Science.gov

Sample records for relativistic qrpa description

  1. Improved Relativistic QRPA calculations of the {gamma}-ray strength

    SciTech Connect

    Daoutidis, I.; Goriely, S.; Arteaga, D. Pena; Ring, P.

    2011-10-28

    Continuum Random Phase Approximation (CRPA) for relativistic point coupling models with density dependent coupling constants is applied to investigate collective excitations in spherical nuclei. In particular we study the impact of the exact continuum on the Giant Dipole Resonance of several Tin isotopes as well as the nuclear ({gamma},n) reaction rates which are important in astrophysical calculations.

  2. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  3. On the description of subsystems in relativistic hypersurface Bohmian mechanics

    PubMed Central

    Dürr, Detlef; Lienert, Matthias

    2014-01-01

    A candidate for a realistic relativistic quantum theory is the hypersurface Bohm–Dirac model. Its formulation uses a foliation of space–time into space-like hypersurfaces. In order to apply the theory and to make contact with the usual quantum formalism, one needs a framework for the description of subsystems. The presence of spin together with the foliation renders the subsystem description more complicated than in the non-relativistic case with spin. In this paper, we provide such a framework in terms of an appropriate conditional density matrix and an effective wave function as well as clarify their relation, thereby generalizing previous subsystem descriptions in the non-relativistic case. PMID:25197244

  4. On the description of subsystems in relativistic hypersurface Bohmian mechanics.

    PubMed

    Dürr, Detlef; Lienert, Matthias

    2014-09-01

    A candidate for a realistic relativistic quantum theory is the hypersurface Bohm-Dirac model. Its formulation uses a foliation of space-time into space-like hypersurfaces. In order to apply the theory and to make contact with the usual quantum formalism, one needs a framework for the description of subsystems. The presence of spin together with the foliation renders the subsystem description more complicated than in the non-relativistic case with spin. In this paper, we provide such a framework in terms of an appropriate conditional density matrix and an effective wave function as well as clarify their relation, thereby generalizing previous subsystem descriptions in the non-relativistic case. PMID:25197244

  5. Relativistic Mean Field description of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Gambhir, Y. K.

    1994-03-01

    The Relativistic Mean Field (RMF) approach which essentially is an extension of the original σ — ω model of Walecka, has been applied to exotic nuclei as an illustration. We consider nuclei near Z = 34 in the very interesting 2p-1f region. The calculated binding energies, root mean square radii, deformations and other observables are very satisfactory and are in accordance with the experiment (where available) and also with the available empirical studies. Large deformations and shape co-existence are obtained for several cases.

  6. On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions

    NASA Astrophysics Data System (ADS)

    Voitkiv, A. B.

    2007-07-01

    We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schrödinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Za<~ 50-60, where Za is the atomic nuclear charge.

  7. Relativistic mechanical-thermodynamical formalism—description of inelastic collisions

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.; Fernández, L. A.

    2016-01-01

    We present a relativistic formalism inspired by the Minkowski four-vectors that also includes conservation laws such as the first law of thermodynamics. It remains close to the relativistic four-vector formalism developed for a single particle, but is also related to the classical treatment of problems that require both Newton's second law and the energy conservation law. We apply the developed formalism to inelastic collisions to better show how it works.

  8. Relativistic Hartree-Bogoliubov description of the halo nuclei

    SciTech Connect

    Meng, J.; Ring, P.

    1996-12-31

    Here the authors report the development of the relativistic Hartree-Bogoliubov theory in coordinate space. Pairing correlations are taken into account by both density dependent force of zero range and finite range Gogny force. As a primary application the relativistic HB theory is used to describe the chain of Lithium isotopes reaching from {sup 6}Li to {sup 11}Li. In contrast to earlier investigations within a relativistic mean field theory and a density dependent Hartree Fock theory, where the halo in {sup 11}Li could only be reproduced by an artificial shift of the 1p{sub 1/2} level close to the continuum limit, the halo is now reproduced in a self-consistent way without further modifications using the scattering of Cooper pairs to the 2s{sub 1/2} level in the continuum. Excellent agreement with recent experimental data is observed.

  9. Quantum-mechanical description of Lense-Thirring effect for relativistic scalar particles

    NASA Astrophysics Data System (ADS)

    Silenko, A. J.

    2013-12-01

    Exact expression for the Foldy-Wouthuysen Hamiltonian of scalar particles is used for a quantum-mechanical description of the relativistic Lense-Thirring effect. The exact evolution of the angular momentum operator in the Kerr field approximated by a spatially isotropic metric is found. The quantummechanical description of the full Lense-Thirring effect based on the Laplace-Runge-Lenz vector is given in the nonrelativistic and weak-field approximation. Relativistic quantum-mechanical equations for the velocity and acceleration operators are obtained. The equation for the acceleration defines the Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the frame-dragging effect.

  10. Relativistic Energy Density Functionals: beyond mean-field description of exotic structures

    SciTech Connect

    Vretenar, D.; Niksic, T.; Ring, P.; Lalazissis, G. A.

    2009-01-28

    The framework of relativistic energy density functionals is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. This approach enables a quantitative description of the evolution of shell-structure, deformation and shape coexistence phenomena in nuclei with soft potential energy surfaces, and singular properties of excitation spectra and transition rates at critical points of quantum shape phase transitions.

  11. On the usefulness of relativistic space-times for the description of the Earth's gravitational field

    NASA Astrophysics Data System (ADS)

    Soffel, Michael; Frutos, Francisco

    2016-07-01

    The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.

  12. Computer code for double beta decay QRPA based calculations

    SciTech Connect

    Barbero, C. A.; Mariano, A.; Krmpotić, F.; Samana, A. R.; Ferreira, V. dos Santos; Bertulani, C. A.

    2014-11-11

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.

  13. Many-body correlations of QRPA in nuclear matrix elements of double-beta decay

    SciTech Connect

    Terasaki, J.

    2015-10-28

    We present two new ideas on the quasiparticle random-phase approximation (QRPA) approach for calculating nuclear matrix elements of double-beta decay. First, it is necessary to calculate overlaps of the QRPA states obtained on the basis of the ground states of different nuclei. We calculate this overlap using quasiboson vacua as the QRPA ground states. Second, we show that two-particle transfer paths are possible to use for the calculation under the closure approximation. A calculation is shown for {sup 150}Nd→{sup 150}Sm using these two new ideas, and their implication is discussed.

  14. QRPA Calculations for Spherical and Deformed Nuclei With the Gogny Force

    SciTech Connect

    Peru, S.

    2009-08-26

    Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed with the D1S Gogny force. Dipole responses have been calculated in Ne isotopes to study the existence of soft dipole modes in exotic nuclei. A comparison between QRPA and generator coordinate method with Gaussian overlap approximation results is done for low lying 2{sup +} states in N = 16 isotones and Ni isotopes.

  15. Covariant description of inelastic electron-deuteron scattering: predictions of the relativistic impulse approximation

    SciTech Connect

    J. Adam, Jr.; Franz Gross; Sabine Jeschonnek; Paul Ulmer; J.W. Van Orden

    2002-05-01

    Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross section for deuteron electrodisintegration, d(e, e'p)n, is studied. The relativistic kinematics are reviewed, and simple theoretical formulae for the relativistic impulse approximation (RIA) are derived and discussed. Numerical predictions for the scattering in the high Q{sup 2} region obtained from the RIA and five other approximations are presented and compared. We concluded that measurements of the unpolarized coincidence cross section and the asymmetry A{sub phi}, to an accuracy that will distinguish between different theoretical models, is feasible over most of the wide kinematic range accessible at Jefferson Lab.

  16. Breaking of relativistically intense longitudinal space charge waves: A description using Dawson sheet model

    NASA Astrophysics Data System (ADS)

    Sengupta, Sudip

    2014-02-01

    Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.

  17. Breaking of relativistically intense longitudinal space charge waves: A description using Dawson sheet model

    SciTech Connect

    Sengupta, Sudip

    2014-02-11

    Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.

  18. Descriptions of Carbon Isotopes Within Density-Dependent Relativistic Hartree-Fock Theory

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Li; Long, Wen-Hui

    2013-11-01

    Within the density-dependent relativistic Hartree-Fock-Bogoliubov (DDRHFB) theory, the structure properties of Carbon isotopes are systematically studied, by taking the finite-range Gogny D1S with prefix factor 1.1 as the pairing force. The self-consistent DDRHFB calculations indicate the single neutron halo structures in both 17C and 19C. It is also found that close to the neutron drip line there exists distinct odd-even staggering on neutron radii, which is tightly related with the block effect.

  19. Introduction of a valence space in QRPA: Impact on vibrational mass parameters and spectroscopy

    SciTech Connect

    Lechaftois, F. Péru, S.; Deloncle, I.

    2015-10-15

    For the first time, using a unique finite range interaction (D1M Gogny force), a fully coherent and time-feasible calculation of the Bohr Hamiltonian vibrational mass is envisioned in a Hartree-Fock-Bogoliubov + Quasiparticle Random Phase Approximation (QRPA) framework. In order to reach handable computation time, we evaluate the feasibility of this method by considering the insertion of a valence space for QRPA. We validate our approach in the even-even tin isotopes comparing the convergence scheme of the mass parameter with those of built-in QRPA outputs: excited state energy and reduced transition probability. The seeming convergence of these intrinsic quantities is shown to be misleading and the difference with the theoretical expected value is quantified. This work is a primary step towards the systematic calculation of mass parameters.

  20. Systematics of the First 2{sup +} Excitation in Spherical Nuclei with Skyrme-QRPA

    SciTech Connect

    Terasaki, J.

    2009-05-07

    We use the Quasiparticle Random Phase Approximation (QRPA) and the Skyrme interactions SLy4 and SkM* to systematically calculate energies and transition strengths for the lowest 2{sup +} state in spherical even-even nuclei. The SkM* functional, applied to 178 spherical nuclei between Z = 10 and 90, produces excitation energies that are on average 11% higher than experimental values, with residuals that fluctuate about the average by -35%+55%. The predictions of SkM* and SLy4 have significant differences, in part because of differences in the calculated ground state deformations; SkM* performs better in both the average and dispersion of energies. Comparing the QRPA results with those of generator-coordinate-method (GCM) calculations, we find that the QRPA reproduces trends near closed shells better than the GCM, and overpredicts the energies less severely in general.

  1. Toward relativistic mean-field description of Nbar-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Gaitanos, T.; Kaskulov, M.

    2015-08-01

    In this work we study the antinucleon-nucleus optical potential in the framework of the non-linear derivative (NLD) model with momentum dependent mean-fields. We apply the NLD model to interaction of antinucleons (Nbar) in nuclear matter and, in particular, to antiproton scattering on nuclei. In nuclear matter a strong suppression of the Nbar-optical potential at rest and at high kinetic energies is found and caused by the momentum dependence of relativistic mean-fields. The NLD results are consistent with known empirical Nbar-nucleus observations and agree well with antiproton-nucleus scattering data. This makes the NLD approach compatible with both, nucleon and antinucleon Dirac phenomenologies. Furthermore, in nuclear matter an effective mass splitting between nucleons and antinucleons is predicted.

  2. Metallic magnetism at finite temperatures studied by relativistic disordered moment description: Theory and applications

    NASA Astrophysics Data System (ADS)

    Deák, A.; Simon, E.; Balogh, L.; Szunyogh, L.; dos Santos Dias, M.; Staunton, J. B.

    2014-06-01

    We develop a self-consistent relativistic disordered local moment (RDLM) scheme aimed at describing finite-temperature magnetism of itinerant metals from first principles. Our implementation in terms of the Korringa-Kohn-Rostoker multiple-scattering theory and the coherent potential approximation allows us to relate the orientational distribution of the spins to the electronic structure, thus a self-consistent treatment of the distribution is possible. We present applications for bulk bcc Fe, L10-FePt, and FeRh ordered in the CsCl structure. The calculations for Fe show significant variation of the local moments with temperature, whereas according to the mean-field treatment of the spin fluctuations the Curie temperature is overestimated. The magnetic anisotropy of FePt alloys is found to depend strongly on intermixing between nominally Fe and Pt layers, and it shows a power-law behavior as a function of magnetization for a broad range of chemical disorder. In the case of FeRh we construct a lattice constant vs temperature phase diagram and determine the phase line of metamagnetic transitions based on self-consistent RDLM free-energy curves.

  3. A relativistic description of the quasifree radiative pion-capture reaction on nuclei

    NASA Astrophysics Data System (ADS)

    Johansson, J. I.; Sherif, H. S.

    1995-02-01

    We present a relativistic model for the reaction A( π+, γp) A - 1. This is an extension of our recent model for negative-pion photoproduction. The interaction of the pion with the target nucleon is comprised of the set of Born terms arising from the pseudovector form of the pion-nucleon interaction lagrangian, as well as s- and u-channel diagrams involving the propagation of the Δ(1232). The bound and continuum nucleons are described by solutions of the Dirac equation with appropriate scalar and vector potentials, while the pion wave function is a solution of the Klein-Gordon equation containing a pion-nucleus optical potential. Calculations of the triple differential cross section {d3σ }/{dω p dω γdEγ } as well as the polarization of the final proton are presented for the kinematics of TRIUMF experiment 550. Under appropriate kinematic conditions the contribution of the Δ(1232) is found to be dominant in this reaction. The results are sensitive to the choice of pion-nucleus optical potential but are not very sensitive to the nucleon interactions with the nucleus. We obtain qualitative agreement with data from TRIUMF experiment 550.

  4. Relativistic self-consistent mean-field description of Sm isotopes

    NASA Astrophysics Data System (ADS)

    Karim, Afaque; Ahmad, Shakeb

    2015-12-01

    The evolution of the shape from the spherical to the axially deformed shapes of the neutron-rich, even-even Sm-164144 transitional nuclei is investigated. The investigations are performed with explicit density-dependent meson-nucleon and point-coupling models within the framework of the covariant density functional theory. A nonlinear meson-nucleon coupling model represented by the NL3* parametrization of the relativistic mean-field Lagrangian has also been used. The bulk and the microscopic properties of these nuclei have been investigated to analyze the phase-transition region and the critical-point behavior. The microscopic and self-consistent quadrupole deformation-constrained calculations show a clear shape change for even-even Sm isotopes with N =82 -102 . The potential energy surfaces for 148Sm,150Sm , and 152Sm obtained using different interactions are found to be relatively flat, which may be the possible critical-point nuclei. By examining the single-particle spectra, it is found that these nuclei distribute more uniformly as compared to other isotopes. Investigations also support the proposed shell-closure properties of 162Sm. Overall good agreement is found within the different models used and between the calculated and experimental results wherever available.

  5. Fully relativistic description of spin-orbit torques by means of linear response theory

    NASA Astrophysics Data System (ADS)

    Wimmer, S.; Chadova, K.; Seemann, M.; Ködderitzsch, D.; Ebert, H.

    2016-08-01

    Symmetry and magnitude of spin-orbit torques (SOT), i.e., current-induced torques on the magnetization of systems lacking inversion symmetry, are investigated in a fully relativistic linear response framework based on the Kubo formalism. By applying all space-time symmetry operations contained in the magnetic point group of a solid to the relevant response coefficient, the torkance expressed as torque-current correlation function, restrictions to the shape of the direct and inverse response tensors are obtained. These are shown to apply to the corresponding thermal analogs as well, namely the direct and inverse thermal SOT in response to a temperature gradient or heat current. Using an implementation of the Kubo-Bastin formula for the torkance into a first-principles multiple-scattering Green function framework and accounting for disorder effects via the so-called coherent potential approximation, all contributions to the SOT in pure systems, dilute as well as concentrated alloys can be treated on equal footing. This way, material specific values for all torkance tensor elements in the fcc (111) trilayer alloy system Pt| FexCo1 -x|Cu are obtained over a wide concentration range and discussed in comparison to results for electrical and spin conductivity, as well as to previous work—in particular concerning symmetry with respect to magnetization reversal and the nature of the various contributions.

  6. Relativistic description of inclusive quasielastic proton-nucleus scattering with relativistic distorted-wave impulse approximation and random-phase approximation

    SciTech Connect

    Niekerk, D. D. van; Ventel, B. I. S. van der; Titus, N. P.; Hillhouse, G. C.

    2011-04-15

    We present a fully relativistic model for polarized inclusive quasielastic proton-nucleus scattering that includes relativistic distorted waves for the projectile and ejectile (RDWIA), as well as the relativistic random-phase approximation (RPA) applied to the target nucleus. Using a standard relativistic impulse approximation treatment of quasielastic scattering and a two-body Scalar, Pseudoscalar, Vector, Axial vector, Tensor (SPVAT) form of the current operator, it is shown how the behavior of the projectile/ejectile and target can be decoupled. Distortion effects are included via a full partial-wave expansion of the relativistic wave functions. Target correlations are included via the relativistic RPA applied to mean-field theory in quantum hadrodynamics. A number of novel analytical and numerical techniques are employed to aid in this highly nontrivial calculation. A baseline plane-wave calculation is performed for the reaction {sup 40}Ca(p-vector,p-vector{sup '}) at an energy of 500 MeV and an angle {theta}{sub c.m.}=40 deg. Here it is found that the effect of isoscalar correlations is a quenching of the cross section that is expected to become more pronounced at lower energies or for higher-density targets. A RDWIA calculation shows additional reduction and if isoscalar target correlations are included this effect is enhanced.

  7. Relativistic description of pair production of doubly heavy baryons in e{sup +}e{sup −} annihilation

    SciTech Connect

    Martynenko, A. P.; Trunin, A. M.

    2015-05-15

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated.

  8. Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei

    SciTech Connect

    Martini, M.; Goriely, S.; Péru, S.

    2014-06-15

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.

  9. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect

    Kawano, Toshihiko; Moller, Peter; Wilson, William B

    2008-01-01

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  10. Clothing Procedure in Relativistic Quantum Field Theory and its applications to Description of Electromagnetic Interactions with Nuclei (Bound Systems)

    NASA Astrophysics Data System (ADS)

    Shebeko, A. V.; Shirokov, M. I.

    2000-04-01

    A growing interest in the method of unitary transformations (UT's) in the quantum theory of particles and nuclei has been seen during the last years. We express the total Hamiltonian H of interacting fields through new operators for particle creation and destruction and show that this can be understood as a UT of H. The respective particles may be called “cothed”. They are identified with the physical particles. The Hamiltonian in the new form turns out to be dependent on the renormalized particle masses and not the “bare” ones. Forms of the same kind are derived for all the Poincaré group generators. By using this new form of the Hamiltonian we suggest an approach to the bound state problem in relativistic quantum field theories (RQFT's). We also discuss applications of the developed formalism for constructing effective electromagnetic (EM) currents in the theory of photonuclear reactions.

  11. Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Ring, P.; Gambhir, Y. K.; Lalazissis, G. A.

    1997-09-01

    We present a Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the framework of Relativistic Mean Field Theory (RMF). In this approach a set of coupled partial differentials has to be solved self-consistently: the Dirac equation for the nucleons moving in self-consistent fields and the Klein-Gordon equations for the meson fields and the electromagnetic field, whose sources are scalar and vector densities determined of the nucleons. For this purpose the Dirac spinors as well as the meson fields are expanded in terms of anisotropic oscillator wave functions in cylindrical coordinates. This requires a matrix diagonalization for the solution of the Dirac equations and the solution of an inhomogeneous matrix equation for the meson fields. For the determination of the Coulomb field the Greens function method is used.

  12. Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description

    SciTech Connect

    Tang Zebo; Xu Yichun; Ruan Lijuan; Buren, Gene van; Xu Zhangbu; Wang Fuqiang

    2009-05-15

    We have implemented the Tsallis statistics in a Blast-Wave model (TBW) and applied it to midrapidity transverse-momentum spectra of identified particles measured at BNL Relativistic Heavy Ion Collider (RHIC). This new TBW function fits the RHIC data very well for p{sub T}<3 GeV/c. We observed that the collective flow velocity starts from zero in p+p and peripheral Au+Au collisions and grows to 0.470{+-}0.009c in central Au+Au collisions. The resulting (q-1) parameter, which characterizes the degree of nonequilibrium in a system, indicates an evolution from a highly nonequilibrated system in p+p collisions toward an almost thermalized system in central Au+Au collisions. The temperature and collective velocity are well described by a quadratic dependence on (q-1). Two sets of parameters in our TBW are required to describe the meson and baryon groups separately in p+p collisions while one set appears to fit all spectra in central Au+Au collisions.

  13. Gamow-Teller strength and beta-decay rate within the self-consistent deformed pnQRPA

    NASA Astrophysics Data System (ADS)

    Martini, M.; Goriely, S.; Péru, S.

    2016-01-01

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the 238U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Gamow-Teller (GT) excitations which are known to play a crucial role in several fields of physics, in particular in nuclear astrophysics (stellar evolution and nucleosynthesis). A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay halflives calculations for which experimental data exist and for specific isotonic chains of relevance for the r-process nucleosynthesis.

  14. Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Goriely, S.; Hilaire, S.; Péru, S.; Minato, F.

    2016-01-01

    The dipole excitations of nuclei play an important role in nuclear astrophysics processes in connection with the photoabsorption and the radiative neutron capture that take place in stellar environment. We present here the results of a large-scale axially-symmetric deformed QRPA calculation of the γ-ray strength function based on the finite-range Gogny force. The newly determined γ-ray strength is compared with experimental photoabsorption data for spherical as well as deformed nuclei. Predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes are also discussed.

  15. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  16. Sensitive behavior of 2νββ-decay amplitude within QRPA and broken SU(4) symmetry in nuclei

    NASA Astrophysics Data System (ADS)

    Rodin, Vadim A.; Urin, Michael H.; Faessler, Amand

    2005-01-01

    Making use of an identity transformation independent of a nuclear model, we represent the 2νββ-amplitude as a sum of two terms. One term accounts for most of the sensitivity of the original 2νββ-amplitude to gpp' for realistic gpp'≃1 (with gpp' being the ratio of the triplet and singlet p- p interaction strengths) and is determined by a specific energy-weighted sum rule. The sum rule depends only on the particle-particle residual interaction (being linear function of gpp' in the QRPA) and passes through zero at the point gpp'=1 where the Wigner SU(4) symmetry is restored in the p- p sector of the Hamiltonian. The second term in the decomposition of the 2νββ-amplitude is demonstrated within the QRPA to be a much smoother function for the realistic values of gpp' than the original 2νββ-amplitude. This term is mainly determined by the intensity of the spin-orbit interaction of the nuclear mean field. Thus, the analysis of the present work reveals the reasons for the sensitivity of the 2νββ-amplitude to different components of the nuclear Hamiltonian and thereby can help in constraining nuclear model uncertainties in calculations of the amplitude.

  17. Relativistic kinetic theory of magnetoplasmas

    SciTech Connect

    Beklemishev, Alexei; Nicolini, Piero; Tessarotto, Massimo

    2005-05-16

    Recently, an increasing interest in astrophysical as well as laboratory plasmas has been manifested in reference to the existence of relativistic flows, related in turn to the production of intense electric fields in magnetized systems. Such phenomena require their description in the framework of a consistent relativistic kinetic theory, rather than on relativistic MHD equations, subject to specific closure conditions. The purpose of this work is to apply the relativistic single-particle guiding-center theory developed by Beklemishev and Tessarotto, including the nonlinear treatment of small-wavelength EM perturbations which may naturally arise in such systems. As a result, a closed set of relativistic gyrokinetic equations, consisting of the collisionless relativistic kinetic equation, expressed in hybrid gyrokinetic variables, and the averaged Maxwell's equations, is derived for an arbitrary four-dimensional coordinate system.

  18. Relativistic Effects in Two Photon Decay of 0-+ Quarkonium

    NASA Astrophysics Data System (ADS)

    Zhou, H. Q.; Zou, B. S.

    Relativistic effects in two photon decay of 0-+ quarkonium are investigated with a relativistic phenomenological approach. Comparing with the non-relativistic approximation, the relativistic phenomenological approach gives corrections coming from three sources: qbar q relative momentum distribution, qbar q relative energy distribution and description of quark spinors in the meson. These relativistic effects are studied in detail for cbar c and sbar s systems.

  19. Gamow-Teller strength distributions and stellar weak-interaction rates for ^{76}Ge and ^{82}Se using the deformed pn-QRPA model

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Ishfaq, Mavra

    2016-07-01

    We calculate Gamow-Teller strength distributions for β β-decay nuclei ^{76}Ge and ^{82}Se using the deformed pn-QRPA model. We use a deformed Nilsson basis and consider pairing correlations within the deformed BCS theory. Ground state correlations and two-particle and two-hole mixing states were included in our pn-QRPA model. Our calculated strength distributions were compared with experimental data and previous calculation. The total Gamow-Teller strength and centroid placement calculated in our model compares well with the measured value. We calculate β-decay and positron capture rates on ^{76}Ge and ^{82}Se in supernovae environments and compare them to those obtained from experimental data and previous calculation. Our study shows that positron capture rates command the total weak rates at high stellar temperatures. We also calculate energy rates of β-delayed neutrons and their emission probabilities.

  20. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi

    2016-06-01

    Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA) and the Hauser-Feshbach statistical model (HFSM). In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  1. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  2. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  3. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  4. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  5. The Method of Unitary Clothing Transformations in Relativistic Quantum Field Theory: Recent Applications for the Description of Nucleon-Nucleon Scattering and Deuteron Properties

    NASA Astrophysics Data System (ADS)

    Shebeko, A.

    2013-12-01

    The clothing procedure, put forward in quantum field theory by Greenberg and Schweber, is applied for the description of nucleon-nucleon ( N- N) scattering below the pion production threshold and deuteron properties. We consider pseudoscalar ( π and η), vector ( ρ and ω) and scalar ( δ and σ) meson fields interacting with N and ones via the Yukawa-type couplings to introduce trial interactions between "bare" particles. The subsequent unitary clothing transformations (UCTs) are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. We will also show a worked example where the UCTs method is used in the framework of a gauge-independent field-theoretical treatment of electromagnetic interactions of deuterons (bound systems).

  6. Nuclear matrix elements for 0νβ{sup −}β{sup −} decays: Comparative analysis of the QRPA, shell model and IBM predictions

    SciTech Connect

    Civitarese, Osvaldo; Suhonen, Jouni

    2013-12-30

    In this work we report on general properties of the nuclear matrix elements involved in the neutrinoless double β{sup −} decays (0νβ{sup −}β{sup −} decays) of several nuclei. A summary of the values of the NMEs calculated along the years by the Jyväskylä-La Plata collaboration is presented. These NMEs, calculated in the framework of the quasiparticle random phase approximation (QRPA), are compared with those of the other available calculations, like the Shell Model (ISM) and the interacting boson model (IBA-2)

  7. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  8. Magnetohydrodynamics of chiral relativistic fluids

    NASA Astrophysics Data System (ADS)

    Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg

    2015-08-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  9. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  10. Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics

    SciTech Connect

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2011-06-15

    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.

