Relativistic spectral function of nucleons in hot nuclear matter
NASA Astrophysics Data System (ADS)
Ghosh, Sabyasachi; Sarkar, Sourav; Mallik, S.
2010-10-01
We present a simple calculation of the nucleon self-energy in nuclear matter at finite temperature in a relativistic framework, using the real-time thermal field theory. The imaginary parts of one-loop graphs are identified with discontinuities across the unitary and the Landau cuts. We find that in general both the cuts contribute significantly to the spectral function in the region of (virtual) nucleon mass usually considered, even though the unitary cut is ignored in the literature. Furthermore, our relativistic spectral function differs from the one in nonrelativistic approximation, used in some earlier calculations.
Relativistic mean-field models and nuclear matter constraints
Dutra, M.; Lourenco, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providencia, C.; Typel, S.
2013-05-06
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Relativistic mean-field hadronic models under nuclear matter constraints
NASA Astrophysics Data System (ADS)
Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.
2014-11-01
Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The
Pion condensation in a relativistic field theory consistent with bulk properties of nuclear matter
Banerjee, B.; Glendenning, N. K.; Gyulassy, M.
1981-05-01
Pion condensation is investigated in a self-consistent. relativistic mean field theory that is constrained to reproduce the bulk properties of nuclear matter. This constraint and self-consistency provide stringent constraints on the existence and energy of the condensate.
Toward the Limits of Matter: Ultra-relativistic Nuclear Collisions at CERN
NASA Astrophysics Data System (ADS)
Schukraft, Jurgen; Stock, Reinhard
2015-07-01
Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium, to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD phase boundary. We describe three decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultrarelativistic heavy ion physics is today a central pillar of contemporary nuclear physics and forms a significant part of the LHC programme.
Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.
2010-05-21
We study the nuclear matter properties in the regime of high temperatures using a relativistic mean-field theory. Contrasting with the usual linear Walecka model, we include the sigma-omega meson coupling in order to investigate the role of this interaction in the nucleon effective mass behavior. Some numerical results are presented and discussed.
Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Durham, John Matthew
2011-12-01
The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.
Relativistic nuclear collisions: theory
Gyulassy, M.
1980-07-01
Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures.
Aguirre, R. M.; Paoli, A. L. de
2007-04-15
We study the properties of cold asymmetric nuclear matter at high density, applying the quark meson coupling model with excluded volume corrections in the framework of the Landau theory of relativistic Fermi liquids. We discuss the role of the finite spatial extension of composite baryons on dynamical and statistical properties such as the Landau parameters, the compressibility, and the symmetry energy. We have also calculated the low-lying collective eigenfrequencies arising from the collisionless quasiparticle transport equation, considering both unstable and stable modes. An overall analysis of the excluded volume correlations on the collective properties is performed.
NASA Astrophysics Data System (ADS)
Vasconcellos, C. A. Zen
2015-12-01
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ-, Σ0, Σ+, Λ, Ξ-, Ξ0) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, ɸ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ- experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
Vasconcellos, C. A. Zen
2015-12-17
Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.
Crystallization and collapse in relativistically degenerate matter
Akbari-Moghanjoughi, M.
2013-04-15
In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.
Thermodynamics of polarized relativistic matter
NASA Astrophysics Data System (ADS)
Kovtun, Pavel
2016-07-01
We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.
Coester, F.
1985-01-01
A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.
NASA Astrophysics Data System (ADS)
Li, A.; Hu, J. N.; Shang, X. L.; Zuo, W.
2016-01-01
The density and isospin dependencies of nonrelativistic nucleon effective mass (mN*) are studied, which is a measure of the nonlocality of the single particle (s.p.) potential. It can be decoupled as the so-called k mass (mk*, i.e., the nonlocality in space) and E mass (mE*, i.e., the nonlocality in time). Both k mass and E mass are determined and compared by using the latest versions of the nonrelativistic Brueckner-Hartree-Fock (BHF) model and the relativistic Hartree-Fock (RHF) model. The latter is achieved based on the corresponding Schrödinger equivalent s.p. potential in a relativistic framework. We demonstrate the origins of different effective masses and discuss also their neutron-proton splitting in the asymmetric matter in different models. We find that the neutron-proton splittings of both the k mass and the E mass have the same asymmetry dependencies at the densities considered; namely, mk,n *>mk,p * and mE,p *>mE,n * . However, the resulting splittings of nucleon effective masses could have different asymmetry dependencies in these two models because they could be dominated either by the k mass (then we have mn*>mp* in the BHF model), or by the E mass (then we have mp*>mn* in the RHF model). The isospin splitting in the BHF model is more consistent with the recent analysis from the nucleon-nucleus-scattering data, while the small E mass mE* in the RHF case as a result of the missing ladder summation finally leads to an opposite splitting behavior.
Modeling relativistic nuclear collisions.
Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.
2001-01-01
Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.
Bremsstrahlung from relativistic heavy ions in matter
Soerensen, Allan H.
2010-02-15
The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact ('ultraperipheral collisions'). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2{gamma} times the position of the giant dipole resonance, that is, near 25{gamma} MeV for a lead ion ({gamma}{identical_to}E/Mc{sup 2} is the Lorentz factor of the projectile of energy E and mass M). The maximum exceeds the bremsstrahlung from a hypothetical structureless, pointlike particle of the same charge and mass as the incoming nucleus, but rapid depletion follows on the high-energy side of the peak. As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions. In collisions with nuclear contact, though, substantial radiation is emitted. It overshoots the bremsstrahlung. However, despite the violence of contact events, the associated photon emission only exceeds the radiation from a hypothetical structureless pointlike nucleus [emitted energy per unit photon-energy interval essentially constant up to ({gamma}-1)Mc{sup 2}] at relatively low photon energies (for lead roughly below 0.2{gamma} GeV, a limit which is about an order of magnitude above the position of the bremsstrahlung peak). Results are presented for bare lead ions penetrating a solid lead target at energies of 158 GeV/n ({gamma}=170) and beyond.
Distinct optical properties of relativistically degenerate matter
Akbari-Moghanjoughi, M.
2014-06-15
In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.
Distinct optical properties of relativistically degenerate matter
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2014-06-01
In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.
Gravitational mass of relativistic matter and antimatter
NASA Astrophysics Data System (ADS)
Kalaydzhyan, Tigran
2015-12-01
The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65
Exotic States of Nuclear Matter
NASA Astrophysics Data System (ADS)
Lombardo, Umberto; Baldo, Marcello; Burgio, Fiorella; Schulze, Hans-Josef
2008-02-01
pt. A. Theory of nuclear matter EOS and symmetry energy. Constraining the nuclear equation of state from astrophysics and heavy ion reactions / C. Fuchs. In-medium hadronic interactions and the nuclear equation of state / F. Sammarruca. EOS and single-particle properties of isospin-asymmetric nuclear matter within the Brueckner theory / W. Zuo, U. Lombardo & H.-J. Schulze. Thermodynamics of correlated nuclear matter / A. Polls ... [et al.]. The validity of the LOCV formalism and neutron star properties / H. R. Moshfegh ... [et al.]. Ferromagnetic instabilities of neutron matter: microscopic versus phenomenological approaches / I. Vidaã. Sigma meson and nuclear matter saturation / A. B. Santra & U. Lombardo. Ramifications of the nuclear symmetry energy for neutron stars, nuclei and heavy-ion collisions / A. W. Steiner, B.-A. Li & M. Prakash. The symmetry energy in nuclei and nuclear matter / A. E. L. Dieperink. Probing the symmetry energy at supra-saturation densities / M. Di Toro et al. Investigation of low-density symmetry energy via nucleon and fragment observables / H. H. Wolter et al. Instability against cluster formation in nuclear and compact-star matter / C. Ducoin ... [et al.]. Microscopic optical potentials of nucleon-nucleus and nucleus-nucleus scattering / Z.-Y. Ma, J. Rong & Y.-Q. Ma -- pt. B. The neutron star crust: structure, formation and dynamics. Neutron star crust beyond the Wigner-Seitz approximation / N. Chamel. The inner crust of a neutron star within the Wigner-Seitz method with pairing: from drip point to the bottom / E. E. Saperstein, M. Baldo & S. V. Tolokonnikov. Nuclear superfluidity and thermal properties of neutron stars / N. Sandulescu. Collective excitations: from exotic nuclei to the crust of neutron stars / E. Khan, M. Grasso & J. Margueron. Monte Carlo simulation of the nuclear medium: fermi gases, nuclei and the role of Pauli potentials / M. A. Pérez-García. Low-density instabilities in relativistic hadronic models / C. Provid
Spin dynamics in relativistic light-matter interaction
NASA Astrophysics Data System (ADS)
Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer
2015-05-01
Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.
Fluid dynamical description of relativistic nuclear collisions
NASA Technical Reports Server (NTRS)
Nix, J. R.; Strottman, D.
1982-01-01
On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.
Relativistic mean field model based on realistic nuclear forces
Hirose, S.; Serra, M.; Ring, P.; Otsuka, T.; Akaishi, Y.
2007-02-15
In order to predict properties of asymmetric nuclear matter, we construct a relativistic mean field (RMF) model consisting of one-meson exchange (OME) terms and point coupling (PC) terms. In order to determine the density dependent parameters of this model, we use properties of isospin symmetric nuclear matter in combination with the information on nucleon-nucleon scattering data, which are given in the form of the density dependent G-matrix derived from Brueckner calculations based on the Tamagaki potential. We show that the medium- and long-range components of this G-matrix can be described reasonably well by our effective OME interaction. In order to take into account the short-range part of the nucleon-nucleon interaction, which cannot be described well in this manner, a point coupling term is added. Its analytical form is taken from a model based on chiral perturbation theory. It contains only one additional parameter, which does not depend on the density. It is, together with the parameters of the OME potentials adjusted to the equation of state of symmetric nuclear matter. We apply this model for the investigation of asymmetric nuclear matter and find that the results for the symmetry energy as well as for the equation of state of pure neutron matter are in good agreement with either experimental data or with presently adopted theoretical predictions. In order to test the model at higher density, we use its equation of state for an investigation of properties of neutron stars.
Relativistic corrections to the nuclear Schiff moment
Dmitriev, V.F.; Flambaum, V.V.
2005-06-01
Parity- and time-invariance-violating (P,T-odd) atomic electric dipole moments (EDM) are induced by the interaction between atomic electrons and nuclear P,T-odd moments, which are themselves produced by P,T-odd nuclear forces. The nuclear EDM is screened by atomic electrons. The EDM of a nonrelativistic atom with closed electron subshells is induced by the nuclear Schiff moment. For heavy relativistic atoms EDM is induced by the nuclear local dipole moments, which differ by 10-50% from the Schiff moments calculated previously. We calculate the local dipole moments for {sup 199}Hg and {sup 205}Tl where the most accurate atomic [Romalis et al., Phys. Rev. Lett. 86, 2505 (2001)] and molecular [Cho et al., Phys. Rev. Lett. 63, 2559 (1989); Phys. Rev. A 44, 2783 (1991)] EDM measurements have been performed.
Relativity damps OPEP in nuclear matter
Banerjee, M.K.
1998-06-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M{sup *}/M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M{sup *} it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled {pi}N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Dark matter directional detection in non-relativistic effective theories
Catena, Riccardo
2015-07-20
We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
Geracie, Michael Prabhu, Kartik Roberts, Matthew M.
2015-10-15
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
Relativistic Dark Matter at the Galactic Center
Amin, Mustafa A.; Wizansky, Tommer; /SLAC
2007-11-16
In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.
Relativistic nuclear many-body theory
Serot, B.D. ); Walecka, J.D. . Continuous Electron Beam Accelerator Facility)
1991-09-11
Nonrelativistic models of nuclear systems have provided important insight into nuclear physics. In future experiments, nuclear systems will be examined under extreme conditions of density and temperature, and their response will be probed at momentum and energy transfers larger than the nucleon mass. It is therefore essential to develop reliable models that go beyond the traditional nonrelativistic many-body framework. General properties of physics, such as quantum mechanics, Lorentz covariance, and microscopic causality, motivate the use of quantum field theories to describe the interacting, relativistic, nuclear many-body system. Renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. Some applications and successes of quantum hadrodynamics are described, with an emphasis on the new features arising from relativity. Examples include the nuclear equation of state, the shell model, nucleon-nucleus scattering, and the inclusion of zero-point vacuum corrections. Current issues and problems are also considered, such as the construction of improved approximations, the full role of the quantum vacuum, and the relationship between quantum hadrodynamics and quantum chromodynamics. We also speculate on future developments. 103 refs., 18 figs.
a Finite Nucleon Extended Volume Model for Nuclear Matter
NASA Astrophysics Data System (ADS)
Rocha, Alberto S. S.; Vasconcellos, César A. Z.; Coelho, Helio T.
We investigate the effects of a finite volume extension for nucleons immersed in nuclear matter. We wish in this way to explore the role played by this non-vanishing (but fixed) volume in shaping nuclear matter properties, in contrast with other models of nuclear physics in which nucleons are treated as point-like particles. We introduce a model characterized by an exclusion volume à la Van der Waals, as well as an effective non-relativistic approximation to model meson-exchange interactions between nucleons. The model is consistent with experimental values of saturation density and binding energy of nuclear matter in the domain of typical densities for neutron stars.
Relativistic soliton collisions of axion type dark matter
NASA Astrophysics Data System (ADS)
Castañeda Valle, David; Mielke, Eckehard W.
2016-07-01
Axion-like scalar fields and the Lane-Emden (LE) truncation of their periodic potential are analyzed as a toy model of dark matter halos. Then, collisions of the well-known kinks in (1 + 1) spacetime dimensions can be mapped to those of localized lumps of the LE equation. Here, we generalize this mapping to (2 + 1)D or even (3 + 1)D and discuss a challenging intrinsic inelastic effect during relativistic soliton collisions.
Relativistic Wigner function approach to neutrino propagation in matter
NASA Astrophysics Data System (ADS)
Sirera, M.; Pérez, A.
1999-06-01
In this work we study the propagation of massive Dirac neutrinos in matter with flavor mixing, using statistical techniques based on relativistic Wigner functions. First, we consider neutrinos in equilibrium within the Hartree approximation, and obtain the corresponding dispersion relations and effective masses. After this, we analyze the same system out of equilibrium. We verify that, under the appropriate physical conditions, the well-known equations for the MSW effect are recovered.
Relativistic MOND as an alternative to the dark matter paradigm
NASA Astrophysics Data System (ADS)
Bekenstein, Jacob D.
2009-08-01
>Milgrom's Modified Newtonian dynamics (MOND) provides an efficient way to summarize phenomenology of galaxies which does not lean on the notion of dark matter; it has great predictive power. Here I briefly review MOND as well as its implementation as a nonrelativistic modified gravity theory, AQUAL. Gravitational lensing and cosmology call for a relativistic gravity theory different from general relativity if dark matter is to be avoided. In recent years such a theory, TeVeS, has emerged from the marriage of AQUAL with the timelike vector field of Sanders. I discuss its structure and some of its successes and shortcomings.
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Biberian, Jean-Paul
2006-02-01
1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research
Relativistic effects in nuclear many-body systems
Coester, F.
1985-01-01
Different approaches to the formulation of relativistic many-body dynamics yield different perspectives of nature and the magnitude of ''relativistic effects''. The effects of Lorentz invariance appear to be relatively unimportant. Important dynamical features of spinorial many-body formalisms are effects of subnuclear degrees of freedom which are represented in the many-body forces of the covariant nuclear Hamiltonian. 24 refs.
Relativistic AC gyromagnetic effects in ultraintense laser-matter interaction.
Geindre, J P; Audebert, P; Marjoribanks, R S
2006-08-25
We demonstrate that in ultraintense ultrafast laser-matter interaction, the interplay of laser-induced oscillating space-charge fields with laser E and B fields can strongly affect whether the interaction is relativistic or not: stronger laser fields may not in fact produce more relativistic plasma interactions. We show that there exists a regime of interaction, in the relation of laser intensity and incident angle, for which the Brunel effect of electron acceleration is strongly suppressed by AC gyromagnetic fields, at a frequency different from the laser field. Analytically and with 1.5D particle-in-cell modeling, we show that from gyromagnetic effects, even in the absence of usual J x B second-harmonic contributions, there are strong effects on the harmonic emission and on the generation of attosecond pulses. PMID:17026310
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro
Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro
Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Biberian, Jean-Paul
2006-02-01
1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research
Particle-hole states in nuclear matter
Matyas, C.A.
1985-01-01
This work deals with the collective excitations in nuclear matter, from the point of view of the TDA approximation. Our calculations involved the construction of a Hamiltonian, expressed as a matrix in the space of particle-hole excitations with a given momentum transfer. We used in this Hamiltonian an average single nucleon potential, and (in some cases) an effective interaction obtained for the potential HEA in the relativistic Brueckner-Hartree Fock theory. The eigenvectors of the TDA-Hamiltonian were used to compute the strength of the collective response of nuclear matter to external probes. Our results, succinctly described in the last section, are summarized in a set of figures at the end of this monograph. The specific form of the TDA equations that we used, and the procedure to calculate the degree of collectivity of the solutions, is studied in detail in the fifth chapter. A derivation of the TDA equations, and a discussion of the solutions for a separable potential, is given in the fourth chapter. The structure of a non-relativistic potential for a system of two nucleons is examined in the third chapter, in several representations. On the other hand, the particle-hole states relevant to our discussions on the TDA equations are introduced in the first two chapters.
Relativistic effects on the nuclear magnetic shielding tensor
NASA Astrophysics Data System (ADS)
Melo, J. I.; Ruiz de Azua, M. C.; Giribet, C. G.; Aucar, G. A.; Romero, R. H.
