particles, even higher values of Sc can be achieved. Finally, using the new proposed weight function and kBT =0.2 , the Sc values can reach up to 200.

  7. The Highest Redshift Relativistic Jets

    SciTech Connect

    Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; Harris, D.E; Schwartz, D.A.; Wardle, J.F.C.; Gobeille, D.; Lee, N.P.

    2007-12-18

    We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in {approx} 30 z > 3.4 quasars are described along with new Chandra observations of 4 selected targets.

  8. Proper-time relativistic dynamics

    NASA Technical Reports Server (NTRS)

    Gill, Tepper L.; Zachary, W. W.; Lindesay, James

    1993-01-01

    Proper-time relativistic single-particle classical Hamiltonian mechanics is formulated using a transformation from observer time to system proper time which is a canonical contact transformation on extended phase space. It is shown that interaction induces a change in the symmetry structure of the system which can be analyzed in terms of a Lie-isotopic deformation of the algebra of observables.

  9. Future relativistic heavy ion experiments

    SciTech Connect

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned. (GHT)

  10. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  11. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  12. Bistability in a Driven-Dissipative Superfluid

    NASA Astrophysics Data System (ADS)

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-01

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  13. Bistability in a Driven-Dissipative Superfluid.

    PubMed

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-10

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ, the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition. PMID:27341243

  14. Topological protection of multiparticle dissipative transport

    NASA Astrophysics Data System (ADS)

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.

    2016-06-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.

  15. Dynamical approach to weakly dissipative granular collisions

    NASA Astrophysics Data System (ADS)

    Pinto, Italo'Ivo Lima Dias; Rosas, Alexandre; Lindenberg, Katja

    2015-07-01

    Granular systems present surprisingly complicated dynamics. In particular, nonlinear interactions and energy dissipation play important roles in these dynamics. Usually (but admittedly not always), constant coefficients of restitution are introduced phenomenologically to account for energy dissipation when grains collide. The collisions are assumed to be instantaneous and to conserve momentum. Here, we introduce the dissipation through a viscous (velocity-dependent) term in the equations of motion for two colliding grains. Using a first-order approximation, we solve the equations of motion in the low viscosity regime. This approach allows us to calculate the collision time, the final velocity of each grain, and a coefficient of restitution that depends on the relative velocity of the grains. We compare our analytic results with those obtained by numerical integration of the equations of motion and with exact ones obtained by other methods for some geometries.

  16. Topological protection of multiparticle dissipative transport

    PubMed Central

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de las Heras, Daniel; Fischer, Thomas M.

    2016-01-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry. PMID:27249049

  17. Rotational dissipation and the Miesowicz coefficients.

    PubMed

    Simões, M; Yamaguti, K; Palangana, A J

    2009-12-01

    In this work, we will study the relative contribution of each of the two dissipative channels of the Eriksen, Leslie, and Parodi (ELP) approach to the observed values of the Miesowicz viscosity coefficients of the nematic liquid crystals. According to the fundamental equation of the liquid crystal's viscosity dissipative process, TS=-integral d3r(sigma)ijA(ij)+hxN , there are two channels by which the nematic viscous dissipation can occur: or it occurs by means of a shear flow configuration, where A(ij) is the characterizing term, or it occurs by means of a rotational configuration, where N is the characterizing term (these parameters will be defined in the paper). It will be also shown that this relative contribution can be measured by a simple relationship connecting the Miesowicz coefficients, which exhibits a quasitemperature independent behavior, suggesting that it is nearly constant through the entire domain of the nematic phase. PMID:20365179

  18. Hypocoercivity of linear degenerately dissipative kinetic equations

    NASA Astrophysics Data System (ADS)

    Duan, Renjun

    2011-08-01

    In this paper we develop a general approach of studying the hypocoercivity for a class of linear kinetic equations with both transport and degenerately dissipative terms. As concrete examples, the relaxation operator, Fokker-Planck operator and linearized Boltzmann operator are considered when the spatial domain takes the whole space or torus and when there is a confining force or not. The key part of the developed approach is to construct some equivalent temporal energy functionals for obtaining time rates of the solution trending towards equilibrium in some Hilbert spaces. The result in the case of the linear Boltzmann equation with confining forces is new. The proof mainly makes use of the macro-micro decomposition combined with Kawashima's argument on dissipation of the hyperbolic-parabolic system. At the end, a Korn-type inequality with probability measure is provided to deal with dissipation of momentum components.

  19. Dissipation and traversal time in Josephson junctions

    SciTech Connect

    Cacciari, Ilaria; Ranfagni, Anedio; Moretti, Paolo

    2010-05-01

    The various ways of evaluating dissipative effects in macroscopic quantum tunneling are re-examined. The results obtained by using functional integration, while confirming those of previously given treatments, enable a comparison with available experimental results relative to Josephson junctions. A criterion based on the shortening of the semiclassical traversal time tau of the barrier with regard to dissipation can be established, according to which DELTAtau/tau > or approx. N/Q, where Q is the quality factor of the junction and N is a numerical constant of order unity. The best agreement with the experiments is obtained for N=1.11, as it results from a semiempirical analysis based on an increase in the potential barrier caused by dissipative effects.

  20. Dissipative effect in long baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Oliveira, Roberto L. N.

    2016-07-01

    The propagation of neutrinos in long baselines experiments may be influenced by dissipation effects. Using the Lindblad master equation we evolve neutrinos taking into account these dissipative effects. The MSW and the dissipative effects may change the behavior of the probabilities. In this work, we show and explain how the behavior of the probabilities can change due to the decoherence and relaxation effects acting individually with the MSW effect. A new exotic peak appears in this case and we show the difference between the decoherence and relaxation effects in the appearance of this peak. We also adapt the usual approximate expression for survival and appearance probabilities with all possible decoherence effects. We suppose the baseline of DUNE and show how each of the decoherence parameters changes the probabilities analyzing the possible modification using a numeric and an analytic approach.