  11. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  12. Relativistically strong Langmuir turbulence in the kinetic regime

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2011-08-15

    Using a kinetic description, the relativistically strong Langmuir turbulence is investigated, which has considered the nonlinear wave-wave, wave-particle interactions and the relativistic effects of electrons. The relativistic Zakharov equations have been obtained. On the basis of these equations, dynamics of collapse has been studied. It is shown that the field strength of relativistic Langmuir plasmons will increase and the ponderomotive expulsion of particles gives rise to the formation of density caviton during the collapsing, which is useful for understanding the natural structural element of relativistically strong Langmuir turbulence.

  13. Modulational instabilities in relativistic pair plasmas

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.

    2016-05-01

    We study the modulational instability of an intense photon beam in a relativistic pair plasma. We use the wave-kinetic description of the photon field and relativistic fluid equations for electrons and positrons. This allows us to consider the influence of the photon spectral distribution and photon recoil effects on the instability threshold and growth rates. The case of very low frequencies modulations, well below plasma frequency, is compared to that of high-frequency modulations corresponding to the plasmon decay instability.

  14. Relativistic fluid dynamics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Choquet-Bruhat, Y.

    Contents: 1. Covariant theory of conductivity in ideal fluid or solid media (B. Carter). 2. Hamiltonian techniques for relativistic fluid dynamics and stability theory (D. D. Holm). 3. Covariant fluid mechanics and thermodynamics: an introduction (W. Israel). 4. Relativistic plasmas (H. Weitzner). 5. An improved relativistic warm plasma model (A. M. Anile, S. Pennisi). 6. Relativistic extended thermodynamics II (I. Müller). 7. Relativistic extended thermodynamics: general assumptions and mathematical procedure (T. Ruggeri). 8. Relativistic hydrodynamics and heavy ion reactions (D. Strottman). 9. Some problems in relativistic hydrodynamics (C. G. van Weert).

  15. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  16. Spin dynamics in relativistic light-matter interaction

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2015-05-01

    Various spin effects are expected to become observable in light-matter interaction at relativistic intensities. Relativistic quantum mechanics equipped with a suitable relativistic spin operator forms the theoretical foundation for describing these effects. Various proposals for relativistic spin operators have been offered by different authors, which are presented in a unified way. As a result of the operators' mathematical properties only the Foldy-Wouthuysen operator and the Pryce operator qualify as possible proper relativistic spin operators. The ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally. Subsequently, the Foldy-Wouthuysen spin operator is employed to study electron-spin precession in high-intensity standing light waves with elliptical polarization. For a correct theoretical description of the predicted electron-spin precession relativistic effects due to the spin angular momentum of the electromagnetic wave has to be taken into account even in the limit of low intensities.

  17. BOOK REVIEW: Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Antoine, J.-P.

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled `Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  18. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  19. Relativistic atomic physics at the SSC

    SciTech Connect

    1990-12-31

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  20. Relativistic mean-field theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Ring, Peter; Zhao, Pengwei

    In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.

  1. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    SciTech Connect

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  2. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  3. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  4. Non-relativistic leptogenesis

    NASA Astrophysics Data System (ADS)

    Bödeker, Dietrich; Wörmann, Mirco

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ~ 20%) effects compared to previous computations.

  5. Consistent resolution of some relativistic quantum paradoxes

    SciTech Connect

    Griffiths, Robert B.

    2002-12-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.

  6. Constraining relativistic models through heavy ion collisions

    SciTech Connect

    Menezes, D. P.; Providencia, C.; Chiapparini, M.; Bracco, M. E.; Delfino, A.; Malheiro, M.

    2007-12-15

    Relativistic models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter and finite nuclei properties, these studies taking place at low and moderate temperatures. Nevertheless, all results are model dependent, and so far it is unclear whether some of them should be discarded. Moreover, in the regime of hot hadronic matter, very few calculations exist using these relativistic models, in particular when applied to particle yields in heavy ion collisions. A very important investigation is the simulation of a supernova explosion that is based on the construction of an adequate equation of state that needs to be valid within very large ranges of temperatures (0 to 100 MeV at least) and densities (very low to ten times the nuclear saturation density at least). In the present work, we comment on the known constraints that can help the selection of adequate models in this wide regime and investigate the main differences that arise when the particle production during a Au+Au collision at the BNL Relativistic Heavy Ion Collider is calculated with different relativistic models. We conclude that most of the models investigated in the present work give a very good overall description of the data and make predictions for not yet measured particle ratios.

  7. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  8. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  9. Relativistic Hall effect.

    PubMed

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes. PMID:22540559

  10. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  11. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  12. Relativistic dynamics of quasistable states. II. Differentiable representations of the causal Poincare semigroup

    SciTech Connect

    Wickramasekara, S.

    2009-07-15

    We construct two rigged Hilbert spaces that furnish differentiable representations of the causal Poincare semigroup. These rigged Hilbert spaces provide the mathematical foundation for a theory of relativistic quasistable states that synthesizes the S-matrix description of resonance scattering with the Bakamjian-Thomas construction for interacting relativistic quantum systems.

  13. Hydrodynamic approaches in relativistic heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Derradi de Souza, R.; Koide, T.; Kodama, T.

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.

  14. Relativistic Generalization of the Inertial and Gravitational Masses Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Mitskievich, Nikolai V.

    2008-09-01

    The Newtonian approximation in the gravitational field description not necessarily involves admission of non-relativistic properties of the source terms in Einstein's equations: it is sufficient to merely consider the weak-field condition for gravitational field. When, e.g., a source has electromagnetic nature, one simply cannot ignore its intrinsically relativistic properties, since there cannot be invented any non-relativistic approximation which would adequately describe electromagnetic stress-energy tensor even at large distances where the fields become naturally weak. But the test particle on which gravitational field is acting, should be treated as non-relativistic (this premise is required for introduction of the Newtonian potential ΦN from the geodesic equation).

  15. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts. PMID:20866862

  16. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  17. Relativistic nuclear dynamics

    SciTech Connect

    Coester, F.

    1985-01-01

    A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.

  18. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts. PMID:22519307

  19. Local supersymmetry in non-relativistic systems

    NASA Astrophysics Data System (ADS)

    Urrutia, L. F.; Zanelli, J.

    1989-10-01

    Classical and quantum non-relativistic interacting systems invariant under local supersymmetry are constructed by the method of taking square roots of the bosonic constraints which generate timelike reparameterization, leaving the action unchanged. In particular, the square root of the Schroedinger constraint is shown to be the non-relativistic limit of the Dirac constraint. Contact is made with the standard models of Supersymmetric Quantum Mechanics through the reformulation of the locally invariant systems in terms of their true degrees of freedom. Contrary to the field theory case, it is shown that the locally invariant systems are completely equivalent to the corresponding globally invariant ones, the latter being the Heisenberg picture description of the former, with respect to some fermionic time.

  20. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion. PMID:21929132

  1. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  2. A relativistic spherical vortex

    PubMed Central

    Pekeris, C. L.

    1976-01-01

    This investigation is concerned with stationary relativistic flows of an inviscid and incompressible fluid. In choosing a density-pressure relation to represent relativistic “incompressibility,” it is found that a fluid in which the velocity of sound equals the velocity of light is to be preferred for reasons of mathematical simplicity. In the case of axially symmetric flows, the velocity field can be derived from a stream function obeying a partial differential equation which is nonlinear. A transformation of variables is found which makes the relativistic differential equation linear. An exact solution is obtained for the case of a vortex confined to a stationary sphere. One can make all three of the components of velocity vanish on the surface of the sphere, as in the nonrelativistic Hicks spherical vortex. In the case of an isolated vortex on whose surface the pressure is made to vanish, it is found that the pressure at the center of the sphere becomes negative, as in the nonrelativistic case. A solution is also obtained for a relativistic vortex advancing in a fluid. The sphere is distorted into an oblate spheroid. The maximum possible velocity of advance of the vortex is (2/3) c. PMID:16578745

  3. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  4. Teleportation - Travel in the Quantum and Relativistic Realms and Bejond

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2007-01-01

    This book, which is devoted to the description and discussion of several methods leading to teleportation, is divided into three main parts: a) foundations of quantum non-locality, quantum particle teleportation and quantum computing; b) foundations of quantum-relativistic teleportation, warp drive propulsion methods and search for extraterrestrial visitation; c) experiments in "psychic teleportation" and problems related to quantum consciousness studies.

  5. Scaling phenomenon in relativistic nucleus-nucleus collisions

    SciTech Connect

    Wong, C. Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures.

  6. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  7. Dynamics of relativistic jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.

    1998-12-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  8. Relativistic self-focusing in underdense plasma

    SciTech Connect

    Feit, M.D.; Garrison, J.C.; Komashko, A.; Musher, J.L.; Rubenchik, A.M.; Turistsyn, S.K.

    1997-04-24

    In the present paper, we discuss light self-focusing in underdense (ndescription of relativistic self-focusing including ion dynamics will be presented in second part of the paper. In particular, we will demonstrate the formation of empty, wide channels in underdense plasma in the wake of the laser pulse. we discuss the applicability of our results to real situations and possible consequences for the ``Fast Ignitor`` project.

  9. Drought description

    USGS Publications Warehouse

    Matalas, N.C.

    1991-01-01

    What constitutes a comprehensive description of drought, a description forming a basis for answering why a drought occurred is outlined. The description entails two aspects that are "naturally" coupled, named physical and economic, and treats the set of hydrologic measures of droughts in terms of their multivariate distribution, rather than in terms of a collection of the marginal distributions. ?? 1991 Springer-Verlag.

  10. Relativistic radiative transfer and relativistic plane-parallel flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-04-01

    Relativistic radiative transfer and relativistic plane-parallel flows accelerated from their base like accretion disk winds are numerically examined under the special relativistic treatment. We first solve the relativistic transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained flux, we then solve the hydrodynamical equation, and obtain the new velocity field and the mass-loss rate as an eigen value. We repeat these double-iteration processes until both the intensity and velocity profiles converge. Under this double iteration, we solve the relativistic radiative transfer equation and relativistic flows in the vertical direction, simultaneously. The flows are gradually accelerated, as the optical depth decreases towards the surface. The mass-loss rate dot{J} is roughly expressed in terms of the optical depth τb and terminal speed βs of the flow as dot{J} ˜ 10 τ_b β _s^{-3/4}.

  11. Local relativistic exact decoupling.

    PubMed

    Peng, Daoling; Reiher, Markus

    2012-06-28

    We present a systematic hierarchy of approximations for local exact decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and for selected molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary exact-decoupling transformation--called local approximation to the unitary decoupling transformation (DLU)--provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-N(2) scaling can be further reduced to linear scaling by employing a neighboring-atomic-blocks approximation. Therefore, DLU is an efficient relativistic method well suited for relativistic calculations on large molecules. If a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can be further reduced by employing a well-defined nonrelativistic approximation for these light atoms without significant loss of accuracy. We also demonstrate that the standard and straightforward transformation of only the atomic block-diagonal entries in the Hamiltonian--denoted diagonal local approximation to the Hamiltonian (DLH) in this paper--introduces an error that is on the order of the error of second-order Douglas-Kroll-Hess (i.e., DKH2) when compared with exact-decoupling results. Hence, the local DLH approximation would be pointless in an exact-decoupling framework, but can be efficiently employed in combination with the fast to evaluate DKH2 Hamiltonian in order to speed up calculations

  12. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  13. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  14. Unstable particles in non-relativistic quantum mechanics?

    SciTech Connect

    Hernandez-Coronado, H.

    2011-10-14

    The Schroedinger equation is up-to-a-phase invariant under the Galilei group. This phase leads to the Bargmann's superselection rule, which forbids the existence of the superposition of states with different mass and implies that unstable particles cannot be described consistently in non-relativistic quantum mechanics (NRQM). In this paper we claim that Bargmann's rule neglects physical effects and that a proper description of non-relativistic quantum mechanics requires to take into account this phase through the Extended Galilei group and the definition of its action on spacetime coordinates.

  15. Macroscopic approximation to relativistic kinetic theory from a nonlinear closure

    NASA Astrophysics Data System (ADS)

    Peralta-Ramos, J.; Calzetta, E.

    2013-02-01

    We use a macroscopic description of a system of relativistic particles based on adding a nonequilibrium tensor to the usual hydrodynamic variables. The nonequilibrium tensor is linked to relativistic kinetic theory through a nonlinear closure suggested by the entropy production principle; the evolution equation is obtained by the method of moments and together with energy-momentum conservation closes the system. Transport coefficients are chosen to reproduce second-order fluid dynamics if gradients are small. We compare the resulting formalism to exact solutions of Boltzmann’s equation in 0+1 dimensions and show that it tracks kinetic theory better than second-order fluid dynamics.

  16. Effective photon mass and exact translating quantum relativistic structures

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Manrique, Marcos Antonio Albarracin

    2016-04-01

    Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spin effects are not decisive.

  17. Relativistic Energy Density Functionals: Exotic modes of excitation

    SciTech Connect

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-11-11

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  18. Relativistic klystron afterburner simulation techniques

    SciTech Connect

    Ryne, R.D.; Jong, R.A.; Westenskow, G.A.; Yu, S.S.

    1990-01-24

    We are developing computer codes for the numerical simulations of relativistic klystrons and relativistic klystron afterburners''. The purpose of this note is to discuss the main features of our numerical model. A relativistic klystron afterburner'' is a scheme to extract power from a spent FEL electron beam. Power is extracted from the beam by passing it through klystron output cavities. To study the feasibility of this concept, we are developing computer codes for the numerical simulation of relativistic klystrons and afterburners. The purpose of this note is to discuss the main features of our numerical model.

  19. Relativistic interactions and realistic applications

    SciTech Connect

    Hoch, T.; Madland, D.; Manakos, P.; Mannel, T.; Nikolaus, B.A.; Strottman, D. |

    1992-12-31

    A four-fermion-coupling Lagrangian (relativistic Skyrme-type) interaction has been proposed for relativistic nuclear structure calculations. This interaction, which has the merit of simplicity, is from the outset tailored as an effective interaction for relativistic Hartree-Fock calculations. Various extensions of such a model are discussed and compared with Walecka`s meson-nucleon mean field approach. We also present results of the calculation of nuclear ground state properties with an extended (density dependent) version of the four fermion interaction in a relativistic Hartree-Fock approximation.

  20. Relativistic Quantum Communication

    NASA Astrophysics Data System (ADS)

    Hosler, Dominic

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tends to zero. We investigate the observers' abilities to precisely measure the parameter of a state that is communicated between Alice and Rob. This parameter was encoded to either the amplitudes of a single excitation state or the phase of a NOON state. With NOON states the dual rail encoding provided greater precision, which is different to the results for the other situations. The precision was maximum for a particular number of excitations in the NOON state. We calculated the bipartite communication for Alice-Rob and Alice-AntiRob beyond the single mode approximation. Rob and AntiRob are causally disconnected counter-accelerating observers. We found that Alice must choose in advance with whom, Rob or AntiRob she wants to create entanglement using a particular setup. She could communicate classically to both.

  1. FROM THE CURRENT LITERATURE: Spinning relativistic particles in external fields

    NASA Astrophysics Data System (ADS)

    Pomeranskii, Andrei A.; Sen'kov, Roman A.; Khriplovich, Iosif B.

    2000-10-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars.

  2. Frequency agile relativistic magnetrons

    SciTech Connect

    Levine, J.S.; Harteneck, B.D.; Price, H.D.

    1995-11-01

    The authors are developing a family of frequency agile relativistic magnetrons to continuously cover the bands from 1 to 3 GHz. They have achieved tuning ranges of > 33%. The magnetrons have been operated repetitively in burst mode at rates up to 100 pps for 10 sec. Power is extracted from two resonators, and is in the range of 400--600 MW, fairly flat across the tuning bandwidth. They are using a network of phase shifters and 3-dB hybrids to combine the power into a single arm and to provide a continuously adjustable attenuator.

  3. Republication of: Relativistic cosmology

    NASA Astrophysics Data System (ADS)

    Robertson, H. P.

    2012-08-01

    This is a reprinting of the paper by Howard Percy Robertson, first published in 1933 in Rev. Mod. Phys., that is a very authoritative summary of relativistic cosmology at the stage at which it was up to 1933. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by George Ellis, and by Robertson's biography, compiled by Andrzej Krasinski from printed sources.

  4. Relativistic nuclear collisions: theory

    SciTech Connect

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures.

  5. Ultrabaric relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Papini, G.; Weiss, M.

    1985-09-01

    Ultrabaric superfluid solutions are obtained for Einstein's equations to examine the possibility of the existence of superluminal sound speeds. The discussion is restricted only by requiring the energy-momentum tensor and the equation of state of matter to be represented by full relativistic equations. Only a few universes are known to satisfy the conditions, and those exhibit tension and are inflationary. Superluminal sound velocities are shown, therefore, to be possible for the interior Schwarzchild metric, which has been used to explain the red shift of quasars, and the Stephiani solution (1967). The latter indicates repeated transitions between superluminal and subliminal sound velocities in the hyperbaric superfluid of the early universe.

  6. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  7. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  8. Nonlinear optics in relativistic plasmas.

    PubMed

    Umstadter, D; Chen, S Y; Wagner, R; Maksimchuk, A; Sarkisov, G

    1998-03-30

    We review our recent work on the various nonlinear optical processes that occur as an intense laser propagates through a relativistic plasma. These include the experimental observations of electron acceleration driven by laser-wakefield generation, relativistic self-focusing, waveguide formation and laser self-channeling. PMID:19377614

  9. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  10. Relativistic jets in astrophysics

    NASA Astrophysics Data System (ADS)

    Derishev, E. V.; Zheleznyakov, V. V.; Koryagin, S. A.; Kocharovsky, Vl. V.

    The properties of the plasma state of matter are determined by the motion and the electromagnetic emission of the non-bound electrically charged particles --- electrons, positrons, protons and ions. It is not easy to create plasma in a laboratory. However this state is typical for the cosmic conditions --- at the stars and in the interstellar space. The properties of the laboratory as well as the space plasma are investigated at the Institute of Applied Physics of the Russian Academy of Sciences. The research is focused on the mechanisms of generation and propagation of the electromagnetic radiation --- from the radio waves to the gamma-rays --- in the planetary and stellar atmospheres and at the other astrophysical objects. The extreme physical conditions for a plasma are realized near the compact objects like black holes, neutron stars and collapsing nuclei of the massive stars. The plasma could be strongly non-equlibrium and can produce strong electromagnetic fields. Its bulk motion as well as the chaotic motion of the constituting particles can be relativistic, i. e. the motion can achieve velocities close to the speed of light. The relativistic plasma is frequently observed in the form of jets.

  11. A relativistic trolley paradox

    NASA Astrophysics Data System (ADS)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  12. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  13. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  14. Solving the heat-flow problem with transient relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Denicol, G. S.; Niemi, H.; Bouras, I.; Molnár, E.; Xu, Z.; Rischke, D. H.; Greiner, C.

    2014-04-01

    Israel-Stewart theory is a causal, stable formulation of relativistic dissipative fluid dynamics. This theory has been shown to give a decent description of the dynamical behavior of a relativistic fluid in cases where shear stress becomes important. In principle, it should also be applicable to situations where heat flow becomes important. However, it has been shown that there are cases where Israel-Stewart theory cannot reproduce phenomena associated with heat flow. In this paper, we derive a relativistic dissipative fluid-dynamical theory from kinetic theory which provides a good description of all dissipative phenomena, including heat flow. We explicitly demonstrate this by comparing this theory with numerical solutions of the relativistic Boltzmann equation.

  15. Descriptive statistics.

    PubMed

    Shi, Runhua; McLarty, Jerry W

    2009-10-01

    In this article, we introduced basic concepts of statistics, type of distributions, and descriptive statistics. A few examples were also provided. The basic concepts presented herein are only a fraction of the concepts related to descriptive statistics. Also, there are many commonly used distributions not presented herein, such as Poisson distributions for rare events and exponential distributions, F distributions, and logistic distributions. More information can be found in many statistics books and publications. PMID:19891281

  16. Relativistic wavepackets in classically chaotic quantum cosmological billiards

    NASA Astrophysics Data System (ADS)

    Koehn, Michael

    2012-03-01

    Close to a spacelike singularity, pure gravity and supergravity in 4 to 11 spacetime dimensions admit a cosmological billiard description based on hyperbolic Kac-Moody groups. We investigate the quantum cosmological billiards of relativistic wavepackets towards the singularity, employing flat and hyperbolic space descriptions for the quantum billiards. We find that the strongly chaotic classical billiard motion of four-dimensional pure gravity corresponds to a spreading wavepacket subject to successive redshifts and tending to zero as the singularity is approached. We discuss the possible implications of these results in the context of singularity resolution and compare them with those of known semiclassical approaches. As an aside, we obtain exact solutions for the one-dimensional relativistic quantum billiards with moving walls.

  17. Relativistic astrophysics explorer

    NASA Astrophysics Data System (ADS)

    Kaaret, P.

    2004-01-01

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m 2 equal to 10 times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  18. The Relativistic Astrophysics Explorer

    NASA Astrophysics Data System (ADS)

    Kaaret, P.

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 60,000 cm2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  19. Relativistic Jets in Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqun; Woosley, S. E.; MacFadyen, A. I.

    2003-04-01

    We examine the propagation of two-dimensional relativistic jets through the stellar progenitor in the collapsar model for gamma-ray bursts. In agreement with previous studies, we find that the jet is collimated by its passage. Moreover, interaction of the jet with the star causes mixing that sporadically decelerates the jet, leading to a highly variable Lorentz factor. The jet that finally emerges has a moderate Lorentz factor, but a very large internal energy loading. In a second series of calculations we follow the emergence of such enegy-loaded jets from the star. For the initial conditions chosen, conversion of the remaining internal energy gives a terminal Lorentz factor of approximately 150. Implications of our calculations for GRB light curves, the luminosity-variability relation, and the GRB-supernova association are discussed.

  20. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  1. Relativistic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.; Nazin, S. S.

    2003-07-01

    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistitic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not empoly collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of "antedate" coding).

  2. Relativistic Heavy Ion Collider

    SciTech Connect

    Willen, E.H.

    1986-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a proposed research facility at Brookhaven National Laboratory to study the collision of beams of heavy ions, up to gold in mass and at beam energies up to 100 GeV/nucleon. The physics to be explored by this collider is an overlap between the traditional disciplines of nuclear physics and high energy physics and is a continuation of the planned program of light and heavy ion physics at BNL. The machine is to be constructed in the now-empty tunnel built for the former CBA project. Various other facilities to support the collider are either in place or under construction at BNL. The collider itself, including the magnets, is in an advanced state of design, and a construction start is anticipated in the next several years.

  3. Hydrodynamics of Relativistic Fireballs

    NASA Technical Reports Server (NTRS)

    Piran, Tsvi; Shemi, Amotz; Narayan, Ramesh

    1993-01-01

    Many models of gamma-ray bursts involve a fireball, which is an optically thick concentration of radiation energy with a high ratio of energy density to rest mass. We examine analytically and numerically the evolution of a relativistic fireball. We show that, after an early rearrangement phase, most of the matter and energy in the fireball is concentrated within a narrow shell. The shell propagates at nearly the speed of light, with a frozen radial profile, and according to a simple set of scaling laws. The spectrum of the escaping radiation is harder at early times and softer later on. Depending on the initial energy-to-mass ratio, the final outcome of a fireball is either photons with roughly the initial temperature or ultrarelativistic baryons. In the latter case, the energy could be converted back to gamma-rays via interaction with surrounding material.

  4. The geometry of Schroedinger symmetry in non-relativistic CFT

    SciTech Connect

    Duval, C. Hassaine, M. Horvathy, P.A.

    2009-05-15

    The non-relativistic conformal 'Schroedinger' symmetry of some gravity backgrounds proposed recently in the AdS/CFT context, is explained in the 'Bargmann framework'. The formalism incorporates the Equivalence Principle. Newton-Hooke conformal symmetries, which are analogs of those of Schroedinger in the presence of a negative cosmological constant, are discussed in a similar way. Further examples include topologically massive gravity with negative cosmological constant and the Madelung hydrodynamical description.

  5. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  6. Emission of composite light fragments in collisions of relativistic nuclei

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Vinogradov, A.A.; Grigor'yan, Y.I.; Ippolitov, M.S.; Karadzhev, K.V.; Lebedev, A.L.; Man'ko, V.I.; Nikolaev, S.A.; Polunin, Y.P.; and others

    1987-11-01

    We discuss results of experiments on investigation of the spectra of p, d, and t from interactions of carbon nuclei with C, Cu, Sn, and Pb at 3.6 GeV per nucleon. Analysis of the data has shown the applicability of the coalescence model for description of the production of composite fragments in the near-target rapidity region in relativistic collisions. The size of the emission region is estimated.

  7. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  8. Relativistic Lagrangian displacement field and tensor perturbations

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Wiegand, Alexander

    2014-12-01

    We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the basic Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully nonperturbative approach based on the Arnowitt-Deser-Misner (ADM) split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the nonperturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve the gravitational wave equation in the relativistic analysis, otherwise the corresponding Newtonian limit will necessarily contain spurious nonpropagating tensor artifacts at second order in the Eulerian frame. We also derive the magnetic part of the Weyl tensor in the Lagrangian frame, and find that it is not only excited by gravitational waves but also by tensor perturbations which are induced through the nonlinear frame dragging. We apply our findings to calculate for the first time the relativistic displacement field, up to second order, for a Λ CDM Universe in the presence of a local primordial non-Gaussian component. Finally, we also comment on recent claims about whether mass conservation in the Lagrangian frame is violated.

  9. Relativistic spin effects in the baryon spectrum

    SciTech Connect

    Garcilazo, Humberto

    2005-04-01

    We study the nonstrange baryon spectrum within a three-body theory that treats relativistically both the space and the spin variables. The relativistic effects of the spin are about one order of magnitude smaller than those due to the use of relativistic momentum variables. The relativistic treatment of the spin breaks the degenerancy that is present in the nonrelativistic model and in the model with only relativistic momentum variables.