2003-01-01
A new approach for calculating relativistic corrections to the nuclear magnetic shieldings is presented. Starting from a full relativistic second order perturbation theory expression a two-component formalism is constructed by transforming matrix elements using the elimination of small component scheme and separating out the contributions from the no-virtual pair and the virtual pair part of the second order corrections to the energy. In this way we avoid a strong simplification used previously in the literature. We arrive at final expressions for the relativistic corrections which are equivalent to those of Fukui et al. [J. Chem Phys. 105, 3175 (1996)] and at some other additional terms correcting both the paramagnetic and the diamagnetic part of the nuclear magnetic shielding. Results for some relativistic corrections to the shieldings of the heavy and light nuclei in HX and CH3X (X=Br,I) at both random phase and second order polarization propagator approach levels are given.
Phase transitions in nuclear matter
Glendenning, N.K.
1984-11-01
The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references.
Nuclear chromodynamics: applications of QCD to relativistic multiquark systems
Brodsky, S.J.; Ji, C.R.
1984-07-01
We review the applications of quantum chromodynamics to nuclear multiquark systems. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, hidden color components in nuclear wavefunctions, and the short distance effective force between nucleons. A new antisymmetrization technique is presented which allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to short distances. Areas in which conventional nuclear theory conflicts with QCD are also briefly reviewed. 48 references.
Chapman, S.
1992-11-01
The goal in this thesis is thus twofold: The first is to investigate the feasibility of using heavy ion collisions to create conditions in the laboratory which are ripe for the formation of a quark-gluon plasma. The second is to develop a technique for studying some of the many non-perturbative features of this novel phase of matter.
NASA Astrophysics Data System (ADS)
Aucar, Ignacio A.; Gómez, Sergio S.; de Azúa, Martín C. Ruiz; Giribet, Claudia G.
2012-05-01
A theoretical study of the relation between the relativistic formulation of the nuclear magnetic shielding and spin-rotation tensors is presented. To this end a theoretical expression of the relativistic spin-rotation tensor is formulated, considering a molecular Hamiltonian of relativistic electrons and non-relativistic nuclei. Molecular rotation effects are introduced considering the terms of the Born-Oppenheimer decomposition, which couple the electrons and nuclei dynamics. The loss of the simple relation linking both spectral parameters in the non-relativistic formulation is further analyzed carrying out a perturbative expansion of relativistic effects by means of the linear response within the elimination of the small component approach. It is concluded that relativistic effects on the spin-rotation tensor are less important than those of the nuclear magnetic shielding tensor.
Nuclear Dissipation via Peripheral Collisions with Relativistic Radioactive Actinides Beams
Schmitt, C.; Heinz, A.; Jurado, B.; Kelic, A.; Schmidt, K.-H.
2007-05-22
Peripheral collisions with radioactive actinide beams at relativistic energies are proposed as a relevant approach for the study of dissipation in nuclear matter. The characteristics of the systems resulting from the primary fragmentation of such beams are particularly well suited for probing the controversial existence of a sizeable delay in fission. Thanks to the radioactive beam facility at GSI an unusually large set of data involving about 60 secondary unstable projectiles between At and U has been collected under identical conditions. The properties of the set-up enabled the coincident measurement of the atomic number of both fission fragments, permitting a judicious classification of the data. The width of the fission-fragment charge distribution is shown to establish a thermometer at the saddle point which is directly related to the transient delay caused by the friction force. From a comparison with realistic model calculations, the dissipation strength at small deformation and the transient time are inferred. The present strategy is promoted as a complementary approach that avoids some complex problems inherent to conventional techniques. Combined to the paramount size of the data set, it sheds light on contradictory conclusions that have been published in the past. There is at this point no definite consensus on our understanding of the damping process in fission.
Ultra-Relativistic Heavy Ion Nuclear Physics
Braithwaite, W. J.
1995-05-31
This report describes an on-going research initiative for the University of Arkansas at Little Rock (UALR): investigating the physics of ultra-relativistic heavy ions, i.e. collisions between massive nuclei which have been accelerated to kinetic energies so large that the rest mass of the ions is a negligible fraction of their total mass-energy. This progress report is being submitted in conjunction with a 3-year grant-renewal proposal, containing additional materials. Three main categories drive the UALRGultra-relativistic heavy ion research. (1) investigations of multi-particle Hanbury-Brown-Twiss (HBT) correlations in the CERN and RHIC energy domains strongly influence the URHI experimental effort, (2) participation in the NA49 Experiment to study 33 TeV (160 GeV/nucleon) Pb on Pb collisions using the SPS facili& at CERN, and (3) participation in the STAR collaboration which is developing a major detector for use with the STAR Experiment at the Relativistic Heavy Ion Collider (RHIC), being built at BNL.
Dynamical phase trajectories for relativistic nuclear collisions
Arsene, I. C.; Bravina, L. V.; Cassing, W.; Ivanov, Yu. B.; Russkikh, V. N.; Larionov, A.; Randrup, J.; Toneev, V. D.; Zeeb, G.; Zschiesche, D.
2007-03-15
Central collisions of gold nuclei are simulated by several existing models and the central net baryon density {rho} and the energy density {epsilon} are extracted at successive times for beam kinetic energies of 5-40 GeV/nucleon. The resulting trajectories in the ({rho},{epsilon}) phase plane are discussed from the perspective of experimentally exploring the expected first-order hadronization phase transition with the planned FAIR at GSI or in a low-energy campaign at the Relativistic Heavy Ion Collider.
Thermodynamics of neutron-rich nuclear matter
NASA Astrophysics Data System (ADS)
López, Jorge A.; Porras, Sergio Terrazas; Gutiérrez, Araceli Rodríguez
2016-07-01
This manuscript presents methods to obtain properties of neutron-rich nuclear matter from classical molecular dynamics. Some of these are bulk properties of infinite nuclear matter, phase information, the Maxwell construction, spinodal lines and symmetry energy.
Nuclear Matter Equations of State and the Neutron Stars
Urbanec, M.; Stuchlik, Z.; Betak, E.
2008-05-12
The equations of state (EoS) of relativistic asymmetric nuclear matter are obtainable from assumed form of the interaction Lagrangian. They are one of important inputs to describe the neutron stars. The structure of the neutron stars, i.e. the density of matter and the pressure as functions of radial distance starting from their values at the center of a star, is straightforwardly dependent on EoS. Similarly, a limitation on the total mass of the neutron star can be obtained therefrom. Thus, EoS and the underlying nucleon interactions can be tested also by the means of astronomical observations.
Matter in extremis: Ultrarelativistic nuclear collisions at RHIC
Jacobs, Peter; Wang, Xin-Nian
2004-08-20
We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.
Hot and dense matter beyond relativistic mean field theory
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Prakash, Madappa
2016-05-01
Properties of hot and dense matter are calculated in the framework of quantum hadrodynamics by including contributions from two-loop (TL) diagrams arising from the exchange of isoscalar and isovector mesons between nucleons. Our extension of mean field theory (MFT) employs the same five density-independent coupling strengths which are calibrated using the empirical properties at the equilibrium density of isospin-symmetric matter. Results of calculations from the MFT and TL approximations are compared for conditions of density, temperature, and proton fraction encountered in the study of core-collapse supernovae, young and old neutron stars, and mergers of compact binary stars. The TL results for the equation of state (EOS) of cold pure neutron matter at sub- and near-nuclear densities agree well with those of modern quantum Monte Carlo and effective field-theoretical approaches. Although the high-density EOS in the TL approximation for cold and β -equilibrated neutron-star matter is substantially softer than its MFT counterpart, it is able to support a 2 M⊙ neutron star required by recent precise determinations. In addition, radii of 1.4 M⊙ stars are smaller by ˜1 km than those obtained in MFT and lie in the range indicated by analysis of astronomical data. In contrast to MFT, the TL results also give a better account of the single-particle or optical potentials extracted from analyses of medium-energy proton-nucleus and heavy-ion experiments. In degenerate conditions, the thermal variables are well reproduced by results of Landau's Fermi-liquid theory in which density-dependent effective masses feature prominently. The ratio of the thermal components of pressure and energy density expressed as Γth=1 +(Pth/ɛth) , often used in astrophysical simulations, exhibits a stronger dependence on density than on proton fraction and temperature in both MFT and TL calculations. The prominent peak of Γth at supranuclear density found in MFT is, however, suppressed in
A fully general relativistic numerical simulation code for spherically symmetric matter
NASA Astrophysics Data System (ADS)
Park, Dong-Ho; Cho, Inyong; Kang, Gungwon; Lee, Hyung Mok
2013-02-01
We present a fully general relativistic open-source code that can be used for simulating a system of spherically symmetric perfect fluid matter. It is based on the Arnowitt-Deser-Misner 3+1 formalism with maximal slicing and isotropic spatial coordinates. For hydrodynamic matter High Resolution Shock Capturing (HRSC) schemes with a monotonized central-difference limiter and approximated Riemann solvers are used in the Eulerian viewpoint. The accuracy and the convergence of our numerical code are verified by performing several test problems. These include a relativistic blast wave, relativistic spherical accretion of matter into a black hole, Tolman-Oppenheimer-Volkoff (TOV) stars and Oppenheimer-Snyder (OS) dust collapses. In particular, a dynamical code test is done for the OS collapse by explicitly performing numerical coordinate transformations between our coordinate 8system and the one used for the analytic solution. Finally, some TOV star solutions are presented for the Eddington-inspired Born-Infeld gravity theory.
Relativistic nuclear Hamiltonian and currents to (v/c){sub 2}.
R. Schiavilla
1995-08-01
Relativistic Hamiltonians are defines as the sum of relativistic one-body kinetic energies and many-body interactions and their boost corrections. The calculation of the latter from commutation relations of the Poincare group is reviewed. It is shown that the most important terms can be understood from classical relativistic mechanics. The constraints of relativistic covariance on the charge and current densities are examined. Nuclear charge and current operators that satisfy them up to order (1/m){sup 2} are derived.
Bulk Properties of Nuclear Matter From Excitations of Nuclei
Shlomo, Shalom
2007-10-26
We consider the predictive power of Hartree-Fock (HF) approximation in determining properties of finite nuclei and thereby in extracting bulk properties of infinite nuclear matter (NM) by extrapolation. In particular, we review the current status of determining the value of NM incompressibility coefficient K, considering the most sensitive method of analyzing the recent accurate experimental data on excitation strengths of compression modes of nuclei within microscopic relativistic and non-relativistic theoretical models. We discuss the consequences of common violations of self-consistency in HF based random-phase-approximation calculations of strength functions and present results of highly accurate calculations of centroid energies and excitation cross sections of giant resonances. Explanations (resolutions) of long standing discrepancies in the value of K are presented.
Dark-matter distributions around massive black holes: A general relativistic analysis
NASA Astrophysics Data System (ADS)
Sadeghian, Laleh; Ferrer, Francesc; Will, Clifford M.
2013-09-01
The cold dark matter at the center of a galaxy will be redistributed by the presence of a massive black hole. The redistribution may be determined using an approach pioneered by Gondolo and Silk: begin with a model distribution function for the dark matter, and “grow” the black hole adiabatically, holding the adiabatic invariants of the motion constant. Unlike the approach of Gondolo and Silk, which adopted Newtonian theory together with ad hoc correction factors to mimic general relativistic effects, we carry out the calculation fully relativistically, using the exact Schwarzschild geometry of the black hole. We find that the density of dark matter generically vanishes at r=2RS, not 4RS as found by Gondolo and Silk, where RS is the Schwarzschild radius, and that the spike very close to the black hole reaches significantly higher densities. We apply the relativistic adiabatic growth framework to obtain the final dark-matter density for both cored and cusped initial distributions. Besides the implications of these results for indirect detection estimates, we show that the gravitational effects of such a dark-matter spike are significantly smaller than the relativistic effects of the black hole, including frame dragging and quadrupolar effects, for stars orbiting close to the black hole that might be candidates for testing the black-hole no-hair theorems.
Determination of nuclear-matter temperature and density
Wolf, K.L.
1980-01-01
Some of the things learned about nuclear matter under extreme conditions during the past few years in relativistic heavy ion studies are reviewed. Two developments are discussed. The completion of analyses and publication of results from the impact parameter selected, single-particle inclusive experiments have proven to be important. Preliminary results from the new generation of two-particle correlation and particle-exclusive measurements, especially those using streamer chambers, look even more definitive. Also the measurement of more exotic ejectiles with long mean free paths in nuclear matter promises to provide more basic information. Calculations are offering real guidance and are providing explanations of high energy collisions. The Monte Carlo and intranuclear cascade calculations discussed are especially informative.
Effects of Preplasma in 10-ps Relativistic Laser Matter Interaction
NASA Astrophysics Data System (ADS)
Wei, M. S.; Stephens, R. B.; Peebles, J.; McGuffey, C.; Qiao, B.; Beg, F.; Sentoku, Y.; Link, A.; Chen, H.; McLean, H.; Theobald, W.; Haberberger, D.; Davies, A.
2014-10-01
Experiments were performed using the kJ 10-ps OMEGA EP laser to study the effect of preplasma on fast electron generation and energy coupling in relativistic laser plasma interaction (LPI) with a controlled preplasma at various scalelength created by a 1-ns UV laser. Targets were multilayered planar foil consisting of an Al substrate, a buried Cu layer and a thick conductive CH layer. Preplasma density profile and relativistic LPI generated fields were characterized using a 10-ps 4 ω optical probe (angular filter refractometry and polarimetry) together with radiography using a high-energy proton beam produced by the second kJ 10-ps EP beam. Fast electrons were diagnosed by measuring Cu K-shell fluorescence emission and bremsstrahlung radiation. Electron energy spectrum was monitored by a magnetic spectrometer. Preliminary results showed nonlinear interaction instabilities and a reduced electron temperature with increasing preplasma scalelength. Dynamics of the relativistic LPI and the resultant fast electron beam characteristics and energy coupling will be presented. Supported by the US DOE under DE-NA0002026 and DE-FC02-04ER54789.
Superfluidity in asymmetric nuclear matter
Sedrakian, A.; Alm, T.; Lombardo, U.
1997-02-01
The onset of superfluidity in isospin-asymmetric nuclear matter is investigated within the BCS theory. A neutron-proton superfluid state in the channel {sup 3}S{sub 1}-{sup 3}D{sub 1} comes about from the interplay between thermal excitations and separation {delta}{mu} of the two Fermi surfaces. The superfluid state disappears above the threshold value of the density-asymmetry parameter {alpha}=(n{sub n}{minus}n{sub p})/n{approx_equal}0.35. For large enough shift between the two Fermi surfaces {delta}{mu}=(1)/(2)({mu}{sub n}{minus}{mu}{sub p}) the transition to the normal state becomes a first-order transition and a second gap solution develops. This solution, however, corresponds to a metastable superfluid state which is unstable with respect to the transition to the normal state. {copyright} {ital 1997} {ital The American Physical Society}
Relativistic nuclear physics at JINR: from the synchrophasotron to the NICA collider
NASA Astrophysics Data System (ADS)
Agapov, N. N.; Kekelidze, V. D.; Kovalenko, A. D.; Lednitsky, R.; Matveev, V. A.; Meshkov, I. N.; Nikitin, V. A.; Potrebennikov, Yu K.; Sorin, A. S.; Trubnikov, G. V.
2016-04-01
We describe the development of relativistic nuclear physics at the Joint Institute for Nuclear Research (JINR) from the first experiments to our time and review the current state of the problem. The Nuclotron-based Ion Collider fAcility (NICA) at JINR and its status are described. Two goals of the project — experimental studies of dense nuclear (baryonic) matter and particle spin physics — are combined in the project based on a common experimental method: the investigation of collisions of nuclei at relativistic energies. The first problem is discussed here, and the second will be addressed in a dedicated publication. Such experiments were started at JINR in the 1970s at the Synchrophasotron proton synchrotron, and they are the main focus of the NICA project. Fundamental and applied research in other areas of science and technology that can be implemented at the NICA facility is also discussed. The accelerator facility under construction at JINR will allow performing experimental studies in particle physics at parameters and under experimental conditions that were previously inaccessible. With NICA, particle physics research in a previously inaccessible range of experimental parameters and conditions becomes possible: heavy-ion beams will be collided at center-of-mass energies in the range 4–11 GeV at luminosities up to 1027 cm–2 s–1. These studies will be supplemented with experiments using a beam of exracted nuclei incident on a fixed target. A short description is given of the detectors under construction for these studies.
NASA Astrophysics Data System (ADS)
Lavagno, A.; Gervino, G.; Pigato, D.
2014-03-01
We study a nonlinear nuclear equation of state in the framework of a relativistic mean field theory. We investigate the possible thermodynamic instability in a warm and dense asymmetric nuclear medium where a phase transition from nucleonic matter to resonance dominated Δ matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon-Δ matter phase transition due essentially to a negative Δ-particles excess in asymmetric nuclear matter. In this context, we investigate also the effects of power law effects, due to the possible presence of nonextensive statistical mechanics effects.
Nuclear ρ meson transparency in a relativistic Glauber model
NASA Astrophysics Data System (ADS)
Cosyn, W.; Ryckebusch, J.
2013-06-01
Background: The recent Jefferson Laboratory data for the nuclear transparency in ρ0 electroproduction have the potential to settle the scale for the onset of color transparency (CT) in vector meson production.Purpose: To compare the data to calculations in a relativistic and quantum-mechanical Glauber model and to investigate whether they are in accordance with results including color transparency given that the computation of ρ-nucleus attenuations is subject to some uncertainties.Method: We compute the nuclear transparencies in a multiple-scattering Glauber model and account for effects stemming from color transparency, from ρ-meson decay, and from short-range correlations (SRC) in the final-state interactions (FSI).Results: The robustness of the model is tested by comparing the mass dependence and the hard-scale dependence of the A(e,e'p) nuclear transparencies with the data. The hard-scale dependence of the (e,e'ρ0) nuclear transparencies for 12C and 56Fe are only moderately affected by SRC and by ρ0 decay.Conclusions: The RMSGA calculations confirm the onset of CT at four-momentum transfers of a few (GeV/c)2 in ρ meson electroproduction data. A more precise determination of the scale for the onset of CT is hampered by the lack of precise input in the FSI and ρ-meson decay calculations.
