Role of relaxation time scale in noisy signal transduction.
Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K
2015-01-01
Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions. PMID:25955500
Role of Relaxation Time Scale in Noisy Signal Transduction
Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K
2015-01-01
Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions. PMID:25955500
Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
NASA Astrophysics Data System (ADS)
Herzfeld, M.; Gillibrand, P. A.
2015-05-01
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
NASA Astrophysics Data System (ADS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
A theoretical study of the stress relaxation in HMX on the picosecond time scale
NASA Astrophysics Data System (ADS)
Long, Yao; Chen, Jun
2015-12-01
The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.
Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian
2012-07-21
By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances. PMID:22830715
NASA Astrophysics Data System (ADS)
Ngai, K. L.; Habasaki, J.; Prevosto, D.; Capaccioli, S.; Paluch, Marian
2012-07-01
By now it is well established that the structural α-relaxation time, τα, of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τα is a function Φ of the product variable, ργ/T, where ρ is the density and T the temperature. The constant γ as well as the function, τα = Φ(ργ/T), is material dependent. Actually this dependence of τα on ργ/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τβ, or the primitive relaxation time, τ0, of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τα and τβ or τ0 to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO3)2.3KNO3 (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ργ/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τN, is another function of ργ/T with the same γ as segmental relaxation time τα. (6) While the data of τα from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.
NASA Astrophysics Data System (ADS)
Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Domingues, Ana Beatriz Guedes; Azeredo, Rodrigo Bagueira de Vasconcellos
2016-07-01
The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
NASA Astrophysics Data System (ADS)
Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Domingues, Ana Beatriz Guedes; Azeredo, Rodrigo Bagueira de Vasconcellos
2016-04-01
The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cutoff. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cutoffs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
Schwerdtfeger, Christine A; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
Dielectric relaxation time spectroscopy.
Paulson, K S; Jouravleva, S; McLeod, C N
2000-11-01
A new mathematical method is developed to recover the permittivity relaxation spectrum of living tissue from measurements of the real and imaginary parts of the impedance. Aiming to derive information about electrical properties of living tissue without the prior selection of any impedance model, the procedure calculates the relaxation time distribution. It provides new characteristic independent parameters: time constants, their distribution, and the amplitudes of the associated dispersion. As the beta-dispersion is the most important in the area of electrical impedance spectroscopy of tissue, the paper gives an estimate of the essential frequency range to cover the whole relaxation spectrum in that area. Results are presented from both simulation and known lumped--constant element circuit. PMID:11077745
NASA Astrophysics Data System (ADS)
Chen, Chun-Jung; Chang, Allen Y.; Tsai, Chang-Lung; Lee, Chih-Jen; Chou, Li-Ping; Shin, Tien-Hao
2012-04-01
A modified Waveform Relaxation algorithm with transmission line calculation ability is proposed to perform large-scale circuit simulation for MOSFET circuits with lossy coupled transmission lines. The adopted full time-domain transmission line calculation algorithm, based on the Method of Characteristic, has been equipped with a time step control scheme to improve the calculation efficiency. All proposed methods have been implemented in a simulation program to simulate several circuits. The simulation results well justify the success of proposed methods.
Messina, Fabrizio; Pomarico, Enrico; Silatani, Mahsa; Baranoff, Etienne; Chergui, Majed
2015-11-19
Using femtosecond-resolved photoluminescence up-conversion, we report the observation of the fluorescence of the high-lying ligand-centered (LC) electronic state upon 266 nm excitation of an iridium complex, Ir(ppy)3, with a lifetime of 70 ± 10 fs. It is accompanied by a simultaneous emission of all lower-lying electronic states, except the lowest triplet metal-to-ligand charge-transfer ((3)MLCT) state that shows a rise on the same time scale. Thus, we observe the departure, the intermediate steps, and the arrival of the relaxation cascade spanning ∼1.6 eV from the (1)LC state to the lowest (3)MLCT state, which then yields the long-lived luminescence of the molecule. This represents the first measurement of the total relaxation time over an entire cascade of electronic states in a polyatomic molecule. We find that the relaxation cascade proceeds in ≤10 fs, which is faster than some of the highest-frequency modes of the system. We invoke the participation of the latter modes in conical intersections and their overdamping to low-frequency intramolecular modes. On the basis of literature, we also conclude that this behavior is not specific to transition-metal complexes but also applies to organic molecules. PMID:26509329
NASA Astrophysics Data System (ADS)
Colmenero, Juan; Alvarez, Fernando; Khairy, Yasmin; Arbe, Arantxa
2013-07-01
In a recent paper [V. N. Novikov, K. S. Schweizer, and A. P. Sokolov, J. Chem. Phys. 138, 164508 (2013)], 10.1063/1.4802771 a simple analytical ansatz has been proposed to describe the momentum transfer (Q) dependence of the collective relaxation time of glass-forming systems in a wide Q-range covering the region of the first maximum of the static structure factor S(Q) and the so-called intermediate length scale regime. In this work we have generalized this model in order to deal with glass-forming systems where the atomic diffusive processes are sub-linear in nature. This is for instance the case of glass-forming polymers. The generalized expression considers a sub-linear jump-diffusion model and reduces to the expression previously proposed for normal diffusion. The generalized ansatz has been applied to the experimental results of the Q- and temperature-dependence of polyisobutylene (PIB), which were previously published. To reduce the number of free parameters of the model to only one, we have taken advantage of atomistic molecular dynamics simulations of PIB properly validated by neutron scattering results. The model perfectly describes the experimental results capturing both, Q- and temperature-dependences. Moreover, the model also reproduces the experimental Q-dependence of the effective activation energy of the collective relaxation time in the temperature range of observation. This non-trivial result gives additional support to the way the crossover between two different relaxation mechanisms of density fluctuations is formulated in the model.
Larsson, Göran; Martinez, Gary; Schleucher, Jürgen; Wijmenga, Sybren S
2003-12-01
The usual analysis of (15)N relaxation data of proteins is straightforward as long as the assumption can be made that the backbone of most residues only undergoes fast (ps), small amplitude internal motions. If this assumption cannot be made, as for example for proteins which undergo domain motions or for unfolded or partially folded proteins, one needs a method to establish for each residue whether it undergoes fast (ps) or slow (ns) internal motion. Even then it is impossible to determine the correct overall tumbling time, tau(m)(0), via the usual method from the ratio of the longitudinal and transverse relaxation times, if the majority of residues do not undergo fast, small amplitude internal motions. The latter problem is solved when tau(m)(0) can be determined independent of the time scale, tau(i), or the amplitude, S(2), of the internal motion. We propose a new protocol, called PINATA, for analyzing (15)N relaxation data acquired at minimally two field strengths, where no a priori assumption about time scales or amplitude of internal motions needs to be made, and overall tumbling can either be isotropic or anisotropic. The protocol involves four steps. First, for each residue, it is detected whether it undergoes ps- or ns-internal motion, via the combination of the ratio of the longitudinal relaxation time at two fields and the hetero-nuclear NOE. Second, for each residue tau(m)(0) and the exchange broadening, Rex, are iteratively determined. The accuracy of the determination of tau(m)(0) is ca. +/-0.5 ns and of Rex ca +/- 0.7 s(-1), when the relaxation data are of good quality and tau(m)(0)>5 ns, S(2)>0.3, and tau(i)< approximately 3 ns. Third, given tau(m)(0) and Rex, step 1 is repeated to iteratively improve on the internal motion and obtain better estimates of the internal parameter values. Fourth, final time scales and amplitudes for internal motions are determined via grid search based fitting and chi(2)-analysis. The protocol was successfully tested on
Relaxation times estimation in MRI
NASA Astrophysics Data System (ADS)
Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito
2014-03-01
Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.
The Global Scale Relaxation State of Ceres
NASA Astrophysics Data System (ADS)
Fu, R. R.; Ermakov, A.; Zuber, M. T.; Hager, B. H.
2015-12-01
Planetary surfaces relax over time to a hydrostatic configuration at a rate governed by a body's rheological properties. Because rheology is a strong function of composition and temperature, observations of a body's relaxation state offers a means to probe its interior structure and thermal evolution. In the case of Ceres, such analysis potentially constrains the hydration state of the rocky core, the rock content of the ice-rich shell, and the abundance of heat-producing radionuclides. Ground-based observations of Ceres suggested that the long-wavelength topography of Ceres has undergone significant relaxation, closely approaching hydrostatic equilibrium. Recent preliminary data from the Dawn spacecraft show that the topography of Ceres exhibits anomalously low power at the longest wavelengths (exceeding ~150 km; spherical harmonic degree n = 20; Fig. 1). Using the deal.II finite element library, we model global scale (n < 40) viscoelastoplastic relaxation on Ceres to constrain the range of compositional and thermal structures consistent with the observed topography. Simulations assuming a 60 km thick pure ice layer overlying a rocky interior suggests that medium wavelength topography (10 ≤ n ≤ 40) relaxes efficiently over timescales of << 1 My, while relaxation at n ≤ 8 occurs only over much longer timescales as determined by the rheology of the deep interior (Fig. 1). The comparable degrees of relaxation observed on Ceres at all spherical harmonic degrees less than 20 therefore suggest that the rheological contrast between the shell and core is less extreme than that of pure ice and dry rock. Potential explanations include: (1) the presence of silicates and dissolved contaminants in the ice-rich shell and (2) high temperatures (e.g., >400˚C given a wet olivine rheology) in the deep interior during Ceres's early evolution. Ongoing simulations will test the viability of these scenarios in reproducing the observed topography.
Morón, María Carmen; Prada-Gracia, Diego; Falo, Fernando
2016-04-14
The decay dynamics of ambient and low temperature liquid water has been investigated through all-atom molecular dynamics simulations, residence times calculations and time correlation functions from 300 K down to 243 K. Those simulations replicate the experimental value of the self-diffusion constant as a function of temperature by tuning the damping factor of the Langevin equation of motion. A stretched exponential function exp[-(t/τ)(β)] has been found to properly describe the relaxation of residence times calculated at different temperatures for solvent molecules in a nanodrop of free water modelled as a sphere of nanometric dimensions. As the temperature goes down the decay time τ increases showing a divergence at Ts = 227 ± 3 K. The temperature independence of the dimensionless stretched exponent β = 0.59 ± 0.01 suggests the presence of, not a characteristic relaxation time (since β≠ 1), but a distribution of decay times that also holds at low temperature. An explanation for such heterogeneity can be found at the nanoscopic level. Moreover it can be concluded that the distribution of times already reported for the dynamics of water surrounding proteins (β≤ 0.5) can not be exclusively due to the presence of the biomolecule itself since isolated water also exhibits such behaviour. The above reported Ts and β values quantitatively reproduce experimental data. PMID:26782269
NASA Astrophysics Data System (ADS)
Pasko, V. P.
2009-12-01
Thomas et al. [JGR, A12306, 2008] has reported lightning-driven electric (E) field pulses at 75-130 km altitude recorded during rocket experiment in 1995 from Wallops Island, Virginia. The measurements were compared to a 2D electromagnetic model of Cho and Rycroft [JASTP, 60,871,1998]. Thomas et al.[2008] indicated that the observed field magnitudes were an order of magnitude lower than predicted by the model and questioned validity of the electromagnetic pulse mechanism of elves. The goal of the present work, which utilizes Monte Carlo and FDTD electromagnetic modeling, is to emphasize range of validity of the local field approximation (LFA) employed in the Cho and Rycroft's [1998] model and other similar models for the cases when weak (~10 mV/m as reported in [Thomas et al., 2008]) E field pulses are considered. Glukhov et al. [GRL, 23, 2193, 1996] and Sukhorukov et al. [GRL, 23, 2911, 1996] performed Monte Carlo simulations for large E fields ~10V/m at typical altitudes of elves, which fully confirmed validity of models of elves based on LFA [Taranenko et al., GRL, 20, 2675, 1993; Inan et al., GRL, 23, 133, 1996]. We demonstrate that the time of relaxation of the momentum of the electron distributions subjected to the external E field scales approximately as 1/E and exceeds 10s of microseconds for E<1V/m at typical altitudes of elves and sprite halos. The weak, ~10mV/m (<18kHz), E field transients observed in the lower ionosphere [Thomas et al., 2008] can not be accurately described in the framework of the self-consistent electron mobility model based on the LFA [e.g.,Cho and Rycroft, 1998]. At lower ionospheric altitudes LFA in which electron mobility reaches equilibrium value defined by the magnitude of the reduced applied E field is only valid for relatively large fields E>1 V/m when fast (10 kHz) processes are considered. The models of elves relying on LFA [e.g., Taranenko et al., 1993; Inan et al., 1996] generally require E>1 V/m for production of
Wang, Shuo; Cao, Yang
2015-01-01
Random effect in cellular systems is an important topic in systems biology and often simulated with Gillespie’s stochastic simulation algorithm (SSA). Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role. PMID:26263559
Time of relaxation in dusty plasma model
NASA Astrophysics Data System (ADS)
Timofeev, A. V.