  10. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  11. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  12. Conductivity of a relativistic plasma

    SciTech Connect

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  13. Interference in multilayer relativistic mirrors

    NASA Astrophysics Data System (ADS)

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Babaei, Javad; Taghipour, Meisam; Mohammadzadeh, Zahra

    2015-10-01

    In this paper, reflection coefficient of a relativistic ultra-thin electron multilayer is calculated using electromagnetic interference procedures. The relativistic electron layers are assumed to be formed by nonlinear plasma wake waves that constitute the electron density cusps. It is shown that the interference between successive relativistic mirrors is restricted by the condition, τ p ≫ ( 2 γ 0 ) 5 / 2 / ω p 0 , where τp is the laser pulse duration. The results showed that tailoring the pulse amplitude, incident wave frequency value, incidence angle, and plasma density leads to increasing reflection coefficient a few orders of magnitudes. This constructive interference condition can be used for increasing conversion efficiency in the reflected energy from relativistic mirrors for the purpose of generating ultra-short coherence pulses in the extreme ultraviolet and x-ray regions. We also performed reflection from relativistic thin electron layers using relativistic 1D3V electromagnetic particle-in-cell (PIC) simulation. It was found that the results of PIC simulation are in agreement with analytical considerations.

  14. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation. PMID:22463331

  15. Anaphoric Descriptions

    ERIC Educational Resources Information Center

    Beller, Charley

    2013-01-01

    The study of definite descriptions has been a central part of research in linguistics and philosophy of language since Russell's seminal work "On Denoting" (Russell 1905). In that work Russell quickly dispatches analyses of denoting expressions with forms like "no man," "some man," "a man," and "every…

  16. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.

  17. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  18. Description Logics

    NASA Astrophysics Data System (ADS)

    Baader, Franz

    Description Logics (DLs) are a well-investigated family of logic-based knowledge representation formalisms, which can be used to represent the conceptual knowledge of an application domain in a structured and formally well-understood way. They are employed in various application domains, such as natural language processing, configuration, and databases, but their most notable success so far is the adoption of the DL-based language OWL as standard ontology language for the semantic web.

  19. Relativistic dynamical collapse model

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    2015-05-01

    A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schrödinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter s which labels a foliation of spacelike hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the continuous spontaneous localization (CSL) theory of dynamical collapse is applied. The collapse-generating operator is chosen to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter Λ which represents the collapse rate/volume and a scale factor ℓ. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of nonrelativistic CSL when the GRW-CSL choice of ℓ=a =1 0-5 cm , is made, along with Λ =λ /a3 (GRW-CSL choice λ =1 0-16s-1). The collapse rate is also satisfactory with the choice ℓ as the size of the Universe, with Λ =λ /ℓa2. Because the collapse narrows wave functions in space and time, it increases a particle's momentum and energy, altering its mass. It is shown that, with ℓ=a , the change of mass of a nucleon is unacceptably large but, when ℓ is the size of the Universe, the change of mass over the age of the Universe is acceptably small.

  20. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  1. Theory of relativistic cyclotron masers

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Latham, P. E.; Dumbrajs, O.

    1995-07-01

    In this paper we have made an attempt to review the present status of the theory of cyclotron masers with relativistic electron beams. After discussing the basic features of electron-cyclotron radiation under conditions of normal and anomalous Doppler frequency shifts, we consider particle deceleration by a constant amplitude electromagnetic wave in a constant magnetic field using the formalism developed earlier for cyclotron autoresonance acceleration of electrons. An optimal cyclotron resonance mismatch was found that corresponds to the possibility of complete deceleration of relativistic electrons. Then, interaction of relativistic electrons with resonator fields is considered and the efficiency increase due to electron prebunching is demonstrated in a simple model. Since an efficient interaction of relativistic electrons with the large amplitude electromagnetic field of a resonator occurs at a short distance, where electrons make a small number of electron orbits, the issue of the simultaneous interaction of electrons with the field at several cyclotron harmonics is discussed. Finally, we consider deceleration of a prebunched electron beam by a traveling electromagnetic wave in a tapered magnetic field. This simple modeling is illustrated with a number of simulations of relativistic gyroklystrons and gyrotwistrons (gyrodevices in which the bunching cavity of the gyroklystron is combined with the output waveguide of the gyro-traveling-wave-tube).

  2. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    NASA Astrophysics Data System (ADS)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  3. Fluctuations in relativistic causal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.

    2014-05-01

    Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.

  4. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  5. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  6. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  7. Ab initio non-relativistic spin dynamics

    NASA Astrophysics Data System (ADS)

    Ding, Feizhi; Goings, Joshua J.; Frisch, Michael J.; Li, Xiaosong

    2014-12-01

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li3 molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  8. Theory of the relativistic gyrotwistron

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Li, H.

    1992-04-01

    A generalized theory of the relativistic gyrotwistron, the device combining the elements of the gyroklystron and the gyro-traveling wave tube, is presented. A modulation of electrons in the input cavity is considered with the account of modulation in an electron axial momentum that is important for relativistic particles passing through a short cavity. A comprehensive study of large-signal operation of the output waveguide section in the cases of gyroresonance at the fundamental and second cyclotron harmonics has demonstrated a wide variety of electron bunching phenomena and the possibility of achieving high electron efficiency in a wide range of gyrotwistron parameters.

  9. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  10. Near field properties in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Yang; Fries, Rainer; Kapusta, Joseph

    2006-04-01

    We study the properties of the soft gluon field produced in relativistic heavy ion collisions. In the spirit of McLerran-Venugopalan model, we write the field potential in a power series of the proper time τ and solve the Yang-Mills equation along with color current conservation equations simultaneously. We find that the classical gluon field at small τ, i.e., the near field, is mainly longitudinal. We also calculate the energy-momentum tensor of the field. This gluon field will decay and thermalize into a quark gluon plasma. Our results can be used as the initial conditions for the consequent relativistic hydrodynamic description of the dense parton matter.

  11. Relativistic HD and MHD modelling for AGN jets

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  12. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  13. Relativistic treatment of inertial spin effects

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    1998-03-01

    A relativistic spin operator for Dirac particles is identified and it is shown that a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

  14. Introduction of a fully relativistic capable basis set in the ab initio orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Thomas, Patrick Ryan

    Large simulation cell sizes, relativistic effects, and the need to correctly model excited state properties are major impediments to the accurate prediction of the optical properties of candidate materials for solid-state laser crystal and luminescent applications. To overcome these challenges, new methods must be created to improve the electron orbital wavefunction and interactions. In this work, a method has been developed to create new analytical four-component, fully-relativistic and single-component scalar relativistic descriptions of the atomic orbital wave functions from Grasp2K numerically represented atomic orbitals. In addition, adapted theory for the calculation of the relativistic kinetic energy contribution to Hamiltonian which bypasses directly solving the Dirac equation has been explicated. The orbital description improvements are tested against YAG, YBCO, SnO2 and BiF3. The improvements to the basis set reflect an improvement in both computational speed and accuracy.

  15. Relativistic Transverse Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Mayer, A. F.

    2012-12-01

    symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.

  16. The Highest Redshift Relativistic Jets

    SciTech Connect

    Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; Harris, D.E; Schwartz, D.A.; Wardle, J.F.C.; Gobeille, D.; Lee, N.P.

    2007-12-18

    We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in {approx} 30 z > 3.4 quasars are described along with new Chandra observations of 4 selected targets.

  17. Proper-time relativistic dynamics

    NASA Technical Reports Server (NTRS)

    Gill, Tepper L.; Zachary, W. W.; Lindesay, James

    1993-01-01

    Proper-time relativistic single-particle classical Hamiltonian mechanics is formulated using a transformation from observer time to system proper time which is a canonical contact transformation on extended phase space. It is shown that interaction induces a change in the symmetry structure of the system which can be analyzed in terms of a Lie-isotopic deformation of the algebra of observables.

  18. Future relativistic heavy ion experiments

    SciTech Connect

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned. (GHT)

  19. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  20. Fourth workshop on Experiments and Detectors for a Relativistic Heavy Ion Collider

    NASA Technical Reports Server (NTRS)

    Fatyga, M. (Editor); Moskowitz, B. (Editor)

    1992-01-01

    We present a description of an experiment which can be used to search for effects of strong electromagnetic fields on the production of e(sup +) e(sup -) pairs in the elastic scattering of two heavy ions at the Relativistic Heavy Ion Collider (RHIC). A very brief discussion of other possible studies of electromagnetic phenomena at RHIC is also presented.

  1. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  2. Relativistic formulation of the Voigt profile

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Amodio, P.; Ciuryło, R.; Gianfrani, L.

    2015-02-01

    The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect. Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases, namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.

  3. Simulations of Relativistic Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Duncan, G. C.

    1994-05-01

    We present results for 2-D, axisymmetric simulations of flows with Lorentz factors ~ 5 -- 10, typical of values inferred for superluminal BL Lacs and QSOs. The simulations were performed with a numerical hydrodynamic code that admits relativistic flow speed. We exploit the property that the relativistic Euler equations for mass, momentum and total energy densities in the laboratory frame have the same form as the nonrelativistic equations, to solve for laboratory frame variables using a conventional Godunov-type scheme with approximate Riemann solver: the HLLE method. The relativistic nature of the flow is incorporated by performing a Lorentz transformation at every step, at each cell center or cell boundary where pressure, sound speed or velocity are required. Determination of the velocity in this manner is a robust algebraic procedure within which we can ensure that vrelativistic flows exhibit a less pronounced pattern of incident and reflection shocks on axis. For flows which have propagated to a fixed number of jet radii, the Kelvin-Helmholtz instability at the contact surface is much less evident in the high Lorentz factor cases, supporting the contention that relativistic flows are less prone to such instability. We describe how the morphology of the cocoon and shocked ambient gas change with increasing Lorentz factor. This work was supported by NSF grant AST 9120224 and by the Ohio Supercomputer Center from a Cray Research Software Development Grant.

  4. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  5. Descriptive thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, David; Huntsman, Steven

    2006-06-01

    Thermodynamics (in concert with its sister discipline, statistical physics) can be regarded as a data reduction scheme based on partitioning a total system into a subsystem and a bath that weakly interact with each other. Whereas conventionally, the systems investigated require this form of data reduction in order to facilitate prediction, a different problem also occurs, in the context of communication networks, markets, etc. Such “empirically accessible” systems typically overwhelm observers with the sort of information that in the case of (say) a gas is effectively unobtainable. What is required for such complex interacting systems is not prediction (this may be impossible when humans besides the observer are responsible for the interactions) but rather, description as a route to understanding. Still, the need for a thermodynamical data reduction scheme remains. In this paper, we show how an empirical temperature can be computed for finite, empirically accessible systems, and further outline how this construction allows the age-old science of thermodynamics to be fruitfully applied to them.

  6. Rapid hydrodynamic expansion in relativistic heavy-ion collisions

    SciTech Connect

    Bozek, Piotr; Wyskiel, Iwona

    2009-04-15

    Hydrodynamic expansion of the hot fireball created in relativistic Au-Au collisions at {radical}(s)=200 GeV in 3+1-dimensions is studied. We obtain a simultaneous, satisfactory description of the transverse momentum spectra, elliptic flow, and pion correlation radii for different collision centralities and different rapidities. Early initial time of the evolution is required to reproduce the interferometry data, which provide a strong indication of the early onset of collectivity. We can also constrain the shape of the initial energy density in the beam direction, with a relatively high initial energy density at the center of the fireball.

  7. The Relaxation Effect in Dissipative Relativistic Fluid Theories

    NASA Astrophysics Data System (ADS)

    Lindblom, Lee

    1996-04-01

    The dynamics of the fluid fields in a large class of causal dissipative fluid theories is studied. It is shown that the physical fluid states in these theories must relax (on a time scale that is characteristic of the microscopic particle interactions) to ones that are essentially indistinguishable from the simple relativistic Navier-Stokes descriptions of these states. Thus, for example, in the relaxed form of a physical fluid state the stress energy tensor is in effect indistinguishable from a perfect fluid stress tensor plus small dissipative corrections proportional to the shear of the fluid velocity, the gradient of the temperature, etc.

  8. H-theorem for a relativistic plasma around black holes

    SciTech Connect

    Nicolini, P.; Tessarotto, M.

    2006-05-15

    A statistical description of matter, formed by a relativistic plasma infalling into a black hole, is formulated, adopting a covariant kinetic approach in terms of classical point particles. By assuming that the charged particles are described by the collisionless Vlasov equation and the event horizon can be treated as a classical porous wall, the theory permits us to evaluate the entropy production rate of classical matter in the presence of an event horizon. As a result, an H-theorem is established for the classical (Shannon) kinetic entropy of the infalling matter, which holds for arbitrary models of black holes and is valid also in the presence of contracting (or expanding) event horizons.

  9. Relativistic stars in bigravity theory

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Maeda, Kei-ichi; Tanabe, Makoto

    2016-03-01

    Assuming static and spherically symmetric spacetimes in the ghost-free bigravity theory, we find a relativistic star solution, which is very close to that in general relativity. The coupling constants are classified into two classes: Class [I] and Class [II]. Although the Vainshtein screening mechanism is found in the weak gravitational field for both classes, we find that there is no regular solution beyond the critical value of the compactness in Class [I]. This implies that the maximum mass of a neutron star in Class [I] becomes much smaller than that in general relativity (GR). On the other hand, for the solution in Class [II], the Vainshtein screening mechanism works well even in a relativistic star and the result in GR is recovered.

  10. Relativistic hydrodynamics on graphic cards

    NASA Astrophysics Data System (ADS)

    Gerhard, Jochen; Lindenstruth, Volker; Bleicher, Marcus

    2013-02-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  11. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  12. Curved non-relativistic spacetimes, Newtonian gravitation and massive matter

    SciTech Connect

    Geracie, Michael Prabhu, Kartik Roberts, Matthew M.

    2015-10-15

    There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.

  13. Langmuir waves in semi-relativistic spinless quantum plasmas

    NASA Astrophysics Data System (ADS)

    Ivanov, A. Yu.; Andreev, P. A.; Kuzmenkov, L. S.

    2015-06-01

    Many-particle quantum hydrodynamics based on the Darwin Hamiltonian (the Hamiltonian corresponding to the Darwin Lagrangian) is considered. A force field appearing in the corresponding Euler equation is considered in detail. Contributions from different terms of the Darwin Hamiltonian in the Euler equation are traced. For example, the relativistic correction to the kinetic energy of particles leads to several terms in the Euler equation; these terms have different form. One of them has a form similar to a term appearing from the Darwin term. Hence, the two different mechanisms give analogous contributions in wave dispersion. A microscopic analog of the Biot-Savart law, called the current-current interaction, describing an interaction of moving charges via the magnetic field, is also included in our description. The semi-relativistic generalization of the quantum Bohm potential is obtained. Contribution of the relativistic effects in the spectrum of plasma collective excitations is considered. The contributions of the spin-spin, spin-current, and spin-orbit interactions in this model are considered. The contribution of the spin evolution in the Langmuir wave spectrum is calculated at the propagation of wave perpendicular to the external magnetic field.

  14. Fully relativistic lattice Boltzmann algorithm

    SciTech Connect

    Romatschke, P.; Mendoza, M.; Succi, S.

    2011-09-15

    Starting from the Maxwell-Juettner equilibrium distribution, we develop a relativistic lattice Boltzmann (LB) algorithm capable of handling ultrarelativistic systems with flat, but expanding, spacetimes. The algorithm is validated through simulations of a quark-gluon plasma, yielding excellent agreement with hydrodynamic simulations. The present scheme opens the possibility of transferring the recognized computational advantages of lattice kinetic theory to the context of both weakly and ultrarelativistic systems.

  15. Dynamics of Relativistic Magnetized Explosions

    NASA Astrophysics Data System (ADS)

    Lyutikov, M.

    2001-11-01

    The dynamics of (i) relativistic blast waves propagating through magnetized medium, (ii) magnetic explosions (when most energy is released in a form of toroidal magnetic field) is considered taking into account possible inhomogeneities of density and external magnetic field and additional energy supply. Self-similar solutions for the internal structure in the bulk flow and in the strongly magnetized sheath near contact discontinuity are found.

  16. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  17. Relativistic opacities for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Fontes, C. J.; Fryer, C. L.; Hungerford, A. L.; Hakel, P.; Colgan, J.; Kilcrease, D. P.; Sherrill, M. E.

    2015-09-01

    We report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  18. Relativistic Tennis Using Flying Mirror

    SciTech Connect

    Pirozhkov, A. S.; Kando, M.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Kimura, T.; Kato, Y.; Tajima, T.; Esirkepov, T. Zh.; Bulanov, S. V.

    2008-06-24

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic 'flying mirror', which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of {approx_equal}4-6x10{sup 19} cm{sup -3}. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are {approx}55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3x10{sup 7} photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  19. One-pion exchange current effects on magnetic form factor in the relativistic formalism

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Liu, Jian; Ren, Zhongzhou

    2016-08-01

    One-pion exchange current effects on the magnetic form factors of some odd nuclei are studied in the relativistic formalism. The Dirac wave functions of nucleons are calculated from the relativistic mean-field theory. After fitting to experimental data by quenching factors, it is found that taking the one-pion exchange currents into account gives a better description of the magnetic form factor. The root-mean-square radii of the valance nucleon orbits are also calculated in RMF model, which coincide with experimental radii extracted with meson exchange current corrections.

  20. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  1. Relativistic radiation transport in dispersive media

    SciTech Connect

    Kichenassamy, S.; Krikorian, R.A.

    1985-10-15

    A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian theory of geometrical optics in those media. It yields the generally accepted classical equation in the special-relativistic approximation and in stationary conditions. The influence of the gravitational field and of space-time variations of the refractive index n on the radiation distribution is made explicit in the case of spherical symmetry.

  2. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  3. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  4. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji

    2015-04-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50 % for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  5. Relativistic and non-relativistic magnetohydrodynamic flows around compact stars

    NASA Astrophysics Data System (ADS)

    Mobarry, Clark Matthew

    A set of theoretical tools are developed for studying the magnetized accretion disks and astrophysical jets in active galaxies. A general theory is developed for the steady axisymmetric flow of an ideal general-relativistic fluid around a Schwarzschild black hole. The theory leads to a second-order partial differential equation, a Grad-Shafranov equation, for the magnetic flux function psi(R, theta). The magnetic surface functions of the Grad-Shafranov method are shown to be the Lagrange multipliers of an energy principle. Thus, the magnetic surface functions are not arbitrary functions, but must be chosen consistent with physically stable equilibria. From the energy principle, a numerical artificial friction method is developed to solve the general relativistic Grad-Shafranov equation with fluid flow. This method is suited for the internal boundaries between elliptic and hyperbolic behavior present in magnetospheres with fluid flow. The friction method is shown to be compatible with a theory for the slow dissipative evolution of a nearly ideal MagnetoHydroDynamic (MHD) fluid. A virial theorem is derived from the basic equations of general relativistic MHD. It is used to obtain an upper bound on the total energy in the electromagnetic field in terms of the total gravitational binding energy between the black hole and the matter (and energy) outside it. An analysis is made of the motion of a charged test particle in the electromagnetic field of a magnetized accretion disk surrounding a black hole. The results are consistent with stable orbits close to the event horizon. A semi-analytical model is developed for the evolution and dissipation of narrow magnetized jets from an active galaxy. This model exhibits the acceleration and expansion of the jets with increasing axial distance from the central object.

  6. Laser hosing in relativistically hot plasmas.

    PubMed

    Li, G; Mori, W B; Ren, C

    2013-04-12

    Electron response in an intense laser is studied in the regime where the electron temperature is relativistic. Equations for laser envelope and plasma density evolution, both in the electron plasma wave and ion acoustic wave regimes, are rederived from the relativistic fluid equations to include relativistic plasma temperature effect. These equations are used to study short-pulse and long-pulse laser hosing instabilities using a variational method approach. The analysis shows that relativistic electron temperatures reduce the hosing growth rates and shift the fastest-growing modes to longer wavelengths. These results resolve a long-standing discrepancy between previous nonrelativistic theory and simulations or experiments on hosing. PMID:25167277

  7. What is the relativistic spin operator?

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2014-04-01

    Although the spin is regarded as a fundamental property of the electron, there is no universally accepted spin operator within the framework of relativistic quantum mechanics. We investigate the properties of different proposals for a relativistic spin operator. It is shown that most candidates are lacking essential features of proper angular momentum operators, leading to spurious zitterbewegung (quivering motion) or violation of the angular momentum algebra. Only the Foldy-Wouthuysen operator and the Pryce operator qualify as proper relativistic spin operators. We demonstrate that ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally.

  8. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  9. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  10. Relativistic Bernstein waves in a degenerate plasma

    SciTech Connect

    Ali, Muddasir; Hussain, Azhar; Murtaza, G.

    2011-09-15

    Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.

  11. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency.

    PubMed

    Stark, David J; Bhattacharjee, Chinmoy; Arefiev, Alexey V; Toncian, Toma; Hazeltine, R D; Mahajan, S M

    2015-07-10

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an anisotropic electron distribution, propagation characteristics, like the critical density, will depend on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such plasmas, the anisotropy can persist long enough to affect laser propagation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. PMID:26207473

  12. Magnetogenesis through Relativistic Velocity Shear

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  13. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  14. Relativistic radiative transfer and relativistic spherical shell flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2016-06-01

    We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.

  15. Relativistic radiative transfer and relativistic spherical shell flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2016-04-01

    We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.

  16. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    PubMed

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  17. Local thermodynamical equilibrium and the frame for a quantum relativistic fluid

    NASA Astrophysics Data System (ADS)

    Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo

    2015-05-01

    We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector , which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the frame and Landau frame and present an instance where they differ.

  18. Calculation of the lowest electronic excitations of the alkaline earth metals using the relativistic polarization propagator

    NASA Astrophysics Data System (ADS)

    Brandt, Sven; Pernpointner, Markus

    2015-07-01

    In this work we use the recently implemented four-component polarization propagator for accurate single excitation calculations of alkaline earth metals and compare our results to experimental data. Various approximations to the Dirac-Coulomb Hamiltonian are additionally tested. In Ca spin-orbit coupling already leads to noticeable zero field splitting, which gradually increases for the heavier homologs finally invalidating the singlet and triplet state characterizations. For all systems we observe a very good agreement with experimental transition energies in the considered energy range. For Sr, Ba and Ra non-relativistic approaches already exhibit unacceptable deviations in the reproduction of transition energies and spectral structure. The obtained excited final states are analyzed in terms of atomic donor and acceptor orbital contributions. Our results stress the necessity to use relativistic implementations of the polarization propagator for an accurate description of both electron correlation and relativistic effects contributing to excitation spectra of heavy systems.

  19. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  20. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  1. Vortices in relativistic electron beams

    PubMed

    Jovanovic; Fedele; Shukla

    2000-08-01

    We demonstrate that a relativistic electron beam is properly described in the moving frame by the electron-magnetohydrodynamic equations of plasma physics. For large beam currents, the accelerator magnetic field is expected to be unstable to the fast magnetic reconnection. We present a plausible saturated state of the fast reconnection, in the form of a complex vortex pattern. The nonlinear dispersion equations of the vortex are derived and the relationship between the vortex structure and the background magnetic field is discussed. PMID:11088759

  2. Relativistic heavy ion facilities: worldwide

    SciTech Connect

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs.

  3. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  4. Relativistic jets and star formation

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey Vincent; Mukherjee, Dipanjan; Wagner, Alex; Slatyer Sutherland, Ralph

    2015-08-01

    We are conducting simulations of jets interacting with molecular and atomic gas on scales of a few kpc in forming galaxies. Competing processes, such as the dispersion of gas in the galaxy and star formation in the high-pressure environment determine whether positive or negative feedback predominates. We shall present our new simulations including an assessment of these different effects. Our simulations also predict the velocity and velocity dispersion of atomic and molecular gas in galaxies, which are undergoing interaction with relativistic jets. These results are of interest to radio and optical spectral imaging observations of galaxies undergoing feedback.

  5. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  6. Adaptive wavelets and relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.

  7. Arbitrarily Long Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2015-12-01

    We consider the recent relativistic bit commitment protocol introduced by Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015)] and present a new security analysis against classical attacks. In particular, while the initial complexity of the protocol scales double exponentially with the commitment time, our analysis shows that the correct dependence is only linear. This has dramatic implications in terms of implementation: in particular, the commitment time can easily be made arbitrarily long, by only requiring both parties to communicate classically and perform efficient classical computation.

  8. Relativistic electrons associated with solar flares.

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Solar flares which produce relativistic electrons generally occur within sunspot groups which are active in the emission of meter type I noise storms. It is suggested that relativistic electrons in solar flares are accelerated from the keV-energy electrons responsible for the type I noise storms. The relationship between flare developments and the ejection of keV-electrons is briefly considered.

  9. Comparative SEU sensitivities to relativistic heavy ions

    SciTech Connect

    Koga, R.; Crain, S.H.; Crain, W.R.; Crawford, K.B.; Hansel, S.J.

    1998-12-01

    SEU sensitivity of microcircuits to relativistic heavy ions is compared to that measured with low-energy ions of comparable LET values. Multiple junction charge collection in a complex circuit seems to mask the effect of varying charge generations due to different iron track structures. Heavy ions at sub-relativistic speeds may generate nuclear fragments, sometimes resulting in SEUs.

  10. Einstein Never Approved of Relativistic Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  11. Representation of relativistic quantities by trigonometric functions

    NASA Astrophysics Data System (ADS)

    Majerník, V.

    1986-06-01

    A ``space-time angle'' φ is defined by setting v=c(sin φ). This leads to a form of Lorentz transformations which uses simple real trigonometric functions and yields a graphic correlation of important relativistic quantities for particles and for corresponding de Broglie waves. A number of relativistic relationships is obtained by the use of common trigonometric identities and formulas.

  12. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  13. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  14. Lattice Boltzmann equation for relativistic quantum mechanics.

    PubMed

    Succi, Sauro

    2002-03-15

    Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation. PMID:16210189

  15. Non-relativistic scale anomalies

    NASA Astrophysics Data System (ADS)

    Arav, Igal; Chapman, Shira; Oz, Yaron

    2016-06-01

    We extend the cohomological analysis in arXiv:1410.5831 of anisotropic Lifshitz scale anomalies. We consider non-relativistic theories with a dynamical critical exponent z = 2 with or without non-relativistic boosts and a particle number symmetry. We distinguish between cases depending on whether the time direction does or does not induce a foliation structure. We analyse both 1 + 1 and 2 + 1 spacetime dimensions. In 1 + 1 dimensions we find no scale anomalies with Galilean boost symmetries. The anomalies in 2 + 1 dimensions with Galilean boosts and a foliation structure are all B-type and are identical to the Lifshitz case in the purely spatial sector. With Galilean boosts and without a foliation structure we find also an A-type scale anomaly. There is an infinite ladder of B-type anomalies in the absence of a foliation structure with or without Galilean boosts. We discuss the relation between the existence of a foliation structure and the causality of the field theory.

