Science.gov

Sample records for relativistic gravity fields

  1. Relativistic gravity and parity-violating nonrelativistic effective field theories

    NASA Astrophysics Data System (ADS)

    Wu, Chaolun; Wu, Shao-Feng

    2015-06-01

    We show that the relativistic gravity theory can offer a framework to formulate the nonrelativistic effective field theory in a general coordinate invariant way. We focus on the parity violating case in 2 +1 dimensions which is particularly appropriate for the study on quantum Hall effects and chiral superfluids. We discuss how the nonrelativistic spacetime structure emerges from relativistic gravity. We present covariant maps and constraints that relate the field contents in the two theories, which also serve as the holographic dictionary in the context of gauge/gravity duality. A low energy effective action for fractional quantum Hall states is constructed, which captures universal geometric properties and generates nonuniversal corrections systematically. We give another holographic example with dyonic black brane background to calculate thermodynamic and transport properties of strongly coupled nonrelativistic fluids in magnetic field. In particular, by identifying the shift function in the gravity as a minus of guiding center velocity, we obtain the Hall viscosity with its relation to Landau orbital angular momentum density proportional to Wen-Zee shift. Our formalism has a good projection to lowest Landau level.

  2. Absence of cosmological constant problem in special relativistic field theory of gravity: one-loop renormalization group

    NASA Astrophysics Data System (ADS)

    Carballo-Rubio, Raúl; Barceló, Carlos; Garay, Luis J.

    2015-04-01

    There exists a nonlinear theory of gravity which is not structurally equivalent to general relativity and that, in the non-interacting limit, describes a free massless particle with helicity ±2. We have recently shown that this theory can be understood as the result of self-coupling, in complete parallelism to the well-known case of general relativity. This special relativistic field theory of gravity exhibits a decoupling of vacuum zero-point energies of matter and passes all the known experimental tests in gravitation. It is explicitly demonstrated that there is no flow of the effective cosmological constant under the action of the renormalization group at one-loop level, while simple symmetry arguments show that this would continue to be true for higher-loop corrections. The important lesson is that just mild local assumptions concerning the nature of the particle mediating the gravitational interactions are enough to motivate theories which are free of the cosmological constant problem.

  3. Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity

    NASA Astrophysics Data System (ADS)

    Wu, Ning

    2006-03-01

    Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrödinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrödinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.

  4. Non-relativistic fields from arbitrary contracting backgrounds

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2016-09-01

    We discuss a non-relativistic contraction of massive and massless field theories minimally coupled to gravity. Using the non-relativistic limiting procedure introduced in our previous work, we (re-)derive non-relativistic field theories of massive and massless spins 0 to 3/2 coupled to torsionless Newton–Cartan backgrounds. We elucidate the relativistic origin of the Newton–Cartan central charge gauge field {m}μ and explain its relation to particle number conservation.

  5. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the

  6. Artificial gravity field

    NASA Astrophysics Data System (ADS)

    Markley, Larry C.; Lindner, John F.

    Using computer algebra to run Einstein's equations "backward", from field to source rather than from source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that generates the field contains exotic matter of negative energy density but also relies importantly on pressures and shears, which we describe. The same techniques can be readily used to design other interesting spacetimes and thereby elucidate the connection between the source and field in general relativity.

  7. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  8. Existence of relativistic stars in f(R) gravity

    SciTech Connect

    Upadhye, Amol; Hu, Wayne

    2009-09-15

    We refute recent claims in the literature that stars with relativistically deep potentials cannot exist in f(R) gravity. Numerical examples of stable stars, including relativistic (GM{sub *}/r{sub *}{approx}0.1), constant density stars, are studied. As a star is made larger, nonlinear 'chameleon' effects screen much of the star's mass, stabilizing gravity at the stellar center. Furthermore, we show that the onset of this chameleon screening is unrelated to strong gravity. At large central pressures P>{rho}/3, f(R) gravity, like general relativity, does have a maximum gravitational potential, but at a slightly smaller value: GM{sub *}/r{sub *}|{sub max}=0.345<4/9 for constant density and one choice of parameters. This difference is associated with negative central curvature R under general relativity not being accessed in the f(R) model, but does not apply to any known astrophysical object.

  9. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  10. Vector-tensor nature of Bekenstein's relativistic theory of modified gravity

    SciTech Connect

    Zlosnik, T. G.; Ferreira, P. G.; Starkman, Glenn D.

    2006-08-15

    Bekenstein's theory of relativistic gravity is conventionally written as a bimetric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this paper we show that the theory can be rewritten as vector-tensor theory akin to Einstein-Aether theories with noncanonical kinetic terms. We discuss some of the implications of this equivalence.

  11. Relativistic stars in de Rham-Gabadadze-Tolley massive gravity

    NASA Astrophysics Data System (ADS)

    Katsuragawa, Taishi; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yamazaki, Masashi

    2016-06-01

    We study relativistic stars in the simplest model of the de Rham-Gabadadze-Tolley massive gravity which describes the massive graviton without a ghost propagating mode. We consider the hydrostatic equilibrium and obtain the modified Tolman-Oppenheimer-Volkoff equation and the constraint equation coming from the potential terms in the gravitational action. We give analytical and numerical results for quark and neutron stars and discuss the deviations compared with general relativity and F (R ) gravity. It is shown that the theory under investigation leads to a small deviation from general relativity in terms of density profiles and mass-radius relation. Nevertheless, such a deviation may be observable in future astrophysical probes.

  12. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  13. Gravity: Newtonian, Post-Newtonian, and General Relativistic

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    We present a pedagogical introduction to gravitational theory, with the main focus on weak gravitational fields. We begin with a thorough survey of Newtonian gravitational theory. After a brief introduction to general relativity, we develop the post-Minkowskian formulation of the field equations, which is ideally suited to studying weak-field gravity. We then discuss applications of this formulation, including post-Newtonian theory, the parametrized post-Newtonian framework, and gravitational radiation.

  14. Relativistic mean-field theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Ring, Peter; Zhao, Pengwei

    In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.

  15. Relativistic Quantum Mechanics and Field Theory

    NASA Astrophysics Data System (ADS)

    Gross, Franz

    1999-04-01

    An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.

  16. Optical measurements of gravity fields

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Yu, N.; Matsko, A.

    2003-01-01

    Optical measurements of a gravitational field with sensitivity close to the sensitivity of atomic devices are possible if one detects properties of light after its interaction with optically thick atomic cloud moving freely in the gravity field. A nondestructive detection of a number of ultracold atoms in a cloud as well as tracking of the ground state population distribution of the atoms is possible by optical means.

  17. Torsion-gravity for Dirac fields and their effective phenomenology

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2014-08-01

    We will consider the torsional completion of gravity for a background filled with Dirac matter fields, studying the weak-gravitational non-relativistic approximation, in view of an assessment about their effective phenomenology: we discuss how the torsionally-induced nonlinear interactions among fermion fields in this limit are compatible with all experiments and remarks on the role of torsion to suggest new physics are given.

  18. Relativistic generation of vortex and magnetic field

    SciTech Connect

    Mahajan, S. M.; Yoshida, Z.

    2011-05-15

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  19. Progress in the Determination of the Earth's Gravity Field

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H. (Editor)

    1989-01-01

    Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.

  20. Test of relativistic gravity using microlensing of relativistically broadened lines in gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Neronov, A.; Vovk, Ie.

    2016-01-01

    We show that observation of the time-dependent effect of microlensing of relativistically broadened emission lines (such as e.g. the Fe K α line in x rays) in strongly lensed quasars could provide data on celestial mechanics of circular orbits in the direct vicinity of the horizon of supermassive black holes. This information can be extracted from the observation of evolution of the red/blue edge of the magnified line just before and just after the period of crossing of the innermost stable circular orbit by the microlensing caustic. The functional form of this evolution is insensitive to numerous astrophysical parameters of the accreting black hole and of the microlensing caustics network system (as opposed to the evolution of the full line spectrum). Measurement of the temporal evolution of the red/blue edge could provide a precision measurement of the radial dependence of the gravitational redshift and of velocity of the circular orbits, down to the innermost stable circular orbit. These measurements could be used to discriminate between general relativity and alternative models of the relativistic gravity in which the dynamics of photons and massive bodies orbiting the gravitating center is different from that of the geodesics in the Schwarzschild or Kerr space-times.

  1. Some properties of the dynamics of collapse in massive and massless relativistic theories of gravity

    NASA Astrophysics Data System (ADS)

    Antipin, K. V.; Dubikovsky, A. I.; Silaev, P. K.

    2016-04-01

    We investigate the dynamics of collapse in massive and massless relativistic theories of gravity for different equations of state for matter numerically and analytically. This allows clarifying the character of the collapse dynamics in the massive relativistic theory of gravity; in particular, we establish the graviton-mass dependence of the time of reaching the turning point ( i.e., the point of transition from contraction to expansion). For the massless relativistic theory of gravity, we clarify the relation between the known general relativity solution for cold dust and the corresponding solution in the relativistic theory of gravity. We show that the harmonic time is singular, including the case of a smooth distribution of matter corresponding to a compact object with a strongly diffused boundary, which means that the Oppenheimer-Snyder solution cannot be fully embedded into the Minkowski space. We in addition investigate the effect of a nonzero pressure on the collapse dynamics.

  2. Investigations of -gravity counterparts of the general relativistic shear-free conjecture by illustrative examples

    NASA Astrophysics Data System (ADS)

    Sofuoğlu, Değer; Mutuş, Haşim

    2014-12-01

    By adopting a metric based approach and making use of -gravity extended tetrad equations, we have considered three spatially homogeneous metrics in order to investigate the existence of simultaneously rotating and expanding solutions of the -gravity field equations with shear-free perfect fluids as sources. We have shown that the Gödel type expanding universe, as well as a rotating Bianchi-type II spacetime allow no such solutions of the field equations of this modified gravity. On the other hand, we have found that there exist two types of models in which a shear-free Bianchi-type IX universe can expand and rotate at the same time. The matter content of this universe is described by a perfect fluid having positive or negative pressure, depending on the type of model and on the cosmological constant; in the particular case of a vanishing cosmological constant we have found that the universe is filled with a pure radiation. Whatsoever the cases, the universe exhibits always coasting anisotropic expansions along three spatial directions evolving like a flat Milne universe, and has a vorticity inversely proportional to cosmic time. A further result is that, due to the nonvanishing of the gravito-magnetic part of the Weyl tensor, this model allows for gravitational waves. Our solution constitutes one more example giving support to that in -gravity there is no counterpart of the general relativistic shear-free conjecture.

  3. Gravity field information from Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.

    1989-01-01

    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.

  4. CSR Gravity Field Data Products

    NASA Astrophysics Data System (ADS)

    Bettadpur, Srinivas

    2014-05-01

    The joint NASA/DLR GRACE mission has successfully operated for nearly 12 years, and has provided a remarkable record of global mass flux due to a large variety of geophysical and climate processes at various spatio-temporal scales. The University of Texas Center for Space Research (CSR) hosts the mission PI, and is responsible for delivery of operational (presently denoted as Release-05 or RL05) gravity field data products. In addition, CSR generates and distributes a variety of other gravity field data products, including products generated from the use of satellite laser ranging data. This poster will provide an overview of all these data products, their relative quality, potential applications, and future plans for their development and delivery.

  5. Accuracy of the non-relativistic approximation to relativistic probability densities for a low-speed weak-gravity system

    NASA Astrophysics Data System (ADS)

    Liang, Shiuan-Ni; Lan, Boon Leong

    2015-11-01

    The Newtonian and general-relativistic position and velocity probability densities, which are calculated from the same initial Gaussian ensemble of trajectories using the same system parameters, are compared for a low-speed weak-gravity bouncing ball system. The Newtonian approximation to the general-relativistic probability densities does not always break down rapidly if the trajectories in the ensembles are chaotic -- the rapid breakdown occurs only if the initial position and velocity standard deviations are sufficiently small. This result is in contrast to the previously studied single-trajectory case where the Newtonian approximation to a general-relativistic trajectory will always break down rapidly if the two trajectories are chaotic. Similar rapid breakdown of the Newtonian approximation to the general-relativistic probability densities should also occur for other low-speed weak-gravity chaotic systems since it is due to sensitivity to the small difference between the two dynamical theories at low speed and weak gravity. For the bouncing ball system, the breakdown of the Newtonian approximation is transient because the Newtonian and general-relativistic probability densities eventually converge to invariant densities which are close in agreement.

  6. Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity

    NASA Astrophysics Data System (ADS)

    Lucchesi, David M.; Peron, Roberto

    2010-12-01

    The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the Newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein’s theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the γ and β parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength α and range λ. We obtained |α|≲1×10-11, a huge improvement at a range of about 1 Earth radius.

  7. Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity.

    PubMed

    Lucchesi, David M; Peron, Roberto

    2010-12-01

    The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein's theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the γ and β parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength α and range λ. We obtained |α| ≲ 1 × 10(-11), a huge improvement at a range of about 1 Earth radius. PMID:21231446

  8. Relativistic diffusive motion in thermal electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2013-04-01

    We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.

  9. Weak-field general relativistic dynamics and the Newtonian limit

    NASA Astrophysics Data System (ADS)

    Cooperstock, F. I.

    2016-01-01

    We show that the generally held view that the gravity of weak-field nonrelativistic-velocity sources being invariably almost equivalent to Newtonian gravity (NG) (the “Newtonian limit” approach) is in some instances misleading and in other cases incorrect. A particularly transparent example is provided by comparing the Newtonian and general relativistic analyses of a simple variant of van Stockum’s infinite rotating dust cylinder. We show that some very recent criticisms of our work that had been motivated by the Newtonian limit approach were incorrect and note that no specific errors in our work were found in the critique. In the process, we underline some problems that arise from inappropriate coordinate transformations. As further support for our methodology, we note that our weak-field general relativistic treatment of a model galaxy was vindicated recently by the observations of Xu et al. regarding our prediction that the Milky Way was 19-21 kpc in radius as opposed to the commonly held view that the radius was 15 kpc.

  10. Magnetized relativistic stellar models in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-04-01

    We consider the structure of the magnetic fields inside the neutron stars in Eddington-inspired Born-Infeld (EiBI) gravity. In order to construct the magnetic fields, we derive the relativistic Grad-Shafranov equation in EiBI and numerically determine the magnetic distribution in such a way that the interior magnetic fields should be connected to the exterior distribution. Then, we find that the magnetic distribution inside the neutron stars in EiBI is qualitatively similar to that in general relativity, where the deviation of magnetic distribution in EiBI from that in general relativity is almost comparable to uncertainty due to the equation of state for the neutron star matter. However, we also find that the magnetic fields in the crust region are almost independent of the coupling constant in EiBI, which suggests a possibility of obtaining the information about the crust equation of state independent from the gravitational theory via the observations of the phenomena associated with the crust region. In any case, since the imprint of EiBI gravity on the magnetic fields is weak, the magnetic fields could be a poor probe of gravitational theories, considering the many magnetic uncertainties.

  11. PREFACE: 2nd International Symposium on the Modern Physics of Compact Stars and Relativistic Gravity

    NASA Astrophysics Data System (ADS)

    Edvard Chubaryan, Professor; Aram Saharian, Professor; Armen Sedrakian, Professor

    2014-03-01

    The international conference ''The Modern Physics of Compact Stars and Relativistic Gravity'' took place in Yerevan, Armenia, from 18-21 September 2013. This was the second in a series of conferences which aim to bring together people working in astrophysics of compact stars, physics of dense matter, gravitation and cosmology, observations of pulsars and binary neutron stars and related fields. The conference was held on the occasion of 100th birthday of the founder of the Theoretical Physics Chair at the Department of Physics of Yerevan State University and prominent Armenian scientist Academician Gurgen S Sahakyan. The field of compact stars has seen extraordinary development since the discovery of pulsars in 1967. Even before this discovery, pioneering work of a number of theoretical groups had laid the foundation for this development. A pioneer of this effort was Professor G S Sahakyan who, together with Professor Victor Ambartsumyan and a group of young scientists, started in the early sixties their fundamental work on the properties of superdense matter and on the relativistic structure of compact stellar objects. This conference explored the vast diversity of the manifestations of compact stars, including the modern aspects of the equation of state of superdense matter, its magnetic and thermal properties, rotational dynamics, superfluidity and superconductivity, phase transition from hadronic to quark matter, etc. The articles on these subjects collected in this volume are evidence of liveliness of the field and of the continuous feedback between theory and the experiment. A part of this volume is devoted to the cosmology and the theories of gravity — the subfields of astrophysics that are of fundamental importance to our understanding of the universe. The reader will find here articles touching on the most diverse aspects of these fields such as modern problems in Einstein's classical theory of gravity and its alternatives, string theory motivated

  12. Global marine gravity field map

    NASA Astrophysics Data System (ADS)

    Sloss, Peter W.

    A color relief image of the marine gravity field from SEASAT altimeter measurements of the topography of the ocean surface is now available through the National Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric Administration. This image, prepared by William F. Haxby (Lamont-Doherty Geological Observatory of Columbia University, Palisades, N.Y.), has been published by NGDC for the Office of Naval Research, which was the principal sponsor of the effort leading to the development of the image. The U.S. Geological Survey, National Mapping Division, printed the map.

  13. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  14. (Re-)inventing the relativistic wheel: gravity, cosets, and spinning objects

    NASA Astrophysics Data System (ADS)

    Delacrétaz, Luca V.; Endlich, Solomon; Monin, Alexander; Penco, Riccardo; Riva, Francesco

    2014-11-01

    Space-time symmetries are a crucial ingredient of any theoretical model in physics. Unlike internal symmetries, which may or may not be gauged and/or spontaneously broken, space-time symmetries do not admit any ambiguity: they are gauged by gravity, and any conceivable physical system (other than the vacuum) is bound to break at least some of them. Motivated by this observation, we study how to couple gravity with the Goldstone fields that non-linearly realize spontaneously broken space-time symmetries. This can be done in complete generality by weakly gauging the Poincaré symmetry group in the context of the coset construction. To illustrate the power of this method, we consider three kinds of physical systems coupled to gravity: superfluids, relativistic membranes embedded in a higher dimensional space, and rotating point-like objects. This last system is of particular importance as it can be used to model spinning astrophysical objects like neutron stars and black holes. Our approach provides a systematic and unambiguous parametrization of the degrees of freedom of these systems.