Properties of hot and dense matter from relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Braun-Munzinger, Peter; Koch, Volker; Schäfer, Thomas; Stachel, Johanna
2016-03-01
We review the progress achieved in extracting the properties of hot and dense matter from relativistic heavy ion collisions at the relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory and the large hadron collider (LHC) at CERN. We focus on bulk properties of the medium, in particular the evidence for thermalization, aspects of the equation of state, transport properties, as well as fluctuations and correlations. We also discuss the in-medium properties of hadrons with light and heavy quarks, and measurements of dileptons and quarkonia. This review is dedicated to the memory of Gerald E. Brown.
Jet-induced modifications of the characteristic of the bulk nuclear matter
NASA Astrophysics Data System (ADS)
Marcinkowski, P.; Słodkowski, M.; Kikoła, D.; Sikorski, J.; Porter-Sobieraj, J.; Gawryszewski, P.; Zygmunt, B.
2016-01-01
We present our studies on jet induced modifications of the characteristics of bulk nuclear matter. To describe such matter, we use efficient relativistic hydrodynamic simulations in (3+1)-dimension, employing the Graphics Processing Unit (GPU) in the parallel programming framework. We use Cartesian coordinates in the calculations to ensure a high spatial resolution that is constant throughout the evolution of the system. We show our results on how jets modify the hydrodynamics fields and discuss the implications.
Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case
Bettoni, Dario; Colombo, Mattia; Liberati, Stefano E-mail: mattia.colombo@studenti.unitn.it
2014-02-01
Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales.
Nuclear and neutron matter studies
Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.
1995-08-01
We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
2006-07-01
Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<~1A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, \\sqrt{s_NN}=200\\,GeV , total cm energy 200 A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.
Nuclear matter magnetization in the Skyrme model
Aguirre, R.
2011-05-15
The effects of an external magnetic field on the nuclear medium are studied within the Skyrme model of the nuclear interaction. The equation of state, spin polarization, and magnetization are evaluated at zero temperature for both neutron matter and isospin symmetric nuclear matter. We consider the anomalous magnetic moments of the nucleons and the quantization induced by a magnetic field over the proton energy spectrum. A comparison of two versions of the model, allowing or not for spontaneous magnetization, is performed. We cover a range of magnetic-field strengths and matter densities appropriate for astrophysical studies.
Nuclear collective excitations: A relativistic density functional approach
NASA Astrophysics Data System (ADS)
Piekarewicz, J.
2015-08-01
Density functional theory provides the most promising, and likely unique, microscopic framework to describe nuclear systems ranging from finite nuclei to neutron stars. Properly optimized energy density functionals define a new paradigm in nuclear theory where predictive capability is possible and uncertainty quantification is demanded. Moreover, density functional theory offers a consistent approach to the linear response of the nuclear ground state. In this paper, we review the fundamental role played by nuclear collective modes in uncovering novel excitations and in guiding the optimization of the density functional. Indeed, without collective excitations the determination of the density functional remains incomplete. Without collective excitations, the equation of state of neutron-rich matter continues to be poorly constrained. We conclude with a discussion of some of the remaining challenges in this field and propose a path forward to address these challenges.
Condensation for non-relativistic matter in Hořava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Jing, Jiliang; Chen, Songbai; Pan, Qiyuan
2015-10-01
We study condensation for non-relativistic matter in a Hořava-Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ɛ), it is easier for the scalar hair to form as the parameter ɛ (or α2) becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ɛ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz-Roberts relation ωg /Tc ≈ 8 obtained in the Einstein gravity and Cai's result ωg /Tc ≈ 13 found in a Hořava-Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg /Tc ≈ 3.5 by taking proper values of the parameters.
Soliton matter as a model of dense nuclear matter
Glendenning, N.K.
1985-01-01
We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures.
Report on the 1984 LBL workshop on detectors for relativistic nuclear collisions
Schroeder, L.S.
1984-11-01
Highlights of the Workshop on Detectors for Relativistic Nuclear Collisions, held March 26-30, 1984, at the Lawrence Berkeley Laboratory are reviewed. (Complete proceedings are available as report LBL-18225.) (WHK)
Nuclear "pasta matter" for different proton fractions
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Iida, K.; Maruhn, J. A.; Reinhard, P.-G.
2014-11-01
Nuclear matter under astrophysical conditions is explored with time-dependent and static Hartree-Fock calculations. The focus is in a regime of densities where matter segregates into liquid and gaseous phases unfolding a rich scenario of geometries, often called nuclear pasta shapes (e.g., spaghetti, lasagna). Particularly the appearance of the different phases depending on the proton fraction and the transition to uniform matter are investigated. In this context the neutron background density is of special interest, because it plays a crucial role in the type of pasta shape that is built. The study is performed in two dynamical ranges, once for hot matter and once at temperature zero, to investigate the effect of cooling.
Medium polarization in asymmetric nuclear matter
NASA Astrophysics Data System (ADS)
Zhang, S. S.; Cao, L. G.; Lombardo, U.; Schuck, P.
2016-04-01
The influence of the medium polarization on the effective nuclear interaction of asymmetric nuclear matter is calculated in the framework of the induced interaction theory. The strong isospin dependence of the density and spin-density fluctuations is studied as it is driven by the interplay between the neutron and proton medium polarizations. Going from symmetric nuclear matter to pure neutron matter, the crossover of the induced interaction from attractive to repulsive in the spin-singlet state is determined as a function of the isospin imbalance. The density range in which the crossover occurs is also determined. For the spin-triplet state the induced interaction turns out to be always repulsive. The implications of the results for neutron star superfluid phases are briefly discussed.
Dynamics of hot and dense nuclear and partonic matter
Bratkovskaya, E. L.; Cassing, W.; Linnyk, O.; Konchakovski, V. P.; Voronyuk, V.; Ozvenchuk, V.
2012-06-15
The dynamics of hot and dense nuclear matter is discussed from the microscopic transport point of view. The basic concepts of the Hadron-String-Dynamical transport model (HSD)-derived from Kadanoff-Baym equations in phase phase-are presented as well as 'highlights' of HSD results for different observables in heavy-ion collisions from 100 A MeV (SIS) to 21 A TeV(RHIC) energies. Furthermore, a novel extension of the HSD model for the description of the partonic phase-the Parton-Hadron-String-Dynamics (PHSD) approach-is introduced. PHSD includes a nontrivial partonic equation of state-in line with lattice QCD-as well as covariant transition rates from partonic to hadronic degrees of freedom. The sensitivity of hadronic observables to the partonic phase is demonstrated for relativistic heavy-ion collisions from the FAIR/NICA up to the RHIC energy regime.
Non-relativistic matter and dark energy in a quantum conformal model
NASA Astrophysics Data System (ADS)
Kashyap, Gopal; Jain, Pankaj; Mitra, Subhadip
2016-02-01
We consider a generalization of the Standard Model whose action displays conformal invariance in d dimensions. The model contains a strongly coupled dark matter sector which breaks conformal symmetry dynamically. The model evades conformal anomaly and leads to identically zero vacuum energy in flat space-time. Hence it does not suffer from the problem of fine tuning of the cosmological constant. We determine the contribution of non-relativistic matter to the energy-momentum tensor and determine a parameter regime in which it approximately reduces to the standard result. We show how dark energy and dark matter arises in this model. We discuss the parameter range for which the model reduces to the ΛCDM model and hence is consistent with observations.
Holographic cold nuclear matter and neutron star
NASA Astrophysics Data System (ADS)
Ghoroku, Kazuo; Kubo, Kouki; Tachibana, Motoi; Toyoda, Fumihiko
2014-04-01
We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8//lineD8 branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing Fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule
NASA Astrophysics Data System (ADS)
Cloët, Ian C.; Bentz, Wolfgang; Thomas, Anthony W.
2016-01-01
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q |≳0.5 GeV . The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.
Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.
Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W
2016-01-22
In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5 GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei. PMID:26849589
Open heavy flavor in QCD matter and in nuclear collisions
NASA Astrophysics Data System (ADS)
Prino, Francesco; Rapp, Ralf
2016-09-01
We review the experimental and theoretical status of open heavy-flavor (HF) production in high-energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). We first overview the theoretical concepts and pertinent calculations of HF transport in strong-interaction matter, including perturbative and non-perturbative approaches in quark–gluon plasma, effective models in hadronic matter, as well as implementations of heavy-quark (HQ) hadronization. This is followed by a brief discussion of bulk evolution models for heavy-ion collisions and initial conditions for the HQ distributions which are needed to calculate HF spectra in comparison to observables. We then turn to a discussion of experimental data that have been collected to date at RHIC and the LHC, specifically for the nuclear modification factor and elliptic flow of leptons from semileptonic HF decays, D mesons, non-prompt J/\\psi from B-meson decays, and b-jets. Model comparisons to HF data are conducted with regards to extracting the magnitude, temperature and momentum dependence of HF transport coefficients from experiment.
Nuclear matter in the early universe
NASA Astrophysics Data System (ADS)
Barros, Celso de Camargo; da Cunha, Ivan Eugênio
2015-12-01
Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10-6s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.
Nuclear matter in the early universe
Barros, Celso de Camargo; Cunha, Ivan Eugênio da
2015-12-17
Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10{sup −6}s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. We will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.
Resonance properties in nuclear matter
Ehehalt, W.; Cassing, W.; Engel, A.; Mosel, U.; Wolf, G. )
1993-06-01
We analyze the formation and decay properties of nucleon resonances formed in heavy-ion collisions at 1--2 GeV/[ital u] within a microscopic transport approach. In case of Au+Au reactions the density of [Delta] resonances reaches 0.15 fm[sup [minus]3] in the central cell for a time period of the order of 10 fm/[ital c] such that one can legitimately speak about [ital resonance] [ital matter]. The lifetime of the [Delta]'s is found to be shortened at high density by only 20% due to the in-medium channel [Delta]+[ital N][r arrow][ital N]+[ital N].
Relativistic calculations of the nuclear recoil effect in highly charged Li-like ions
NASA Astrophysics Data System (ADS)
Zubova, N. A.; Shabaev, V. M.; Tupitsyn, I. I.; Plunien, G.
2013-09-01
Relativistic theory of the nuclear recoil effect in highly charged Li-like ions is considered within the Breit approximation. The normal mass shift (NMS) and the relativistic NMS (RNMS) are calculated by perturbation theory to zeroth and first orders in the parameter 1/Z. The calculations are performed using the dual kinetic balance method with the basis functions constructed from B-splines. The results of the calculations are compared with the theoretical values obtained by other methods.
Probing cold dense nuclear matter.
Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L
2008-06-13
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658
Probing Cold Dense Nuclear Matter
Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan
2008-06-01
The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.
KHARZEEV,D.
1999-04-20
The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.
Spin-orbit interaction in relativistic nuclear structure models
NASA Astrophysics Data System (ADS)
Ebran, J.-P.; Mutschler, A.; Khan, E.; Vretenar, D.
2016-08-01
Relativistic self-consistent mean-field (SCMF) models naturally account for the coupling of the nucleon spin to its orbital motion, whereas nonrelativistic SCMF methods necessitate a phenomenological ansatz for the effective spin-orbit potential. Recent experimental studies aim to explore the isospin properties of the effective spin-orbit interaction in nuclei. SCMF models are very useful in the interpretation of the corresponding data; however, standard relativistic mean-field and nonrelativistic Hartree-Fock models use effective spin-orbit potentials with different isovector properties, mainly because exchange contributions are not treated explicitly in the former. The impact of exchange terms on the effective spin-orbit potential in relativistic mean-field models is analyzed, and it is shown that it leads to an isovector structure similar to the one used in standard nonrelativistic Hartree-Fock models. Data on the isospin dependence of spin-orbit splittings in spherical nuclei could be used to constrain the isovector-scalar channel of relativistic mean-field models. The reproduction of the empirical kink in the isotope shifts of even Pb nuclei by relativistic effective interactions points to the occurrence of pseudospin symmetry in the single-neutron spectra in these nuclei.
Sigma omega meson coupling and properties of nuclei and nuclear matter
NASA Astrophysics Data System (ADS)
Haidari, Maryam M.; Sharma, Madan M.
2008-05-01
We have constructed a Lagrangian model with a coupling of σ and ω mesons in the relativistic mean-field theory. Properties of finite nuclei and nuclear matter are explored with the new Lagrangian model SIG-OM. The study shows that an excellent description of binding energies and charge radii of nuclei over a large range of isospin is achieved with SIG-OM. With an incompressibility of nuclear matter K=265 MeV, it is also able to describe the breathing-mode isoscalar giant monopole resonance energies appropriately. It is shown that the high-density behaviour of the equation of state of nuclear and neutron matter with the σ-ω coupling is much softer than that of the non-linear scalar coupling model.
Ion acceleration beyond 100MeV/amu from relativistic laser-matter interactions
NASA Astrophysics Data System (ADS)
Jung, Daniel; Gautier, Cort; Johnson, Randall; Letzring, Samuel; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Fernandez, Juan; Hegelich, Manuel; Yin, Lin; Albright, Brian; Habs, Dieter
2012-10-01
In the past 10 years laser acceleration of protons and ions was mainly achieved by laser light interacting with micrometer scaled solid matter targets in the TNSA regime, favoring acceleration of protons. Ion acceleration based on this acceleration mechanism seems to have stagnated in terms of particle energy, remaining too low for most applications. The high contrast and relativistic intensities available at the Trident laser allow sub-micron solid matter laser interaction dominated by relativistic transparency of the target. This interaction efficiently couples laser momentum into all target ion species, making it a promising alternative to conventional accelerators. However, little experimental research has up to now studied conversion efficiency or beam distributions, which are essential for application, such as ion based fast ignition (IFI) or hadron cancer therapy. We here present experimental data addressing these aspects for C^6+ ions and protons in comparison with the TNSA regime. Unique measurements of angularly resolved ion energy spectra for targets ranging from 30 nm to 25 micron are presented. While the measured conversion efficiency for C^6+ reaches up to ˜7%, peak energies of 1 GeV and 120 MeV have been measured for C^6+ and protons, respectively.
Chiral density wave in nuclear matter
NASA Astrophysics Data System (ADS)
Heinz, Achim; Giacosa, Francesco; Rischke, Dirk H.
2015-01-01
Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ0, where ρ0 is the nuclear matter ground-state density.
Probing nuclear matter with jet conversions
Liu, W.; Fries, R. J.
2008-05-15
We discuss the flavor of leading jet partons as a valuable probe of nuclear matter. We point out that the coupling of jets to nuclear matter naturally leads to an alteration of jet chemistry even at high transverse momentum p{sub T}. In particular, quantum chromodynamics (QCD) jets coupling to a chemically equilibrated quark gluon plasma in nuclear collisions will lead to hadron ratios at high transverse momentum p{sub T} that can differ significantly from their counterparts in p+p collisions. Flavor measurements could complement energy loss as a way to study interactions of hard QCD jets with nuclear matter. Roughly speaking they probe the inverse mean free path 1/{lambda} while energy loss probes the average squared momentum transfer {mu}{sup 2}/{lambda}. We present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-p{sub T} identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects.
Key, M.H.; Campbell, E.M.; Cowen, T.E.; Hatchett, S.P.; Jenary, E.A.; Koch, J.A.; Langson, A.B.; Lasinski, B.F.; Lee, W.; Mackinnon, A.; Offenberger, A.A.; Perry, M.D.; Phillips, T.J.; Roth, M.; Sangster, T.C.; Singh, M.S.; Snavely, R.; Stoyer, M.A.; Wilks, S.C.; Yaskire, K.Y.
1999-11-11
The interaction of laser radiation with solid targets at 1 petawatt power and intensity up to 3 x 10{sup 20} Wcm{sup -2} has been studied with emphasis on relativistic electrons and high-energy ions. Secondary effects including Bremsstrahlung radiation, nuclear interactions and heating have been characterized. A collimated beam of protons with up to 55 MeV energy is emitted normal to the rear surface of thin targets and its characteristics and origin are discussed. The significance of the data for radiography, fast ignition and proton beam applications is summarized.
Key, M H; Campbell, E M; Cowan, T E; Hatchett, S P; Henry, E A; Koch, J A; Landgon, A B; Lasinski, B F; Lee, R W; MacKinnon, A; Offenberger, A; Pennington, D M; Perry, M D; Sangster, T C; Yasuike, K; Snavely, R; Roth, M; Phillips, T W; Stoyer, M A; Wilks, S C; Singh, M S
1999-09-27
The interaction of laser radiation with solid targets at 1 petawatt power and intensity up to 3x10{sup 20} Wcm{sup -2} has been studied with emphasis on relativistic electrons and high energy ions. Secondary effects including Bremsstrahlung radiation, nuclear interactions and heating have been characterized. A collimated beam of protons with up to 55 MeV energy is emitted normal to the rear surface of thin targets and its characteristics and origin are discussed. The significance of the data for radiography, fast ignition and proton beam applications is summarized.
Wanted! Nuclear Data for Dark Matter Astrophysics
Gondolo, P.
2014-06-15
Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.
NASA Astrophysics Data System (ADS)
Xiao, Yunlong; Zhang, Yong; Liu, Wenjian
2014-10-01
Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same "direct relativistic mapping" between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].