  16. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  17. Relativistic Laser-Plasma Interactions

    SciTech Connect

    Skoric, Milos M.

    2009-11-10

    Ever since the much acclaimed paper of Akhiezer and Polovin plasma theorists have been attempting to comprehend complex dynamics related to the propagation of high and ultra-high intensity electromagnetic (EM) radiation through a plasma. This topic was successfully revisited a number of years later by Kaw and Dawson whose analysis threw more light on the propagation of coupled longitudinal-transverse waves of arbitrary intensity. The high phase velocity case was soon solved exactly by Max and Perkins, (early review). The problem of relativistic laser-plasma interactions is of particular interest concerning the fast ignition concept, relevant to contemporary laser inertial confinement fusion research. Moreover, the understanding of relativistic laser pulse evolution in a plasma is basic to many new applications, including optical-field-ionized x-ray lasers, plasma-based electron accelerator schemes, as well as, interpretation of some astrophysical phenomena, and references, therein). From a text given in two tutorial lectures, in a limited space, we mainly focus on an important paradigm of stimulated Raman scattering.

  18. Are relativistic jets monoparametric engines?

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Meyer, E. T.; Fossati, G.; Lister, M. L.

    We adopt as a working hypothesis that relativistic jets are essentially mono-parametric entities, and that their physical properties are a function of a single physical parameter, the same way the physical properties of main sequence stars are mainly a function of the star mass. We propose that the physical parameter is the jet kinetic power, and we use as a proxy for this quantity the low frequency extended radio luminosity (LFERL), an orientation insensitive quantity. We discuss the consequences of this hypothesis for the collective properties of relativistic jets and we show that a blazar sequence should spontaneously emerge on the peak frequency vs luminosity plot as the locus of those sources that are well aligned to the observer's line of sight. We also show that the sources of the same LFERL should form tracks that start from a location on the blazar sequence and move to lower luminosities and peak frequencies in a way that encodes information about the emitting plasma energetics and kinematics and velocity gradients, as well as about the inverse Compton (IC) emission seed photons. We are currently working on collecting the observations that will allow us to put this idea to the test.

  19. Relativistic Definition of Spin Operators

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis H.

    2002-12-01

    Some years ago Mashhoon [1] made the highly interesting suggestion that there existed a coupling of spin with rotations, just as there exists such a coupling with orbital angular momentum, as seen in the Sagnac effect, for example. Spin being essentially a quantum phenomenon, the obvious place to look for this was by studying the Dirac equation, and Hehl and Ni, in such an investigation [2], indeed found a coupling term of just the type Mashhoon had envisaged. Part of their procedure, however, was to take the nonrelativistic limit, and this was done by performing appropriate Foldy-Wouthuysen (FW) transformations. In the nonrelativistic limit, it is well-known that the spin operators for Dirac particles are in essence the Pauli matrices; but it is also well-known, and indeed was part of the motivation for Foldy and Wouthuysen's paper, that for fully-fledged Dirac particles the (4×4 generalisation of the) Pauli matrices do not yield satisfactory spin operators, since spin defined in this way would not be conserved. The question therefore presented itself: is there a relativistic spin operator for Dirac particles, such that in the relativistic, as well as the nonrelativistic, régime a Mashhoon spin-rotation coupling exists?...

  20. Relativistic fluids: fundamentals and recent developments

    NASA Astrophysics Data System (ADS)

    Sandoval-Villalbazo, A.; García-Perciante, A. L.

    2014-11-01

    Relativistic thermodynamics and kinetic theory have been subjects of intense research and debate recently. The topic has gained attention primarily due to its application in both astrophysical and experimental scenarios. In this talk I will review some of the challenges theorists have faced in search of a successful formalism capable of describing these systems and the alternatives proposed in order to avoid the well known instabilities and causality problems present in the first works on the subject published more than fifty years ago. Among these proposals I will focus on the first order in the gradients version of relativistic kinetic theory in order to describe special relativistic single component fluids in the presence of external forces. The main results obtained following this path will be shown including the relativistic expressions for dissipative fluxes and entropy production. Some consequences of relativistic modifications in the hydrodynamic equations will also be discussed. This work is supported by CONACyT through Grant CB2011/167563.

  1. Relativistic mixtures of charged and uncharged particles

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.

    2014-01-01

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad's moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick's law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad's distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  2. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  3. Relativistic electron and ion dust charging currents

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane

    2009-09-15

    A first theoretical attempt is made to present a relativistic generalization of the well-known orbit-limited motion theory. The appropriate relativistic (electron and ion) dust charging currents are derived. The nonlinear electrostatic potential is then expressed in terms of the variable dust charge and we take advantage of this new transcendental relation to investigate briefly the effects of relativistic charge carriers. As the relativistic character of the plasma increases, it becomes evident that certain negative values of the dust charge can never be achieved as increasingly larger values of the nonlinear potential are involved. The obtained formulas bring a possibility to build theories of nonlinear collective process in relativistic dusty plasmas.

  4. Relativistic explicit correlation: coalescence conditions and practical suggestions.

    PubMed

    Li, Zhendong; Shao, Sihong; Liu, Wenjian

    2012-04-14

    To set up the general framework for relativistic explicitly correlated wave function methods, the electron-electron coalescence conditions are derived for the wave functions of the Dirac-Coulomb (DC), Dirac-Coulomb-Gaunt (DCG), Dirac-Coulomb-Breit (DCB), modified Dirac-Coulomb (MDC), and zeroth-order regularly approximated (ZORA) Hamiltonians. The manipulations make full use of the internal symmetries of the reduced two-electron Hamiltonians such that the asymptotic behaviors of the wave functions emerge naturally. The results show that, at the coalescence point of two electrons, the wave functions of the DCG Hamiltonian are regular, while those of the DC and DCB Hamiltonians have weak singularities of the type r(12)(ν) with ν being negative and of O(α(2)). The behaviors of the MDC wave functions are related to the original ones in a simple manner, while the spin-free counterparts are somewhat different due to the complicated electron-electron interaction. The behaviors of the ZORA wave functions depend on the chosen potential in the kinetic energy operator. In the case of the nuclear attraction, the behaviors of the ZORA wave functions are very similar to those of the nonrelativistic ones, just with an additional correction of O(α(2)) to the nonrelativistic cusp condition. However, if the Coulomb interaction is also included, the ZORA wave functions become close to the large-large components of the DC wave functions. Note that such asymptotic expansions of the relativistic wave functions are only valid within an extremely small convergence radius R(c) of O(α(2)). Beyond this radius, the behaviors of the relativistic wave functions are still dominated by the nonrelativistic limit, as can be seen in terms of direct perturbation theory (DPT) of relativity. However, as the two limits α → 0 and r(12) → 0 do not commute, DPT is doomed to fail due to incorrect descriptions of the small-small component Ψ(SS) of the DC wave function for r(12) < R(c). Another

  5. Nuclei at extreme conditions. A relativistic study

    SciTech Connect

    Afanasjev, Anatoli

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  6. Relativistic effects in Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Iršič, Vid; Di Dio, Enea; Viel, Matteo

    2016-02-01

    We present the calculation of the Lyman-alpha (Lyman-α) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range (z=2-5). Furthermore, we show a comprehensive application of our calculations to the Quasar-Lyman-α cross-correlation function. Our results indicate that the signal of relativistic effects are sizeable at Baryonic Acoustic Oscillation (BAO) scale mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross-correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.

  7. Optics in the Relativistic Regime

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki

    2012-06-01

    Optics has extended the frontier of low energy physics. Here we present the progress in the opposite direction of relativistic intensity regime of optics. With intense and large energy laser, particles may be accelerated to high energies via laser wakefield acceleration (Tajima and Dawson, 1979) over a compact distance orders of magnitude shorter than the RF approach. We should be able to accelerate electrons (over 30m) and ions (over cm) toward TeV with an existing kJ laser. We can check Lorentz invariance in the ultrarelativistic regime. Further, laser allows us to explore the presence of weakly coupling fields such as Dark Matter and Dark Energy with an unprecedented sensitivity. We call this emerging capability as the Laser Particle Physics Paradigm (LP^3).

  8. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  9. Invisibility cloaks in relativistic motion

    NASA Astrophysics Data System (ADS)

    Halimeh, Jad C.; Thompson, Robert T.; Wegener, Martin

    2016-01-01

    We consider an ideal invisibility cloak which is illuminated by monochromatic light and which moves in vacuum at constant relativistic velocity with respect to the common inertial frame of light source and observer. We show that, in general, the moving cloak becomes detectable by image distortions and by generating a broad frequency spectrum of the scattered light. However, for many special combinations of incident light frequency, wave vector of light, and cloak velocity, ideal cloaking remains possible. It becomes nonreciprocal though. This means that light rays emitted by the light source arrive at the observer as though they have traveled through vacuum, but they take completely different paths after being retroreflected at the observer position.

  10. Relativistic recoil and the railgun

    NASA Astrophysics Data System (ADS)

    Allen, J. E.; Jones, T. V.

    1990-01-01

    Calculations are presented that refute recent statements (e.g., Graneau, 1987) made to the effect that the operation of a railgun cannot be explained in terms of classical relativistic electrodynamics. It is demonstrated that, on the contrary, there is no difficulty in using the concept of electromagnetic momentum to calculate the electromagnetic forces that propel the projectile in a railgun. The error made by other authors was to suppose that classical electrodynamics demand that a large amount of momentum be associated with the electromagnetic field at some previous time. The projectile can acquire much more momentum than that associated with the incident wave, because the electromagnetic waves are reflected both at the projectile end and at the breech end of the railgun.

  11. Landau damping in relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Young, Brent

    2016-02-01

    We examine the phenomenon of Landau damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson (rVP) system on the torus for initial data sufficiently close to a spatially uniform steady state. We find that if the steady state is regular enough (essentially in a Gevrey class of degree in a specified range) and if the deviation of the initial data from this steady state is small enough in a certain norm, the evolution of the system is such that its spatial density approaches a uniform constant value quasi-exponentially fast (i.e., like exp ( - C |" separators=" t | ν ¯ ) for ν ¯ ∈ ( 0 , 1 ) ). We take as a priori assumptions that solutions launched by such initial data exist for all times (by no means guaranteed with rVP, but a reasonable assumption since we are close to a spatially uniform state) and that the various norms in question are continuous in time (which should be a consequence of an abstract version of the Cauchy-Kovalevskaya theorem). In addition, we must assume a kind of "reverse Poincaré inequality" on the Fourier transform of the solution. In spirit, this assumption amounts to the requirement that there exists 0 < ϰ < 1 so that the mass in the annulus ϰ ≤ |" separators=" v | < 1 for the solution launched by the initial data is uniformly small for all t. Typical velocity bounds for solutions to rVP launched by small initial data (at least on ℝ6) imply this bound. We note that none of our results require spherical symmetry (a crucial assumption for many current results on rVP).

  12. Localization scheme for relativistic spinors

    NASA Astrophysics Data System (ADS)

    Ciupka, J.; Hanrath, M.; Dolg, M.

    2011-12-01

    A new method to determine localized complex-valued one-electron functions in the occupied space is presented. The approach allows the calculation of localized orbitals regardless of their structure and of the entries in the spinor coefficient matrix, i.e., one-, two-, and four-component Kramers-restricted or unrestricted one-electron functions with real or complex expansion coefficients. The method is applicable to localization schemes that maximize (or minimize) a functional of the occupied spinors and that use a localization operator for which a matrix representation is available. The approach relies on the approximate joint diagonalization (AJD) of several Hermitian (symmetric) matrices which is utilized in electronic signal processing. The use of AJD in this approach has the advantage that it allows a reformulation of the localization criterion on an iterative 2 × 2 pair rotating basis in an analytical closed form which has not yet been described in the literature for multi-component (complex-valued) spinors. For the one-component case, the approach delivers the same Foster-Boys or Pipek-Mezey localized orbitals that one obtains from standard quantum chemical software, whereas in the multi-component case complex-valued spinors satisfying the selected localization criterion are obtained. These localized spinors allow the formulation of local correlation methods in a multi-component relativistic framework, which was not yet available. As an example, several heavy and super-heavy element systems are calculated using a Kramers-restricted self-consistent field and relativistic two-component pseudopotentials in order to investigate the effect of spin-orbit coupling on localization.

  13. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  14. Dynamical gap generation in graphene nanoribbons: An effective relativistic field theoretical model

    SciTech Connect

    Chaves, A. J.; Paula, W. de; Frederico, T.; Lima, G. D.; Cordeiro, C. E.; Delfino, A.

    2011-04-15

    We show that the assumption of a nontrivial zero band gap for a graphene sheet within an effective relativistic field theoretical model description of interacting Dirac electrons on the surface of graphene describes the experimental band gap of graphene nanoribbons for a wide range of widths. The graphene band gap is dynamically generated, corresponding to a nontrivial gapless solution, found in the limit of an infinitely wide graphene ribbon. The nanoribbon band gap is determined by the experimental graphene work function.

  15. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    NASA Astrophysics Data System (ADS)

    Akhter, T.; Fedele, R.; Nicola, S. De; Tanjia, F.; Jovanović, D.; Mannan, A.

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  16. Long range correlations and the soft ridge in relativistic nuclear collisions

    SciTech Connect

    Gavin, Sean; Moschelli, George; McLerran, Larry

    2009-05-15

    Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the untriggered ridge arises when particles formed by flux tubes in an early Glasma stage later manifest transverse flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the Glasma, we find excellent agreement with current data.

  17. Relativistic Theory of Few Body Systems

    SciTech Connect

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  18. Momentum relaxation of a relativistic Brownian particle.

    PubMed

    Felderhof, B U

    2012-12-01

    The momentum relaxation of a relativistic Brownian particle immersed in a fluid is studied on the basis of the Fokker-Planck equation for the relativistic Ornstein-Uhlenbeck process. An analytical expression is derived for the short-time relaxation rate. The relaxation spectrum has both discrete and continuum components. It is shown that the Fokker-Planck equation under consideration is closely related to the Schrödinger equation for the hydrogen atom. Hence it follows that there is an infinite number of discrete states. The momentum autocorrelation function is calculated numerically for a strongly relativistic particle. PMID:23367889

  19. Relativistic scattered wave calculations on UF6

    NASA Technical Reports Server (NTRS)

    Case, D. A.; Yang, C. Y.

    1980-01-01

    Self-consistent Dirac-Slater multiple scattering calculations are presented for UF6. The results are compared critically to other relativistic calculations, showing that the results of all molecular orbital calculations are in qualitative agreement, as measured by energy levels, population analyses, and spin-orbit splittings. A detailed comparison is made to the relativistic X alpha(RX alpha) method of Wood and Boring, which also uses multiple scattering theory, but incorporates relativistic effects in a more approximate fashion. For the most part, the RX alpha results are in agreement with the present results.

  20. Forced Turbulence in Relativistic Conformal Fluids

    NASA Astrophysics Data System (ADS)

    Westernacher-Schneider, John Ryan; Green, Stephen; Lehner, Luis; Canon, Kipp; Oz, Yaron

    2015-04-01

    Given the renewed interest arising both from AdS/CFT and astrophysics, we revisit the phenomenon of relativistic turbulence. We build on some recent work which extends known non-relativistic results in turbulence to the case of relativistic (and thus compressible) fluids. In particular, we derive the scaling behaviour of two-point correlation functions in 2+1 dimensions--holographically dual to 3+1 dimensional gravity. Turbulence in 2+1 dimensions also approximates several astrophysical situations, such as thin accretion disks around black holes. We perform numerical simulations of forced steady-state turbulence to verify our derived correlation functions.

  1. Relativistic corrections to the triton binding energy

    SciTech Connect

    Sammarruca, F.; Xu, D.P.; Machleidt, R. )

    1992-11-01

    The influence of relativity on the triton binding energy is investigated. The relativistic three-dimensional version of the Bethe-Salpeter equation proposed by Blankenbecler and Sugar (BbS) is used. Relativistic (nonseparable) one-boson-exchange potentials (constructed in the BbS framework) are employed for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is found that relativistic effects increase the triton binding energy by about 0.2 MeV. Including charge dependence (besides relativity), the final triton binding energy predictions are 8.33 and 8.16 MeV for the Bonn A and B potentials, respectively.

  2. Relativistic klystron research for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab.

  3. Relativistic Electron-Electron Bremsstrahlung in Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jia; Kawai, Norio; Kawamura, Takaichi; Maegauchi, Tetsuo; Narumi, Hajime

    1982-05-01

    Transition matrices and differential cross sections for electron-electron bremsstrahlung in relativistic energy region are calculated by the lowest-order perturbation theory of quantum electrodynamics. The bremsstrahlung spectra and emission rates are evaluated for relativistic Maxwellian plasma. The results are discussed in comparison with those obtained by non-relativistic and extreme-relativistic approximations and it is noted that the relativistic effect becomes appreciable above the order of 10 keV for the electron temperature.

  4. Quantum time and spatial localization in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    von Zuben, Francis Stephen Geisler

    1999-11-01

    Two related problems in relativistic quantum mechanics, the apparent superluminal propagation of initially localized particles, and the dependence of their localization on the motion of the observer, are analyzed in the context of the theory of constraints. Time and energy operators are introduced for the free relativistic particle, and a parametrization invariant formulation is obtained through Dirac constraint theory. The resulting description is of a system constrained in momentum and energy, but not in position or time, for which observables are constants of the motion. The Klein-Gordon equation is recovered on a physical Hilbert space, constructed via integration over the proper time from an augmented Hilbert space, wherein time and energy are dynamical variables. It is shown that the position observable acts on states in the augmented space; those states having strictly positive energy are non-local in time. Localization arises on a particular space-like hyperplane from quantum interference in time, position measurements receiving contributions from the past and future. Apparent causality problems are resolved by noting that, as the particle is potentially in the past, it can propagate to distant regions without exceeding the speed of light. Non-locality of the same system to a moving observer is due to Lorentz rotation of spatial axes out of the interference minimum.

  5. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  6. Relativistic plasma astrophysics with intense lasers

    NASA Astrophysics Data System (ADS)

    Kuramitsu, Yasuhiro; Chu, Hsu-Hsin; Hau, Lin-Ni; Chen, Shih-Hung; Liu, Yao-Li; Hsieh, Chia-Ying; Sakawa, Youichi; Hideaki, Takabe; Wang, Jyhpyng

    2015-12-01

    Recent progresses of laser technologies enable us to investigate space and astrophysical phenomena in laboratories. In space plasmas the local observations by spacecrafts provide us the microscopic information of the plasma and electric/magnetic fields, however, it is difficult to obtain the global structures of the phenomena. In astrophysical plasmas, in contrast, global images provide us the macroscopic information, although there is no local observation and thus no microscopic information. Laboratory experiments on space and astrophysical phenomena provide us the local and global information simultaneously. We have investigated so far mostly non-relativistic phenomena in the universe with long laser pulses. Now we extend our research from non-relativistic to relativistic regime with an ultra intense laser, the 100 TW laser facility at National Central University. We introduce our facility and model relativistic phenomena in laboratory, focusing on the magnetic field generation and the magnetic reconnection in the universe.

  7. Hot relativistic winds and the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Fujimura, F. S.; Kennel, C. F.

    1981-01-01

    Efforts to formulate a self-consistent model of pulsar magnetospheres which links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula are reviewed. The use of a relativistic MHD wind is recommended to account for global photon emission and the invisibility of the method of plasma transport. Consideration of a magnetic monopole relativistic wind due to an axially symmetric aligned rotator is combined with calculations of the initial velocity of the wind to show that the flow velocity in such a model will never exceed Mach 1. Extending the solution to the case of a hot relativistic wind at supersonic speeds is noted to yield results consistent with observations of the Crab Nebula

  8. Electromagnetic processes in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Baur, G.

    1986-10-01

    Electromagnetic effects in relativistic heavy ion collisions with impact parameter larger than the sum of the nuclear radii are studied using the virtual photon method. With increasing value of the relativistic parameter γ the hardness of the virtual photon spectrum increases. This leads to interesting new effects which will also have to be considered in the design of future relativistic heavy ion machines and experiments. The excitation of high-lying giant E1 and E2 multipole resonances is calculated as well as electromagnetic pion production. Coulomb bremsstrahlung is calculated and compared to the bremsstrahlung emitted in the more violent central nuclear collisions. K-shell ionization and electron-positron pair production is studied. The latter process has a very large cross section for heavy ions and contributes significantly to the stopping power of relativistic heavy ions in a dense medium.

  9. Quantum probability assignment limited by relativistic causality.

    PubMed

    Han, Yeong Deok; Choi, Taeseung

    2016-01-01

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment. PMID:26971717

  10. Pseudospectral approach to relativistic molecular theory.

    PubMed

    Nakajima, Takahito; Hirao, Kimihiko

    2004-08-22

    The efficient relativistic Dirac-Hartree-Fock (DHF) and Dirac-Kohn-Sham (DKS) methods are proposed by an application of the pseudospectral (PS) approach. The present PS-DHF/DKS method is a relativistic extension of the PS-HF/KS method of Friesner, though we aim at higher numerical accuracy by elimination of superfluous arbitrariness. The relativistic PS-DHF/DKS method is implemented into our REL4D programs. Several PS applications to molecular systems show that the relativistic PS-DHF/DKS approach is more efficient than the traditional approach without a loss of accuracy. The present PS-DKS method successfully assigns and predicts the photoelectron spectra of hexacarbonyl complexes of tungsten and seaborgium theoretically. PMID:15303907

  11. Relativistic Thomson Scatter from Factor Calculation

    Energy Science and Technology Software Center (ESTSC)

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  12. Quantum probability assignment limited by relativistic causality

    PubMed Central

    Han, Yeong Deok; Choi, Taeseung

    2016-01-01

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment. PMID:26971717

  13. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-12-31

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  14. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-01-01

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  15. Relativistic particle acceleration in plerions

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan; Tavani, Marco

    1994-01-01

    We discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized -- the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put approximately 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) varies as E(exp -2), where N(E)dE is the number of particles with energy between E and E+dE. The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be gamma(sub +/-)m(sub +/-)c squared = m(sub i)c squared gamma(sub 1)/Z(sub i), where gamma(sub 1) is the Lorentz factor of the upstream flow and Z(sub i) is the atomic number of the ions. The shock's spatial structure is shown to contain a series of 'overshoots' in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the 'wisps

  16. Relativistic positioning systems: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  17. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  18. On the convexity of relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ibáñez, José M.; Cordero-Carrión, Isabel; Martí, José M.; Miralles, Juan A.

    2013-03-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla

  19. Recording of relativistic particles in thin scintillators

    SciTech Connect

    Tolstukhin, I A.; Somov, Alexander S.; Somov, S. V.; Bolozdynya, A. I.

    2014-11-01

    Results of investigating an assembly of thin scintillators and silicon photomultipliers for registering relativistic particles with the minimum ionization are presented. A high efficiency of registering relativistic particles using an Ej-212 plastic scintillator, BSF-91A wavelength-shifting fiber (Saint-Gobain), and a silicon photomultiplier (Hamamtsu) is shown. The measurement results are used for creating a scintillation hodoscope of the magnetic spectrometer for registering γ quanta in the GlueX experiment.

  20. Relativistic klystron research at SLAC and LLNL

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  1. Relativistic particle beams for interstellar propulsion

    NASA Astrophysics Data System (ADS)

    Nordley, Gerald D.

    1993-04-01

    The concept of pellet-stream propulsion proposed by Singer (1980) is extended to particle beams and relativistic velocities. A simple relativistic mission study is presented, and it is shown how certain technological developments might enhance the concept. In particular, considerations discussed include beam drivers; beam cooling, steering, and focusing; beam driven mission mechanics; and the radiation problem. The energy issues are also briefly considered.

  2. Stopping of relativistic electrons in a partially degenerate electron fluid.

    PubMed

    Starikov, K V; Deutsch, C

    2005-02-01

    The stopping mechanisms of relativistic electron beams in superdense and partially degenerate electron fluid targets are investigated in the framework of the fast ignitor concept for inertial confinement fusion. In order to comply with specific demands in this area, we focus attention on the target partial degeneracy parameter theta= T(e) / T(f) , in terms of the thermal to Fermi temperature ratio. The target electron fluid is thus modeled very accurately with a random phase approximation dielectric function. The stopping results are shown to be very weakly theta dependent. However, a quantum target description is needed to recover their correct increasing trend with increasing projectile energy. The ranges and effective penetration depths in precompressed thermonuclear fuels are shown to be nearly a factor of 2 shorter than earlier classical estimates in the same conditions. The overall conclusions pertaining to the feasibility of fast ignition thus remain unchanged. PMID:15783429

  3. Towards the island of stability with relativistic energy density functionals

    SciTech Connect

    Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.

    2012-10-20

    Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.

  4. Path integral quantization of the relativistic Hopfield model

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2016-03-01

    The path-integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path-integral formalism. In particular, we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time-ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.

  5. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.

  6. Relativistic optimized effective potential method-application to alkali metals.

    PubMed

    Ködderitzsch, D; Ebert, H; Akai, H; Engel, E

    2009-02-11

    We present a relativistic formulation of the optimized effective potential method (ROEP) and its implementation within the Korringa-Kohn-Rostoker multiple scattering formalism. The scheme is an all-electron approach, treating core and band states formally on the same footing. We use exact exchange (EXX) as an approximation to the exchange correlation functional. Numerical four-component wavefunctions for the description of core and valence electrons and the corresponding ingredients of the ROEP integral equation are employed. The exact exchange expression for the valence states is reformulated in terms of the electronic Green's function that in turn is evaluated by making use of multiple scattering formalism. We present and discuss the application of the formalism to non-magnetic alkali metals. PMID:21715911

  7. Entropy current for non-relativistic fluid

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash; Roychowdhury, Dibakar

    2014-08-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermodynamics. Therefore, we need to add two parity-odd vectors to the entropy current with arbitrary coefficients. Upon demanding the validity of second law, we see that one can fix these two coefficients exactly.

  8. Current operators in relativistic few-body systems

    SciTech Connect

    Coester, F.; Klink, W.H.; Polyzou, W.N.

