Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
General Relativistic Magnetohydrodynamic Simulations of Collapsars
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Yamada, S.; Koider, S.; Shipata, K.
2005-01-01
We have performed 2.5-dimensional general relativistic magnetohydrodynamic (MHD) simulations of collapsars including a rotating black hole. Initially, we assume that the core collapse has failed in this star. A rotating black hole of a few solar masses is inserted by hand into the calculation. The simulation results show the formation of a disklike structure and the generation of a jetlike outflow near the central black hole. The jetlike outflow propagates and accelerated mainly by the magnetic field. The total jet velocity is approximately 0.3c. When the rotation of the black hole is faster, the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic energy stored by the twisting magnetic field is directly converted to kinetic energy of the jet rather than propagating as an Alfven wave. Thus, as the rotation of the black hole becomes faster, the poloidal velocity of the jet becomes faster.
3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Hardee, Philip; Nishikawa, Ken-Ichi
2006-01-01
Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are less than or equal to c/the square root of 3 in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The Alfven wave speed is less than or equal to 0.07 c in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.
A General Relativistic Magnetohydrodynamic Simulation of Jet Formation
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.
2005-05-01
We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity ~0.3c) is created, as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (τS=rS/c, where rS≡2GM/c2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r=3rS. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfvén waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the lack of streaming material from an accompanying star.
A General Relativistic Magnetohydrodynamic Simulation of Jet Formation
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.
2005-01-01
We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation ofjet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity approx.0.3c) is created, as shown by previous two-dimensional axi- symmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (T(sub s) = r(sub s)/c, where r(sub s = 2GM/c(sup 2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r = 3r(sub s). At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface ofthe thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfven waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the iack of streaming materiai from an accompanying star.
Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.
2012-09-20
We have investigated the influence of jet rotation and differential motion on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we follow the temporal development within a periodic computational box. Displacement of the initial helical magnetic field leads to the growth of the CD kink instability. We find that, in accordance with the linear stability theory, the development of the instability depends on the lateral distribution of the poloidal magnetic field. If the poloidal field significantly decreases outward from the axis, then the initial small perturbations grow strongly, and if multiple wavelengths are excited, then nonlinear interaction eventually disrupts the initial cylindrical configuration. When the profile of the poloidal field is shallow, the instability develops slowly and eventually saturates. We briefly discuss implications of our findings for Poynting-dominated jets.
General relativistic magnetohydrodynamical simulations of the jet in M 87
NASA Astrophysics Data System (ADS)
Mościbrodzka, Monika; Falcke, Heino; Shiokawa, Hotaka
2016-02-01
Context. The connection between black hole, accretion disk, and radio jet can be constrained best by fitting models to observations of nearby low-luminosity galactic nuclei, in particular the well-studied sources Sgr A* and M 87. There has been considerable progress in modeling the central engine of active galactic nuclei by an accreting supermassive black hole coupled to a relativistic plasma jet. However, can a single model be applied to a range of black hole masses and accretion rates? Aims: Here we want to compare the latest three-dimensional numerical model, originally developed for Sgr A* in the center of the Milky Way, to radio observations of the much more powerful and more massive black hole in M 87. Methods: We postprocess three-dimensional GRMHD models of a jet-producing radiatively inefficient accretion flow around a spinning black hole using relativistic radiative transfer and ray-tracing to produce model spectra and images. As a key new ingredient in these models, we allow the proton-electron coupling in these simulations depend on the magnetic properties of the plasma. Results: We find that the radio emission in M 87 is described well by a combination of a two-temperature accretion flow and a hot single-temperature jet. Most of the radio emission in our simulations comes from the jet sheath. The model fits the basic observed characteristics of the M 87 radio core: it is "edge-brightened", starts subluminally, has a flat spectrum, and increases in size with wavelength. The best fit model has a mass-accretion rate of Ṁ ~ 9 × 10-3M⊙ yr-1 and a total jet power of Pj ~ 1043 erg s-1. Emission at λ = 1.3 mm is produced by the counter-jet close to the event horizon. Its characteristic crescent shape surrounding the black hole shadow could be resolved by future millimeter-wave VLBI experiments. Conclusions: The model was successfully derived from one for the supermassive black hole in the center of the Milky Way by appropriately scaling mass and
Adaptive wavelets and relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo
2016-03-01
We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.
NASA Astrophysics Data System (ADS)
Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.
2013-01-01
We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.
NASA Astrophysics Data System (ADS)
Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy
2016-01-01
We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between
A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.
2004-01-01
We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.
NASA Astrophysics Data System (ADS)
Dibi, S.; Drappeau, S.; Fragile, P. C.; Markoff, S.; Dexter, J.
2012-11-01
We present general relativistic magnetohydrodynamic numerical simulations of the accretion flow around the supermassive black hole in the Galactic Centre, Sagittarius A* (Sgr A*). The simulations include for the first time radiative cooling processes (synchrotron, bremsstrahlung and inverse Compton) self-consistently in the dynamics, allowing us to test the common simplification of ignoring all cooling losses in the modelling of Sgr A*. We confirm that for Sgr A*, neglecting the cooling losses is a reasonable approximation if the Galactic Centre is accreting below ˜10-8 M⊙ yr-1, i.e. M⊙<10-7M⊙ Edd . However, above this limit, we show that radiative losses should be taken into account as significant differences appear in the dynamics and the resulting spectra when comparing simulations with and without cooling. This limit implies that most nearby low-luminosity active galactic nuclei are in the regime where cooling should be taken into account. We further make a parameter study of axisymmetric gas accretion around the supermassive black hole at the Galactic Centre. This approach allows us to investigate the physics of gas accretion in general, while confronting our results with the well-studied and observed source, Sgr A*, as a test case. We confirm that the nature of the accretion flow and outflow is strongly dependent on the initial geometry of the magnetic field. For example, we find it difficult, even with very high spins, to generate powerful outflows from discs threaded with multiple, separate poloidal field loops.
NASA Astrophysics Data System (ADS)
Endrizzi, A.; Ciolfi, R.; Giacomazzo, B.; Kastaun, W.; Kawamura, T.
2016-08-01
We present new results of fully general relativistic magnetohydrodynamic simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state for cold matter, together with a ‘hybrid’ part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the ‘standard’ and in the ‘time-reversal’ scenarios) and other electromagnetic counterparts.
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by
NASA Astrophysics Data System (ADS)
Shiokawa, Hotaka
The goal of the series of studies in this thesis is to understand the black hole accretion process and predict its observational properties. The highly non-linear process involves a turbulent magnetized plasma in a general relativistic regime, thus making it hard to study analytically. We use numerical simulations, specifically general relativistic magnetohydrodynamics (GRMHD), to construct a realistic dynamical and radiation model of accretion disks. Our simulations are for black holes in low luminous regimes that probably possesses a hot and thick accretion disk. Flows in this regime are called radiatively inefficient accretion flows (RIAF). The most plausible mechanism for transporting angular momentum is turbulence induced by magnetorotational instability (MRI). The RIAF model has been used to model the supermassive black hole at the center of our Milky Way galaxy, Sagittarius A* (Sgr A*). Owing to its proximity, rich observational data of Sgr A* is available to compare with the simulation results. We focus mainly on four topics. First, we analyse numerical convergence of 3D GRMHD global disk simulations. Convergence is one of the essential factors in deciding quantitative outcomes of the simulations. We analyzed dimensionless shell-averaged quantities such as plasma beta, the azimuthal correlation length (angle) of fluid variables, and spectra of the source for four different resolutions. We found that all the variables converged with the highest resolution (384x384x256 in radial, poloidal, and azimuthal directions) except the magnetic field correlation length. It probably requires another factor of 2 in resolution to achieve convergence. Second, we studied the effect of equation of state on dynamics of GRMHD simulation and radiative transfer. Temperature of RIAF gas is high, and all the electrons are relativistic, but not the ions. In addition, the dynamical time scale of the accretion disk is shorter than the collisional time scale of electrons and ions
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation. PMID:22463331
Magnetohydrodynamics of chiral relativistic fluids
NASA Astrophysics Data System (ADS)
Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg
2015-08-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
NASA Astrophysics Data System (ADS)
Nishikawa, Ken-Ichi; Koide, Shinji; Sakai, Jun-ichi; Christodoulou, Dimitris M.; Sol, Hélène; Mutel, Robert L.
1998-05-01
We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (1) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (2) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy, and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical venetian blinds out of the way while the slats are allowed to bend in three-dimensional space rather than as a two-dimensional slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging, since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized--but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.
Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Komissarov, Serguei S.
2007-12-01
The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field is kept consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the Harten-Lax-van Leer (HLL) prescription and the source terms are accounted via the time-splitting technique. The results of test simulations show that the scheme can handle equally well both resistive current sheets and shock waves, and thus can be a useful tool for studying phenomena of relativistic astrophysics that involve both colliding supersonic flows and magnetic reconnection.
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.
2010-01-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.
General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Gerald, J. Fishman
2006-01-01
We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.
2009-07-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic magnetohydrodynamic simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the nonlinear regime, the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depend moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and reaches the nonlinear regime at a later time than the case with constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the nonlinear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.
A Magnetohydrodynamic Boost for Relativistic Jets
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing
2007-01-01
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
Generalized magnetofluid connections in relativistic magnetohydrodynamics.
Asenjo, Felipe A; Comisso, Luca
2015-03-20
The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept. PMID:25839284
Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation
NASA Astrophysics Data System (ADS)
Porth, Oliver J. G.
2011-11-01
In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz
NASA Astrophysics Data System (ADS)
Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro
2016-07-01
Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ˜ 30{r}{{g}} for \\dot{M}˜ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ˜ 10{r}{{g}} with increasing mass accretion rate \\dot{M}˜ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro
2016-07-01
Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ∼ 30{r}{{g}} for \\dot{M}∼ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ∼ 10{r}{{g}} with increasing mass accretion rate \\dot{M}∼ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.
A Magnetohydrodynamic Boost for Relativistic Jets
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Hardee, Philip; Hartmann, dieter; Nishikwa, Ken-Ichi; Zhang, Bing
2006-01-01
We have performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field may change the properties of the shock interface between the tenuous, overpressured jet (V(sub j) (sup z)) flowing tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A poloidal magnetic field (B(sup z)), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to a larger Lorentz factors than those obtained in the pure-hydrodynamic case. In contrast, a strong toroidal magnetic field (B(sup y)), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case, but to a lesser extent than found for the poloidal case due to the fact that the velocity component normal to the shock interface is now much smaller. Overall, the acceleration efficiency in the toroidal case is less than that of the poloidal case but both geometries still result in higher Lorentz factors than the pure-hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can have a significant influence on the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
General relativistic magneto-hydrodynamics with the Einstein Toolkit
NASA Astrophysics Data System (ADS)
Moesta, Philipp; Mundim, Bruno; Faber, Joshua; Noble, Scott; Bode, Tanja; Haas, Roland; Loeffler, Frank; Ott, Christian; Reisswig, Christian; Schnetter, Erik
2013-04-01
The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics. This talk will present the current capabilities of the Einstein Toolkit with a particular focus on recent improvements made to the general relativistic magneto-hydrodynamics modeling and will point to information how to leverage it for future research.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere. PMID:26382548
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1 / 2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
NASA Astrophysics Data System (ADS)
Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro
1998-03-01
The radio observations have revealed the compelling evidence of the existence of relativistic jets not only from active galactic nuclei but also from ``microquasars'' in our Galaxy. In the cores of these objects, it is believed that a black hole exists and that violent phenomena occur in the black hole magnetosphere, forming the relativistic jets. To simulate the jet formation in the magnetosphere, we have newly developed the general relativistic magnetohydrodynamic code. Using the code, we present a model of these relativistic jets, in which magnetic fields penetrating the accretion disk around a black hole play a fundamental role of inducing nonsteady accretion and ejection of plasmas. According to our simulations, a jet is ejected from a close vicinity to a black hole (inside 3rS, where rS is the Schwarzschild radius) at a maximum speed of ~90% of the light velocity (i.e., a Lorentz factor of ~2). The jet has a two-layered shell structure consisting of a fast gas pressure-driven jet in the inner part and a slow magnetically driven jet in the outer part, both of which are collimated by the global poloidal magnetic field penetrating the disk. The former jet is a result of a strong pressure increase due to shock formation in the disk through fast accretion flow (``advection-dominated disk'') inside 3rS, which has never been seen in the nonrelativistic calculations.
Imbalanced relativistic force-free magnetohydrodynamic turbulence
Cho, Jungyeon; Lazarian, A.
2014-01-01
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Sapountzis, Konstantinos Vlahakis, Nektarios
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
Efficient acceleration of relativistic magnetohydrodynamic jets
NASA Astrophysics Data System (ADS)
Toma, Kenji; Takahara, Fumio
2013-08-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.
SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de
2011-08-10
The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.
Relativistic and non-relativistic magnetohydrodynamic flows around compact stars
NASA Astrophysics Data System (ADS)
Mobarry, Clark Matthew
A set of theoretical tools are developed for studying the magnetized accretion disks and astrophysical jets in active galaxies. A general theory is developed for the steady axisymmetric flow of an ideal general-relativistic fluid around a Schwarzschild black hole. The theory leads to a second-order partial differential equation, a Grad-Shafranov equation, for the magnetic flux function psi(R, theta). The magnetic surface functions of the Grad-Shafranov method are shown to be the Lagrange multipliers of an energy principle. Thus, the magnetic surface functions are not arbitrary functions, but must be chosen consistent with physically stable equilibria. From the energy principle, a numerical artificial friction method is developed to solve the general relativistic Grad-Shafranov equation with fluid flow. This method is suited for the internal boundaries between elliptic and hyperbolic behavior present in magnetospheres with fluid flow. The friction method is shown to be compatible with a theory for the slow dissipative evolution of a nearly ideal MagnetoHydroDynamic (MHD) fluid. A virial theorem is derived from the basic equations of general relativistic MHD. It is used to obtain an upper bound on the total energy in the electromagnetic field in terms of the total gravitational binding energy between the black hole and the matter (and energy) outside it. An analysis is made of the motion of a charged test particle in the electromagnetic field of a magnetized accretion disk surrounding a black hole. The results are consistent with stable orbits close to the event horizon. A semi-analytical model is developed for the evolution and dissipation of narrow magnetized jets from an active galaxy. This model exhibits the acceleration and expansion of the jets with increasing axial distance from the central object.
Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Martí, José María; Müller, Ewald
2015-12-01
An overview of grid-based numerical methods used in relativistic hydrodynamics (RHD) and magnetohydrodynamics (RMHD) is presented. Special emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods. Results of a set of demanding test bench simulations obtained with different numerical methods are compared in an attempt to assess the present capabilities and limits of the various numerical strategies. Applications to three astrophysical phenomena are briefly discussed to motivate the need for and to demonstrate the success of RHD and RMHD simulations in their understanding. The review further provides FORTRAN programs to compute the exact solution of the Riemann problem in RMHD, and to simulate 1D RMHD flows in Cartesian coordinates.
A multidimensional numerical scheme for two-fluid relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Barkov, Maxim; Komissarov, Serguei S.; Korolev, Vitaly; Zankovich, Andrey
2014-02-01
This paper describes an explicit multidimensional numerical scheme for special relativistic two-fluid magnetohydrodynamics of electron-positron plasma and a suit of test problems. The scheme utilizes Cartesian grid and the third-order weighted essentially non-oscillatory interpolation. Time integration is carried out using the third-order total variation diminishing method of Runge-Kutta type, thus ensuring overall third-order accuracy on smooth solutions. The magnetic field is kept near divergence-free by means of the method of generalized Lagrange multiplier. The test simulations, which include linear and non-linear continuous plasma waves, shock waves, strong explosions and the tearing instability, show that the scheme is sufficiently robust and confirm its accuracy.
ACCELERATION AND COLLIMATION OF RELATIVISTIC MAGNETOHYDRODYNAMIC DISK WINDS
Porth, Oliver; Fendt, Christian E-mail: fendt@mpia.d
2010-02-01
We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 x 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied-an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically-implying three relativistically distinct regimes in the flow-an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface-similar to the spine-sheath structure currently
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E.
2011-06-10
We have investigated the influence of a velocity shear surface on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria in three dimensions. In this study, we follow the temporal development within a periodic computational box and concentrate on flows that are sub-Alfvenic on the cylindrical jet's axis. Displacement of the initial force-free helical magnetic field leads to the growth of CD kink instability. We find that helically distorted density structure propagates along the jet with speed and flow structure dependent on the radius of the velocity shear surface relative to the characteristic radius of the helically twisted force-free magnetic field. At small velocity shear surface radius, the plasma flows through the kink with minimal kink propagation speed. The kink propagation speed increases as the velocity shear radius increases and the kink becomes more embedded in the plasma flow. A decreasing magnetic pitch profile and faster flow enhance the influence of velocity shear. Simulations show continuous transverse growth in the nonlinear phase of the instability. The growth rate of the CD kink instability and the nonlinear behavior also depend on the velocity shear surface radius and flow speed, and the magnetic pitch radial profile. Larger velocity shear radius leads to slower linear growth, makes a later transition to the nonlinear stage, and with larger maximum amplitude than that occuring for a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and nonlinear development can be similar to the development of a static plasma column.
The Role of the Equation of State in Resistive Relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke
2013-03-01
We have investigated the role of the equation of state in resistive relativistic magnetohydrodynamics using a newly developed resistive relativistic magnetohydrodynamic code. A number of numerical tests in one dimension and multi-dimensions are carried out in order to check the robustness and accuracy of the new code. The code passes all the tests in situations involving both small and large uniform conductivities. Equations of state that closely approximate the single-component perfect relativistic gas are introduced. Results from selected numerical tests using different equations of state are compared. The main conclusion is that the choice of the equation of state as well as the value of the electric conductivity can result in considerable dynamical differences in simulations involving shocks, instabilities, and magnetic reconnection.
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
NASA Astrophysics Data System (ADS)
Del Zanna, L.; Papini, E.; Landi, S.; Bugli, M.; Bucciantini, N.
2016-08-01
Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula, hence its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two dimensional numerical simulations, the linear phase and the subsequent nonlinear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics, as appropriate in situations where the Alfven velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S^-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal" tearing regime is retrieved, with modes growing independently on S and extremely fast, on only a few light crossing times of the sheet length. The overall growth of fluctuations is seen to solely depend on the value of the background Alfven velocity. In the fully nonlinear stage we observe an inverse cascade towards the fundamental mode, with Petschek-type supersonic jets propagating at the external Alfven speed from the X-point, and a fast reconnection rate at the predicted value R~(ln S)^-1.