2015-11-01
Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.
Dielectric polarization evolution equations and relaxation times
Baker-Jarvis, James; Riddle, Bill; Janezic, Michael D.
2007-05-15
In this paper we develop dielectric polarization evolution equations, and the resulting frequency-domain expressions, and relationships for the resulting frequency dependent relaxation times. The model is based on a previously developed equation that was derived using statistical-mechanical theory. We extract relaxation times from dielectric data and give illustrative examples for the harmonic oscillator and derive expressions for the frequency-dependent relaxation times and a time-domain integrodifferential equation for the Cole-Davidson model.
NASA Astrophysics Data System (ADS)
Gao, Hayian
2004-10-01
The next generation of searches for the neutron electric dipole moment using ultra cold neutrons will use polarized ^3He as a co-magnetometer. The first such experiment has been proposed, with a goal of improving the current limit on the neutron EDM by two orders of magnitude. This experiment requires a systematic study of the properties of polarized ^3He at cryogenic temperatures under actual experimental conditions. These experimental conditions include polarized ^3He mixed in a bath of superfluid ^4He in low magnetic field and held in an acrylic cell which is coated with deuterated TetraphenylButadiene . Parts of these systematic studies will be done at Duke University using a newly built, novel refillable double cell ^3 He polarizer based on spin exchange optical pumping with Rubidium vapor. The polarimetry for this apparatus is done with a NMR polarimeter using the adiabatic fast passage method. An alternate polarimeter using free induction decay method is also being built. This apparatus is being used to study the relaxation time and other critical properties of polarized ^3He at temperatures ranging from 2.3 - 4.2 K, under simulated experimental conditions. We will present details about this novel polarizer and show preliminary results of our measurements.
NASA Astrophysics Data System (ADS)
Vögeli, Beat
2010-07-01
A simple general expression for the NMR cross-correlated relaxation rate under anisotropic molecular tumbling is presented for globular proteins. The derivation includes effects of fast and slow motion of the interaction tensors and correlation between them. Expressions suitable for practical analysis are tailored in dependence of standard order parameters of the individual interactions. It is shown that these order parameters must be sensitive to slow motion (slower than molecular tumbling) for detection of slow correlated motion. Such order parameters are those obtained from residual dipolar couplings but not those obtained from T1, T2, and heteronuclear Nuclear Overhauser Enhancement measurements.
Relaxation time in disordered molecular systems
Rocha, Rodrigo P.; Freire, José A.
2015-05-28
Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.
A quantum relaxation-time approximation for finite fermion systems
Reinhard, P.-G.; Suraud, E.
2015-03-15
We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.
Alternate Forms Reliability of the Behavioral Relaxation Scale: Preliminary Results
ERIC Educational Resources Information Center
Lundervold, Duane A.; Dunlap, Angel L.
2006-01-01
Alternate forms reliability of the Behavioral Relaxation Scale (BRS; Poppen,1998), a direct observation measure of relaxed behavior, was examined. A single BRS score, based on long duration observation (5-minute), has been found to be a valid measure of relaxation and is correlated with self-report and some physiological measures. Recently,…
Relaxation times and charge conductivity of silicene
NASA Astrophysics Data System (ADS)
Mazloom, Azadeh; Parhizgar, Fariborz; Abedinpour, Saeed H.; Asgari, Reza
2016-07-01
We investigate the transport and single particle relaxation times of silicene in the presence of neutral and charged impurities. The static charge conductivity is studied using the semiclassical Boltzmann formalism when the spin-orbit interaction is taken into account. The screening is modeled within Thomas-Fermi and random-phase approximations. We show that the transport relaxation time is always longer than the single particle one. Easy electrical controllability of both carrier density and band gap in this buckled two-dimensional structure makes it a suitable candidate for several electronic and optoelectronic applications. In particular, we observe that the dc charge conductivity could be easily controlled through an external electric field, a very promising feature for applications as electrical switches and transistors. Our findings would be qualitatively valid for other buckled honeycomb lattices of the same family, such as germanine and stanine.
Relaxation time measurements by an electronic method.
NASA Technical Reports Server (NTRS)
Brousseau, R.; Vanier, J.
1973-01-01
Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.
NASA Astrophysics Data System (ADS)
Uneyama, Takashi; Akimoto, Takuma; Miyaguchi, Tomoshige
2012-09-01
In entangled polymer systems, there are several characteristic time scales, such as the entanglement time and the disengagement time. In molecular simulations, the longest relaxation time (the disengagement time) can be determined by the mean square displacement (MSD) of a segment or by the shear relaxation modulus. Here, we propose the relative fluctuation analysis method, which is originally developed for characterizing large fluctuations, to determine the longest relaxation time from the center of mass trajectories of polymer chains (the time-averaged MSDs). Applying the method to simulation data of entangled polymers (by the slip-spring model and the simple reptation model), we provide a clear evidence that the longest relaxation time is estimated as the crossover time in the relative fluctuations.
Characteristic length scales of the secondary relaxations in glass-forming glycerol.
Gupta, S; Mamontov, E; Jalarvo, N; Stingaciu, L; Ohl, M
2016-03-01
We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13T g . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics. PMID:27021657
Scaling behaviour of relaxation dependencies in metaloxide superconductors
NASA Technical Reports Server (NTRS)
Sidorenko, A. S.; Panaitov, G. I.; Gabovich, A. M.; Moiseev, D. P.; Postnikov, V. M.
1990-01-01
Superconducting glass state has been investigated in different types of metaloxide ceramics, Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Ba-Pb-Bi-O, using the highly sensitive SQUID magnetometer. The analysis of long-time relaxation processes of thermoremanent magnetization m(sup trm) (+) = M(sub o) - Slnt displayed scaling dependence of the decay rate S = -dM/dlnt on quantity of trapped magnetic flux M(sub o): 1gs = 31g M(sub o) - observed universal dependence S is approximately M(sup 3) (sub o) seems to one of the features of superconducting glass state in metaloxide ceramics.
Relaxation times and energy barriers of rubbing-induced birefringence in glass-forming polymers
NASA Astrophysics Data System (ADS)
Shiu, K. P.; Qin, Zongyi; Yang, Z.
2008-12-01
The relaxations of rubbing-induced birefringence (RIB) in several glass-forming polymers, including polycarbonate and polystyrene (PS) derivatives with various modifications to the phenyl ring side group, are studied. Significant relaxations of RIB are observed at temperatures well below the glass transition temperature T g . The relaxation times span a wide range from ˜ 10 s to probably geological time scale. Physical aging effects are absent in the RIB relaxations. The model proposed for the interpretation of RIB in PS describes well the RIB relaxations in all the polymers investigated here. The energy barriers are of the order of a few hundred kJ/mol and decrease with decreasing temperature, in opposition to the trend of Vogel-Fulcher form for polymer segmental relaxations above T g . The relaxation behaviors of different polymers are qualitatively similar but somewhat different in quantitative details, such as in the values of the saturated birefringence, the shape of the initial barrier density distribution functions, the rates of barrier decrease with decreasing temperature, and the dependence of relaxation times on temperature and parameter ξ , etc. The RIB relaxations are different from any of the other relaxations below T g that have been reported in the literature, such as dielectric relaxations or optical probe relaxations. A microscopic model for the relaxations of RIB is much desired.
Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature
NASA Astrophysics Data System (ADS)
Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth
2016-02-01
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time β relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α -relaxation regime.
Relaxation therapy for insomnia: nighttime and day time effects.
Means, M K; Lichstein, K L; Epperson, M T; Johnson, C T
2000-07-01
We compared day time functioning in college students with and without insomnia and explored changes in day time functioning after progressive relaxation (PR) treatment for insomnia. Students with insomnia (SWI; n = 57) were compared to a control group of students not complaining of insomnia (SNI; n = 61) on self-reported sleep variables and five questionnaires: Insomnia Impact Scale (IIS), Dysfunctional Beliefs and Attitudes About Sleep Scale (DBAS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and Penn State Worry Questionnaire (PSWQ). SWI demonstrated significant impairment on all day time functioning and sleep measures compared to SNI. To investigate treatment effects on day time functioning, 28 SWI were randomly assigned to PR. Treated SWI were compared to untreated SWI and SNI at posttreatment. Treated participants improved sleep in comparison to untreated SWI, but failed to show significant improvements in day time functioning. Insomnia treatments focused on improving sleep may not improve day time functioning, or day time gains may emerge more slowly than sleep gains. This study documents the wide range of day time functioning complaints in young adults with insomnia and suggests that the goal of insomnia treatment should be to not only improve sleep but also to improve the subjective experience of day time functioning. PMID:10875189
Ultrafast relaxation rates and reversal time in disordered ferrimagnets
NASA Astrophysics Data System (ADS)
Suarez, O. J.; Nieves, P.; Laroze, D.; Altbir, D.; Chubykalo-Fesenko, O.
2015-10-01
In response to ultrafast laser pulses, single-phase metals have been classified as "fast" (with magnetization quenching on the time scale of the order of 100 fs and recovery in the time scale of several picoseconds and below) and "slow" (with longer characteristic time scales). Disordered ferrimagnetic alloys consisting of a combination of "fast" transition (TM) and "slow" rare-earth (RE) metals have been shown to exhibit an ultrafast all-optical switching mediated by the heat mechanism. The behavior of the characteristic time scales of coupled alloys is more complicated and is influenced by many parameters such as the intersublattice exchange, doping (RE) concentration, and the temperature. Here, the longitudinal relaxation times of each sublattice are analyzed within the Landau-Lifshitz-Bloch framework. We show that for moderate intersublattice coupling strength both materials slow down as a function of slow (RE) material concentration. For larger coupling, the fast (TM) material may become faster, while the slow (RE) one is still slower. These conclusions may have important implications in the switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using atomistic modeling, we show that in the moderately coupled case, the reversal would start in the Gd-rich region, while the situation may be reversed if the coupling strength is larger.
Occupational Cohort Time Scales
Roth, H. Daniel
2015-01-01
Purpose: This study explores how highly correlated time variables (occupational cohort time scales) contribute to confounding and ambiguity of interpretation. Methods: Occupational cohort time scales were identified and organized through simple equations of three time scales (relational triads) and the connections between these triads (time scale web). The behavior of the time scales was examined when constraints were imposed on variable ranges and interrelationships. Results: Constraints on a time scale in a triad create high correlations between the other two time scales. These correlations combine with the connections between relational triads to produce association paths. High correlation between time scales leads to ambiguity of interpretation. Conclusions: Understanding the properties of occupational cohort time scales, their relational triads, and the time scale web is helpful in understanding the origins of otherwise obscure confounding bias and ambiguity of interpretation. PMID:25647318
Correlation of transverse relaxation time with structure of biological tissue
NASA Astrophysics Data System (ADS)
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Scaling behavior of quantum critical relaxation dynamics of a system in a heat bath
NASA Astrophysics Data System (ADS)
Yin, Shuai; Lo, Chung-Yu; Chen, Pochung
2016-05-01
We study the scaling behavior of the relaxation dynamics to thermal equilibrium when a quantum system is near the quantum critical point. In particular, we investigate systems whose relaxation dynamics is described by a Lindblad master equation. We find that the universal scaling behavior not only appears in the equilibrium stage at the long-time limit but also manifests in the nonequilibrium relaxation process. While the critical behavior is dictated by the low-lying energy levels of the Hamiltonian, the dissipative part in the Lindblad equation also plays important roles in two aspects: First, the dissipative part makes the high-energy levels decay fast, after which the universal behavior controlled by the low-lying modes emerges. Second, the dissipation rate gives rise to a time scale that affects the scaling behavior. We confirm our theory by solving the Lindblad equation for the one-dimensional transverse-field Ising model.