  15. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    NASA Technical Reports Server (NTRS)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  16. The gravity field of Jupiter

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.

    1976-01-01

    Preliminary analysis of two-way Doppler data from Pioneers 10 and 11 has provided the first detailed model of the Jovian gravity field. A review of the determination of the zonal harmonic coefficients through the sixth degree is presented, and the results are used to derive a number of geodetic parameters in the atmospheric region of the planet. On a level surface at a pressure of one bar, the net acceleration due to gravity is found to vary from a maximum of 2707 cm/sec squared at the poles to a minimum of 2322 cm/sec squared at the equator. The large dynamical flattening at the one-bar level produces a significant deviation of the local vertical from the Jovicentric radius vector. The angular difference is as much as 3.83 degrees of arc in the high temperature zones of the planet. These considerations are important for the accurate modeling of the atmosphere of Jupiter and for the interpretation of occultation data.

  17. Dirac fields in loop quantum gravity and big bang nucleosynthesis

    SciTech Connect

    Bojowald, Martin; Das, Rupam; Scherrer, Robert J.

    2008-04-15

    Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.

  18. Gravity Field Characterization around Small Bodies

    NASA Astrophysics Data System (ADS)

    Takahashi, Yu

    A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with

  19. The facets of relativistic quantum field theory

    NASA Astrophysics Data System (ADS)

    Dosch, H. G.; Müller, V. F.

    2010-04-01

    Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.

  20. The facets of relativistic quantum field theory

    NASA Astrophysics Data System (ADS)

    Dosch, H. G.; Müller, V. F.

    2011-04-01

    Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.

  1. Relativistic Mean Field description of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Gambhir, Y. K.

    1994-03-01

    The Relativistic Mean Field (RMF) approach which essentially is an extension of the original σ — ω model of Walecka, has been applied to exotic nuclei as an illustration. We consider nuclei near Z = 34 in the very interesting 2p-1f region. The calculated binding energies, root mean square radii, deformations and other observables are very satisfactory and are in accordance with the experiment (where available) and also with the available empirical studies. Large deformations and shape co-existence are obtained for several cases.

  2. Relativistic Lagrangian displacement field and tensor perturbations

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Wiegand, Alexander

    2014-12-01

    We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the basic Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully nonperturbative approach based on the Arnowitt-Deser-Misner (ADM) split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the nonperturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve the gravitational wave equation in the relativistic analysis, otherwise the corresponding Newtonian limit will necessarily contain spurious nonpropagating tensor artifacts at second order in the Eulerian frame. We also derive the magnetic part of the Weyl tensor in the Lagrangian frame, and find that it is not only excited by gravitational waves but also by tensor perturbations which are induced through the nonlinear frame dragging. We apply our findings to calculate for the first time the relativistic displacement field, up to second order, for a Λ CDM Universe in the presence of a local primordial non-Gaussian component. Finally, we also comment on recent claims about whether mass conservation in the Lagrangian frame is violated.

  3. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  4. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  5. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  6. Gravity field determination and error assessment techniques

    NASA Technical Reports Server (NTRS)

    Yuan, D. N.; Shum, C. K.; Tapley, B. D.

    1989-01-01

    Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.

  7. Gravitational-wave observations as a tool for testing relativistic gravity

    NASA Technical Reports Server (NTRS)

    Eardley, D. M.; Lee, D. L.; Lightman, A. P.; Wagoner, R. V.; Will, C. M.

    1973-01-01

    Approaches regarding the role of gravitational wave observations in the investigation of relativistic theories of gravity are treated as providing greater potential in the prediction of wave propagation speed and the polarization properties of gravitational waves. The invariant classes of waves discussed have the same post-Newtonian limit as general relativity for a reasonable choice of cosmological models.

  8. Theoretical frameworks for testing relativistic gravity: A review

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Will, C. M.; Ni, W.

    1971-01-01

    Metric theories of gravity are presented, including the definition of metric theory, evidence for its existence, and response of matter to gravity with test body trajectories, gravitational red shift, and stressed matter responses. Parametrized post-Newtonian framework and interpretations are reviewed. Gamma, beta and gamma, and varied other parameters were measured. Deflection of electromagnetic waves, radar time delay, geodetic gyroscope precession, perihelion shifts, and periodic effects in orbits are among various studies carried out for metric theory experimentation.

  9. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  10. Fast gravity, gravity partials, normalized gravity, gravity gradient torque and magnetic field: Derivation, code and data

    NASA Technical Reports Server (NTRS)

    Gottlieb, Robert G.

    1993-01-01

    Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.

  11. Toward a gauge field theory of gravity.

    NASA Astrophysics Data System (ADS)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  12. On the weak field approximation of the de Sitter gauge theory of gravity

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen; Huang, Chao-Guang

    2013-01-01

    The weak field approximation of a model of de Sitter gauge theory of gravity is studied in two cases. Without torsion and spin current, the model cannot give the right non-relativistic approximation unless the density is a constant. With small torsion, a satisfactory Newtonian approximation can be obtained.

  13. Tunnelling of relativistic particles from new type black hole in new massive gravity

    NASA Astrophysics Data System (ADS)

    Gecim, Ganim; Sucu, Yusuf

    2013-02-01

    In the framework of the three dimensional New Massive Gravity theory introduced by Bergshoeff, Hohm and Townsend, we analyze the behavior of relativistic spin-1/2 and spin-0 particles in the New-type Black Hole backgroud, solution of the New Massive Gravity.We solve Dirac equation for spin-1/2 and Klein-Gordon equation for spin-0. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe that the tunnelling probability and Hawking temperature are same for the spin-1/2 and spin-0.

  14. Condensation for non-relativistic matter in Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Jing, Jiliang; Chen, Songbai; Pan, Qiyuan

    2015-10-01

    We study condensation for non-relativistic matter in a Hořava-Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ɛ), it is easier for the scalar hair to form as the parameter ɛ (or α2) becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ɛ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz-Roberts relation ωg /Tc ≈ 8 obtained in the Einstein gravity and Cai's result ωg /Tc ≈ 13 found in a Hořava-Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg /Tc ≈ 3.5 by taking proper values of the parameters.

  15. Gravity Field Recovery with Simulated GOCE Observations

    NASA Astrophysics Data System (ADS)

    Marty, J.; Bruinsma, S.; Balmino, G.; Abrikosov, O.; Foerste, C.; Rothacher, M.

    2005-12-01

    Numerical simulations of the gravity field parameter recovery using the direct method, with satellite positions as pseudo observations instead of simulated GPS Satellite-to-Satellite (SST) tracking data, and with gravity gradients (SGG data), were done and are ongoing in the framework of the European GOCE Gravity Consortium test and validation plan for GOCE mission data processing. This work shows the latest results from the CNES and GFZ software packages, GINS and EPOS, respectively. After the iterative least-squares orbit adjustment procedure has converged to the highest attainable precision level, the gravity field normal equations are computed in a subsequent step. These SST normal equations, representing the long wavelength gravity field signal, are then reduced for arc-dependent parameters (i.e. state vector at epoch, empirical parameters) and cumulated over the entire observation period. Secondly, the gravity gradient measurements (SGG) are processed, taking into account the coloured noise in these data, and yield (high resolution) normal equations. They are combined with the SST normal equations and the gravity field and gradiometer common mode calibration parameters are simultaneously estimated. The coloured noise in the SGG data is based on the latest and realistic gradiometer specifications. The precision in the measurement bandwidth is approximately 3-5 milliEotvos, but rapidly decreasing for lower frequencies. Due to this behaviour, the observation equations have to be filtered in order to obtain the most accurate recovery. The filter algorithm, design and results are presented to considerable detail since this particular step is the key element that will enable the achievement of the GOCE mission objectives from the ground segment point of view.

  16. Superoscillations underlying remote state preparation for relativistic fields

    NASA Astrophysics Data System (ADS)

    Ber, Ran; Kenneth, Oded; Reznik, Benni

    2015-05-01

    We present a physical (gedanken) implementation of a generalized remote state preparation of relativistic quantum field states for an arbitrary set of observers. The prepared states are created in regions that are outside the future light cone of the generating region. The mechanism, which is based on utilizing the vacuum state of a relativistic quantum field as a resource, sheds light on the well known Reeh-Schlieder theorem, indicating its strong connection with the mathematical phenomenon of superoscillations.

  17. Global Lunar Gravity Field Recovery from SELENE

    NASA Technical Reports Server (NTRS)

    Matsumoto, Koji; Heki, Kosuke; Hanada, Hideo

    2002-01-01

    Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.

  18. On the impact of airborne gravity data to fused gravity field models

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander

    2016-03-01

    In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.

  19. On the impact of airborne gravity data to fused gravity field models

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander

    2016-06-01

    In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.

  20. Gravity at the horizon: on relativistic effects, CMB-LSS correlations and ultra-large scales in Horndeski's theory

    NASA Astrophysics Data System (ADS)

    Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco

    2016-07-01

    We address the impact of consistent modifications of gravity on the largest observable scales, focusing on relativistic effects in galaxy number counts and the cross-correlation between the matter large scale structure (LSS) distribution and the cosmic microwave background (CMB). Our analysis applies to a very broad class of general scalar-tensor theories encoded in the Horndeski Lagrangian and is fully consistent on linear scales, retaining the full dynamics of the scalar field and not assuming quasi-static evolution. As particular examples we consider self-accelerating Covariant Galileons, Brans-Dicke theory and parameterizations based on the effective field theory of dark energy, using the hi class code to address the impact of these models on relativistic corrections to LSS observables. We find that especially effects which involve integrals along the line of sight (lensing convergence, time delay and the integrated Sachs-Wolfe effect—ISW) can be considerably modified, and even lead to O(1000%) deviations from General Relativity in the case of the ISW effect for Galileon models, for which standard probes such as the growth function only vary by O(10%). These effects become dominant when correlating galaxy number counts at different redshifts and can lead to ~ 50% deviations in the total signal that might be observable by future LSS surveys. Because of their integrated nature, these deep-redshift cross-correlations are sensitive to modifications of gravity even when probing eras much before dark energy domination. We further isolate the ISW effect using the cross-correlation between LSS and CMB temperature anisotropies and use current data to further constrain Horndeski models. Forthcoming large-volume galaxy surveys using multiple-tracers will search for all these effects, opening a new window to probe gravity and cosmic acceleration at the largest scales available in our universe.

  1. Using Clocks and Atomic Interferometry for Gravity Field Observations

    NASA Astrophysics Data System (ADS)

    Müller, Jürgen

    2016-07-01

    New technology developed in the frame of fundamental physics may lead to enhanced capabilities for geodetic applications such as refined observations of the Earth's gravity field. Here, we will present new sensor measurement concepts that apply atomic interferometry for gravimetry and clock measurements for observing potential values. In the first case, gravity anomalies can be determined by observing free-falling atoms (quantum gravimetry). In the second case, highly precise optical clocks can be used to measure differences of the gravity potential over long distances (relativistic geodesy). Principally, also inter-satellite ranging between test masses in space with nanometer accuracy belongs to these novel developments. We will show, how the new measurement concepts are connected to classical geodetic concepts, e.g. geopotential numbers and clock readings. We will illustrate the application of these new methods and their benefit for geodesy, where local and global mass variations can be observed with unforeseen accuracy and resolution, mass variations that reflect processes in the Earth system. We will present a few examples where geodesy will potentially benefit from these developments. Thus, the novel technologies might be applied for defining and realizing height systems in a new way, but also for fast local gravimetric surveys and exploration.

  2. Induced gravity I: real scalar field

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-01-01

    We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.

  3. Improvements in GRACE Gravity Fields Using Regularization

    NASA Astrophysics Data System (ADS)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or

  4. A comprehensive study of relativistic gravity using PSR B1534+12

    SciTech Connect

    Fonseca, Emmanuel; Stairs, Ingrid H.; Thorsett, Stephen E. E-mail: stairs@astro.ubc.ca

    2014-05-20

    We present updated analyses of pulse profiles and their arrival times from PSR B1534+12, a 37.9 ms radio pulsar in orbit with another neutron star. A high-precision timing model is derived from 22 yr of timing data and accounts for all astrophysical processes that systematically affect pulse arrival times. Five 'post-Keplerian' parameters are measured that represent relativistic corrections to the standard Keplerian quantities of the pulsar's binary orbit. These relativistic parameters are then used to test general relativity by comparing the measurements with their predicted values. We conclude that relativity theory is confirmed to within 0.17% of its predictions. Furthermore, we derive the following astrophysical results from our timing analysis: a distance of d {sub GR} = 1.051 ± 0.005 kpc to the pulsar-binary system, by relating the 'excess' orbital decay to Galactic parameters; evidence for pulse 'jitter' in PSR B1534+12 due to short-term magnetospheric activity; and evolution in pulse-dispersion properties. As a secondary study, we also present several analyses on pulse-structure evolution and its connection to relativistic precession of the pulsar's spin axis. The precession-rate measurement yields a value of Ω{sub 1}{sup spin}=0.59{sub −0.08}{sup +0.12}° yr{sup –1} (68% confidence) that is consistent with expectations and represents an additional test of relativistic gravity.

  5. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  6. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  7. Twinsat earth gravity field mapping

    NASA Technical Reports Server (NTRS)

    Lowrey, B. E.

    1975-01-01

    Results of a sensitivity study on the proposed Lo-Lo (Twinsat) satellite-to-satellite tracking mission are described. The relative range-rate signal due to a local gravitational anomaly is investigated as a function of height and satellite separation. It is shown that the signal strength is weak and that an optimal combination of signal strength and resolution is achieved when the satellites are separated by 3 deg along-track. The signal does not resolve point masses closer than 5 deg apart when the satellites are at 300 km altitude. The influence of other factors on the system is evaluated, including the low frequency gravitation field effect on the orbit and the dependence of the noise of the data type on (electronic) integration time.

  8. Gravity Field Parameter Estimation Using QR Factorization

    NASA Astrophysics Data System (ADS)

    Klokocnik, J.; Wagner, C. A.; McAdoo, D.; Kostelecky, J.; Bezdek, A.; Novak, P.; Gruber, C.; Marty, J.; Bruinsma, S. L.; Gratton, S.; Balmino, G.; Baboulin, M.

    2007-12-01

    This study compares the accuracy of the estimated geopotential coefficients when QR factorization is used instead of the classical method applied at our institute, namely the generation of normal equations that are solved by means of Cholesky decomposition. The objective is to evaluate the gain in numerical precision, which is obtained at considerable extra cost in terms of computer resources. Therefore, a significant increase in precision must be realized in order to justify the additional cost. Numerical simulations were done in order to examine the performance of both solution methods. Reference gravity gradients were simulated, using the EIGEN-GL04C gravity field model to degree and order 300, every 3 seconds along a near-circular, polar orbit at 250 km altitude. The simulation spanned a total of 60 days. A polar orbit was selected in this simulation in order to avoid the 'polar gap' problem, which causes inaccurate estimation of the low-order spherical harmonic coefficients. Regularization is required in that case (e.g., the GOCE mission), which is not the subject of the present study. The simulated gravity gradients, to which white noise was added, were then processed with the GINS software package, applying EIGEN-CG03 as the background gravity field model, followed either by the usual normal equation computation or using the QR approach for incremental linear least squares. The accuracy assessment of the gravity field recovery consists in computing the median error degree-variance spectra, accumulated geoid errors, geoid errors due to individual coefficients, and geoid errors calculated on a global grid. The performance, in terms of memory usage, required disk space, and CPU time, of the QR versus the normal equation approach is also evaluated.

  9. Gravity field determination using boundary element methods

    NASA Astrophysics Data System (ADS)

    Klees, Roland

    1993-09-01

    The Boundary Element Method (BEM), a numerical technique for solving boundary integral equations, is introduced to determine the earth's gravity field. After a short survey on its main principles, we apply this method to the fixed gravimetric boundary value problem (BVP), i.e. the determination of the earth's gravitational potential from measurements of the intensity of the gravity field in points on the earth's surface. We show how to linearize this nonlinear BVP using an implicit function theorem and how to transform the linearized BVP into a boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation into a linear system of equations. We discuss the major problems of this approach for setting up and solving the linear system. The BVP is numerically solved for a bounded part of the earth's surface using a high resolution reference gravity model, measured gravity values of high density, and a 50 ṡ 50 m2 digital terrain model to describe the earth's surface. We obtain a gravity field resolution of 1 ṡ 1 km2 with an accuracy of the order 10-3 to 10-4 in about 1 CPU-hour on a Siemens/Fujitsu SIMD vector pipeline machine using highly sophisticated numerical integration techniques and fast equation solvers. We conclude that BEM is a powerful numerical tool for solving boundary value problems and may be an alternative to classical geodetic techniques.

  10. Foldy-Wouthuysen transformation for relativistic particles in external fields

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2003-07-01

    A method of Foldy-Wouthuysen transformation for relativistic spin-1/2 particles in external fields is proposed. It permits the determination of the Hamilton operator in the Foldy-Wouthuysen representation with any accuracy. Interactions between a particle having an anomalous magnetic moment and nonstationary electromagnetic and electroweak fields are investigated.