Nuclear matter within the continuous choice
Baldo, M.; Bombaci, I.; Ferreira, L.S.; Giansiracusa, G.; Lombardo, U. Dipartimento di Fisica, Universita di Catania, Corso Italia 57, 95129 Catania, Italy)
1991-06-01
The saturation curve of symmetric nuclear matter is calculated at the Brueckner-Hartree-Fock level of approximation within the continuous choice for the single-particle potential. The realistic local Argonne {ital v}{sub 14} potential is used and the results are compared with similar calculations presented in the literature. The binding energies per nucleon around saturation agree closely with previous results obtained with separable versions of the same potential as well as of the Paris potential.
Asymmetric nuclear matter equation of state
Bombaci, I.; Lombardo, U. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania )
1991-11-01
Systematic calculations of asymmetric nuclear matter have been performed in the framework of the Brueckner-Bethe-Goldstone approach in a wide range of both density and asymmetry parameter. The empirical parabolic law fulfilled by the binding energy per nucleon is confirmed by the present results in all the range of the asymmetry parameter values. The predominant role of the {sup 3}{ital S}{sub 1-}{sup 3}{ital D}{sub 1} component of the {ital NN} interaction is elucidated. A linear variation of the proton and neutron single-particle potentials is found as increasing the neutron excess; a deviation from the phenomenological potentials occurs for highly asymmetric matter as an effect of the self-consistency. The present calculations of the incompressibility predict a strong softening of the equation of state going from symmetric to asymmetric nuclear matter. The proton fraction in equilibrium with neutron matter has been determined from the beta-stability condition and its relevance to the superfluidity of neutron stars has been investigated.
Signatures of α Clustering in Light Nuclei from Relativistic Nuclear Collisions
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Ruiz Arriola, Enrique
2014-03-01
We argue that relativistic nuclear collisions may provide experimental evidence of α clustering in light nuclei. A light α-clustered nucleus has a large intrinsic deformation. When collided against a heavy nucleus at very high energies, this deformation transforms into the deformation of the fireball in the transverse plane. The subsequent collective evolution of the fireball leads to harmonic flow reflecting the deformation of the initial shape, which can be measured with standard methods of relativistic heavy-ion collisions. We illustrate the feasibility of the idea by modeling the C12-Pb208 collisions and point out that very significant quantitative and qualitative differences between the α-clustered and uniform C12 nucleus occur in such quantities as the triangular flow, its event-by-event fluctuations, or the correlations of the elliptic and triangular flows. The proposal offers a possibility of studying low-energy nuclear structure phenomena with "snapshots" made with relativistic heavy-ion collisions.
Neutrinos, Dark Matter and Nuclear Detection
Goldstein, W H; Bernstein, A; Craig, W W; Johnson, M
2007-05-29
Solutions to problems in nuclear non-proliferation and counter-terrorism may be found at the forefront of modern physics. Neutrino oscillation experiments, dark matter searches, and high energy astrophysics, are based on technology advances that have may also have application to nuclear detection. The detection problems share many characteristics, including energy scales, time structures, particle-type, and, of course, the combination of high backgrounds and low signal levels. This convergence of basic and applied physics is realized in non-proliferation and homeland security projects at Lawrence Livermore National Laboratory. Examples described here include reactor anti-neutrino monitoring, dual-phase noble liquid TPC development, gamma-ray telescopes, and nuclear resonance fluorescence.
Effect of the {delta} meson on the instabilities of nuclear matter under strong magnetic fields
Rabhi, A.; Providencia, C.; Da Providencia, J.
2009-08-15
We study the influence of the isovector-scalar meson on the spinodal instabilities and the distillation effect in asymmetric nonhomogenous nuclear matter under strong magnetic fields of the order of 10{sup 18}-10{sup 19} G. Relativistic nuclear models both with constant couplings (NLW) and with density-dependent parameters (DDRH) are considered. A strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. It is shown that for neutron-rich matter the inclusion of the {delta} meson increases the size of the instability region for NLW models and decreases it for the DDRH models. The effect of the {delta} meson on the transition density to homogeneous {beta}-equilibrium matter is discussed. The DDRH{delta} model predicts the smallest transition pressures, about half the values obtained for NL{delta}.
Relativistic symmetries in nuclear single-particle spectra
NASA Astrophysics Data System (ADS)
Guo, Jian-You; Liang, Hao Zhao; Meng, Jie; Zhou, Shan-Gui
Symmetry is a fundamental concept in quantum physics. The quasi-degeneracy between single-particle orbitals (n, l, j = l + 1/2) and (n -1, l + 2, j = l + 3/2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry. Since the pseudospin symmetry was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry for anti-nucleons, and many new concepts have been introduced. In this Chapter, we will illustrate the schematic picture of spin and pseudospin symmetries, derive the basic formalism, highlight the recent progress from several different aspects, and discuss selected open issues in this topic.
Not Available
1984-08-01
This document describes the Brookhaven National Laboratory Proposal for the construction of a Relativistic Heavy Ion Collider (RHIC). The construction of this facility represents the natural continuation of the laboratory's role as a center for nuclear and high-energy physics research and extends and uses the existing AGS, Tandem Van de Graaff and CBA facilities at BNL in a very cost effective manner. The Administration and Congress have approved a project which will provide a link between the Tandem Van de Graaf and the AGS. Completion of this project in 1986 will provide fixed target capabilities at the AGS for heavy ions of about 14 GeV/amu with masses up to approx. 30 (sulfur). The addition of an AGS booster would extend the mass range to the heaviest ions (A approx. 200, e.g., gold); its construction could start in 1986 and be completed in three years. These two new AGS experimental facilities can be combined with the proposed Relativistic Heavy Ion Collider to extend the energy range to 100 x 100 GeV/amu for the heaviest ions. BNL proposes to start construction of RHIC in FY 86 with completion in FY 90 at a total cost of 134 M$.
Nucleon sigma term and quark condensate in nuclear matter
K. Tsushima; K. Saito; A. W. Thomas; A. Valcarce
2007-03-01
We study the bound nucleon sigma term and its effect on the quark condensate in nuclear matter. In the quark-meson coupling (QMC) model it is shown that the nuclear correction to the sigma term is small and negative. Thus, the correction decelerates the decrease of the quark condensate in nuclear matter. However, the quark condensate in nuclear matter is controlled primarily by the scalar-isoscalar sigma field of the model. It appreciably moderates the decrease relative to the leading term at densities around and larger than the normal nuclear matter density.
Elementary diagrams in nuclear and neutron matter
Wiringa, R.B.
1995-08-01
Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developed a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.
Is nuclear matter a quantum crystal?
NASA Technical Reports Server (NTRS)
Canuto, V.; Chitre, S. M.
1973-01-01
A possible alternative to the ordinary gas-like computation for nuclear matter is investigated under the assumption that the nucleons are arranged in a lattice. BCC, FCC and HCP structures are investigated. Only HCP shows a minimum in the energy vs. density curve with a modest binding energy of -1.5 MeV. The very low density limit is investigated and sensible results are obtained only if the tensor force decreases with the density. A study of the elastic properties indicates that the previous structures are mechanically unstable against shearing stresses.
Hadronization measurements in cold nuclear matter
Dupre, Raphael
2015-05-01
Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.
NASA Astrophysics Data System (ADS)
Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.
2016-04-01
The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin–spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin–spin coupling constants using the available software are given. The bibliography includes 622 references.
Quantum Monte Carlo calculations of neutron and nuclear matter
NASA Astrophysics Data System (ADS)
Gandolfi, Stefano
2014-09-01
Recent advances in experiments of the symmetry energy of nuclear matter and in neutron star observations yield important new insights on the equation of state of neutron matter at nuclear densities. In this regime the EOS of neutron matter plays a critical role in determining the mass-radius relationship for neutron stars. We show how microscopic calculations of neutron matter, based on realistic two- and three-nucleon forces, make clear predictions for the relation between the isospin-asymmetry energy of nuclear matter and its density dependence, and the maximum mass and radius for a neutron star. We will also discuss the recent extension of the Auxiliary Field Diffusion Monte Carlo method to study the equation of state of nuclear matter using two-body nucleon interactions. The equation of state of isospin-asymmetric nuclear matter will also be discussed.
Big Bang synthesis of nuclear dark matter
NASA Astrophysics Data System (ADS)
Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.
2015-06-01
We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳ 108, may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫ 108, are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.
Bordbar, G. H.; Bigdeli, M.
2008-01-15
In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.
Quark mean field approach with derivative coupling for nuclear matter
Kawabata, M.; Akiyama, S.; Futami, Y.; Nakasone, T.; Yukino, T.
2008-05-15
We propose the quark mean field model including derivative coupling between quarks and scalar mesons in nuclear matter. This model concisely interprets an increasing size of the nucleon as well as a modification of coupling constant in the nuclear environment.
The equation of state of dense matter: from nuclear collisions to neutron stars
NASA Astrophysics Data System (ADS)
Burgio, G. F.
2008-01-01
The equation of state (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner Hartree Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu Jona-Lasinio and the color dielectric models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.
Xiao, Yunlong; Zhang, Yong; Liu, Wenjian
2014-10-28
Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same "direct relativistic mapping" between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)]. PMID:25362275
Xiao, Yunlong; Zhang, Yong; Liu, Wenjian
2014-10-28
Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].
Ground-state energy of nuclear matter
NASA Astrophysics Data System (ADS)
Baker, George A., Jr.; Benofy, L. P.; Fortes, Mauricio
1988-07-01
The low-density expansion of the ground-state energy for spin-dependent forces is given, through order k6F for the ladder approximation and through order k6FlnkF for the complete energy, in terms of derivatives with respect to the strength of the attractive part of the interaction defined by the Baker-Hind-Kahane potential. The ladder approximation is also computed by the numerical solution of the K-matrix equation. The resulting series gives a satisfactory representation of the energy at interesting densities. Using Padé extrapolation techniques, both in the density and in the attractive part of the interaction, we obtain the ground-state energy of nuclear matter.
NASA Astrophysics Data System (ADS)
Xiao, Yunlong; Liu, Wenjian
2013-07-01
The relativistic molecular Hamiltonian written in the body-fixed frame of reference is the basis for high-precision calculations of spectroscopic parameters involving nuclear vibrations and/or rotations. Such a Hamiltonian that describes electrons fully relativistically and nuclei quasi-relativistically is just developed for semi-rigid nonlinear molecules [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)], 10.1063/1.4797496. Yet, the formulation should somewhat be revised for linear molecules thanks to some unusual features arising from the redundancy of the rotation around the molecular axis. Nonetheless, the resulting isomorphic Hamiltonian is rather similar to that for nonlinear molecules. Consequently, the relativistic formulation of nuclear spin-rotation (NSR) tensor for linear molecules is very much the same as that for nonlinear molecules. So is the relativistic mapping between experimental NSR and NMR.
Future relativistic heavy ion experiments
Pugh, H.G.
1980-12-01
Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned. (GHT)
Strangeness and charm in nuclear matter
NASA Astrophysics Data System (ADS)
Tolos, Laura; Cabrera, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis
2013-09-01
The properties of strange (K, Kbar and K) and open-charm (D, Dbar and D*) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the K, Kbar and K spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the γA→K+KA‧ reaction, which we propose as a tool to detect in-medium modifications of the K meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of D-mesic nuclei at FAIR energies.
NASA Astrophysics Data System (ADS)
Batani, D.; Baton, S. D.; Manclossi, M.; Amiranoff, F.; Koenig, M.; Santos, J. J.; Martinolli, E.; Gremillet, L.; Popescu, H.; Antonicci, A.; Rousseaux, C.; Rabec Le Gloahec, M.; Hall, T.; Malka, V.; Cowan, T. E.; Stephens, R.; Key, M.; King, J.; Freeman, R.
2004-12-01
This paper reports the results of several experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic currents in matter from ultra-high-intensity laser pulse interaction with target. We present our results according to the type of diagnostics used in the experiments: 1) Kα emission and Kα imaging, 2) study of target rear side emission in the visible region, 3) time resolved optical shadowgraphy.
Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.
2009-12-15
We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.
Incompressibility in finite nuclei and nuclear matter
NASA Astrophysics Data System (ADS)
Stone, J. R.; Stone, N. J.; Moszkowski, S. A.
2014-04-01
The incompressibility (compression modulus) K0 of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. It is usually extracted from data on the giant monopole resonance (GMR) or calculated using theoretical models. We present a comprehensive reanalysis of recent data on GMR energies in even-even 112-124Sn and 106,100-116Cd and earlier data on 58≤A≤208 nuclei. The incompressibility of finite nuclei KA is calculated from experimental GMR energies and expressed in terms of A-1/3 and the asymmetry parameter β =(N-Z)/A as a leptodermous expansion with volume, surface, isospin, and Coulomb coefficients Kvol, Ksurf, Kτ, and KCoul. Only data consistent with the scaling approximation, leading to a fast converging leptodermous expansion, with negligible higher-order-term contributions to KA, were used in the present analysis. Assuming that the volume coefficient Kvol is identified with K0, the KCoul=-(5.2±0.7) MeV and the contribution from the curvature term KcurvA-2/3 in the expansion is neglected, compelling evidence is found for K0 to be in the range 250
Structure of matter, radioactivity, and nuclear fission. Volume 3
Not Available
1986-01-01
Subject matter includes structure of matter (what is matter, forces holding atoms together, visualizing the atom, the chemical elements, atomic symbols, isotopes, radiation from the atom), radioactivity (what holds the nucleus together, can one element change into another element, radiation from the nucleus, half-life, chart of the nuclides), and nuclear fission (nuclear energy release, the fission process, where does fission energy go, radiation and radioactivity resulting from fission).
Nuclear matter at high temperature and low net baryonic density
Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.
2010-11-12
We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.
Impact of Fock terms on the isospin properties of nuclear matter
NASA Astrophysics Data System (ADS)
Sun, Bao Yuan; Zhao, Qian; Long, Wen Hui
2016-05-01
Several topics on the isospin properties of nuclear matter studied within the density-dependent relativistic Hartree-Fock theory are summarized. In detail, the effects of the Fock terms on the nuclear symmetry energy are listed, including the extra enhancement from the Fock terms of the isoscalar meson-nucleon coupling channels, the extra hyperon-induced suppression effect originating from the Fock channel, self-consistent tensor effects embedded automatically in the Fock diagrams, the enhanced density-dependent isospin-triplet potential part of the symmetry energy at high densities, a reduced kinetic symmetry energy at supranuclear density and so on. The results demonstrate the importance of the Fork diagram, especially from the isoscalar mesonnucleon coupling channels, on the isospin properties of the in-medium nuclear force.
Nucleons, Nuclear Matter and Quark Matter: A unified NJL approach
S. Lawley; W. Bentz; A.W. Thomas
2006-02-10
We use an effective quark model to describe both hadronic matter and deconfined quark matter. By calculating the equations of state and the corresponding neutron star properties, we show that the internal properties of the nucleon have important implications for the properties of these systems.
NASA Astrophysics Data System (ADS)
Robin, Caroline; Litvinova, Elena
2016-07-01
A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.
Project: Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere
Cowee, Misa; Gary, S. Peter; Winske, Dan; Liu, Kaijun
2012-07-17
We present a summary of the FY12 activities for DTRA-funded project 'Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere'. We briefly review the outstanding scientific questions and discuss the work done in the last year to try to answer these questions. We then discuss the agenda for this Technical Meeting with the DTRA sponsors. In the last year, we have continued our efforts to understand artificial radiation belts from several different perspectives: (1) Continued development of Electron Source Model (ESM) and comparison to HANE test data; (2) Continued studies of relativistic electron scattering by waves in the natural radiation belts; (3) Began study of self-generated waves from the HANE electrons; and (4) Began modeling for the UCLA laser experiment.
Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
Lantto, Perttu; Romero, Rodolfo H; Gómez, Sergio S; Aucar, Gustavo A; Vaara, Juha
2006-11-14
The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X(2+), X(4+), XH(2), and XH(3) (-) (X=Si-Pb) as well as X(3+), XH(3), and XF(3) (X=P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH(3) (-), XH(3), and XF(3), and is equally large in XH(2) as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of approximately 1500 ppm between BiH(3) and BiF(3). The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom
Relativistic heavy-atom effects on heavy-atom nuclear shieldings
NASA Astrophysics Data System (ADS)
Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha
2006-11-01
The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal
Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms
Oshima, Sachiko; Fujita, Takehisa; Asaga, Tomoko
2007-03-15
The atomic electric dipole moment (EDM) is evaluated by considering the relativistic effects as well as nuclear finite size effects in Xe and Hg atomic systems. Due to Schiff's theorem, the first order perturbation energy of EDM is canceled out by the second order perturbation energy for the point nucleus. The nuclear finite size effects arising from the intermediate atomic excitations may be finite for deformed nucleus but it is extremely small. The finite size contribution of the intermediate nuclear excitations in the second order perturbation energy is completely canceled by the third order perturbation energy. As the results, the finite contribution to the atomic EDM comes from the first order perturbation energy of relativistic effects, and it amounts to around 0.3 and 0.4 percents of the neutron EDM d{sub n} for Xe and Hg, respectively, though the calculations are carried out with a simplified single-particle nuclear model. From this relation in Hg atomic system, we can extract the neutron EDM which is found to be just comparable with the direct neutron EDM measurement.