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
NASA Astrophysics Data System (ADS)
Del Zanna, L.; Papini, E.; Landi, S.; Bugli, M.; Bucciantini, N.
2016-08-01
Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula; hence, its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two-dimensional numerical simulations, the linear phase and the subsequent non-linear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics (MHD), as appropriate in situations where the Alfvén velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S-1/3 are considered, the so-called ideal tearing regime is retrieved, with modes growing independently of S and extremely fast, on only a few light crossing times of the sheet length. The overall growth of fluctuations is seen to solely depend on the value of the background Alfvén velocity. In the fully non-linear stage, we observe an inverse cascade towards the fundamental mode, with Petschek-type supersonic jets propagating at the external Alfvén speed from the X-point, and a fast reconnection rate at the predicted value {R}˜ (ln S)^{-1}.
Spectral Methods in General Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Garrison, David
2012-03-01
In this talk I discuss the use of spectral methods in improving the accuracy of a General Relativistic Magnetohydrodynamic (GRMHD) computer code. I introduce SpecCosmo, a GRMHD code developed as a Cactus arrangement at UHCL, and show simulation results using both Fourier spectral methods and finite differencing. This work demonstrates the use of spectral methods with the FFTW 3.3 Fast Fourier Transform package integrated with the Cactus Framework to perform spectral differencing using MPI.
Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement
Anninos, P; Fragile, P C; Salmonson, J D
2005-05-06
A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threated oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. A number of tests are presented to demonstrate robustness of the numerical algorithms and adaptive mesh framework over a wide spectrum of problems, boosts, and astrophysical applications, including relativistic shock tubes, shock collisions, magnetosonic shocks, Alfven wave propagation, blast waves, magnetized Bondi flow, and the magneto-rotational instability in Kerr black hole spacetimes.
Magnetohydrodynamic Simulations of Barred Galaxies
NASA Astrophysics Data System (ADS)
Kim, W.-T.
2013-04-01
Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.
WhiskyMHD: Numerical Code for General Relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Baiotti, Luca; Giacomazzo, Bruno; Hawke, Ian; et al.
2010-10-01
Whisky is a code to evolve the equations of general relativistic hydrodynamics (GRHD) and magnetohydrodynamics (GRMHD) in 3D Cartesian coordinates on a curved dynamical background. It was originally developed by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit. Whisky can also implement adaptive mesh refinement (AMR) if compiled together with Carpet. Whisky has grown from earlier codes such as GR3D and GRAstro_Hydro, but has been rewritten to take advantage of some of the latest research performed here in the EU. The motivation behind Whisky is to compute gravitational radiation waveforms for systems that involve matter. Examples would include the merger of a binary system containing a neutron star, which are expected to be reasonably common in the universe and expected to produce substantial amounts of radiation. Other possible sources are given in the projects list.
Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure
NASA Technical Reports Server (NTRS)
Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.
2003-01-01
Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid
General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests
NASA Astrophysics Data System (ADS)
Dionysopoulou, Kyriaki; Alic, Daniela; Palenzuela, Carlos; Rezzolla, Luciano; Giacomazzo, Bruno
2013-08-01
We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of implicit-explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for large electrical conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code is capable of describing scenarios in a very wide range of conductivities. In addition to tests in flat spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dynamical spacetimes. Finally, because of its astrophysical relevance and because it provides a severe tested for general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to a black hole. We show that also in this case our results on the quasinormal mode frequencies of the excited electromagnetic fields in the Schwarzschild background agree with the perturbative studies within 0.7% and 5.6% for the real and the imaginary part of the ℓ=1 mode eigenfrequency, respectively. Finally we provide an estimate of the electromagnetic efficiency of this process.
Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes
NASA Astrophysics Data System (ADS)
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2016-03-01
We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R˜ 0.05 and spin parameters of a/M=0,0.5,0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.
Relativistic klystron afterburner simulation techniques
Ryne, R.D.; Jong, R.A.; Westenskow, G.A.; Yu, S.S.
1990-01-24
We are developing computer codes for the numerical simulations of relativistic klystrons and relativistic klystron afterburners''. The purpose of this note is to discuss the main features of our numerical model. A relativistic klystron afterburner'' is a scheme to extract power from a spent FEL electron beam. Power is extracted from the beam by passing it through klystron output cavities. To study the feasibility of this concept, we are developing computer codes for the numerical simulation of relativistic klystrons and afterburners. The purpose of this note is to discuss the main features of our numerical model.
Simulating relativistic binaries with Whisky
NASA Astrophysics Data System (ADS)
Baiotti, L.
We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.
A Second-order Godunov Method for Multi-dimensional Relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Beckwith, Kris; Stone, James M.
2011-03-01
We describe a new Godunov algorithm for relativistic magnetohydrodynamics (RMHD) that combines a simple, unsplit second-order accurate integrator with the constrained transport (CT) method for enforcing the solenoidal constraint on the magnetic field. A variety of approximate Riemann solvers are implemented to compute the fluxes of the conserved variables. The methods are tested with a comprehensive suite of multi-dimensional problems. These tests have helped us develop a hierarchy of correction steps that are applied when the integration algorithm predicts unphysical states due to errors in the fluxes, or errors in the inversion between conserved and primitive variables. Although used exceedingly rarely, these corrections dramatically improve the stability of the algorithm. We present preliminary results from the application of these algorithms to two problems in RMHD: the propagation of supersonic magnetized jets and the amplification of magnetic field by turbulence driven by the relativistic Kelvin-Helmholtz instability (KHI). Both of these applications reveal important differences between the results computed with Riemann solvers that adopt different approximations for the fluxes. For example, we show that the use of Riemann solvers that include both contact and rotational discontinuities can increase the strength of the magnetic field within the cocoon by a factor of 10 in simulations of RMHD jets and can increase the spectral resolution of three-dimensional RMHD turbulence driven by the KHI by a factor of two. This increase in accuracy far outweighs the associated increase in computational cost. Our RMHD scheme is publicly available as part of the Athena code.
A Second-order Godunov Method for Multi-dimensional Relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Beckwith, Kris; Stone, J. M.
2011-05-01
We describe a new Godunov algorithm for relativistic magnetohydrodynamics (RMHD) that combines a simple, unsplit second-order accurate integrator with the constrained transport (CT) method for enforcing the solenoidal constraint on the magnetic field. A variety of approximate Riemann solvers are implemented to compute the fluxes of the conserved variables. The methods are tested with a comprehensive suite of multi-dimensional problems. These tests have helped us develop a hierarchy of correction steps that are applied when the integration algorithm predicts unphysical states due to errors in the fluxes, or errors in the inversion between conserved and primitive variables. Although used exceedingly rarely, these corrections dramatically improve the stability of the algorithm. We present preliminary results from the application of these algorithms to two problems in RMHD: the propagation of supersonic magnetized jets and the amplification of magnetic field by turbulence driven by the relativistic Kelvin-Helmholtz instability (KHI). Both of these applications reveal important differences between the results computed with Riemann solvers that adopt different approximations for the fluxes. For example, we show that the use of Riemann solvers that include both contact and rotational discontinuities can increase the strength of the magnetic field within the cocoon by a factor of 10 in simulations of RMHD jets and can increase the spectral resolution of three-dimensional RMHD turbulence driven by the KHI by a factor of two. This increase in accuracy far outweighs the associated increase in computational cost. Our RMHD scheme is publicly available as part of the Athena code.
Global magnetohydrodynamic simulations on multiple GPUs
NASA Astrophysics Data System (ADS)
Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui
2014-01-01
Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results. PMID:20866540
Magnetohydrodynamical simulations of a deep tidal disruption in general relativity
NASA Astrophysics Data System (ADS)
Sądowski, Aleksander; Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Abarca, David
2016-06-01
We perform hydro- and magnetohydrodynamical general-relativistic simulations of a tidal disruption of a 0.1 M⊙ red dwarf approaching a 105 M⊙ non-rotating massive black hole on a close (impact parameter β = 10) elliptical (eccentricity e = 0.97) orbit. We track the debris self-interaction, circularization and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasi-spherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the hole. The effective viscosity in the debris disc stems from the original hydrodynamical turbulence, which dominates over the magnetic component. The radiative efficiency is very low because of low energetics of the gas crossing the horizon and large optical depth that results in photon trapping. Although the parameters of the simulated tidal disruption are probably not representative of most observed events, it is possible to extrapolate some of its properties towards more common configurations.
Magnetohydrodynamic simulations of turbulent magnetic reconnection
Fan Quanlin; Feng Xueshang; Xiang Changqing
2004-12-01
Turbulent reconnection process in a one-dimensional current sheet is investigated by means of a two-dimensional compressible one-fluid magnetohydrodynamic simulation with spatially uniform, fixed resistivity. Turbulence is set up by adding to the sheet pinch small but finite level of broadband random-phased magnetic field components. To clarify the nonlinear spatial-temporal nature of the turbulent reconnection process the reconnection system is treated as an unforced initial value problem without any anomalous resistivity model adopted. Numerical results demonstrate the duality of turbulent reconnection, i.e., a transition from Sweet-Parker-like slow reconnection to Petschek-like fast reconnection in its nonlinear evolutionary process. The initial slow reconnection phase is characterized by many independent microreconnection events confined within the sheet region and a global reconnection rate mainly dependent on the initially added turbulence and insensitive to variations of the plasma {beta} and resistivity. The formation and amplification of the major plasmoid leads the following reconnection process to a rapid reconnection stage with a fast reconnection rate of the order of 0.1 or even larger, drastically changing the topology of the global magnetic field. That is, the presence of magnetohydrodynamic turbulence in large-scale current sheets can raise the reconnection rate from small values on the order of the Sweet-Parker rate to high values on the order of the Petscheck rate through triggering an evolution toward fast magnetic reconnection. Meanwhile, the backward coupling between the small- and large-scale magnetic field dynamics has been properly represented through the present high resolution simulation. The undriven turbulent reconnection model established here expresses a solid numerical basis for the previous schematic two-step magnetic reconnection models and a possible explanation of two-stage energy release process of solar explosives.
NIMROD resistive magnetohydrodynamic simulations of spheromak physics
NASA Astrophysics Data System (ADS)
Hooper, E. B.; Cohen, B. I.; McLean, H. S.; Wood, R. D.; Romero-Talamás, C. A.; Sovinec, C. R.
2008-03-01
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.
NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics
Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R
2007-12-11
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.
An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas
NASA Astrophysics Data System (ADS)
Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot
2015-09-01
Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel–Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
NASA Astrophysics Data System (ADS)
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
Relativistic MHD simulations of extragalactic jets
NASA Astrophysics Data System (ADS)
Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibáñez, J. M.
2005-06-01
We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the dependence of the dynamics on the magnetic field in jets of different beam Lorentz factor and adiabatic index. We find that the inclusion of the magnetic field leads to diverse effects which contrary to Newtonian magnetohydrodynamics models do not always scale linearly with the (relative) strength of the magnetic field. The relativistic models show, however, some clear trends. Axisymmetric jets with toroidal magnetic fields produce a cavity which consists of two parts: an inner one surrounding the beam which is compressed by magnetic forces, and an adjacent outer part which is inflated due to the action of the magnetic field. The outer border of the outer part of the cavity is given by the bow-shock where its interaction with the external medium takes place. Toroidal magnetic fields well below equipartition (β = 0.05) combined with a value of the adiabatic index of 4/3 yield extremely smooth jet cavities and stable beams. Prominent nose cones form when jets are confined by toroidal fields and carry a high Poynting flux (σ≡ |b|2/ρ>0.01 and β≥ 1). In contrast, none of our models possessing a poloidal field develops such a nose cone. The size of the nose cone is correlated with the propagation speed of the Mach disc (the smaller the speed the larger is the size). If two
Realistic magnetohydrodynamical simulation of solar local supergranulation
NASA Astrophysics Data System (ADS)
Ustyugov, Sergey D.
2010-12-01
Three-dimensional numerical simulations of solar surface magnetoconvection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the main scales of convective cells and the penetration depths of convection are investigated. We take part of the solar photosphere with a size of 60×60 Mm2 in the horizontal direction and of depth 20 Mm from the level of the visible solar surface. We use a realistic initial model of the sun and apply the equation of state and opacities of stellar matter. The equations of fully compressible radiation magnetohydrodynamics (MHD) with dynamical viscosity and gravity are solved. We apply (i) the conservative total variation diminishing (TVD) difference scheme for MHD, (ii) the diffusion approximation for radiative transfer and (iii) dynamical viscosity from subgrid-scale modeling. In simulation, we take a uniform two-dimensional grid in the horizontal plane and a nonuniform grid in the vertical direction with the number of cells being 600×600×204. We use 512 processors with distributed memory multiprocessors on the supercomputer MVS-100k at the Joint Computational Centre of the Russian Academy of Sciences.
Simulations of Relativistic Extragalactic Jets
NASA Astrophysics Data System (ADS)
Hughes, P. A.; Duncan, G. C.
1994-05-01
We present results for 2-D, axisymmetric simulations of flows with Lorentz factors ~ 5 -- 10, typical of values inferred for superluminal BL Lacs and QSOs. The simulations were performed with a numerical hydrodynamic code that admits relativistic flow speed. We exploit the property that the relativistic Euler equations for mass, momentum and total energy densities in the laboratory frame have the same form as the nonrelativistic equations, to solve for laboratory frame variables using a conventional Godunov-type scheme with approximate Riemann solver: the HLLE method. The relativistic nature of the flow is incorporated by performing a Lorentz transformation at every step, at each cell center or cell boundary where pressure, sound speed or velocity are required. Determination of the velocity in this manner is a robust algebraic procedure within which we can ensure that v
Magnetohydrodynamic simulations of outflows from accretion disks
NASA Technical Reports Server (NTRS)
Ustyugova, G. V.; Koldoba, A. V.; Romanova, M. M.; Chechetkin, V. M.; Lovelace, R. V. E.
1995-01-01
Magnetohydrodynamic simulations have been made of the formation of outflows from a Keplerian disk threaded by a magnetic field. The disk is treated as a boundary condition, where matter is ejected with Keplerian azimuthal speed and poloidal speed less than the slow magnetosonic velocity, and where boundary conditions on the magnetic field correspond to a highly conducting disk. Initially, the space above the disk, the corona, is filled with high specific entropy plasma in thermal equilibrium in the gravitational potential of the central object. The initial magnetic field is poloidal and is represented by a superposition of monopoles located below the plane of the disk. The rotation of the disk twists the initial poloidal magnetic field, and this twist propagates into the corona pushing and collimating matter into jetlike outflow in a cylindrical region. Matter outflowing from the disk flows and accelerates in the z-direction owing to both the magnetic and pressure gradient forces. The flow accelerates through the slow magnetosonic and Alfven surfaces and at larger distances through the fast magnetosonic surface. The flow velocity of the jet is approximately parallel to the z-axis, and the collimation results from the pinching force of the toroidal magnetic field. For a nonrotating disk no collimation is observed.
Magneto-hydrodynamics Simulation in Astrophysics
NASA Astrophysics Data System (ADS)
Pang, Bijia
2011-08-01
Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and
Relativistic tearing and drift-kink instabilities in two-fluid simulations
NASA Astrophysics Data System (ADS)
Barkov, Maxim V.; Komissarov, Serguei S.
2016-05-01
The stability of current sheets in collisionless relativistic pair plasma was studied via two-dimensional two-fluid relativistic magnetohydrodynamic simulations with vanishing internal friction between fluids. In particular, we investigated the linear growth of the tearing and drift-kink modes in the current sheets both with and without the guide field and obtained the growth rates which are very similar to what has been found in the corresponding particle in cell (PIC) simulations. This suggests that the two-fluid simulations can be useful in studying the large-scale dynamics of astrophysical relativistic plasmas in problems involving magnetic reconnection.
RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Fishman, Gerald J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high resolution shock-capturing scheme. The numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. In order to examine the numerical accuracy and the numerical efficiency, the code uses four different reconstruction methods: piecewise linear methods with Minmod and MC slope-limiter function, convex essentially non-oscillatory (CENO) method, and piecewise parabolic method (PPM) using multistep TVD Runge-Kutta time advance methods with second and third-order time accuracy. We describe code performance on an extensive set of test problems in both special and general relativity. Our new GRMHD code has proven to be accurate in second order and has successfully passed with all tests performed, including highly relativistic and magnetized cases in both special and general relativity.
Koide, Shinji
2010-01-10
To study phenomena of plasmas around rotating black holes, we have derived a set of 3+1 formalism of generalized general relativistic magnetohydrodynamic (GRMHD) equations. In particular, we investigated general relativistic phenomena with respect to the Ohm's law. We confirmed the electromotive force due to the gravitation, centrifugal force, and frame-dragging effect in plasmas near the black holes. These effects are significant only in the local small-scale phenomena compared to the scale of astrophysical objects. We discuss the possibility of magnetic reconnection, which is triggered by one of these effects in a small-scale region and influences the plasmas globally. We clarify the conditions of applicability of the generalized GRMHD, standard resistive GRMHD, and ideal GRMHD for plasmas in black hole magnetospheres.
Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.
2014-08-10
We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.
NASA Astrophysics Data System (ADS)
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2016-04-01
In this work we discuss the extension of the XTROEM-FV code to relativistic hydrodynamics and magnetohydrodynamics. XTROEM-FV is a simulation package for computational astrophysics based on very high order finite-volume methods on Cartesian coordinates. Arbitrary spatial high order of accuracy is achieved with a WENO reconstruction operator, and the time evolution is carried out with a strong-stability preserving Runge-Kutta scheme. In XTROEM-FV has been implemented a cheap, robust, and accurate shock capturing strategy for handling complex shock waves problems, typical in an astrophysical environment. The divergence constraint of the magnetic field is tackled with the generalized Lagrange multiplier divergence cleaning approach. Numerical computations of smooth flows for the relativistic hydrodynamics and magnetohydrodynamics equations are performed and confirm the high order accuracy of the main reconstruction algorithm for such kind of flows. XTROEM-FV has been subject to a comprehensive numerical benchmark, especially for complex flows configurations within an astrophysical context. Computations of problems with shocks with very high order reconstruction operators up to seventh order are reported. For instance, one-dimensional shock tubes problems for relativistic hydrodynamics and magnetohydrodynamics, as well as two-dimensional flows like the relativistic double Mach reflection problem, the interaction of a shock wave with a bubble, the relativistic Orszag-Tang vortex, the cylindrical blast wave problem, the rotor problem, the Kelvin-Helmholtz instability, and an astrophysical slab jet. XTROEM-FV represents a new attempt to simulate astrophysical flow phenomena with very high order numerical methods.