    1995-08-01

    The interpretation of experiments that explore hadron structure with electromagnetic probes requires both a nonperturbative representation of the hadron states and a compatible representation of the current-density operator. Intuitive interpretations depend strongly on the {open_quotes}impulse approximation{close_quotes}, that is, the use of one-body currents. One-body currents, however, cannot satisfy essentially the constraints imposed by the dynamics. In nonrelativistic quantum mechanics the problem of constructing dynamically required interaction currents is well understood and has been solved. Since Galilei transformations are kinematic, only time-translation covariance and current conservation impose dynamical constraints on current operators. These constraints can be satisfied by the well-known construction of so-called {open_quotes}minimal{close_quotes} or {open_quotes}model-independent{close_quotes} currents. Descriptions of hadron structure and of nuclear effects probed at high energies require a relativistic description. In relativistic few-body dynamics, one-body currents are covariant only under the kinematic subgroup of the Poincare group. Full Poincare covariance and current conservation implies dynamically determined interaction currents. The separation of the current operator into impulse current and interaction current depends on the {open_quotes}form of dynamics{close_quotes}, that is on the choice of the kinematic subgroup. The choice of the light-front kinematics has unique advantages not available with other forms of dynamics: (1) a relevant subgroup of the translations is kinematic, (2) initial and final states are related by kinematic Lorentz transformations, (3) the contributions of the individual constituents are related kinematically to the total current. These features were exploited successfully in calculations of deuteron form factors and quark-model form factors of hadrons.

  9. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  10. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  11. Observation of relativistic antihydrogen atoms

    SciTech Connect

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  12. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  13. Relativistic Dipole Matrix Element Zeros

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2002-05-01

    There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).

  14. Glimm's Method for Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cannizzo, J. K.; Gehrels, N.; Vishniac, E. T.

    2008-06-01

    We present the results of standard one-dimensional test problems in relativistic hydrodynamics using Glimm's (random choice) method and compare them to results obtained using finite differencing methods. For problems containing profiles with sharp edges, such as shocks, we find Glimm's method yields global errors ~1-3 orders of magnitude smaller than the traditional techniques. The strongest differences are seen for problems in which a shear field is superposed. For smooth flows, Glimm's method is inferior to standard methods. The location of specific features can be off by up to two grid points with respect to an exact solution in Glimm's method, and furthermore, curved states are not modeled optimally, since the method idealizes solutions as being composed of piecewise constant states. Thus, although Glimm's method is superior at correctly resolving sharp features, especially in the presence of shear, for realistic applications in which one typically finds smooth flows plus strong gradients or discontinuities, standard finite-difference methods yield smaller global errors. Glimm's method may prove useful in certain applications such as GRB afterglow shock propagation into a uniform medium.

  15. Acquisition of teleological descriptions

    NASA Astrophysics Data System (ADS)

    Franke, David W.

    1992-03-01

    Teleology descriptions capture the purpose of an entity, mechanism, or activity with which they are associated. These descriptions can be used in explanation, diagnosis, and design reuse. We describe a technique for acquiring teleological descriptions expressed in the teleology language TeD. Acquisition occurs during design by observing design modifications and design verification. We demonstrate the acquisition technique in an electronic circuit design.

  16. Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.

    2008-01-01

    Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.

  17. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.

    2011-01-01

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.

  18. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.

    2011-01-04

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.

  19. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  20. Relativistic generation of vortex and magnetic field

    SciTech Connect

    Mahajan, S. M.; Yoshida, Z.

    2011-05-15

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  1. Relativistic mixtures of charged and uncharged particles

    SciTech Connect

    Kremer, Gilberto M.

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  2. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    SciTech Connect

    Cho, Jungyeon; Lazarian, A.

    2014-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  3. Radiation-Dominated Relativistic Current Sheets

    SciTech Connect

    Jaroschek, C. H.; Hoshino, M.

    2009-08-14

    Relativistic current sheets (RCSs) feature plasma instabilities considered as the potential key to magnetic energy dissipation in Poynting-flux-dominated plasma flows. Kinetic plasma simulations show that the physical nature of RCS evolution changes in the presence of radiation losses: In the ultrarelativistic regime (i.e., magnetization parameter sigma=10{sup 4} defined as the ratio of magnetic to plasma rest frame energy density), the combined effect of nonlinear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the relativistic tearing mode. In contrast to previous studies of the RCS with sigmaapprox1, the relativistic tearing mode then prevails over the drift kink mode. The ultrarelativistic RCS shows a typical life cycle from radiation-induced collapse towards a radiation-quiescent phase with topology analogous to that introduced by Sweet and Parker.

  4. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect

    Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  5. Relativistic Entanglement From Maxwell's Classical Equations

    NASA Astrophysics Data System (ADS)

    Carroll, John E.; Quarterman, Adrian H.

    2013-09-01

    With the help of light cone coordinates and light cone field representations of Maxwell's classical equations, quantum polarization entanglement is explained using the relativistic results of a companion paper that shows how conventional or reference waves can have an adjoint wave, travelling in phase with the reference wave, but in a proper relativistic frame that travels in the opposing direction to the proper frame of the reference wave. This subsequently allows waves, travelling in opposite directions, to have the same proper frame and consequently such waves can be regarded as relativistically local. The light cone coordinates offer a classical form of a quantum wave function and demonstrate a classical equivalent of a mixed quantum state.

  6. Relativistic spin operators in various electromagnetic environments

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2014-05-01

    Different operators have been suggested in the literature to describe the electron's spin degree of freedom within the relativistic Dirac theory. We compare concrete predictions of the various proposed relativistic spin operators in different physical situations. In particular, we investigate the so-called Pauli, Foldy-Wouthuysen, Czachor, Frenkel, Chakrabarti, Pryce, and Fradkin-Good spin operators. We demonstrate that when a quantum system interacts with electromagnetic potentials the various spin operators predict different expectation values. This is explicitly illustrated for the scattering dynamics at a potential step and in a standing laser field and also for energy eigenstates of hydrogenic ions. Therefore, one may distinguish between the proposed relativistic spin operators experimentally.

  7. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  8. New developments in relativistic dissipative fluid dynamics

    NASA Astrophysics Data System (ADS)

    Muronga, Azwinndini

    2010-09-01

    The recent notion of the perfect fluid created at the relativistic heavy ion collider (RHIC) has been embraced by many experimentalists and theorists alike. However, much of the evidence to this notion has been based on the success of describing some experimental observables by non-viscous hydrodynamics or by small shear viscosity to entropy density ratio. Developments on viscous hydrodynamics evolved from (0+1) dimensions (Bjorken scaling solution) over (1+1) dimensions (Bjorken + transverse flow) to (2+1) dimensions (elliptic flow) and currently (3+1) dimensions. There still exist some formal issues concerning the allowed form of the relativistic viscous hydrodynamic equations and what effects the new additional or higher order terms will have on the spacetime evolution and the experimental observables. Starting with a brief introduction of the basics of relativsitic fluid dynamics, I will discuss our current knowledge of relativistic theory of fluid dynamics in the presence of dissipative fluxes.

  9. Corrugation of Relativistic Magnetized Shock Waves

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent

    2016-08-01

    As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.

  10. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-01

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%. PMID:18599782

  11. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  12. Viscous photons in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Dion, Maxime; Paquet, Jean-François; Schenke, Björn; Young, Clint; Jeon, Sangyong; Gale, Charles

    2011-12-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  13. Relativistic dynamics, Green function and pseudodifferential operators

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2016-06-01

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  14. Relativistic transport theory for cosmic-rays

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented.

  15. Relativistic runaway electrons above thunderstorms

    NASA Astrophysics Data System (ADS)

    Lehtinen, Nikolai G.

    A three-dimensional Monte Carlo model of the uniform relativistic runaway electron breakdown in air in the presence of static electric and magnetic fields is developed and used to calculate electron distribution functions, avalanche rates and the direction and velocity of avalanche propagation. The Monte Carlo simulation results are used in a fluid model of a runaway electron beam in the middle atmosphere accelerated by quasi-electrostatic fields following a positive lightning stroke. We consider the case of lightning discharges which drain positive charge from remote regions of a laterally extensive (>100 km) thundercloud in a thunderstorm located at ~45° geomagnetic latitude, using a translationally invariant two-dimensional model. We also consider a cylindrically symmetric model with a vertical axis of symmetry, constrained to a vertical geomagnetic field. In both models, the optical emission intensities produced by the runaway electrons are found to be negligible compared to the emissions produced by thermal electrons heated in the conventional type of breakdown. The calculated γ-ray flux is of the same order as the terrestrial γ-ray flashes observed by the BATSE detector on the Compton Gamma Ray Observatory. The energetic electrons leaving the atmosphere undergo intense interactions with the background magnetospheric plasma, leading to rapid growth of Langmuir waves with rate found based on the energy electron distribution and intense scattering of the electrons. In the nonlinear stage, beam electrons acquire an isotropic thermal distribution with a typical energy of ~1 MeV within one interhemispheric traverse along the Earth's magnetic field lines. While the electrons within the loss cone precipitate out, most of the electrons get trapped and form detectable energetic electron curtains surrounding the Earth. Electrons with pitch angles below the loss cone encounter the Earth's atmosphere at the conjugate point, are scattered and produce light, ionization

  16. Relativistic heavy quark spectrum on anisotropic lattices

    NASA Astrophysics Data System (ADS)

    Liao, Xiaodong

    We report a fully relativistic quenched calculation of the heavy quark spectrum, including both charmonium and bottomonium, using anisotropic lattice QCD. We demonstrate that a fully relativistic treatment of a heavy quark system is well-suited to address the large systematic errors in non-relativistic calculations. In addition, the anisotropic lattice formulation is a very efficient framework for calculations requiring high temporal resolutions. A detailed excited charmonium spectrum is obtained, including both the exotic hybrids (with JPC = 1-+ , 0+-, 2+-) and orbitally excited mesons (with orbital angular momentum up to 3). Using three different lattice spacings (0.197, 0.131, and 0.092 fm), we perform a continuum extrapolation of the spectrum. The lowest lying exotic hybrid 1-+ lies at 4.428(41) GeV, slightly above the D**D (S + P wave) threshold of 4.287 GeV. Another two exotic hybrids 0+- and 2 +- are determined to be 4.70(17) GeV and 4.895(88) GeV, respectively. Our finite volume analysis confirms that our lattices are large enough to accommodate all the excited states reported here. We did the first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices. Using a very fine discretization in the temporal direction we were able to go beyond the non-relativistic approximation and perform a continuum extrapolation of our results from five different lattice spacings (0.04--0.17 fm) and two anisotropies (4 and 5). We investigate several systematic errors within the quenched approximation and compare our results with those from non-relativistic simulations.

  17. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1977-01-01

    The general-relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general-relativistic version of the mixing-length formalism for convection is presented.

  18. Multimedia content description framework

    NASA Technical Reports Server (NTRS)

    Bergman, Lawrence David (Inventor); Kim, Michelle Yoonk Yung (Inventor); Li, Chung-Sheng (Inventor); Mohan, Rakesh (Inventor); Smith, John Richard (Inventor)

    2003-01-01

    A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.

  19. Properties of compressible elastica from relativistic analogy.

    PubMed

    Oshri, Oz; Diamant, Haim

    2016-01-21

    Kirchhoff's kinetic analogy relates the deformation of an incompressible elastic rod to the classical dynamics of rigid body rotation. We extend the analogy to compressible filaments and find that the extension is similar to the introduction of relativistic effects into the dynamical system. The extended analogy reveals a surprising symmetry in the deformations of compressible elastica. In addition, we use known results for the buckling of compressible elastica to derive the explicit solution for the motion of a relativistic nonlinear pendulum. We discuss cases where the extended Kirchhoff analogy may be useful for the study of other soft matter systems. PMID:26563905

  20. Relativistic helix traveling wave tube amplifiers

    SciTech Connect

    Freund, H.P.; Vanderplaats, N.R.; Kodis, M.A. )

    1992-07-01

    A relativistic field theory of a helix traveling wave tube (TWT) is described for the case in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. The theory is applied to the study of a TWT with an intense relativistic electron beam. The analysis implicitly includes beam space-charge effects and is valid for arbitrary azimuthal mode number, and the coupled-wave Pierce theory is recovered in the [ital near]-[ital resonant] limit. The results indicate that impressive gains and efficiencies are possible in this regime. In addition, the interaction is relatively insensitive to the effects of a beam energy spread.

  1. Newtonian hydrodynamics with general relativistic pressure

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim E-mail: hr@kasi.re.kr

    2013-10-01

    We present the general relativistic pressure correction terms in Newtonian hydrodynamic equations to the nonlinear order: these are equations (1.1)–(1.3). The derivation is made in the zero-shear gauge based on the fully nonlinear formulation of cosmological perturbation in Einstein's gravity. The correction terms differ from many of the previously suggested forms in the literature based on hand-waving manners. We confirm our results by comparing with (i) the nonlinear perturbation theory, (ii) the first order post-Newtonian approximation, and (iii) the special relativistic limit, and by checking (iv) the consistency with full Einstein's equation.

  2. Relativistic Plasmas in Low Density Environments

    SciTech Connect

    Rudnick, Lawrence

    2009-12-18

    We have been developing techniques over the last several years to identify and study relativistic plasmas in low density environments. These relativistic plasmas may be the best or only available indicators of diffuse baryons in portions of the Warm-Hot Intergalactic Medium outside of rich galaxy clusters. Studying such faint radio synchrotron sources requires removal of confusion from both background radio galaxies and the foreground Milky Way. In these proceedings, we briefly summarize the techniques we are developing and some of our initial results. Our discoveries likely represent the ''tip of the iceberg'' to be exploited by the nascent generation of radio telescopes.

  3. Can Bohmian mechanics be made relativistic?

    PubMed

    Dürr, Detlef; Goldstein, Sheldon; Norsen, Travis; Struyve, Ward; Zanghì, Nino

    2014-02-01

    In relativistic space-time, Bohmian theories can be formulated by introducing a privileged foliation of space-time. The introduction of such a foliation-as extra absolute space-time structure-would seem to imply a clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. Here, we consider the possibility that, instead of positing it as extra structure, the required foliation could be covariantly determined by the wave function. We argue that this allows for the formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant. We conclude with some discussion of whether or not they might also qualify as fundamentally relativistic. PMID:24511259

  4. Generalized magnetofluid connections in relativistic magnetohydrodynamics.

    PubMed

    Asenjo, Felipe A; Comisso, Luca

    2015-03-20

    The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept. PMID:25839284

  5. Nonaxisymmetric oscillations of differentially rotating relativistic stars

    SciTech Connect

    Passamonti, Andrea; Stavridis, Adamantios; Kokkotas, Kostas D.

    2008-01-15

    Nonaxisymmetric oscillations of differentially rotating stars are studied using both slow rotation and Cowling approximation. The equilibrium stellar models are relativistic polytropes where differential rotation is described by the relativistic j-constant rotation law. The oscillation spectrum is studied versus three main parameters: the stellar compactness M/R, the degree of differential rotation A, and the number of maximum couplings l{sub max}. It is shown that the rotational splitting of the nonaxisymmetric modes are strongly enhanced by increasing the compactness of the star and the degree of differential rotation. Finally, we investigate the relation between the fundamental quadrupole mode and the corotation band of differentially rotating stars.

  6. Structure of hypernuclei in relativistic approaches

    NASA Astrophysics Data System (ADS)

    Hagino, Kouichi; Yao, Jiangming

    We review the relativistic mean-field approaches to hypernuclear physics. This includes Lambda hypernuclei, anti-Lambda hypernuclei, and multistrangeness hypernuclei. We particularly focus on the properties of both ground state and collective excitations, hyperon binding energies, spinorbit splittings, magnetic moments, a stabilization of drip-line nuclei, and the hyperon impurity effect on nuclear collectivity. We also discuss briefly the influence of hyperons on neutron stars. We conclude that the relativistic mean-field approaches have achieved a great success in the studies of hypernuclear physics.

  7. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  8. Recent progress in relativistic klystron research

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Aalberts, D.P.; Boyd, J.K.; Houck, T.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.; Lawrence Livermore National Lab., CA (US

    1989-08-01

    Experimental work is now under way by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome our previously reported problem of high-power rf pulse shortening and have achieved peak rf power levels of 290 MW. We have used the rf from a relativistic klystron to power a short, 11.4-GHz high-gradient accelerator. The measured momentum spectrum of the accelerated electron beam corresponds to an accelerating gradient of 84 MV/m. 5 refs., 7 figs.

  9. Towards universal quantum computation through relativistic motion

    PubMed Central

    Bruschi, David Edward; Sabín, Carlos; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette

    2016-01-01

    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tuneable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes. PMID:26860584

  10. Multiscale structures in relativistic pair plasmas

    SciTech Connect

    Iqbal, M.; Berezhiani, V. I.; Yoshida, Z.

    2008-03-15

    The steady-state solution of a pair plasma with relativistic thermal velocity of the constituent particles (electrons and positrons) is investigated. The relaxed state can be written as a superposition of three Beltrami fields. Generally, the associated scale parameters could be a complex conjugate pair and a real one. It is shown that at higher thermal energies, all the scale parameters become real. It is also observed that one component gets a large scale (system size) while the other two components appear with small scale of the order of the skin depth at relativistic temperature.

  11. Relativistic plasma shutter for ultraintense laser pulses

    PubMed Central

    Reed, Stephen A.; Matsuoka, Takeshi; Bulanov, Stepan; Tampo, Motonobu; Chvykov, Vladimir; Kalintchenko, Galina; Rousseau, Pascal; Yanovsky, Victor; Kodama, Ryousuke; Litzenberg, Dale W.; Krushelnick, Karl; Maksimchuk, Anatoly

    2009-01-01

    A relativistic plasma shutter technique is proposed and tested to remove the sub-100 ps pedestal of a high-intensity laser pulse. The shutter is an ultrathin foil placed before the target of interest. As the leading edge of the laser ionizes the shutter material it will expand into a relativistically underdense plasma allowing for the peak pulse to propagate through while rejecting the low intensity pedestal. An increase in the laser temporal contrast is demonstrated by measuring characteristic signatures in the accelerated proton spectra and directionality from the interaction of 30 TW pulses with ultrathin foils along with supporting hydrodynamic and particle-in-cell simulations. PMID:19654882

  12. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    SciTech Connect

    Rehman, M. A.; Qureshi, M. N. S.; Shah, H. A.; Masood, W.

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  13. Relativistic and non-relativistic analysis of whistler-mode waves in a hot anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Sazhin, S. S.; Sumner, A. E.; Temme, N. M.

    1992-02-01

    The dispersion equation for parallel whistler-mode propagation in a hot anisotropic plasma is analysed numerically in both weakly relativistic and nonrelativistic approximations under the assumption that wave growth or damping does not influence the wave refractive index. The results of this analysis are compared with the results of an asymptotic analysis of the same equation, and the range of applicability of the latter results is specified. It is pointed out that relativistic effects lead to a decrease in the range of frequencies for which instability occurs. For a moderately anisotropic plasma (T/T = 2) relativistic effects lead to an increase in the maximum value of the increment of instability.

  14. Non-relativistic fields from arbitrary contracting backgrounds

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2016-09-01

    We discuss a non-relativistic contraction of massive and massless field theories minimally coupled to gravity. Using the non-relativistic limiting procedure introduced in our previous work, we (re-)derive non-relativistic field theories of massive and massless spins 0 to 3/2 coupled to torsionless Newton–Cartan backgrounds. We elucidate the relativistic origin of the Newton–Cartan central charge gauge field {m}μ and explain its relation to particle number conservation.

  15. On the Stability Problem in Special Relativistic Thermodynamics: Implications of the Chapman-Enskog Formalism

    NASA Astrophysics Data System (ADS)

    Garcia-Perciante, A. L.; Mondragon-Suarez, H.; Brun-Battistini, D.; Sandoval-Villalbazo, A.

    2015-08-01

    Extended theories are widely used in the literature to describe relativistic fluids. The motivation for this is mostly due to the causality issues allegedly present in the first order in the gradients theories. However, the decay of fluctuations in the system is also at stake when first order theories that couple heat with acceleration are used. This paper shows that although the introduction of the Maxwell-Cattaneo equation in the description of a simple relativistic fluid formally eliminates the generic instabilities identified by Hiscock and Lindblom (Phys Rev D 31:725-733, 1985), the hypothesis on the order of magnitude of the corresponding relaxation term contradicts the basic ordering in Knudsen's parameter present in the kinetic approach to hydrodynamics. It is shown that the time derivative, stabilizing term is of second order in such parameter and thus does not belong to the Navier-Stokes regime where the so-called instability arises.

  16. Initial fields and instabilities in the classical model of relativistic heavy-ion collisions

    SciTech Connect

    Fukushima, Kenji

    2007-08-15

    Color Glass Condensate (CGC) provides a classical description of dense gluon matter at high energies. Using the McLerran-Venugopalan (MV) model we calculate the initial energy density {epsilon}({tau}) in the early stage of the relativistic nucleus-nucleus collision. Our analytical formula reproduces the quantitative results from lattice discretized simulations and leads to an estimate {epsilon}({tau}=0.1 fm)=40{approx}50 GeV{center_dot}fm{sup -3} in the (central) Au-Au collision at BNL Relativistic Heavy Ion Collider. We then formulate instabilities with respect to soft fluctuations that violate boost invariance inherent in hard CGC backgrounds. We find unstable modes arising, which are attributed to ensemble average over the initial CGC fields.

  17. Initial fields and instabilities in the classical model of relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji

    2007-08-01

    Color Glass Condensate (CGC) provides a classical description of dense gluon matter at high energies. Using the McLerran-Venugopalan (MV) model we calculate the initial energy density ɛ(τ) in the early stage of the relativistic nucleus-nucleus collision. Our analytical formula reproduces the quantitative results from lattice discretized simulations and leads to an estimate ɛ(τ=0.1fm)=40~50GeV·fm-3 in the (central) Au-Au collision at BNL Relativistic Heavy Ion Collider. We then formulate instabilities with respect to soft fluctuations that violate boost invariance inherent in hard CGC backgrounds. We find unstable modes arising, which are attributed to ensemble average over the initial CGC fields.

  18. Odd-Even Mass Staggering Described by Relativistic Hartree-Fock Theory

    NASA Astrophysics Data System (ADS)

    Wang, Long Jun; Long, Wen Hui

    2013-11-01

    The neutron and proton odd-even mass staggering (OES) are systematically studied within the density-dependent relativistic Hartree-Fock-Bogoliubov (DDRHFB) theory and the density-dependent relativistic Hartree-Bogoliubov (DDRHB) theory. In terms of the finite-range Gogny D1S as the pairing force, both DDRHFB and DDRHB theories can well reproduce the experimental OES, including C, O, Ca, Ni, Zr, Sn, Ce, Gd and Pb isotopes, and N = 50 and 82 isotones. In addition, the optimizations on the pairing force with the prefix factors bring systematical improvements on the OES for the light and heavy nuclei. It is also found that the pairing effects are essentially related with the appropriate description of the nuclear structures, in which the ρ-tensor correlations play an important role.

  19. A two-fluid model for relativistic heat conduction

    SciTech Connect

    López-Monsalvo, César S.

    2014-01-14

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  20. The relativistic Doppler broadening of the line absorption profile

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R.; Nikogosian, A.

    1982-06-01

    The classical results of Doppler broadening of the line absorption profile are generalized to a relativistic gas in thermal equilibrium by taking into account the relativistic variance of the volume absorption coefficients of the gas, as derived by L. H. Thomas. This variance produces a small correction, even in the non-relativistic approximation.

  1. Direct Atomic-Orbital-Based Relativistic Two-Component Linear Response Method for Calculating Excited-State Fine Structures.

    PubMed

    Egidi, Franco; Goings, Joshua J; Frisch, Michael J; Li, Xiaosong

    2016-08-01

    In this work, we present a linear-response formalism of the complex two-component Hartree-Fock Hamiltonian that includes relativistic effects within the Douglas-Kroll-Hess and the Exact-Two-Component frameworks. The method includes both scalar and spin relativistic effects in the variational description of electronic ground and excited states, although it neglects the picture-change and explicit spin-orbit contributions arising from the two-electron interaction. An efficient direct formalism of solving the complex two-component response function is also presented in this work. The presence of spin-orbit couplings in the Hamiltonian and the two-component nature of the wave function and Fock operator allows the computation of excited-state zero-field splittings of systems for which relativistic effects are dominated by the one-electron term. Calculated results are compared to experimental reference values to assess the quality of the underlying approximations. The results show that the relativistic two-component linear response methods are able to capture the excited-state zero-field splittings with good agreement with experiments for the systems considered here, with all approximations exhibiting a similar performance. However, the error increases for heavy elements and for states of high orbital angular momentum, suggesting the importance of the two-electron relativistic effect in such situations. PMID:27387787

  2. Physics 3204. Course Description.

    ERIC Educational Resources Information Center

    Newfoundland and Labrador Dept. of Education.

    A description of the physics 3204 course in Newfoundland and Labrador is provided. The description includes: (1) statement of purpose, including general objectives of science education; (2) a list of six course objectives; (3) course content for units on sound, light, optical instruments, electrostatics, current electricity, Michael Faraday and…

  3. Descriptive Metadata: Emerging Standards.

    ERIC Educational Resources Information Center

    Ahronheim, Judith R.

    1998-01-01

    Discusses metadata, digital resources, cross-disciplinary activity, and standards. Highlights include Standard Generalized Markup Language (SGML); Extensible Markup Language (XML); Dublin Core; Resource Description Framework (RDF); Text Encoding Initiative (TEI); Encoded Archival Description (EAD); art and cultural-heritage metadata initiatives;…

  4. Rare Relativistic Configuration Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Dinov, Konstantin Dimitrov

    1995-01-01

    Valence shell Relativistic Configuration Interaction (RCI) Calculations for several Rare Earth elements resulted the following electron affinities: (1) Ce^ - 6p attachment to the 4f 5d 6s^2 ^1G_sp{4 }{circ} ground state: (2J,EA) = (9,259 meV), (7,147 meV), [7_ {rm first exc.},55 rm meV], (5,105 meV), (3,43 meV). The electron affinity of the 5d attachment in 4f 5d^2 6s^2 ^5H _{7/2} is 178 meV. (2) Pr ^- 6p attachment to the 4f^3 6s^2 ^4I_sp {9/2}{circ} ground state gives 128 meV for the 4f^3 6s^2 6p J = 5 state (^5K 60%), and 110 meV for the J = 4 state (^5I 42%). No evidence for 5d attachment was found. (3) U^- 7p attachment to the 5f ^3 6d 7s^2 ^5L _sp{6}{circ} ground state gives: 175 meV for the 2J = 13 state (^6M 54%). No other 7p or 6d bound states were found. The hyperfine structure constants for the 5f^3 6d 7s^2 7p, 2J = 13 state are A = -72.4 MHz, B = 2644 MHz. No evidence is found to support f attachment in these species. We investigated two low lying 4f ^2 thresholds in Ce, to which one could attach s or p electron, but neither attachment gives enough energy to bind the negative ion. The missing core-valence effects may reduce the EAs by 0.06 eV, based on the difference between the theoretical predictions and experimental measurements for the electron affinity of Strontium. These results correspond to the observed negative ion yields: high for Ce^ -, moderate for Pr^-, and small for U^-.. The REDUCE method was extensively used for the U^- case. The current version of the RCI program allows up to 7 000 vectors (10M elements) in RAM. The enhancement of the computer programs is by a speed factor of 6, and 7 times bigger matrices. A parallel version of the RCI programs was developed. All of these systems are unbound at the MCDF level (single manifold). By far the biggest contributor to the binding is nsto (n-1)d correlation, while the biggest unbinding comes from ns^2 to np^2 correlation. Other important correlations are: ns^2to (n-1)d^2, (n-1)d nsto np^2 & np

  5. Relativistic Quantum Mechanics and Field Theory

    NASA Astrophysics Data System (ADS)

    Gross, Franz

    1999-04-01

    An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.