Cheng, Lan
2015-08-14
Quantum-chemical computations of nuclear quadrupole-coupling parameters for 24 open-shell states of small molecules based on non-relativistic and spin-free exact two-component (SFX2C) relativistic equation-of-motion coupled-cluster (EOM-CC) as well as spin-orbital-based restricted open-shell Hartree-Fock coupled-cluster (ROHF-CC) methods are reported. Relativistic effects, the performance of the EOM-CC and ROHF-CC methods for treating electron correlation, as well as basis-set convergence have been carefully analyzed. Consideration of relativistic effects is necessary for accurate calculations on systems containing third-row (K-Kr) and heavier elements, as expected, and the SFX2C approach is shown to be a useful cost-effective option here. Further, it is demonstrated that the EOM-CC methods constitute flexible and accurate alternatives to the ROHF-CC methods in the calculations of nuclear quadrupole-coupling parameters for open-shell states.
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha
2007-10-28
Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the
Relativistic nuclear recoil, electron correlation and QED effects in highly charged Ar ions
NASA Astrophysics Data System (ADS)
Harman, Z.; Soria Orts, R.; Lapierre, A.; Crespo Lopez-Urrutia, J. R.; Artemyev, A. N.; Tupitsyn, I. I.; Jentschura, U. D.; Keitel, C. H.; Tawara, H.; Ullrich, J.; Shabaev, V. M.; Volotka, A. V.
2007-06-01
We have performed extensive theoretical studies on the 1s^22s^22p^2P3/2 -- ^2P1/2 M1 transition in Ar^13+ ions. Accurate radiative lifetimes are sensitive to QED corrections like the electron anomalous magnetic moment and to relativistic electron correlation effects. The lifetime of the P3/2 metastable state was determined to be 9.573(4)(5) ms (stat)(syst) [1] using the Heidelberg electron beam ion trap. Theoretical predictions cluster around a value that is significantly shorter than this high-precision experimental result. This discrepancy is presently unexplained. The wavelengths of the above transition in Ar^13+ and the 1s^22s2p ^3P1 -- ^3P2 M1 transition in Ar^14+ were compared for the isotopes ^36Ar and ^40Ar [2]. The observed mass shift has confirmed the relativistic theory of nuclear recoil effects in many-body systems. Our calculations, based on the fully relativistic recoil operator, are in excellent agreement with the measured results. [1] A. Lapierre, U.D. Jentschura, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 95, 183001 (2005); [2] R. Soria Orts, Z. Harman, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 97, 103002 (2006)
NASA Astrophysics Data System (ADS)
Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.
2016-04-01
The sensitivity of nuclear symmetry energy elements at the saturation density to the binding energies of ultra-neutron-rich nuclei (neutron-to-proton ratio ˜2 ) and the maximum mass of a neutron star is explored within a relativistic mean field model. Values of the interaction parameters governing the isovector strengths and the symmetry elements are determined in tighter bounds. Assessments based on the sensitivity matrix reveal that the properties of extreme neutron-rich systems play a predominant role in narrowing down the uncertainties in the various symmetry energy parameters. The calculations are extended over a wide range of nuclear matter density, and the results are discussed.
K meson-nucleus interactions: strangeness and nuclear matter
Kahana, S.
1985-01-01
A brief review is provided of some straightforward K-nuclear and ..lambda..-hypernuclear systems. A discussion of less straightforward speculations on H-dibaryons and strange quark matter by many authors, is also given. 28 refs., 6 figs.
Upper limit on the cross section for nuclear charge pickup by relativistic uranium ions
Westphal, A.J.; Price, P.B.; Snowden-Ifft, D.P. Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )
1992-05-01
We have searched for examples of nuclear charge pickup by relativistic uranium ions in targets of both uranium and phosphate glass. We find none, which allows us to set an upper limit of 7.7 mb per target atom at the 90% confidence level on the cross section for this process. An extrapolation of the approximately quadratic dependence on projectile charge of the cross section for charge pickup predicts a cross section which would be {similar to}10 times larger. This breakdown in the scaling can be understood by the propensity of the actinides to fission upon the deposition of sufficient excitation energy.
Spinodal instabilities and the distillation effect in nuclear matter under strong magnetic fields
Rabhi, A.; Providencia, C.; Providencia, J. Da
2009-01-15
We study the effect of strong magnetic fields, of the order of 10{sup 18}-10{sup 19} G, on the instability region of nuclear matter at subsaturation densities. Relativistic nuclear models both with constant couplings and with density-dependent parameters are considered. It is shown that a strong magnetic field can have large effects on the instability regions giving rise to bands of instability and wider unstable regions. As a consequence, we predict larger transition densities at the inner edge of the crust of compact stars with strong magnetic fields. The direction of instability gives rise to a very strong distillation effect if the last Landau level is only partially filled. However, for almost completed Landau levels, an antidistillation effect may occur.
Jets in relativistic heavy ion collisions
Wang, Xin-Nian; Gyulassy, M.
1990-09-01
Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.
Properties of nuclear matter within the JISP16 NN interaction
NASA Astrophysics Data System (ADS)
Shirokov, A. M.; Negoita, A. G.; Vary, J. P.; Bogner, S. K.; Mazur, A. I.; Mazur, E. A.; Gogny, D.
2014-08-01
Saturation properties of the JISP16 NN interaction are studied in symmetric nuclear matter calculations, with special attention paid to the convergence properties with respect to the number of partial waves. We also present results of pure neutron matter calculations with the JISP16 interaction.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor. PMID:26574455
NASA Astrophysics Data System (ADS)
Schönlein, A.; Boutoux, G.; Pikuz, S.; Antonelli, L.; Batani, D.; Debayle, A.; Franz, A.; Giuffrida, L.; Honrubia, J. J.; Jacoby, J.; Khaghani, D.; Neumayer, P.; Rosmej, O. N.; Sakaki, T.; Santos, J. J.; Sauteray, A.
2016-05-01
We studied the interaction of a high-intensity laser with mass-limited Ti-wires. The laser was focused up to 7× 1020 \\text{W/cm}2 , with contrast of 10-10 to produce relativistic electrons. High-spatial-resolution X-ray spectroscopy was used to measure isochoric heating induced by hot electrons propagating along the wire up to 1 mm depth. For the first time it was possible to distinguish surface target regions heated by mixed plasma mechanisms from those heated only by the hot electrons that generate warm dense matter with temperatures up to 50 eV. Our results are compared to simulations that highlight both the role of electron confinement inside the wire and the importance of resistive stopping powers in warm dense matter.
Krushelnick, K.; Dangor, A. E.; Mangles, S. P. D.; Rozmus, W.; Wagner, U.; Habara, H.; Norreys, P. A.; Beg, F. N.; Wei, M. S.; Bochkarev, S. G.; Clark, E. L.; Gopal, A.; Evans, R. G.; Robinson, A. P. L.; Tatarakis, M.; Zepf, M.
2008-03-28
Experiments were performed in which intense laser pulses (up to 9x10{sup 19} W/cm{sup 2}) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma.
Coherent dissociation of relativistic {sup 9}C nuclei in nuclear track emulsion
Krivenkov, D. O.; Artemenkov, D. A.; Bradnova, V.; Kattabekov, R. R.; Kondratieva, N. V.; Mamatkulov, K. Z.; Malakhov, A. I.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zarubin, P. I.; Zarubina, I. G.; Haiduc, M.; Kharlamov, S. P.; Orlova, G. I.; Peresadko, N. G.; Polukhina, N. G.; Moiseenko, A. A.; Sarkisyan, V. R.; Vokal, S.
2010-04-30
For the first time nuclear track emulsion is exposed to relativistic {sup 9}C nuclei. A systematic pattern of the distributions of charge combinations of fragments in the peripheral interactions of {sup 9}C nuclei in a nuclear track emulsion has been obtained. The main conclusion is that the contribution of the channel {sup 9}C->{sup 8}B+p and {sup 9}C->{sup 7}Be+2p is most important in events that do not involve the production of target-nucleus fragments or mesons (coherent dissociation). It can be concluded that in the peripheral {sup 9}C dissociation the picture hitherto obtained for {sup 8}B and {sup 7}Be with the addition of one or two protons, respectively, is reproduced. Three coherent dissociation events {sup 9}C->3{sup 3}He accompanied by neither target fragments of the nucleus target nor charged mesons are identified.
Relativistic mean-field theory
NASA Astrophysics Data System (ADS)
Meng, Jie; Ring, Peter; Zhao, Pengwei
In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.
Low energy overlineKN interaction in nuclear matter
NASA Astrophysics Data System (ADS)
Waas, T.; Kaiser, N.; Weise, W.
1996-02-01
We investigate the low-energy overlineKN interaction in nuclear matter including Pauli blocking, Fermi motion and binding effects. We use a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, πΣ, πΛ system. Due to the dynamics of the Λ (1405) resonance we find a strong non-linear density dependence of the K -p scattering amplitude in nuclear matter. The real part of the K -p scattering length changes sign already at a small fraction of nuclear matter density, less than 0.2 po. This may explain the striking behaviour of the K - -nuclear optical potential found in the analysis of kaonic atom data.
The Mesozoic Era of relativistic heavy ion physics and beyond
Harris, J.W.
1994-03-01
In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.
Equation of state for {beta}-stable hot nuclear matter
Moustakidis, Ch. C.; Panos, C. P.
2009-04-15
We provide an equation of state for hot nuclear matter in {beta} equilibrium by applying a momentum-dependent effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear matter, containing leptons (electrons and muons) under the chemical equilibrium condition in which neutrinos have left the system. The conditions of charge neutrality and equilibrium under the {beta}-decay process lead first to the evaluation of proton and lepton fractions and then to the evaluation of internal energy, free energy, and pressure, and in total to the equation of state of hot nuclear matter. Thermal effects on the properties and equation of state of nuclear matter are assessed and analyzed in the framework of the proposed effective interaction model. Special attention is given to the study of the contribution of the components of {beta}-stable nuclear matter to the entropy per particle, a quantity of great interest in the study of structure and collapse of supernova.
Thermodynamic instabilities in dense asymmetric nuclear matter and in compact stars
NASA Astrophysics Data System (ADS)
Lavagno, A.; Drago, A.; Pagliara, G.; Pigato, D.
2014-07-01
We investigate the presence of thermodynamic instabilities in compressed asymmetric baryonic matter, reachable in high energy heavy ion collisions, and in the cold β-stable compact stars. To this end we study the relativistic nuclear equation of state with the inclusion of Δ-isobars and require the global conservation of baryon and electric charge numbers. Similarly to the low density nuclear liquid-gas phase transition, we show that a phase transition can occur in dense asymmetric nuclear matter and it is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the electric charge concentration). Such thermodynamic instabilities can imply a very different electric charge fraction Z/A in the coexisting phases during the phase transition and favoring an early formation of Δ- particles with relevant phenomenological consequences in the physics of the protoneutron stars and compact stars. Finally, we discuss the possible co-existence of very compact and very massive compact stars in terms of two separate families: compact hadronic stars and very massive quark stars.
Comparative study of nuclear masses in the relativistic mean-field model
NASA Astrophysics Data System (ADS)
Hua, XueMin; Heng, TaiHua; Niu, ZhongMing; Sun, BaoHua; Guo, JianYou
2012-12-01
With experimental masses updated from AME11, the predictive power of relativistic mean-field (RMF) mass model is carefully examined and compared with HFB-17, FRDM, WS*, and DZ28 mass models. In the relativistic mean-field model, the calculation with the PC-PK1 has improved significantly in describing masses compared to the TMA, especially for the neutron-deficient nuclei. The corresponding rms deviation with respect to the known masses falls to 1.4 MeV. Furthermore, it is found that the RMF mass model better describes the nuclei with large deformations. The rms deviation for nuclei with the absolute value of quadrupole deformation parameter greater than 0.25 falls to 0.93, crossing the 1 MeV accuracy threshold for the PC-PK1, which may indicate the new model is more suitable for those largely-deformed nuclei. In addition, the necessity of new high-precision experimental data to evaluate and develop the nuclear mass models is emphasized as well.
NASA Astrophysics Data System (ADS)
Vujanovic, Gojko; Paquet, Jean-François; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2016-07-01
The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1-dimensional viscous hydrodynamic simulation (music).
$J/\\Psi$ mass shift in nuclear matter
Gastao Krein, Anthony Thomas, Kazuo Tsushima
2011-02-01
The $J/\\Psi$ mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating $D$ and $D^*$ meson loop contributions to the $J/\\Psi$ self-energy employing medium-modified meson masses. The modification of the $D$ and $D^*$ masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The $J/\\Psi$ mass shift arising from the modification of the $D$ and $D^*$ loops at normal nuclear matter density is found to range from $-16$~MeV to $-24$~MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of $J/\\Psi$ to a nucleus are investigated.
Monte Carlo approach to nuclei and nuclear matter
Fantoni, Stefano; Gandolfi, Stefano; Illarionov, Alexey Yu.; Schmidt, Kevin E.; Pederiva, Francesco
2008-10-13
We report on the most recent applications of the Auxiliary Field Diffusion Monte Carlo (AFDMC) method. The equation of state (EOS) for pure neutron matter in both normal and BCS phase and the superfluid gap in the low-density regime are computed, using a realistic Hamiltonian containing the Argonne AV8' plus Urbana IX three-nucleon interaction. Preliminary results for the EOS of isospin-asymmetric nuclear matter are also presented.
Recent Developments in Cold Fusion / Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Krivit, Steven B.
2006-03-01
Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.
Axion electrodynamics and nonrelativistic photons in nuclear and quark matter
NASA Astrophysics Data System (ADS)
Yamamoto, Naoki
2016-04-01
We argue that the effective theory for electromagnetic fields in spatially varying meson condensations in dense nuclear and quark matter is given by the axion electrodynamics. We show that one of the helicity states of photons there has the nonrelativistic gapless dispersion relation ω ˜k2 at small momentum, while the other is gapped. This "nonrelativistic photon" may also be realized at the interface between topological and trivial insulators in condensed matter systems.
Krogh, Jesper W; Barone, Giampaolo; Lindh, Roland
2006-06-23
The electric field gradient components for the tin nucleus of 34 tin compounds of experimentally known structures and (119)Sn Mössbauer spectroscopy parameters were computed at the scalar relativistic density functional theory level of approximation. The theoretical values of the electric field gradient components were used to determine a quantity, V, which is proportional to the nuclear quadrupole splitting parameter (DeltaE). In a subsequent linear regression analysis the effective nuclear quadrupole moment, Q, was evaluated. The value of (11.9+/-0.1) fm(2) is a significant improvement over the non-relativistic result of (15.2+/-4.4) fm(2) and is in agreement with the experimental value of (10.9+/-0.8) fm(2). The average mean square error DeltaE(calcd)-DeltaE(exptl)=+/-0.3 mm s(-1) is a factor of two smaller than in the non-relativistic case. Thus, the approach has a quality which provides accurate support for the structure interpretation by (119)Sn spectroscopy. It was noted that geometry optimization at the relativistic level does not significantly increase the quality of the results compared with non-relativistic optimized structures. The accuracy in the approach called on us to consider the singlet-triplet state nature of the electronic structure of one of the investigated compounds. PMID:16671047
Nemchik, J.; Petracek, V.; Potashnikova, I. K.; Sumbera, M.
2008-08-15
We study a strong suppression of the relative production rate (d-Au)/(p-p) for inclusive high-p{sub T} hadrons of different species at large forward rapidities (large Feynman x{sub F}). The model predictions calculated in the light-cone dipole approach are in a good agreement with the recent measurements by the BRAHMS and STAR Collaborations at the BNL Relativistic Heavy Ion Collider. We predict a similar suppression at large p{sub T} and large x{sub F} also at lower energies, where no effect of coherence is possible. This allows us to exclude the saturation models or the models based on Color Glass Condensate from interpretation of nuclear effects.
Moustakidis, Ch. C.; Lalazissis, G. A.; Niksic, T.; Vretenar, D.; Ring, P.
2010-06-15
The transition density n{sub t} and pressure P{sub t} at the inner edge between the liquid core and the solid crust of a neutron star are analyzed using the thermodynamical method and the framework of relativistic nuclear energy density functionals. Starting from a functional that has been carefully adjusted to experimental binding energies of finite nuclei, and varying the density dependence of the corresponding symmetry energy within the limits determined by isovector properties of finite nuclei, we estimate the constraints on the core-crust transition density and pressure of neutron stars: 0.086 fm{sup -3}<=n{sub t}<0.090 fm{sup -3} and 0.3 MeV fm{sup -3}
NASA Astrophysics Data System (ADS)
Sa, Ben-Hao; Zhou, Dai-Mei; Yan, Yu-Liang; Cheng, Yun; Dong, Bao-Guo; Cai, Xu
2014-04-01
We employed the new issue of a parton and hadron cascade model PACIAE 2.1 to systematically investigate the charged particle elliptic flow parameter v2 in the relativistic nuclear collisions at RHIC and LHC energies. With randomly sampling the transverse momentum x and y components of the particles generated in string fragmentation on the circumference of an ellipse instead of circle as originally, the calculated charged particles v2(η) and v2(pT) fairly reproduce the corresponding experimental data in the Au+Au/Pb+Pb collisions at √{sNN}=0.2/2.76 TeV. In addition, the charged particles v2(η) and v2(pT) in the p+p collisions at √{s}=7 TeV as well as in the p+Au/p+Pb collisions at √{sNN}=0.2/5.02 TeV are predicted.
Ionization potential of {sup 9}Be calculated including nuclear motion and relativistic corrections
Stanke, Monika; Kedziera, Dariusz; Bubin, Sergiy; Adamowicz, Ludwik
2007-05-15
Variational calculations employing explicitly correlated Gaussian functions have been performed for the ground states of {sup 9}Be and {sup 9}Be{sup +} including the nuclear motion [i.e., without assuming the Born-Oppenheimer (BO) approximation]. An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed, leading to energies of the two systems noticeably improved over those found in the recent paper of Pachucki and Komasa [Phys. Rev. A 73, 052502 (2006)]. The non-BO wave functions were used to calculate the {alpha}{sup 2} relativistic corrections ({alpha}=e{sup 2}/({Dirac_h}/2{pi})c). With those corrections and the {alpha}{sup 3} and {alpha}{sup 4} corrections taken from Pachucki and Komasa, a new value of the ionization potential (IP) of {sup 9}Be was determined. It agrees very well with the most recent experimental IP.