NASA Astrophysics Data System (ADS)
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2016-07-01
In this work, we discuss the extension of the XTROEM-FV code to relativistic hydrodynamics and magnetohydrodynamics. XTROEM-FV is a simulation package for computational astrophysics based on very high order finite-volume methods on Cartesian coordinates. Arbitrary spatial high order of accuracy is achieved with a weighted essentially non-oscillatory (WENO) reconstruction operator, and the time evolution is carried out with a strong stability preserving Runge-Kutta scheme. In XTROEM-FV has been implemented a cheap, robust, and accurate shock-capturing strategy for handling complex shock waves problems, typical in an astrophysical environment. The divergence constraint of the magnetic field is tackled with the generalized Lagrange multiplier divergence cleaning approach. Numerical computations of smooth flows for the relativistic hydrodynamics and magnetohydrodynamics equations are performed and confirm the high-order accuracy of the main reconstruction algorithm for such kind of flows. XTROEM-FV has been subject to a comprehensive numerical benchmark, especially for complex flows configurations within an astrophysical context. Computations of problems with shocks with very high order reconstruction operators up to seventh order are reported. For instance, one-dimensional shock tubes problems for relativistic hydrodynamics and magnetohydrodynamics, as well as two-dimensional flows like the relativistic double Mach reflection problem, the interaction of a shock wave with a bubble, the relativistic Orszag-Tang vortex, the cylindrical blast wave problem, the rotor problem, the Kelvin-Helmholtz instability, and an astrophysical slab jet. XTROEM-FV represents a new attempt to simulate astrophysical flow phenomena with very high order numerical methods.
3-D Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.
3-D Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.
Lattice Boltzmann model for simulation of magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William
1991-01-01
A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.
Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Loading relativistic Maxwell distributions in particle simulations
Zenitani, Seiji
2015-04-15
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
Loading relativistic Maxwell distributions in particle simulations
NASA Astrophysics Data System (ADS)
Zenitani, Seiji
2015-04-01
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50 % for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah; /Mullard Space Sci. Lab.
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
Relativistic positioning systems: Numerical simulations
NASA Astrophysics Data System (ADS)
Puchades Colmenero, Neus
The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space
NASA Astrophysics Data System (ADS)
Hilburn, Guy Louis
Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.
NASA Astrophysics Data System (ADS)
Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N.
2015-03-01
The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.
Approximate Harten-Lax-van Leer Riemann solvers for relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mignone, Andrea; Bodo, G.; Ugliano, M.
2012-11-01
We review a particular class of approximate Riemann solvers in the context of the equations of ideal relativistic magnetohydrodynamics. Commonly prefixed as Harten-Lax-van Leer (HLL), this family of solvers approaches the solution of the Riemann problem by providing suitable guesses to the outermots characteristic speeds, without any prior knowledge of the solution. By requiring consistency with the integral form of the conservation law, a simplified set of jump conditions with a reduced number of characteristic waves may be obtained. The degree of approximation crucially depends on the wave pattern used in prepresnting the Riemann fan arising from the initial discontinuity breakup. In the original HLL scheme, the solution is approximated by collapsing the full characteristic structure into a single average state enclosed by two outermost fast mangnetosonic speeds. On the other hand, HLLC and HLLD improves the accuracy of the solution by restoring the tangential and Alfvén modes therefore leading to a representation of the Riemann fan in terms of 3 and 5 waves, respectively.
Magnetic cycles in global magnetohydrodynamical simulations of solar convection
NASA Astrophysics Data System (ADS)
Charbonneau, P.
2011-12-01
In this talk I will review some recent advances in our understanding of the solar magnetic cycle through global magnetohydrodynamical simulations of thermally-driven convection in a thick, stratified spherical shell of electrically conducting fluid. I will focus on three related issues: (1) the nature of the turbulent dynamo mechanism; (2) the nature of the mechanism(s) controlling the cycle amplitude; and (3) epochs of strongly suppressed cycle amplitudes, and the existence of possible precursor to such events to be found in the patterns of magnetically-driven torsional oscillations and meridional flow variations arising in the simulations.
NASA Astrophysics Data System (ADS)
Del Zanna, L.; Zanotti, O.; Bucciantini, N.; Londrillo, P.
2007-10-01
Aims:We present a new numerical code, ECHO, based on a Eulerian conservative high-order scheme for time dependent three-dimensional general relativistic magnetohydrodynamics (GRMHD) and magnetodynamics (GRMD). ECHO is aimed at providing a shock-capturing conservative method able to work at an arbitrary level of formal accuracy (for smooth flows), where the other existing GRMHD and GRMD schemes yield an overall second order at most. Moreover, our goal is to present a general framework based on the 3+1 Eulerian formalism, allowing for different sets of equations and different algorithms and working in a generic space-time metric, so that ECHO may be easily coupled to any solver for Einstein's equations. Methods: Our finite-difference conservative scheme previously developed for special relativistic hydrodynamics and MHD is extended here to the general relativistic case. Various high-order reconstruction methods are implemented and a two-wave approximate Riemann solver is used. The induction equation is treated by adopting the upwind constrained transport (UCT) procedures, appropriate to preserving the divergence-free condition of the magnetic field in shock-capturing methods. The limiting case of magnetodynamics (also known as force-free degenerate electrodynamics) is implemented by simply replacing the fluid velocity with the electromagnetic drift velocity and by neglecting the contribution of matter to the stress tensor. Results: ECHO is particularly accurate, efficient, versatile, and robust. It has been tested against several astrophysical applications, like magnetized accretion onto black holes and constant angular momentum thick disks threaded by toroidal fields. A novel test of the propagation of large-amplitude, circularly polarized Alfvén waves is proposed, and this allows us to prove the spatial and temporal high-order properties of ECHO very accurately. In particular, we show that reconstruction based on a monotonicity-preserving (MP) filter applied to a
Magnetohydrodynamic simulations of hot jupiter upper atmospheres
Trammell, George B.; Li, Zhi-Yun; Arras, Phil E-mail: zl4h@virginia.edu
2014-06-20
Two-dimensional simulations of hot Jupiter upper atmospheres including the planet's magnetic field are presented. The goal is to explore magnetic effects on the layer of the atmosphere that is ionized and heated by stellar EUV radiation, and the imprint of these effects on the Lyα transmission spectrum. The simulations are axisymmetric, isothermal, and include both rotation and azimuth-averaged stellar tides. Mass density is converted to atomic hydrogen density through the assumption of ionization equilibrium. The three-zone structure—polar dead zone (DZ), mid-latitude wind zone (WZ), and equatorial DZ—found in previous analytic calculations is confirmed. For a magnetic field comparable to that of Jupiter, the equatorial DZ, which is confined by the magnetic field and corotates with the planet, contributes at least half of the transit signal. For even stronger fields, the gas escaping in the mid-latitude WZ is found to have a smaller contribution to the transit depth than the equatorial DZ. Transmission spectra computed from the simulations are compared to Hubble Space Telescope Space Telescope Imaging Spectrograph and Advanced Camera for Surveys data for HD 209458b and HD 189733b, and the range of model parameters consistent with the data is found. The central result of this paper is that the transit depth increases strongly with magnetic field strength when the hydrogen ionization layer is magnetically dominated, for dipole magnetic field B {sub 0} ≳ 10 G. Hence transit depth is sensitive to magnetic field strength, in addition to standard quantities such as the ratio of thermal to gravitational binding energies. Another effect of the magnetic field is that the planet loses angular momentum orders of magnitude faster than in the non-magnetic case, because the magnetic field greatly increases the lever arm for wind braking of the planet's rotation. Spin-down timescales for magnetized models of HD 209458b that agree with the observed transit depth can be as
MAGNETOHYDRODYNAMIC SIMULATIONS OF INTERPLANETARY CORONAL MASS EJECTIONS
Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Török, Tibor; Riley, Pete; Mikić, Zoran E-mail: cdowns@predsci.com E-mail: tibor@predsci.com E-mail: mikic@predsci.com
2013-11-01
We describe a new MHD model for the propagation of interplanetary coronal mass ejections (ICMEs) in the solar wind. Accurately following the propagation of ICMEs is important for determining space weather conditions. Our model solves the MHD equations in spherical coordinates from a lower boundary above the critical point to Earth and beyond. On this spherical surface, we prescribe the magnetic field, velocity, density, and temperature calculated typically directly from a coronal MHD model as time-dependent boundary conditions. However, any model that can provide such quantities either in the inertial or rotating frame of the Sun is suitable. We present two validations of the technique employed in our new model and a more realistic simulation of the propagation of an ICME from the Sun to Earth.
High Resolution Simulations of Relativistic Hydrodynamic and MHD Turbulence
NASA Astrophysics Data System (ADS)
Zrake, Jonathan; MacFadyen, A.
2013-01-01
We present a program of simulations designed to investigate the basic properties of relativistic hydrodynamic and magnetohydrodynamic (MHD) turbulence. We employ a well-tested 5th-order accurate numerical scheme at resolutions of up to 2048^3 zones for hydrodynamic turbulence, and a minimally diffusive 2nd-order scheme at resolutions of up to 1024^3 in the case of relativistic MHD. For the hydrodynamic case, we simulate a relativistically hot gas in a cubic periodic domain continuously driven at large scales with Lorentz factor of about 3. We find that relativistic turbulent velocity fluctuations with Γ β > 1 persist from the driving scale down to scales an order of magnitude smaller, demonstrating the existence of a sustained relativistic turbulent cascade. The power spectrum of the fluid 4-velocity is broadly Kolmogorov-like, roughly obeying a power law with 5/3 index between scales 1/10 and 1/100 of the domain. Departures from 5/3 scaling are larger for the power spectrum of 3-velocity. We find that throughout the inertial interval, 25% of power is in dilatational modes, which obey strict power law scaling between 1/2 and 1/100 of the domain with an index of 1.88. Our program also explores turbulent amplification of magnetic fields in the conditions of merging neutron stars, using a realistic equation of state for dense nuclear matter (ρ ˜ 10^13 g/cm^3). We find that very robustly, seed fields are amplified to magnetar strength (≥ 4 * 10^16 Gauss) within ˜1 micro-second for fluid volumes near the size of the NS crust thickness <10 meters. We present power spectra of the kinetic and magnetic energy taken long into the fully stationary evolution of the highest resolution models, finding the magnetic energy to be in super-equipartition (4 times larger) with the kinetic energy through the inertial range. We believe that current global simulations of merging NS binaries are insufficiently resolved for studying field amplification via turbulent processes
GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets
NASA Technical Reports Server (NTRS)
Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi
2007-01-01
A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.
MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283
Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu
2013-07-10
Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.
FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.
2012-12-01
We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber.
NASA Astrophysics Data System (ADS)
Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro
1999-09-01
Relativistic jets are observed in both active galactic nuclei (AGNs) and ``microquasars'' in our Galaxy. It is believed that these relativistic jets are ejected from the vicinity of black holes. To investigate the formation mechanism of these jets, we have developed a new general relativistic magnetohydrodynamic (GRMHD) code. We report on the basic methods and test calculations to check whether the code reproduces some analytical solutions, such as a standing shock and a Keplerian disk with a steady state infalling corona or with a corona in hydrostatic equilibrium. We then apply the code to the formation of relativistic MHD jets, investigating the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a nonrotating corona (either in a steady state infall or in hydrostatic equilibrium) around a nonrotating black hole. The numerical results show the following: as time goes on, the disk loses angular momentum as a result of magnetic braking and falls into the black hole. The infalling motion of the disk, which is faster than in the nonrelativistic case because of general relativistic effects below 3rS (rS is the Schwarzschild radius), is strongly decelerated around r=2rS by centrifugal force to form a shock inside the disk. The magnetic field is tightly twisted by the differential rotation, and plasma in the shocked region of the disk is accelerated by the JXB force to form bipolar relativistic jets. In addition, and interior to, this magnetically driven jet, we also found a gas-pressure-driven jet ejected from the shocked region by the gas-pressure force. This two-layered jet structure is formed not only in the hydrostatic corona case but also in the steady state falling corona case.
COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS
Xu Hao; Li Hui; Collins, David C.; Govoni, Federica; Murgia, Matteo; Norman, Michael L.; Cen Renyue; Feretti, Luigina; Giovannini, Gabriele E-mail: hli@lanl.gov E-mail: mlnorman@ucsd.edu E-mail: matteo@oa-cagliari.inaf.it E-mail: lferetti@ira.inaf.it
2012-11-01
Radio observations of galaxy clusters show that there are {mu}G magnetic fields permeating the intracluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic Very Large Array observations of simulated galaxy clusters to radio observations of Faraday rotation measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement magnetohydrodynamic simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al., we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both |RM| and the dispersion of RM ({sigma}{sub RM}), are consistent at a first order with the radial distribution from observations. The correlations between the {sigma}{sub RM} and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly overdense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster-wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence match observations of magnetic fields in galaxy clusters.
RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: PROTOSTELLAR CORE FORMATION
Tomida, Kengo; Tomisaka, Kohji; Matsumoto, Tomoaki; Hori, Yasunori; Saigo, Kazuya; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: tomisaka@th.nao.ac.jp E-mail: saigo.kazuya@nao.ac.jp E-mail: okuzumi@nagoya-u.jp
2013-01-20
We report the first three-dimensional radiation magnetohydrodynamic (RMHD) simulations of protostellar collapse with and without Ohmic dissipation. We take into account many physical processes required to study star formation processes, including a realistic equation of state. We follow the evolution from molecular cloud cores until protostellar cores are formed with sufficiently high resolutions without introducing a sink particle. The physical processes involved in the simulations and adopted numerical methods are described in detail. We can calculate only about one year after the formation of the protostellar cores with our direct three-dimensional RMHD simulations because of the extremely short timescale in the deep interior of the formed protostellar cores, but successfully describe the early phase of star formation processes. The thermal evolution and the structure of the first and second (protostellar) cores are consistent with previous one-dimensional simulations using full radiation transfer, but differ considerably from preceding multi-dimensional studies with the barotropic approximation. The protostellar cores evolve virtually spherically symmetric in the ideal MHD models because of efficient angular momentum transport by magnetic fields, but Ohmic dissipation enables the formation of the circumstellar disks in the vicinity of the protostellar cores as in previous MHD studies with the barotropic approximation. The formed disks are still small (less than 0.35 AU) because we simulate only the earliest evolution. We also confirm that two different types of outflows are naturally launched by magnetic fields from the first cores and protostellar cores in the resistive MHD models.
NASA Astrophysics Data System (ADS)
Baraka, S. M.; Ben-Jaffel, L. B.
2014-12-01
We use particle-in-cell PIC 3D Electromagnetic, relativistic global code to address large-scale problems in magnetosphere electrodynamics. Terrestrial bow shock is simulated as an example. 3D Magnetohydrodynamics model ,MHD GUMICS in CCMC project, have been used in parallel with PIC under same scaled Solar wind (SW) and IMF conditions. We report new results from the coupling between the two models. Further investigations are required for confirmations of these results. In both codes the Earth's bow shock position is found at ~14.8 RE along the Sun-Earth line, and ~29 RE on the dusk side which is consistent with past in situ observation. Both simulations reproduce the theoretical jump conditions at the shock. However, PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to MHD results. Reflected ions upstream of the bow shock may cause this sunward shift for density and temperature. Distribution of reflected ions and electrons are shown in the foreshock region, within the transition of the shock and in the downstream. The current version of PIC code can be run under modest computing facilities and resources. Additionally, existing MHD simulations should be useful to calibrate scaled properties of plasma resulting from PIC simulations for comparison with observations. Similarities and drawbacks of the results obtained by the two models are listed. The ultimate goal of using these different models in a complimentary manner rather than competitive is to better understand the macrostructure of the magnetosphere
Spectra of Strong Magnetohydrodynamic Turbulence from High-resolution Simulations
NASA Astrophysics Data System (ADS)
Beresnyak, Andrey
2014-04-01
Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 40963, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around -1.7, close to Kolmogorov's -5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The -1.5 slope for energy and the -2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.
SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS
Beresnyak, Andrey
2014-04-01
Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096{sup 3}, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.
Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2004-01-01
Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.
Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields
Suzuki, Takeru K.; Inutsuka, Shu-ichiro
2014-04-01
We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.
Solar Wind Collisional Age from a Global Magnetohydrodynamics Simulation
NASA Astrophysics Data System (ADS)
Chhiber, R.; Usmanov, AV; Matthaeus, WH; Goldstein, ML
2016-04-01
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
Hybrid magneto-hydrodynamic simulation of a driven FRC
Rahman, H. U. Wessel, F. J.; Binderbauer, M. W.; Qerushi, A.; Rostoker, N.; Conti, F.; Ney, P.
2014-03-15
We simulate a field-reversed configuration (FRC), produced by an “inductively driven” FRC experiment; comprised of a central-flux coil and exterior-limiter coil. To account for the plasma kinetic behavior, a standard 2-dimensional magneto-hydrodynamic code is modified to preserve the azimuthal, two-fluid behavior. Simulations are run for the FRC's full-time history, sufficient to include: acceleration, formation, current neutralization, compression, and decay. At start-up, a net ion current develops that modifies the applied-magnetic field forming closed-field lines and a region of null-magnetic field (i.e., a FRC). After closed-field lines form, ion-electron drag increases the electron current, canceling a portion of the ion current. The equilibrium is lost as the total current eventually dissipates. The time evolution and magnitudes of the computed current, ion-rotation velocity, and plasma temperature agree with the experiments, as do the rigid-rotor-like, radial-profiles for the density and axial-magnetic field [cf. Conti et al. Phys. Plasmas 21, 022511 (2014)].
MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b
Rogers, T. M.; Showman, A. P. E-mail: showman@lpl.arizona.edu
2014-02-10
We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ∼10{sup 17} W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.
NASA Astrophysics Data System (ADS)
Stawarz, Julia E.