NASA Astrophysics Data System (ADS)
Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.
2016-05-01
The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.
Is spin lattice relaxation time independent of species?
Akber, S F
1996-08-01
It has been suggested that the spin lattice relaxation time is independent of species. It was further stated that, from a nuclear magnetic resonance standpoint, the human muscle is similar to rat muscle and to pig muscle, etc. However, it is observed that, in normal liver and kidney of human, rat, dog, rabbit and hamster, spin lattice relaxation time varies in different species as a function of percentage of body-weight of the organ. The result shows that spin lattice relaxation time is different in different species because of the organ weight which in turn dictates the metabolism in an individual species. PMID:8869924
NASA Astrophysics Data System (ADS)
Andreozzi, L.; Faetti, M.; Salmerã³n Sanchez, M.; Gã³mez Ribelles, J. L.
2008-09-01
The aim of this work is to explore the consequences on the kinetics of structural relaxation of considering a glass-forming system to consist of a series of small but macroscopic relaxing regions that evolve independently from each other towards equilibrium in the glassy state. The result of this assumption is a thermorheologically complex model. In this approach each relaxing zone has been assumed to follow the Scherer-Hodge model for structural relaxation (with the small modification of taking a linear dependence of configurational heat capacity with temperature). The model thus developed contains four fitting parameters. A least-squares search routine has been used to find the set of model parameters that fit simultaneously four DSC thermograms in PVAc after different thermal histories. The computer-simulated curves are compared with those obtained with Scherer-Hodge model and the model proposed by Gómez and Monleón. The evolution of the relaxation times during cooling or heating scans and also during isothermal annealing below the glass transition has been analysed. It has been shown that the relaxation times distribution narrows in the glassy state with respect to equilibrium. Isothermal annealing causes this distribution to broaden during the process to finally attain in equilibrium the shape defined at temperatures above Tg.
Proton-nuclear magnetic resonance relaxation times in brain edema
Kamman, R.L.; Go, K.G.; Berendsen, H.J. )
1990-01-01
Proton relaxation times of protein solutions, bovine brain, and edematous feline brain tissue were studied as a function of water concentration, protein concentration, and temperature. In accordance with the fast proton exchange model for relaxation, a linear relation could be established between R1 and the inverse of the weight fraction of tissue water. This relation also applied to R2 of gray matter and of protein solutions. No straightforward relation with water content was found for R2 of white matter. Temperature-dependent studies indicated that in this case, the slow exchange model for relaxation had to be applied. The effect of macromolecules in physiological relevant concentrations on the total relaxation behavior of edematous tissue was weak. Total water content changes predominantly affected the relaxation rates. The linear relation may have high clinical potential for assessment of the status of cerebral edema on the basis of T1 and T2 readings from MR images.
Simultaneous measurement of heat capacity and internal relaxation time.
Nagasawa, Mitsuharu
2016-05-01
A new steady-state method is proposed to simultaneously measure the heat capacity and internal relaxation time using superimposed constant and square-wave power. This method is appropriate for small sample systems with low thermal conductance. The accuracies of the heat capacity and internal relaxation time are almost the same as those determined using other similar methods, but correction for the effect of internal relaxation on the heat capacity is more flexible. The thermal diffusivity and thermal conductivity are also simultaneously determined for rod- and slab-shaped samples. We demonstrate the method for small slabs of synthetic silica in the 80-320 K temperature range. PMID:27250459
Two relaxation time lattice Boltzmann model for rarefied gas flows
NASA Astrophysics Data System (ADS)
Esfahani, Javad Abolfazli; Norouzi, Ali
2014-01-01
In this paper, the lattice Boltzmann equation (LBE) with two relaxation times (TRT) is implemented in order to study gaseous flow through a long micro/nano-channel. A new relation is introduced for the reflection factor in the bounce-back/specular reflection (BSR) boundary condition based on the analytical solution of the Navier-Stokes equations. The focus of the present study is on comparing TRT with the other LBE models called multiple relaxation times (MRT) and single relaxation time (SRT) in simulation of rarefied gas flows. After a stability analysis for the TRT and SRT models, the numerical results are presented and validated by the analytical solution of the Navier-Stokes equations with slip boundary condition, direct simulation of Monte Carlo (DSMC) and information preservation (IP) method. The effect of various gases on flow behavior is also investigated by using the variable hard sphere (VHS) model through the symmetrical relaxation time.
Ab Initio Electronic Relaxation Times and Transport in Noble Metals
NASA Astrophysics Data System (ADS)
Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.
Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.
Multiple-Relaxation-Time Lattice Boltzmann Models in 3D
NASA Technical Reports Server (NTRS)
dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-04-20
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their naturalmore » dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. Lastly, we also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.« less
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
NASA Astrophysics Data System (ADS)
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-04-01
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. We also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.
Landauer's formula with finite-time relaxation: Kramers' crossover in electronic transport.
Gruss, Daniel; Velizhanin, Kirill A; Zwolak, Michael
2016-01-01
Landauer's formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. We also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport. PMID:27094206
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-01-01
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. We also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport. PMID:27094206
Femtosecond time-resolved electronic relaxation dynamics in tetrathiafulvalene
Staedter, D.; Polizzi, L.; Thiré, N.; Mairesse, Y.; Mayer, P.; Blanchet, V.
2015-05-21
In the present paper, the ultrafast electronic relaxation of tetrathiafulvalene (TTF) initiated around 4 eV is studied by femtosecond time-resolved velocity-map imaging. The goal is to investigate the broad double structure observed in the absorption spectrum at this energy. By monitoring the transients of the parent cation and its fragments and by varying the pump and the probe wavelengths, two internal conversions and intramolecular vibrational relaxation are detected both on the order of a few hundred of femtoseconds. Photoelectron images permit the assignment of a dark electronic state involved in the relaxation. In addition, the formation of the dimer of TTF has been observed.
Analysis of the Palierne model by relaxation time spectrum
NASA Astrophysics Data System (ADS)
Kwon, Mi Kyung; Cho, Kwang Soo
2016-02-01
Viscoelasticity of immiscible polymer blends is affected by relaxation of the interface. Several attempts have been made for linear viscoelasticity of immiscible polymer blends. The Palierne model (1990) and the Gramespacher-Meissner model (1992) are representative. The Gramespacher-Meissner model consists of two parts: ingredients and interface. Moreover, it provides us the formula of the peak of interface in weighted relaxation time spectrum, which enables us to analyze the characteristics relating to interface more obviously. However, the Gramespacher-Meissner model is a kind of empirical model. Contrary to the Gramespacher-Meissner model, the Palierne model was derived in a rigorous manner. In this study, we investigated the Palierne model through the picture of the Gramespacher-Meissner model. We calculated moduli of immiscible blend using two models and obtained the weighted relaxation time spectra of them. The fixed-point iteration of Cho and Park (2013) was used in order to determine the weighted relaxation spectra.
Evaluation of brain edema using magnetic resonance proton relaxation times
Fu, Y.; Tanaka, K.; Nishimura, S. )
1990-01-01
Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.
NASA Astrophysics Data System (ADS)
Krasnov, Igor; Seydel, Tilo; Müller, Martin
2015-04-01
Structural relaxations in humid silk fibers exposed to tensile stress have been reported to take place on a very wide range of time scales from a few milliseconds to several hours. The time-dependence of the measured tensile force following a quasi-instantaneously applied external strain on the fibers can be understood in terms of a fractional viscoelastic relaxation function introducing memory effects by which the mechanical state of a fiber depends on its tensile history. An analog fractional relaxation also gives rise to the subdiffusion observed on picosecond time scales, which governs the mobility of the amorphous polymer chains and adsorbed water on the molecular level. The reduction of the subdiffusive memory effect in stretched fibers compared to native fibers is consistent with the higher order of the polymers in the stretched state.
Scaling out the density dependence of the α relaxation in glass-forming polymers
NASA Astrophysics Data System (ADS)
Alba-Simionesco, C.; Cailliaux, A.; Alegría, A.; Tarjus, G.
2004-10-01
We show that the density and temperature dependences of the α-relaxation time of several glass-forming polymers can be described through a single scaling variable X = e(ρ)/T, where e(ρ) is well fitted by a power law ρx, x being a species-specific parameter. This implies that "fragility" is an intrinsic, density-independent property of a glass-former characterizing its super-Arrhenius slowing-down of relaxations, and it leads us to propose a modification of the celebrated Angell plot.
Phenomenological Theory of the Translational Relaxation Times in Gases
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.
1999-01-01
The exact solution to the classical equations governing the translational dispersion and absorption of sound in a gas obscures its relaxational character because of its mathematical complexity. The approach taken here is to solve the secular equation by the method of Pade approximants, which even to the relatively low order R(sub 11) yields a remarkably close approximation to the exact solution over a wide range of frequency/pressure (f/P) ratios. As a result, translational relaxation can be formulated in terms of a conventional relaxation process with well-defined relaxation times, relaxation strength, collision numbers, additivity relations, etc. To extend the theory to high values of f/P ratio, a model is proposed to account for the noncontinuum behavior of the transport coefficients (viscosity and thermal conductivity) as the molecular mean free path approaches the acoustical enclosure dimensions. The theoretical dispersion and absorption show good agreement with measurements in argon over the classical and transition regions of f/P, but a discrepancy appears at higher values of f/P, where collective propagating modes, assumed in the theory, give way to single-particle modes, prevailing in the experiments.
Relaxation Times of Microemulsion Systems From Electro-Optical Measurements
NASA Astrophysics Data System (ADS)
Edwards, Matthew
1999-11-01
Relaxation Times of Microemulsion Systems from Electro-Optical Measurements Matthew Edwards (Spelman College) Relaxation measurements, as determined from electro-optically induced birefringence, have been made on ternary microemulsion systems of AOT, water, and octane. Loci of 22 samples, representing displacements along the 90oil concentration line in the three-component phase diagram, were prepared having weight fractions ranging from 0to AOT+water to 60times, at room temperature, changed by more than an order of magnitude in this phase diagram displacement, going from 2.55x10(-7)at 0The methodology for determing each sample's relaxation time was to fit the raw data of polarized - transmitted laser intensity as a function of time, as generated from using the standard Kerr effect. The raw data sample sets were fitted to within 8exponentially decaying function. The single exponential decay mechanism that is thought to be "effective rotational relaxation." This supports our earlier measurements (1) which indicate clustering of composite droplets within the microemulsion samples following the onset of the applied electric field. 1. Edwards, M.E. et, Physical Review E, 57, No. 797 (1998)
Electron–ion relaxation time in moderately degenerate plasma
Vronskii, M. A. Koryakina, Yu. V.
2015-09-15
A formula is derived for the electron–ion relaxation time in a partially degenerate plasma with electron-ion interaction via a central field. The resulting expression in the form of an integral of the transport cross section generalizes the well-known Landau and Brysk approximations.
Modeling the relaxation time of DNA confined in a nanochannel
Tree, Douglas R.; Wang, Yanwei; Dorfman, Kevin D.
2013-01-01
Using a mapping between a Rouse dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel. The relaxation time thus obtained agrees quantitatively with experimental data [Reisner et al., Phys. Rev. Lett. 94, 196101 (2005)] using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel [Tree et al., Phys. Rev. Lett. 108, 228105 (2012)], which have been difficult to validate due to the lack of direct experimental data. Furthermore, the model calculation shows that as the channel size passes below approximately 100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. PMID:24309551
Modeling the Relaxation Time of DNA Confined in a Nanochannel
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Tree, Douglas R.; Dorfman, Kevin D.