  6. Kinetic foundations of relativistic dissipative fluid dynamics

    NASA Astrophysics Data System (ADS)

    Denicol, G. S.

    2014-12-01

    In this contribution we discuss in detail the most widespread formalisms employed to derive relativistic dissipative fluid dynamics from the Boltzmann equation: Chapman-Enskog expansion and Israel-Stewart theory. We further point out the drawbacks of each theory and explain possible ways to circumvent them. Recent developments in the derivation of fluid dynamics from the Boltzmann equation are also discussed.

  7. Flux-limited diffusion with relativistic corrections

    SciTech Connect

    Pomraning, G.C.

    1983-03-15

    A recently reported flux-limited diffusion theory is extended to include relativistic terms, correct to first order in the fluid velocity. We show that this diffusion theory is fully flux limited, and yields the correct result for the radiative flux in the classical diffusion limit, namely a Fick's law component plus a v/c convective term.

  8. Relativistic equations with fractional and pseudodifferential operators

    SciTech Connect

    Babusci, D.; Dattoli, G.; Quattromini, M.

    2011-06-15

    In this paper we use different techniques from the fractional and pseudo-operators calculus to solve partial differential equations involving operators with noninteger exponents. We apply the method to equations resembling generalizations of the heat equations and discuss the possibility of extending the procedure to the relativistic Schroedinger and Dirac equations.

  9. Instabilities in a Relativistic Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  10. Asymptotic theory of relativistic, magnetized jets

    SciTech Connect

    Lyubarsky, Yuri

    2011-01-15

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  11. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen

    2016-06-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  12. On Radiative Acceleration of Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Takahara, F.

    1997-10-01

    The formation and acceleration of relativistic jets by radiative forces in black hole systems are investigated. Under a variety of circumstances, we calculate the bulk acceleration and radiative cooling of a confined plasma cell, immersed in different types of radiation fields and interacting by Compton scattering. Both non-relativistic (cold) and relativistic (hot) jet plasma, comprising mixtures of electron-proton and electron-positron components, are treated. We pay attention to some conceivable effects, previously neglected, which may possibly enhance the bulk acceleration; among them are an anisotropically radiating accretion disk surface, beamed secondary radiation from the inner jet, and scattering in the energy dependent Klein-Nishina regime. Our results are discussed in the context of relativistic jets in active galactic nuclei and Galactic black hole candidates, and the conditions necessary for successfully reproducing their observed properties are highlighted. In particular, the velocities of the recently discovered superluminal jets in Galactic black hole candidates (Lorentz factors of Γ ~ 2.5) are readily and very robustly accounted for if the jet is composed primarily of electron-positron pairs and the disk luminosity is near the Eddington value; the jet kinetic power can be consistent with optical depth and pair annihilation constraints. On the other hand, severe difficulty is met in attaining the velocities of AGN jets (Γ ~ 10), which can only be realized when a significant amount of beamed secondary radiation is present. We also contemplate additional important issues, such as global energetics.

  13. Relativistic quantum corrections to laser wakefield acceleration.

    PubMed

    Zhu, Jun; Ji, Peiyong

    2010-03-01

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons. PMID:20365881

  14. Relativistic quantum corrections to laser wakefield acceleration

    SciTech Connect

    Zhu Jun; Ji Peiyong

    2010-03-15

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons.

  15. Relativistic shock propagation in nonuniform media

    NASA Astrophysics Data System (ADS)

    Gnatyk, B. I.

    1985-10-01

    Strong shocks will propagate in much the same way whether they are non- or ultrarelativistic. An approximate law is proposed to describe the motion of a strong, adiabatic, arbitrarily relativistic shock through an initially nonrelativistic medium having any desired density distribution.

  16. Computational relativistic quantum dynamics and its application to relativistic tunneling and Kapitza-Dirac scattering

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.; Ahrens, Sven; Müller, Carsten; Keitel, Christoph H.

    2013-05-01

    Computational methods are indispensable to study the quantum dynamics of relativistic light-matter interactions in parameter regimes where analytical methods become inapplicable. We present numerical methods for solving the time-dependent Dirac equation and the time-dependent Klein-Gordon equation and their implementation on high performance graphics cards. These methods allow us to study tunneling from hydrogen-like highly charged ions in strong laser fields and Kapitza-Dirac scattering in the relativistic regime.

  17. A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Karpenko, Iu.; Huovinen, P.; Bleicher, M.

    2014-11-01

    We describe the details of 3+1 dimensional relativistic hydrodynamic code for the simulations of quark-gluon/hadron matter expansion in ultra-relativistic heavy ion collisions. The code solves the equations of relativistic viscous hydrodynamics in the Israel-Stewart framework. With the help of ideal-viscous splitting, we keep the ability to solve the equations of ideal hydrodynamics in the limit of zero viscosities using a Godunov-type algorithm. Milne coordinates are used to treat the predominant expansion in longitudinal (beam) direction effectively. The results are successfully tested against known analytical relativistic inviscid and viscous solutions, as well as against existing 2+1D relativistic viscous code. Catalogue identifier: AETZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 13 825 No. of bytes in distributed program, including test data, etc.: 92 750 Distribution format: tar.gz Programming language: C++. Computer: any with a C++ compiler and the CERN ROOT libraries. Operating system: tested on GNU/Linux Ubuntu 12.04 x64 (gcc 4.6.3), GNU/Linux Ubuntu 13.10 (gcc 4.8.2), Red Hat Linux 6 (gcc 4.4.7). RAM: scales with the number of cells in hydrodynamic grid; 1900 Mbytes for 3D 160×160×100 grid. Classification: 1.5, 4.3, 12. External routines: CERN ROOT (http://root.cern.ch), Gnuplot (http://www.gnuplot.info/) for plotting the results. Nature of problem: relativistic hydrodynamical description of the 3-dimensional quark-gluon/hadron matter expansion in ultra-relativistic heavy ion collisions. Solution method: finite volume Godunov-type method. Running time: scales with the number of hydrodynamic cells; typical running times on Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, single thread mode, 160

  18. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  19. 3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Nishikawa, Ken-Ichi

    2006-01-01

    Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are less than or equal to c/the square root of 3 in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The Alfven wave speed is less than or equal to 0.07 c in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.

  20. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bodek, K.; Caban, P.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.; Rembieliński, J.; Rozpedzik, D.; Włodarczyk, M.; Zejma, J.

    2013-11-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  1. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    SciTech Connect

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Enders, J.; Köhler, A.; Kozela, A.

    2013-11-07

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  2. Isospin flip as a relativistic effect: NN interactions

    NASA Technical Reports Server (NTRS)

    Buck, W. W.

    1993-01-01

    Results are presented of an analytic relativistic calculation of a OBE nucleon-nucleon (NN) interaction employing the Gross equation. The calculation consists of a non-relativistic reduction that keeps the negative energy states. The result is compared to purely non-relativistic OBEP results and the relativistic effects are separated out. One finds that the resulting relativistic effects are expressable as a power series in (tau(sub 1))(tau(sub 2)) that agrees, qualitatively, with NN scattering. Upon G-parity transforming this NN potential, one obtains, qualitatively, a short range NN spectroscopy in which the S-states are the lowest states.

  3. Accuracy of the non-relativistic approximation for momentum diffusion

    NASA Astrophysics Data System (ADS)

    Liang, Shiuan-Ni; Lan, Boon Leong

    2016-06-01

    The accuracy of the non-relativistic approximation, which is calculated using the same parameter and the same initial ensemble of trajectories, to relativistic momentum diffusion at low speed is studied numerically for a prototypical nonlinear Hamiltonian system -the periodically delta-kicked particle. We find that if the initial ensemble is a non-localized semi-uniform ensemble, the non-relativistic approximation to the relativistic mean square momentum displacement is always accurate. However, if the initial ensemble is a localized Gaussian, the non-relativistic approximation may not always be accurate and the approximation can break down rapidly.

  4. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  5. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  6. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    SciTech Connect

    Gao Yang; Law, Chung K.

    2012-12-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index {Gamma} < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  7. Hardware description languages

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  8. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei

    NASA Astrophysics Data System (ADS)

    Aucar, Ignacio A.; Gómez, Sergio S.; de Azúa, Martín C. Ruiz; Giribet, Claudia G.

    2012-05-01

    A theoretical study of the relation between the relativistic formulation of the nuclear magnetic shielding and spin-rotation tensors is presented. To this end a theoretical expression of the relativistic spin-rotation tensor is formulated, considering a molecular Hamiltonian of relativistic electrons and non-relativistic nuclei. Molecular rotation effects are introduced considering the terms of the Born-Oppenheimer decomposition, which couple the electrons and nuclei dynamics. The loss of the simple relation linking both spectral parameters in the non-relativistic formulation is further analyzed carrying out a perturbative expansion of relativistic effects by means of the linear response within the elimination of the small component approach. It is concluded that relativistic effects on the spin-rotation tensor are less important than those of the nuclear magnetic shielding tensor.

  9. Kinetic analysis of thermally relativistic flow with dissipation. II. Relativistic Boltzmann equation versus its kinetic models

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro

    2011-06-01

    Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.

  10. Self-consistent relativistic random-phase approximation with vacuum polarization

    SciTech Connect

    Haga, A.; Toki, H.; Tamenaga, S.; Horikawa, Y.; Yadav, H.L.

    2005-09-01

    We present a theoretical formulation for the description of nuclear excitations within the framework of a relativistic random-phase approximation whereby the vacuum polarization arising from nucleon-antinucleon fields is duly accounted for. The vacuum contribution to the Lagrangian is explicitly described as extra new terms of interacting mesons by means of the derivative expansion of the effective action. It is shown that the self-consistent calculation yields zero eigenvalue for the spurious isoscalar-dipole state and also conserves the vector-current density.

  11. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  12. Relativistically parametrized extended Hueckel calculations. 11. Energy bands for elemental tellurium and polonium

    SciTech Connect

    Lohr, L.L.

    1987-06-17

    An extension of the REX relativistically parametrized extended Hueckel LCAO molecular orbital method to periodic solids is outlined. The method provides a simple and systematic approach to the description of the spin-orbit splitting of energy bands. The method is illustrated with results for the main-group elements tellurium and polonium, with trigonal-helical and simple-cubic structures, respectively. The helical structure of tellurium is described as a distortion of a simple-cubic structure, with the distortion being quenched in the case of polonium by its very large spin-orbit coupling. 36 references, 10 figures, 1 table.

  13. Relativistic virial relation for cosmological structures

    NASA Astrophysics Data System (ADS)

    Javadinezhad, Reza; Firouzjaee, Javad T.; Mansouri, Reza

    2016-01-01

    Starting with the relativistic Boltzmann equation for a system of particles defined by a distribution function, we have derived the virial relation for a spherical structure within an expanding background in the context of general relativity. This generalized form of the virial relation is then applied to the static case of a spherically symmetric structure to see the difference in the simplest case to the Newtonian relation. A relativistic mass-temperature relation for this simple case is also derived which can be applied to compact objects in astrophysics. Our general virial relation is then applied to the nonstatic case of a structure within an expanding universe where an extra term, usually missed in studies of structures in the presence of the dark energy, appears.

  14. Relativistic-microwave theory of ball lightning

    PubMed Central

    Wu, H.-C.

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835

  15. Adaptive Mesh Refinement Simulations of Relativistic Binaries

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Anderson, M.; Lehner, L.; Olabarrieta, I.; Tohline, J. E.; Liebling, S. L.; Rahman, T.; Hirschman, E.; Neilsen, D.

    2006-09-01

    We present recent results from our efforts to evolve relativistic binaries composed of compact objects. We simultaneously solve the general relativistic hydrodynamics equations to evolve the material components of the binary and Einstein's equations to evolve the space-time. These two codes are coupled through an adaptive mesh refinement driver (had). One of the ultimate goals of this project is to address the merger of a neutron star and black hole and assess the possible observational signature of such systems as gamma ray bursts. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.

  16. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.

    2007-12-01

    The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field is kept consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the Harten-Lax-van Leer (HLL) prescription and the source terms are accounted via the time-splitting technique. The results of test simulations show that the scheme can handle equally well both resistive current sheets and shock waves, and thus can be a useful tool for studying phenomena of relativistic astrophysics that involve both colliding supersonic flows and magnetic reconnection.

  17. Relativistic theory of tidal Love numbers

    SciTech Connect

    Binnington, Taylor; Poisson, Eric

    2009-10-15

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  18. Formation and damping of relativistic strong shocks

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Miller, J. C.; Motta, S.

    1983-06-01

    Results are presented from a detailed study of the formation of strong relativistic shocks from simple waves and their subsequent damping. Basic results in relativistic hydrodynamics are first reviewed, and the transport equation for the shock amplitude is derived which permits the exact calculation of the characteristic damping time for an arbitrary initial shock profile. A basic formalism for the numerical treatment of the problem is set up using a Lagrangian formulation with the rest mass as a distance coordinate. Some results derived directly from the Rankine-Hugoniot relations are presented, and numerical results are given for the case of a purely compressive initial sine pulse propagating into a static uniform medium. The calculations confirm the qualitative nature of the effect fund by Liang and Baker (1977).

  19. Hydrodynamics of ultra-relativistic bubble walls

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-04-01

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  20. Oscillations of rapidly rotating relativistic stars

    SciTech Connect

    Gaertig, Erich; Kokkotas, Kostas D.

    2008-09-15

    Nonaxisymmetric oscillations of rapidly rotating relativistic stars are studied using the Cowling approximation. The oscillation spectra have been estimated by Fourier transforming the evolution equations describing the perturbations. This is the first study of its kind and provides information on the effect of fast rotation on the oscillation spectra while it offers the possibility of studying the complete problem by including space-time perturbations. Our study includes both axisymmetric and nonaxisymmetric perturbations and provides limits for the onset of the secular bar mode rotational instability. We also present approximate formulas for the dependence of the oscillation spectrum from rotation. The results suggest that it is possible to extract the relativistic star's parameters from the observed gravitational wave spectrum.

  1. Relativistic electrons and whistlers in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The path-integrated gain of parallel propagating whistlers driven unstable by an anisotropic distribution of relativistic electrons in the stable trapping region of Jupiter's inner magnetosphere was computed. The requirement that a gain of 3 e-foldings of power balance the power lost by imperfect reflection along the flux tube sets a stably-trapped flux of electrons which is close to the non-relativistic result. Comparison with measurements shows that observed fluxes are near the stably-trapped limit, which suggests that whistler wave intensities may be high enough to cause significant diffusion of electrons accounting for the observed reduction of phase space densities. A crude estimate of the wave intensity necessary to diffuse electrons on a radial diffusion time scale yields a lower limit for the magnetic field fluctuation intensity.

  2. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  3. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  4. Relativistic-microwave theory of ball lightning

    NASA Astrophysics Data System (ADS)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  5. Relativistic-microwave theory of ball lightning.

    PubMed

    Wu, H-C

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835

  6. Helical relativistic electron beam Vlasov equilibria

    NASA Astrophysics Data System (ADS)

    Lai, H. M.

    1980-08-01

    Three existing helical relativistic electron beam models are discussed and compared. Both Yoshikawa's and Lawson's models are shown to be derivable from appropriate Vlasov equilibria. A new helical Vlasov equilibrium with energy spread is presented and studied. Unlike Auer's axial current model in which the allowance of an energy spread limits the total current in the relativistic beam case, the present model, with the addition of an azimuthal current, permits solutions with arbitrarily large current. On the other hand, like the model studied by Kan and Lai, the present model leads to nonhollowed-out beam solutions in which, the larger the beam current, the more force-free is the magnetic field configuration.

  7. General Relativistic and Newtonian White Dwarfs

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Rueda, J. A.; Ruffini, R.; Siutsou, I.

    2015-01-01

    The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of Newton's gravity and general relativity. In both cases Hartle's formalism is applied to construct the internal and external solutions to the field equations. The white dwarf (WD) matter is described by the Chandrasekhar equation of state. The region of stability of RWDs is constructed taking into account the mass-shedding limit, inverse β-decay instability, and the boundary established by the turning points of constant angular momentum J sequences which separates stable from secularly unstable configurations. We found the minimum rotation period ˜ 0.28 s in both cases and maximum rotating masses ˜ 1.534M⊙ and ˜ 1.516M⊙ for the Newtonian and general relativistic WDs, respectively. By using the turning point method we show that general relativistic WDs can indeed be axisymmetrically unstable whereas the Newtonian WDs are stable.

  8. Relativistic Bohmian Mechanics Without a Preferred Foliation

    NASA Astrophysics Data System (ADS)

    Galvan, Bruno

    2015-12-01

    In non-relativistic Bohmian mechanics the universe is represented by a probability space whose sample space is composed of the Bohmian trajectories. In relativistic Bohmian mechanics an entire class of empirically equivalent probability spaces can be defined, one for every foliation of spacetime. In the literature the hypothesis has been advanced that a single preferred foliation is allowed, and that this foliation derives from the universal wave function by means of a covariant law. In the present paper the opposite hypothesis is advanced, i.e., no law exists for the foliations and therefore all the foliations are allowed. The resulting model of the universe is basically the "union" of all the probability spaces associated with the foliations. This hypothesis is mainly motivated by the fact that any law defining a preferred foliation is empirically irrelevant. It is also argued that the absence of a preferred foliation may reduce the well known conflict between Bohmian mechanics and relativity.

  9. Double relativistic electron-accelerating mirror

    SciTech Connect

    Andreev, Aleksandr A; Platonov, Konstantin Yu

    2013-05-31

    A numerical simulation of the interaction of a laser pulse with ultrathin targets has revealed a possibility of generating thin dense relativistic electron layers. The maximum kinetic energy of the electron mirror can be gained using an optimal combination of the target thickness and the laser pulse intensity and duration. It is proposed to use an additional (second) laser target, located at an optimal distance from the first target to cut off the laser pulse from the electron layer when the latter gains a maximum kinetic energy. This relativistic electron mirror can be used for efficient generation of 'hard' coherent radiation via counter reflection of an additional (probe) laser pulse from the mirror. (interaction of laser radiation with matter. laser plasma)

  10. Synchrotron emissivity from mildly relativistic particles

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1981-01-01

    Approximate analytic expressions are presented for evaluation of the frequency and angular dependence of synchrotron emissivity from mildly relativistic particles with arbitrary energy spectrum and pitch angle distribution in a given magnetic field. Results agree with previous expressions for a nonrelativistic Maxwellian particle distribution, and when extrapolated to nonrelativistic and extreme relativistic regimes, they also agree with the previous expressions obtained under those limiting conditions. The results from the analytic expression are compared with results from detailed numerical evaluations. Excellent agreement is found not only at frequencies large compared to the gyro-frequency but also at lower frequencies, in fact, all the way down to the gyro-frequency, where the analytic approximations are expected to be less accurate.

  11. Graphical evaluation of relativistic matrix elements

    NASA Technical Reports Server (NTRS)

    Huang, K. N.

    1978-01-01

    A graphical representation of angular momentum was used to evaluate relativistic matrix elements between antisymmetrized states of many particle configurations having any number of open shells. The antisymmetrized matrix element was expanded as a sum of semisymmetrized matrix elements. The diagram representing a semisymmetrized matrix element was composed of four diagram blocks; the bra block, the ket block, the spectator block, and the interaction block. The first three blocks indicate the couplings of the two interacting configurations while the last depends on the interaction and is the replaceable component. Interaction blocks for relativistic operators and commonly used potentials were summarized in ready to use forms. A simple step by step procedure was prescribed generally for calculating antisymmetrized matrix elements of one and two particle operators.

  12. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    NASA Astrophysics Data System (ADS)

    Robin, Caroline; Litvinova, Elena

    2016-07-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and ρ -meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to the previously developed relativistic quasiparticle time-blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and is applied to the Gamow-Teller resonance in a chain of neutron-rich nickel isotopes 68-78Ni . A strong fragmentation of the resonance along with quenching of the strength, as compared to pn-RQRPA, is obtained. Based on the calculated strength distribution, beta-decay half-lives of the considered isotopes are computed and compared to pn-RQRPA half-lives and to experimental data. It is shown that a considerable improvement of the half-life description is obtained in pn-RQTBA because of the spreading effects, which bring the lifetimes to a very good quantitative agreement with data.

  13. Relativistic effects in galaxy clustering in a parametrized post-Friedmann universe

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Yoo, Jaiyul; Koyama, Kazuya

    2013-05-01

    We explore the signatures of quintessence and modified gravity theories in the relativistic description of galaxy clustering within a parametrized post-Friedmann framework. For this purpose, we develop a calibration method to consistently account for horizon-scale effects in the linear parametrized post-Friedmann perturbations of minimally and nonminimally coupled scalar-tensor theories and test it against the full model-specific fluctuations. We further study the relativistic effects in galaxy clustering for the normal and self-accelerating branches of the Dvali-Gabadadze-Porrati braneworld model as well as for phenomenological modifications of gravity. We quantify the impact of modified gravity and dark energy models on galaxy clustering by computing the velocity-to-matter density ratio F, the velocity contribution R, and the potential contribution P and give an estimate of their detectability in future galaxy surveys. Our results show that, in general, the relativistic correction contains additional information on gravity and dark energy, which needs to be taken into account in consistent horizon-scale tests of departures from ΛCDM using the galaxy-density field.

  14. Link between the relativistic canonical quantum mechanics of arbitrary spin and the corresponding field theory

    NASA Astrophysics Data System (ADS)

    Simulik, Volodimir

    2016-01-01

    The new relativistic equations of motion for the particles with arbitrary spin and nonzero mass have been introduced. The axiomatic level description of the relativistic canonical quantum mechanics of the arbitrary mass and spin has been given. The 64-dimensional ClR(0,6) algebra in terms of Dirac gamma matrices has been suggested. The link between the relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field theory has been found. Different methods of the Dirac equation derivation have been reviewed. The manifestly covariant field equations for an arbitrary spin that follow from the quantum mechanical equations have been considered. The covariant local field theory equations for spin s = (1,1) particle-antiparticle doublet, spin s = (1,0,1,0) particle antiparticle multiplet, spin s = (3/2,3/2) particle-antiparticle doublet, spin s = (2,2) particle-antiparticle doublet, spin s = (2,0,2,0) particle-antiparticle multiplet and spin s = (2,1,2,1) particle-antiparticle multiplet have been introduced. The Maxwell-like equations for the boson with spin s = 1 and nonzero mass have been introduced as well.

  15. Relativistic effects on the bonding and properties of the hydrides of platinum

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    The ground state of PtH2 and several low-lying states of PtH(+) and PtH have been studied at the all-electron self-consistent-field level of theory to examine the importance of relativistic effects. The results of calculations based on Dirac-Hartree-Fock theory, nonrelativistic theory, and the spin-free no-pair relativistic approximation of Hess are compared to separate the effects of the spin-free terms and the spin-orbit terms of the Hamiltonian on the relativistic corrections to the molecular properties. Comparison is also made between first-order perturbation theory including the one-electron spin-free terms and the method of Hess to determine the size of effects beyond first order. It is found that the spin-orbit interaction significantly affects the properties and energetics of these molecules because of the participation of the Pt 5d orbitals in the bonding, and that effects beyond first order in perturbation theory are large. Any treatment of Pt compounds will have to include both the spin-free and spin-orbit interactions for an accurate description.

  16. Analytic theory for betatron radiation from relativistic electrons in ion plasma channels with magnetic field

    SciTech Connect

    Lee, H. C.; Jiang, T. F.

    2010-11-15

    We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.

  17. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    PubMed

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc. PMID:27510431

  18. Distinct optical properties of relativistically degenerate matter

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-06-01

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  19. Spectral Methods in General Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Garrison, David

    2012-03-01

    In this talk I discuss the use of spectral methods in improving the accuracy of a General Relativistic Magnetohydrodynamic (GRMHD) computer code. I introduce SpecCosmo, a GRMHD code developed as a Cactus arrangement at UHCL, and show simulation results using both Fourier spectral methods and finite differencing. This work demonstrates the use of spectral methods with the FFTW 3.3 Fast Fourier Transform package integrated with the Cactus Framework to perform spectral differencing using MPI.

  20. Relativistic point interactions: Approximation by smooth potentials

    NASA Astrophysics Data System (ADS)

    Hughes, Rhonda J.

    1997-06-01

    We show that the four-parameter family of one-dimensional relativistic point interactions studied by Benvegnu and Dąbrowski may be approximated in the strong resolvent sense by smooth, local, short-range perturbations of the Dirac Hamiltonian. In addition, we prove that the nonrelativistic limits correspond to the Schrödinger point interactions studied extensively by the author and Paul Chernoff.

  1. Relativistic diffusive motion in thermal electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2013-04-01

    We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.

  2. Light exotic systems at relativistic velocities

    NASA Astrophysics Data System (ADS)

    Simon, H.

    2010-03-01

    In this paper the results of a series of experiments, carried out at the GSI accelerator facilities in Darmstadt at the Aladin-LAND reaction setup are presented. Light nuclei at relativistic velocities, impinging on a carbon and a liquid hydrogen reaction target break up and all fragments are detected in coincidence. The observed correlations are used to draw conclusions on the underlying structure of the bound exotic projectiles as well as to explore continuum structures.

  3. Relativistic timescale analysis suggests lunar theory revision

    NASA Astrophysics Data System (ADS)

    Deines, Steven D.; Williams, Carol A.

    1995-05-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  4. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  5. On particle acceleration in astrophysical relativistic jets

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail

    2015-11-01

    Relativistic jets, e.g., in active galactic nuclei, are believed to be accelerators of high-energy cosmic rays. This is a lore but no justification of it exists. We investigate this problem from the first principles and present arguments that ``no-jets'' are better accelerators than the jets themselves. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  6. Relativistic timescale analysis suggests lunar theory revision

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.; Williams, Carol A.