NASA Astrophysics Data System (ADS)
Kudo, K.; Maeda, H.; Kawakubo, T.; Ootani, Y.; Funaki, M.; Fukui, H.
2006-06-01
The normalized elimination of the small component (NESC) theory, recently proposed by Filatov and Cremer [J. Chem. Phys. 122, 064104 (2005)], is extended to include magnetic interactions and applied to the calculation of the nuclear magnetic shielding in HX (X =F,Cl,Br,I) systems. The NESC calculations are performed at the levels of the zeroth-order regular approximation (ZORA) and the second-order regular approximation (SORA). The calculations show that the NESC-ZORA results are very close to the NESC-SORA results, except for the shielding of the I nucleus. Both the NESC-ZORA and NESC-SORA calculations yield very similar results to the previously reported values obtained using the relativistic infinite-order two-component coupled Hartree-Fock method. The difference between NESC-ZORA and NESC-SORA results is significant for the shieldings of iodine.
Nuclear Physics the core of matter, the fuel of stars.
Schiffer, J. P.; Physics
1999-01-01
Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe
Energy-range relations for hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
Supernovae and high density nuclear matter
Kahana, S.
1986-01-01
The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.
Renormalization group for non-relativistic fermions.
Shankar, R
2011-07-13
A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts. PMID:21646269
Attenuation and recombination of quarks in nuclear matter
Dar, A.; Takagi, F.
1980-03-24
Quark models of hadron production in the beam-fragmentation region are extended to production off nuclei by taking into account quark attenuation in nuclear matter. Simple expressions are derived for the A dependence of the production of beam fragments. They reproduce well the experimental data on hadron-nucleus and virtual photon-nucleus collisions.
Three-dimensional calculation of inhomogeneous nuclear matter
Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka
2012-11-12
We numerically explore the pasta structures and properties of low-density symmetric nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta appears as a meta-stable state at some transient densities. We also analyze the lattice structure of droplets.
Phase transitions of nuclear matter beyond mean field theory
Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa
2007-10-15
The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces. PMID:25541769
The many facets of the (non-relativistic) Nuclear Equation of State
NASA Astrophysics Data System (ADS)
Giuliani, G.; Zheng, H.; Bonasera, A.
2014-05-01
A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.
Nuclear condensation and the equation of state of nuclear matter
De, J. N.; Samaddar, S. K.
2007-10-15
The isothermal compression of a dilute nucleonic gas invoking cluster degrees of freedom is studied in an equilibrium statistical model; this clusterized system is found to be more stable than the pure nucleonic system. The equation of state (EoS) of this matter, shows features qualitatively very similar to the one obtained from pure nucleonic gas. In the isothermal compression process, there is a sudden enhancement of clusterization at a transition density rendering features analogous to the gas-liquid phase transition in normal dilute nucleonic matter. Different observables like the caloric curves, heat capacities, isospin distillation, etc are studied in both the models. Possible changes in the observables due to recently indicated medium modifications in the symmetry energy are also investigated.
Theoretical studies in medium-energy nuclear and hadronic physics
Horowitz, C.J.; Macfarlane, M.H.; Matsui, Tetsuo; Serot, B.D.
1991-12-03
In the period covered by this report (April 1, 1991 to March 31, 1992), work focused on six main areas: (1) Relativistic Theories of Nuclear Structure and Saturation, (2) Relativistic Descriptions of Proton-Nucleus and Electron-Nucleus Scattering, (3) Nonrelativistic Theory of Nucleon-Nucleus Reactions, (4) Relativistic Many-Body Theory at Finite Temperature and Density, (5) Neutrino Interactions in Dense Matter, (6) Quark Models of Nuclear and Quark Matter.
Pairing in bulk nuclear matter beyond BCS
Ding, D.; Dickhoff, W. H.; Dussan, H.; Witte, S. J.; Rios, A.; Polls, A.
2014-10-15
The influence of short-range correlations on the spectral distribution of neutrons is incorporated in the solution of the gap equation for the {sup 3}P{sub 2}−{sup 3}F{sub 2} coupled channel in pure neutron matter. This effect is studied for different realistic interactions including one based on chiral perturbation theory. The gap in this channel vanishes at all relevant densities due to the treatment of these correlations. We also consider the effect of long-range correlations by including polarization terms in addition to the bare interaction which allow the neutrons to exchange density and spin fluctuations governed by the strength of Landau parameters allowed to have reasonable values consistent with the available literature. Preliminary results indicate that reasonable values of these parameters do not generate a gap in the {sup 3}P{sub 2}−{sup 3}F{sub 2} coupled channel either for all three realistic interactions although the pairing interaction becomes slightly more attractive.
Nuclear techniques in studies of condensed matter
NASA Technical Reports Server (NTRS)
Singh, Jag J.
1987-01-01
Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
Robert J. Goldston
2010-03-03
Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.
NASA Astrophysics Data System (ADS)
Mitra, Abhas
2011-11-01
Hoyle & Folwler (1963a,b) suggested that quasars may contain Radiation Pressure Supported Stars (RPSS), which are quasi-Newtonian (surface redshitf z ≪ 1) and supermassive. This proposal however did not work and one of the reasons was that such quasi-Newtonian PRSSs are unstable to gravitational contraction to become extremely general relativistic RPSSs. And since trapped surfaces are not allowed, (Mitra 2009a) these relativistic RPSSs are bound to hover around their instantaneous "Schwarzschild Radius" Rs = 2GM/c2. In view of the fact that they have z ≫ 1, they appear as "Black Holes" (BH) to distant observers. However since, they are always radiating, in a strict sense, they are always contracting. During such extreme compatification, RPSSs are likely to acquire extremely large magnetic field due to magnetic flux freezing, and hence they have strong magnetosphere around them by which they may arrest the accretion disk surrounding them at "Alfven Radius", Ra ≫ Rs. In contrast, for an accreting Schwarzschild black hole, one expects the inner edge of the accretion disk to be at Ri = 3Rs. Consequently, such ultramagnetized RPSSs have been nick named as Magnetospheric Eternally Collapsing Objects" (MECOs). Microlensing studies of several quasar structures have shown that indeed Ri ˜ 35Rs rather that R1 = 3Rs, and which confirms that quasars harbor MECOs rather than true black holes (Schild et al. 2006, 2008, Lovegrove et al. 2011). Further the recent proof that the true BHs have M = 0 confirms that the BH candidates are not true BHs (Mitra 2004a,b; 2009b). Here we highlight the facts (i) outflows from quasars and (ii) their ability to recycle cosmic matter for having new stars and galaxies are best understood by realizing that they contain MECOs rather than true BHs.
Study of nuclear matter density distributions using hadronic probes
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2011-05-06
We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.
Initial-state splitting kernels in cold nuclear matter
NASA Astrophysics Data System (ADS)
Ovanesyan, Grigory; Ringer, Felix; Vitev, Ivan
2016-09-01
We derive medium-induced splitting kernels for energetic partons that undergo interactions in dense QCD matter before a hard-scattering event at large momentum transfer Q2. Working in the framework of the effective theory SCETG, we compute the splitting kernels beyond the soft gluon approximation. We present numerical studies that compare our new results with previous findings. We expect the full medium-induced splitting kernels to be most relevant for the extension of initial-state cold nuclear matter energy loss phenomenology in both p+A and A+A collisions.
Characteristics of warm dense matter produced by a relativistic electron beam
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Schmitt, Mark; Berninger, Michael
2009-11-01
Accurate equation-of-state theory on warm dense matter is a big challenge to model and good experimental data is difficult to obtain. One of the difficulties is the creation of a warm dense matter (WDM) suitable for experiments to examine its equation of state. We have performed calculations using MCNP and LASNEX to examine the warm dense matter created by a highly energetic electron beam such as the DARHT beam at LANL in a cylindrical sample confined by a collar. Energy deposition by the electron beam in the target and collar of different materials were calculated with different beam profiles. The energy deposition was sourced into LASNEX calculations to examine the dynamic evolution of the target and the generation of radially outward propagating shock waves. Our calculations indicated warm dense matter with a temperature of a few electron volts is achievable and the speed of the shock wave can be determined using photonic Doppler velocimetry technique. We will present results from our calculations for various materials of the target and collar and in different geometries.
Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters
Robert J. Goldston
2011-04-28
Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.
Coelho, Eduardo L.; Chiapparini, Marcelo; Bracco, Mirian E.
2013-03-25
Magnetars are neutron stars with a strong surface magnetic field. Observations of soft gamma-ray and anomalous X-ray pulsars pointed out that the surface magnetic field of magnetars is equal or even greater than 10{sup 15} G. In this work we study the influence of a strong magnetic field on the composition of nuclear matter at high densities and zero temperature. We describe the matter through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons and with magnetic field. As output of the numerical calculations, we obtain the relative population of each species of particles as function of baryon density.
Afanasjev, A. V.; Abusara, H.
2008-07-15
The systematic investigation of hyperdeformation (HD) at high spin in the Z=40-58 region of the nuclear chart was performed in the framework of the cranked relativistic mean-field theory. The properties of the moments of inertia of the HD bands, the role of the single-particle and necking degrees of freedom at HD, the spins at which the HD bands become yrast, the possibility to observe discrete HD bands, and so on are discussed in detail.
Chen, Hui; Heeter, R. F.; Link, A.; Fiksel, G.; Barnak, D.; Chang, P.-Y.; Meyerhofer, D. D.
2014-04-15
Collimation of positrons produced by laser-solid interactions has been observed using an externally applied axial magnetic field. The collimation leads to a narrow divergence positron beam, with an equivalent full width at half maximum beam divergence angle of 4° vs the un-collimated divergence of about 20°. A fraction of the laser-produced relativistic electrons with energies close to those of the positrons is collimated, so the charge imbalance ratio (n{sub e−}/n{sub e+}) in the co-propagating collimated electron-positron jet is reduced from ∼100 (no collimation) to ∼2.5 (with collimation). The positron density in the collimated beam increased from 5 × 10{sup 7} cm{sup −3} to 1.9 × 10{sup 9} cm{sup −3}, measured at the 0.6 m from the source. This is a significant step towards the grand challenge of making a charge neutral electron-positron pair plasma jet in the laboratory.
Bulk viscosities of a cold relativistic superfluid: Color-flavor locked quark matter
Mannarelli, Massimo; Manuel, Cristina
2010-02-15
We consider the phonon contribution to the bulk viscosities {zeta}{sub 1}, {zeta}{sub 2} and {zeta}{sub 3} of a cold relativistic superfluid. We assume the low temperature T regime and that the transport properties of the system are dominated by the phonons. We use kinetic theory in the relaxation time approximation and the low energy effective field theory of the corresponding system. The parametric dependence of the bulk viscosity coefficients is fixed once the equation of state is specified, and the phonon dispersion law to cubic order in momentum is known. We first present a general discussion, valid for any superfluid, then we focus on the color-flavor locked superfluid because all the parameters needed in the analysis can be computed in the high density limit of QCD, and also because of the possible astrophysical applications. For the three independent bulk viscosity coefficients we find that they scale with the temperature as {zeta}{sub i{approx}}1/T, and that in the conformal limit only the third coefficient {zeta}{sub 3} is nonzero.
Chiral symmetry and nuclear matter equation of state
NASA Astrophysics Data System (ADS)
Santra, A. B.
2001-08-01
We investigate the effect on the nuclear matter equation of state (EOS) due to modification of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner--Bethe--Golstone formalism with Bonn-B potential as two-body interaction and QCD sum rule and Brown--Rho scaling prescriptions for modi- fication of hadron parameters. We find that EOS is very much sensitive to the meson parameters. We can fit, with two body interaction alone, both the saturation density and the binding energy per nucleon.
Phase structure in a chiral model of nuclear matter
Phat, Tran Huu; Anh, Nguyen Tuan; Tam, Dinh Thanh
2011-08-15
The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.
Suppression of the {Lambda}-{Sigma} coupling in nuclear matter
Bodmer, A.R.; Usmani, Q.N.
1995-08-01
We initiated a study of the modification of the coupling of the {Lambda}N to the {Sigma}N channel in nuclear matter with the Fermi hypernetted-chain variational approach. This modification of the {Lambda}N-{Sigma}N coupling is a central problem in hypernuclear physics and is related closely to the strongly repulsive three-body forces which are needed to account for hypernuclear binding energies. All earlier calculations have only considered this problem in the so-called G-matrix approximation which neglects important higher-order effects. An important result of this work will be a better understanding of the density dependence of {Lambda} binding in nuclear matter, which can then be tested in the calculation of the {Lambda} single-particle energies.
Scattering and stopping of hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.
Two-photon interactions with nuclear breakup in relativistic heavy ion collisions
Baltz, Anthony J.; Gorbunov, Yuri; Klein, Spencer R.; Nystrand, Joakim
2009-10-15
Highly charged relativistic heavy ions have high cross sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, because the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass, and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single-neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.
Two-Photon Interactions with Nuclear Breakup in Relativistic Heavy Ion Collisions
Baltz, Anthony J.; Gorbunov, Yuri; R Klein, Spencer; Nystrand, Joakim
2010-07-07
Highly charged relativistic heavy ions have high cross-sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, since the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs, and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross-sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross-sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.
Stanke, Monika; Kedziera, Dariusz; Bubin, Sergiy; Adamowicz, Ludwik
2007-10-01
Explicitly correlated Gaussian functions have been used to perform very accurate variational calculations for the ground states of (7)Li and (7)Li(-). The nuclear motion has been explicitly included in the calculations (i.e., they have been done without assuming the Born-Oppenheimer (BO) approximation). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. This led to a noticeable improvement of the previously determined variational upper bound to the nonrelativistic energy of Li(-). The Li energy obtained in the calculations matches those of the most accurate results obtained with Hylleraas functions. The finite-mass (non-BO) wave functions were used to calculate the alpha(2) relativistic corrections (alpha=1c). With those corrections and the alpha(3) and alpha(4) corrections taken from Pachucki and Komasa [J. Chem. Phys. 125, 204304 (2006)], the electron affinity (EA) of (7)Li was determined. It agrees very well with the most recent experimental EA. PMID:17919011
Investigation of the organic matter in inactive nuclear tank liquids
Schenley, R.L.; Griest, W.H.
1990-08-01
Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.
Nucleon-nucleon cross sections in nuclear matter
Schulze, H.; Schnell, A.; Roepke, G.; Lombardo, U.
1997-06-01
We provide a microscopic calculation of neutron-proton and neutron-neutron cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Paris potential. We investigate separately the medium effects on the effective mass and on the scattering amplitude. We determine average cross sections suitable for application in the dynamical simulation of heavy ion collisions, including a parametrization of their energy and density dependence. {copyright} {ital 1997} {ital The American Physical Society}
Heating of nuclear matter and multifragmentation : antiprotons vs. pions.
Back, B.; Beaulieu, L.; Breuer, H.; Gushue, S.; Hsi, W.-C.; Korteling, R. G.; Kwiatkowski, K.; Laforest, R.; Lefort, T.; Martin, E.; Pienkowski, L.; Ramakrishnan, E.; Remsberg, L. P.; Rowland, D.; Ruangma, A.; Viola, V. E.; Winchester, E.; Yennello, S. J.
1999-05-03
Heating of nuclear matter with 8 GeV/c {bar p} and {pi}{sup {minus}} beams has been investigated in an experiment conducted at BNL AGS accelerator. All charged particles from protons to Z {approx_equal} 16 were detected using the Indiana Silicon Sphere 4{pi} array. Significant enhancement of energy deposition in high multiplicity events is observed for antiprotons compared to other hadron beams. The experimental trends are qualitatively consistent with predictions from an intranuclear cascade code.
Dynamical properties of nuclear and stellar matter and the symmetry energy
Pais, Helena; Santos, Alexandre; Brito, Lucilia; Providencia, Constanca
2010-08-15
The effects of density dependence of the symmetry energy on the collective modes and dynamical instabilities of cold and warm nuclear and stellar matter are studied in the framework of relativistic mean-field hadron models. The existence of the collective isovector and possibly an isoscalar collective mode above saturation density is discussed. It is shown that soft equations of state do not allow for a high-density isoscalar collective mode; however, if the symmetry energy is hard enough, an isovector mode will not disappear at high densities. The crust-core transition density and pressure are obtained as a function of temperature for {beta}-equilibrium matter with and without neutrino trapping. Estimations of the size of the clusters formed in the nonhomogeneous phase, as well as the corresponding growth rates and distillation effect, are made. It is shown that cluster sizes increase with temperature, that the distillation effect close to the inner edge of the crust-core transition is very sensitive to the symmetry energy, and that, within a dynamical instability calculation, the pasta phase exists in warm compact stars up to 10-12 MeV.
Mass predictions of atomic nuclei in the infinite nuclear matter model
NASA Astrophysics Data System (ADS)
Nayak, R. C.; Satpathy, L.
2012-07-01
We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and α-particle separation energies of 6727 nuclei in the ranges 4≤Z≤120 and 8≤A≤303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the η-differential equations of the INM model. The local energy η's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact η-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around 31Na and 62Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.
Mass predictions of atomic nuclei in the infinite nuclear matter model
Nayak, R.C.; Satpathy, L.
2012-07-15
We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and {alpha}-particle separation energies of 6727 nuclei in the ranges 4{<=}Z{<=}120 and 8{<=}A{<=}303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the {eta}-differential equations of the INM model. The local energy {eta}'s supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact {eta}-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around {sup 31}Na and {sup 62}Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.