2014-03-01
Using a mapping between a dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel (Tree et al., Biomicrofluidics 2013, 7, 054118). The relaxation time thus obtained agrees quantitatively with experimental data (Reisner et al., PRL 2005, 94, 196101) using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel (Tree et al., PRL 2012, 108, 228105), which have been difficult to validate due to the lack of direct experimental data. Furthermore, our calculation shows that as the channel size passes below ~100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. This work was supported by the NIH (R01-HG005216 and R01-HG006851) and the NSFC (21204061) and was carried out in part using computing resources at the University of Minnesota Supercomputing Institute.
Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods
NASA Astrophysics Data System (ADS)
Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.
The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Landauer's formula with finite-time relaxation: Kramers' crossover in electronic transport
NASA Astrophysics Data System (ADS)
Gruss, Daniel; Velizhanin, Kirill; Zwolak, Michael
Landauer's formula relates the conductance of a region of interest to its transmission probability. It is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions and devices. This view of transport as transmission necessitates a simplified view of transmission, one occurring through an essentially fixed structure. Starting from a description of transport that includes relaxation of electrons in the reservoirs, we derive a Landauer-like formula for the steady-state current. We demonstrate that the finite relaxation time gives rise to three regimes of behavior. Weak relaxation within a small region nearby to the junction gives a contact limited current. Strong relaxation also influences the current by localizing electrons, distorting their natural dynamics and reducing the current. In an intermediate regime, the standard Landauer view is recovered. This behavior is analogous to Kramers' turnover in chemical reactions. Supported by UMD/CNST Cooperative Research Agreement, Award 70NANB10H193.
Measurement of cyclotron resonance relaxation time in the two-dimensional electron system
Andreev, I. V. Muravev, V. M.; Kukushkin, I. V.; Belyanin, V. N.
2014-11-17
Dependence of cyclotron magneto-plasma mode relaxation time on electron concentration and temperature in the two-dimensional electron system in GaAs/AlGaAs quantum wells has been studied. Comparative analysis of cyclotron and transport relaxation time has been carried out. It was demonstrated that with the temperature increase transport relaxation time tends to cyclotron relaxation time. It was also shown that cyclotron relaxation time, as opposed to transport relaxation time, has a weak electron density dependence. The cyclotron time can exceed transport relaxation time by an order of magnitude in a low-density range.
Relaxed Time Slot Negotiation for Grid Resource Allocation
NASA Astrophysics Data System (ADS)
Son, Seokho; Sim, Kwang Mong
Since participants in a computational grid may be independent bodies, some mechanisms are necessary for resolving the differences in their preferences for price and desirable time slots for utilizing/leasing computing resources. Whereas there are mechanisms for supporting price negotiation for grid resource allocation, there is little or no negotiation support for allocating mutually acceptable time slots for grid participants. The contribution of this work is designing a negotiation mechanism for facilitating time slot negotiations between grid participants. In particular, this work adopts a relaxed time slot negotiation protocol designed to enhance the success rate and resource utilization level by allowing some flexibility for making slight adjustments following a tentative agreement for a mutually acceptable time slot. The ideas of the relaxed time slot negotiation are implemented in an agent-based grid testbed, and empirical results of the relaxed time slot negotiation mechanism carried out, (i) a consumer and a provider agent have a mutually satisfying agreement on time slot and price, (ii) consumer agents achieved higher success rates in negotiation, and (iii) provider agents achieved higher utility and resource utilization of overall grid.
NASA Astrophysics Data System (ADS)
Grigor'ev, G. I.; Bakhmet'eva, N. V.; Tolmacheva, A. V.; Kalinina, E. E.
2013-09-01
We consider diffusion of the ionospheric-plasma irregularities as applied to the problem of experimental determination of the lower-ionosphere parameters by artificial periodic irregularities of the electron number density. A rigorous solution to the problem of diffusion of one-dimensional plasma irregularities in a weakly ionized medium, whose diffusion coefficient exponentially decreases with the altitude, is obtained. The Green's function for this problem is found. Three parameters are taken into account in the solution, namely, the size of the region occupied by the irregularities, the size of the irregularities, and a typical spatial scale of the e-fold decrease in the diffusion coefficient. Theoretical relaxation times of the irregularities as functions of these parameters are analyzed. Calculated relaxation times are compared with the times measured in the observation of the artificial periodic irregularities created by the SURA facility. Calculated relaxation times of these irregularities are in good agreement with the observed values.
Time-dependent corona models - Scaling laws
NASA Technical Reports Server (NTRS)
Korevaar, P.; Martens, P. C. H.
1989-01-01
Scaling laws are derived for the one-dimensional time-dependent Euler equations that describe the evolution of a spherically symmetric stellar atmosphere. With these scaling laws the results of the time-dependent calculations by Korevaar (1989) obtained for one star are applicable over the whole Hertzsprung-Russell diagram and even to elliptic galaxies. The scaling is exact for stars with the same M/R-ratio and a good approximation for stars with a different M/R-ratio. The global relaxation oscillation found by Korevaar (1989) is scaled to main sequence stars, a solar coronal hole, cool giants and elliptic galaxies.
Inversion of generalized relaxation time distributions with optimized damping parameter
NASA Astrophysics Data System (ADS)
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Scale interactions of turbulence subjected to a straining relaxation destraining cycle
NASA Astrophysics Data System (ADS)
Chen, Jun; Meneveau, Charles; Katz, Joseph
2006-09-01
The response of turbulence subjected to planar straining and de-straining is studied experimentally, and the impact of the applied distortions on the energy transfer across different length scales is quantified. The data are obtained using planar particle image velocimetry (PIV) in a water tank, in which high-Reynolds-number turbulence with very low mean velocity is generated by an array of spinning grids. Planar straining and de-straining mean flows are produced by pushing and pulling a rectangular piston towards, and away from, the bottom wall of the tank. The data are processed to yield the time evolution of Reynolds stresses, anisotropy tensors, turbulence kinetic energy production, and mean subgrid-scale (SGS) dissipation rate at various scales. During straining, the production rises rapidly. After the relaxation period the small-scale SGS stresses recover isotropy, but the Reynolds stresses still display significant anisotropy. Thus when destraining is applied, a strong negative production (mean backscatter) occurs, i.e. the turbulence returns kinetic energy to the mean flow. The SGS dissipation displays similar behaviour at large filter scales, but the mean backscatter gradually disappears with decreasing filter scales. Energy spectra are compared to predictions of rapid distortion theory (RDT). Good agreement is found for the initial response but, as expected for the time-scale ratios of the experiment, turbulence relaxation causes discrepancies between measurements and RDT at later times.
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E.J.; Reilly, David J.
2015-01-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. PMID:26450570
Hyperpolarized nanodiamond with long spin-relaxation times
NASA Astrophysics Data System (ADS)
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times
NASA Astrophysics Data System (ADS)
Perreard, I. M.; Reeves, D. B.; Zhang, X.; Kuehlert, E.; Forauer, E. R.; Weaver, J. B.
2014-03-01
Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium.
On relaxation times in the Navier-Stokes-Voigt model
NASA Astrophysics Data System (ADS)
Layton, William J.; Rebholz, Leo G.
2013-03-01
We study analytically and numerically the relaxation time of flow evolution governed by the Navier-Stokes-Voigt (NSV) model. We first show that for the Taylor-Green vortex decay problem, NSV admits an exact solution which evolves slower than true fluid flow. Secondly, we show numerically for a channel flow test problem using standard discretisation methods that although NSV provides more regular solutions compared to usual Navier-Stokes solutions, NSV approximations take significantly longer to reach the steady state.
Damping effects in doped graphene: The relaxation-time approximation
NASA Astrophysics Data System (ADS)
Kupčić, I.
2014-11-01
The dynamical conductivity of interacting multiband electronic systems derived by Kupčić et al. [J. Phys.: Condens. Matter 90, 145602 (2013), 10.1088/0953-8984/25/14/145602] is shown to be consistent with the general form of the Ward identity. Using the semiphenomenological form of this conductivity formula, we have demonstrated that the relaxation-time approximation can be used to describe the damping effects in weakly interacting multiband systems only if local charge conservation in the system and gauge invariance of the response theory are properly treated. Such a gauge-invariant response theory is illustrated on the common tight-binding model for conduction electrons in doped graphene. The model predicts two distinctly resolved maxima in the energy-loss-function spectra. The first one corresponds to the intraband plasmons (usually called the Dirac plasmons). On the other hand, the second maximum (π plasmon structure) is simply a consequence of the Van Hove singularity in the single-electron density of states. The dc resistivity and the real part of the dynamical conductivity are found to be well described by the relaxation-time approximation, but only in the parametric space in which the damping is dominated by the direct scattering processes. The ballistic transport and the damping of Dirac plasmons are thus the problems that require abandoning the relaxation-time approximation.
Krylov-subspace acceleration of time periodic waveform relaxation
Lumsdaine, A.
1994-12-31
In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.
Diffusion MRI/NMR magnetization equations with relaxation times
NASA Astrophysics Data System (ADS)
de, Dilip; Daniel, Simon
2012-10-01
Bloch-Torrey diffusion magnetization equation ignores relaxation effects of magnetization. Relaxation times are important in any diffusion magnetization studies of perfusion in tissues(Brain and heart specially). Bloch-Torrey equation cannot therefore describe diffusion magnetization in a real-life situation where relaxation effects play a key role, characteristics of tissues under examination. This paper describes derivations of two equations for each of the y and z component diffusion NMR/MRI magnetization (separately) in a rotating frame of reference, where rf B1 field is applied along x direction and bias magnetic field(Bo) is along z direction. The two equations are expected to further advance the science & technology of Diffusion MRI(DMRI) and diffusion functional MRI(DFMRI). These two techniques are becoming increasingly important in the study and treatment of neurological disorders, especially for the management of patients with acute stroke. It is rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fibre structure and provide models of brain connectivity.
Orientational relaxation time of bottom-heavy squirmers in a semi-dilute suspension.
Ishikawa, T; Pedley, T J; Yamaguchi, T
2007-11-21
One of the important quantities to characterize unsteady behaviour of a cell suspension is the orientational relaxation time, which is the time scale for a micro-organism to re-orientate to its preferred direction from disorientated conditions. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, in which the centre of mass of the sphere is displaced from the geometric centre (bottom-heaviness). The orientational relaxation time of bottom-heavy squirmers in a suspension is investigated both analytically and numerically. The three-dimensional movement of 64 identical squirmers in a fluid otherwise at rest, contained in a cube with periodic boundary conditions, is dynamically computed, for random initial positions and orientations. The effects of volume fraction of squirmers, the bottom-heaviness and the squirming mode on the relaxation time are discussed. The results for a semi-dilute suspension show that both the mean stresslet strength and the orientational relaxation time decrease from those for a dilute suspension. We also observe a stress overshoot in some cases. The mechanism for this is different from that for a visco-elastic fluid, and is explained by the change with time of the orientation of squirmers. PMID:17854838
Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite
Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao
2015-01-01
The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 108 Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 108 Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913
Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite.
Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao
2015-01-01
The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 10(8) Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 10(8) Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech; Ryblewski, Radoslaw
2016-06-01
We introduce a generalized relaxation-time-approximation form of the collision term in the Boltzmann kinetic equation that allows for using different relaxation times for elastic and inelastic collisions. The efficacy of the proposed framework is demonstrated with the numerical calculations that describe systems with different relations between the two relaxation times and the evolution time of the system.
Theoretical evaluation of bulk viscosity: Expression for relaxation time
NASA Astrophysics Data System (ADS)
Hossein Mohammad Zaheri, Ali; Srivastava, Sunita; Tankeshwar, K.
2007-10-01
A theoretical calculation of bulk viscosity has been carried out by deriving an expression for the relaxation time which appears in the formula for bulk viscosity derived by Okumura and Yonezawa. The expression involved a pair distribution function and interaction potential. Numerical results have been obtained over a wide range of densities and temperatures for Lennard-Jones fluids. It is found that our results provide a good description of bulk viscosity as has been judged by comparing the results with nonequilibrium molecular dynamics results. In addition, our results demonstrate the importance of the multiparticle correlation function.