  11. The Role of Magnetic Fields in Relativistic Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Newman, W. I.

    2012-05-01

    We explore, analytically and by numerical simulation, the evolution of the Kelvin-Helmholtz (KH) instability in a relativistic magnetized astrophysical jet. Our results successfully reproduce numerous magnetohydrodynamic features observed in relativistic astrophysical environments. The KH instability arises from a variation in flow speed orthogonal to the flow. Many astrophysical jets are relativistic, evidenced by apparent superluminal motion, and are likely collimated by a magnetic field, according to commonly accepted models. We find convergence of our numerical results between the hydrodynamic, magnetohydrodynamic, relativistic hydrodynamic, and relativistic magnetohydrodynamic regimes. We observe complementarity between fluid flow and magnetic field behavior. The early nonlinear regime corresponds to the formation of large vortices connected by a dual filamentary structure reminiscent of the cosmic double helix in the extragalactic jet 3C 273. These vortices are disrupted by the field, followed by a complex turbulent regime, and then an approach to an equilibrium configuration consisting of flow-aligned filaments. For stronger fields, this process occurs more rapidly, and sufficiently strong fields suppress vortices entirely. The jet also widens and decelerates by an amount depending on field strength. These results are in qualitative agreement with observations of numerous jets, including NGC 5128, 3C 273, and HH 30. Relativistic flows break synchronicity between longitudinal and transverse motions, thereby destabilizing the system, and enhancing the complexity of vortex disruption and turbulent breakdown. This desynchronization also causes early numerical breakdown at high Lorentz factors, a long-standing problem. Using a uniform-flow model, we provide the first mathematical analysis showing that for sufficiently high Lorentz factors, artificial diffusion not only fails to suppress numerical instability, but introduces growing modes which destabilize the

  12. Relativistic generation of vortex and magnetic field a)

    NASA Astrophysics Data System (ADS)

    Mahajan, S. M.; Yoshida, Z.

    2011-05-01

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the "evolution" of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity—the magnetic field and the thermal-kinetic vorticity. The "strength" of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  13. On the usefulness of relativistic space-times for the description of the Earth's gravitational field

    NASA Astrophysics Data System (ADS)

    Soffel, Michael; Frutos, Francisco

    2016-07-01

    The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.

  14. Electric field replaces gravity in laboratory

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal

  15. Gravitational-wave observations as a tool for testing relativistic gravity

    NASA Technical Reports Server (NTRS)

    Eardley, D. M.; Lee, D. L.; Lightman, A. P.

    1973-01-01

    Gravitational radiation in the far field was examined using a formalism that encompassed all metric theories of gravity. There are six possible modes of polarization, which can be completely resolved by feasible experiments. A theoretical framework is set forth for classification of waves and theories, based on the Lorentz transformation properties of the six modes. Also shown in detail is how the six modes may be experimentally identified and to what extent such information limits the correct theory of gravity.

  16. Near field properties in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Yang; Fries, Rainer; Kapusta, Joseph

    2006-04-01

    We study the properties of the soft gluon field produced in relativistic heavy ion collisions. In the spirit of McLerran-Venugopalan model, we write the field potential in a power series of the proper time τ and solve the Yang-Mills equation along with color current conservation equations simultaneously. We find that the classical gluon field at small τ, i.e., the near field, is mainly longitudinal. We also calculate the energy-momentum tensor of the field. This gluon field will decay and thermalize into a quark gluon plasma. Our results can be used as the initial conditions for the consequent relativistic hydrodynamic description of the dense parton matter.

  17. GRAIL gravity field determination using the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos

    2015-11-01

    The NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherited its concept from the GRACE (Gravity Recovery and Climate Experiment) mission to determine the gravity field of the Moon. We present lunar gravity fields based on the data of GRAIL's primary mission phase. Gravity field recovery is realized in the framework of the Celestial Mechanics Approach, using a development version of the Bernese GNSS Software along with Ka-band range-rate data series as observations and the GNI1B positions provided by NASA JPL as pseudo-observations. By comparing our results with the official level-2 GRAIL gravity field models we show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses (i.e., instantaneous velocity changes). We present and evaluate two lunar gravity field solutions up to degree and order 200 - AIUB-GRL200A and AIUB-GRL200B. While the first solution uses no gravity field information beyond degree 200, the second is obtained by using the official GRAIL field GRGM900C up to degree and order 660 as a priori information. This reduces the omission errors and demonstrates the potential quality of our solution if we resolved the gravity field to higher degree.

  18. A framework for modelling kinematic measurements in gravity field applications

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Wei, M.

    1989-01-01

    To assess the resolution of the local gravity field from kinematic measurements, a state model for motion in the gravity field of the earth is formulated. The resulting set of equations can accommodate gravity gradients, specific force, acceleration, velocity and position as input data and can take into account approximation errors as well as sensor errors.

  19. Parametrization of light clusters within relativistic mean field models

    SciTech Connect

    Ferreira, Marcio; Providencia, Constanca

    2013-06-10

    Light clusters are included in the equation of state of nuclearmatter within the relativistic mean field theory. The effect of the cluster-meson coupling constants on the dissolution density is discussed. Theoretical and experimental constraints are used to fix the cluster-meson couplings at T Almost-Equal-To 5 MeV.

  20. Radiation from Relativistic Shocks with Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.

    2009-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.

  1. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect

    Gangopadhyay, G.; Bhattacharya, Madhubrata; Roy, Subinit

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  2. FROM THE CURRENT LITERATURE: Spinning relativistic particles in external fields

    NASA Astrophysics Data System (ADS)

    Pomeranskii, Andrei A.; Sen'kov, Roman A.; Khriplovich, Iosif B.

    2000-10-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars.

  3. External Electromagnetic Fields of Slowly Rotating Relativistic Magnetized NUT Stars

    NASA Astrophysics Data System (ADS)

    Ahmedov, B. J.; Khugaev, A. V.

    2006-08-01

    Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with non-vanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation in specific angular momentum and NUT parameter . The relativistic star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and ii) dipolar magnetic field aligned with the axis of rotation. It has been shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, it has been obtained that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit.

  4. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  5. Reference-ellipsoid and the normal gravity field in post-Newtonian geodesy

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Mazurova, Elena

    2016-07-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting relativistic calculation of the geoid undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry. We reformulate and extend hydrodynamic calculations of rotating fluids done by previous researchers to the realm of relativistic geodesy to set up the algebraic equations defining the shape of the post-Newtonian reference ellipsoid. We explicitly perform all integrals characterizing gravitational field inside and outside the fluid body and represent them in terms of the elementary functions depending on its eccentricity. We fully explore the coordinate freedom of the equations describing the post-Newtonian ellipsoid and evaluate the deviation of the post-Newtonian level surface from the Newtonian (Maclaurin) ellipsoid. We also derive the post-Newtonian normal gravity field of the rotating fluid in terms of the parameters characterizing the post-Newtonian ellipsoid including relativistic mass, angular velocity and eccentricity. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the Earth figure to physically measurable force of gravity at its pole and equator.

  6. Non-perturbative methods in relativistic field theory

    SciTech Connect

    Franz Gross

    2013-03-01

    This talk reviews relativistic methods used to compute bound and low energy scattering states in field theory, with emphasis on approaches that John Tjon and I discussed (and argued about) together. I compare the Bethe–Salpeter and Covariant Spectator equations, show some applications, and then report on some of the things we have learned from the beautiful Feynman–Schwinger technique for calculating the exact sum of all ladder and crossed ladder diagrams in field theory.

  7. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-01

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464

  8. Charged and Electromagnetic Fields from Relativistic Quantum Geometry

    NASA Astrophysics Data System (ADS)

    Arcodía, Marcos; Bellini, Mauricio

    2016-06-01

    In the Relativistic Quantum Geometry (RQG) formalism recently introduced, was explored the possibility that the variation of the tensor metric can be done in a Weylian integrable manifold using a geometric displacement, from a Riemannian to a Weylian integrable manifold, described by the dynamics of an auxiliary geometrical scalar field $\\theta$, in order that the Einstein tensor (and the Einstein equations) can be represented on a Weyl-like manifold. In this framework we study jointly the dynamics of electromagnetic fields produced by quantum complex vector fields, which describes charges without charges. We demonstrate that complex fields act as a source of tetra-vector fields which describe an extended Maxwell dynamics.

  9. Study of the Earth's short-scale gravity field using the ERTM2160 gravity model

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Kuhn, Michael; Claessens, Sten; Pail, Roland; Seitz, Kurt; Gruber, Thomas

    2014-12-01

    This paper describes the computation and analysis of the Earth's short-scale gravity field through high-resolution gravity forward modelling using the Shuttle Radar Topography Mission (SRTM) global topography model. We use the established residual terrain modelling technique along with advanced computational resources and massive parallelisation to convert the high-pass filtered SRTM topography - complemented with bathymetric information in coastal zones - to implied short-scale gravity effects. The result is the ERTM2160 model (Earth Residual Terrain Modelled-gravity field with the spatial scales equivalent to spherical-harmonic coefficients up to degree 2160 removed). ERTM2160, used successfully for the construction of the GGMplus gravity maps, approximates the short-scale (i.e., ~10 km down to ~250 m) gravity field in terms of gravity disturbances, quasi/geoid heights and vertical deflections at ~3 billion gridded points within ±60° latitude. ERTM2160 reaches maximum values for the quasi/geoid height of ~30 cm, gravity disturbance in excess of 100 mGal, and vertical deflections of ~30″ over the Himalaya mountains. Analysis of the ERTM2160 field as a function of terrain roughness shows in good approximation a linear relationship between terrain roughness and gravity effects, with values of ~1.7 cm (quasi/geoid heights), ~11 mGal (gravity disturbances) and 1.5″ (vertical deflections) signal strength per 100 m standard deviation of the terrain. These statistics can be used to assess the magnitude of omitted gravity signals over various types of terrain when using degree-2160 gravity models such as EGM2008. Applications for ERTM2160 are outlined including its use in gravity smoothing procedures, augmentation of EGM2008, fill-in for future ultra-high resolution gravity models in spherical harmonics, or calculation of localised or global power spectra of Earth's short-scale gravity field. ERTM2160 is freely available via

  10. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  11. Optical-model potential in a relativistic quantum field model

    NASA Astrophysics Data System (ADS)

    Jaminon, M.; Mahaux, C.; Rochus, P.

    1980-11-01

    The average nucleon-nucleus potential at low and medium energy is investigated in the framework of a relativistic quantum field model. Using the same input parameters as Brockmann in his recent study of nuclear ground states, we calculate the self-consistent relativistic Hartree potential at positive energy in the case of infinite nuclear matter and of 16O and 40Ca. This potential is the sum of a scalar operator and of the fourth component of a vector operator. We construct its Schrödinger-equivalent potential by eliminating the small component of the Dirac spinor. The central part of this Schrödinger-equivalent potential is in fair agreement with empirical values at low and intermediate energy. Particular attention is paid to the intermediate energy domain, in which the calculated potential is repulsive in the nuclear interior and attractive at the nuclear surface. This is in keeping with some empirical evidence and is similar to results found in the framework of the nonrelativistic Brueckner-Hartree-Fock approximation. The spin-orbit potential of the relativistic Hartree model is also in good agreement with empirical values. NUCLEAR REACTIONS Calculated average nuclear field of nuclear matter, 16O and 40Ca at positive energy from relativistic Hartree approximation.

  12. General relativistic N-body simulations in the weak field limit

    NASA Astrophysics Data System (ADS)

    Adamek, Julian; Daverio, David; Durrer, Ruth; Kunz, Martin

    2013-11-01

    We develop a formalism for general relativistic N-body simulations in the weak field regime, suitable for cosmological applications. The problem is kept tractable by retaining the metric perturbations to first order, the first derivatives to second order, and second derivatives to all orders, thus taking into account the most important nonlinear effects of Einstein gravity. It is also expected that any significant “backreaction” should appear at this order. We show that the simulation scheme is feasible in practice by implementing it for a plane-symmetric situation and running two test cases, one with only cold dark matter, and one which also includes a cosmological constant. For these plane-symmetric situations, the deviations from the usual Newtonian N-body simulations remain small and, apart from a nontrivial correction to the background, can be accurately estimated within the Newtonian framework. The correction to the background scale factor, which is a genuine backreaction effect, can be robustly obtained with our algorithm. Our numerical approach is also naturally suited for the inclusion of extra relativistic fields and thus for dark energy or modified gravity simulations.

  13. High-order harmonic generation on atoms and ions with laser fields of relativistic intensities

    SciTech Connect

    Avetissian, H. K.; Markossian, A. G.; Mkrtchian, G. F.

    2011-07-15

    High-order harmonic generation (HHG) by hydrogenlike atoms or ions in the field of counterpropagating laser beams of standing-wave configuration, with linear polarizations and relativistic intensities, is studied. The relativistic quantum theory of HHG in such field configurations (homogeneous), at which the impeding factor of relativistic magnetic drift of superstrong laser fields can be eliminated, is presented.

  14. Radiation from Relativistic Jets in Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Fishman, G. J.

    2008-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.

  15. Relativistic Scott correction in self-generated magnetic fields

    NASA Astrophysics Data System (ADS)

    Erdős, László; Fournais, Søren; Solovej, Jan Philip

    2012-09-01

    We consider a large neutral molecule with total nuclear charge Z in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that Zα < 2/π, where α denotes the fine structure constant. We are interested in the ground state energy in the simultaneous limit Z → ∞, α → 0 such that κ = Zα is fixed. The leading term in the energy asymptotics is independent of κ, it is given by the Thomas-Fermi energy of order Z7/3 and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form S(αZ)Z2. The current paper extends the result of Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)] on the Scott correction for relativistic molecules to include a self-generated magnetic field. Furthermore, we show that the corresponding Scott correction function S, first identified by Solovej et al. [Commun. Pure Appl. Math. LXIII, 39-118 (2010)], is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields.

  16. Gravity fields of the solar system

    NASA Technical Reports Server (NTRS)

    Zendell, A.; Brown, R. D.; Vincent, S.

    1975-01-01

    The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.

  17. Gravity Field Mapping of Mars with MGS

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Lemoine, Frank G.

    1998-01-01

    Tracking of the MGS spacecraft in orbit at Mars by the Deep Space Network since last September has provided doppler and range measurements that are being used to improve the model of the Mars gravity field. During most of October 1997, April 1998, and June thru August 1998 high quality tracking data were obtained while the periapse was in the northern hemisphere at altitudes in the 170 to 190 km range. The eccentric orbit had a period of about 11.5 hrs and an inclination of about 96.2 degrees so that low altitude tracking was obtained over most of the northern hemisphere, including the north polar icecap. Data from the earlier Mariner 9 and Viking missions have been added to the MGS data and a series of experimental gravity models developed from the combined datasets. These models have generally been of degree and order 70 and are a significant improvement over earlier models that did not include the MGS data. Gravity anomalies over the north polar cap region of Mars are generally less than 50 to 100 mgals and show no obvious correlation with the topography. Successive MGS orbits derived using these new models are showing agreement at the 100 meter level, and this has been confirmed with the laser altimeter (MOLA) on MGS These comparisons are expected to improve significantly as more tracking data get included in the solution and the MGS orbit becomes more circular giving a more balanced geographical distribution of data at low altitude. This will happen early in 1999 as the orbit approaches the mapping configuration of a circular orbit at about 400 Km.

  18. Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    NASA Astrophysics Data System (ADS)

    Brüggen, Marcus; Bykov, Andrei; Ryu, Dongsu; Röttgering, Huub

    2012-05-01

    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel'dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.

  19. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Joynt, R.

    2003-07-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of “relativistic”: relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro’s number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.

  20. Magnetic fields in relativistic collisionless shocks

    SciTech Connect

    Santana, Rodolfo; Kumar, Pawan; Barniol Duran, Rodolfo E-mail: pk@astro.as.utexas.edu

    2014-04-10

    We present a systematic study on magnetic fields in gamma-ray burst (GRB) external forward shocks (FSs). There are 60 (35) GRBs in our X-ray (optical) sample, mostly from Swift. We use two methods to study ε {sub B} (fraction of energy in magnetic field in the FS): (1) for the X-ray sample, we use the constraint that the observed flux at the end of the steep decline is ≥ X-ray FS flux; (2) for the optical sample, we use the condition that the observed flux arises from the FS (optical sample light curves decline as ∼t {sup –1}, as expected for the FS). Making a reasonable assumption on E (jet isotropic equivalent kinetic energy), we converted these conditions into an upper limit (measurement) on ε {sub B} n {sup 2/(p+1)} for our X-ray (optical) sample, where n is the circumburst density and p is the electron index. Taking n = 1 cm{sup –3}, the distribution of ε {sub B} measurements (upper limits) for our optical (X-ray) sample has a range of ∼10{sup –8}-10{sup –3} (∼10{sup –6}-10{sup –3}) and median of ∼few × 10{sup –5} (∼few × 10{sup –5}). To characterize how much amplification is needed, beyond shock compression of a seed magnetic field ∼10 μG, we expressed our results in terms of an amplification factor, AF, which is very weakly dependent on n (AF∝n {sup 0.21}). The range of AF measurements (upper limits) for our optical (X-ray) sample is ∼1-1000 (∼10-300) with a median of ∼50 (∼50). These results suggest that some amplification, in addition to shock compression, is needed to explain the afterglow observations.

  1. Towards combined global monthly gravity field solutions

    NASA Astrophysics Data System (ADS)

    Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean

    2014-05-01

    Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing

  2. Truesdell invariance in relativistic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Walwadkar, B. B.; Virkar, K. V.

    1984-01-01

    The Truesdell derivative of a contravariant tensor fieldX ab is defined with respect to a null congruencel a analogous to the Truesdell stress rate in classical continuum mechanics. The dynamical consequences of the Truesdell invariance with respect to a timelike vectoru a of the stress-energy tensor characterizing a charged perfect fluid with null conductivity are the conservation of pressure (p), charged density (e) an expansion-free flow, constancy of the Maxwell scalars, and vanishing spin coefficientsα+¯β = ¯σ - λ = τ = 0 (assuming freedom conditionsk = λ = ɛ ψ + ¯γ = 0). The electromagnetic energy momentum tensor for the special subcases of Ruse-Synge classification for typesA andB are described in terms of the spin coefficients introduced by Newman-Penrose.

  3. Global gravity field models and their use for geophysical modelling

    NASA Astrophysics Data System (ADS)

    Pail, R.