Effective kaon masses in dense nuclear and neutron matter
NASA Astrophysics Data System (ADS)
Waas, T.; Kaiser, N.; Weise, W.
1996-02-01
The effective mass and decay width of kaonic modes in baryonic matter are studied within a coupled-channel approach based on the Chiral SU(3) Effective Lagrangian which describes all available low energy data of the coupled overlineKN, π∑, πΛ system. Including Pauli blocking and Fermi motion in the kaon dispersion relation, we find a strong non-linear density dependence of the K - effective mass and decay width in symmetric nuclear matter at densities around 0.1 times normal nuclear matter density ϱ0 due to the in-medium dynamics of the Λ(1405) resonance. At higher densities the K - effective mass decreases slowly but stays above 0.5 mK at least up to densities below 3 ϱ0. In neutron matter the K - effective mass decreases almost linearly with increasing density but remains relatively large ( m K∗ > 0.65 m K) for ϱn ≲ 3 ϱ0. The K + effective mass turns out to increase very slowly with rising density.
Properties of nuclear matter from macroscopic-microscopic mass formulas
NASA Astrophysics Data System (ADS)
Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun
2015-12-01
Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.
Masses of nuclei in the infinite nuclear matter model
Satpathy, L.; Nayak, R.C.
1987-12-10
The ground-state masses of 3481 nuclei in the range 18less than or equal toAless than or equal to267 have been calculated using the inifinite nuclear matter model based on the generalised Hugenholtz-Van Hove theorem. In this model there are two kinds of parameters: Global and local. The five global parameters which characterise the properties of the sphere made up of inifinite nuclear matter are determined once for all by fitting the masses of all nuclei (756) in the recent mass table with error bar less than 30 keV. The local parameters are determined for 25 regions defined by ..delta..A = 8 or 10. The r.m.s. deviation for the calculated masses from the experiment is 397 keV for the 1572 nuclei used in the least square fit. Sample results on Na isotopes and other recently measured masses have been given. The derived saturation properties of nuclear matter have been discussed.
General-relativistic approach to the nonlinear evolution of collisionless matter
Matarrese, S.; Pantano, O. ); Saez, D. )
1993-02-15
A new general-relativistic algorithm is developed to study the nonlinear evolution of scalar (density) perturbations of an irrotational collisionless fluid up to shell crossing, under the approximation of neglecting the interaction with tensor (gravitational-wave) perturbations. The dynamics of each fluid element is separately followed in its own inertial rest frame by a system of twelve coupled first-order ordinary differential equations, which can be further reduced to six under very general conditions. Initial conditions are obtained in a cosmological framework, from linear theory, in terms of a single gauge-invariant potential. Physical observables, which are expressed in the Lagrangian form at different times, can be traced back to the Eulerian picture by solving supplementary first-order differential equations for the relative position vectors of neighboring fluid elements. Similarly to the Zel'dovich approximation, in our approach the evolution of each fluid element is completely determined by the local initial conditions and can be independently followed up to the time when it enters a multistream region. Unlike the Zel'dovich approximation, however, our approach is correct also in three dimensions (except for the possible role of gravitational waves). The accuracy of our numerical procedure is tested by integrating the nonlinear evolution of a spherical perturbation in an otherwise spatially flat Friedmann-Robertson-Walker universe and comparing the results with the exact Tolman-Bondi solution for the same initial profile. An exact solution for the planar symmetric case is also given, which turns out to be locally identical to the Zel'dovich solution.
Superconducting Nuclear Recoil Sensor for Directional Dark Matter Detection
NASA Astrophysics Data System (ADS)
Junghans, Ann; Baldwin, Kevin; Hehlen, Markus; Lafler, Randy; Loomba, Dinesh; Phan, Nguyen; Weisse-Bernstein, Nina
The Universe consists of 72% dark energy, 23% dark matter and only 5% of ordinary matter. One of the greatest challenges of the scientific community is to understand the nature of dark matter. Current models suggest that dark matter is made up of slowly moving, weakly interacting massive particles (WIMPs). But detecting WIMPs is challenging, as their expected signals are small and rare compared to the large background that can mimic the signal. The largest and most robust unique signature that sets them apart from other particles is the day-night variation of the directionality of dark matter on Earth. This modulation could be observed with a direction-sensitive detector and hence, would provide an unambiguous signature for the galactic origin of WIMPs. There are many studies underway to attempt to detect WIMPs both directly and indirectly, but solid-state WIMP detectors are widely unexplored although they would present many advantages to prevalent detectors that use large volumes of low pressure gas. We present first results of a novel multi-layered architecture, in which WIMPs would interact primarily with solid layers to produce nuclear recoils that then induce measureable voltage pulses in adjacent superconductor layers. This work was supported by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development Program.
Exploring the Quark-Gluon Content of Hadrons: From Mesons to Nuclear Matter
Matevosyan, Hrayr
2007-08-01
Even though Quantum Chromodynamics (QCD) was formulated over three decades ago, it poses enormous challenges for describing the properties of hadrons from the underlying quark-gluon degrees of freedom. Moreover, the problem of describing the nuclear force from its quark-gluon origin is still open. While a direct solution of QCD to describe the hadrons and nuclear force is not possible at this time, we explore a variety of developed approaches ranging from phenomenology to first principle calculations at one or other level of approximation in linking the nuclear force to QCD. The Dyson Schwinger formulation (DSE) of coupled integral equations for the QCD Green’s functions allows a non-perturbative approach to describe hadronic properties, starting from the level of QCD n-point functions. A significant approximation in this method is the employment of a finite truncation of the system of DSEs, that might distort the physical picture. In this work we explore the effects of including a more complete truncation of the quark-gluon vertex function on the resulting solutions for the quark 2-point functions as well as the pseudoscalar and vector meson masses. The exploration showed strong indications of possibly large contributions from the explicit inclusion of the gluon 3- and 4-point functions that are omitted in this and previous analyses. We then explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime using phenomenological models of nucleon structure. Finally, we further developed the Quark Meson Coupling model for describing atomic nuclei and nuclear matter, where the quark-gluon structure of nucleons is modeled by the MIT bag model and the nucleon many body interaction is mediated by the exchange of scalar and vector mesons. This approach allows us to formulate a fully relativistic theory, which can be expanded in the nonrelativistic limit to reproduce the well known phenomenological Skyrme
NASA Astrophysics Data System (ADS)
Gomez, Sergio S.; Maldonado, Alejandro; Aucar, Gustavo A.
2005-12-01
In this work an analysis of the electronic origin of relativistic effects on the isotropic dia- and paramagnetic contributions to the nuclear magnetic shielding σ(X ) for noble gases and heavy atoms of hydrogen halides is presented. All results were obtained within the 4-component polarization propagator formalism at different level of approach [random-phase approximation (RPA) and pure zeroth-order approximation (PZOA)], by using a local version of the DIRAC code. From the fact that calculations of diamagnetic contributions to σ within RPA and PZOA approaches for HX(X =Br,I,At) and rare-gas atoms are quite close each to other and the finding that the diamagnetic part of the principal propagator at the PZOA level can be developed as a series [S(Δ)], it was found that there is a branch of negative-energy "virtual" excitations that contribute with more than 98% of the total diamagnetic value even for the heavier elements, namely, Xe, Rn, I, and At. It contains virtual negative-energy molecular-orbital states with energies between -2mc2 and -4mc2. This fact can explain the excellent performance of the linear response elimination of small component (LR-ESC) scheme for elements up to the fifth row in the Periodic Table. An analysis of the convergency of S(Δ ) and its physical implications is given. It is also shown that the total contribution to relativistic effects of the innermost orbital (1s1/2) is by far the largest. For the paramagnetic contributions results at the RPA and PZOA approximations are similar only for rare-gas atoms. On the other hand, if the mass-correction contributions to σp are expressed in terms of atomic orbitals, a different pattern is found for 1s1/2 orbital contributions compared with all other s-type orbitals when the whole set of rare-gas atoms is considered.
Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials
Hassaneen, Kh.S.A.; Abo-Elsebaa, H.M.; Sultan, E.A.; Mansour, H.M.M.
2011-03-15
Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.
NASA Astrophysics Data System (ADS)
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Aucar, I Agustín; Gómez, Sergio S; Melo, Juan I; Giribet, Claudia C; Ruiz de Azúa, Martín C
2013-04-01
In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X = H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar et al. [J. Chem. Phys. 136, 204119 (2012)] are presented. The SR tensors of both the H and X nuclei are discussed. Calculations were carried out within the relativistic Linear Response formalism at the Random Phase Approximation with the DIRAC program. For the halogen nucleus X, correlation effects on the non-relativistic values are shown to be of similar magnitude and opposite sign to relativistic effects. For the light H nucleus, by means of the linear response within the elimination of the small component approach it is shown that the whole relativistic effect is given by the spin-orbit operator combined with the Fermi contact operator. Comparison of "best estimate" calculated values with experimental results yield differences smaller than 2%-3% in all cases. The validity of "Flygare's relation" linking the SR tensor and the NMR nuclear magnetic shielding tensor in the present series of compounds is analyzed. PMID:23574208
NASA Astrophysics Data System (ADS)
Aucar, I. Agustín; Gómez, Sergio S.; Melo, Juan I.; Giribet, Claudia C.; Ruiz de Azúa, Martín C.
2013-04-01
In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X=H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar et al. [J. Chem. Phys. 136, 204119 (2012), 10.1063/1.4721627] are presented. The SR tensors of both the H and X nuclei are discussed. Calculations were carried out within the relativistic Linear Response formalism at the Random Phase Approximation with the DIRAC program. For the halogen nucleus X, correlation effects on the non-relativistic values are shown to be of similar magnitude and opposite sign to relativistic effects. For the light H nucleus, by means of the linear response within the elimination of the small component approach it is shown that the whole relativistic effect is given by the spin-orbit operator combined with the Fermi contact operator. Comparison of "best estimate" calculated values with experimental results yield differences smaller than 2%-3% in all cases. The validity of "Flygare's relation" linking the SR tensor and the NMR nuclear magnetic shielding tensor in the present series of compounds is analyzed.
Constraining relativistic models through heavy ion collisions
Menezes, D. P.; Providencia, C.; Chiapparini, M.; Bracco, M. E.; Delfino, A.; Malheiro, M.
2007-12-15
Relativistic models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter and finite nuclei properties, these studies taking place at low and moderate temperatures. Nevertheless, all results are model dependent, and so far it is unclear whether some of them should be discarded. Moreover, in the regime of hot hadronic matter, very few calculations exist using these relativistic models, in particular when applied to particle yields in heavy ion collisions. A very important investigation is the simulation of a supernova explosion that is based on the construction of an adequate equation of state that needs to be valid within very large ranges of temperatures (0 to 100 MeV at least) and densities (very low to ten times the nuclear saturation density at least). In the present work, we comment on the known constraints that can help the selection of adequate models in this wide regime and investigate the main differences that arise when the particle production during a Au+Au collision at the BNL Relativistic Heavy Ion Collider is calculated with different relativistic models. We conclude that most of the models investigated in the present work give a very good overall description of the data and make predictions for not yet measured particle ratios.
Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies
Berninger, M.
2011-06-24
Experimental equation-of-state (EOS) data are difficult to obtain for warm dense matter (WDM)–ionized materials at near-solid densities and temperatures ranging from a few to tens of electron volts–due to the difficulty in preparing suitable plasmas without significant density gradients and transient phenomena. We propose that the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility can be used to create a temporally stationary and spatially uniform WDM. DARHT has an 18 MeV electron beam with 2 kA of current and a programmable pulse length of 20 ns to 200 ns. This poster describes how Monte Carlo n-Particle (MCNP) radiation transport and LASNEX hydrodynamics codes were used to demonstrate that the DARHT beam is favorable for avoiding the problems that have hindered past attempts to constrain WDM properties. In our concept, a 60 ns pulse of electrons is focused onto a small, cylindrical (1 mm diameter × 1 mm long) foam target, which is inside a stiff high-heat capacity tube that both confines the WDM and allows pressure measurements. In our model, the foam is made of 30% density Au and the tamper is a B4C tube. An MCNP model of the DARHT beam investigated electron collisions and the amount of energy deposited in the foam target. The MCNP data became the basis for a LASNEX source model, where the total energy was distributed over a 60 ns time-dependent linear ramp consistent with the DARHT pulse. We used LASNEX to calculate the evolution of the foam EOS properties during and after deposition. Besides indicating that a ~3 eV Au plasma can be achieved, LASNEX models also showed that the WDM generates a shock wave into the tamper whose speed can be measured using photonic Doppler velocimetry. EOS pressures can be identified to better than 10% precision. These pressures can be correlated to energy deposition with electron spectrometry in order to obtain the Au EOS. Radial uniformity in the DARHT beam was also investigated. To further obtain uniform radial
On the electrodynamical properties of nuclear matter in bulk
Rotondo, Michael; Xue Shesheng; Ruffini, Remo
2008-01-03
We analyze the properties of solutions of the relativistic Thomas-Fermi equation for globally neutral cores with radius of the order of R{approx_equal}10 Km, at constant densities around the nuclear density. By using numerical tecniques as well as well tested analytic procedures developed in the study of heavy ions, we confirm the existence of an electric field close to the critical value E{sub c} = m{sub e}{sup 2}c{sup 3}/e({Dirac_h}/2{pi}) in a shell {delta}R{approx_equal}l0{sup 4}({Dirac_h}/2{pi})/m{sub {pi}}c near the core surface. For a core of {approx_equal}10 Km the difference in binding energy reaches 10{sup 49} ergs. These results can be of interest for the understanding of very heavy nuclei as well as physics of neutron stars, their formation processes and further gravitational collapse to a black hole.
Dynamical instabilities in density-dependent hadronic relativistic models
Santos, A. M.; Brito, L.; Providencia, C.
2008-04-15
Unstable modes in asymmetric nuclear matter (ANM) at subsaturation densities are studied in the framework of relativistic mean-field density-dependent hadron models. The size of the instabilities that drive the system are calculated and a comparison with results obtained within the nonlinear Walecka model is presented. The distillation and antidistillation effects are discussed.
Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions
NASA Astrophysics Data System (ADS)
Li, Bao-An; Chen, Lie-Wen
2015-04-01
The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for Information I Entergy Nuclear Operations (Entergy) is the holder of Facility Operating License No....
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION [NRC-2013-0093; Docket No.: 50-348, 50-364; License No.: NPF-2, NPF-8; EA-12-145] In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2; Confirmatory Order I Southern Nuclear Operating Company (SNC or Licensee)...
Masses of atomic nuclei in the infinite nuclear matter model
Satpathy, L.; Nayak, R.C.
1988-07-01
We present mass excesses of 3481 nuclei in the range 18less than or equal toAless than or equal to267 using the infinite nuclear matter model based on the Hugenholtz-Van Hove theorem. In this model the ground-state energy of a nucleus of asymmetry ..beta.. is considered equivalent to the energy of a perfect sphere made up of the infinite nuclear matter of the same asymmetry plus the residual energy due to shell effects, deformation, etc., called the local energy eta. In this model there are two kinds of parameters: global and local. The five global parameters characterizing the properties of the above sphere are determined by fitting the mass of all nuclei (756) in the recent mass table of Wapstra et al. having error bar less than 30 keV. The local parameters are determined for 25 regions each spanning 8 or 10 A values. The total number of parameters including the five global ones is 238. The root-mean-square deviation for the calculated masses from experiment is 397 keV for the 1572 nuclei used in the least-squares fit. copyright 1988 Academic Press, Inc.
The Hypothesis of Nuclear Fusion in Condensed Matter: An Update
NASA Astrophysics Data System (ADS)
Jones, Steven; Ellsworth, John; Rees, Lawrence
2004-05-01
In our 1986 and1989 papers, we discussed the hypothesis of nuclear fusion in condensed matter and particularly in the planets and provided supporting evidence.[1,2] We continue to assert that non-thermonuclear d-Z fusion (including but not limited to d-d fusion) may occur in the core-region of the earth, and generally in hydrogen-bearing metals and minerals which are subjected to extreme off-equilibrium conditions. This hypothesis can be tested by measuring tritium and helium-3 in magmatic fluids from hot-spot volcanoes which tap plumes arising from the core-mantle boundary. In particular, magmatic waters of Kilauea, Loihi, and Icelandic volcanoes are predicted to contain significant tritium. Magmatic emissions of Kilauea demonstrated anomalous tritium content over twelve years ago[3], and a re-test of Kilauea emissions is urged along with further laboratory experiments. [1] C. DeW. Van Siclen and S. E. Jones, "Piezonuclear fusion in isotopic hydrogen molecules," J. Phys. G: Nucl. Phys. 12: 213-221 (March 1986). [2] S. E. Jones, et al., Observation of Cold Nuclear Fusion in Condensed Matter, Nature 338: 737-740 (April 1989). [4] F. Goff and G. M. McMurtry, "Tritium and stable isotopes of magmatic waters," J. Volcanology and Geothermal Research, 97: 347-396 (2000)
Horowitz, C.J.; Macfarlane, M.H.; Matsui, Tetsuo; Serot, B.D.
1991-12-03
In the period covered by this report (April 1, 1991 to March 31, 1992), work focused on six main areas: (1) Relativistic Theories of Nuclear Structure and Saturation, (2) Relativistic Descriptions of Proton-Nucleus and Electron-Nucleus Scattering, (3) Nonrelativistic Theory of Nucleon-Nucleus Reactions, (4) Relativistic Many-Body Theory at Finite Temperature and Density, (5) Neutrino Interactions in Dense Matter, (6) Quark Models of Nuclear and Quark Matter.