The time correlation function perspective of NMR relaxation in proteins
NASA Astrophysics Data System (ADS)
Shapiro, Yury E.; Meirovitch, Eva
2013-08-01
We applied over a decade ago the two-body coupled-rotator slowly relaxing local structure (SRLS) approach to NMR relaxation in proteins. One rotator is the globally moving protein and the other rotator is the locally moving probe (spin-bearing moiety, typically the 15N-1H bond). So far we applied SRLS to 15N-H relaxation from seven different proteins within the scope of the commonly used data-fitting paradigm. Here, we solve the SRLS Smoluchowski equation using typical best-fit parameters as input, to obtain the corresponding generic time correlation functions (TCFs). The following new information is obtained. For actual rhombic local ordering and main ordering axis pointing along C_{i - 1}^α - C_i^α, the measurable TCF is dominated by the (K,K') = (-2,2), (2,2), and (0,2) components (K is the order of the rank 2 local ordering tensor), determined largely by the local motion. Global diffusion axiality affects the analysis significantly when the ratio between the parallel and perpendicular components exceeds approximately 1.5. Local diffusion axiality has a large and intricate effect on the analysis. Mode-coupling becomes important when the ratio between the global and local motional rates falls below 0.01. The traditional method of analysis - model-free (MF) - represents a simple limit of SRLS. The conditions under which the MF and SRLS TCFs are the same are specified. The validity ranges of wobble-in-a-cone and rotation on the surface of a cone as local motions are determined. The evolution of the intricate Smoluchowski operator from the simple diffusion operator for a sphere reorienting in isotropic medium is delineated. This highlights the fact that SRLS is an extension of the established stochastic theories for treating restricted motions. This study lays the groundwork for TCF-based comparison between mesoscopic SRLS and atomistic molecular dynamics.
Dependence on chain length of NMR relaxation times in mixtures of alkanes
NASA Astrophysics Data System (ADS)
Freed, Denise E.
2007-05-01
Many naturally occurring fluids, such as crude oils, consist of a very large number of components. It is often of interest to determine the composition of the fluids in situ. Diffusion coefficients and nuclear magnetic resonance (NMR) relaxation times can be measured in situ and depend on the size of the molecules. It has been shown [D. E. Freed et al., Phys. Rev. Lett. 94, 067602 (2005)] that the diffusion coefficient of each component in a mixture of alkanes follows a scaling law in the chain length of that molecule and in the mean chain length of the mixture, and these relations were used to determine the chain length distribution of crude oils from NMR diffusion measurements. In this paper, the behavior of NMR relaxation times in mixtures of chain molecules is addressed. The author explains why one would expect scaling laws for the transverse and longitudinal relaxation times of mixtures of short chain molecules and mixtures of alkanes, in particular. It is shown how the power law dependence on the chain length can be calculated from the scaling laws for the translational diffusion coefficients. The author fits the literature data for NMR relaxation in binary mixtures of alkanes and finds that its dependence on chain length agrees with the theory. Lastly, it is shown how the scaling laws in the chain length and the mean chain length can be used to determine the chain length distribution in crude oils that are high in saturates. A good fit is obtained between the NMR-derived chain length distributions and the ones from gas chromatography.
Cell water dynamics on multiple time scales
Persson, Erik; Halle, Bertil
2008-01-01
Water–biomolecule interactions have been extensively studied in dilute solutions, crystals, and rehydrated powders, but none of these model systems may capture the behavior of water in the highly organized intracellular milieu. Because of the experimental difficulty of selectively probing the structure and dynamics of water in intact cells, radically different views about the properties of cell water have proliferated. To resolve this long-standing controversy, we have measured the 2H spin relaxation rate in living bacteria cultured in D2O. The relaxation data, acquired in a wide magnetic field range (0.2 mT–12 T) and analyzed in a model-independent way, reveal water dynamics on a wide range of time scales. Contradicting the view that a substantial fraction of cell water is strongly perturbed, we find that ≈85% of cell water in Escherichia coli and in the extreme halophile Haloarcula marismortui has bulk-like dynamics. The remaining ≈15% of cell water interacts directly with biomolecular surfaces and is motionally retarded by a factor 15 ± 3 on average, corresponding to a rotational correlation time of 27 ps. This dynamic perturbation is three times larger than for small monomeric proteins in solution, a difference we attribute to secluded surface hydration sites in supramolecular assemblies. The relaxation data also show that a small fraction (≈0.1%) of cell water exchanges from buried hydration sites on the microsecond time scale, consistent with the current understanding of protein hydration in solutions and crystals. PMID:18436650
Upper D region chemical kinetic modeling of LORE relaxation times
NASA Astrophysics Data System (ADS)
Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.
2016-04-01
The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
NASA Astrophysics Data System (ADS)
Marin, E. G.; Ruiz, F. G.; Godoy, A.; Tienda-Luna, I. M.; Gámiz, F.
2015-07-01
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
Marin, E. G. Ruiz, F. G. Godoy, A. Tienda-Luna, I. M.; Gámiz, F.
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.
Dependence of Brownian and Néel relaxation times on magnetic field strength
Deissler, Robert J. Wu, Yong; Martens, Michael A.
2014-01-15
Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the
Time dependent parallel viscosity and relaxation rate of poloidal rotation in the banana regime
Hsu, C.T.; Shaing, K.C.; Gormley, R. )
1994-01-01
Time dependent ion parallel viscous force in the banana regime with arbitrary inverse aspect ratio [epsilon] is calculated using the eigenfunction approach. The flux surface averaged viscosity is then used to study the relaxation process of the poloidal rotation which leads to oscillatory relaxation behavior. The relaxation rate [nu][sub [ital p
Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films
Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong
2016-01-01
Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40–50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics. PMID:27461968
Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films
NASA Astrophysics Data System (ADS)
Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong
2016-07-01
Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40–50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.
Kanatharana, J.; Sukpisan, J.; Wang, S.Q.
1995-12-01
The dependences on the polyion concentration through the scaling relations in {eta} {alpha} c{sup {alpha}} and {Tau}{sub q} {alpha} c{sup {beta}}, where {eta} and {Tau}{sub q} are the solution viscosity and the relaxation time obtained from the dynamic light scattering respectively, are investigated for the partially hydrolyzed polyacrylamides at different degrees of hydrolysis. The scaling exponents a and {beta}, as determined in the semidilute regime, depend critically on the amount of salt added or the ionic strength. Both exponents, however, are independent of the amount of glycerol added which suggests that the excluded volume effect is relatively small in comparison with the effect of electrostatic repulsion. The salt-concentration dependence of the solution is also investigated: the corresponding scaling exponents for the 70% HPAM are insensitive to the solvent quality. The present experiment results are compared with recent scaling theories.
Unified Theory of Activated Relaxation in Cold Liquids over 14 Decades in Time
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth; Mirigian, Stephen
2014-03-01
We formulate a predictive theory at the level of forces of activated relaxation in thermal liquids that covers in a unified manner the apparent Arrhenius, crossover and deeply supercooled regimes (J.Phys.Chem.Lett.4,3648(2013)). The alpha relaxation event involves coupled cage-scale hopping and a long range cooperative elastic distortion of the surrounding liquid, which results in two inter-related, but distinct, barriers. The strongly temperature and density dependent collective barrier is associated with a growing length scale, the shear modulus and density fluctuations. Thermal liquids are mapped to an effective hard sphere fluid based on matching long wavelength density fluctuation amplitudes. The theory is devoid of fit parameters, has no divergences at finite temperature nor below jamming, and captures the key features of the alpha relaxation time in molecular liquids from picoseconds to hundreds of seconds. The approach is extended to polymer liquids based on the Kuhn length as the key variable. The influence of chain length and backbone stiffness on the glass transition temperature and fragility have been studied where degree of polymerization enters via corrections to asymptotic conformational statistics.
An axisymmetric multiple-relaxation-time lattice Boltzmann scheme
NASA Astrophysics Data System (ADS)
Xie, Wenjun
2015-01-01
A multiple-relaxation-time (MRT) lattice Boltzmann (LB) scheme developed for axisymmetric flows recovers the complete continuity and Navier-Stokes equations. This scheme follows the strategy of the standard D2Q9 model by using a single particle distribution function and a simple "collision-streaming" updating rule. The extra terms related to axisymmetry in the macroscopic equations are recovered by adding source terms into the LB equation, which are simple and involve no gradients. The compressible effect retained in the Navier-Stokes equations is recovered by introducing a term related to the reversed transformation matrix for MRT collision operator, so as to produce a correct bulk viscosity, making it suitable for compressible flows with high frequency and low Mach number. The validity of the scheme is demonstrated by testing the Hagen-Poiseuille flow and 3D Womersley flow, as well as the standing acoustic waves in a closed cylindrical chamber. The numerical experiments show desirable stability at low viscosities, enabling to simulate a standing ultrasound field in centimeters space.
State of water at 136 K determined by its relaxation time.
Johari, G P
2005-03-21
Dielectric relaxation time of pure bulk water has been determined from the dielectric loss tangent scans against temperature at two frequencies. After calculating the frequency-independent background loss, the relaxation loss was obtained, and the relaxation time determined. The dielectric relaxation time of water is 35 +/- 13 s at 136 +/- 1 K, which is comparable with its structural relaxation time of ca. 33 s estimated from its T(g) endotherm (G. P. Johari, A. Hallbrucker and E. Mayer, Nature, 1987, 330, 552). Therefore, water is an ultraviscous liquid at 136 K, and this removes the basis for a comparison-based inference that water is a rigid glass up to a temperature of 165 K or higher (Y. Yue and C. A. Angell, Nature, 2004, 427, 717). The method yields satisfactory values for the relaxation time of stable glasses at their known calorimetric T(g). PMID:19791317
NASA Astrophysics Data System (ADS)
Chun, Myung-Suk; Ko, Min Jae
2012-10-01
The Rouse-Zimm model based on the polymer dynamics theory allows us to predict the relaxation time of polyelectrolyte dilute solution as a function of the intrinsic viscosity. In finite concentrated solutions, the empirical analysis adopted in this study is quite useful to examine the relaxation behavior, noting that proper theories are not well-clarified and experimental measurements are rather complicated. For the xanthan biopolymer selected as the polyelectrolyte model of a semiflexible chain, we measured rheological properties of shear viscosity η and first normal stress difference σ Δ1 in dilute and semidilute solutions over a wide range of shear rates dot γ. Power-law scaling relations are commonly observed in the region of dot γ ≥slant 1 s-1. Accurate regressions on η and σ Δ1 present empirical plots as functions of the shear rate and the xanthan concentration, from which each of relevant fitting parameters are determined. Empirically determined curves agree well with the experimental data, ensuring that the empirical formula for the characteristic relaxation time λ is applicable at dilute and finite concentrations, which has not been reported in the literature. We further interpreted the non-Newtonian fluid behavior over a full range of shear rates by applying the Carreau A constitutive model.
NASA Astrophysics Data System (ADS)
Petit, G.; Murdin, P.
2000-11-01
Terrestrial time is at present derived from atomic clocks. The SI second, the unit of time of the international system of units, has been defined since 1967 in terms of a hyperfine transition of the cesium atom and the best primary frequency standards now realize it with a relative uncertainty of a few parts in 1015, which makes it the most accurately measurable physical quantity. INTERNATIONAL A...
Puosi, F; De Michele, C; Leporini, D
2013-03-28
The universal scaling between the average slow relaxation/transport and the average picosecond rattling motion inside the cage of the first neighbors has been evidenced in a variety of numerical simulations and experiments. Here, we first show that the scaling does not need information concerning the arbitrarily-defined glass transition region and relies on a single characteristic length scale a(2)(1/2) which is determined even far from that region. This prompts the definition of a novel reduced rattling amplitude (1/2) which has been investigated by extensive molecular-dynamics simulations addressing the slow relaxation, the diffusivity, and the fast cage-dynamics of both components of an atomic binary mixture. States with different potential, density, and temperature are considered. It is found that if two states exhibit coinciding incoherent van Hove function on the picosecond timescale, the coincidence is observed at long times too, including the large-distance exponential decay--a signature of heterogeneous dynamics--observed when the relaxation is slow. A major result of the present study is that the correlation plot between the diffusivity of the two components of the binary mixtures and their respective reduced rattling amplitude collapse on the same master curve. This holds true also for the structural relaxation of the two components and the unique master curve coincides with the one of the average scaling. It is shown that the breakdown of the Stokes-Einstein law exhibited by the distinct atomic species of the mixture and the monomers of a chain in a polymer melt is predicted at the same reduced rattling amplitude. Finally, we evidence that the well-known temperature/density thermodynamic scaling of the transport and the relaxation of the mixture is still valid on the picosecond timescale of the rattling motion inside the cage. This provides a link between the fast dynamics and the thermodynamic scaling of the slow dynamics. PMID:23556783
Short relaxation times but long transient times in both simple and complex reaction networks.