    2015-12-01

    During the last decade, the successful operation of the dedicated satellite missions GOCE and GRACE have revolutionized our picture of the Earth's gravity field. They delivered static global gravity field maps with high and homogeneous accuracy for spatial length-scales down to 70-80 km. The current satellite-only models of the fifth generation including GOCE data have reached accuracies of about 2 cm in geoid height and less than 0.7 mGal in gravity anomalies at 100 km spatial half-wavelength. However, the spatial resolution of gravity models derived from satellite data is limited. Since precise knowledge of the Earth's gravity field structure with very high resolution is essential in solid Earth applications such as lithospheric modelling, geological interpretation and exploration geophysics, satellite-only models are complemented by combined gravity field models, which contain very high-resolution gravity field information obtained by terrestrial gravity measurements over continents, and satellite altimetry over the oceans. To further increase the spatial resolution beyond 10-20 km, measured terrestrial and satellite data can also be augmented by high-resolution gravity field signals synthesized from topographic models. In this contribution an overview of the construction of satellite-only and combined global gravity field models is given. The specific characteristics of the individual input data and the resulting models will be assessed, and their impact for geophysical modelling will be discussed. On the basis of selected case studies, commission and omission errors and thus the contribution and impact of satellite gravity data on gravity field applications will be quantified, and the benefit of current satellite gravity data shall be investigated and demonstrated. Future gravity field missions beyond GRACE Follow-On will provide global gravity field information with further increased accuracy, spatial and temporal resolution. In an international initiative

  4. Diffusion of relativistic gas mixtures in gravitational fields

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.

    2014-01-01

    A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is studied on the basis of a relativistic Boltzmann equation in the presence of gravitational fields. A BGK-type model equation of the collision operator of the Boltzmann equation is used in order to compute the non-equilibrium distribution functions by the Chapman-Enskog method. The main focus of this work is to obtain Fick’s law without the thermal-diffusion cross-effect. Fick’s law has four contributions, two of them are the usual terms proportional to the gradients of concentration and pressure. The other two are of the same nature as those which appear in Fourier’s law in the presence of gravitational fields and are related to an acceleration and a gravitational potential gradient, but unlike Fourier’s law these last two terms are of non-relativistic order. Furthermore, it is shown that the coefficients of diffusion depend on the gravitational potential and become smaller than those in its absence.

  5. Finite- to zero-range relativistic mean-field interactions

    SciTech Connect

    Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2008-03-15

    We study the relation between the finite-range (meson-exchange) and zero-range (point-coupling) representations of effective nuclear interactions in the relativistic mean-field framework. Starting from the phenomenological interaction DD-ME2 with density-dependent meson-nucleon couplings, we construct a family of point-coupling effective interactions for different values of the strength parameter of the isoscalar-scalar derivative term. In the meson-exchange picture this corresponds to different values of the {sigma}-meson mass. The parameters of the isoscalar-scalar and isovector-vector channels of the point-coupling interactions are adjusted to nuclear matter and ground-state properties of finite nuclei. By comparing results for infinite and semi-infinite nuclear matter, ground-state masses, charge radii, and collective excitations, we discuss constraints on the parameters of phenomenological point-coupling relativistic effective interaction.

  6. Geodynamics and temporal variations in the gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Wagner, C. A.

    1989-01-01

    Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.

  7. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  8. A generally relativistic gauge classification of the Dirac fields

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2016-04-01

    We consider generally relativistic gauge transformations for the spinorial fields finding two mutually exclusive but together exhaustive classes in which fermions are placed adding supplementary information to the results obtained by Lounesto, and identifying quantities analogous to the momentum vector and the Pauli-Lubanski axial vector. We discuss how our results are similar to those obtained by Wigner by taking into account the system of Dirac field equations. We will investigate the consequences for the dynamics and in particular we shall address the problem of getting the nonrelativistic approximation in a consistent way. We are going to comment on extensions.

  9. Aspects of nonlocality in quantum field theory, quantum gravity and cosmology

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.

    2015-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter (dS) cosmological evolution at an arbitrary value of Λ — a model of dark energy with the dynamical scale selected by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of a scalar mediated gravity and the short distance general relativistic limit in a special metric frame related by a nonlocal conformal transformation to the original metric.

  10. Theoretical frameworks for testing relativistic gravity. IV - A compendium of metric theories of gravity and their post-Newtonian limits.

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1972-01-01

    Metric theories of gravity are compiled and classified according to the types of gravitational fields they contain, and the modes of interaction among those fields. The gravitation theories considered are classified as (1) general relativity, (2) scalar-tensor theories, (3) conformally flat theories, and (4) stratified theories with conformally flat space slices. The post-Newtonian limit of each theory is constructed and its Parametrized Post-Newtonian (PPN) values are obtained by comparing it with Will's version of the formalism. Results obtained here, when combined with experimental data and with recent work by Nordtvedt and Will and by Ni, show that, of all theories thus far examined by our group, the only currently viable ones are general relativity, the Bergmann-Wagoner scalar-tensor theory and its special cases (Nordtvedt; Brans-Dicke-Jordan), and a recent, new vector-tensor theory by Nordtvedt, Hellings, and Will.

  11. Tolman-Oppenheimer-Volkoff equations and their implications for the structures of relativistic stars in f(T) gravity

    NASA Astrophysics Data System (ADS)

    Kpadonou, A. V.; Houndjo, M. J. S.; Rodrigues, M. E.

    2016-07-01

    We investigate in this paper the structures of neutron and quark stars in f(T) theory of gravity where T denotes the torsion scalar. Attention is attached to the TOV type equations of this theory and numerical integrations of these equations are performed with suitable EoS. We search for the deviation of the mass-radius diagrams for power-law and exponential type correction from the TT gravity. Our results show that for some values of the input parameters appearing in the considered models, f(T) theory promotes more the structures of the relativistic stars, in consistency with the observational data.

  12. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  13. On a spectral method for forward gravity field modelling

    NASA Astrophysics Data System (ADS)

    Root, B. C.; Novák, P.; Dirkx, D.; Kaban, M.; van der Wal, W.; Vermeersen, L. L. A.

    2016-07-01

    This article reviews a spectral forward gravity field modelling method that was initially designed for topographic/isostatic mass reduction of gravity data. The method transforms 3D spherical density models into gravitational potential fields using a spherical harmonic representation. The binomial series approximation in the approach, which is crucial for its computational efficiency, is examined and an error analysis is performed. It is shown that, this method cannot be used for density layers in crustal and upper mantle regions, because it results in large errors in the modelled potential field. Here, a correction is proposed to mitigate this erroneous behaviour. The improved method is benchmarked with a tesseroid gravity field modelling method and is shown to be accurate within ±4 mGal for a layer representing the Moho density interface, which is below other errors in gravity field studies. After the proposed adjustment the method can be used for the global gravity modelling of the complete Earth's density structure.

  14. GOCE gravity field models following the time-wise approach

    NASA Astrophysics Data System (ADS)

    Brockmann, Jan Martin; Höck, Eduard; Loth, Ina; Mayer-Gürr, Torsten; Pail, Roland; Schuh, Wolf-Dieter; Zehentner, Norbert

    2015-04-01

    Since the launch of the European Space Agency's (ESA) Gravity field and Ocean Circulation Explorer (GOCE) satellite in 2009 and its end in 2013, a sequence of official GOCE gravity field models was released. One of the series of models follows the so called time-wise approach (EGM_TIM). They are purely based on GOCE observations such that they are independent of any other gravity field information available and describe the Earth's gravity field as seen by GOCE. Recently, the fifth release, EGM_TIM_RL05, was computed and made available to users. The models of the time-wise series were computed within the ESA funded High-level Processing Facility (HPF) and are part of the official ESA GOCE products. Calibrated gravity gradients in the gradiometer reference frame and the satellites position as derived by GPS measurements entered the solutions as observations. Together with the spherical harmonic coefficients, a realistic the full covariance matrix is provided reflecting the model quality. This contribution summarizes the gravity field models derived with the time-wise approach. The method is summarized and the progress along the five releases is highlighted. Special focus is put on the final release 5, the gravity field model which includes all data collected during the entire GOCE mission. This model, parametrized as 78,957 spherical harmonic coefficients (spatial resolution of 71 km), was determined from 4*109,799,264 gravity gradient measurements and 108,754,709 three dimensional positions within a joint least squares adjustment procedure. As this gravity field models only depend on GOCE observations, the gain of GOCE compared to other missions and other gravity field products can be clearly demonstrated. With release 5 of the time-wise model, a pure GOCE based model with a mean global accuracy of 2.4 cm at a spatial resolution of 100 km for the geoid is available (0.7 mGal for gravity anomalies).

  15. The combined satellite gravity field model GOCO05s

    NASA Astrophysics Data System (ADS)

    Mayer-Guerr, Torsten

    2015-04-01

    The main objective of the GOCO ("Gravity Observation Combination") project is to compute high-accuracy and high-resolution static global gravity field models based on data of the dedicated satellite gravity missions CHAMP, GRACE, and GOCE, SLR data and kinematic orbits from different Low Earth Orbiters. For the computation of the new model GOCO05s more than 800,000,000 observations from 15 satellites are used to estimate about 122,000 gravity field parameters. GOCO05s consists not only of a static field up to degree and order 200, but the temporal variations of the gravity field are modeled as well. These are represented as regularized trend and annual signal. The main focus in the GOCO combination process is on the proper handling of the stochastic behavior of the data. Therefore, the resulting accuracy information in terms of a full variance covariance matrix is quite realistic and also published with the solution.

  16. Relativistic Killingbeck energy states under external magnetic fields

    NASA Astrophysics Data System (ADS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S. M.

    2016-07-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states.

  17. Systematic study of bubble nuclei in relativistic mean field model

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Åberg, S.; Bajpeyi, A.

    2016-01-01

    We have theoretically studied potential bubble nuclei (20,22O, 34,36Si, and 46Ar), which are experimentally accessible and have attracted several studies in the recent past. Relativistic mean field is employed in conjunction with the NL-SH parameter set. Our results show that among the possible candidates, 22Oand 34Si may be the most prominent candidates, showing significant depletion of density at the center, which could be verified experimentally in the near future with some of the experiments underway.

  18. Time variable Earth's gravity field from SLR satellites

    NASA Astrophysics Data System (ADS)

    Sośnica, Krzysztof; Jäggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf

    2015-10-01

    The time variable Earth's gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth's gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth's gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003-2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth.

  19. Experiments to investigate particulate materials in reduced gravity fields

    NASA Technical Reports Server (NTRS)

    Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.

    1967-01-01

    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.

  20. Validation of GOCE global gravity field models using terrestrial gravity data in Norway

    NASA Astrophysics Data System (ADS)

    Šprlák, M.; Gerlach, C.; Pettersen, B.

    2012-01-01

    The GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gravity gradiometry mission maps the Earth's gravity field. Harmonic analysis of GOCE observations provides a global gravity field model (GGFM). Three theoretical strategies, namely the direct, the space-wise and the time-wise approach, have been proposed for GOCE harmonic analysis. Based on these three methods, several GGFMs have been provided to the user community by ESA. Thereby different releases are derived from different periods of GOCE observations and some of the models are based on combinations with other sources of gravity field information. Due to the multitude of GOCE GGFMs, validation against independent data is a crucial task for the quality description of the different models. In this study, GOCE GGFMs from three releases are validated with respect to terrestrial free-air gravity anomalies in Norway. The spectral enhancement method is applied to avoid spectral inconsistency between the terrestrial and the GOCE free-air gravity anomalies. The results indicate that the time-wise approach is a reliable harmonic analysis procedure in all three releases of GOCE models. The space-wise approach, available in two releases, provides similar results as the time-wise approach. The direct approach seems to be highly affected by a-priori information.

  1. On the speed of gravity and relativistic v/c corrections to the Shapiro time delay

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.; Fomalont, Edward B.

    2006-07-01

    Recent papers by Samuel [S. Samuel, Phys. Rev. Lett. 90 (2003) 231101; S. Samuel, Int. J. Mod. Phys. D 13 (2004) 1753] declared that the linearized post-Newtonian v/c effects are too small to have been measured in the recent experiment involving Jupiter and quasar J0842+1845 [S.M. Kopeikin, Astrophys. J. Lett. 556 (2001) L1; E.B. Fomalont, S.M. Kopeikin, in: E. Ros, R.W. Porcas, A.P. Lobanov, J.A. Zensus (Eds.), Proc. 6th European VLBI Network Symp., MPIfR, Bonn, 2002 pp. 49 52, gr-qc/0206022; E.B. Fomalont, S.M. Kopeikin, Astrophys. J. 598 (2003) 704] that was used to measure the ultimate speed of gravity defined as a fundamental constant entering in front of each time derivative of the metric tensor in the Einstein gravity field equations. We describe our Lorentz-invariant formulation of the Jovian deflection experiment and confirm that v/c effects are do observed, as contrasted to the erroneous claim by Samuel, and that they vanish if and only if the speed of gravity is infinite.

  2. GRAIL Gravity Field Determination Using the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Jäggi, Adrian; Bertone, Stefano; Beutler, Gerhard; Meyer, Ulrich; Mervart, Leos; Bock, Heike

    2014-05-01

    To determine the gravity field of the Moon, the NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery and Climate Experiment) mission. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach. KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degrees n ≤ 200, also arc- and satellite-specific parameters, like initial state vectors and pseudo-stochastic pulses, are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. In addition, especially for the data of the primary mission phase, it is essential to estimate time bias parameters for the KBRR observations. We compare our results from the nominal and from the extended mission phase with the official Level 2 gravity field models first released in October 2013. Our results demonstrate that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced and constrained pseudo-stochastic pulses.

  3. Gravity field models derived from Swarm GPS data

    NASA Astrophysics Data System (ADS)

    Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert

    2016-07-01

    It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.

  4. The combined gravity field model GOCO05c

    NASA Astrophysics Data System (ADS)

    Fecher, Thomas; Pail, Roland; Gruber, Thomas; GOCO Project Team

    2016-04-01

    Knowledge of the static gravity field is of importance for various scientific disciplines, such as geodesy, geophysics and oceanography. While for geophysics the gravity field provides insight into the Earth's interior, the geoid serves as an important reference surface for oceanographic applications. Moreover this reference surface is a key parameter on the way to a globally unified height system. In order to exploit the full potential of gravity measurements and to achieve the best gravity field solution, all kinds of complementary gravity field information have to be combined. By combining GRACE and GOCE information, a state of the art satellite-only gravity field is available, which is highly accurate at the very long to medium wavelengths (80-100 km). By adding information from terrestrial/airborne gravimetry and satellite altimetry, which both are measurement techniques providing short wavelength gravity information beyond the resolution of GOCE, the full gravity field spectrum can be obtained. This paper focuses on the presentation of the combined gravity field model GOCO05c, a global gravity field model up to degree and order 720 based on full normal equation systems (more than 500,000 parameters). During the calculation of GOCO05c we put emphasis on the question how the complementary data types can be combined in a global gravity field model in the way that all data types keep their specific strengths and are not degraded by the combination with other information in certain wavelengths. Realistic stochastic modelling and a tailored weighting scheme among all available data results in different regional relative weighting of satellite and terrestrial data in the combined solution, mainly depending on the quality of the available terrestrial gravity information. From this procedure, as complementary product realistic error estimates are available in terms of a full-covariance matrix, which can be mapped in a spatial error grid reflecting regionally specific

  5. Multi-scale gravity field modeling in space and time

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2016-04-01

    The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.

  6. Rotating and binary relativistic stars with magnetic field

    NASA Astrophysics Data System (ADS)

    Markakis, Charalampos

    We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry

  7. Evaluation of recent Earth's global gravity field models with terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Karpik, Alexander P.; Kanushin, Vadim F.; Ganagina, Irina G.; Goldobin, Denis N.; Kosarev, Nikolay S.; Kosareva, Alexandra M.

    2016-03-01

    In the context of the rapid development of environmental research technologies and techniques to solve scientific and practical problems in different fields of knowledge including geosciences, the study of Earth's gravity field models is still important today. The results of gravity anomaly modelling calculated by the current geopotential models data were compared with the independent terrestrial gravity data for the two territories located in West Siberia and Kazakhstan. Statistical characteristics of comparison results for the models under study were obtained. The results of investigations show that about 70% of the differences between the gravity anomaly values calculated by recent global geopotential models and those observed at the points in flat areas are within ±10 mGal, in mountainous areas are within ±20 mGal.

  8. Finite field-dependent symmetries in perturbative quantum gravity

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci-Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin-Vilkovisky (BV) formulation.

  9. Lagrangian Formulation of Relativistic Particle Average Motion in a Laser Field of Arbitrary Intensity

    SciTech Connect

    I.Y. Dodin; N.J. Fisch; G.M. Fraiman

    2003-02-06

    The Lagrangian and Hamiltonian functions describing average motion of a relativistic particle under the action of intensive high-frequency electromagnetic radiation are obtained. In weak, low-frequency background fields, such a particle on average drifts with an effective, relativistically invariant mass, which depends on the intensity of the electromagnetic field.

  10. Particlelike distributions of the Higgs field nonminimally coupled to gravity.

    PubMed

    Füzfa, André; Rinaldi, Massimiliano; Schlögel, Sandrine

    2013-09-20

    When the Higgs field is nonminimally coupled to gravity, there exists a family of spherically symmetric particlelike solutions to the field equations. These monopoles are the only globally regular and asymptotically flat distributions with finite energy of the Higgs field around compact objects. Moreover, spontaneous scalarization is strongly amplified for specific values of their mass and compactness. PMID:24093242

  11. Relativistic mean-field models and nuclear matter constraints

    SciTech Connect

    Dutra, M.; Lourenco, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providencia, C.; Typel, S.

    2013-05-06

    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

  12. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-01

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for Ca40,42,44,48 with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+Ca40,42,44,48 systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  13. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    SciTech Connect

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-15

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  14. A comparison of satellite systems for gravity field measurements

    NASA Technical Reports Server (NTRS)

    Argentiero, P. D.; Lowrey, B. E.