    1995-01-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  7. Distinct optical properties of relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  8. Relativistic Electron Transport Through Carbon Foils

    NASA Astrophysics Data System (ADS)

    Seliger, M.; Takasi, K.; Reinhold, C. O.; Takabayashi, Y.; Ito, T.; Komaki, K.; Azuma, T.; Yamazaki, Y.; Yamazaki, Y.

    We present a theoretical study of convoy electron emission resulting from transmission of relativistic 390 MeV/amu Ar17+ ions through carbon foils of various thicknesses. Our approach is based on a Langevin equation describing the random walk of the electron initially bound to the argon nucleus and later in the continuum. The calculated spectra of ejected electrons in the forward direction exhibit clear signatures of multiple scattering and are found to be in good agreement with recent experimental data.

  9. Relativistic thermodynamics with an invariant energy scale

    SciTech Connect

    Das, Sudipta; Ghosh, Subir; Roychowdhury, Dibakar

    2009-12-15

    A particular framework for quantum gravity is the doubly special relativity (DSR) formalism that introduces a new observer independent scale, the Planck energy. Our aim in this paper is to study the effects of this energy upper bound in relativistic thermodynamics. We have explicitly computed the modified equation of state for an ideal fluid in the DSR framework. In deriving our result we exploited the scheme of treating DSR as a nonlinear representation of the Lorentz group in special relativity.

  10. Exact relativistic {beta} decay endpoint spectrum

    SciTech Connect

    Masood, S. S.; Nasri, S.; Schechter, J.; Tortola, M. A.; Valle, J. W. F.

    2007-10-15

    The exact relativistic form for the {beta} decay endpoint spectrum is derived and presented in a simple factorized form. We show that our exact formula can be well approximated to yield the endpoint form used in the fit method of the KATRIN Collaboration. We also discuss the three-neutrino case and how information from neutrino oscillation experiments may be useful in analyzing future {beta} decay endpoint experiments.

  11. Renormalization group for non-relativistic fermions.

    PubMed

    Shankar, R

    2011-07-13

    A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts. PMID:21646269

  12. Diffusion processes in general relativistic radiating spheres

    SciTech Connect

    Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )

    1989-09-01

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  13. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  14. General relativistic observables for the ACES experiment

    NASA Astrophysics Data System (ADS)

    Turyshev, Slava G.; Yu, Nan; Toth, Viktor T.

    2016-02-01

    We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light-time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient J2 and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudoinertial at the level of accuracy required by the experiment. We construct a Doppler-canceled science observable representing the gravitational redshift. We derive accuracy requirements for ISS navigation. The improved model is accurate up to <1 ps and ˜4 ×1 0-17 for time and frequency transfers, correspondingly. These limits are determined by the higher-order harmonics in Earth's gravitational potential.

  15. Scattering of twisted relativistic electrons by atoms

    NASA Astrophysics Data System (ADS)

    Serbo, V.; Ivanov, I. P.; Fritzsche, S.; Seipt, D.; Surzhykov, A.

    2015-07-01

    The Mott scattering of high-energetic twisted electrons by atoms is investigated within the framework of the first Born approximation and Dirac's relativistic equation. Special emphasis is placed on the angular distribution and longitudinal polarization of the scattered electrons. In order to evaluate these angular and polarization properties we consider two experimental setups in which the twisted electron beam collides with either a single well-localized atom or macroscopic atomic target. Detailed relativistic calculations have been performed for both setups and for the electrons with kinetic energy from 10 to 1000 keV. The results of these calculations indicate that the emission pattern and polarization of outgoing electrons differ significantly from the scattering of plane-wave electrons and can be very sensitive to the parameters of the incident twisted beam. In particular, it is shown that the angular- and polarization-sensitive Mott measurements may reveal valuable information about both the transverse and longitudinal components of the linear momentum and the projection of the total angular momentum of twisted electron states. Thus, the Mott scattering emerges as a diagnostic tool for the relativistic vortex beams.

  16. Relativistically strong electromagnetic radiation in a plasma

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  17. A Magnetohydrodynamic Boost for Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing

    2007-01-01

    We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).

  18. General relativistic effects in atom interferometry

    SciTech Connect

    Dimopoulos, Savas; Hogan, Jason M.; Kasevich, Mark A.; Graham, Peter W.

    2008-08-15

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the nonrelativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this, we develop a method for calculating the phase shift in general relativity. Both the atoms and the light are treated relativistically and all coordinate dependencies are removed, thus revealing novel terms, cancellations, and new origins for previously calculated terms. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the nonlinear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose specific experiments, one currently under construction, to measure each of these effects. These experiments could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the Universe, and preferred frame and location effects.

  19. Plasma heating with crossing relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Ratan, Naren; Sircombe, Nathan; Ceurvorst, Luke; Kasim, Muhammad; Sadler, James; Bingham, Robert; Trines, Raoul; Norreys, Peter

    2015-11-01

    Plasma heating by relativistic electron beams is a powerful tool with applications including the heating of inertial confinement fusion targets and the study of matter in extreme conditions. We discuss the use of two relativistic electron beams to efficiently heat the plasma ions where the beams cross by using beam-plasma instabilities and non-linear wave coupling between Langmuir and ion-acoustic waves. Energy from the electron beams is coupled to the plasma ions as the beams become unstable and drive Langmuir waves which couple non-linearly to ion-acoustic waves which are then damped . Results of linear growth rate calculations are presented for the system of two crossing electron beams demonstrating a broad spectrum of unstable modes. Relativistic Vlasov-Maxwell simulations in two space and two momentum dimensions have been performed which demonstrate the non-linear coupling of the electron beam energy into ion-acoustic waves and the energy cascade to the background ions. Time-frequency analysis is applied to analyze the non-linear coupling between Langmuir and ion-acoustic waves in wave phase space. Structural properties of the strong turbulence produced at late times are analyzed.

  20. Relativistic apsidal motion in eccentric eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Claret, A.; Kotková, L.; Kučáková, H.; Kocián, R.; Brát, L.; Svoboda, P.; Šmelcer, L.

    2010-01-01

    Context. The study of apsidal motion in detached eclipsing binary systems is known to be an important source of information about stellar internal structure as well as the possibility of verifying of General Relativity outside the Solar System. Aims: As part of the long-term Ondřejov and Ostrava observational projects, we aim to measure precise times of minima for eccentric eclipsing binaries, needed for the accurate determination of apsidal motion, providing a suitable test of the effects of General Relativity. Methods: About seventy new times of minimum light recorded with photoelectric or CCD photometers were obtained for ten eccentric-orbit eclipsing binaries with significant relativistic apsidal motion. Their O-C diagrams were analysed using all reliable timings found in the literature, and new or improved elements of apsidal motion were obtained. Results: We confirm very long periods of apsidal motion for all systems. For BF Dra and V1094 Tau, we present the first apsidal-motion solution. The relativistic effects are dominant, representing up to 100% of the total observable apsidal-motion rate in several systems. The theoretical and observed values of the internal structure constant k 2 were compared for systems with lower relativistic contribution. Using the light-time effect solution, we predict a faint third component for V1094 Tau orbiting with a short period of about 8 years. Partly based on photoelectric observations secured at the Hvar Observatory, Faculty of Geodesy, Zagreb, Croatia, in October 2008.

  1. Special relativistic visualization by local ray tracing.

    PubMed

    Müller, Thomas; Grottel, Sebastian; Weiskopf, Daniel

    2010-01-01

    Special relativistic visualization offers the possibility of experiencing the optical effects of traveling near the speed of light, including apparent geometric distortions as well as Doppler and searchlight effects. Early high-quality computer graphics images of relativistic scenes were created using offline, computationally expensive CPU-side 4D ray tracing. Alternate approaches such as image-based rendering and polygon-distortion methods are able to achieve interactivity, but exhibit inferior visual quality due to sampling artifacts. In this paper, we introduce a hybrid rendering technique based on polygon distortion and local ray tracing that facilitates interactive high-quality visualization of multiple objects moving at relativistic speeds in arbitrary directions. The method starts by calculating tight image-space footprints for the apparent triangles of the 3D scene objects. The final image is generated using a single image-space ray tracing step incorporating Doppler and searchlight effects. Our implementation uses GPU shader programming and hardware texture filtering to achieve high rendering speed. PMID:20975164

  2. Cosmological measurements with general relativistic galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  3. Localization and Entanglement in Relativistic Quantum Physics

    NASA Astrophysics Data System (ADS)

    Yngvason, Jakob

    These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).

  4. TOPICAL REVIEW: Relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2003-04-01

    By focusing petawatt peak power laser light to intensities up to 1021 W cm-2, highly relativistic plasmas can now be studied. The force exerted by light pulses with this extreme intensity has been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. This acceleration gradient is a thousand times greater than in radio-frequency-based accelerators. Such novel compact laser-based radiation sources have been demonstrated to have parameters that are useful for research in medicine, physics and engineering. They might also someday be used to ignite controlled thermonuclear fusion. Ultrashort pulse duration particles and x-rays that are produced can resolve chemical, biological or physical reactions on ultrafast (femtosecond) timescales and on atomic spatial scales. These energetic beams have produced an array of nuclear reactions, resulting in neutrons, positrons and radioactive isotopes. As laser intensities increase further and laser-accelerated protons become relativistic, exotic plasmas, such as dense electron-positron plasmas, which are of astrophysical interest, can be created in the laboratory. This paper reviews many of the recent advances in relativistic laser-plasma interactions.

  5. General Relativistic Effects in Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  6. Test of Relativistic Kinetic Energy Equation

    NASA Astrophysics Data System (ADS)

    Chaudhary, Bharat

    2014-03-01

    Kinetic energy of a body equals the work done on it by a force, constant or variable. Force is the time rate of change of momentum. Momentum is mass times velocity. According to special relativity mass and velocity both are variables. Therefore, the differentiation of their product (momentum) has two terms, both are variables. One term is the product of mass and acceleration. The other is of velocity and the rate of change of mass. They together equal the applied force. Since the force equals the sum of two variable terms, it also becomes a variable even if it was a constant earlier. Therefore it is a flaw. There are two more flaws in the force equation. They are found by putting the force equal to zero. When this is done, the acceleration doesn't become zero. This is physically incompatible and is therefore a flaw. The other flaw in the equation is found by integrating the right side terms and evaluating the constant of integration from the initial conditions. Then we get a term containing logarithm of zero that is undefined, therefore the expression so obtained is meaningless. Since it comes from the relativistic definition of force, therefore we conclude that this definition is wrong. Thus we find that there are three flaws in the relativistic definition of force. They all make the relativistic equation of force wrong.

  7. Ultra-Relativistic Heavy Ion Nuclear Physics

    SciTech Connect

    Braithwaite, W. J.

    1995-05-31

    This report describes an on-going research initiative for the University of Arkansas at Little Rock (UALR): investigating the physics of ultra-relativistic heavy ions, i.e. collisions between massive nuclei which have been accelerated to kinetic energies so large that the rest mass of the ions is a negligible fraction of their total mass-energy. This progress report is being submitted in conjunction with a 3-year grant-renewal proposal, containing additional materials. Three main categories drive the UALRGultra-relativistic heavy ion research. (1) investigations of multi-particle Hanbury-Brown-Twiss (HBT) correlations in the CERN and RHIC energy domains strongly influence the URHI experimental effort, (2) participation in the NA49 Experiment to study 33 TeV (160 GeV/nucleon) Pb on Pb collisions using the SPS facili& at CERN, and (3) participation in the STAR collaboration which is developing a major detector for use with the STAR Experiment at the Relativistic Heavy Ion Collider (RHIC), being built at BNL.

  8. Relativistic Shocks: Particle Acceleration and Magnetization

    NASA Astrophysics Data System (ADS)

    Sironi, L.; Keshet, U.; Lemoine, M.

    2015-10-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (i.e. where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence around the shock on a long time scale, and the accelerated particles have a characteristic energy spectral index of s_{γ}˜eq2.2 in the ultra-relativistic limit. We discuss how this novel understanding of particle acceleration and magnetic field generation in relativistic shocks can be applied to high-energy astrophysical phenomena, with an emphasis on PWNe and GRB afterglows.

  9. Secondary antiproton production in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Ramaty, R.

    1985-01-01

    The possibility is investigated that the reported excess low energy antiproton component of the cosmic radiation results from proton-proton (p-p) interactions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. The antiproton spectrum is calculated for relativistic thermal plasmas and the spectrum is estimated for relativistic nonthermal plasmas. As possible production sites, matter accreting onto compact objects located in the galaxy is considered. Possible overproduction of gamma rays from associated neutral pion production can be avoided if the site is optically thick to the photons but not to the antiprotons. A possible scenario involves a sufficiently large photon density that the neutral pion gamma rays are absorbed by photon-photon pair production. Escape of the antiprotons to the interstellar medium can be mediated by antineutron production.

  10. Magnetogenesis through a Relativistic Biermann Effect

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    2012-10-01

    In a 2010 Physical Review Letter, Mahajan and Yoshida proposed a relativistic correction to the well-known Biermann Battery. The Biermann Battery allows for the generation of magnetic fields in a plasma fluid from orthogonal gradients in temperature and entropy (Bt ∇T x∇σ). The proposed correction would result in an additional term, proportional to the gradient of velocity squared crossed with the gradient of entropy (Bt ∇v^2 x∇σ). This new effect can in some cases provide the dominate source of magnetic field growth, even when the fluid is only mildly relativistic. This could in turn help explain the dynamics of certain relativistic plasmas, including modern laser plasmas and astrophysical jets. It is possible it could even provide a primordial source for the seed fields needed to explain the cosmological magnetic fields that appear to permeate most galaxies. In my poster, I will explain the theory underlying this new correction and present simulations demonstrating magnetic field growth in a variety of test cases, performed using both a particle-in-cell code and a fluid model.

  11. Topics in Noncommutative Gauge Theories and Deformed Relativistic Theories

    NASA Astrophysics Data System (ADS)

    Chandra, Nitin

    2013-01-01

    This is my PhD thesis. In this thesis we study the gauge theories on noncommutative Moyal space. We find new static solitons and instantons in terms of the so called generalized Bose operators. Generalized Bose operators are constructed to describe reducible representation of the oscillator algebra. They create/annihilate k-quanta, k being a positive integer. We start with giving an alternative description to the already found static magnetic flux tube solutions of the noncommutative gauge theories in terms of generalized Bose operators. The Nielsen-Olesen vortex solutions found in terms of these operators reduce to the already found ones. On the contrary we find a class of new instaton solutions which are unitarily inequivalant to the the ones found from ADHM construction on noncommutative space. The charge of the instaton has a description in terms of the index representing the reducibility of the Fock space, i.e., k. After studying the static solitonic solutions in noncommutative Minkowski space and the instaton solutions in noncommutative Euclidean space we go on to study the implications of the time-space noncommutativity in Minkowski space. To understand it properly we study the time-dependent transitions of a forced harmonic oscillator in noncommutative 1+1 dimensional spacetime. We also try to understand the implications of the found results in the context of quantum optics. We then shift to the so called DSR theories which are related to a different kind of noncommutative (kappa-Minkowski) space. DSR (Doubly/Deformed Special Relativity) aims to search for an alternate relativistic theory which keeps a length/energy scale (the Planck scale) and a velocity scale (the speed of light scale) invariant. We study thermodynamics of an ideal gas in such a scenario.

  12. Coupling of (ultra-) relativistic atomic nuclei with photons

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Ganciu, M.

    2013-11-01

    The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare) nuclei (fully stripped of electrons) are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance) and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance), or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration) is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  13. A relativistic theory of few-nucleon systems

    SciTech Connect

    Alfred Stadler

    2010-12-01

    This talk provides an overview of recent results for two- and three-nucleon systems obtained within the framework of the covariant spectator theory (CST). The main features of two recently published models for the neutron–proton interaction, that fit the 2007 world data base containing several thousands of neutron-proton scattering data below 350 MeV with χ 2/N data ≈ 1, are presented. These one-boson-exchange models, called WJC-1 and WJC-2, have a considerably smaller number of adjustable parameters than are present in realistic nonrelativistic potentials. When applied to the three-nucleon bound state, the correct binding energy is obtained without additional three-body forces. First calculations of the electromagnetic form factors of helium-3 and the triton in complete impulse approximation also give very reasonable results. One can conclude that the CST yields a very efficient description of few-nucleon systems, in which the relativistic formulation of the dynamics is an essential element.

  14. Approaches to relativistic positioning around Earth and error estimations

    NASA Astrophysics Data System (ADS)

    Puchades, Neus; Sáez, Diego

    2016-01-01

    In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.

  15. Coupling of (ultra-) relativistic atomic nuclei with photons

    SciTech Connect

    Apostol, M.; Ganciu, M.

    2013-11-15

    The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare) nuclei (fully stripped of electrons) are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance) and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance), or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration) is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  16. Relativistic MHD simulations of stellar core collapse and magnetars

    NASA Astrophysics Data System (ADS)

    Font, José A.; Cerdá-Durán, Pablo; Gabler, Michael; Müller, Ewald; Stergioulas, Nikolaos

    2011-02-01

    We present results from simulations of magneto-rotational stellar core collapse along with Alfvén oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfvén waves. We further compute Alfvén oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.

  17. Global relativistic folding optical potential and the relativistic Green's function model

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Vignote, J. R.; Álvarez-Rodríguez, R.; Meucci, A.; Giusti, C.; Udías, J. M.

    2016-07-01

    Optical potentials provide critical input for calculations on a wide variety of nuclear reactions, in particular, for neutrino-nucleus reactions, which are of great interest in the light of the new neutrino oscillation experiments. We present the global relativistic folding optical potential (GRFOP) fits to elastic proton scattering data from 12C nucleus at energies between 20 and 1040 MeV. We estimate observables, such as the differential cross section, the analyzing power, and the spin rotation parameter, in elastic proton scattering within the relativistic impulse approximation. The new GRFOP potential is employed within the relativistic Green's function model for inclusive quasielastic electron scattering and for (anti)neutrino-nucleus scattering at MiniBooNE kinematics.

  18. A numerical investigation of relativistic turbulence

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan J.

    We present a program of numerical simulations designed to investigate the fundamental properties and phenomenological consequences of relativistic hydrodynamic and magnetohydrodynamic (MHD) turbulence. For the hydrodynamic case, we simulate a relativistically warm gas in a cubic periodic domain continuously driven at large scales with Lorentz factor of about 3. We employ a fifth-order accurate conservative finite-difference scheme on a uniform mesh with resolution up to 20483. The power spectrum of four-velocity scales with the -5/3 power of the wave-number, although deviations from strict scale similarity are evident. A Lorentz-covariant generalization of the longitudinal structure function is introduced, and found to be consistent with existing intermittency models. One-point statistics of the density field Gammarho are approximately log-normal, with skewness toward low densities being well modeled by recent advances in the compressible turbulence literature. Fundamental properties of driven, trans-relativistic, trans-Alfvenic MHD turbulence are studied on uniform meshes up to $10243. Classical predictions from the non-relativistic turbulence literature, such as the scale dependence of anisotropy with respect to the local magnetic field, are verified to hold in trans-relativistic conditions. Detailed studies of the small-scale turbulent dynamo for the conditions of merging neutron star binaries have been conducted. The dynamo is studied at a range of resolutions between 163 and 10243, from the kinematic through non-linear and saturation phases. Good agreement is found with classical predictions of the kinematic phase, and comparisons are made with recent measurements of non-linear dynamo efficiency. We find that very robustly, seed fields are amplified to magnetar strength (4 x1016 Gauss) within the ˜1 ms merger time-scale over 1 km turbulent volumes. The global magnetic energy budget is controlled by the prevalence and vigor of the turbulent volumes, with

  19. Formulation of the relativistic quantum Hall effect and parity anomaly

    NASA Astrophysics Data System (ADS)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  20. Global Solutions to the Ultra-Relativistic Euler Equations

    NASA Astrophysics Data System (ADS)

    Wissman, B. D.

    2011-09-01

    We show that when entropy variations are included and special relativity is imposed, the thermodynamics of a perfect fluid leads to two distinct families of equations of state whose relativistic compressible Euler equations are of Nishida type. (In the non-relativistic case there is only one.) The first corresponds exactly to the Stefan-Boltzmann radiation law, and the other, emerges most naturally in the ultra-relativistic limit of a γ-law gas, the limit in which the temperature is very high or the rest mass very small. We clarify how these two relativistic equations of state emerge physically, and provide a unified analysis of entropy variations to prove global existence in one space dimension for the two distinct 3 × 3 relativistic Nishida-type systems. In particular, as far as we know, this provides the first large data global existence result for a relativistic perfect fluid constrained by the Stefan-Boltzmann radiation law.

  1. Exact Relativistic Newtonian Representation of Gravitational static Spacetime Geometries

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava

    2016-09-01

    We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite useful in studying a wide range of astrophysical phenomena, especially in strong field gravity.

  2. CRAC2 model description

    SciTech Connect

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.; Johnson, J.D.; Ostmeyer, R.M.; Aldrich, D.C.; Blond, R.M.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  3. A relativistic continuum Hartree-Bogoliubov theory description of N = 3 isotones

    NASA Astrophysics Data System (ADS)

    Han, Rui; Ji, Juan-Xia; Li, Jia-Xing

    2011-09-01

    The ground-state properties of N = 3 isotones and mirror nuclei have been investigated in the Rrelativistic Continuum Hartree-Bogoliubov theory with the NLSH effective interaction. Pairing correlations are taken into account by a density-dependent δ-force. The calculations show that the proton density distributions of 8B and 9C have a long tail, the core has an increasing tendency of 9C and the paired off valence protons make the halo distribution shrink. The cross sections for the 8B(9C)+12C reaction which are consistent with the experimental data are calculated using the Glauber model. On the whole, we think that 8B is a one-proton halo nucleus and 9C is a two-proton halo nucleus.

  4. Relativistic Corrections to the Properties of the Alkali Fluorides

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Partridge, Harry

    1993-01-01

    Relativistic corrections to the bond lengths, dissociation energies and harmonic frequencies of KF, RbF and CsF have been obtained at the self-consistent field level by dissociating to ions. The relativistic corrections to the bond lengths, harmonic frequencies and dissociation energies to the ions are very small, due to the ionic nature of these molecules and the similarity of the relativistic and nonrelativistic ionic radii.

  5. Spin Hall effect in two-dimensional systems within the relativistic phase shift model

    NASA Astrophysics Data System (ADS)

    Johansson, Annika; Herschbach, Christian; Fedorov, Dmitry V.; Henk, Jürgen; Mertig, Ingrid

    2015-11-01

    Recently, a relativistic phase shift model (RPSM) was introduced [D. V. Fedorov et al., Phys. Rev. B 88, 085116 (2013), 10.1103/PhysRevB.88.085116] to describe the skew-scattering mechanism of the spin Hall effect caused by impurities in bulk crystals. Here, we present its analog derived for two-dimensional (2D) systems. The proposed 2D-RPSM is applied to one-monolayer noble-metal films with various substitutional impurities and the obtained results are compared with those of corresponding first-principles calculations. We demonstrate that, in contrast to the three-dimensional RPSM, the considered model does not provide a sufficient qualitative description of the transport properties. Therefore, an ab initio treatment is necessary for the description of the spin Hall effect in two-dimensional crystals.

  6. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  7. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  8. Theoretical study of the relativistic molecular rotational g-tensor

    SciTech Connect

    Aucar, I. Agustín Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  9. Theoretical study of the relativistic molecular rotational g-tensor.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Ruiz de Azúa, Martín C

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH(+) (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH(+) systems. Only for the sixth-row Rn atom a significant deviation of this relation is found. PMID:25416870

  10. Teaching Descriptive Style.

    ERIC Educational Resources Information Center

    Brashers, H. C.

    1968-01-01

    As the inexperienced writer becomes aware of the issues involved in the composition of effective descriptive prose, he also develops a consistent control over his materials. The persona he chooses, if coherently thought out, can function as an index of many choices, helping him to manipulate the tone, intent, and mood of this style; to regulate…

  11. General-relativistic celestial mechanics. I. Method and definition of reference systems

    SciTech Connect

    Damour, T. Departement d'Astrophysique Relativiste et de Cosmologie, Observatoire de Paris, Centre National de la Recherche Scientifique, 92195 Meudon CEDEX, France ); Soffel, M.; Xu, C. )

    1991-05-15

    We present a new formalism for treating the general-relativistic celestial mechanics of systems of {ital N} arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies. This formalism is aimed at yielding a complete description, at the first post-Newtonian approximation level, of (i) the global dynamics of such {ital N}-body systems ( external problem''), (ii) the local gravitational structure of each body ( internal problem''), and, (iii) the way the external and the internal problems fit together ( theory of reference systems''). This formalism uses in a complementary manner {ital N}+1 coordinate charts (or reference systems''): one global'' chart for describing the overall dynamics of the {ital N} bodies, and {ital N} local'' charts adapted to the separate description of the structure and environment of each body. The main tool which allows us to develop, in an elegant manner, a constructive theory of these {ital N}+1 reference systems is a systematic use of a particular exponential'' parametrization of the metric tensor which has the effect of linearizing both the field equations, and the transformation laws under a change of reference system. This linearity allows a treatment of the first post-Newtonian relativistic celestial mechanics which is, from a structural point of view, nearly as simple and transparent as its Newtonian analogue.

  12. Particle-in-cell simulation of stationary processes in a relativistic carcinotron

    NASA Astrophysics Data System (ADS)

    Pegel', I. V.

    1996-12-01

    A one-dimensional nonstationary model of relativistic carcinotrons, combines the particle-in-cell method in the description of an electron beam with a single-wave approximation in the description of the dynamics of an electromagnetic field. The influence of the intrinsic space charge of the beam is taken into account in the quasistatic approximation. A procedure is developed for computational experiment with a carcinotron in the axisymmetric approximation on the basis of the entirely electromagnetic code KARAT. The computations support the main known laws for a relativistic carcinotron. The effect the space charge has on inertial electronbeam bunching is examined. Mechanisms by which the space charge affects the carcinotron generation efficiency are demonstrated. The space charge may cause anomalously accelerated electrons in the beam and a reverse electron current to appear, increasing the impedance of the coaxial magnetically insulated diode that feeds the device. The carcinotron power and frequency are studied as functions of the strength of the guiding magnetic field. Cyclotron suppression of generation is confirmed. Calculation in combination with an electronic diode shows that generation at a higher frequency can be excited in the cyclotron “dip”.