Henry, Adrien; Martin, Olivier C
2016-07-01
When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database 'Biomodels'. In all these systems, whether involving MA rates, Michaelis-Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ. PMID:27411726
Short relaxation times but long transient times in both simple and complex reaction networks
Henry, Adrien; Martin, Olivier C.
2016-01-01
When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database ‘Biomodels’. In all these systems, whether involving MA rates, Michaelis–Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ. PMID:27411726
Growth strains and stress relaxation in alumina scales during high temperature oxidation
Hou, P.Y.; Paulikas, A.P.; Veal, B.W.
2004-03-23
A novel X-ray technique was used, exploiting synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory, to investigate the growth stresses in {alpha}-Al{sub 2}O{sub 3}. In-situ measurements of Debye-Scherrer diffraction patterns from the scale were recorded during oxidation and cooling, and the elliptical distortion of the diffraction rings was analyzed to yield the in-plane strain. Fe-28Al, Fe-40Al, Fe-40Al-0.2Hf, Fe-20Cr-10Al and Ni-50Al (at. %) were studied. Data were acquired in air at temperatures between 950-1100 C and during cool down. In all cases, the steady stage growth strain was relatively low (<0.1%) and was either tensile or compressive depending on the alloy. A higher tensile strain often existed during the initial oxidation period when transition alumina was present. Thermal stresses imposed on NiAl by reducing the sample temperature to 950 C for a period of time showed noticeable stress relaxation by creep. Different degrees of relaxation were also found during cooling depending on alloy composition and scale microstructure. On all Fe-based alloys, the first formed {alpha}-Al{sub 2}O{sub 3} was highly textured with the degree of texture decreasing with further oxidation. The relationships between stress development, scale wrinkling, oxide phase changes, and the effect of reactive element addition on growth stresses are discussed. Results are compared with other reports of growth stresses in Al{sub 2}O{sub 3} scales.
U.S. Geological Survey
2012-01-01
This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.
Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80-100 ms before RRT, and MEPs were significantly greater in amplitude in the 60-80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619
Time to Relax: Mechanical Stress Release Guides Stem Cell Responses.
Sommerfeld, Sven D; Elisseeff, Jennifer H
2016-02-01
Stem cells integrate spatiotemporal cues, including the mechanical properties of their microenvironment, into their fate decisions. Chaudhuri et al. (2015) show that the ability of the extracellular matrix to dissipate cell-induced forces, referred to as stress-relaxation, is a key mechanical signal influencing stem cell fate and function. PMID:26849301
Tortorelli, P. F.; Specht, E. D.; More, K. L.; Hou, P. Y.
2012-08-08
Early-stage tensile stress evolution in α-Al_{2}O_{3} scales during oxidation of FeCrAlY at 1000, 1050, 1100, and 1200 °C was monitored in situ by use of synchrotron radiation. Tensile stress development as a function of oxidation temperature indicated a dynamic interplay between stress generation and relaxation. An analysis of the time dependence of the data indicated that the observed relaxation of the initial tensile stress in the oxide scales at 1100 and 1200°C is dominated by creep in the α-Al_{2}O_{3}. A thin layer of a (Fe,Cr,Al) oxide was observed at the oxide-gas interface, consistent with a mechanism whereby the conversion of (Fe,Cr,Al)_{2}O_{3} to α-Al_{2}O_{3} produces an initial tensile stress in the alumina scale.
The derivation of thermal relaxation time between two-phase bubbly flow
NASA Astrophysics Data System (ADS)
Mohammadein, S. A.
2006-03-01
Thermal relaxation time constant is derived analytically for the relaxed model with unequal phase-temperatures of a vapour bubble at saturation temperature and a non-steady temperature field around the growing vapour bubble. The energy and state equation are solved between two finite boundary conditions. Thermal relaxation time perform a good agreement with Mohammadein (in Doctoral thesis, PAN, Gdansk, 1994) and Moby Dick experiment in terms of non-equilibrium homogeneous model (Bilicki et al. in Proc R Soc Lond A428:379-397, 1990) for lower values of initial void fraction. Thermal relaxation is affected by Jacob number, superheating, initial bubble radius and thermal diffusivity.
Zellini, Francesco; Niepel, Graham; Tench, Christopher R; Constantinescu, Cris S
2009-12-01
Recent work in multiple sclerosis, focusing on neuropathological abnormalities, found a frequent and severe hypothalamic involvement. The possible clinical implications are disturbances in sleep and sexual activity, depression, memory impairment and fatigue. Despite this there are no magnetic resonance imaging studies focusing on in vivo hypothalamic pathology in multiple sclerosis. Our objective was to investigate magnetic resonance imaging-detectable abnormalities related to pathological changes in the hypothalamus of patients with multiple sclerosis, and to subsequently explore the relationship with fatigue. We used T1 relaxation time as a sensitive measure of pathology. Using region of interest analysis, median T1 values in the hypothalamus were measured in 44 relapsing-remitting multiple sclerosis patients and in 13 healthy controls. Fatigue was assessed using the Fatigue Severity Scale, and patients were divided in two subgroups, fatigued and non-fatigued, according to Fatigue Severity Scale scores. We found a significantly higher T1 relaxation time in the hypothalamus of multiple sclerosis patients compared with controls (p = 0.027). There was a significant correlation between T1 values and fatigue severity (rho 0.437, p = 0.008), and median T1 values were different among the study groups. Our results show that pathological involvement of the hypothalamus in relapsing-remitting multiple sclerosis is detectable using magnetic resonance imaging, and that the pathology measured by quantitative T1 might reflect fatigue. PMID:19995847
NASA Astrophysics Data System (ADS)
Sivagurunathan, P.; Dharmalingam, K.; Ramachandran, K.; Prabhakar Undre, B.; Khirade, P. W.; Mehrotra, S. C.
2006-05-01
Dielectric relaxation measurements on alkyl methacrylates (methyl methacrylate, ethyl methacrylate and butyl methacrylate) with 1-alcohols (1-propanol, 1-pentanol, 1-heptanol, 1-octanol and 1-decanol) have been carried out using time-domain reflectometry (TDR) over the frequency range 10 MHz to 20 GHz at 303 K for different concentrations of alcohols. The dielectric parameters, namely the static dielectric constant (ɛ0), the dielectric constant at microwave frequencies (ɛ∞) and the relaxation time (τ) were determined. The Kirkwood correlation factor, which contains information regarding solute-solvent interaction and corresponding structural information, the excess permittivity and the excess inverse relaxation time were also determined. The values of the static dielectric constant and the relaxation time increase with the percentage of alkyl methacrylates in the alcohol, whereas the static dielectric constant decreases and the relaxation time increases with an increase in the alkyl chain length of both the methacrylates and the alcohols.
T2 relaxation time is related to liver fibrosis severity
Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter
2016-01-01
Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi
Vandewalle, S.
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Casalini, R; Roland, C M
2014-08-22
An equation is derived that expresses the thermodynamic scaling exponent, γ, which superposes relaxation times τ and other measures of molecular mobility determined over a range of temperatures and densities, in terms of static physical quantities. The latter are available in the literature or can be measured at ambient pressure. We show for 13 materials, both molecular liquids and polymers, that the calculated γ are equivalent to the scaling exponents obtained directly by superpositioning. The assumptions of the analysis are that the glass transition T(g) is isochronal (i.e., τ(α) is constant at T(g), which is true by definition) and that the pressure derivative of the glass temperature is given by the first Ehrenfest relation. The latter, derived assuming continuity of the entropy at the glass transition, has been corroborated for many glass-forming materials at ambient pressure. However, we find that the Ehrenfest relation breaks down at elevated pressure; this limitation is of no consequence herein, since the appeal of the new equation is its applicability to ambient-pressure data. The ability to determine, from ambient-pressure measurements, the scaling exponent describing the high-pressure dynamics extends the applicability of this approach to a broader range of materials. Since γ is linked to the intermolecular potential, the new equation thus provides ready access to information about the forces between molecules. PMID:25192107
Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation.
Brown, Keith A; Vassiliou, Christophoros C; Issadore, David; Berezovsky, Jesse; Cima, Michael J; Westervelt, R M
2010-10-01
The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate. We find that in the motional averaging regime T2CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2CP∝N-0.44 for aggregates with d = 2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times. PMID:20689678
Times Scales in Dense Granular Material
NASA Astrophysics Data System (ADS)
Zhang, Duan
2005-07-01
Forces in dense granular material are transmitted through particle contacts. The evolution of the contact stress is directly related to dynamical interaction forces between particles. Since particle contacts in a dense granular material are random, a statistical method is employed to describe and model their motions. It is found that the time scales of particle contacts determinate stress relaxation and the fluid- like or solid-like behavior of the material. Numerical simulations are performed to calculate statistical properties of particle interactions. Using results from the numerical simulations we examine the relationship between the averaged local deformation field and the macroscopic deformation field. We also examine the relationship between the averaged local interaction force and the averaged stress field in the material. Validities of the Voigt and the Reuss assumptions are examined; and extensions to these assumptions are studied. Numerical simulations show that tangential frictions between particles significantly increase the contact stress, while the direct contribution of the tangential force to the stress is small. This puzzling observation can be explained by dependency of the relaxation time on the tangential friction.
Tuncer, Enis
2006-01-01
The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q > 0:15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.
Tuncer, Enis; Bowler, Nicola; Youngs, I. J.; Lymer, K. P.
2006-01-01
The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1 mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q>0.15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.
Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Grunewald, E.; Knight, R.
2008-12-01
The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over
NASA Astrophysics Data System (ADS)
Tsuchida, Hidetsugu; Mizuno, Shohei; Tsutsumi, Hironori; Kinomura, Atsushi; Suzuki, Ryoichi; Itoh, Akio
2016-05-01
Relaxation dynamics of ion damage in fused quartz is investigated by our newly developed pump–probe technique combining energetic ions (pump) with slow positrons (probe). This method enables determination of time-resolved positron lifetime. We study the time-dependent relaxation of ion damage, by analyzing the intensity variation in the ortho-positronium lifetime component associated with irradiation damage. For irradiation with 160 keV He ions in the temperature range of 300–573 K, the positron annihilation lifetime spectra are obtained as a function of time after ion irradiation. We observe that the relaxation time of ion damage is strongly influenced by specimen temperatures; the relaxation time constant is approximately 400 ms at room temperature (300 K) and becomes smaller with an increasing temperature. Analysis for the effect of temperature on damage accumulation reveals that the activation energy for thermal annealing of the observed damage is approximately 0.1 eV.
Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction
NASA Astrophysics Data System (ADS)
Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo
2016-07-01
In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.
Variable thermal properties and thermal relaxation time in hyperbolic heat conduction
NASA Technical Reports Server (NTRS)
Glass, David E.; Mcrae, D. Scott
1989-01-01
Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.
Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer
2007-09-28
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules. PMID:17902934
NASA Astrophysics Data System (ADS)
Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer
2007-09-01
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency β and γ processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the β absorption is swallowed by the α in the glass-liquid transition, the γ absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the α absorption vanishes appearing the αγ relaxation. Two characteristics of α absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the αγ process. Williams' ansatz seems to hold for these topologically complex macromolecules.