Turbulence is a ubiquitous phenomenon that occurs throughout the universe, in both neutral fluids and plasmas. For collisionless plasmas, kinetic effects, which alter the nonlinear dynamics and result in small-scale dissipation, are still not well understood in the context of turbulence. This work uses direct numerical simulations (DNS) and observations of Earth's magnetosphere to study plasma turbulence. Long-time relaxation in magnetohydrodynamic (MHD) turbulence is examined using DNS with particular focus on the role of magnetic and cross helicity and symmetries of the initial configurations. When strong symmetries are absent or broken through perturbations, flows evolve towards states predicted by statistical mechanics with an energy minimization principle, which features two main regimes; one magnetic helicity dominated and one with quasi-equipartition of kinetic and magnetic energy. The role of the Hall effect, which contributes to the dynamics of collisionless plasmas, is also explored numerically. At scales below the ion inertial length, a transition to a magnetically dominated state, associated with advection becoming subdominant to dissipation, occurs. Real-space current, vorticity, and electric fields are examined. Strong current structures are associated with alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. Turbulence within bursty bulk flow braking events, thought to be associated with near-Earth magnetotail reconnection, are then studied using the THEMIS spacecraft. It is proposed that strong field-aligned currents associated with turbulent intermittency destabilize into double layers, providing a collisionless dissipation mechanism for the turbulence. Plasma waves may also radiate from the region, removing energy from the turbulence and potentially depositing it in the aurora. Finally, evidence for turbulence in the Kelvin-Helmholtz instability (KHI) on the
Forced turbulence in large-eddy simulation of compressible magnetohydrodynamic turbulence
Chernyshov, A. A.; Karelsky, K. V.; Petrosyan, A. S.
2010-10-15
We present the large-eddy simulation method for studying forced compressible magnetohydrodynamic turbulence. The proposed method is based on a solution of the filtered basic equations of magnetohydrodynamics by finite-difference methods and on a linear representation of the driving forces in the momentum conservation equation and the magnetic induction equation. These forces supply the production of kinetic and magnetic energies. The emphasis is placed upon the important, and not investigated, question about the ability of the large-eddy simulation approach to reproduce Kolmogorov and Iroshnikov-Kraichnan scale-invariant spectra in compressible magnetohydrodynamic flows.
Radiation magnetohydrodynamic simulations of protostellar collapse: Low-metallicity environments
Tomida, Kengo
2014-05-10
Among many physical processes involved in star formation, radiation transfer is one of the key processes because it dominantly controls the thermodynamics. Because metallicities control opacities, they are one of the important environmental parameters that affect star formation processes. In this work, I investigate protostellar collapse in solar-metallicity and low-metallicity (Z = 0.1 Z {sub ☉}) environments using three-dimensional radiation hydrodynamic and magnetohydrodynamic simulations. Because radiation cooling in high-density gas is more effective in low-metallicity environments, first cores are colder and have lower entropies. As a result, first cores are smaller, less massive, and have shorter lifetimes in low-metallicity clouds. Therefore, first cores would be less likely to be found in low-metallicity star forming clouds. This also implies that first cores tend to be more gravitationally unstable and susceptible to fragmentation. The evolution and structure of protostellar cores formed after the second collapse weakly depend on metallicities in the spherical and magnetized models, despite the large difference in the metallicities. Because this is due to the change of the heat capacity by dissociation and ionization of hydrogen, it is a general consequence of the second collapse as long as the effects of radiation cooling are not very large during the second collapse. On the other hand, the effects of different metallicities are more significant in the rotating models without magnetic fields, because they evolve slower than other models and therefore are more affected by radiation cooling.
Magnetohydrodynamic and hybrid simulations of broadband fluctuations near interplanetary shocks
Agim, Y.Z.; Vinas, A.F.; Goldstein, M.L.
1995-09-01
We present results of a theoretical study of evolution of a spectrum of finite amplitude right-hand elliptically polarized magnetohydrodynamic (MHD) waves. The analysis includes use of one-and-a-half-dimensional solutions of the equations that describe compressible MHD together with one-and-a-half-dimensional hybrid simulation of the phenomenon. The motivation of the study is to understand the origin and properties of finite amplitude waves often observed in the vicinity of collisionless shocks in the heliosphere. The solutions of the MHD equations are compared with both the results of the hybrid simulations and observations previously reported by Vinas et al. in the vicinity of a quasi-parallel interplanetary shock. The initial conditions of the MHD solutions were constructed to model the observed spectrum of magnetic and velocity fluctuations; plasma parameters were also chosen to replicate the observed parameters. For the typical parameters of {beta} = 0.5, {sigma}B/B{sub 0} = 0.25 and a spectrum of parallel propagating, circularly polarized dispersive waves, initially the density and magnetic energy density correlations grow due to the (nonlinear) ponderomotive effect. The spectral features below the ion cyclotron frequency are established quickly on the Alfvenic timescale but then persist and match closely the observed fluctuations. The parametric decay instabilities that subsequently appear further enhance the density fluctuations and produce a high-frequency magnetic power spectrum consistent with the spacecraft observation. The MHD and hybrid simulations extend the previous picture of wave generation by a beam-driven ion cyclotron instability to the fully nonlinear stage. 64 refs., 24 figs.
Time-dependent magnetohydrodynamic simulations of the inner heliosphere
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.
2016-04-01
This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process
NASA Astrophysics Data System (ADS)
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS
Dexter, Jason; Agol, Eric; Fragile, P. Chris; McKinney, Jonathan C.
2010-07-10
Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three-dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles {<=}20{sup 0} are ruled out to 3{sigma}. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i=50{sup o+35o}{sub -15}{sup o}, {xi}=-23{sup o+97o}{sub -22}{sup o}, T{sub e} = (5.4 {+-} 3.0) x 10{sup 10} K, and M-dot =5{sup +15}{sub -2}x10{sup -9} M{sub sun} yr{sup -1}, respectively, with 90% confidence. The black hole shadow is unobscured in all best-fit models, and may be detected by observations on baselines between Chile and California, Arizona, or Mexico at 1.3 mm or .87 mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3 mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has {nu}/{nu} {sub c} {approx} 1-20, where {nu} {sub c} is the critical frequency for thermal synchrotron emission.
The Submillimeter Bump in Sgr A* from Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Dexter, Jason; Agol, Eric; Fragile, P. Chris; McKinney, Jonathan C.
2010-07-01
Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three-dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles <=20° are ruled out to 3σ. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i={50°}^{+35°}_{-15°}, ξ ={-23°}^{+97°}_{-22°}, Te = (5.4 ± 3.0) × 1010 K, and \\dot{M}=5^{+15}_{-2}× 10^{-9} M_⊙ yr^{-1}, respectively, with 90% confidence. The black hole shadow is unobscured in all best-fit models, and may be detected by observations on baselines between Chile and California, Arizona, or Mexico at 1.3 mm or .87 mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3 mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has ν/ν c ~ 1-20, where ν c is the critical frequency for thermal synchrotron emission.
NASA Astrophysics Data System (ADS)
Ohsuga, Ken; Takahashi, Hiroyuki R.
2016-02-01
We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas-radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.
Numerical relativistic hydrodynamic simulations of neutron stars
NASA Astrophysics Data System (ADS)
Haywood, Joe R.
Developments in numerical relativistic hydrodynamics over the past thirty years, along with the advent of high speed computers, have made problems needing general relativity and relativistic hydrodynamics tractable. One such problem is the relativistic evolution of neutron stars, either in a head on collision or in binary orbit. Also of current interest is the detection of gravitational radiation from binary neutron stars, black-hole neutron star binaries, binary black holes, etc. Such systems expected to emit gravitational radiation with amplitude large enough to be detected on Earth by such groups as LIGO and VIRGO. Unfortunately, the expected signal strength is below the current noise level. However, signal processing techniques have been developed which should eventually find a signal, if a good theoretical template can be found. In the cases above it is not possible to obtain an analytic solution to the Einstein equations and a numerical approximation is therefore most necessary. In this thesis the Einstein equations are written using the formalism of Arnowitt, Desser and Misner and a conformally flat metric is assumed. Numerical simulations of colliding neutron stars, having either a realistic or Gamma = 2 polytropic equation of state (EOS), are presented which confirm the rise in central density seen by [51, 89] for the softer EOS. For the binary calculation, the results of Wilson et al. [89] are confirmed, which show that the neutron stars can collapse to black holes before colliding when the EOS is realistic and we also confirm results of Miller [56] and others that there is essentially no compression, the central density does not increase, when the stiffer equation of state is used. Finally, a template for the gravitational radiation emitted from the binary is calculated and we show that the frequency of the emitted gravitational waves changes more slowly for the [89] EOS, which may result in a stronger signal in the 50-100 Hz band of LIGO.
3D Hydrodynamic Simulations of Relativistic Jets
NASA Astrophysics Data System (ADS)
Hughes, P. A.; Miller, M. A.; Duncan, G. C.; Swift, C. M.
1998-12-01
We present the results of validation runs and the first extragalactic jet simulations performed with a 3D relativistic numerical hydrodynamic code employing a solver of the RHLLE type and using adaptive mesh refinement (AMR; Duncan & Hughes, 1994, Ap. J., 436, L119). Test problems include the shock tube, blast wave and spherical shock reflection (implosion). Trials with the code show that as a consequence of AMR it is viable to perform exploratory runs on workstation class machines (with no more than 128Mb of memory) prior to production runs. In the former case we achieve a resolution not much less than that normally regarded as the minimum needed to capture the essential physics of a problem, which means that such runs can provide valuable guidance allowing the optimum use of supercomputer resources. We present initial results from a program to explore the 3D stability properties of flows previously studied using a 2D axisymmetric code, and our first attempt to explore the structure and morphology of a relativistic jet encountering an ambient density gradient that mimics an ambient inhomogeneity or cloud.
Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.
2008-01-01
Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.
Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index
NASA Astrophysics Data System (ADS)
Mignone, A.; McKinney, Jonathan C.
2007-07-01
The role of the equation of state (EoS) for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant Γ-law EoS, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic EoS that better approximates the single-specie relativistic gas. The paper focuses on three different topics. First, the influence of a more realistic EoS on the propagation of fast magnetosonic shocks is investigated. This calls into question the validity of the constant Γ-law EoS in problems where the temperature of the gas substantially changes across hydromagnetic waves. Secondly, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general EoS and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of astrophysical relevance (including magnetized accretion flows around Kerr black holes) are compared using different equations of state. Our main conclusion is that the choice of a realistic EoS can considerably bear upon the solution when transitions from cold to hot gas (or vice versa) are present. Under these circumstances, a polytropic EoS can significantly endanger the solution.
Nakamura, Masanori
2014-04-20
We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the Hubble Space Telescope during 1994-1998. The model concept consists of ejection of a single relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the optical observations of HST-1 with the same model we used previously to describe similar features in radio very long baseline interferometry observations in 2005-2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge of the HST-1 complex as observed from radio to optical wavelengths, with forward/reverse fast-mode MHD shocks then responsible for observed moving features. Moreover, we identify such intrinsic properties as the shock compression ratio, degree of magnetization, and magnetic obliquity and show that they are suitable to mediate diffusive shock acceleration of relativistic particles via the first-order Fermi process. We suggest that relativistic MHD shocks in Poynting-flux-dominated helical jets may play a role in explaining observed emission and proper motions in many active galactic nuclei.
Simulations of Magnetohydrodynamic Waves Driven by Photospheric Motions
NASA Astrophysics Data System (ADS)
Mumford, Stuart
2016-04-01
This thesis investigates the properties of various modelled photospheric motions as generation mechanisms for magnetohydrodynamic (MHD) waves in the low solar atmosphere. The solar atmosphere is heated to million-degree temperatures, yet there is no fully understood heating mechanism which can provide the ≈ 300 W/m^2) required to keep the quiet corona at its observed temperatures. MHD waves are one mechanism by which this energy could be provided to the upper solar atmosphere, however, these waves need to be excited. The excitation of these waves, in or below the photosphere is a complex interaction between the plasma and the magnetic field embedded within it. This thesis studies a model of a small-scale magnetic flux tube based upon a magnetic bright point (MBP). These features are very common in the photosphere and have been observed to be affected by the plasma motions. The modelled flux tube has a foot point magnetic field strength of 120 mT and a FWHM of 90 km, and is embedded in a realistic, stratified solar atmosphere based upon the VALIIIc model. To better understand the excitation of MHD waves in this type of magnetic structures, a selection of velocity profiles are implemented to excite waves. Initially a study of five different driving profiles was performed. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers which mimic observed torsional motions in the solar photosphere, along with vertical and horizontal drivers to mimic different motions caused by convection in the photosphere. The results are then analysed using a novel method for extracting the parallel, perpendicular and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated, to enable
X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK HOLES
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C. E-mail: jhk@pha.jhu.edu
2013-06-01
We present the results of a new global radiation transport code coupled to a general relativistic magnetohydrodynamic simulation of an accreting, non-rotating black hole. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is T{sub e} {approx} 10 keV in a boundary layer near the disk and rises smoothly to T{sub e} {approx}> 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to Almost-Equal-To 6M as the accretion rate decreases, we find that the shape of the Fe K{alpha} line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.
2008-01-01
We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.
Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.
2005-01-01
This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.
NASA Astrophysics Data System (ADS)
Kulkarni, A. K.; Romanova, M. M.
2005-11-01
We model the variability profiles of millisecond-period X-ray pulsars. We performed three-dimensional magnetohydrodynamic simulations of disk accretion to millisecond-period neutron stars with a misaligned magnetic dipole moment, using the pseudo-Newtonian Paczyński-Wiita potential to model general relativistic effects. We found that the shapes of the resulting funnel streams of accreting matter and the hot spots on the surface of the star are quite similar to those for more slowly rotating stars obtained from earlier simulations using the Newtonian potential. The funnel streams and hot spots rotate approximately with the same angular velocity as the star. The spots are bow-shaped (bar-shaped) for small (large) misalignment angles. We found that the matter falling on the star has a higher Mach number when we use the Paczyński-Wiita potential than in the Newtonian case. Having obtained the surface distribution of the emitted flux, we calculated the variability curves of the star, taking into account general relativistic, Doppler, and light-travel time effects. We found that general relativistic effects decrease the pulse fraction (flatten the light curve), while Doppler and light-travel time effects increase it and distort the light curve. We also found that the light curves from our hot spots are reproduced reasonably well by spots with a Gaussian flux distribution centered at the magnetic poles. We also calculated the observed image of the star in a few cases and saw that for certain orientations, both the antipodal hot spots are simultaneously visible, as noted by earlier authors.
Nonlinear magnetohydrodynamic simulation of Tore Supra hollow current profile discharges
NASA Astrophysics Data System (ADS)
Maget, P.; Huysmans, G. T. A.; Garbet, X.; Ottaviani, M.; Lütjens, H.; Luciani, J.-F.
2007-05-01
Magnetohydrodynamic (MHD) activity often undermines the realization of fully noninductive plasma discharges in the Tore Supra tokamak [J. Jacquinot, Nucl. Fusion 45, S118 (2005)], by producing large degradation of electron energy confinement in the plasma core and the bifurcation to a regime with permanent MHD activity. The nonlinear evolution of MHD modes in these hollow current density profile discharges is studied with the full-scale three-dimensional MHD code XTOR [K. Lerbinger and J.-F. Luciani, J. Comput. Phys. 97, 444 (1991)] and compared with experimental features. Large confinement degradation is predicted when q(0) is close to 2. This derives either from the full reconnection of an unstable double-tearing mode, or from the coupling between a single tearing mode and adjacent stable modes in a region with reduced magnetic shear.
Simulation of operation modes of a centrifugal conductive magnetohydrodynamic pump
NASA Astrophysics Data System (ADS)
Katsnelson, S. S.; Pozdnyakov, G. A.
2013-09-01
A mathematical model of a centrifugal conductive magnetohydrodynamic (MHD) pump that calculates the distributions of velocity, current density, and pressure along the channel is developed. The viscous forces in the original system of MHD equations are taken into account on the basis of the known square law of the drag for a turbulent flow in a pipe, generalized for the case of plane flows in a channel. Dependences of the drag coefficient on the main governing parameters (metal flow rate, current intensity, and intensity of magnetic induction), which provide the agreement of the calculated and experimental data on the pressure at the pump outlet for different operation modes, are obtained. It is shown that these dependences have a universal character and the proposed model can be used to design pumps of this type and to manage their operation in production industry.
NASA Astrophysics Data System (ADS)
Mininni, P.; Dmitruk, P.; Odier, P.; Pinton, J.-F.; Plihon, N.; Verhille, G.; Volk, R.; Bourgoin, M.
2014-05-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.
RADIATION MAGNETOHYDRODYNAMICS SIMULATION OF PROTO-STELLAR COLLAPSE: TWO-COMPONENT MOLECULAR OUTFLOW
Tomida, Kengo; Tomisaka, Kohji; Ohsuga, Ken; Matsumoto, Tomoaki; Machida, Masahiro N.; Saigo, Kazuya E-mail: tomisaka@th.nao.ac.jp E-mail: masahiro.machida@nao.ac.jp E-mail: matsu@hosei.ac.jp
2010-05-01
We perform a three-dimensional nested-grid radiation magnetohydrodynamics (RMHD) simulation with self-gravity to study the early phase of the low-mass star formation process from a rotating molecular cloud core to a first adiabatic core just before the second collapse begins. Radiation transfer is implemented with the flux-limited diffusion approximation, operator-splitting, and implicit time integrator. In the RMHD simulation, the outer region of the first core attains a higher entropy and its size is larger than that in the magnetohydrodynamics simulations with the barotropic approximation. Bipolar molecular outflow consisting of two components is driven by magnetic Lorentz force via different mechanisms, and shock heating by the outflow is observed. Using the RMHD simulation we can predict and interpret the observed properties of star-forming clouds, first cores, and outflows with millimeter/submillimeter radio interferometers, especially the Atacama Large Millimeter/submillimeter Array.
Adaptive Mesh Refinement Simulations of Relativistic Binaries
NASA Astrophysics Data System (ADS)
Motl, Patrick M.; Anderson, M.; Lehner, L.; Olabarrieta, I.; Tohline, J. E.; Liebling, S. L.; Rahman, T.; Hirschman, E.; Neilsen, D.