    1977-01-01

    A detailed and accurate earth gravity field model is important to the understanding of the structure and composition of the earth's crust and upper mantle. Various satellite-based techniques for providing more accurate models of the gravity field are analyzed and compared. A high-low configuration satellite-to-satellite tracking mission is recommended for the determination of both the long wavelength and short wavelength portions of the field. Satellite altimetry and satellite gradiometry missions are recommended for determination of the short wavelength portion of the field.

  15. GOCE Gravity fields established by the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Jaeggi, A.; Bock, H.; Beutler, G.

    2011-12-01

    The Celestial Mechanics Approach (CMA) was generalized to accept not only GPS- and K-Band-observations, but also the gradiometer Level 2 observables of the GOCE mission. The gradiometer observable is modeled as a linear function of the gravity field parameters and the parameters of a piece-wise linear function, which absorbs the deficiencies of the band-limited gradiometer observable including its once-, twice-, etc. per rev biases. The spacing of successive piecewise linear (and continuous) functions is typically of the order of one to few minutes. The piecewise linear functions have to be defined in a way not to absorb the gravity signal in the measurement bandwidth of the GOCE gradiometer observable. The resulting gravity fields are by construction independent of the underlying a priori gravity field. We analyze about six months of GOCE level 2 data and generate (a) GPS-only solutions, (b) gradiometer-only solutions based on the three diagonal elements of the gravity tensor, (c) combinations of solutions (a) and (b), and (d) combinations of the solutions of type (c) with static GRACE solutions, which were generated with the CMA, as well. Currently, for proof of concept purposes, the gravity fields are limited to degree n=160. Our analysis clearly reveals the spectrally resolved contributions of the individual solution types mentioned on the combined solutions.

  16. Gauss-Bonnet Brane World Gravity with a Scalar Field

    SciTech Connect

    Davis, Stephen C.

    2004-11-17

    The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.

  17. Local Earth's gravity field in view of fractal dimension

    NASA Astrophysics Data System (ADS)

    Mészárosová, Katarína; Minarechová, Zuzana; Janák, Juraj

    2013-04-01

    The poster presents the relative roughness of chosen characteristics of the Earth's gravity field in several small regions in area of Slovakia (e.g. free-air anomaly, Bouguer anomaly, gravity disturbance...) using the values of fractal dimension. In this approach, a three dimensional box counting method and the Hurst analysis method are applied to estimate the values of fractal dimensions. Then the computed fractal dimension values are used to compare all 3D models of all chosen characteristics.

  18. Time lapse gravity monitoring at Coso geothermal field

    NASA Astrophysics Data System (ADS)

    Woolf, Rachel Vest

    An extensive time lapse gravity data set was acquired over the Coso geothermal field near Ridgecrest, California starting in 1987, with the latest data set acquired in 2013. In this thesis I use these gravity data to obtain a better understanding of mass changes occurring within the geothermal field. Geothermal energy is produced by flashing naturally heated ground water into steam which is used to turn turbines. Brine and re-condensed steam are then re-injected into the reservoir. A percentage of the water removed from the system is lost to the process. The time lapse gravity method consists of gravity measurements taken at the same locations over time, capturing snap shots of the changing field. After careful processing, the final data are differenced to extract the change in gravity over time. This change in gravity can then be inverted to recover the change in density and therefore mass over time. The inversion process also produces information on the three dimensional locations of these mass changes. Thirty five gravity data sets were processed and a subsection were inverted with two different starting times, a sixteen point data set collected continuously between 1991 and 2005, and a thirty-eight point data set collected between 1996 and 2005. The maximum change in gravity in the 1991 data group was -350 microGal observed near station CSE2. For the 1996 data group the maximum gravity change observed over the nine year period was -248 microGal. The gravity data were then inverted using the surface inversion method. Three values of density contrast were used, -0.05 g/cm3, -0.10 g/cm3, and -0.20 g/cm3. The starting surface in 1991 was set to 2,500 ft above sea level. The changes in surfaces were then converted to mass changes. The largest total mass change recovered was -1.39x1011 kg. This mass value is of the same order of magnitude as published well production data for the field. Additionally, the gravity data produces a better understanding of the spatial

  19. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  20. Interior Models and Gravity Field of Jupiter's Moon Amalthea

    NASA Astrophysics Data System (ADS)

    Weinwurm, G.; Weber, R.

    2003-12-01

    Before its final plunge into Jupiter in September 2003, GALILEO made a last visit to Jupiters moon Amalthea. This final flyby of the spacecrafts successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amaltheas gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEOs velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amaltheas gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Based on these numbers we calculated the impact on the trajectory of GALILEO and compared it to existing Doppler data. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the calculated gravity field models of Amalthea can be a basis for further exploration of the Jupiter system. Furthermore, the model approach can be used for any planetary body.

  1. Gravity field models derived from Swarm GPS data

    NASA Astrophysics Data System (ADS)

    de Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert

    2016-04-01

    The GPS instruments on-board the three Earth's Magnetic Field and Environment Explorer (Swarm) satellites provide the opportunity to measure the gravity field model at basin-wide spatial scales. In spite of being a geo-magnetic satellite mission, Swarm's GPS receiver collects highly accurate hl-SST data (van den IJssel et al., 2015), which has been exploited to produce gravity field models at a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2014), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2015) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015). With the help of GRACE gravity field models, which are derived from much more accurate ll-SST data, we investigate the best combination strategy for producing a superior model on the basis of the solutions produced by the three institutes, similarly to the approach taken by the European Gravity Service for Improved Emergency Management project (http://egsiem.eu). We demonstrate that the Swarm-derived gravity field models are able to resolve monthly solutions with 1666km spatial resolutions (roughly up to degree 12). We illustrate how these monthly solutions correlate with GRACE-derived monthly solutions, for the period of 2014 - 2015, as well as indicate which geographical areas are measured more or less accurately.

  2. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    NASA Astrophysics Data System (ADS)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  3. Cartan gravity, matter fields, and the gauge principle

    SciTech Connect

    Westman, Hans F.; Zlosnik, Tom G.

    2013-07-15

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top of it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as

  4. Effects of δ mesons in relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Singh, Shailesh K.; Biswal, S. K.; Bhuyan, M.; Patra, S. K.

    2014-04-01

    The effect of δ- and ω-ρ-meson cross couplings on asymmetry nuclear systems are analyzed in the framework of an effective field theory motivated relativistic mean field formalism. The calculations are done on top of the G2 parameter set, where these contributions are absent. To show the effect of δ meson on the nuclear system, we split the isospin coupling into two parts: (i) gρ due to ρ meson and (ii) gδ for δ meson. Thus, our investigation is based on varying the coupling strengths of the δ and ρ mesons to reproduce the binding energies of the nuclei Ca48 and Pb208. We calculate the root mean square radius, binding energy, single particle energy, density, and spin-orbit interaction potential for some selected nuclei and evaluate the Lsym and Esym coefficients for nuclear matter as function of δ- and ω-ρ-meson coupling strengths. As expected, the influence of these effects are negligible for the symmetric nuclear system, but substantial for the contribution with large isospin asymmetry.

  5. Kubo formulas for relativistic fluids in strong magnetic fields

    SciTech Connect

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-12-15

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: > Strong magnetic fields can make charged fluids behave anisotropically. > Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. > We derive Kubo formulas for these transport coefficients.

  6. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel; Hu, Bin

    2015-09-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.

  7. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect

    Upadhyay, Sudhaker

    2014-01-15

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.

  8. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere. PMID:24606251

  9. An improved model for the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  10. Validation of the EGSIEM combined monthly GRACE gravity fields

    NASA Astrophysics Data System (ADS)

    Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul

    2016-04-01

    Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.

  11. High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2002-01-01

    This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.

  12. Phobos interior structure from its gravity field

    NASA Astrophysics Data System (ADS)

    Le Maistre, S.; Rosenblatt, P.; Rivoldini, A.

    2015-10-01

    Phobos origin remains mysterious. It could be a captured asteroid, or an in-situ object co-accreted with Mars or formed by accretion from a disk of impact ejecta.Although it is not straightforward to relate its interior properties to its origin, it is easy to agree that the interior properties of any body has to be accounted for to explain its life's history. What event could explain such an internal structure? Where should this object formed to present such interior characteristics and composition? We perform here numerical simulations to assess the ability of a gravity experiment to constrain the interior structure of the martian moon Phobos, which could in turn allow distinguishing among the competing scenarios for the moon's origin.

  13. New Views of Earth's Gravity Field from GRACE

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Map 1Map 2

    Gravity and the Earth's Shape Gravity is the force that is responsible for the weight of an object and is determined by how the material that makes up the Earth is distributed throughout the Earth. Because gravity changes over the surface of the Earth, the weight of an object changes along with it. One can define standard gravity as the value of gravity for an perfectly smooth 'idealized' Earth, and the gravity 'anomaly' is a measure of how actual gravity deviates from this standard. Gravity reflects the Earth's surface topography to a high degree and is associated with features that most people are familiar with such as large mountains and deep ocean trenches.

    Progress in Measuring the Earth's Gravity Field Through GRACE Prior to GRACE, the Earth's gravity field was determined using measurements of varying quality from different satellites and of incomplete coverage. Consequently the accuracy and resolution of the gravity field were limited. As is shown in Figure 1, the long wavelength components of the gravity field determined from satellite tracking were limited to a resolution of approximately 700 km. At shorter wavelengths, the errors were too large to be useful. Only broad geophysical features of the Earth's structure could be detected (see map 1).

    In contrast, GRACE, by itself, has provided accurate gravity information with a resolution of 200 km. Now, much more detail is clearly evident in the Earth's geophysical features (see map 2). High resolution features detected by GRACE that are representative of geophysical phenomena include the Tonga/Kermadec region (a zone where one tectonic plate slides under another), the Himalayan/Tibetan Plateau region (an area of uplift due to colliding plates), and the mid-Atlantic ridge (an active spreading center in the middle of the Atlantic ocean where new crust is being created). Future GRACE gravity

  14. TR-GRAV: National Center for Turkish Gravity Field

    NASA Astrophysics Data System (ADS)

    Simav, Mehmet; Akpınar, İlyas; Sezen, Erdinc; Cingöz, Ayhan; Yıldız, Hasan

    2016-04-01

    TR-GRAV, the National Center for Turkish Gravity Field (TR-GRAV) that has recently become operational,is a national center that collects, processes and distributes Absolute Gravimetry,Relative Gravimetry, Airborne Gravimetry,Shipborne Gravimetry,Satellite Gravimetry, GNSS/Levelling, Astrogeodetic Vertical Deflection data to model and improve regional gravity field for the Turkish territory and its surrounding regions and to provide accurate, consistent and value-added data & products to the scientific and engineering communities. In this presentation, we will introduce the center web portal and give some details about the database.

  15. Relativistic mean field model based on realistic nuclear forces

    SciTech Connect

    Hirose, S.; Serra, M.; Ring, P.; Otsuka, T.; Akaishi, Y.

    2007-02-15

    In order to predict properties of asymmetric nuclear matter, we construct a relativistic mean field (RMF) model consisting of one-meson exchange (OME) terms and point coupling (PC) terms. In order to determine the density dependent parameters of this model, we use properties of isospin symmetric nuclear matter in combination with the information on nucleon-nucleon scattering data, which are given in the form of the density dependent G-matrix derived from Brueckner calculations based on the Tamagaki potential. We show that the medium- and long-range components of this G-matrix can be described reasonably well by our effective OME interaction. In order to take into account the short-range part of the nucleon-nucleon interaction, which cannot be described well in this manner, a point coupling term is added. Its analytical form is taken from a model based on chiral perturbation theory. It contains only one additional parameter, which does not depend on the density. It is, together with the parameters of the OME potentials adjusted to the equation of state of symmetric nuclear matter. We apply this model for the investigation of asymmetric nuclear matter and find that the results for the symmetry energy as well as for the equation of state of pure neutron matter are in good agreement with either experimental data or with presently adopted theoretical predictions. In order to test the model at higher density, we use its equation of state for an investigation of properties of neutron stars.

  16. Quasinormal modes of relativistic stars and interacting fields

    NASA Astrophysics Data System (ADS)

    Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luís C. B.; Pani, Paolo

    2016-03-01

    The quasinormal modes of relativistic compact objects encode important information about the gravitational response associated with astrophysical phenomena. Detecting such oscillations would provide us with a unique understanding of the properties of compact stars and may give definitive evidence for the existence of black holes. However, computing quasinormal modes in realistic astrophysical environments is challenging due to the complexity of the spacetime background and of the dynamics of the perturbations. We discuss two complementary methods for computing the quasinormal modes of spherically symmetric astrophysical systems, namely, the direct integration method and the continued-fraction method. We extend these techniques to dealing with generic coupled systems of linear equations, with the only assumption being that the interaction between different fields is effectively localized within a finite region. In particular, we adapt the continued-fraction method to include cases where a series solution can be obtained only outside an effective region. As an application, we compute the polar quasinormal modes of boson stars by using the continued-fraction method for the first time. The methods discussed here can be applied to other situations in which the perturbations effectively couple only within a finite region of space.

  17. Earth's gravity field mapping requirements and concept. [using a supercooled gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Kahn, W. D.

    1981-01-01

    A future sensor is considered for mapping the Earth's gravity field to meet future scientific and practical requirements for earth and oceanic dynamics. These are approximately + or - 0.1 to 10 mgal over a block size of about 50 km and over land and an ocean geoid to 1 to 2 cm over a distance of about 50 km. To achieve these values requires a gravity gradiometer with a sensitivity of approximately 10 to the -4 power EU in a circular polar orbiting spacecraft with an orbital altitude ranging 160 km to 180 km.

  18. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  19. Static scalar field solutions in symmetric gravity

    NASA Astrophysics Data System (ADS)

    Hossenfelder, S.

    2016-09-01

    We study an extension of general relativity with a second metric and an exchange symmetry between the two metrics. Such an extension might help to address some of the outstanding problems with general relativity, for example the smallness of the cosmological constant. We here derive a family of exact solutions for this theory. In this two-parameter family of solutions the gravitational field is sourced by a time-independent massless scalar field. We find that the only limit in which the scalar field entirely vanishes is flat space. The regular Schwarzschild-solution is left with a scalar field hidden in the second metric’s sector.

  20. Alternative methods to smooth the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1981-01-01

    Convolutions on the sphere with corresponding convolution theorems are developed for one and two dimensional functions. Some of these results are used in a study of isotropic smoothing operators or filters. Well known filters in Fourier spectral analysis, such as the rectangular, Gaussian, and Hanning filters, are adapted for data on a sphere. The low-pass filter most often used on gravity data is the rectangular (or Pellinen) filter. However, its spectrum has relatively large sidelobes; and therefore, this filter passes a considerable part of the upper end of the gravity spectrum. The spherical adaptations of the Gaussian and Hanning filters are more efficient in suppressing the high-frequency components of the gravity field since their frequency response functions are strongly field since their frequency response functions are strongly tapered at the high frequencies with no, or small, sidelobes. Formulas are given for practical implementation of these new filters.

  1. Higher derivative gravity: Field equation as the equation of state

    NASA Astrophysics Data System (ADS)

    Dey, Ramit; Liberati, Stefano; Mohd, Arif

    2016-08-01

    One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.

  2. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  3. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1986-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  4. Edge detection of gravity field using eigenvalue analysis of gravity gradient tensor

    NASA Astrophysics Data System (ADS)

    Zuo, Boxin; Hu, Xiangyun

    2015-03-01

    In this paper, eigenvalues of the full gravity gradient tensor (GGT) are used to detect edges of geological structure. First, the solving of GGT eigenvalues is discussed; then a new edge detection method is proposed by using the eigenvalues of GGT. Comparing with the pervious edge detection method based on curvature gravity gradient tensor (CGGT), the full gravity gradient tensor contains more independent gradient components that are helpful to detect more subtle structures of the sources. The proposed method is applied to the synthetic data with and without noise to determine the locations of the edges of the mixed positive/negative contract density bodies. It has also been tested on real field data. All of the experimental results have shown that the newly proposed method is effective for edge detection.

  5. The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Freire, Paulo C. C.; Wex, Norbert; Esposito-Farèse, Gilles; Verbiest, Joris P. W.; Bailes, Matthew; Jacoby, Bryan A.; Kramer, Michael; Stairs, Ingrid H.; Antoniadis, John; Janssen, Gemma H.

    2012-07-01

    We report the results of a 10-year timing campaign on PSR J1738+0333, a 5.85-ms pulsar in a low-eccentricity 8.5-h orbit with a low-mass white dwarf companion. We obtained 17 376 pulse times of arrival with a stated uncertainty smaller than ?s and weighted residual rms of ?s. The large number and precision of these measurements allow highly significant estimates of the proper motion μα, δ= (+7.037 ± 0.005, +5.073 ± 0.012) mas yr-1, parallax πx = (0.68 ± 0.05) mas and a measurement of the apparent orbital decay, ? (all 1σ uncertainties). The measurements of μα, δ and πx allow for a precise subtraction of the kinematic contribution to the observed orbital decay; this results in a significant measurement of the intrinsic orbital decay: ?. This is consistent with the orbital decay from the emission of gravitational waves predicted by general relativity, ?, i.e. general relativity passes the test represented by the orbital decay of this system. This agreement introduces a tight upper limit on dipolar gravitational wave emission, a prediction of most alternative theories of gravity for asymmetric binary systems such as this. We use this limit to derive the most stringent constraints ever on a wide class of gravity theories, where gravity involves a scalar-field contribution. When considering general scalar-tensor theories of gravity, our new bounds are more stringent than the best current Solar system limits over most of the parameter space, and constrain the matter-scalar coupling constant ? to be below the 10-5 level. For the special case of the Jordan-Fierz-Brans-Dicke, we obtain the 1σ bound ?, which is within a factor of 2 of the Cassini limit. We also use our limit on dipolar gravitational wave emission to constrain a wide class of theories of gravity which are based on a generalization of Bekenstein's Tensor-Vector-Scalar gravity, a relativistic formulation of modified Newtonian dynamics.