Multidimensionally constrained relativistic Hartree-Bogoliubov study of spontaneous nuclear fission
NASA Astrophysics Data System (ADS)
Zhao, Jie; Lu, Bing-Nan; Nikšić, Tamara; Vretenar, Dario
2015-12-01
Background: Recent microscopic studies, based on the theoretical framework of nuclear energy density functionals, have analyzed dynamic (least action) and static (minimum energy) fission paths, and it has been shown that in addition to the important role played by nonaxial and/or octupole collective degrees of freedom, fission paths crucially depend on the approximations adopted in calculating the collective inertia. Purpose: To analyze effects of triaxial and octupole deformations, as well as approximations to the collective inertia, on the symmetric and asymmetric spontaneous fission dynamics, and compare with results of recent studies based on the self-consistent Hartree-Fock-Bogoliubov (HFB) method. Methods: Deformation energy surfaces, collective potentials, and perturbative and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic Hartree-Bogoliubov (MDC-RHB) model, with the energy density functionals PC-PK1 and DD-PC1. Pairing correlations are treated in the Bogoliubov approximation using a separable pairing force of finite range. The least-action principle is employed to determine dynamic spontaneous fission paths. Results: The dynamics of spontaneous fission of 264Fm and 250Fm is explored. The fission paths, action integrals, and the corresponding half-lives predicted by the functionals PC-PK1 and DD-PC1 are compared and, in the case of 264Fm, discussed in relation with recent results obtained using the HFB model based on the Skyrme functional SkM* and a density dependent mixed pairing interaction. Conclusions: The inclusion of nonaxial quadrupole and octupole shape degrees of freedom is essential for a quantitative analysis of fission dynamics. The action integrals and, consequently, the half-lives crucially depend on the approximation used to calculate the effective collective inertia along the fission path. The perturbative cranking approach underestimates the effects of structural
Relativistic rocket: Dream and reality
NASA Astrophysics Data System (ADS)
Semyonov, Oleg G.
2014-06-01
The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.
Optical-model potential in a relativistic quantum field model
NASA Astrophysics Data System (ADS)
Jaminon, M.; Mahaux, C.; Rochus, P.
1980-11-01
The average nucleon-nucleus potential at low and medium energy is investigated in the framework of a relativistic quantum field model. Using the same input parameters as Brockmann in his recent study of nuclear ground states, we calculate the self-consistent relativistic Hartree potential at positive energy in the case of infinite nuclear matter and of 16O and 40Ca. This potential is the sum of a scalar operator and of the fourth component of a vector operator. We construct its Schrödinger-equivalent potential by eliminating the small component of the Dirac spinor. The central part of this Schrödinger-equivalent potential is in fair agreement with empirical values at low and intermediate energy. Particular attention is paid to the intermediate energy domain, in which the calculated potential is repulsive in the nuclear interior and attractive at the nuclear surface. This is in keeping with some empirical evidence and is similar to results found in the framework of the nonrelativistic Brueckner-Hartree-Fock approximation. The spin-orbit potential of the relativistic Hartree model is also in good agreement with empirical values. NUCLEAR REACTIONS Calculated average nuclear field of nuclear matter, 16O and 40Ca at positive energy from relativistic Hartree approximation.
Modification of the {omega}-Meson Lifetime in Nuclear Matter
Kotulla, M.; Trnka, D.; Gregor, R.; Lugert, S.; Metag, V.; Nanova, M.; Novotny, R.; Pant, L. M.; Pee, H. van; Pfeiffer, M.; Roy, A.; Schadmand, S.; Varma, R.; Muehlich, P.; Mosel, U.; Anton, G.; Bogendoerfer, R.; Hoessl, J.; Suft, G.; Bacelar, J. C. S.
2008-05-16
Information on hadron properties in the nuclear medium has been derived from the photoproduction of {omega} mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the {omega}-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic {omega} width is found to be 130-150 MeV/c{sup 2} at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the {omega} meson, this inelastic {omega} width corresponds to a reduction of the {omega} lifetime by a factor {approx_equal}30. For the first time, the momentum dependent {omega}N cross section has been extracted from the experiment and is in the range of 70 mb.
Modification of the omega-meson lifetime in nuclear matter.
Kotulla, M; Trnka, D; Mühlich, P; Anton, G; Bacelar, J C S; Bartholomy, O; Bayadilov, D; Beloglazov, Y A; Bogendörfer, R; Castelijns, R; Crede, V; Dutz, H; Ehmanns, A; Elsner, D; Ewald, R; Fabry, I; Fuchs, M; Essig, K; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Hössl, J; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Klein, Frank; Klein, Fritz; Klempt, E; Konrad, M; Kopf, B; Krusche, B; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Mertens, T; Metag, V; Mosel, U; Nanova, M; Novotny, R; Ostrick, M; Pant, L M; van Pee, H; Pfeiffer, M; Roy, A; Radkov, A; Schadmand, S; Schmidt, Ch; Schmieden, H; Schoch, B; Shende, S; Suft, G; Sumachev, V V; Szczepanek, T; Süle, A; Thoma, U; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch
2008-05-16
Information on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic omega width is found to be 130-150 MeV/c(2) at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the omega meson, this inelastic omega width corresponds to a reduction of the omega lifetime by a factor approximately 30. For the first time, the momentum dependent omegaN cross section has been extracted from the experiment and is in the range of 70 mb. PMID:18518443
NASA Astrophysics Data System (ADS)
Gómez, Sergio S.; Melo, Juan I.; Romero, Rodolfo H.; Aucar, Gustavo A.; de Azúa, Martín Ruiz
2005-02-01
We have calculated the relativistic corrections to the diamagnetic term of the nuclear magnetic shielding constants for a series of molecules containing heavy atoms. An analysis of the contributions from localized orbitals is performed. We establish quantitatively the relative importance of inner core and valence shell molecular orbitals in each correcting term. Contributions from the latter are much less important than those from the former. The calculated values of the correction σL-PSO, first derived within the linear response elimination of small component formalism, show a power-law dependence on the nuclear charge ˜Z3.5, in contrast with the ˜Z3.1 behavior of the mass-velocity external-field correction to the paramagnetic term previously reported.
Wu, Hui-Chun; Hegelich, B.M.; Fernandez, J.C.; Shah, R.C.; Palaniyappan, S.; Jung, D.; Yin, L; Albright, B.J.; Bowers, K.; Huang, C.; Kwan, T.J.
2012-06-19
Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.
NASA Astrophysics Data System (ADS)
Blanco, R.; Pesquera, L.; Santos, E.
1983-03-01
The motion of a charged pointlike relativistic particle under the action of a given force field plus a random electromagnetic radiation is studied. It is assumed that the given force field alone should produce a multiply periodic motion, which is perturbed by the action of both the random radiation and the reaction damping. The random radiation is represented by a stochastic process and an equation is obtained for the equilibrium probability density of the particle in phase space. In the particular case of a random radiation with Rayleigh-Jeans spectrum, it is shown that the stationary solution, corresponding to radiation-matter equilibrium, is given by the Maxwell-Boltzmann distribution.
Maldonado, Alejandro F; Aucar, Gustavo A
2014-09-11
relativistic effects on nuclear magnetic shieldings. We finally show that in the analysis of magnetic shieldings for the family of compounds mentioned above, one must consider the newest and so-called heavy-atom effect on vicinal heavy atoms, HAVHA. Such effects are among the most important relativistic effects in these kind of compounds. PMID:25110942
Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions
Ghodsi, O. N.; Gharaei, R.
2011-08-15
We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV. Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter, it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the precompound nucleons' emission and the incompressibility of nuclear matter to calculate the nuclear potential in fusion reactions within a static formalism such as the double-folding (DF) model.
Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential
NASA Astrophysics Data System (ADS)
Basu, D. N.; Chowdhury, P. Roy; Samanta, C.
2006-10-01
A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.
NASA Astrophysics Data System (ADS)
Reinhard, P.-G.; Nazarewicz, W.
2016-05-01
Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations
Unstable infinite nuclear matter in stochastic mean field approach
Colonna, M.; Chomaz, P. Laboratorio Nazionale del Sud, Viale Andrea Doria, Catania )
1994-04-01
In this article, we consider a semiclassical stochastic mean-field approach. In the case of unstable infinite nuclear matter, we calculate the characteristic time of the exponential growing of fluctuations and the diffusion coefficients associated to the unstable modes, in the framework of the Boltzmann-Langevin theory. These two quantities are essential to describe the dynamics of fluctuations and instabilities since, in the unstable regions, the evolution of the system will be dominated by the amplification of fluctuations. In order to make realistic 3D calculations feasible, we suggest to replace the complicated Boltzmann-Langevin theory by a simpler stochastic mean-field approach corresponding to a standard Boltzmann evolution, complemented by a simple noise chosen to reproduce the dynamics of the most unstable modes. Finally we explain how to approximately implement this method by simply tuning the noise associated to the use of a finite number of test particles in Boltzman-like calculations.
Modified Dihadron Fragmentation Functions in Hot and Nuclear Matter
Majumder, A.; Wang Enke; Wang Xinnian
2007-10-12
Medium modification of dihadron fragmentation functions due to gluon bremsstrahlung induced by multiple partonic scattering is studied in both deep-inelastic scattering (DIS) off large nuclei and high-energy heavy-ion collisions within the same framework of twist expansion. The modification for dihadrons is found to closely follow that for single hadrons, leading to a weak nuclear suppression of their ratios in DIS experiments. A mild enhancement of the near-side correlation of two high transverse momentum hadrons with increasing centrality is found in heavy-ion collisions due to trigger bias and the rise in parton energy loss with centrality. Successful comparisons between theory and experiment for multihadron observables in both confining and deconfined media offer comprehensive evidence for partonic energy loss as the mechanism of jet modification in dense matter.
Neutrino mean free paths in cold symmetric nuclear matter
Cowell, S.; Pandharipande, V.R.
2004-09-01
The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.
Conventional and Unconventional Pairing and Condensates in Dilute Nuclear Matter
NASA Astrophysics Data System (ADS)
Clark, John W.; Sedrakian, Armen; Stein, Martin; Huang, Xu-Guang; Khodel, Victor A.; Shaginyan, Vasily R.; Zverev, Mikhail V.
2016-03-01
This contribution will survey recent progress toward an understanding of diverse pairing phenomena in dilute nuclear matter at small and moderate isospin asymmetry, with results of potential relevance to supernova envelopes and proto-neutron stars. Application of ab initio many-body techniques has revealed a rich array of temperature-density phase diagrams, indexed by isospin asymmetry, which feature both conventional and unconventional superfluid phases. At low density there exist a homogeneous translationally invariant BCS phase, a homogeneous LOFF phase violating translational invariance, and an inhomogeneous translationally invariant phase-separated BCS phase. The transition from the BCS to the BEC phases is characterized in terms of the evolution, from weak to strong coupling, of the pairing gap, condensate wave function, and quasiparticle occupation numbers and spectra. Additionally, a schematic formal analysis of pairing in neutron matter at low to moderate densities is presented that establishes conditions for the emergence of both conventional and unconventional pairing solutions and encompasses the possibility of dineutron formation.
Empirical observations on the unpredictable behavior of nuclear matter
Tannenbaum, M.J.
1994-01-19
While many aspects of matter are unpredictable from basic principles, there are some that are susceptible to empirical descriptions which can be quite accurate and beautiful. One such example from the field of ``Nuclear Matter Under Extreme Conditions`` is the distribution of the number of particles produced, or alternatively, of the energy carried by these particles, in energetic collisions of atomic nuclei. The present work consists of a series of published scientific papers on measurements of the distribution of particles produced, or the energy carried by these particles, in collisions of various nuclei, spanning more than a decade of research. Due to the unpredictability of the theory, the work includes empirical studies of the regularity of the measured distributions from which significant knowledge is gained. The aesthetics of this subject derives from the physical beauty of the measured curves, the characteristic changes of shape with different species of nuclei, and the deep understanding obtained by the use of a simple and elegant mathematical function to describe the data.
Long range correlations and the soft ridge in relativistic nuclear collisions
Gavin, Sean; Moschelli, George; McLerran, Larry
2009-05-15
Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the untriggered ridge arises when particles formed by flux tubes in an early Glasma stage later manifest transverse flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the Glasma, we find excellent agreement with current data.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
... entities participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations, Inc., Palisades Nuclear Plant, 27780 Blue...
Stability and size of a chiral soliton immersed in nuclear matter
Kahana, S.
1985-01-01
The alteration in nucleon substructure when nucleons are placed in nuclear matter is addressed in a Wigner-Seitz approximation by treating nuclei as a collection of chiral solitons. In the limit of strong coupling between quarks and the binding chiral fields, and for low density nuclear matter, it is found the solitons decrease slightly in size. 19 refs., 3 figs.
Some relativistic aspects of nuclear dynamics at the electrodisintegration of nuclei
NASA Astrophysics Data System (ADS)
Efros, V. D.
2014-08-01
An approach aimed to extend the applicability range of the nonrelativistic microscopic calculations of electronuclear response functions is reviewed. In the quasielastic peak region these calculations agree with experiment at momentum transfers up to about 0.4 GeV/ c, while at higher momentum transfers being beyond 1 GeV/ c a disagreement is seen. In view of this, a reference frame where dynamic relativistic corrections are small was employed to calculate the response functions and the results were transformed exactly to the laboratory reference frame. This proved to remove the major part of the disagreement with experiment. All leading-order relativistic corrections to the transition charge operator and to the one-body part of the transition current operator were taken into account in the calculations. Furthermore, a particular model to determine the kinematical inputs of the nonrelativistic calculations was introduced. This model provides the correct relativistic relationship between the reaction final-state energy and the momenta of the knocked-out nucleon and the residual system. The above-mentioned choice of a reference frame in conjunction with this model has led to an even better agreement with experiment.
NASA Astrophysics Data System (ADS)
Blanco, R.; Pesquera, L.; Santos, E.
1984-05-01
We continue the study of the problem of equilibrium between radiation and classical relativistic systems begun previously
Symmetry Energy and Surface Clustering in Nuclei; Probing the Asymmetric Nuclear Matter
NASA Astrophysics Data System (ADS)
Abdullah, Nooraihan; Nasir Usmani, Qamar; Anwar, Khairul; Sauli, Zaliman
We investigate the properties of asymmetric nuclear matter (ANM) which is consistent with clustering at low densities of nuclear matter. Due to clustering, the equation of state of asymmetric nuclear matter demonstrates peculiar properties. It is shown that the ground of ANM has two separate phases of normal nuclear matter and neutron matter for N > Z. This situation is at variance with the conventional picture of uniform distribution of neutrons and protons for ANM. Thus, this leads to an excellent understanding of the symmetry energy data of Wada et al. [1] in the density range of 0.048-0.032 fm-3. It is shown that inclusion of clustering at the nuclear surface is essential to explain about nuclei near the neutron drip line. The research incorporates 2149 nuclei [2] with N,Z ≥ 8.
NASA Astrophysics Data System (ADS)
Green, Timothy F. G.; Yates, Jonathan R.
2014-06-01
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, 1J(P-Ag) and 2J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.
Green, Timothy F. G. Yates, Jonathan R.
2014-06-21
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing the heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, {sup 1}J(P-Ag) and {sup 2}J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.
Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; Arefiev, Alexey V.; Flippo, Kirk A.; Gaillard, Sandrine A.; Johnson, Randy P.; Kimmel, Mark W.; Offermann, Dustin T.; Rambo, Patrick K.; et al
2015-04-20
High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge ofmore » the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.« less
Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; Arefiev, Alexey V.; Flippo, Kirk A.; Gaillard, Sandrine A.; Johnson, Randy P.; Kimmel, Mark W.; Offermann, Dustin T.; Rambo, Patrick K.; Schwarz, Jens; Shimada, Tom
2015-04-20
High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.
Schollmeier, M.; Sefkow, A. B.; Geissel, M.; Kimmel, M. W.; Rambo, P. K.; Schwarz, J.; Arefiev, A. V.; Flippo, K. A.; Johnson, R. P.; Shimada, T.; Gaillard, S. A.; Offermann, D. T.
2015-04-15
High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results show that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.
Diffusion of dark matter in a hot and dense nuclear environment
NASA Astrophysics Data System (ADS)
Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph
2016-07-01
We calculate the mean free path in a hot and dense nuclear environment for a fermionic dark matter particle candidate in the ˜GeV mass range interacting with nucleons via scalar and vector effective couplings. We focus on the effects of density and temperature in the nuclear medium in order to evaluate the importance of the final state blocking in the scattering process. We discuss qualitatively possible implications for opacities in stellar nuclear scenarios, where dark matter may be gravitationally accreted.
NASA Technical Reports Server (NTRS)
Khandelwal, Govind S.; Khan, Ferdous
1989-01-01
An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.
Excited nuclear matter at Fermi energies: From transport properties to the equation of state
NASA Astrophysics Data System (ADS)
Lopez, O.; Durand, D.; Lehaut, G.
2016-05-01
Properties of excited nuclear matter are one of the main subject of investigation in Nuclear Physics. Indeed, the response of nuclear matter under extreme conditions encountered in heavy-ion induced reactions (large compression, thermal and collective excitations, isopin diffusion) around the Fermi energy is strongly needed when studying the nuclear equation of state and the underlying in-medium properties concerning the nuclear interaction. In this contribution, we will present some experimental results concerning the transport properties of nuclear matter, focusing specifically on the determination of in-medium quantities such as mean free pathes and nucleon-nucleon cross sections around the Fermi energy. We will see that, in this specific energy range, energy and isospin dissipations exhibit very peculiar features, such as the crossover between 1-body to 2-body dissipation regimes corresponding to the transition between the nuclear response from Mean-Field to the nucleonic response through the appearance of nucleon-nucleon collisions.