2006-09-01
We present recent results from our efforts to evolve relativistic binaries composed of compact objects. We simultaneously solve the general relativistic hydrodynamics equations to evolve the material components of the binary and Einstein's equations to evolve the space-time. These two codes are coupled through an adaptive mesh refinement driver (had). One of the ultimate goals of this project is to address the merger of a neutron star and black hole and assess the possible observational signature of such systems as gamma ray bursts. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Kim, Jinho
2016-05-01
The relativistic magnetohydrodynamics (RMHD) set of equations has recently seen an increased use in astrophysical computations. Even so, RMHD codes remain fragile. The reconstruction can sometimes yield superluminal velocities in certain parts of the mesh. The current generation of RMHD codes does not have any particularly good strategy for avoiding such an unphysical situation. In this paper we present a reconstruction strategy that overcomes this problem by making a single conservative to primitive transformation per cell followed by higher order WENO reconstruction on a carefully chosen set of primitives that guarantee subluminal reconstruction of the flow variables. For temporal evolution via a predictor step we also present second, third and fourth order accurate ADER methods that keep the velocity subluminal during the predictor step. The methods presented here are very general and should apply to other PDE systems where physical realizability is most easily asserted in the primitive variables. The RMHD system also requires the magnetic field to be evolved in a divergence-free fashion. In the treatment of classical numerical MHD the analogous issue has seen much recent progress with the advent of multidimensional Riemann solvers. By developing multidimensional Riemann solvers for RMHD, we show that similar advances extend to RMHD. As a result, the face-centered magnetic fields can be evolved much more accurately using the edge-centered electric fields in the corrector step. Those edge-centered electric fields come from a multidimensional Riemann solver for RMHD which we present in this paper. The overall update results in a one-step, fully conservative scheme that is suited for AMR. In this paper we also develop several new test problems for RMHD. We show that RMHD vortices can be designed that propagate on the computational mesh as self-preserving structures. These RMHD vortex test problems provide a means to do truly multidimensional accuracy testing for
NASA Astrophysics Data System (ADS)
Liu, Yuk Tung; Etienne, Zachariah; Shapiro, Stuart
2011-04-01
The Illinois relativity group has written and tested a new GRMHD code, which is compatible with adaptive-mesh refinement (AMR) provided by the widely-used Cactus/Carpet infrastructure. Our code solves the Einstein-Maxwell-MHD system of coupled equations in full 3+1 dimensions, evolving the metric via the BSSN formalism and the MHD and magnetic induction equations via a conservative, high-resolution shock-capturing scheme. The induction equations are recast as an evolution equation for the magnetic vector potential. The divergenceless constraint div(B) = 0 is enforced by the curl of the vector potential. In simulations with uniform grid spacing, our MHD scheme is numerically equivalent to a commonly used, staggered-mesh constrained-transport scheme. We will present numerical method and code validation tests for both Minkowski and curved spacetimes. The tests include magnetized shocks, nonlinear Alfven waves, cylindrical explosions, cylindrical rotating disks, magnetized Bondi tests, and the collapse of a magnetized rotating star. Some of the more stringent tests involve black holes. We find good agreement between analytic and numerical solutions in these tests, and achieve convergence at the expected order.
SPECTRAL SCALING LAWS IN MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS AND IN THE SOLAR WIND
Boldyrev, Stanislav; Carlos Perez, Jean; Borovsky, Joseph E.; Podesta, John J.
2011-11-15
The question is addressed as to what extent incompressible magnetohydrodynamics can describe random magnetic and velocity fluctuations measured in the solar wind. It is demonstrated that distributions of spectral indices for the velocity, magnetic field, and total energy obtained from high-resolution numerical simulations of magnetohydrodynamic turbulence are qualitatively and quantitatively similar to solar wind observations at 1 AU. Both simulations and observations show that in the inertial range the magnetic field spectrum E{sub b} is steeper than the velocity spectrum E{sub v} with E{sub b} {approx}> E{sub v} and that the magnitude of the residual energy E{sub R} = E{sub v} - E{sub b} decreases nearly following a k{sup -2}{sub perpendicular} scaling.
Magnetohydrodynamic Simulation of a Streamer Beside a Realistic Coronal Hole
NASA Technical Reports Server (NTRS)
Suess, S. T.; Wu, S. T.; Wang, A. H.; Poletto, G.
1994-01-01
Existing models of coronal streamers establish their credibility and act as the initial state for transients. The models have produced satisfactory streamer simulations, but unsatisfactory coronal hole simulations. This is a consequence of the character of the models and the boundary conditions. The models all have higher densities in the magnetically open regions than occur in coronal holes (Noci, et al., 1993).
Quantum simulations of relativistic quantum physics in circuit QED
NASA Astrophysics Data System (ADS)
Pedernales, J. S.; Di Candia, R.; Ballester, D.; Solano, E.
2013-05-01
We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.
Demonstration for novel self-organization theory by three-dimensional magnetohydrodynamic simulation
NASA Astrophysics Data System (ADS)
Kondoh, Yoshiomi; Hosaka, Yasuo; Liang, Jia-Ling
1993-03-01
It is demonstrated by three-dimensional simulations for resistive magnetohydrodynamic (MHD) plasmas with both 'spatially nonuniform resistivity eta' and 'uniform eta' that the attractor of the dissipative structure in the resistive MHD plasmas is given by del x (eta)j) = (alpha/2)B which is derived from a self-organization theory based on the minimum dissipation rate profile. It is shown by the simulations that the attractor is reduced to del x B = (lambda)B in the special case with the 'uniform eta' and no pressure gradient.
EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE
Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav E-mail: cattaneo@flash.uchicago.edu E-mail: boldyrev@wisc.edu
2011-07-10
Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.
Magnetohydrodynamic MACH Code Used to Simulate Magnetoplasmadynamic Thrusters
NASA Technical Reports Server (NTRS)
Mikellides, Pavlos G.; LaPointe, Michael R.
2002-01-01
The On-Board Propulsion program at the NASA Glenn Research Center is utilizing a state of-the-art numerical simulation to model the performance of high-power electromagnetic plasma thrusters. Such thrusters are envisioned for use in lunar and Mars cargo transport, piloted interplanetary expeditions, and deep-space robotic exploration of the solar system. The experimental portion of this program is described in reference 1. This article describes the numerical modeling program used to guide the experimental research. The synergistic use of numerical simulations and experimental research has spurred the rapid advancement of high-power thruster technologies for a variety of bold new NASA missions. From its inception as a U.S. Department of Defense code in the mid-1980's, the Multiblock Arbitrary Coordinate Hydromagnetic (MACH) simulation tool has been used by the plasma physics community to model a diverse range of plasma problems--including plasma opening switches, inertial confinement fusion concepts, compact toroid formation and acceleration, z-pinch implosion physics, laser-target interactions, and a variety of plasma thrusters. The MACH2 code used at Glenn is a time-dependent, two-dimensional, axisymmetric, multimaterial code with a multiblock structure. MACH3, a more recent three-dimensional version of the code, is currently undergoing beta tests. The MACH computational mesh moves in an arbitrary Lagrangian-Eulerian (ALE) fashion that allows the simulation of diffusive-dominated and dispersive-dominated problems, and the mesh can be refined via a variety of adaptive schemes to capture regions of varying characteristic scale. The mass continuity and momentum equations model a compressible viscous fluid, and three energy equations are used to simulate nonthermal equilibrium between electrons, ions, and the radiation field. Magnetic fields are modeled by an induction equation that includes resistive diffusion, the Hall effect, and a thermal source for magnetic
3-D Relativistic MHD Simulations of Extragalactic Jets
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Koide, S.; Sakai, J.-I.; Frank, J.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1997-12-01
We present the numerical simulations of relativistic jets propagating initially oblique to the field lines of a magnetized ambient medium. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies with a 2-D slab model. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized---but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems
Christensen, J S; Hrousis, C A
2010-03-09
Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
NASA Astrophysics Data System (ADS)
Bromberg, Omer; Tchekhovskoy, Alexander
2016-02-01
Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.
NASA Astrophysics Data System (ADS)
Correa, Cynthia; Horton, Wendel
2012-10-01
Theory and simulations are developed to interpret laboratory electron magnetohydrodynamic reconnection experiments involving nonlinear whistlers by Stenzel et.al. [R.L. Stenzel, M.C. Griskey, J. M. Urrutia, and K.D. Strohmaier, Phys. Plasma 10, 2780 (2003)]. In that experiment, two current-carrying 30 cm antennas form a Helmholtz coil configuration and produce an elongated dipole field that opposes the uniform ambient field. The current is increased until a field-reversed-configuration with two 3D null points and a 2D null line has been established, and then the current is switched off. The EMHD dynamics are simulated with a 3D three-field nonlinear MHD code. The analytical model includes Poisson bracket nonlinearities that can give rise to vortices and couple energy to higher modes, as well as hyperviscosity to balance the energy exchange. Simulation field topology and dynamics are compared to the laboratory experiment as verification of the simulation code. The experimental setup and other variations are simulated and examined for occurrences of driven and undriven electron magnetohydrodynamic (EMHD) reconnection.
Fast magnetic reconnection in three-dimensional magnetohydrodynamics simulations
Pang Bijia; Pen, U.-L.; Vishniac, Ethan T.
2010-10-15
A constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box is presented. Reconnection is initiated by a strong, localized perturbation to the field lines. The solution is intrinsically three-dimensional and its gross properties do not depend on the details of the simulations. {approx}30% of the magnetic energy is released in an event which lasts about one Alfven time, but only after a delay during which the field lines evolve into a critical configuration. The physical picture of the process is presented. The reconnection regions are dynamical and mutually interacting. In the comoving frame of these regions, reconnection occurs through a x-like point, analogous to Petschek reconnection. The dynamics appear to be driven by global flows, not local processes.
The Magnetohydrodynamic Response of Liquid Oxygen: Experimentation and Simulation
NASA Astrophysics Data System (ADS)
Boulware, J. C.; Wassom, S.; Jensen, S.; Ban, H.
2010-04-01
Experimental and theoretical studies have been conducted to establish the basic understanding and predictive capability for the dynamics of a liquid oxygen (LOX) slug subjected to magnetic fields within a solenoid. The electrically-pulsed solenoids around a 1.9 mm ID quartz tube were capable of producing up to 1.1 T when immersed in liquid nitrogen. The slug dynamics were measured by pressure changes in a closed volume on both sides of the slug. A theoretical model was developed which balances the magnetic, viscous, and pressure forces into a single equation of motion. The model was applied to a one-dimensional discretized algorithm that solved the coupled multiphysics problem of the Navier-Stokes and Maxwell's equations. The simulation and experimental results established LOX as a good candidate in a magnetic fluid system without moving parts for cryogenic applications.
THE MAGNETOHYDRODYNAMIC RESPONSE OF LIQUID OXYGEN: EXPERIMENTATION AND SIMULATION
Boulware, J. C.; Ban, H.; Wassom, S.; Jensen, S.
2010-04-09
Experimental and theoretical studies have been conducted to establish the basic understanding and predictive capability for the dynamics of a liquid oxygen (LOX) slug subjected to magnetic fields within a solenoid. The electrically-pulsed solenoids around a 1.9 mm ID quartz tube were capable of producing up to 1.1 T when immersed in liquid nitrogen. The slug dynamics were measured by pressure changes in a closed volume on both sides of the slug. A theoretical model was developed which balances the magnetic, viscous, and pressure forces into a single equation of motion. The model was applied to a one-dimensional discretized algorithm that solved the coupled multiphysics problem of the Navier-Stokes and Maxwell's equations. The simulation and experimental results established LOX as a good candidate in a magnetic fluid system without moving parts for cryogenic applications.
Shi Changsheng; Li Xiangdong E-mail: lixd@nju.edu.c
2010-05-10
We suggest a possible explanation for the high frequency quasi-periodic oscillations (QPOs) in black hole (BH) low-mass X-ray binaries. By solving the perturbation general relativistic magnetohydrodynamic equations, we find two stable modes of the Alfven wave in the accretion disks with toroidal magnetic fields. We suggest that these two modes may lead to the double high frequency QPOs if they are produced in the transition region between the inner advection-dominated accretion flow and the outer thin disk. This model naturally accounts for the 3:2 relation for the upper and lower frequencies of the QPOs, and the relation between the BH mass and QPO frequency.
Ruszkowski, M.; Lee, D.; Parrish, I.; Oh, S. Peng E-mail: dongwook@flash.uchicago.edu E-mail: iparrish@astro.berkeley.edu
2011-10-20
The intracluster medium (ICM) has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling, and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially whenever the temperature gradient points in the direction opposite to gravitational acceleration. Using cosmological simulations of cluster formation we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearrangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and the Square Kilometer Array and future X-ray spectroscopic studies with the International X-ray Observatory. We demonstrate that radiative cooling boosts the amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative cases. This effect is caused by the compression of the gas and frozen-in magnetic field as it accumulates in the cluster center. At z = 0 the field is amplified by a factor of about 10{sup 6} compared to the uniform magnetic field that evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and thermal conduction exhibit stronger magnetic field amplification than purely radiative runs. In these cases, buoyant restoring forces depend on the temperature gradients rather than the steeper entropy gradients. Thus, the ICM is more easily mixed and the winding up of the frozen-in magnetic
NASA Astrophysics Data System (ADS)
Etienne, Zachariah; Liu, Y. T.; Shapiro, S.
2007-04-01
Understanding the role general relativistic magnetohydrodynamic (GRMHD) effects play in the evolution of nascent neutron stars is a problem at the forefront of theoretical astrophysics. To this end, we performed long-term (˜10^4 M) axisymmetric simulations of differentially rotating magnetized neutron stars in the slow-rotation, weak magnetic field limit using a dynamically updated perturbative metric evolution technique. Although the perturbative metric approach yields results comparable to those obtained via a nonperturbative (BSSN) metric evolution technique, simulations performed with the perturbative metric solver require about 1/4 the computational resources at a given resolution. This computational efficiency enabled us to observe and analyze the effects of magnetic braking and the magnetorotational instability (MRI) at very high resolution. Our GRMHD simulations demonstrate that (1) MRI is not observed unless the estimated fastest-growing mode wavelength is resolved by >˜ 10 gridpoints; (2) as resolution is improved, the MRI growth rate converges, but due to the small-scale nature of MRI-induced turbulence, the maximum growth amplitude increases, but does not exhibit convergence, even at the highest resolution; and (3) independent of resolution, magnetic braking drives the star toward uniform rotation as energy is sapped from differential rotation by winding magnetic fields.
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.; Li, Xujing
2015-06-01
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97-104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.
Zakharov, Leonid E.; Li, Xujing
2015-06-15
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.
Reduced-magnetohydrodynamic simulations of toroidally and poloidally localized edge localized modes
Hoelzl, M.; Guenter, S.; Mueller, W.-C.; Lackner, K.; Krebs, I.; Wenninger, R. P.; Huysmans, G. T. A.; Collaboration: ASDEX Upgrade Team
2012-08-15
We use the non-linear reduced-magnetohydrodynamic code JOREK to study edge localized modes (ELMs) in the geometry of the ASDEX Upgrade tokamak. Toroidal mode numbers, poloidal filament sizes, and radial propagation speeds of filaments into the scrape-off layer are in good agreement with observations for type-I ELMs in ASDEX Upgrade. The observed instabilities exhibit a toroidal and poloidal localization of perturbations which is compatible with the 'solitary magnetic perturbations' recently discovered in ASDEX Upgrade [R. Wenninger et al., 'Solitary magnetic perturbations at the ELM onset,' Nucl. Fusion (accepted)]. This localization can only be described in numerical simulations with high toroidal resolution.
Simulation of Relativistic Shocks and Associated Self-Consistent Radiation
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.
2010-01-01
Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs.
Hall effects and sub-grid-scale modeling in magnetohydrodynamic turbulence simulations
NASA Astrophysics Data System (ADS)
Miura, Hideaki; Araki, Keisuke; Hamba, Fujihiro
2016-07-01
Effects of the Hall term on short-wave components of magnetohydrodynamic turbulence and sub-grid-scale modeling of the effects are studied. Direct numerical simulations of homogeneous magnetohydrodynamic turbulence with and without the Hall term are carried out. The Hall term excites short-wave components in the magnetic field, demanding a high numerical resolution to resolve the scales smaller than the ion skin depth. A k 7 / 3-like scaling-law in the magnetic energy spectrum associated with the excitation of the short-wave components is clearly shown by the use of both an isotropic spectrum and a one-dimensional spectrum. It is also shown that the introduction of the Hall term can cause a structural transition in the vorticity field from tubes to sheets. In order to overcome a strong demand on high-resolution in space and time and to enable quicker computations, large eddy simulations with a Smagorinsky-type sub-grid-scale model are carried out. It is shown that our large eddy simulations successfully reproduce not only the energy spectrum but also tubular vortex structures, reducing the computational cost considerably.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D.; Seyler, Charles E.
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
Guazzotto, L.; Betti, R.
2011-09-15
Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.
Simulation of Relativistic Shocks and Associated Self-Consistent Radiation
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.
2010-01-01
Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection behind the shock. We calculate the radiation from deflected electrons in the turbulent magnetic fields. The properties of this radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.
NASA Astrophysics Data System (ADS)
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-06-01
We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.
NASA Technical Reports Server (NTRS)
Ogino, Tatsuki; Walker, Raymond I.; Ashour-Abdalla, Maha
1992-01-01
We have used a new high-resolution global magnetohydrodynamic simulation model to investigate the configuration of the magnetosphere when the interplanetary magnetic field (IMF) is northward. For northward IMF the magnetospheric configuration is dominated by magnetic reconnection at the tail lobe magnetopause tailward of the polar cusp. This results in a local thickening of the plasma sheet equatorward of the region of reconnection and the establishment of a convection system with two cells in each lobe. In the magnetosheath the plasma density and pressure decrease near the subsolar magnetopause, forming a depletion region. Along the flanks of the magnetosphere the magnetosheath flow is accelerated to values larger than the solar wind velocity. The magnetopause shape from the simulations is consistent with the empirically determined shape.
Onofri, M; Malara, F; Veltri, P
2010-11-19
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity. PMID:21231314
Hooper, E. B.; Sovinec, C. R.; Raman, R.; Ebrahimi, F.; Menard, J. E.
2013-09-15
The generation of helicity-injected startup plasmas in National Spherical Torus eXperiment (NSTX), including flux surface closure, is studied using resistive-magnetohydrodynamic simulations with plasma flows, currents, ohmic heating and anisotropic thermal conduction. An injection-voltage pulse shape is used that separates the injection and closure phases allowing elucidation of the physics. The formation of an X-point near the helicity-injection gap is triggered as the injector voltage drops to zero. Near the forming X-point, magnetic pressure due to toroidal field entrained in the E × B plasma flow from the helicity-injection gap drops, allowing resistive magnetic reconnection even though the total injected current is almost constant. Where appropriate, the simulations are compared with Transient Coaxial Helicity Injection experiments in the NSTX spherical tokamak, which have demonstrated the formation of a promising candidate for non-inductive startup plasmas [Raman et al., Phys. Rev. Lett. 90, 075005 (2003)].
On the relevance of magnetohydrodynamic pumping in solar coronal loop simulation experiments
NASA Astrophysics Data System (ADS)
Tenfelde, J.; Kempkes, P.; Mackel, F.; Ridder, S.; Stein, H.; Tacke, T.; Soltwisch, H.