  6. Dirac Field, Gravity, Inertial Effects, and Computer Algebra

    NASA Astrophysics Data System (ADS)

    Vulcanov, Dumitru N.; Cotăescu, Ion I.

    The article presents some new results obtained for the non-relativistic approximation of the Dirac equation in a non-inertial reference frame — rotated and accelerated — and in Schwarzschild gravitational field. These results are obtained with new routines of algebraic programming in REDUCE + EXCALC language for the Dirac equation in a non-inertial reference frame and after three successive Foldy-Wouthuysen transformations.

  7. Was Newton right? A search for non-Newtonian behavior of weak-field gravity

    NASA Astrophysics Data System (ADS)

    Boynton, Paul; Moore, Michael; Newman, Riley; Berg, Eric; Bonicalzi, Ricco; McKenney, Keven

    2014-06-01

    Empirical tests of Einstein's metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton's theory by assuring that the linearized equations of GTR matched the Newtonian formalism under "classical" conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.

  8. Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.

    PubMed

    Laxon, S; McAdoo, D

    1994-07-29

    The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown. PMID:17752757

  9. Collapse of charged scalar field in dilaton gravity

    SciTech Connect

    Borkowska, Anna; Rogatko, Marek; Moderski, Rafal

    2011-04-15

    We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.

  10. On a more rigorous gravity field processing for future LL-SST type gravity satellite missions

    NASA Astrophysics Data System (ADS)

    Daras, I.; Pail, R.; Murböck, M.

    2013-12-01

    In order to meet the augmenting demands of the user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are planned to carry more precise sensors than their precedents. A breakthrough is planned with the improved LL-SST measurement link, where the traditional K-band microwave instrument of 1μm accuracy will be complemented by an inter-satellite ranging instrument of several nm accuracy. This study focuses on investigations concerning the potential performance of the new sensors and their impact in gravity field solutions. The processing methods for gravity field recovery have to meet the new sensor standards and be able to take full advantage of the new accuracies that they provide. We use full-scale simulations in a realistic environment to investigate whether the standard processing techniques suffice to fully exploit the new sensors standards. We achieve that by performing full numerical closed-loop simulations based on the Integral Equation approach. In our simulation scheme, we simulate dynamic orbits in a conventional tracking analysis to compute pseudo inter-satellite ranges or range-rates that serve as observables. Each part of the processing is validated separately with special emphasis on numerical errors and their impact in gravity field solutions. We demonstrate that processing with standard precision may be a limiting factor for taking full advantage of new generation sensors that future satellite missions will carry. Therefore we have created versions of our simulator with enhanced processing precision with primarily aim to minimize round-off system errors. Results using the enhanced precision show a big reduction of system errors that were present at the standard precision processing even for the error-free scenario, and reveal the improvements the new sensors will bring into the gravity field solutions. As a next step, we analyze the contribution of

  11. Rhea gravity field and interior modeling from Cassini data analysis

    NASA Astrophysics Data System (ADS)

    Tortora, Paolo; Zannoni, Marco; Hemingway, Doug; Nimmo, Francis; Jacobson, Robert A.; Iess, Luciano; Parisi, Marzia

    2016-01-01

    During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity investigations, the first in November 2005 and the second in March 2013. This paper presents an estimation of Rhea's fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the two Cassini flybys. Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 × 106 = 946.0 ± 13.9, C22 × 106 = 242.1 ± 4.0 (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor directly using the Radau-Darwin approximation. The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and topography, under different plausible geophysical assumptions. The observed gravity is consistent with that generated by the observed shape for an undifferentiated (uniform density) body. However, because the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the observations.

  12. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    SciTech Connect

    Taveras, Victor; Yunes, Nicolas

    2008-09-15

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  13. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    NASA Astrophysics Data System (ADS)

    Taveras, Victor; Yunes, Nicolás

    2008-09-01

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  14. On the gravity field processing of next generation satellite gravity missions

    NASA Astrophysics Data System (ADS)

    Daras, Ilias; Pail, Roland

    2016-04-01

    Dedicated gravity field missions delivering observations for a period longer than 16 years have drastically contributed in improving our knowledge of mass transport processes in the Earth system. At the same time, they have left a precious heritage for the design of next generation satellite gravity missions to be launched in the mid-term future. Main subject of this study is the gravity field processing of future Low-Low Satellite-to-Satellite Tracking (LL-SST) missions. We perform assessment of the contribution of all error sources and develop methods for reducing their effect at the level of gravity field processing. Advances in metrology of sensors such as the inter-satellite ranging instrument, may raise the demands for processing accuracy. We show that gravity field processing with double precision may be a limiting factor for exploiting the nm-level accuracy of a laser interferometer that future missions are expected to carry. An enhanced numerical precision processing scheme is proposed instead, where double and quadruple precision is used in different parts of the processing chain. It is demonstrated that processing with enhanced precision can efficiently handle laser measurements and take full advantage of their accuracy, while keeping the computational times within reasonable levels (Daras, 2015). However, error sources of considerably larger impact are expected to affect future missions, with the accelerometer instrument noise and temporal aliasing effects being the most significant ones. The effect of time-correlated noise such as the one present in accelerometer measurements can be efficiently handled by frequency dependent data weighting. Residual time series that contain the effect of system errors and propagated accelerometer and laser noise, is considered as a noise realization with stationary stochastic properties. The weight matrix is constructed from the auto-correlation functions of these residuals. Applying the weight matrix to a noise case

  15. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  16. Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2002-01-01

    We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.

  17. Inflation with a massive vector field nonminimally coupled to gravity

    NASA Astrophysics Data System (ADS)

    Bertolami, O.; Bessa, V.; Páramos, J.

    2016-03-01

    We study the possibility that inflation is driven by a massive vector field with S O (3 ) global symmetry nonminimally coupled to gravity. From an E3-invariant Robertson-Walker metric we propose an Ansatz for the vector field, allowing us to study the evolution of the system. We study the behavior of the equations of motion using the methods of the theory of dynamical systems and find exponential inflationary regimes.

  18. Effective field theory from modified gravity with massive modes

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; de Laurentis, Mariafelicia; Paolella, Mariacristina; Ricciardi, Giulia

    2015-10-01

    Massive gravitational modes in effective field theories can be recovered by extending General Relativity and taking into account generic functions of the curvature invariants, not necessarily linear in the Ricci scalar R. In particular, adopting the minimal extension of f(R) gravity, an effective field theory with massive modes is straightforwardly recovered. This approach allows to evade shortcomings like ghosts and discontinuities if a suitable choice of expansion parameters is performed.

  19. Classifying linearly shielded modified gravity models in effective field theory.

    PubMed

    Lombriser, Lucas; Taylor, Andy

    2015-01-23

    We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime. PMID:25658988

  20. Properties of the gravity fields of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Kaula, William M.

    1992-01-01

    The properties of the gravity fields of the earth, Mars, and Venus, as expressed by spherical harmonic coefficients, are examined, using the harmonic expansions of the respective planetary topographies reported by Balmino et al. (1973), Bills and Ferrari (1978), and Bills and Kobrick (1985). The items examined include the spectral magnitudes and slopes of the gravity coefficients; the correlations between gravity and topography; and the correlations among different gravity harmonics, expressed by axiality and angularity. It was found that Venus differs from the other two planets in its great apparent depths of compensation, indicating a tectonics dominated by a stiff upper mantle. In addition, Venus has less activity deep in the mantle than do earth or Mars. Mars is marked by large gravity irregularities, as well as by their axial symmetry on a global scale. Although earth is probably the most peculiar planet, spherical harmonics do not bring out its varied characteristics. It is clearly a more active planet than Venus, with activity deep in the mantle. The lower magnitude of its higher harmonics is considered to be due to water recycled to the upper mantle.

  1. Diffraction patterns in ferrofluids: Effect of magnetic field and gravity

    NASA Astrophysics Data System (ADS)

    Radha, S.; Mohan, Shalini; Pai, Chintamani

    2014-09-01

    In this paper, we report the experimental observation of diffraction patterns in a ferrofluid comprising of Fe3O4 nanoparticles in hexane by a 10 mW He-Ne laser beam. An external dc magnetic field (0-2 kG) was applied perpendicular to the beam. The diffraction pattern showed a variation at different depths of the sample in both zero and applied magnetic field. The patterns also exhibit a change in shape and size as the external field is varied. This effect arises due to thermally induced self-diffraction under the influence of gravity and external magnetic field.

  2. Rapid 3-D forward modeling of gravity and gravity gradient tensor fields

    NASA Astrophysics Data System (ADS)

    Longwei, C.; Dai, S.; Zhang, Q.

    2014-12-01

    Three-dimensional inversion are the key process in gravity exploration. In the commonly used scheme of inversion, the subsurface of the earth is usually divided into many small prism blocks (or grids) with variable density values. A key task in gravity inversion is to calculate the composite fields (gravity and gravity gradient tensor) generated by all these grids, this is known as forward modeling. In general forward modeling is memory-demanding and time-consuming. One scheme to rapidly calculate the fields is to implement it in Fourier domain and use fast Fourier transform algorithm. The advantage of the Fourier domain method is, obviously, much faster. However, the intrinsic edge effect of the Fourier domain method degrades the precision of the calculated fields. We have developed an innovative scheme to directly calculate the fields in spatial domain. There are two key points in this scheme. One key point is spatial discretization. Spatial convolution formula is discretized using an approach similar to normal difference method. A key idea during discretization is to use the analytical formula of a cubic prism, and this makes the resultant discrete formula have clear physical meaning: it embodies the superposition principle of the fields and is the exact formula to calculate the fields generated by all grids. The discretization only requires the grids have the same dimension in horizontal directions, and grids in different layers may have different dimension in vertical direction, and this offers more flexibility for inversion. Another key point is discrete convolution calculation. We invoke a high efficient two-dimensional discrete convolution algorithm, and it guarantees both time-saving and memory-saving. Its memory cost has the same order as the number of grids. Numerical test result shows that for a model with a dimension of 1000x1000x201 grids, it takes about 300s to calculate the fields on 1000x1000 field points in a personal computer with 3.4-GHz CPU

  3. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    NASA Technical Reports Server (NTRS)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  4. Satellite laser ranging and gravity field modeling accuracy

    NASA Technical Reports Server (NTRS)

    Rosborough, George W.

    1990-01-01

    Gravitational field mismodeling procedures errors in the estimated orbital motion of near Earth satellites. This effect is studied using a linear perturbation approach following the analysis of Kaula. The perturbations in the orbital position as defined by either orbital elements or Cartesian components are determined. From these perturbations it is possible to ascertain the expected signal due to gravitational mismodeling that would be present in station-to-satellite laser ranging measurements. This expected signal has been estimated for the case of the Lageos satellite and using the predicted uncertainties of the GEM-T1 and GEM-T2 gravity field models. The results indicate that observable signal still exists in the laser range residuals given the current accuracy of the range measurements and the accuracy of the gravity field models.

  5. Relativistic central-field Green's functions for the RATIP package

    NASA Astrophysics Data System (ADS)

    Koval, Peter; Fritzsche, Stephan

    2005-11-01

    From perturbation theory, Green's functions are known for providing a simple and convenient access to the (complete) spectrum of atoms and ions. Having these functions available, they may help carry out perturbation expansions to any order beyond the first one. For most realistic potentials, however, the Green's functions need to be calculated numerically since an analytic form is known only for free electrons or for their motion in a pure Coulomb field. Therefore, in order to facilitate the use of Green's functions also for atoms and ions other than the hydrogen-like ions, here we provide an extension to the RATIP program which supports the computation of relativistic (one-electron) Green's functions in an—arbitrarily given—central-field potential V(r). Different computational modes have been implemented to define these effective potentials and to generate the radial Green's functions for all bound-state energies E<0. In addition, care has been taken to provide a user-friendly component of the RATIP package by utilizing features of the Fortran 90/95 standard such as data structures, allocatable arrays, or a module-oriented design. Program summaryTitle of program:XGREENS Catalogue number: ADWM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computer for which the new version has been tested: PC Pentium II, III, IV, Athlon Installations: University of Kassel (Germany) Operating systems: SuSE Linux 8.2, SuSE Linux 9.0 Program language used in the new version: ANSI standard Fortran 90/95 Memory required to execute with typical data: On a standard grid (400 nodes), one central-field Green's function requires about 50 kBytes in RAM while approximately 3 MBytes are needed if saved as two-dimensional array on some external disc space No. of bits in a word: Real variables of double- and quad-precision are used Peripheral used: Disk for input

  6. Gravity- and strain-induced electric fields outside metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Opat, G. I.

    1992-05-01

    The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.

  7. Time-variable gravity fields from satellite tracking

    NASA Astrophysics Data System (ADS)

    Bettadpur, Srinivas; Cheng, Minkang; Ries, John

    2014-05-01

    At the University of Texas Center for Space Research (CSR), we routinely deliver time-series of Earth's gravity field variations, some of it spanning more than two decades. These time-series are derived - in a consistent manner - from satellite laser ranging (SLR) data, from low-Earth orbiters tracked using GPS, and from low-low satellite to satellite tracking data from GRACE. In this paper, we review the information content in the gravity field time-series derived from each of these methods. We provide a comparison of the time-series at the decadal and annual time-scales, and identify the spatial modes of variability that are well or poorly estimated by each of the observing systems. The results have important bearing on the prospects of extending GRACE time-variable gravity time-series in the event of gaps between dedicated gravity missions, and for extending the time-series into the past. Support for this research from joint NASA/DLR GRACE mission, the NASA MEASURs program, and the NASA ROSES/GRACE Science Team is gratefully acknowledged.

  8. The Gravity Field of Enceladus from the three Cassini Flybys

    NASA Astrophysics Data System (ADS)

    Iess, L.; Parisi, M.; Ducci, M.; Jacobson, R. A.; Armstrong, J. W.; Asmar, S. W.; Lunine, J. I.; Stevenson, D. J.; Tortora, P.

    2013-12-01

    The Cassini spacecraft carried out gravity measurements of the small Saturnian moon Enceladus during three close flybys on April 28, 2010, November 30, 2010 and May 2, 2012 (designated E9, E12 and E19), at the low altitudes of 100, 48 and 70 km to maximize the accelerations exerted by the moon on the spacecraft. The goals of these observations were the determination of the gravitational quadrupole and the search for a North-South asymmetry in the gravity field, controlled primarily by the spherical harmonic coefficient C30. The estimation of Enceladus' gravity field is especially complex because of the small surface gravity (0.11 m/s2), the short duration of the gravitational interaction and the small number of available flybys. In addition to the gravitational accelerations, the spacecraft was also subject to small but non-negligible drag when it flew through the plume emitted from the south pole of the satellite. This effect occurred during the two south polar flybys E9 and E19. The inclusion of these non-gravitational accelerations proved to be crucial to attain a stable solution for the gravity field. Our estimation relied entirely on precise range rate measurements enabled by a coherent, two-way, microwave link at X-band (7.2-8.4 GHz). Measurement accuracies of 10 micron/s at 60 s integration times were attained under favorable conditions, thanks also to an advanced tropospheric calibration system. The data were fitted using the MONTE orbit determination code, recently developed by JPL for deep space navigation. In addition to the satellite degree 2 gravity field and C30, the solution included the state vector of the spacecraft (one for each flyby) and corrections to the mass and the initial orbital elements of Enceladus. The effect of the drag in E9 and E19 was modeled either as an unknown, impulsive, vectorial delta-V at closest approach, or by using density profiles from models of the plume and solving for the aerodynamic coefficient of the spacecraft. Both

  9. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Astrophysics Data System (ADS)

    Colombo, Oscar L.

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  10. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  11. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  12. Electric Field Effect on Bubble Detachment in Variable Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2003-01-01

    The subject of the present study, the process of bubble detachment from an orifice in a plane surface, shows some resemblance to bubble departure in boiling. Because of the high heat transfer coefficients associated with phase change processes, boiling is utilized in many industrial operations and is an attractive solution to cooling problems in aerospace engineering. In terrestrial conditions, buoyancy is responsible for bubble removal from the surface. In space, the gravity level being orders of magnitude smaller than on earth, bubbles formed during boiling remain attached at the surface. As a result, the amount of heat removed from the heated surface can decrease considerably. The use of electric fields is proposed to control bubble behavior and help bubble removal from the surface on which they form. The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Bubble cycle life were visualized in terrestrial conditions and for several reduced gravity levels. Bubble volume, dimensions and contact angle at detachment were measured and analyzed for different parameters as gravity level and electric field magnitude. Situations were considered with uniform or non-uni form electric field. Results show that these parameters significantly affect bubble behavior, shape, volume and dimensions.

  13. Application of covariant analytic mechanics to gravity with Dirac field

    NASA Astrophysics Data System (ADS)

    Nakajima, Satoshi

    2016-03-01

    We applied the covariant analytic mechanics with the differential forms to the Dirac field and the gravity with the Dirac field. The covariant analytic mechanics treats space and time on an equal footing regarding the differential forms as the basis variables. A significant feature of the covariant analytic mechanics is that the canonical equations, in addition to the Euler-Lagrange equation, are not only manifestly general coordinate covariant but also gauge covariant. Combining our study and the previous works (the scalar field, the abelian and non-abelian gauge fields and the gravity without the Dirac field), the applicability of the covariant analytic mechanics was checked for all fundamental fields. We studied both the first and second order formalism of the gravitational field coupled with matters including the Dirac field. It was suggested that gravitation theories including higher order curvatures cannot be treated by the second order formalism in the covariant analytic mechanics. In addition, we showed that the covariant analytic mechanics is equivalent to corrected De Donder-Weyl theory.

  14. Computation of the gravity field and its gradient: Some applications

    NASA Astrophysics Data System (ADS)

    Dubey, C. P.; Tiwari, V. M.