  13. Numerical simulations of relativistic heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Daffin, Frank Cecil

    Bulk quantities of nuclear matter exist only in the compact bodies of the universe. There the crushing gravitational forces overcome the Coulomb repulsion in massive stellar collapses. Nuclear matter is subjected to high pressures and temperatures as shock waves propagate and burn their way through stellar cores. The bulk properties of nuclear matter are important parameters in the evolution of these collapses, some of which lead to nucleosynthesis. The nucleus is rich in physical phenomena. Above the Coulomb barrier, complex interactions lead to the distortion of, and as collision energies increase, the destruction of the nuclear volume. Of critical importance to the understanding of these events is an understanding of the aggregate microscopic processes which govern them. In an effort to understand relativistic heavy-ion reactions, the Boltzmann-Uehling-Uhlenbeck (Ueh33) (BUU) transport equation is used as the framework for a numerical model. In the years since its introduction, the numerical model has been instrumental in providing a coherent, microscopic, physical description of these complex, highly non-linear events. This treatise describes the background leading to the creation of our numerical model of the BUU transport equation, details of its numerical implementation, its application to the study of relativistic heavy-ion collisions, and some of the experimental observables used to compare calculated results to empirical results. The formalism evolves the one-body Wigner phase-space distribution of nucleons in time under the influence of a single-particle nuclear mean field interaction and a collision source term. This is essentially the familiar Boltzmann transport equation whose source term has been modified to address the Pauli exclusion principle. Two elements of the model allow extrapolation from the study of nuclear collisions to bulk quantities of nuclear matter: the modification of nucleon scattering cross sections in nuclear matter, and the

  14. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  15. Electromagnetic energy density manipulation and enhancement in a relativistic plasma: the role of relativistic nonlinearities

    SciTech Connect

    Pegoraro, F.

    2009-11-10

    A tutorial presentation is given describing the nature and the effects of relativistic nonlinearities in a plasma and indicating how they can be exploited in order to manipulate and enhance locally the energy density of the electromagnetic fields. The mathematical formulation and the examples presented are chosen from results available in the scientific literature.

  16. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  17. A Magnetohydrodynamic Boost for Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Hartmann, dieter; Nishikwa, Ken-Ichi; Zhang, Bing

    2006-01-01

    We have performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field may change the properties of the shock interface between the tenuous, overpressured jet (V(sub j) (sup z)) flowing tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A poloidal magnetic field (B(sup z)), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to a larger Lorentz factors than those obtained in the pure-hydrodynamic case. In contrast, a strong toroidal magnetic field (B(sup y)), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case, but to a lesser extent than found for the poloidal case due to the fact that the velocity component normal to the shock interface is now much smaller. Overall, the acceleration efficiency in the toroidal case is less than that of the poloidal case but both geometries still result in higher Lorentz factors than the pure-hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can have a significant influence on the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).

  18. String Mechanism for Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Dyadechkin, S. A.; Semenov, V. S.; Punsly, B.; Biernat, H. K.

    Here we present our latest studies of relativistic jet formation in the vicinity of a rotating black hole where the reconnection process has been taken into account. In order to simplify the problem, we use Lagrangian formalism and develop a method which enables us to consider a magnetized plasma as a set of magnetic flux tubes [5,6]. Within the limits of the Lagrangian approach, we perform numerical simulations of the flux tube (nonlinear string) behavior which clearly demonstrates the process of relativistic jet formation in the form of outgoing torsional nonlinear aves. It turns out that the jet is produced deep inside the ergosphere where the flux tube takes away spinning energy from the black hole due to the nonlocal Penrose process [2]. This is similar to the Blandford-Znajek (BZ) mechanism to some extent [8], however, the string mechanism is essentially time dependent. It is shown that the leading part of the accreting tube gains negative energy and therefore has to stay in the ergosphere forever. Simultaneously, another part of the tube propagates along the spinning axis away from the hole with nearly the speed of light. As a result, the tube is continuously stretching and our mechanism is essentially time dependent. Obviously, such process cannot last infinitely long and we have to take into account the reconnection process. Due to reconnection, the topology of the flux tube is changed and it gives rise to a plasmoid creation which propagates along spin axis of the hole with relativistic speed carrying off the energy and angular momentum away from the black hole.

  19. Numerical relativistic hydrodynamic simulations of neutron stars

    NASA Astrophysics Data System (ADS)

    Haywood, Joe R.

    Developments in numerical relativistic hydrodynamics over the past thirty years, along with the advent of high speed computers, have made problems needing general relativity and relativistic hydrodynamics tractable. One such problem is the relativistic evolution of neutron stars, either in a head on collision or in binary orbit. Also of current interest is the detection of gravitational radiation from binary neutron stars, black-hole neutron star binaries, binary black holes, etc. Such systems expected to emit gravitational radiation with amplitude large enough to be detected on Earth by such groups as LIGO and VIRGO. Unfortunately, the expected signal strength is below the current noise level. However, signal processing techniques have been developed which should eventually find a signal, if a good theoretical template can be found. In the cases above it is not possible to obtain an analytic solution to the Einstein equations and a numerical approximation is therefore most necessary. In this thesis the Einstein equations are written using the formalism of Arnowitt, Desser and Misner and a conformally flat metric is assumed. Numerical simulations of colliding neutron stars, having either a realistic or Gamma = 2 polytropic equation of state (EOS), are presented which confirm the rise in central density seen by [51, 89] for the softer EOS. For the binary calculation, the results of Wilson et al. [89] are confirmed, which show that the neutron stars can collapse to black holes before colliding when the EOS is realistic and we also confirm results of Miller [56] and others that there is essentially no compression, the central density does not increase, when the stiffer equation of state is used. Finally, a template for the gravitational radiation emitted from the binary is calculated and we show that the frequency of the emitted gravitational waves changes more slowly for the [89] EOS, which may result in a stronger signal in the 50-100 Hz band of LIGO.

  20. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    SciTech Connect

    Frederiksen, Jacob Trier; Haugboelle, Troels; Medvedev, Mikhail V.; Nordlund, Ake

    2010-10-10

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  1. Inverse Compton Scattering in Mildly Relativistic Plasma

    NASA Technical Reports Server (NTRS)

    Molnar, S. M.; Birkinshaw, M.

    1998-01-01

    We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.

  2. Radiation Spectral Synthesis of Relativistic Filamentation

    NASA Astrophysics Data System (ADS)

    Frederiksen, Jacob Trier; Haugbølle, Troels; Medvedev, Mikhail V.; Nordlund, Åke

    2010-10-01

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence—or the absence—of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  3. Modelling of relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Berwick, Stuart James

    In order to characterise the propagation and stability of linearly polarised laser pulses of arbitrary intensity interacting with underdense plasma, a one-dimensional, fully relativistic, covariant electron fluid model is derived. As a first step, the model is Lorentz transformed into a frame moving with the group velocity of the laser pulse. A linear instability analysis is undertaken which generates an infinite hierarchy of homogeneous mode-coupling equations describing the decay of the laser pump via stimulated Raman forward scattering (SRFS), stimulated Raman back scattering (SRBS) and the relativistic modulational instability (RMI). SRFS and RMI are seen to merge into a hybrid instability at high intensities (1>1018Wcm-2) and a 6-wave analysis (rather than the conventional 3 or 4-wave) is required to accurately predict growth. Next, an Eulerian fluid code is developed in order to evolve the full non- linear equations. The method of characteristics is used to integrate the electromagnetic wave equation and a predictor-corrector algorithm is used to integrate the equations of continuity and momentum. After testing, this code is used to simulate the propagation and stability of ultra-short (<200fs), 'table-top' and cos2 modulated laser pulses of relativistic intensities in underdense plasma. Comparison is made to the predictions of the dispersion relation and growth rates obtained in each case are reconciled. The spatiotemporal behaviour is discussed with reference to the results of a 3-wave WKB model of the interaction. The importance of seeding mechanisms, pulse shape and relativity on the evolution of the instabilities is also discussed.

  4. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the

  5. Braking formula for electrons of relativistic speed

    NASA Astrophysics Data System (ADS)

    Bethe, H.

    2014-11-01

    From the theory of Møller [Møller, Chr. 1931. Über den Stoß zweier Teilchen unter Berücksichtigung der Retardation der Kräfte. Zeitschrift f. Phys. 70: 786-795] the energy loss of electrons with relativistic speeds passing through matter is derived. The energy loss per centimeter of distance reaches a minimum at about 96% of the speed of light and increases again at higher speeds; for electrons of several billion Volt it is about 4 million Volt per centimeter of water. A table of the theoretical energy loss for electrons and protons of various speeds is given.

  6. Optimization of a relativistic quantum mechanical engine

    NASA Astrophysics Data System (ADS)

    Peña, Francisco J.; Ferré, Michel; Orellana, P. A.; Rojas, René G.; Vargas, P.

    2016-08-01

    We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.

  7. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  8. Dynamical phase trajectories for relativistic nuclear collisions

    SciTech Connect

    Arsene, I. C.; Bravina, L. V.; Cassing, W.; Ivanov, Yu. B.; Russkikh, V. N.; Larionov, A.; Randrup, J.; Toneev, V. D.; Zeeb, G.; Zschiesche, D.

    2007-03-15

    Central collisions of gold nuclei are simulated by several existing models and the central net baryon density {rho} and the energy density {epsilon} are extracted at successive times for beam kinetic energies of 5-40 GeV/nucleon. The resulting trajectories in the ({rho},{epsilon}) phase plane are discussed from the perspective of experimentally exploring the expected first-order hadronization phase transition with the planned FAIR at GSI or in a low-energy campaign at the Relativistic Heavy Ion Collider.

  9. An X-band overmoded relativistic klystron

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Chen, Changhua; Deng, Yuqun; Li, Jiawei; Bai, Xianchen

    2014-11-01

    An X-band overmoded relativistic klystron is proposed, the operation mode of which is the TM02 mode. The drift tube could not cut off the TM01 mode; isolating the buncher cavity from the input cavity is achieved by introducing a sectional RF lossy material. Microwaves are extracted from the modulated electron beam using a cylindrical waveguide, rather than a coaxial waveguide; thereby, the output structure is significantly simplified. Particle-in-cell simulations show that microwaves with power of 1.28 GW and frequency of 9.30 GHz can be obtained, corresponding to an efficiency of 32% and relative bandwidth of about 8%.

  10. Relativistic diffusion of elementary particles with spin

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-11-01

    We obtain a generalization of the relativistic diffusion of Schay and Dudley for particles with spin. The diffusion equation is a classical version of an equation for the Wigner function of an elementary particle. The elementary particle is described by a unitary irreducible representation of the Poincare group realized in the Hilbert space of wavefunctions in the momentum space. The arbitrariness of the Wigner rotation appears as a gauge freedom of the diffusion equation. The spin is described by an SU(2) connection of a fiber bundle over the momentum hyperbolic space (the mass shell). Motion in an electromagnetic field, transport equations and equilibrium states are discussed.

  11. Analytic solutions of the relativistic Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen

    2015-04-01

    We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.

  12. Space-based Tests of Relativistic Gravitation

    NASA Astrophysics Data System (ADS)

    Turyshev, Vyacheslav G.

    Since its initial publication, Einstein's general theory of relativity had been tested to a very high precision and presently is considered to be the standard theory of gravitation, especially when the phenomena in astrophysics, cosmology, and fundamental physics are concerned. As such, this theory has many practically important applications including spacecraft navigation, relativistic geodesy, time transfer, etc. Here we discuss the foundations of general relativity, present its current empirical status, and highlight the need for the new generation of high-accuracy tests. We present some space-based gravitational experiments and discuss anticipated advances in our understanding of the fundamental laws of nature.

  13. Dynamical friction in a relativistic plasma.

    PubMed

    Pike, O J; Rose, S J

    2014-05-01

    The work of Spitzer on dynamical friction in a plasma [L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed. (Wiley, New York, 1962), Chap. 5] is extended to relativistic systems. We derive the force of dynamical friction, diffusion tensor, and test particle relaxation rates for a Maxwellian background in the same form as Trubnikov [B. A. Trubnikov, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 105], enabling high-temperature laboratory and astrophysical plasmas to be modeled in a consistent manner. PMID:25353904

  14. Analytical study of diffusive relativistic shock acceleration.

    PubMed

    Keshet, Uri

    2006-12-01

    Particle acceleration in relativistic shocks is studied analytically in the test-particle, small-angle scattering limit, for an arbitrary velocity-angle diffusion function D. The particle spectral index s is found to be sensitive to D, particularly downstream and at certain angles. The analysis, confirmed numerically, justifies and generalizes previous results for isotropic diffusion. It can be used to test collisionless shock models and to observationally constrain D. For example, strongly forward- or backward-enhanced diffusion downstream is ruled out by gamma-ray burst afterglow observations. PMID:17155790

  15. Minimal relativistic three-particle equations

    SciTech Connect

    Lindesay, J.

    1981-07-01

    A minimal self-consistent set of covariant and unitary three-particle equations is presented. Numerical results are obtained for three-particle bound states, elastic scattering and rearrangement of bound pairs with a third particle, and amplitudes for breakup into states of three free particles. The mathematical form of the three-particle bound state equations is explored; constraints are set upon the range of eigenvalues and number of eigenstates of these one parameter equations. The behavior of the number of eigenstates as the two-body binding energy decreases to zero in a covariant context generalizes results previously obtained non-relativistically by V. Efimov.

  16. Relativistic quantum teleportation with superconducting circuits.

    PubMed

    Friis, N; Lee, A R; Truong, K; Sabín, C; Solano, E; Johansson, G; Fuentes, I

    2013-03-15

    We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes nonuniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion. However, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology. PMID:25166531

  17. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  18. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration. PMID:26967419

  19. Relativistic thermal plasmas - Pair processes and equilibria

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.

    1982-01-01

    The work of Bisnovatyi-Kogan, Zel'dovich and Sunyaev (1971) is extended and generalized, through the inclusion of pair-producing photon processes and effects due to the finite size of the plasma, in an investigation of the equilibria of relativistic thermal plasmas which takes into account electron-positron creation and annihilation and photons produced within the plasma. It is shown that the bridge between an effectively thin plasma and an effectively thick plasma occurs in the transrelativistic region, where the dimensionless temperature value is between 0.1 and 1.0 and the temperature remains in this region over a great luminosity range.

  20. News and Views: Challenges of Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Opher, Reuven

    2013-12-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of compact objects (black holes and neutron stars), dark sector (dark matter and dark energy), plasma astrophysics (origin of jets, cosmic rays, and magnetic fields), and the primordial universe (physics at the beginning of the Universe). In these four subjects, I discuss 12 of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale universe. The near-future possibilities, in observations and theory, for addressing these challenges are also discussed.

  1. Eddington capture sphere around luminous relativistic stars

    NASA Astrophysics Data System (ADS)

    Wielgus, Maciek

    2016-02-01

    We discuss the interplay of gravity and radiation in a static, spherically symmetric spacetime. Because of the spacetime curvature, balance between radiation pressure from spherical star and effective force of gravity may be established in a particular distance from the star surface, on so-called Eddington capture sphere. This is in contrast with the Newtonian scenario, for which Eddington luminosity of the radiation assures gravity-radiation balance at any radius. We explore properties of this relativistic equilibrium and the dynamics of test particles under radiation influence in the strong gravity regime.

  2. A barrage of relativistic solar particle events

    SciTech Connect

    Bieber, J.W.; Evenson, P.; Pomerantz, M.A. )

    1990-08-01

    During a four-month period beginning July 25, 1989, the sun released an unprecedented barrage of seven relativistic solar particle events detectable with ground-based instrumentation. These 'ground-level enhancements' are the first to occur in the present sunspot cycle, and they include the largest event observed since 1956. Several events are distinguished by unusual fine structure in their time profiles, and one event exhibits an extraordinary spikelike feature at event onset. This paper briefly discusses the characteristics of the time profiles. 10 refs.

  3. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  4. Relativistically correct DD and DT neutron spectra

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2014-06-01

    We use relativistic kinematics to derive an expression for the energy spectrum of neutrons produced by fusion reactions in deuterium and deuterium-tritium thermal plasmas. The derivation does not require approximations and the obtained expression gives the exact shape of the spectrum. It is shown that the high-energy tail of the neutron spectrum is highly sensitive to the plasma temperature. Simple expressions for the plasma temperature as a function of the neutron spectrum full width at half maximum (FWHM) are given.

  5. A relativistic analysis of clock synchronization

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1974-01-01

    The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.

  6. New Insight into the Pygmy Dipole Resonance in Stable Nuclei

    SciTech Connect

    Neumann-Cosel, P. von

    2008-11-11

    Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution ({gamma},{gamma}') experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a nonrelativistic mean-field description, predicting significantly different properties of the PDR. The second part presents attempts to unravel the structure of dipoles modes at energies below the giant dipole resonance (GDR) in {sup 208}Pb with a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg.

  7. An optical model description of momentum transfer in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, Lawrence W.; Wilson, J. W.; Norbury, John W.

    1989-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  8. RETRIEVAL EQUIPMENT DESCRIPTIONS

    SciTech Connect

    J. Steinhoff

    1997-08-25

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler.

  9. Spacelab J experiment descriptions

    SciTech Connect

    Miller, T.Y.

    1993-08-01

    Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm. Separate abstracts have been prepared for articles from this report.

  10. Spacelab J experiment descriptions

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y. (Editor)

    1993-01-01

    Brief descriptions of the experiment investigations for the Spacelab J Mission which was launched from the Kennedy Space Center aboard the Endeavour in Sept. 1992 are presented. Experiments cover the following: semiconductor crystals; single crystals; superconducting composite materials; crystal growth; bubble behavior in weightlessness; microgravity environment; health monitoring of Payload Specialists; cultured plant cells; effect of low gravity on calcium metabolism and bone formation; and circadian rhythm.

  11. TMACS system description

    SciTech Connect

    Scaief, C.C.

    1995-10-17

    This document provides a description of the Tank Monitor and Control System (TMACS). It is intended as an introduction for those persons unfamiliar with the system as well as a reference document for the users, maintenance personnel, and system designers. In addition to describing the system, the document outlines the associated drawing documentation, provides maintenance and spare parts information, and discusses other TMACS documents that provide additional detail

  12. Management control system description

    SciTech Connect

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  13. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1975-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. A general relativistic version of the mixing-length formalism for convection is presented. It is argued that in work on spherical systems, general relativity theorists have identified the wrong quantity as total mass-energy inside radius r.

  14. Coherent dissociation of relativistic {sup 12}N nuclei

    SciTech Connect

    Kattabekov, R. R.; Mamatkulov, K. Z.; Alikulov, S. S.; Artemenkov, D. A.; Bekmirzaev, R. N.; Bradnova, V.; Zarubin, P. I. Zarubina, I. G.; Kondratieva, N. V.; Kornegrutsa, N. K.; Krivenkov, D. O.; Malakhov, A. I.; Olimov, K.; Peresadko, N. G.; Polukhina, N. G.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Kharlamov, S. P.

    2013-10-15

    The dissociation of relativistic {sup 12}N nuclei having a momentum of 2 GeV/c per nucleon and undergoing the most peripheral interactions in a track emulsion is studied. The picture of charged topology of product ensembles of relativistic fragments and special features of their angular distributions are presented.

  15. Kinetic analysis of thermally relativistic flow with dissipation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  16. Relativistic effects in nuclear many-body systems

    SciTech Connect

    Coester, F.

    1985-01-01

    Different approaches to the formulation of relativistic many-body dynamics yield different perspectives of nature and the magnitude of ''relativistic effects''. The effects of Lorentz invariance appear to be relatively unimportant. Important dynamical features of spinorial many-body formalisms are effects of subnuclear degrees of freedom which are represented in the many-body forces of the covariant nuclear Hamiltonian. 24 refs.

  17. Particle Acceleration and Radiative Losses at Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  18. Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam; Batelaan, Herman

    2009-03-01

    An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.

  19. Kinetic analysis of thermally relativistic flow with dissipation

    SciTech Connect

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-15

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  20. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  1. Causal localizations in relativistic quantum mechanics

    SciTech Connect

    Castrigiano, Domenico P. L. Leiseifer, Andreas D.

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  2. Relativistic-beam Pickup Test Facility

    SciTech Connect

    Kramer, S.L.; Simpson, J.; Konecny, R.; Suddeth, D.

    1983-01-01

    The electrical response of pickups and cavities to charged particle beams has been an area of considerable activity and concern for accelerator systems. With the advent of stochastic beam cooling, the position and frequency response of beam pickups has become a crucial parameter in determining the performance of these systems. The most frequently used method for measuring and calibrating beam pickups has been the use of current carrying wires to simulate relativistic beams. This method has sometimes led to incorrect predictions of the pickup response to particle beams. The reasons for the differences are not always obvious but could arise from: (1) wires are incapable of exciting or permitting many of the modes that beams excite or (2) the interaction of the wire with large arrays of pickups produce results which are not easily predicted. At Argonne these deficiencies are resolved by calibrating pickups with a relativistic electron beam. This facility is being used extensively by several groups to measure beam pickup devices and is the primary calibration facility for pickups to be used in the FNAL TEV-I Antiproton Source.

  3. The Radiation Hydrodynamics of Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  4. General-relativistic astrophysics. [gravitational wave astronomy

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.

  5. Transport coefficients of a relativistic plasma

    NASA Astrophysics Data System (ADS)

    Pike, O. J.; Rose, S. J.

    2016-05-01

    In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above kBT ˜10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at kBT =20 keV due to relativistic effects.

  6. Prognosis of Gles of Relativistic Solar Protons

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan

    2015-04-01

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  7. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  8. 3D Hydrodynamic Simulations of Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Miller, M. A.; Duncan, G. C.; Swift, C. M.

    1998-12-01

    We present the results of validation runs and the first extragalactic jet simulations performed with a 3D relativistic numerical hydrodynamic code employing a solver of the RHLLE type and using adaptive mesh refinement (AMR; Duncan & Hughes, 1994, Ap. J., 436, L119). Test problems include the shock tube, blast wave and spherical shock reflection (implosion). Trials with the code show that as a consequence of AMR it is viable to perform exploratory runs on workstation class machines (with no more than 128Mb of memory) prior to production runs. In the former case we achieve a resolution not much less than that normally regarded as the minimum needed to capture the essential physics of a problem, which means that such runs can provide valuable guidance allowing the optimum use of supercomputer resources. We present initial results from a program to explore the 3D stability properties of flows previously studied using a 2D axisymmetric code, and our first attempt to explore the structure and morphology of a relativistic jet encountering an ambient density gradient that mimics an ambient inhomogeneity or cloud.

  9. A New Relativistic Jet Model of Blazars

    NASA Astrophysics Data System (ADS)

    Webb, James; Benitez, Erika; Howard, Emily

    1998-11-01

    The subclass of Active galaxies called Blazars encompass the most intrinsically luminous and rapidly variable sources known to astrophysicists. Attempts to model these sources has largely been frustrated due in part to observational difficulties, but also due to the lack of theoretical models capable of explaining the different characteristics of the observed sources. Leading candidate models all incorporate a massive, rotating black hole which is accreting galactic material, with some of this material being ejected out the ratational axis of the hole in the form of relativistically expanding jets. These jets are thought to emit energy via the synchrotron process across the entire spectrum from radio frequences all the way through the GEV (sometimes TEV) gamma-ray frequencies. Attempts to model these sources with single relativistic jets has proven difficult. We present a new model which features concentric interacting jets that do a much better job of explaining the types of Blazars we observe. We also discuss ways of testing this new model against multifreuqency observations.

  10. Balloon Observations of Relativistic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Millan, R. M.; Woodger, L. A.

    2015-12-01

    Relativistic electron precipitation events lasting from minutes to hours have been observed by balloon-borne instrumentation since 1996. This collection of observations, including the recent BARREL observations, all occur in the noon to midnight sector. EMIC waves have been suggested as the precipitation mechanism for this type of event [Lorentzen et al., 2000 and Millan et al., 2002]. A recent study by Li et al., [2014] performed a case study which modeled the radiation belt relativistic electron pitch angle diffusion from EMIC waves which showed convincing agreement between the modeled results and the BARREL x-ray observations. A survey of the BARREL REP events suggests this type of precipitation is a very localized phenomena with most events only being observed by a single balloon at a time despite the extensive L-value and local time coverage of observations during the campaign. This result is consistent with the findings of Blum et al., [2013]. Furthermore, the balloon observations show local time energy dependence consistent with the SAMPEX observations reported by Comess et al, [2013]. In this work we address the following questions: based on the REP events observed by balloon-borne instrumentation, are these characteristics true for all identified REP events and does this support EMIC waves as the precipitation mechanism? Due to the localized region of precipitation, do these events represent a significant radiation belt loss process?

  11. CAFE: A New Relativistic MHD Code

    NASA Astrophysics Data System (ADS)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  12. Potential Energy Curves in the CASSCF/CASPT2 and FS-MR-CC Methods: The Role of Relativistic Effects.

    PubMed

    Barysz, Maria

    2016-04-12

    Ab initio CASSCF/CASPT2 calculations for the electronic ground and for a wide range of excited states of Li2 and Na2 dimers are presented. The computed spectroscopic parameters agree very well with the experimental data. This indicates that the old CASSCF/CASPT2 method can be as successfully applied to study excited states of molecules as recently developed the multireference Fock-space coulped-cluster method. The role of relativistic effects in the correct description of the potential energy curves has been investigated using as an example the SiAu molecule. The accuracy of the new infinite-order two-component relativistic method has been studied and its advantage over the Douglas-Kroll-Hess method demonstrated. PMID:26914182

  13. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534

  14. Nonlinear positron-acoustic waves in fully relativistic degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Mamun, A. A.

    2016-03-01

    The nonlinear positron-acoustic (PA) waves propagating in a fully relativistic electron-positron-ion (EPI) plasma (containing degenerate electrons and positrons, and immobile heavy ions) have been theoretically investigated. A fully relativistic hydrodynamic model, which is consistent with the relativistic principle has been used, and the reductive perturbation method is employed to derive the dynamical Korteweg-de Vries equation. The dynamics of electrons as well as positrons, and the presence of immobile heavy ions are taken into account. It is found that the effects of relativistic degeneracy of electrons and positrons, static heavy ions, plasma particles velocity, enthalpy, etc have significantly modified the basic properties of the PA solitary waves propagating in the fully relativistic EPI plasmas. The application of the results of our present work in astrophysical compact objects such as white dwarfs and neutron stars, etc are briefly discussed.

  15. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  16. Relativistic Celestial Mechanics of the Solar System

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  17. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    PubMed

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  18. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  19. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz

  20. Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions''

    SciTech Connect

    Ulrich W. Heinz

    2012-11-09

    In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at