2012-07-01
A magnetohydrodynamic pumping mechanism was proposed by Bellan [Phys. Plasmas 10, 1999 (2003)] to explain the formation of highly collimated plasma-filled magnetic flux tubes in certain solar coronal loop simulation experiments. In this paper, measurements on such an experiment are compared to the predictions of Bellan's pumping and collimation model. Significant discrepancies between theoretical implications and experimental observations have prompted more elaborate investigations by making use of pertinent modifications of the experimental device. On the basis of these studies, it is concluded that the proposed MHD pumping mechanism does not play a crucial role for the formation and temporal evolution of the arched plasma structures that are generated in the coronal loop simulation experiments under consideration.
Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations.
Gibbon, J D; Gupta, A; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2016-04-01
It is shown how suitably scaled, order-m moments, D_{m}^{±}, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P_{M}=1. These vorticity fields are defined by ω^{±}=curlz^{±}=ω±j, where z^{±} are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014)NONLE50951-771510.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q^{±} that characterize the inertial range power-law dependencies of the z^{±} energy spectra, E^{±}(k), are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case P_{M}≠1 and (b) the relation between D_{m}^{±} and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows. PMID:27176387
Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations
NASA Astrophysics Data System (ADS)
Gibbon, J. D.; Gupta, A.; Krstulovic, G.; Pandit, R.; Politano, H.; Ponty, Y.; Pouquet, A.; Sahoo, G.; Stawarz, J.
2016-04-01
It is shown how suitably scaled, order-m moments, Dm±, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number PM=1 . These vorticity fields are defined by ω±=curlz±=ω ±j , where z± are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014), 10.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q± that characterize the inertial range power-law dependencies of the z± energy spectra, E±(k ) , are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case PM≠1 and (b) the relation between Dm± and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.
Liu, Wei; Hsu, Scott; Li, Hui
2009-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. PMID:27013727
Sovinec, C.R.
1995-12-31
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S{sup -0.18} for the root-mean-square magnetic fluctuation level for 2.5x10{sup 3}{le}S{le}4x10{sup 4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a {open_quotes}sawtooth{close_quotes} shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Hotta, H.; Rempel, M.; Yokoyama, T.
2016-03-01
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲1012square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities—that is, large Reynolds numbers.
2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches
Hammer, J.H.; Eddleman, J.L.; Springer, P.T.
1995-11-06
Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.
Three-dimensional Simulations of Magnetohydrodynamic Waves in Magnetized Solar Atmosphere
NASA Astrophysics Data System (ADS)
Vigeesh, G.; Fedun, V.; Hasan, S. S.; Erdélyi, R.
2012-08-01
We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.
THREE-DIMENSIONAL SIMULATIONS OF MAGNETOHYDRODYNAMIC WAVES IN MAGNETIZED SOLAR ATMOSPHERE
Vigeesh, G.; Fedun, V.; Erdelyi, R.; Hasan, S. S.
2012-08-10
We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.
NASA Astrophysics Data System (ADS)
Murakami, Tomoyuki; Okuno, Yoshihiro
2011-05-01
We describe quasi-three-dimensional numerical calculations based on large eddy simulation model for magnetohydrodynamic (MHD) electrical power generators equipped with modified wall configurations. The wall profile of the MHD channel is finely tuned in four types of geometry, that is, a concavely divergent channel, a linearly divergent channel, a convexly divergent channel and a highly convexed channel. The plasma-fluid properties and energy conversion efficiency are examined in detail. Although the deterioration in the plasma-fluid behaviour is not completely overcome, the advantages of the convexly divergent channel are notable. The convexly divergent channel exhibits the highest energy conversion performance, which is followed by the highly convexed, linearly and concavely divergent channels in order. The effect of the channel geometry modification on the generator performance is clearly quantified using a convexity parameter. This paper is the second part of a duology.
NASA Technical Reports Server (NTRS)
Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha
1989-01-01
Dayside magnetic reconnection was studied by using a three-dimensional global magnetohydrodynamic simulation of the interaction between the solar wind and the magnetosphere. Two different mechanisms were found for the formation of magnetic flux tubes at the dayside magnetopause, which depend on the orientation of the interplanetary magnetic field (IMF). The dayside magnetic flux tubes occur only when the IMF has a southward component. A strongly twisted and localized magnetic flux tube similar to magnetic flux ropes appears at the subsolar magnetopause when the IMF has a large B(y) component. When the B(y) component is small, twin flux tubes appear at the dayside magnetopause. Both types of magnetic flux tube are consistent with several observational features of flux transfer events and are generated by antiparallel magnetic reconnection.
Magnetohydrodynamic Simulation-driven Kinematic Mean Field Model of the Solar Cycle
NASA Astrophysics Data System (ADS)
Simard, Corinne; Charbonneau, Paul; Bouchat, Amélie
2013-05-01
We construct a series of kinematic axisymmetric mean-field dynamo models operating in the αΩ, α2Ω and α2 regimes, all using the full α-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An α2Ω mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields that share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with α2 and αΩ mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating α2 solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.
MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE
Simard, Corinne; Charbonneau, Paul; Bouchat, Amelie E-mail: paulchar@astro.umontreal.ca
2013-05-01
We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields that share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.
SPICULE-LIKE STRUCTURES OBSERVED IN THREE-DIMENSIONAL REALISTIC MAGNETOHYDRODYNAMIC SIMULATIONS
Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats; De Pontieu, Bart E-mail: viggo.hansteen@astro.uio.no E-mail: bdp@lmsal.com
2009-08-20
We analyze features that resemble type I spicules in two different three-dimensional numerical simulations in which we include horizontal magnetic flux emergence in a computational domain spanning the upper layers of the convection zone to the lower corona. The two simulations differ mainly in the pre-existing ambient magnetic field strength and in the properties of the inserted flux tube. We use the Oslo Staggered Code to solve the full magnetohydrodynamic equations with nongray and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We find a multitude of features that show a spatiotemporal evolution that is similar to that observed in type I spicules, which are characterized by parabolic height versus time profiles, and are dominated by rapid upward motion at speeds of 10-30 km s{sup -1}, followed by downward motion at similar velocities. We measured the parameters of the parabolic profile of the spicules and find similar correlations between the parameters as those found in observations. The values for height (or length) and duration of the spicules found in the simulations are more limited in range than those in the observations. The spicules found in the simulation with higher pre-existing ambient field have shorter length and smaller velocities. From the simulations, it appears that these kinds of spicules can, in principle, be driven by a variety of mechanisms that include p-modes, collapsing granules, magnetic energy release in the photosphere and lower chromosphere, and convective buffeting of flux concentrations.
Discrete filters for large-eddy simulation of forced compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Chernyshov, A. A.; Petrosyan, A. S.
2016-06-01
We discuss results of the applicability of discrete filters for the large-eddy simulation (LES) method of forced compressible magnetohydrodynamic (MHD) turbulent flows with the scale-similarity model. New results are obtained for cross-helicity and residual energy. Cross-helicity and residual energy are important quantities in magnetohydrodynamic turbulence and have no hydrodynamic counterpart. The influences and effects of discrete filter shapes on the scale-similarity model are examined in physical space using finite-difference numerical schemes. We restrict ourselves to the Gaussian filter and the top-hat filter. Representations of this subgrid-scale model, which correspond to various 3- and 5-point approximations of both Gaussian and top-hat filters for different values of parameter ε (the ratio of the cut-off length-scale of the filter to the mesh size), are investigated. Discrete filters produce more discrepancies for the magnetic field. It is shown that the Gaussian filter is more sensitive to the parameter ɛ than the top-hat filter in compressible forced MHD turbulence. The 3-point filters at ε =2 and ε =3 give the least accurate results whereas the 5-point Gaussian filter shows the best results at ε =2 and ε =3. There are only very small differences deep into the dissipation region in favor of ε =2. For cross-helicity, the 5-point discrete filters are in good agreement with the results of direct numerical simulation (DNS), while the 3-point filter produces the largest discrepancies with DNS results. There is no strong dependence on the choice of the parameter ε and order approximation is a much more important factor for the cross-helicity. The difference between the filters is less for the residual energy compared with total energy. Thus, the total energy is more sensitive to the choice of discrete filter in the modeling of compressible MHD turbulence using the LES method.
Simulation of pulse shortening in a relativistic klystron oscillator
Verboncoeur, J.P.; Mardahl, P.J.; Cartwright, K.L.; Birdsall, C.K.
1996-12-31
The relativistic klystron is a strong candidate for a high power microwave source for a number of applications, including accelerators and electronic warfare. In this work, the authors simulate a high power, high perveance relativistic klystron oscillator using a 2d PIC-MCC code. The experimental klystron is currently operating as an injection-locked oscillator at 1.25--1.35 GHz, with up to 1 GW rms output power for a 100 ns pulse. The beam voltage is 500 kV, with current of 10 kA, and a beam pulse length of 300 ns. Experimental evidence indicates the klystron behavior is azimuthally symmetric. Of particular interest for this device is the shortening of the rf pulse compared to the current pulse, which may be related to plasma formation near the extractor gap. Various gases liberated form the porous graphite beam dump may reach substantial pressures locally. The authors investigate the formation of plasma due to photoionization and electron impact ionization of the gas constituents, and its impact on the rf power output. The simulations are compared to the experimental data where available.
Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C.
2016-02-01
We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
Myers, C. E.; Belova, E. V.; Brown, M. R.; Gray, T.; Cothran, C. D.; Schaffer, M. J.
2011-11-15
Recent counter-helicity spheromak merging experiments in the Swarthmore Spheromak Experiment (SSX) have produced a novel compact torus (CT) with unusual features. These include a persistent antisymmetric toroidal magnetic field profile and a slow, nonlinear emergence of the n = 1 tilt mode. Experimental measurements are inconclusive as to whether this unique CT is a fully merged field-reversed configuration (FRC) with strong toroidal field or a partially merged ''doublet CT'' configuration with both spheromak- and FRC-like characteristics. In this paper, the SSX merging process is studied in detail using three-dimensional resistive MHD simulations from the Hybrid Magnetohydrodynamics (HYM) code. These simulations show that merging plasmas in the SSX parameter regime only partially reconnect, leaving behind a doublet CT rather than an FRC. Through direct comparisons, we show that the magnetic structure in the simulations is highly consistent with the SSX experimental observations. We also find that the n = 1 tilt mode begins as a fast growing linear mode that evolves into a slower-growing nonlinear mode before being detected experimentally. A simulation parameter scan over resistivity, viscosity, and line-tying shows that these parameters can strongly affect the behavior of both the merging process and the tilt mode. In fact, merging in certain parameter regimes is found to produce a toroidal-field-free FRC rather than a doublet CT.
Sondak, David; Oberai, Assad A.
2012-10-15
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation of LES to the equations of incompressible MHD. Additionally, a new residual-based eddy viscosity model is introduced for MHD. A mixed LES model that combines the strengths of both of these models is also derived. The new models result in a consistent numerical method that is relatively simple to implement. The need for a dynamic procedure in determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical LES turbulence models. The LES simulations are run in a periodic box of size [-{pi}, {pi}]{sup 3} with 32 modes in each direction and are compared to a direct numerical simulation (DNS) with 512 modes in each direction. The new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by Pouquet et al.['The dynamics of unforced turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD,' Geophys. Astrophys. Fluid Dyn. 104, 115-134 (2010)], for which the ratio of DNS modes to LES modes is 262:144.
3D Global Magnetohydrodynamic Simulations of the Solar Wind/Earth's Magnetosphere Interaction
NASA Astrophysics Data System (ADS)
Yalim, M. S.; Poedts, S.
2014-09-01
In this paper, we present results of real-time 3D global magnetohydrodynamic (MHD) simulations of the solar wind interaction with the Earth's magnetosphere using time-varying data from the NASA Advanced Composition Explorer (ACE) satellite during a few big magnetic storm events of the previous and current solar cycles, namely the 06 April 2000, 20 November 2003 and 05 April 2010 storms. We introduce a numerical magnetic storm index and compare the geo-effectiveness of these events in terms of this storm index which is a measure for the resulting global perturbation of the Earth's magnetic field. Steady simulations show that the upstream solar wind plasma parameters enter the low-β switch-on regime for some time intervals during a magnetic storm causing a complex dimpled bow shock structure. We also investigate the traces of such bow shock structures during time-dependent simulations of the events. We utilize a 3D, implicit, parallel, unstructured grid, compressible finite volume ideal MHD solver with an anisotropic grid adaptation technique for the computer simulations.
Relativistic MHD Simulations of Poynting Flux-driven Jets
NASA Astrophysics Data System (ADS)
Guan, Xiaoyue; Li, Hui; Li, Shengtai
2014-01-01
Relativistic, magnetized jets are observed to propagate to very large distances in many active galactic nuclei (AGNs). We use three-dimensional relativistic MHD simulations to study the propagation of Poynting flux-driven jets in AGNs. These jets are already assumed to be being launched from the vicinity (~103 gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al., and we follow the propagation of these jets to ~parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When α, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to nonaxisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability being convective and the fact that the jet magnetic fields are rapidly evolving on Alfvénic time scales. We present the detailed jet properties and show that far from the jet launching region, a substantial amount of magnetic energy has been transformed into kinetic energy and thermal energy, producing a jet magnetization number σ < 1. In addition, we have also studied the effects of a gas pressure supported "disk" surrounding the injection region, and qualitatively similar global jet behaviors were observed. We stress that jet collimation, CDIs, and the subsequent energy transitions are intrinsic features of current-carrying jets.
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
NASA Astrophysics Data System (ADS)
Miesch, Mark; Matthaeus, William; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco
2015-11-01
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions.
Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP
2007-12-18
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.
2013-06-10
We perform global unstratified three-dimensional magnetohydrodynamic simulations of an astrophysical boundary layer (BL)-an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf-with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times larger than the angular momentum current due to MRI. Our results suggest that angular momentum transport in the BL and its vicinity is a global phenomenon occurring through dissipation of waves and shocks. This point of view is quite different from the standard picture of transport by a local anomalous turbulent viscosity. In addition to angular momentum transport, we also study magnetic field amplification within the BL. We find that the field is indeed amplified in the BL, but only by a factor of a few, and remains subthermal.
Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence
Snodin, A. P.; Ruffolo, D.; Oughton, S.; Servidio, S.; Matthaeus, W. H.
2013-12-10
The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a function of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.
Oblique magnetohydrodynamic cosmic-ray-modified shocks: Two-fluid numerical simulations
NASA Technical Reports Server (NTRS)
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1994-01-01
We present the first results of time-dependent two-fluid cosmic-ray (CR) modified magnetohydrodynamic (MHD) shock simulations. The calculations were carried out with a new numerical code for one-dimensional ideal MHD. By coupling this code with the CR energy transport equation we can simulate the time-dependent evolution of MHD shocks, including the acceleration of the CR and their feedback on the shock structures. We report tests of the combined numerical method including comparisons with analytical steady state results published earlier by Webb, as well as internal consistency checks for more general MHD CR shock structures after they apppear to have converged to dynamical steady states. We also present results from an initial time-dependent simulation which extends the parameter space domain of previous analytical models. These new results support Webb's suggestion that equilibrium oblique shocks are less effective than parallel shocks in the acceleration of CR. However, for realistic models of anisotropic CR diffusion, oblique shocks may achieve dynamical equilibrium on shorter timescales than parallel shocks.
MAGNETOHYDRODYNAMIC EFFECTS ON PULSED YOUNG STELLAR OBJECT JETS. I. 2.5D SIMULATIONS
Hansen, E. C.; Frank, A.; Hartigan, P.
2015-02-10
In this paper, we explore the dynamics of radiative axisymmetric magnetohydrodynamic (MHD) jets at high resolution using adaptive mesh refinement methods. The goal of the study is to determine both the dynamics and emission properties of such jets. To that end, we have implemented microphysics enabling us to produce synthetic maps of Hα and [S II]. The jets are pulsed either sinusoidally or randomly via a time-dependent ejection velocity which leads to a complicated structure of internal shocks and rarefactions as has been seen in previous simulations. The high resolution of our simulations allows us to explore in great detail the effect of pinch forces (due to the jet's toroidal magnetic field) within the ''working surfaces'' where pulses interact. We map the strong Hα emission marking shock fronts and the strong [S II] emission inside cooling regions behind shocks as observed with high-resolution images of jets. We find that pinch forces in the stronger field cases produce additional emission regions along the axis as compared with purely hydrodynamic runs. These simulations are a first step to understanding the full three-dimensional emission properties of radiative MHD jets.
Magnetohydrodynamic simulation of current switching by explosive opening switches of different types
NASA Astrophysics Data System (ADS)
Vlasov, Yu. V.
2015-01-01
The MEG-2D two-dimensional Eulerian design procedure was used for magnetohydrodynamic simulation of the megaampere current switching process by an explosive opening switch. This paper presents simulation results for the current switching of a helical magnetocumulative generator (MCG) by explosive opening switches of different types at the same parameters of the switching scheme, thickness of the breaking conductor made of copper foil, the breaking current, and the number of opening switch elements. Simulation results for current switching by an explosive opening switch with a ribbed barrier for different thickness of the broken copper foil conductor are also presented. In the case of using a foil 0.3 mm thick, a ribbed barrier with steel inserts on the ribs with optimal parameters was investigated. It is shown that at a foil thickness less than 0.2 mm, decreasing the depth of the groove in the barrier does not lead to an increases in the time of triggering of the opening switch.
Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Bakhsh, A.; Gao, S.; Samtaney, R.; Wheatley, V.
2016-03-01
Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability (RMI) is suppressed in ideal magnetohydrodynamics (MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β = /2 p Br 2 ) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1997-11-01
This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.
Simulations of Relativistic Collisionless Shocks: Shock Structure and Particle Acceleration
Spitkovsky, Anatoly; /KIPAC, Menlo Park
2006-04-10
We discuss 3D simulations of relativistic collisionless shocks in electron-positron pair plasmas using the particle-in-cell (PIC) method. The shock structure is mainly controlled by the shock's magnetization (''sigma'' parameter). We demonstrate how the structure of the shock varies as a function of sigma for perpendicular shocks. At low magnetizations the shock is mediated mainly by the Weibel instability which generates transient magnetic fields that can exceed the initial field. At larger magnetizations the shock is dominated by magnetic reflections. We demonstrate where the transition occurs and argue that it is impossible to have very low magnetization collisionless shocks in nature (in more than one spatial dimension). We further discuss the acceleration properties of these shocks, and show that higher magnetization perpendicular shocks do not efficiently accelerate nonthermal particles in 3D. Among other astrophysical applications, this may pose a restriction on the structure and composition of gamma-ray bursts and pulsar wind outflows.
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; Bromberg, Omer
2016-09-01
Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically hot plasma. Jets above the critical power stably escape the core and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; Bromberg, Omer
2016-04-01
Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically-hot plasma. Jets above the critical power stably escape the galaxy cores and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.