    2016-03-01

    New measuring instruments of Earth's gravity gradient tensors (GGT) have offered a fresh impetus to gravimetry and its application in subsurface exploration. Several efforts have been made to provide a thorough understanding of the complex properties of the gravity gradient tensor and its mathematical formulations to compute GGT. However, there is not much open source software available. Understanding of the tensor properties leads to important guidelines in the development of real three dimensional geological models. We present a MATLAB computational algorithm to calculate the gravity field and full gravity gradient tensor for an undulated surface followed by regular geometries like an infinite horizontal slab, a vertical sheet, a solid sphere, a vertical cylinder, a normal fault model and a rectangular lamina or conglomerations of such bodies and the results are compared with responses using professional software based on different computational schemes. Real subsurface geometries of complex geological structures of interest are approximated through arrangements of vertical rectangular laminas. The geological application of this algorithm is demonstrated over a horst-type structure of Oklahoma Aulacogen, USA and Vredefort Dome, South Africa, where measured GGT data are available.

  15. High-resolution gravity field modeling using GRAIL mission data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.

  16. Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes

    NASA Astrophysics Data System (ADS)

    Schenkel, Alexander

    2012-10-01

    The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that these theories have an improved behaviour at short distances, i.e. in the ultraviolet. In part three we study homomorphisms between and connections on noncommutative vector bundles. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of bimodules is clarified. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.

  17. Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory

    NASA Technical Reports Server (NTRS)

    Weinwurm, G.; Weber, R.

    2005-01-01

    The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.

  18. An alternative computation of a gravity field model from GOCE

    NASA Astrophysics Data System (ADS)

    Yi, Weiyong

    2012-08-01

    GOCE is the first satellite with a gravitational gradiometer (SGG). This allows to determine a gravity field model with high spatial resolution and high accuracy. Four of the six independent components of the gravitational gradient tensors (GGT) are measured with high accuracy in the so-called measurement band (MB) from 5 to 100 mHz by the GOCE gradiometer. Based on more than 1 year of GOCE measurements, two gravity field models have been derived. Here, we introduce a strategy for spherical harmonic analysis (SHA) from GOCE measurements, with a bandpass filter applied to the SGG data, combined with orbit analysis based on the integral equation approach, and additional constraints (or stabilization) in the polar areas where no observation is available due to the orbit geometry. In addition, we combined the GOCE SGG part with a set of GRACE normal equations. This improves the accuracy of the gravity field in the long-wavelength parts, due to the complementarity of GOCE and GRACE. Comparison with other models and with external data shows that our results are rather close to the GPS-levelling data in well-selected test regions, with an uncertainty of 4-7 cm, for truncation at degree 200.

  19. Lunar gravity field recovery: sensitivity studies from simulated tracking data

    NASA Astrophysics Data System (ADS)

    Maier, A.; Baur, O.

    2012-04-01

    The lunar gravity field is essential for understanding the structure and the thermal evolution of the Moon. Typically, the gravity field is inferred from tracking data to satellites orbiting the Moon. Due to the fact that the Moon is in the state of synchronous rotation with the Earth, direct tracking to the farside is impossible. NASA's Lunar Reconnaissance Orbiter (LRO), launched in 2009, is equipped with various instruments whose purpose is to prepare for save robotic returns to the Moon. To geolocate LRO, the spacecraft is tracked by means of radiometric techniques (ranges, range rates, angles) and optical laser (laser ranges). We analyzed tracking data to LRO with respect to various aspects, such as the number of observations, their spatial distribution on the lunar surface, and the present noise level. We used these real-data characteristics to simulate tracking data to LRO. We generated three different simulation scenarios: observations were simulated (1) during the exact time spans when LRO was tracked from a specific ground station, (2) whenever the spacecraft was in view from a station, and (3) for the nearside as well as for the farside of the Moon. Based on the resulting trajectories, we estimated three sets of spherical harmonic coefficients representing the lunar gravity field. Moreover, we varied the maximum degree of estimated coefficients and investigated the effect of noise on the estimated parameters. Observation simulation and parameter estimation was accomplished with the software packages GEODYN and SOLVE.

  20. Relativistic mean-field hadronic models under nuclear matter constraints

    NASA Astrophysics Data System (ADS)

    Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.

    2014-11-01

    Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The

  1. Resolution of the Scripps/NOAA Marine Gravity Field from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Marks, Karen M.

    The July 1995 declassification of the entire Geosat GM satellite altimeter data set enabled a joint Scripps/NOAA effort to compute a new (version 7.2) marine gravity field on a 2-minute grid. This gravity field covers the world's oceans between 72°N and 72°S, and is derived from a combination of ERS-1 and Geosat GM and ERM data. An earlier NOAA Geosat-only gravity field solution was confined to the southern latitudes because the 1992 declassification was limited to GM data south of 30°S. A simple coherence analysis between accurately-navigated ship gravity profiles and comparable gravity profiles obtained from the gravity grids reveals that the Scripps/NOAA gravity field is coherent with ship gravity down to ˜≥ 23-30 km. This slight increase in resolution over the previous NOAA Geosat-only gravity field (short-wavelength resolution of ˜26-30 km) implies that the increased spatial coverage provided by the ERS-I altimeter, when combined with Geosat, improves the solution. Coherence analyses between satellite gravity and ship topography, and ship gravity and ship topography, show that even shorter wavelength gravity anomalies (˜13 km) are present in sea-surface measurements made by ship. Even so, the Scripps/NOAA marine gravity field does an excellent job of resolving most of the short-wavelength gravity anomalies covering the world’s oceans.

  2. The gravity field of the Saturnian satellites Enceladus and Dione

    NASA Astrophysics Data System (ADS)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2012-12-01

    Enceladus and Dione are the innermost moons of the Saturnian system visited by the spacecraft Cassini for gravity investigations. The small surface gravity (0.11 and 0.23 m/s2 respectively for Enceladus and Dione), the short duration of the gravitational interaction and the small number of available flybys (three for Enceladus and just one for Dione) make the determination of their gravity field particularly challenging. In spite of these limitations, we have measured the low degree gravity field of both satellites with sufficient accuracy to draw preliminary geophysical conclusions. The estimation relied primarily on precise range rate data, whose accuracy reached 10 micron/s at 60 s integration times under favorable conditions. In order to disentangle the effects of the spacecraft orbit, the satellite orbit and the satellite gravity, tracking coverage is required not only across closest approach, but also days before and after the flyby. The dynamical model used for the fits includes all relevant gravitational perturbations and the main non-gravitational accelerations (Cassini RTG's anisotropic thermal emission, solar radiation pressure). In addition to the gravity field coefficients a correction to the orbit of the spacecraft and the satellites was also estimated. The first and so far only Dione's flyby with tracking at closest approach occurred on December 12, 2011, at an altitude of 99 km. (A second gravity flyby is scheduled in 2015.) Although the low solar elongation angle caused a significant increase of the plasma noise in Doppler data, the low spacecraft altitude at closest approach and the otherwise favorable geometry allowed an estimation of the harmonic coefficients J2 and C22 to a relative accuracy below 2%. We have produced, in addition to an unconstrained estimate, a second solution where the quadrupole field is constrained by the requirement of hydrostaticity. Doppler residuals are unbiased and consistent with the expected noise in both cases. When

  3. Combination of monthly gravity field solutions from different processing centers

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2015-04-01

    Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the

  4. The Gravity Field of Titan From Four Cassini Flybys

    NASA Astrophysics Data System (ADS)

    Rappaport, N. J.; Jacobson, R. A.; Iess, L.; Racioppa, P.; Armstrong, J. W.; Asmar, S. W.; Stevenson, D. J.; Tortora, P.; di Benedetto, M.; Graziani, A.; Meriggiola, R.

    2008-12-01

    Doppler tracking of the Cassini spacecraft across four flybys has been used for a preliminary determination of Titan's gravity field. The flybys occurred on February 27, 2006, December 28, 2006, June 29, 2007 and July 31, 2008, with closest approach altitudes between 1300 and 2100 km. X- and Ka-band Doppler data from each flyby have been combined in a multi-arc solution for the Stokes coefficients up to degree-3. The dynamical models employed in the data fit were limited to the static component of the gravity field and did not include eccentricity tides. Tidal variations of the quadrupole coefficients are expected at a level of a few percents if the surface hides an internal ocean, and are therefore accessible to Cassini measurements. As the flybys were evenly distributed about pericenter and apocenter of Titan's orbit, the current analysis provides a good representation of the static component of the quadrupole field. In one setup, Titan's ephemerides were also updated, leading to improved determination of the satellite's orbit and gravitational parameter (GM). The measured gravity field is dominated by a large, nearly hydrostatic, quadrupole component, consistent with an equilibrium response to the perturbations due to rotation and Saturn gravity gradient. The magnitude of the degree-3 coefficients accounts for about 1-3% of the overall field, with significant gravity disturbances (at a level of 2-5 mgal) over broad regions of the surface. The corresponding peak-to-peak geoid height variations amount to a few tens of meters. The ellipsoidal reference surface shows variations among the axes of a few hundred meters. The near hydrostaticity of Titan justifies the application of Radau-Darwin equilibrium theory, which provides the fluid Love number and the average moment of inertia. The latter is consistent with a partial, but not full, differentiation of the interior. This work was partly conducted at the Jet Propulsion Laboratory, California Institute of Technology

  5. Combined GRACE-SLR monthly gravity field solutions

    NASA Astrophysics Data System (ADS)

    Meyer, Ulrich; Sosnica, Krzysytof; Maier, Andrea; Jäggi, Adrian

    2015-04-01

    Monthly gravity field solutions from GRACE GPS and GRACE K-Band data provide remarkable information about the mass transport in the system Earth by capturing the temporal variability of the gravity field at long to medium wavelengths. The GRACE solutions suffer, however, from the poor determination of the C20 coefficient from GRACE K-Band data, which describes the Earth's oblateness. C20 and its temporal variability can, on the other hand, be very well determined using satellite laser ranges (SLR) to spherical geodetic satellites such as LAGEOS and LARES. It is common practice to replace the C20 coefficient in GRACE solutions by SLR-derived values. We perform a meaningful combination of GRACE and SLR solutions at the level of normal equations using the SLR-only monthly gravity fields from the combined analysis of up to nine geodetic satellites that capture the temporal variability to degree 10 of the global spherical harmonic expansion. We present combined monthly GRACE-SLR solutions and compare them to GRACE GPS/K-Band, GRACE GPS-only, and SLR-only solutions. We discuss the relative weighting scheme of the normal equations and evaluate the secular and seasonal periodic time variations of the combined solutions at long wavelengths. We observe a positive influence of the SLR data not only on C20 but also on the formal errors of the other degree-2 spherical harmonic coefficients, which correspond to the excitation of the polar motion. A possible reduction of the influence of aliasing with the S2 tide on some GRACE-derived coefficients using a combination with SLR data will also be addressed. The analysis of SLR-only solutions indicates sensitivity to time variable signal for selected coefficients at even higher degree but special care has to be taken not to corrupt coefficients with the inferior quality in SLR solutions in the combined solutions with GRACE data. In recent years, K-Band tracking between GRACE satellites was deactivated several times resulting in

  6. Weak gravity strongly constrains large-field axion inflation

    NASA Astrophysics Data System (ADS)

    Heidenreich, Ben; Reece, Matthew; Rudelius, Tom

    2015-12-01

    Models of large-field inflation based on axion-like fields with shift symmetries can be simple and natural, and make a promising prediction of detectable primordial gravitational waves. The Weak Gravity Conjecture is known to constrain the simplest case in which a single compact axion descends from a gauge field in an extra dimension. We argue that the Weak Gravity Conjecture also constrains a variety of theories of multiple compact axions including N-flation and some alignment models. We show that other alignment models entail surprising consequences for how the mass spectrum of the theory varies across the axion moduli space, and hence can be excluded if further conjectures hold. In every case that we consider, plausible assumptions lead to field ranges that cannot be parametrically larger than M Pl. Our results are strongly suggestive of a general inconsistency in models of large-field inflation based on compact axions, and possibly of a more general principle forbidding super-Planckian field ranges.

  7. Is nonrelativistic gravity possible?

    SciTech Connect

    Kocharyan, A. A.

    2009-07-15

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  8. Noncommutative scalar field minimally coupled to nonsymmetric gravity

    SciTech Connect

    Kouadik, S.; Sefai, D.

    2012-06-27

    We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.

  9. Gravity field determination and characteristics: Retrospective and prospective

    NASA Astrophysics Data System (ADS)

    Nerem, R. S.; Jekeli, C.; Kaula, W. M.

    Gravimetry has had a long history, using pendulums, torsion balances, and static spring gravimeters. Relative accuracy adequate for many geophysical problems was already attained by 1900, but it took another half century to build readily portable gravimeters. Calibration and datum definition remained problems until the 1970s when free-fall absolute gravimeters were developed that now have a precision of 10-3 mGal. The problems of geographic inaccessibility and field party costs (notably in areas of greatest tectonic interest) and now being overcome by airborne gravimetry that has already achieved accuracies of 1-3 mGal with resolutions of 10 to 20 km. Satellite techniques are the best way to determine the long-wavelength variations of the gravity field. The resolution of the models has steadily improved with the number of satellites and the precision of the observations. The best current model includes tracking data from more than 30 satellites, satellite altimetry, and surface gravimetry and has a resolution of about 290 km (harmonic degree 70) with the most recent improvements coming from Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking of the SPOT 2 satellite and satellite laser ranging (SLR), DORIS, and Global Positioning System (GPS) tracking of the TOPEX/POSEIDON satellite. Meanwhile, radar altimetry has become the dominant technique to infer the marine geoid with a resolution of tens of kilometers or shorter. Similarly, the gravity fields of the Moon, Venus, and Mars have been determined to harmonic degrees 70, 75, and 50, respectively, although tracking limitations result in variations of spatial resolution. Modeling Earth's gravity field from the abundance of precise data has become an increasingly complex task, with which the development of computer capacity has kept pace. Contemporary solutions now entail about 10,000 parameters, half of them for effects other than the fixed gravity field of Earth. Temporal variations

  10. Gravity field and internal structure of Mercury from MESSENGER.

    PubMed

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core. PMID:22438509

  11. Gravity Field and Internal Structure of Mercury from MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; Johnson, Catherine L.; Torrence, Mark H.; Perry, Mark E.; Rowlands, David D.; Goossens, Sander; Head, James W.; Taylor, Anthony H.

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  12. Ultralow Magnetic Fields and Gravity Probe B Gyroscope Readout

    NASA Astrophysics Data System (ADS)

    Mester, J. C.; Lockhart, J. M.; Muhlfelder, B.; Murray, D. O.; Taber, M. A.

    We describe the generation of an ultralow magnetic field of < 10-11Tesla in the flight dewar of the Gravity Probe B Relativity Mission. The field was achieved using expanded-superconducting-shield techniques and is maintained with the aid of a magnetic materials control program. A high performance magnetic shield system is required for the proper function of gyroscope readout. The readout system employs a dc SQUID to measure the London moment generated by the superconducting gyro rotor in order to resolve sub-milliarcsecond changes in the gyro spin direction. In addition to a low residual dc magnetic field, attenuation of external field variation is required to be 1012 at the gyro positions. We discuss the measurement of the dc magnetic field and ac attenuation factor and the performance of the readout system

  13. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    NASA Technical Reports Server (NTRS)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  14. Action and entanglement in gravity and field theory.

    PubMed

    Neiman, Yasha

    2013-12-27

    In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions. PMID:24483789

  15. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  16. Wormholes, emergent gauge fields, and the weak gravity conjecture

    NASA Astrophysics Data System (ADS)

    Harlow, Daniel

    2016-01-01

    This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.

  17. Relativistic electron distribution function of a plasma in a near-critical electric field

    SciTech Connect

    Sandquist, P.; Sharapov, S. E.; Helander, P.; Lisak, M.

    2006-07-15

    A corrected relativistic collision operator is used to derive a Fokker-Planck equation for the distribution function of relativistic suprathermal electrons in a weakly relativistic plasma, which is then solved by a procedure similar to that employed in Connor and Hastie [Nucl. Fusion 15, 415 (1975)]. Analytical expressions are derived for the electron distribution function in plasmas with the electric field close to critical, which is typical of plasmas with grassy sawteeth on the Joint European Torus. A numerical solution is used for determining the normalization constant, which matches the relativistic region onto the weakly relativistic region. It is found that the scaling of the runaway rate with the electric field obtained by Connor and Hastie is a good approximation in spite of their use of an incomplete form of the collision operator not conserving number of particles. The present analysis determines the proportionality constant and introduces corrections to the earlier scaling of the runaway rate with respect to the electric field. The results obtained for the electron distribution function constitute a basis for studies of experimentally observed phenomena in near-threshold electric field plasmas with a significant suprathermal electron population.

  18. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…

  19. Report of the panel on geopotential fields: Gravity field, section 8

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Kaula, William M.; Lazarewics, Andrew R.; Lefebvre, Michel; Phillips, Roger J.; Rapp, Richard H.; Rummel, Reinhard F.; Smith, David E.; Tapley, Byron D.; Zlotnick, Victor

    1991-01-01

    The objective of the Geopotential Panel was to develop a program of data acquisition and model development for the Earth's gravity and magnetic fields that meet the basic science requirements of the solid Earth and ocean studies. Presented here are the requirements for gravity information and models through the end of the century, the present status of our knowledge, data acquisition techniques, and an outline of a program to meet the requirements.

  20. Gravity, Topography, and Magnetic Field of Mercury from Messenger

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; Lemoine, Frank G.; Margot, Jean-Luc; McNutt, Ralph; Mazarico, Erwan M.; Oberst, Jurgen; Peale, Stanley J.; Perry, Mark; Purucker, Michael E.; Rowlands, David D.; Torrence, Mark H.

    2012-01-01

    On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe

  1. The role of topography in geodetic gravity field modelling

    NASA Technical Reports Server (NTRS)

    Forsberg, R.; Sideris, M. G.