Suzuki, Kentaro; Ogawa, Takayuki; Matsumoto, Yosuke; Matsumoto, Ryoji E-mail: ogawa@astro.s.chiba-u.ac.jp E-mail: matumoto@astro.s.chiba-u.ac.jp
2013-05-10
We carried out three-dimensional magnetohydrodynamic simulations to study the effects of plasma viscosity on the formation of sharp discontinuities of density and temperature distributions, cold fronts, in clusters of galaxies. By fixing the gravitational potential that confines the cool, dense plasma in a moving subcluster, we simulated its interaction with the hot, lower density plasma around the subcluster. At the initial state, the intracluster medium (ICM) is assumed to be threaded by uniform magnetic fields. The enhancement of plasma viscosity along the direction of magnetic fields is incorporated as anisotropic viscosity depending on the direction of magnetic fields. We found that the Kelvin-Helmholtz instability at the surface of the subcluster grows even in models with anisotropic viscosity, because its effects on the velocity shear across the magnetic field lines are suppressed. We also found that magnetic fields around the interface between the subcluster and ICM are amplified even in the presence of viscosity, while magnetic fields behind the subcluster are amplified up to {beta}{sup -1} {approx} 0.01 in models with viscosity, whereas they are amplified up to {beta}{sup -1} {approx} 0.1 in models without viscosity, where {beta} is the ratio of gas pressure to magnetic pressure.
Guarendi, Andrew N.; Chandy, Abhilash J.
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
Theory and Simulation Basis for Magnetohydrodynamic Stability in DIII-D
Turnbull, A.D.; Brennan, D.P.; Chu, M.S.; Lao, L.L.; Snyder, P.B.
2005-10-15
Theory and simulation have provided one of the critical foundations for many of the significant achievements in magnetohydrodynamic (MHD) stability in DIII-D over the past two decades. Early signature achievements included the validation of tokamak MHD stability limits, beta and performance optimization through cross-section shaping and profiles, and the development of new operational regimes. More recent accomplishments encompass the realization and sustainment of wall stabilization using plasma rotation and active feedback, a new understanding of edge stability and its relation to edge-localized modes, and recent successes in predicting resistive tearing and interchange instabilities. The key to success has been the synergistic tie between the theory effort and the experiment made possible by the detailed equilibrium reconstruction data available in DIII-D and the corresponding attention to the measured details in the modeling. This interaction fosters an emphasis on the important phenomena and leads to testable theoretical predictions. Also important is the application of a range of analytic and simulation techniques, coupled with a program of numerical tool development. The result is a comprehensive integrated approach to fusion science and improving the tokamak approach to burning plasmas.
Makwana, K. D. Cattaneo, F.; Zhdankin, V.; Li, H.; Daughton, W.
2015-04-15
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{sub ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
Chatterjee, Dipankar; Amiroudine, Sakir
2011-02-01
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative. PMID:21053082
Non-ideal magnetohydrodynamic simulations of the two-stage fragmentation model for cluster formation
Bailey, Nicole D.; Basu, Shantanu E-mail: basu@uwo.ca
2014-01-01
We model molecular cloud fragmentation with thin-disk, non-ideal magnetohydrodynamic simulations that include ambipolar diffusion and partial ionization that transitions from primarily ultraviolet-dominated to cosmic-ray-dominated regimes. These simulations are used to determine the conditions required for star clusters to form through a two-stage fragmentation scenario. Recent linear analyses have shown that the fragmentation length scales and timescales can undergo a dramatic drop across the column density boundary that separates the ultraviolet- and cosmic-ray-dominated ionization regimes. As found in earlier studies, the absence of an ionization drop and regular perturbations leads to a single-stage fragmentation on pc scales in transcritical clouds, so that the nonlinear evolution yields the same fragment sizes as predicted by linear theory. However, we find that a combination of initial transcritical mass-to-flux ratio, evolution through a column density regime in which the ionization drop takes place, and regular small perturbations to the mass-to-flux ratio is sufficient to cause a second stage of fragmentation during the nonlinear evolution. Cores of size ∼0.1 pc are formed within an initial fragment of ∼pc size. Regular perturbations to the mass-to-flux ratio also accelerate the onset of runaway collapse.
Relativistic MHD simulations of stellar core collapse and magnetars
NASA Astrophysics Data System (ADS)
Font, José A.; Cerdá-Durán, Pablo; Gabler, Michael; Müller, Ewald; Stergioulas, Nikolaos
2011-02-01
We present results from simulations of magneto-rotational stellar core collapse along with Alfvén oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfvén waves. We further compute Alfvén oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.
Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Bogdanovic, Tamara; Reynolds, Christopher S.; Balbus, Steven A.; Parrish, Ian J. E-mail: chris@astro.umd.ed E-mail: iparrish@astro.berkeley.ed
2009-10-10
We perform a suite of simulations of cooling cores in clusters of galaxies in order to investigate the effect of the recently discovered heat flux buoyancy instability (HBI) on the evolution of cores. Our models follow the three-dimensional magnetohydrodynamics of cooling cluster cores and capture the effects of anisotropic heat conduction along the lines of magnetic field, but do not account for the cosmological setting of clusters or the presence of active galactic nuclei (AGNs). Our model clusters can be divided into three groups according to their final thermodynamical state: catastrophically collapsing cores, isothermal cores, and an intermediate group whose final state is determined by the initial configuration of magnetic field. Modeled cores that are reminiscent of real cluster cores show evolution toward thermal collapse on a timescale which is prolonged by a factor of approx2-10 compared with the zero-conduction cases. The principal effect of the HBI is to re-orient field lines to be perpendicular to the temperature gradient. Once the field has been wrapped up onto spherical surfaces surrounding the core, the core is insulated from further conductive heating (with the effective thermal conduction suppressed to less than 10{sup -2} of the Spitzer value) and proceeds to collapse. We speculate that, in real clusters, the central AGN and possibly mergers play the role of 'stirrers', periodically disrupting the azimuthal field structure and allowing thermal conduction to sporadically heat the core.
Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran
2008-01-01
We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EW) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from E W Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.
Magnetohydrodynamic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line
NASA Astrophysics Data System (ADS)
DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.; Black, C.
2011-12-01
Phenomena ranging from the quiescent heating of the ambient plasma to the highly explosive release of energy and acceleration of particles in flares are conjectured to result from magnetic reconnection at electric current sheets in the Sun's corona. We are investigating numerically, using a macroscopic magnetohydrodynamic (MHD) model with adaptive mesh refinement, the formation and reconnection of a current sheet in an initially potential 2D magnetic field containing a null. Subjecting this simple configuration to unequal stresses in the four quadrants bounded by the X-line separatrix distorts the potential null into a double-Y-line current sheet. We find that even small distortions of the magnetic field induce the formation of a tangential discontinuity in the high-beta region around the null. A continuously applied stress eventually leads to the onset of fast magnetic reconnection across the sheet, with copious production, merging, and ejection of magnetic islands. We compare the current-sheet development and evolution for three cases: quasi-ideal MHD with numerical resistivity only; uniformly resistive MHD; and MHD with an embedded kinetic reconnection model. Analogous kinetic simulations using particle-in-cell (PIC) methods to investigate the small-scale dynamics of the system also are being pursued (C. Black et al., this meeting). Our progress toward understanding this simple system will be reported, as will the implications of our results for the dynamic activity associated with coronal current sheets and for general multiscale modeling of magnetized plasmas in the Heliosphere. Our research was supported by NASA.
NASA Astrophysics Data System (ADS)
Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Welling, Daniel; Chen, Yuxi; Haiducek, John; Jordanova, Vania; Peng, Ivy Bo; Markidis, Stefano; Lapenta, Giovanni
2016-04-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US extended magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code with its block-adaptive grid can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions and grid structures. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's and Mercury's magnetospheres. We compared our results with Galileo and MESSENGER magnetic observations, respectively, and found good overall agreement. We will report our progress on modeling the Earth magnetosphere with MHD-EPIC with the goal of providing direct comparison with and global context for the MMS observations.
Carter, Jonathan; Oliker, Leonid
2006-01-09
The last decade has witnessed a rapid proliferation of superscalarcache-based microprocessors to build high-end computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the growing gap between sustained and peak performance for full-scale scientific applications on such platforms has become major concern in high performance computing. The latest generation of custom-built parallel vector systems have the potential to address this concern for numerical algorithms with sufficient regularity in their computational structure. In this work, we explore two and three dimensional implementations of a lattice-Boltzmann magnetohydrodynamics (MHD) physics application, on some of today's most powerful supercomputing platforms. Results compare performance between the vector-based Cray X1, Earth Simulator, and newly-released NEC SX-8, with the commodity-based superscalar platforms of the IBM Power3, IntelItanium2, and AMD Opteron. Overall results show that the SX-8 attains unprecedented aggregate performance across our evaluated applications.
Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.
2014-07-10
Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.
THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF PLANET MIGRATION IN TURBULENT STRATIFIED DISKS
Uribe, A. L.; Klahr, H.; Flock, M.; Henning, Th.
2011-08-01
We performed three-dimensional magnetohydrodynamic simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q = M{sub p} /M{sub s} . In agreement with previous studies, for the low-mass planet cases (q = 5 x 10{sup -6} and 10{sup -5}), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q = M{sub p} /M{sub s} = 10{sup -3} for M{sub s} = 1M{sub sun}), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modeled by an {alpha} viscosity. For the intermediate-mass planets (q = 5 x 10{sup -5}, 10{sup -4}, and 2 x 10{sup -4}), we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outward migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outward, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outward in locations where there is a positive gradient of a pressure bump (zonal flow).
NASA Astrophysics Data System (ADS)
Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.
2015-11-01
Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.
Three-dimensional Magnetohydrodynamic Simulations of Planet Migration in Turbulent Stratified Disks
NASA Astrophysics Data System (ADS)
Uribe, A. L.; Klahr, H.; Flock, M.; Henning, Th.
2011-08-01
We performed three-dimensional magnetohydrodynamic simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q = Mp /Ms . In agreement with previous studies, for the low-mass planet cases (q = 5 × 10-6 and 10-5), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q = Mp /Ms = 10-3 for Ms = 1M sun), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modeled by an α viscosity. For the intermediate-mass planets (q = 5 × 10-5, 10-4, and 2 × 10-4), we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outward migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outward, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outward in locations where there is a positive gradient of a pressure bump (zonal flow).
Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments
Sheehey, P.T.
1994-02-01
Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.
UTILIZATION OF MULTIPLE MEASUREMENTS FOR GLOBAL THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS
Wang, A. H.; Wu, S. T.; Tandberg-Hanssen, E.; Hill, Frank
2011-05-01
Magnetic field measurements, line of sight (LOS) and/or vector magnetograms, have been used in a variety of solar physics studies. Currently, the global transverse velocity measurements near the photosphere from the Global Oscillation Network Group (GONG) are available. We have utilized these multiple observational data, for the first time, to present a data-driven global three-dimensional and resistive magnetohydrodynamic (MHD) simulation, and to investigate the energy transport across the photosphere to the corona. The measurements of the LOS magnetic field and transverse velocity reflect the effects of convective zone dynamics and provide information from the sub-photosphere to the corona. In order to self-consistently include the observables on the lower boundary as the inputs to drive the model, a set of time-dependent boundary conditions is derived by using the method of characteristics. We selected GONG's global transverse velocity measurements of synoptic chart CR2009 near the photosphere and SOLIS full-resolution LOS magnetic field maps of synoptic chart CR2009 on the photosphere to simulate the equilibrium state and compute the energy transport across the photosphere. To show the advantage of using both observed magnetic field and transverse velocity data, we have studied two cases: (1) with the inputs of the LOS magnetic field and transverse velocity measurements, and (2) with the input of the LOS magnetic field and without the input of transverse velocity measurements. For these two cases, the simulation results presented here are a three-dimensional coronal magnetic field configuration, density distributions on the photosphere and at 1.5 solar radii, and the solar wind in the corona. The deduced physical characteristics are the total current helicity and the synthetic emission. By comparing all the physical parameters of case 1 and case 2 and their synthetic emission images with the EIT image, we find that using both the measured magnetic field and the
NASA Astrophysics Data System (ADS)
Thomas, Alec
2015-11-01
For certain classes of relativistic plasma problems, using a Lorentz boosted frame can be even more advantageous for gridded momentum space-position space-time simulations than Vay [Vay PRL 2007] showed was the case for position space-time simulations, resulting in speed up proportional to γboost6. The technique was applied using a Spectral Vlasov code to the problem of warm wavebreaking limits in relativistic plasma and demonstrates numerical results consistent with the analytic conclusions of Schroeder et al. [Schroeder PRE 2005]. By appropriate normalization, a self-similar behavior for the Vlasov equation in different Lorentz frames is found. These results are relevant to beam and laser driven plasma based accelerators and the potential for Vlasov simulation of them. National Science Foundation Career grant 1054164 and the Air Force Office of Scientific Research under Young Investigator Program grant FA9550-12-1-0310 and grant FA9550-14-1-0156.
Conservation of circulation in magnetohydrodynamics
Bekenstein; Oron
2000-10-01
We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices. PMID:11089118
A High Resolution Magnetohydrodynamic Simulation Study of Kronian Field-Aligned Currents and Aurora
NASA Astrophysics Data System (ADS)
Fukazawa, K.; Ogino, T.; Walker, R. J.
2011-12-01
Magnetohydrodynamic simulations of the interaction of Saturn's magnetosphere with the solar wind indicate that Kelvin-Helmholtz (K-H) waves can form on the dayside magnetopause when the interplanetary magnetic field (IMF) is northward. Dayside magnetic reconnection occurs at Saturn for northward IMF. The combination of K-H waves and reconnection caused enhanced vorticity in Saturn's magnetosphere. We have used a very high resolution version (grid interval is 0.1 RS) of our simulation code to study the consequences of the vortices and reconnection for the generation of field aligned currents (FAC) and aurorae in Saturn's ionosphere. We found three bands of alternating FAC toward and away from the dawn side of the ionosphere and two sets on the dusk side. The K-H waves generated a series of toward and away currents along the dayside side magnetopause. In the ionosphere they appear as a series of spots of up and down current. The K-H field aligned currents are adjacent to nearly continuous currents located from 1600 LT around past midnight to about 0700 LT The largest currents (jpara> 5×10-8 A /m-2) are found are at the highest latitudes. They map to the magnetopause and to the near-Earth tail region. In analogy with the Earth's ionosphere the field aligned currents away from Saturn can serve as a proxy for discrete aurorae. We used the away current density and the Knight relationship to estimate the energy flux from discrete aurorae and obtained ~1 mW /m-2 in the region with the strongest currents. Similar energy fluxes were found in the K-H related aurorae. This gave approximately 70 GW for the auroral power. We also investigated diffuse aurorae by using the energy flux in the absence of the field aligned currents. We found a region of enhanced thermal energy flux in the region where cusp aurorae are observed.
A magnetohydrodynamic simulation study of Kronian field-aligned currents and auroras
NASA Astrophysics Data System (ADS)
Fukazawa, Keiichiro; Ogino, Tatsuki; Walker, Raymond J.
2012-02-01
Magnetohydrodynamic simulations of the interaction of Saturn's magnetosphere with the solar wind indicate that Kelvin-Helmholtz (K-H) waves can form on the dayside magnetopause when the interplanetary magnetic field (IMF) is northward. Dayside magnetic reconnection occurs at Saturn for northward IMF, and the combination of K-H waves and reconnection caused enhanced vorticity in Saturn's magnetosphere. We have used a very high resolution version (Δx = 0.1 RS) of our simulation code to study the consequences of the vortices and reconnection for the generation of field-aligned currents (FACs) and auroras in Saturn's ionosphere. We found three bands of alternating FACs toward and away from the dawn side of the ionosphere and two sets on the dusk side. The K-H waves generated a series of toward and away currents along the dayside magnetopause. In the ionosphere they appear as a series of spots of up and down currents. The K-H field-aligned currents are adjacent to nearly continuous currents located from 16:00 LT, to around past midnight, and to about 07:00 LT. The largest currents densities (j∥ > 5 × 10-8 A m-2) are found at the highest latitudes. They map to the magnetopause and to the near-Saturn tail region. We used the away current density and the Knight relationship to estimate the energy flux related to discrete auroras and obtained ˜1 mW m-2 in the region with the strongest currents. This gives approximately 7 GW for the auroral UV emitted power. We found a region of enhanced thermal energy flux in the region where cusp auroras are observed.
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.; Van Loo, S.
2016-06-01
We have used the adaptive mesh refinement hydrodynamic code, MG, to perform idealized 3D magnetohydrodynamical simulations of the formation of clumpy and filamentary structure in a thermally unstable medium without turbulence. A stationary thermally unstable spherical diffuse atomic cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from β = 0.1 to 1.0 to the zero magnetic field case (β = ∞), where β is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clouds and clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (β = 0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic and thermal pressure equality (β = 1.0), filaments, clouds and clumps are formed. At any particular instant, the projection of the 3D structure on to a plane parallel to the magnetic field, i.e. a line of sight perpendicular to the magnetic field, resembles the appearance of filamentary molecular clouds. The filament densities, widths, velocity dispersions and temperatures resemble those observed in molecular clouds. In contrast, in the strong field case β = 0.1, projection of the 3D structure along a line of sight parallel to the magnetic field reveals a remarkably uniform structure.
Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.
2015-04-10
We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less
Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.
2015-04-10
We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smaller simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.
Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Xu, Hao; Li, Hui; Collins, David C.; O'Shea, Brian W.; Norman, Michael L.
2013-03-01
Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 Multiplication-Sign 10{sup 7} K, {rho} {approx} 10{sup -28}-10{sup -27} g cm{sup -3}, with magnetic field strengths of 0.1-1.0 {mu}G, and shock Mach numbers of M {approx} 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations.
NASA Astrophysics Data System (ADS)
Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.
2015-12-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.
2006-01-01
Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.
NASA Astrophysics Data System (ADS)
Park, Kiwan
2013-03-01
Many astrophysical phenomena depend on the underlying dynamics of magnetic fields. The observations of accretion disks and their jets, stellar coronae, and the solar corona are all best explained by models where magnetic fields play a central role. Understanding these phenomena requires studying the basic physics of magnetic field generation, magnetic energy transfer into radiating particles, angular momentum transport, and the observational implications of these processes. Each of these topics comprises a large enterprise of research. However, more practically speaking, the nonlinearity in large scale dynamo is known to be determined by magnetic helicity(
NASA Astrophysics Data System (ADS)
Arthur, S. J.; Henney, W. J.; Mellema, G.; de Colle, F.; Vázquez-Semadeni, E.
2011-06-01
We present the results of radiation-magnetohydrodynamic simulations of the formation and expansion of H II regions and their surrounding photodissociation regions (PDRs) in turbulent, magnetized, molecular clouds on scales of up to 4 pc. We include the effects of ionizing and non-ionizing ultraviolet radiation and X-rays from population synthesis models of young star clusters. For all our simulations we find that the H II region expansion reduces the disordered component of the magnetic field, imposing a large-scale order on the field around its border, with the field in the neutral gas tending to lie along the ionization front, while the field in the ionized gas tends to be perpendicular to the front. The highest pressure-compressed neutral and molecular gas is driven towards approximate equipartition between thermal, magnetic and turbulent energy densities, whereas lower pressure neutral/molecular gas bifurcates into, on the one hand, quiescent, magnetically dominated regions and, on the other hand, turbulent, demagnetized regions. The ionized gas shows approximate equipartition between thermal and turbulent energy densities, but with magnetic energy densities that are 1-3 orders of magnitude lower. A high velocity dispersion (˜8 km s-1) is maintained in the ionized gas throughout our simulations, despite the mean expansion velocity being significantly lower. The magnetic field does not significantly brake the large-scale H II region expansion on the length and time-scales accessible to our simulations, but it does tend to suppress the smallest scale fragmentation and radiation-driven implosion of neutral/molecular gas that forms globules and pillars at the edge of the H II region. However, the relative luminosity of ionizing and non-ionizing radiation has a much larger influence than the presence or absence of the magnetic field. When the star cluster radiation field is relatively soft (as in the case of a lower mass cluster, containing an earliest spectral
Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N. J.; Henning, Th.
2011-07-10
We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.
Magnetohydrodynamic Simulations of the Effects of the Solar Wind on the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Ogino, Tatsuki; Kivelson, Margaret G.
2001-01-01
We have used a three-dimensional magnetohydrodynamic simulation of the interaction between the solar wind and a rapidly rotating magnetosphere to study the effects of the solar wind dynamic pressure and the interplanetary magnetic field IMF on the configuration of the Jovian magnetosphere. Both the solar wind dynamic pressure and the IMF can cause substantial changes in the magnetosphere. On the dayside when the pressure increases the bow shock and magnetopause move toward Jupiter and the equatorial magnetic field in the middle magnetosphere becomes more dipole-like. When the pressure decreases the boundaries move farther from Jupiter and the dayside magnetic field becomes stretched out into a more tail-like configuration. For northward IMF the boundaries move toward Jupiter but the field becomes more tail-like. Finally, for southward IMF the boundaries move away and the field becomes more dipole-like. These changes are qualitatively consistent with those observed on spacecraft passing through the dayside magnetosphere. However, we were not always able to get quantitative agreement. In particular the model does not reproduce the extremely tail-like magnetic field observed during the Pioneer 10 and Ulysses inbound passes. The solar wind and IMF also influence the configuration of the middle magnetosphere in the magnetotail. Tailward flows were found in the nightside equatorial plasma sheet for most IMF orientations. Both inertial effects and the IMF influence reconnection in the tail. The only time the tailward flow in the magnetotail stopped was during prolonged intervals with southward IMF. Then reconnection in the polar cusp caused the flow to move out of the equatorial plane.
A unified radiative magnetohydrodynamics code for lightning-like discharge simulations
Chen, Qiang Chen, Bin Xiong, Run; Cai, Zhaoyang; Chen, P. F.
2014-03-15
A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs flux splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.
NASA Astrophysics Data System (ADS)
Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K. K.; Kivelson, M.; Tenishev, V.; Toth, G.; van der Holst, B.; Wurz, P.
2015-12-01
Jupiter's moon Europa is believed to contain a subsurface water ocean whose finite electrical conductance imposes clear induction signatures on the magnetic field in its surroundings. The evidence rests heavily on measurements performed by the magnetometer on board the Galileo spacecraft during multiple flybys of the moon. Europa's interaction with the Jovian magnetosphere has become a major target of research in planetary science, partly because of the potential of a salty ocean to harbor life outside our own planet. Thus it is of considerable interest to develop numerical simulations of the Europa-Jupiter interaction that can be compared with data in order to refine our knowledge of Europa's subsurface structure. In this presentation we show aspects of Europa's interaction with the Jovian magnetosphere extracted from a multifluid magnetohydrodynamics (MHD) code BATS-R-US recently developed at the University of Michigan. The model dynamically separates magnetospheric and pick-up ions and is capable of capturing some of the physics previously accessible only to kinetic approaches. The model utilizes an adaptive grid to maintain the high spatial resolution on the surface required to resolve the portion of Europa's neutral atmosphere with a scale height of a few tens of kilometers that is in thermal equilibrium. The model also derives the electron temperature, which is crucial to obtain the local electron impact ionization rates and hence the plasma mass loading in Europa's atmosphere. We compare our results with observations made by the plasma particles and fields instruments on the Galileo spacecraft to validate our model. We will show that multifluid MHD is able to reproduce the basic features of the plasma moments and magnetic field observations obtained during the Galileo E4 and E26 flybys at Europa.
NASA Astrophysics Data System (ADS)
Kulkanarni, Akshay Kishor
We present results of three-dimensional (3D) simulations of magnetohydrodynamic (MHD) instabilities at the accretion disk-magnetosphere boundary in accreting magnetized stars. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane, instead of flowing around the magnetosphere as in the canonical accretion picture. The shape and number of the tongues changes with time on the inner-disk dynamical timescale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, theta ≲ 30°, between the star's rotation and magnetic axes, and is associated with relatively high accretion rates. We then calculate the photometric variability due to emission from the hot spots that the accreting matter produces on the stellar surface. For neutron stars, we take relativistic effects into account in calculating the observed energy flux. Our goal is to compare the features of the lightcurve during stable and unstable accretion, and to look for possible quasi-periodic oscillations (QPOs), which produce broad peaks in the Fourier power spectra of these objects. The lightcurves during stable accretion show periodicity at the star's frequency and sometimes twice that, due to the presence of two funnel streams that produce antipodal hotspots near the magnetic poles. On the other hand, lightcurves during unstable accretion are more chaotic due to the stochastic behaviour of the tongues, and produce noisier power spectra. However, the power spectra do show some signs of quasi-periodic variability. Most importantly, the rotation frequency of the tongues and the resulting hotspots is close to the inner-disk orbital frequency, except in the most
Relativistic Modeling Capabilities in PERSEUS Extended-MHD Simulation Code for HED Plasmas
NASA Astrophysics Data System (ADS)
Hamlin, Nathaniel; Seyler, Charles
2015-11-01
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. We have overcome a major challenge of a relativistic fluid implementation, namely the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. Our code recovers non-relativistic results along with important features of published Particle-In-Cell simulation results for a laser penetrating a super-critical hydrogen gas with Fast Ignition applications. In particular, we recover the penetration of magnetized relativistic electron jets ahead of the laser. Our code also reveals new physics in the modeling of a laser incident on a thin foil. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
NASA Astrophysics Data System (ADS)
Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.
2012-05-01
Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.
NASA Astrophysics Data System (ADS)
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J. T.; Schneider, Kai
2014-10-01
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylo-Couette flow, the z-pinch configuration, three dimensional Orszag-Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylo-Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.; Schneider, Kai
2014-10-01
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.
Zhang, H.; Wu, S. Z.; Zhou, C. T.; He, X. T.; Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 ; Zhu, S. P.
2013-09-15
The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with established linear theory.
Monte Carlo Simulations of Nonlinear Particle Acceleration in Parallel Trans-relativistic Shocks
NASA Astrophysics Data System (ADS)
Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.
2013-10-01
We present results from a Monte Carlo simulation of a parallel collisionless shock undergoing particle acceleration. Our simulation, which contains parameterized scattering and a particular thermal leakage injection model, calculates the feedback between accelerated particles ahead of the shock, which influence the shock precursor and "smooth" the shock, and thermal particle injection. We show that there is a transition between nonrelativistic shocks, where the acceleration efficiency can be extremely high and the nonlinear compression ratio can be substantially greater than the Rankine-Hugoniot value, and fully relativistic shocks, where diffusive shock acceleration is less efficient and the compression ratio remains at the Rankine-Hugoniot value. This transition occurs in the trans-relativistic regime and, for the particular parameters we use, occurs around a shock Lorentz factor γ0 = 1.5. We also find that nonlinear shock smoothing dramatically reduces the acceleration efficiency presumed to occur with large-angle scattering in ultra-relativistic shocks. Our ability to seamlessly treat the transition from ultra-relativistic to trans-relativistic to nonrelativistic shocks may be important for evolving relativistic systems, such as gamma-ray bursts and Type Ibc supernovae. We expect a substantial evolution of shock accelerated spectra during this transition from soft early on to much harder when the blast-wave shock becomes nonrelativistic.
MONTE CARLO SIMULATIONS OF NONLINEAR PARTICLE ACCELERATION IN PARALLEL TRANS-RELATIVISTIC SHOCKS
Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M. E-mail: ambykov@yahoo.com
2013-10-10
We present results from a Monte Carlo simulation of a parallel collisionless shock undergoing particle acceleration. Our simulation, which contains parameterized scattering and a particular thermal leakage injection model, calculates the feedback between accelerated particles ahead of the shock, which influence the shock precursor and 'smooth' the shock, and thermal particle injection. We show that there is a transition between nonrelativistic shocks, where the acceleration efficiency can be extremely high and the nonlinear compression ratio can be substantially greater than the Rankine-Hugoniot value, and fully relativistic shocks, where diffusive shock acceleration is less efficient and the compression ratio remains at the Rankine-Hugoniot value. This transition occurs in the trans-relativistic regime and, for the particular parameters we use, occurs around a shock Lorentz factor γ{sub 0} = 1.5. We also find that nonlinear shock smoothing dramatically reduces the acceleration efficiency presumed to occur with large-angle scattering in ultra-relativistic shocks. Our ability to seamlessly treat the transition from ultra-relativistic to trans-relativistic to nonrelativistic shocks may be important for evolving relativistic systems, such as gamma-ray bursts and Type Ibc supernovae. We expect a substantial evolution of shock accelerated spectra during this transition from soft early on to much harder when the blast-wave shock becomes nonrelativistic.
NASA Astrophysics Data System (ADS)
Wu, S. T.; Zhou, Yufen; Jiang, Chaowei; Feng, Xueshang; Wu, Chin-Chun; Hu, Qiang
2016-02-01
In this study, we present a three-dimensional magnetohydrodynamic model based on an observed eruptive twisted flux rope (sigmoid) deduced from solar vector magnetograms. This model is a combination of our two very well tested MHD models: (i) data-driven 3-D magnetohydrodynamic (MHD) active region evolution (MHD-DARE) model for the reconstruction of the observed flux rope and (ii) 3-D MHD global coronal-heliosphere evolution (MHD-GCHE) model to track the propagation of the observed flux rope. The 6 September 2011, AR11283, event is used to test this model. First, the formation of the flux rope (sigmoid) from AR11283 is reproduced by the MHD-DARE model with input from the measured vector magnetograms given by Solar Dynamics Observatory/Helioseismic and Magnetic Imager. Second, these results are used as the initial boundary condition for our MHD-GCHE model for the initiation of a coronal mass ejection (CME) as observed. The model output indicates that the flux rope resulting from MHD-DARE produces the physical properties of a CME, and the morphology resembles the observations made by STEREO/COR-1.
Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field
NASA Astrophysics Data System (ADS)
Esaulov, A. A.; Bauer, B. S.; Makhin, V.; Siemon, R. E.; Lindemuth, I. R.; Awe, T. J.; Reinovsky, R. E.; Struve, K. W.; Desjarlais, M. P.; Mehlhorn, T. A.
2008-03-01
Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the “core-corona” behavior in which a heterogeneous Z -pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16eV . The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.
Simulation of beams or plasmas crossing at relativistic velocity
Vay, J.-L.
2008-05-15
This paper addresses the numerical issues related to the modeling of beams or plasmas crossing at relativistic velocity using the particle-in-cell method. Issues related to the use of the standard Boris particle pusher are identified and a novel pusher which circumvents them is proposed, whose effectiveness is demonstrated on single particle tests. A procedure for solving the fields is proposed, which retains electrostatic, magnetostatic, and inductive field effects in the direction of the mean velocity of the species, is fully explicit and simpler than the full Darwin approximation. Finally, results are given, from a calculation using the novel features, of an ultrarelativistic beam interacting with a background of electrons.
Gomez, T; Sagaut, P; Schilling, O; Zhou, Y
2006-07-05
A spectral subggrid-scale eddy viscosity and magnetic resisitivity model based on the eddy-damped quasi-normal Markovian (EDQNM) spectral kinetic and magnetic energy transfer presented in [12] is used in large-eddy simulation (LES) of large kinetic and magnetic Reynold number magneto-hydrodynamic (MHD) turbulence. The proposed model is assessed via a posteri tests on three-dimensional, incompressible, isotropic, non-helical, freely-decaying MHD turbulence at asymptotically large Reynolds numbers. Using LES with an initial condition characterized by an Alfv{acute e}n ratio of kinetic to magnetic energy {tau}{sub A} equal to unity, it is shown that at the kinetic energy spectrum E{sub K}(k) and magnetic energy spectrum E{sub M}(k) exhibit Kolmogorov -5/3 inertial subrange scalings in the LES, consistent with the EDQNM model.
Criscuoli, S.
2013-11-20
Recent observations have shown that the photometric and dynamic properties of granulation and small-scale magnetic features depend on the amount of magnetic flux of the region they are embedded in. We analyze results from numerical hydrodynamic and magnetohydrodynamic simulations characterized by different amounts of average magnetic flux and find qualitatively the same differences as those reported from observations. We show that these different physical properties result from the inhibition of convection induced by the presence of the magnetic field, which changes the temperature stratification of both quiet and magnetic regions. Our results are relevant for solar irradiance variations studies, as such differences are still not properly taken into account in irradiance reconstruction models.
NASA Astrophysics Data System (ADS)
Asahina, Yuta; Matsumoto, Ryoji; Ogawa, Takayuki
NANTEN2 observations of the galactic molecular gas revealed that molecular columns surround the double helix nebulae at our Galactic center (Enokiya et al. 2014). In order to study the formation mechanism of the double helix nebulae and molecular columns, we carried out magnetohydrodynamic (MHD) simulations of the interaction of a magnetic tower jet ejected from the galactic center with interstellar neutral hydrogen (HI) gas taking into account the interstellar cooling. The HI gas compressed by the bow shock ahead of the jet is cooled down by cooling instability triggered by the density enhancement. As a result, cold, dense region is formed around the helical magnetic tower jet. These molecular columns can be the evidences of the past activity near the galactic center black hole.
Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviors similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.
Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators
NASA Astrophysics Data System (ADS)
Sitaraman, Hariswaran; Raja, Laxminarayan L.
2014-01-01
Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.
Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators
Sitaraman, Hariswaran; Raja, Laxminarayan L.
2014-01-15
Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.
NASA Astrophysics Data System (ADS)
Shiota, D.; Kataoka, R.
2016-02-01
Coronal mass ejections (CMEs) are the most important drivers of various types of space weather disturbance. Here we report a newly developed magnetohydrodynamic (MHD) simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields. First, the polarity of the spheromak magnetic field is set as determined automatically according to the Hale-Nicholson law and the chirality law of Bothmer and Schwenn. The MHD simulation is therefore capable of predicting the time profile of the southward interplanetary magnetic field at the Earth, in relation to the passage of a magnetic cloud within a CME. This profile is the most important parameter for space weather forecasts of magnetic storms. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003, and present the result of a simulation of the solar wind parameters at the Earth during the 2003 Halloween storms. We succeeded in reproducing the arrival at the Earth's position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm. We find that the observed complex time profile of the solar wind parameters at the Earth could be reasonably well understood by the interaction of a few specific CMEs.
A fully general relativistic numerical simulation code for spherically symmetric matter
NASA Astrophysics Data System (ADS)
Park, Dong-Ho; Cho, Inyong; Kang, Gungwon; Lee, Hyung Mok
2013-02-01
We present a fully general relativistic open-source code that can be used for simulating a system of spherically symmetric perfect fluid matter. It is based on the Arnowitt-Deser-Misner 3+1 formalism with maximal slicing and isotropic spatial coordinates. For hydrodynamic matter High Resolution Shock Capturing (HRSC) schemes with a monotonized central-difference limiter and approximated Riemann solvers are used in the Eulerian viewpoint. The accuracy and the convergence of our numerical code are verified by performing several test problems. These include a relativistic blast wave, relativistic spherical accretion of matter into a black hole, Tolman-Oppenheimer-Volkoff (TOV) stars and Oppenheimer-Snyder (OS) dust collapses. In particular, a dynamical code test is done for the OS collapse by explicitly performing numerical coordinate transformations between our coordinate 8system and the one used for the analytic solution. Finally, some TOV star solutions are presented for the Eddington-inspired Born-Infeld gravity theory.
Numerical simulations of relativistic heavy-ion reactions
NASA Astrophysics Data System (ADS)
Daffin, Frank Cecil
Bulk quantities of nuclear matter exist only in the compact bodies of the universe. There the crushing gravitational forces overcome the Coulomb repulsion in massive stellar collapses. Nuclear matter is subjected to high pressures and temperatures as shock waves propagate and burn their way through stellar cores. The bulk properties of nuclear matter are important parameters in the evolution of these collapses, some of which lead to nucleosynthesis. The nucleus is rich in physical phenomena. Above the Coulomb barrier, complex interactions lead to the distortion of, and as collision energies increase, the destruction of the nuclear volume. Of critical importance to the understanding of these events is an understanding of the aggregate microscopic processes which govern them. In an effort to understand relativistic heavy-ion reactions, the Boltzmann-Uehling-Uhlenbeck (Ueh33) (BUU) transport equation is used as the framework for a numerical model. In the years since its introduction, the numerical model has been instrumental in providing a coherent, microscopic, physical description of these complex, highly non-linear events. This treatise describes the background leading to the creation of our numerical model of the BUU transport equation, details of its numerical implementation, its application to the study of relativistic heavy-ion collisions, and some of the experimental observables used to compare calculated results to empirical results. The formalism evolves the one-body Wigner phase-space distribution of nucleons in time under the influence of a single-particle nuclear mean field interaction and a collision source term. This is essentially the familiar Boltzmann transport equation whose source term has been modified to address the Pauli exclusion principle. Two elements of the model allow extrapolation from the study of nuclear collisions to bulk quantities of nuclear matter: the modification of nucleon scattering cross sections in nuclear matter, and the
Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.