    1989-01-01

    Masses associated with the topography, bathymetry, and its isostatic compensation are a dominant source of gravity field variations, especially at shorter wavelengths. On global scales the topographic/isostatic effects are also significant, except for the lowest harmonics. In practice, though, global effects need not be taken into account as such effects are included in the coefficients of the geopotential reference fields. On local scales, the short-wavelength gravity variations due to the topography may, in rugged terrain, be an order of magnitude larger than other effects. In such cases, explicit or implicit terrain reduction procedures are mandatory in order to obtain good prediction results. Such effects may be computed by space-domain integration or by fast Fourier transformation (FFT) methods. Numerical examples are given for areas of the Canadian Rockies. In principle, good knowledge of the topographic densities is required to produce the smoothest residual field. Densities may be determined from sample measurements or by gravimetric means, but both are somewhat troublesome methods in practice. The use of a standard density, e.g., 2.67 g/cu cm, may often yield satisfactory results and may be put within a consistent theoretical framework. The independence of density assumptions is the key point of the classical Molodensky approach to the geodetic boundary value problem. The Molodensky solutions take into account that land gravity field observations are done on a non-level surface. Molodensky's problem may be solved by integral expansions or more effective FFT methods, but the solution should not be intermixed with the use of terrain reductions. The methods are actually complimentary and may both be required in order to obtain the smoothest possible signal, least prone to aliasing and other effects coming from sparse data coverage, typical of rugged topography.

  2. Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory

    NASA Technical Reports Server (NTRS)

    Lee, D. L.; Caves, C. M.

    1974-01-01

    The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.

  3. Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory

    NASA Technical Reports Server (NTRS)

    Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.

    1976-01-01

    The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.

  4. Gravity Field, Topography, and Interior Structure of Amalthea

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Anabtawi, A.; Jacobson, R. A.; Johnson, T. V.; Lau, E. L.; Moore, W. B.; Schubert, G.; Taylor, A. H.; Thomas, P. C.; Weinwurm, G.

    2002-12-01

    A close Galileo flyby of Jupiter's inner moon Amalthea (JV) occurred on 5 November 2002. The final aimpoint was selected by the Galileo Radio Science Team on 5 July 2002. The closest approach distance for the selected aimpoint was 221 km from the center of mass, the latitude was - 45.23 Deg and the west longitude was 266.41 Deg (IAU/IAG/COSPAR cartographic coordinate system). In order to achieve an acceptable impact probability (0.15%), and yet fly close to Amalthea, the trajectory was selected from a class of trajectories running parallel to Amalthea's long axis. The Deep Space Network (DSN) had the capability to generate continuous coherent radio Doppler data during the flyby. Such data can be inverted to obtain information on Amalthea's gravity field. Amalthea is irregular and neither a triaxial ellipsoid nor an equilibrium body. It has a volume of about 2.4 x 106 km3, and its best-fit ellipsoid has dimensions 131x73x67 km. Its mass can be determined from the 2002 flyby, and in combination with the volume, a density can be obtained accurate to about 5%, where the error is dominated by the volume uncertainty. Similarly, gravity coefficients (Cnm Snm) can be detected up to fourth degree and order, and the second degree field (quadrupole) can be measured. Topography data are available from Voyager imaging and from images taken with Galileo's solid state imaging system at various times between February and June 1997. By combining the gravity and topography data, new information can be obtained on Amalthea's interior. For example if the gravity coefficients agree with those calculated from the topography, assuming constant density, we can conclude that Amalthea is homogeneous. On the other hand, if the gravity coefficients are smaller than predicted from topography, we can conclude that there is a concentration of mass toward Amalthea's center. We are presenting preliminary pre-publication results at the Fall meeting. This work was sponsored by the Galileo Project

  5. The determination of Dione's gravity field after four Cassini flybys

    NASA Astrophysics Data System (ADS)

    Zannoni, Marco; Tortora, Paolo; Iess, Luciano; Jacobson, Robert A.; Armstrong, John W.; Asmar, Sami W.

    2015-04-01

    We present the expected accuracy in the determination of Dione's gravity field obtained through numerical simulations of all radio science flybys currently planned in the entire Cassini mission. During its tour of the Saturn system, Cassini already performed two flybys of Dione dedicated to the determination of its mass and gravity field, in October 2005 and December 2011, respectively. Two additional radio science flybys are planned in June 2015 and August 2015. The analysis of the Doppler data acquired during the closest approach of the second flyby allowed the first estimation of Dione's J2 and C22 but, given the limited amount of data, their estimation has a large correlation and cannot be considered fully reliable. Here we infer the expected final accuracy in the determination of Dione's J2 and C22 by combining the available results from the already performed experiments with numerical simulations of future flybys. The main observables considered in the analysis are two-way and three-way Doppler data obtained from the frequency shift of a highly stable microwave carrier between the spacecraft and the stations of NASA's Deep Space Network. White Gaussian noise was added to the simulated data, with a constant standard deviation for each tracking pass, obtained from an accurate noise budget of the Cassini mission. For the two flybys to be carried out in 2015, we consider a continuous coverage during +/-18 hours around the closest approach, plus one tracking pass 36 hours before and after it. The data analysis is carried out using a global, multi-arc fit, and comparing the independent solutions obtained from each flyby and different multi-arc solutions. The analysis of all four flybys is expected to provide the best, unconstrained, reliable estimation of the full quadrupole gravity field of Dione.

  6. Quasiclassical Approximation in the Non-Relativistic and Relativistic Problems of Tunneling Ionization of a Hydrogen-Like Atom in a Uniform Electric Field

    NASA Astrophysics Data System (ADS)

    Reity, O. K.; Reity, V. K.; Lazur, V. Yu.

    2016-02-01

    A recurrent scheme for finding the quasiclassical solution of the onedimensional equation obtained after the separation of variables in the Schrödinger equation in parabolic coordinates is derived. The method of quasiclassical localized states is developed for the Dirac equation with an arbitrary axially symmetric potential of barrier type which does not allow complete separation of the variables. By means of the proposed quasiclassical methods the non-relativistic and relativistic wavefunctions for hydrogenlike (H-like) atoms in an external uniform electrostatic field of intensity F are constructed in the classically forbidden and allowed regions. The general analytical expressions of the leading term of the asymptotic behaviour (at small F) of the ionization rate of an H-like atom in the uniform electrostatic field are obtained for the non-relativistic and relativistic cases.

  7. MAGNETIC-FIELD AMPLIFICATION BY TURBULENCE IN A RELATIVISTIC SHOCK PROPAGATING THROUGH AN INHOMOGENEOUS MEDIUM

    SciTech Connect

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Pohl, Martin; Niemiec, Jacek; Zhang, Bing; Hardee, Philip E.

    2011-01-10

    We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.

  8. Relativistic Runaway Electron Avalanches in the Presence of an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Liu, N.; Rassoul, H.; Briggs, M. S.

    2015-12-01

    Relativistic runaway electron avalanches are known to be produced inside the high electric field regions of thunderstorms. In this work, we include the effects of an external static magnetic field. Previous studies have shown that the magnetic field has a great influence on the electron motion at higher altitudes, e.g. Lehtinen et al., 1997, and Gurevich et al., 1996. This result proves important when studying phenomena such as Terrestrial Gamma-ray Flashes, and their effects on the upper atmosphere. Therefore, electron avalanche rates, feedback rates, and electron energy distribution functions will be analyzed and compared to the results of previous studies that did not include a magnetic field. The runaway electron avalanche model (REAM) is a Monte Carlo code that simulates the generation, interactions, and propagation of relativistic runaway electrons in air [Dwyer, 2003, 2004, 2007]. We use this simulation for varying strengths and angles between the electric and magnetic fields to calculate avalanche lengths and angular distribution functions of the relativistic runaway electrons. We will also show electron distribution functions in momentum space. Finally, we will discuss the important regimes for which the magnetic field becomes significant in studying the properties of runaway electron avalanches and relativistic feedback.

  9. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.

    PubMed

    Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning

    2013-02-01

    Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies. PMID:23223395

  10. Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles

    1999-01-01

    Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the

  11. Warped conformal field theory as lower spin gravity

    NASA Astrophysics Data System (ADS)

    Hofman, Diego M.; Rollier, Blaise

    2015-08-01

    Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  12. Perturbations of single-field inflation in modified gravity theory

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Xia, Jun-Qing

    2015-05-01

    In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.

  13. Fugacity and concentration gradients in a gravity field

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1986-01-01

    Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.

  14. Determination of Enceladus' gravity field from Cassini radio science data

    NASA Astrophysics Data System (ADS)

    Parisi, Marzia; Iess, Luciano; Ducci, Marco

    2014-05-01

    In May 2012 the Cassini spacecraft completed its last gravity flyby of Saturn's moon Enceladus (identified as E19 in the sequence), following E9 in April 2010 and E12 in November 2010. The multiarc analysis of the gravity data collected during these low-altitude encounters has produced a stable solution for the gravity field of Enceladus, leading to compelling inferences and implications on the interior structure, but also raising new questions on the evolution of this small but yet fascinating icy body. The gravitational signature of the satellite was detected by means of precise Doppler tracking of the Cassini spacecraft around closest approach (±3h) of the three flybys. Cassini tracking system exploits both X/X and X/Ka links, with accuracies that range between 0.02 - 0.09 mm/s at 60 s integration time. Range-rate measurements were processed into a multi-arc least square filter so as to attain a solution for the quadrupole field of Enceladus and its degree-3 zonal harmonic J3, the most important indication of hemispherical asymmetries. In addition to these crucial parameters, corrections to the estimated orbits of Cassini and Enceladus were applied. The inclusion in the dynamical model of the neutral particle drag exerted by Enceladus south polar plumes (1) is essential for a satisfactory orbital fit. The results of the analysis show that Enceladus is indeed characterized by a predominant quadrupole term, with its J2/C22 ratio being that of a body not in hydrostatic equilibrium. The estimate of tesseral degree-2 coefficients (C21, S21 and C22), being statistically close to 0 (at a 3-σ level), imply that the adopted rotational model for the satellite is consistent with the observed gravity field. Furthermore, the estimated value for J3 turned out to be statistically significant (although only about 1/50 of J2) and pointing at a significant hemispherical asymmetry that is consistent with the presence of a regional sea at depth. References (1) C.C. Porco et al

  15. KMS2002 Global Marine Gravity Field, Bathymetry And Mean Sea Surface

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.

    2003-12-01

    During the last three years the KMS global marine gravity field has been improved in corporation with National Imaginary and Mapping Agency (NIMA). These improvements have resulted in a release of KMS99 and KMS2001 gravity fields. Especially, the KMS99 gravity field presented a significant improvement in comparisons with marine observations, as well as global coverage within the 82 degree parallels by adding the ERS-ERM data. The subsequent, KMS2001 only resulted in minor improved gravity field modelling. A new revised global high resolution marine gravity field KMS2002 is presented in this Combining this fine- tuning with careful edition of data are expected to improve the KMS2002 gravity field, in particularly coastal regions. Improved resolution and data coverage in particularly ice-covered regions are other improvements, which is currently under investigation. The KMS gravity field modelling approach uses the observed sea surface height anomalies relative to EGM96 and converts these into gravity using FFT techniques. For the KMS2002 focus has been on improved mapping of the intermediate wavelength (100-250 km) of the gravity field using the exact repeat mission data from the TOPEX/POSEIDON and ERS-2 satellite missions. The KMS2002 gravity field is accompanied with a high-resolution bathymetry model and a high resolution mean sea surface.

  16. DiPerna-Lions Flow for Relativistic Particles in an Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Jabin, P.-E.; Masmoudi, N.

    2015-09-01

    We show the existence and uniqueness of a DiPerna-Lions flow for relativistic particles subject to a Lorentz force in an electromagnetic field. The electric and magnetic fields solve the linear Maxwell system in the vacuum but for singular initial conditions which are only in the physical energy space. As the corresponding force field is only in L 2, we have to perform a careful analysis of the cancellations over a trajectory.

  17. A Revolution in Mars Topography and Gravity and Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2002-01-01

    Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.

  18. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1987-01-01

    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.

  19. On the Methods for Constructing Meson-Baryon Reaction Models within Relativistic Quantum Field Theory

    SciTech Connect

    B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki

    2009-04-01

    Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.

  20. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  1. Pion condensation in a relativistic field theory consistent with bulk properties of nuclear matter

    SciTech Connect

    Banerjee, B.; Glendenning, N. K.; Gyulassy, M.

    1981-05-01

    Pion condensation is investigated in a self-consistent. relativistic mean field theory that is constrained to reproduce the bulk properties of nuclear matter. This constraint and self-consistency provide stringent constraints on the existence and energy of the condensate.

  2. Entropy of Egypt's virtual water trade gravity field

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Bierbach, Sandra

    2016-04-01

    's 20 trading partner countries, for a time frame from 1995 to 2013. The calculations -implemented for each country and each crop- display a network that illustrates the gravity of virtual water trade. It is then possible for us to model the entropy of Egypt's virtual water trade gravity field, via the statistical examination of its spatial fragmentation or continuity for each traded crop and for each water footprint type. Hence, with the distribution's entropy we may conduct a targeted analysis on the comparative advantages of the Egyptian agriculture. Keywords: entropy, virtual water trade, gravity model, agricultural trade, water footprint, water subsidies, comparative advantage References 1. Antonelli, Marta and Martina Sartori (2014), Unfolding the potential of the Virtual Water concept. What is still under debate?, MPRA Paper No. 60501, http://mpra.ub.uni-muenchen.de/60501/ 2. Fracasso, Andrea (2014), A gravity model of virtual water trade, Ecological Economics, Vol. 108, p. 215-228 3. Fracasso, Andrea; Martina Sartori and Stefano Schiavo (2014), Determinants of virtual water flows in the Mediterranean, MPRA Paper No. 60500, https://mpra.ub.uni-muenchen.de/60500/ 4. Yang, H. et al. (2006), Virtual water trade: An assessment of water use efficiency in the international food trade, Hydrology and Earth System Sciences 10, p. 443-454

  3. Plasma waves in a relativistic, strongly anisotropic plasma propagated along a strong magnetic field

    NASA Technical Reports Server (NTRS)

    Onishchenko, O. G.

    1980-01-01

    The dispersion properties of plasma waves in a relativistic homogeneous plasma propagated along a strong magnetic field are studied. It is shown that the non-damping plasma waves exist in the frequency range omega sub p or = omega or = omega sub L. The values of omega sub p and omega sub L are calculated for an arbitrary homogeneous relativistic function of the particle distribution. In the case of a power ultrarelativistic distribution, it is shown that, if the ultrarelativistic tail of the distribution drops very rapidly, slightly damping plasma waves are possible with the phase velocity (omega/K)c.

  4. Effective field theory of quantum gravity coupled to scalar electrodynamics

    NASA Astrophysics Data System (ADS)

    Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.

    2016-05-01

    In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.

  5. Vector field models of modified gravity and the dark sector

    NASA Astrophysics Data System (ADS)

    Zuntz, J.; Zlosnik, T. G.; Bourliot, F.; Ferreira, P. G.; Starkman, G. D.

    2010-05-01

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory’s kinetic index parameter nae can differ significantly from its ΛCDM value.

  6. Vector field models of modified gravity and the dark sector

    SciTech Connect

    Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.

    2010-05-15

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.

  7. Singular boundary method for global gravity field modelling

    NASA Astrophysics Data System (ADS)

    Cunderlik, Robert

    2014-05-01

    The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.

  8. Cardiopulmonary Resuscitation in Lunar and Martian Gravity Fields

    NASA Technical Reports Server (NTRS)

    Sarkar, Subhajit

    2004-01-01

    Cardiopulmonary resuscitation is required training for all astronauts. No studies thus far have investigated how chest compressions may be affected in lunar and Martian gravities. Therefore a theoretical quantitative study was performed. The maximum downward force an unrestrained person can apply is mg N (g(sub Earth) = 9.78 ms(sup -2), g(sub moon) = 1.63 ms(sup -2), g(sub Mars) = 3.69 ms(sup -2). Tsitlik et a1 (Critical Care Medicine, 1983) described the human sternal elastic force-displacement relationship (compliance) by: F = betaD(sub s) + gammaD(sub s)(sup 2) (beta = 54.9 plus or minus 29.4 Ncm(sup -1) and gamma = 10.8 plus or minus 4.1 Ncm(sup -2)). Maximum forces in the 3 gravitational fields produced by 76 kg (US population mean), 41 kg and 93 kg (masses derived from the limits for astronaut height), produced solutions for compression depth using Tsitlik equations for chests of: mean compliance (beta = 54.9, gamma = 10.8), low compliance (beta = 84.3, gamma = 14.9) and high compliance (beta = 25.5, gamma = 6.7). The mass for minimum adequate adult compression, 3.8 cm (AHA guidelines), was also calculated. 76 kg compresses the mean compliance chest by: Earth, 6.1 cm, Mars, 3.2 cm, Moon, 1.7 cm. In lunar gravity, the high compliance chest is compressed only 3.2 cm by 93 kg, 120 kg being required for 3.8 cm. In Martian gravity, on the mean chest, 93 kg compresses 3.6 cm; 99 kg is required for 3.8 cm. On Mars, the high compliance chest is compressed 4.8 cm with 76 kg, 5.5 cm with 93 kg, with 52 kg required for 3.8 cm.

  9. GRAIL - A Microwave Ranging Instrument to Map Out the Lunar Gravity Field

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Wang, Rabi T.; Klipstein, William M.

    2010-01-01

    Gravity Recovery and Interior Laboratory, or GRAIL, is a NASA mission to map out the gravity field of the moon to an unprecedented level of detail. The instrument for this mission is based on GRACE (Gravity Recovery and Climate Experiment), an earth-orbiting mission currently mapping out the gravity field of the earth. This paper will describe the similarities and differences between these two instruments with a focus on the microwave ranging measurements used to determine the gravity parameters and the testbed built at Jet Propulsion Laboratory to demonstrate micron level ranging capability. The onboard ultrastable oscillator and RF instruments will be described and noise contributions discussed.

  10. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.