NASA Astrophysics Data System (ADS)
Kikuchi, Yuta; Tsumura, Kyosuke; Kunihiro, Teiji
2016-05-01
We give a quantitative analysis of the dynamical properties of fermionic cold atomic gases in normal phase, such as the shear viscosity, heat conductivity, and viscous relaxation times, using the novel microscopic expressions derived by the renormalization group (RG) method, where the Boltzmann equation is faithfully solved to extract the hydrodynamics without recourse to any ansatz. In particular, we examine the quantum statistical effects, temperature dependence, and scattering-length dependence of the transport coefficients and the viscous relaxation times. The numerical calculation shows that the relation τπ = η / P, which is derived in the relaxation-time approximation (RTA) and is used in most of the literature, turns out to be satisfied quite well, while the similar relation for the viscous relaxation time τJ of the heat conductivity is satisfied only approximately with a considerable error.
Ba-ferrite particles for magnetic liquids with enhanced Neel relaxation time and loss investigations
NASA Astrophysics Data System (ADS)
Muller, R.; Hiergeist, R.; Gawalek, W.; Hoell, A.
2003-03-01
Nanometer-scale particles are interesting because of their unique magnetic properties. Barium ferrite with particle sizes ⪉ 10 nm behave superparamagnetically and show at bigger sizes the transition to single domain behaviour. Beside the particle size, the anisotropy energy K_1\\cdot V, and thus the Neel relaxation time, depends also on the amount of doping. The glass crystallisation method was used for preparation of different Ba-ferrites. Ferrofluids have been prepared using Isopar^{circledR} M or dodecane as a carrier liquid. Magnetic parameters were obtained by VSM, hysteresis losses (specific loss power) of ferrite powders by a hysteresometer at 50 Hz. Magnetic core sizes were calculated from hysteresis loops. SANS curves of a ferrofluid reveal single magnetic particles and aggregated magnetic particles with an incomplete organic shell. Figs 3, Refs 9.
Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale
NASA Astrophysics Data System (ADS)
Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.
2016-07-01
Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.
Magnetic-field dependence of Brownian and Néel relaxation times
NASA Astrophysics Data System (ADS)
Dieckhoff, Jan; Eberbeck, Dietmar; Schilling, Meinhard; Ludwig, Frank
2016-01-01
The investigation of the rotational dynamics of magnetic nanoparticles in magnetic fields is of academic interest but also important for applications such as magnetic particle imaging where the particles are exposed to magnetic fields with amplitudes of up to 25 mT. We have experimentally studied the dependence of Brownian and Néel relaxation times on ac and dc magnetic field amplitude using ac susceptibility measurements in the frequency range between 2 Hz and 9 kHz for field amplitudes up to 9 mT. As samples, single-core iron oxide nanoparticles with core diameters between 20 nm and 30 nm were used either suspended in water-glycerol mixtures or immobilized by freeze-drying. The experimentally determined relaxation times are compared with theoretical models. It was found that the Néel relaxation time decays much faster with increasing field amplitude than the Brownian one. Whereas the dependence of the Brownian relaxation time on the ac and dc field amplitude can be well explained with existing theoretical models, a proper model for the dependence of the Néel relaxation time on ac field amplitude for particles with random distribution of easy axes is still lacking. The extrapolation of the measured relaxation times of the 25 nm core diameter particles to a 25 mT ac field with an empirical model predicts that the Brownian mechanism clearly co-determines the dynamics of magnetic nanoparticles in magnetic particle imaging applications, in agreement with magnetic particle spectroscopy data.
Rotational relaxation time of polyelectrolyte xanthan chain via single molecule tracking method
NASA Astrophysics Data System (ADS)
Lee, Jeong Yong; Jung, Hyun Wook; Hyun, Jae Chun
2012-12-01
Effect of solvent viscosity on the longest rotational relaxation time of xanthan molecule has been examined using a single molecule tracking method. Incorporating inverted epi-fluorescence microscope and chargedcoupled device (CCD) camera, various features of xanthan ( i.e., radius of gyration, orientation angle, etc.) were interpreted by image processing algorithm from the captured real xanthan images. From the best-fit of the autocorrelation function on the orientation angle, the longest rotational relaxation time was effectively determined. Rotational relaxation time increases with the medium solvent viscosity due to the slow movement of xanthan molecule. It is confirmed that there is a good agreement between experiments and Brownian dynamics simulations on the relaxation patterns of xanthan chain.
Molecular motions and phase transitions. NMR relaxation times studies of several lecithins.
Bar-Adon, R; Gilboa, H
1981-01-01
The spin-lattice relaxation time, T1, and the dipolar energy relaxation time, TD, were measured as a function of temperature. The materials studied were samples of anhydrous L-dipalmitoyl lecithin, DL-dipalmitoyl lecithin, L-dimyristoyl lecithin, DL-dimyristoyl lecithin and their monohydrates, and of anhydrous egg yolk lecithin. It is shown that TD is a much more sensitive parameter than T1 for the determination of the Chapman phase transition. Comparison between T1 and TD provides information about new types of slow molecular motions below and above the phase transition temperature. It is suggested that the relaxation mechanisms for T1 and TD in the gel phase are governed by segmental motion in the phospholipid molecule. A new metastable phase was detected in dimyristoyl lecithin monohydrates. This phase could only be detected from the dipolar energy relaxation times. PMID:7225514
Difference-NMR techniques for selection of components on the basis of relaxation times
NASA Astrophysics Data System (ADS)
Harris, Douglas J.; de Azevedo, Eduardo R.; Bonagamba, Tito J.
2003-05-01
This work describes a numerical methodology to obtain more efficient relaxation filters to selectively retain or remove components based on relaxation times. The procedure uses linear combinations of spectra with various recycle or filter delays to obtain components that are both quantitative and pure. Modulation profiles are calculated assuming exponential relaxation behavior. The method is general and can be applied to a wide range of solution or solid-state NMR experiments including direct-polarization (DP), or filtered cross-polarization (CP) spectra. 13C NMR experiments on isotactic poly(1-butene) and dimethyl sulfone showed the utility of the technique for selectively suppressing peaks.
NASA Astrophysics Data System (ADS)
Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.
2016-03-01
This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (i.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.
NASA Astrophysics Data System (ADS)
Ntarlagiannis, D.; Ustra, A.; Slater, L. D.; Zhang, C.; Mendonça, C. A.
2015-12-01
In this work we present an alternative formulation of the Debye Decomposition (DD) of complex conductivity spectra, with a new set of parameters that are directly related to the continuous Debye relaxation model. The procedure determines the relaxation time distribution (RTD) and two frequency-independent parameters that modulate the induced polarization spectra. The distribution of relaxation times quantifies the contribution of each distinct relaxation process, which can in turn be associated with specific polarization processes and characterized in terms of electrochemical and interfacial parameters as derived from mechanistic models. Synthetic tests show that the procedure can successfully fit spectral induced polarization (SIP) data and accurately recover the RTD. The procedure was applied to different data sets, focusing on environmental applications. We focus on data of sand-clay mixtures artificially contaminated with toluene, and crude oil-contaminated sands experiencing biodegradation. The results identify characteristic relaxation times that can be associated with distinct polarization processes resulting from either the contaminant itself or transformations associated with biodegradation. The inversion results provide information regarding the relative strength and dominant relaxation time of these polarization processes.
Time-dependent Jahn-Teller problem: Phonon-induced relaxation through conical intersection
Pae, Kaja Hizhnyakov, Vladimir
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
NASA Astrophysics Data System (ADS)
Larini, L.; Ottochian, A.; de Michele, C.; Leporini, D.
2008-01-01
If liquids, polymers, bio-materials, metals and molten salts can avoid crystallization during cooling or compression, they freeze into a microscopically disordered solid-like state, a glass. On approaching the glass transition, particles become trapped in transient cages-in which they rattle on picosecond timescales-formed by their nearest neighbours; the particles spend increasing amounts of time in their cages as the average escape time, or structural relaxation time τα, increases from a few picoseconds to thousands of seconds through the transition. Owing to the huge difference between relaxation and vibrational timescales, theoretical studies addressing the underlying rattling process have challenged our understanding of the structural relaxation. Numerical and experimental studies on liquids and glasses support the theories, but not without controversies (for a review see ref. 21). Here we show computer simulations that, when compared with experiments, reveal the universal correlation of the structural relaxation time (as well as the viscosity η) and the rattling amplitude from glassy to low-viscosity states. According to the emerging picture the glass softens when the rattling amplitude exceeds a critical value, in agreement with the Lindemann criterion for the melting of crystalline solids and the free-volume model.
Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation
NASA Astrophysics Data System (ADS)
Hashiba, K.; Fukui, K.
2016-07-01
To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.
Relaxing a constraint on the number of messengers in a low-scale gauge mediation
Sato, Ryosuke; Yonekura, Kazuya; Yanagida, T. T.
2010-02-15
We propose a mechanism for relaxing a constraint on the number of messengers in low-scale gauge mediation models. The Landau pole problem for the standard-model gauge coupling constants in the low-scale gauge mediation can be circumvented by using our mechanism. An essential ingredient is a large positive anomalous dimension of messenger fields given by a large Yukawa coupling in a conformal field theory at high energies. The positive anomalous dimension reduces the contribution of the messengers to the beta function of the standard-model gauge couplings.
Time scales in cognitive neuroscience
Papo, David
2013-01-01
Cognitive neuroscience boils down to describing the ways in which cognitive function results from brain activity. In turn, brain activity shows complex fluctuations, with structure at many spatio-temporal scales. Exactly how cognitive function inherits the physical dimensions of neural activity, though, is highly non-trivial, and so are generally the corresponding dimensions of cognitive phenomena. As for any physical phenomenon, when studying cognitive function, the first conceptual step should be that of establishing its dimensions. Here, we provide a systematic presentation of the temporal aspects of task-related brain activity, from the smallest scale of the brain imaging technique's resolution, to the observation time of a given experiment, through the characteristic time scales of the process under study. We first review some standard assumptions on the temporal scales of cognitive function. In spite of their general use, these assumptions hold true to a high degree of approximation for many cognitive (viz. fast perceptual) processes, but have their limitations for other ones (e.g., thinking or reasoning). We define in a rigorous way the temporal quantifiers of cognition at all scales, and illustrate how they qualitatively vary as a function of the properties of the cognitive process under study. We propose that each phenomenon should be approached with its own set of theoretical, methodological and analytical tools. In particular, we show that when treating cognitive processes such as thinking or reasoning, complex properties of ongoing brain activity, which can be drastically simplified when considering fast (e.g., perceptual) processes, start playing a major role, and not only characterize the temporal properties of task-related brain activity, but also determine the conditions for proper observation of the phenomena. Finally, some implications on the design of experiments, data analyses, and the choice of recording parameters are discussed. PMID:23626578
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling
2015-11-01
In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.
NASA Astrophysics Data System (ADS)
Appignanesi, G. A.; Rodriguez Fris, J. A.
2009-05-01
In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints.
Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar
2000-01-01
The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere
Dielectric relaxation time of bulk water at 136-140 K, background loss and crystallization effects
NASA Astrophysics Data System (ADS)
Johari, G. P.
2005-04-01
Dielectric relaxation time, τ, of ultraviscous bulk water has been determined by analyzing its loss tangent, tanδ, data, which had been measured on heating the vapor-deposited amorphous solid water and hyperquenched glassy water in our earlier studies. [Johari, Hallbrucker, and Mayer, J. Chem. Phys. 95, 2955 (1991); 97, 5851 (1992)]. As for glasses and liquids generally, the measured tanδ of water is the sum of a frequency-independent background loss and a frequency-dependent relaxational loss. A two-frequency method is provided for determining the background loss and used for obtaining the relaxational part of tanδ. After considering the structural relaxation and crystal-nuclei growth effects, τ for water has been determined. At 136±1K, it is 2.5±0.6s when a single relaxation time is (untenably) assumed, and 42±14s when a distribution of relaxation times, a characteristic of viscous liquids, is assumed, with Davidson-Cole distribution parameter of 0.75. Structural relaxation time of ˜70s for water at 136K, which was originally estimated from the DSC endotherm [Johari, Hallbrucker, and Mayer, Nature (London) 330, 552 (1987)], has been revised to ˜33s. Temperature dependence of τ could not be determined because ultraviscous water crystallizes too rapidly to cubic ice containing stacking faults and intergranular water. The study demonstrates that water is a liquid over the 136-155K range, thus removing the basis for a recent contention on its state.
Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films
NASA Astrophysics Data System (ADS)
Mongkolsuttirat, Kittisun
Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured
The length and time scales of water's glass transitions
NASA Astrophysics Data System (ADS)
Limmer, David T.
2014-06-01
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
Mitchell, J; Chandrasekera, T C
2014-12-14
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ante(k) (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries. PMID:25494741
Mitchell, J.; Chandrasekera, T. C.
2014-12-14
The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
NASA Astrophysics Data System (ADS)
Mitchell, J.; Chandrasekera, T. C.
2014-12-01
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Kaminski, K.; Adrjanowicz, K.; Paluch, M.; Kaminska, E.
2011-06-15
Time-dependent isothermal dielectric measurements were carried out deeply in the glassy state on two very important saccharides: sucrose and trehalose. In both compounds two prominent secondary relaxation processes were identified. The faster one is an inherent feature of the whole family of carbohydrates. The slower one can also be detected in oligo- and polysaccharides. It was shown earlier that the {beta} process is the Johari-Goldstein (JG) relaxation coupled to motions of the glycosidic linkage, while the {gamma} relaxation originates from motions of the exocyclic hydroxymethyl unit. Recently, it was shown that the JG relaxation process can be used to determine structural relaxation times in the glassy state [R. Casalini and C. M. Roland, Phys. Rev. Lett. 102, 035701 (2009)]. In this paper we present the results of an analysis of the data obtained during aging using two independent approaches. The first was proposed by Casalini and Roland, and the second one is based on the variation of the dielectric strength of the secondary relaxation process during aging [J. K. Vij and G. Power, J. Non-Cryst. Solids 357, 783 (2011)]. Surprisingly, we found that the estimated structural relaxation times in the glassy state of both saccharides are almost the same, independent of the type of secondary mode. This finding calls into question the common view that secondary modes of intramolecular origin do not provide information about the dynamics of the glassy state.
Time Scales in the Approach to Equilibrium of Macroscopic Quantum Systems
NASA Astrophysics Data System (ADS)
Goldstein, Sheldon; Hara, Takashi; Tasaki, Hal
2013-10-01
We prove two theorems concerning the time evolution in general isolated quantum systems. The theorems are relevant to the issue of the time scale in the approach to equilibrium. The first theorem shows that there can be pathological situations in which the relaxation takes an extraordinarily long time, while the second theorem shows that one can always choose an equilibrium subspace, the relaxation to which requires only a short time for any initial state.
A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation
NASA Astrophysics Data System (ADS)
Huang, Rongzong; Wu, Huiying
2014-10-01
A modified lattice Boltzmann model with multiple relaxation times (MRT) for the convection-diffusion equation (CDE) is proposed. By modifying the relaxation matrix, as well as choosing the corresponding equilibrium distribution function properly, the present model can recover the CDE with anisotropic diffusion coefficient with no deviation term even when the velocity vector varies generally with space or time through the Chapman-Enskog analysis. This model is firstly validated by simulating the diffusion of a Gaussian hill, which demonstrates it can handle the anisotropic diffusion problem correctly. Then it is adopted to calculate the longitudinal dispersion coefficient of the Taylo-Aris dispersion. Numerical results show that the present model can further reduce the numerical error under the condition of non-zero velocity vector, especially when the dimensionless relaxation time is relatively large.
Option pricing during post-crash relaxation times
NASA Astrophysics Data System (ADS)
Dibeh, Ghassan; Harmanani, Haidar M.
2007-07-01
This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black-Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.
NASA Astrophysics Data System (ADS)
Waldmann, O.; Carver, G.; Dobe, C.; Biner, D.; Sieber, A.; Güdel, H. U.; Mutka, H.; Ollivier, J.; Chakov, N. E.
2006-01-01
Time-resolved inelastic neutron scattering measurements on an array of single-crystals of the single-molecule magnet Mn12ac are presented. The data facilitate a spectroscopic investigation of the slow relaxation of the magnetization in this compound in the time domain.
NASA Astrophysics Data System (ADS)
Rottler, Jörg
2016-08-01
Relaxation times in polymer glasses are computed with molecular dynamics simulations of a coarse-grained polymer model during creep and constant strain rate deformation. The dynamics is governed by a competition between physical aging that increases relaxation times and applied load or strain rate which accelerates dynamics. We compare the simulation results quantitatively to two recently developed theories of polymer deformation, which treat aging and rejuvenation in an additive manner. Through stress release and strain rate reversal simulations, we then show that the quantity governing mechanical rejuvenation is the rate of irreversible work performed on the polymer.
Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems
NASA Astrophysics Data System (ADS)
Li, Yeping; Zhou, Zhiming
2015-05-01
In this paper, we consider the multi-dimensional bipolar nonisentropic Euler-Poisson systems, which model various physical phenomena in semiconductor devices, plasmas and channel proteins. We mainly study the relaxation-time limit of the initial value problem for the bipolar full Euler-Poisson equations with well-prepared initial data. Inspired by the Maxwell iteration, we construct the different approximation states for the case τσ = 1 and σ = 1, respectively, and show that periodic initial-value problems of the certain scaled bipolar nonisentropic Euler-Poisson systems in the case τσ = 1 and σ = 1 have unique smooth solutions in the time interval where the classical energy transport equation and the drift-diffusive equation have smooth solution. Moreover, it is also obtained that the smooth solutions converge to those of energy-transport models at the rate of τ2 and those of the drift-diffusive models at the rate of τ, respectively. The proof of these results is based on the continuation principle and the error estimates.
Direct Visualization of Short Transverse Relaxation Time Component (ViSTa)
Oh, Se-Hong; Bilello, Michel; Schindler, Matthew; Markowitz, Clyde E.; Detre, John A.; Lee, Jongho
2013-01-01
White matter of the brain has been demonstrated to have multiple relaxation components. Among them, the short transverse relaxation time component (T2 < 40 ms; T2* < 25 ms at 3T) has been suggested to originate from myelin water whereas long transverse relaxation time components have been associated with axonal and/or interstitial water. In myelin water imaging, T2 or T2* signal decay is measured to estimate myelin water fraction based on T2 or T2* differences among the water components. This method has been demonstrated to be sensitive to demyelination in the brain but suffers from low SNR and image artifacts originating from ill-conditioned multi-exponential fitting. In this study, a novel approach that selectively acquires short transverse relaxation time signal is proposed. The method utilizes a double inversion RF pair to suppress a range of long T1 signal. This suppression leaves short T2* signal, which has been suggested to have short T1, as the primary source of the image. The experimental results confirms that after suppression of long T1 signals, the image is dominated by short T2* in the range of myelin water, allowing us to directly visualize the short transverse relaxation time component in the brain. Compared to conventional myelin water imaging, this new method of direct visualization of short relaxation time component (ViSTa) provides high quality images. When applied to multiple sclerosis patients, chronic lesions show significantly reduced signal intensity in ViSTa images suggesting sensitivity to demyelination. PMID:23796545
The effects of bone on proton NMR relaxation times of surrounding liquids
NASA Technical Reports Server (NTRS)
Davis, C. A.; Genant, H. K.; Dunham, J. S.
1986-01-01
Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.
Strange scaling and relaxation of finite-size fluctuation in thermal equilibrium
NASA Astrophysics Data System (ADS)
Yamaguchi, Yoshiyuki Y.
2016-07-01
We numerically exhibit two strange phenomena of finite-size fluctuation in thermal equilibrium of a paradigmatic long-range interacting system having a second-order phase transition. One is a nonclassical finite-size scaling at the critical point, which differs from the prediction by statistical mechanics. With the aid of this strange scaling, the scaling theory for infinite-range models conjectures the nonclassical values of critical exponents for the correlation length. The other is relaxation of the fluctuation strength from one level to another in spite of being in thermal equilibrium. A scenario is proposed to explain these phenomena from the viewpoint of the Casimir invariants and their nonexactness in finite-size systems, where the Casimir invariants are conserved in the Vlasov dynamics describing the long-range interacting systems in the limit of large population. This scenario suggests appearance of the reported phenomena in a wide class of isolated long-range interacting systems.
Strange scaling and relaxation of finite-size fluctuation in thermal equilibrium.
Yamaguchi, Yoshiyuki Y
2016-07-01
We numerically exhibit two strange phenomena of finite-size fluctuation in thermal equilibrium of a paradigmatic long-range interacting system having a second-order phase transition. One is a nonclassical finite-size scaling at the critical point, which differs from the prediction by statistical mechanics. With the aid of this strange scaling, the scaling theory for infinite-range models conjectures the nonclassical values of critical exponents for the correlation length. The other is relaxation of the fluctuation strength from one level to another in spite of being in thermal equilibrium. A scenario is proposed to explain these phenomena from the viewpoint of the Casimir invariants and their nonexactness in finite-size systems, where the Casimir invariants are conserved in the Vlasov dynamics describing the long-range interacting systems in the limit of large population. This scenario suggests appearance of the reported phenomena in a wide class of isolated long-range interacting systems. PMID:27575102
A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
NASA Astrophysics Data System (ADS)
Li, Kai; Zhong, Cheng-Wen
2015-05-01
This paper presents a coupling compressible model of the lattice Boltzmann method. In this model, the multiple-relaxation-time lattice Boltzmann scheme is used for the evolution of density distribution functions, whereas the modified single-relaxation-time (SRT) lattice Boltzmann scheme is applied for the evolution of potential energy distribution functions. The governing equations are discretized with the third-order Monotone Upwind Schemes for scalar conservation laws finite volume scheme. The choice of relaxation coefficients is discussed simply. Through the numerical simulations, it is found that compressible flows with strong shocks can be well simulated by present model. The numerical results agree well with the reference results and are better than that of the SRT version. Project supported by the Innovation Fund for Aerospace Science and Technology of China (Grant No. 2009200066) and the Aeronautical Science Fund of China (Grant No. 20111453012).
NASA Astrophysics Data System (ADS)
Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu
2016-05-01
One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).
Radtke, Gregg A; Hadjiconstantinou, Nicolas G
2009-05-01
We present an efficient variance-reduced particle simulation technique for solving the linearized Boltzmann transport equation in the relaxation-time approximation used for phonon, electron, and radiative transport, as well as for kinetic gas flows. The variance reduction is achieved by simulating only the deviation from equilibrium. We show that in the limit of small deviation from equilibrium of interest here, the proposed formulation achieves low relative statistical uncertainty that is also independent of the magnitude of the deviation from equilibrium, in stark contrast to standard particle simulation methods. Our results demonstrate that a space-dependent equilibrium distribution improves the variance reduction achieved, especially in the collision-dominated regime where local equilibrium conditions prevail. We also show that by exploiting the physics of relaxation to equilibrium inherent in the relaxation-time approximation, a very simple collision algorithm with a clear physical interpretation can be formulated. PMID:19518597
Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite.
Nguyen, Triet S; Parkhill, John
2016-09-01
We apply our recently developed nonequilibrium real-time time-dependent density functional theory (OSCF2) to investigate the transient spectrum and relaxation dynamics of the tetragonal structure of methylammonium lead triiodide perovskite (MAPbI3). We obtain an estimate of the interband relaxation kinetics and identify multiple ultrafast cooling channels for hot electrons and hot holes that largely corroborate the dual valence-dual conduction model. The computed relaxation rates and absorption spectra are in good agreement with the existing experimental data. We present the first ab initio simulations of the perovskite transient absorption (TA) spectrum, substantiating the assignment of induced bleaches and absorptions including a Pauli-bleach signal. This paper validates both OSCF2 as a good qualitative model of electronic dynamics, and the dominant interpretation of the TA spectrum of this material. PMID:27523194
Separation of Time Scales in a Quantum Newton's Cradle.
van den Berg, R; Wouters, B; Eliëns, S; De Nardis, J; Konik, R M; Caux, J-S
2016-06-01
We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior. PMID:27314723
Separation of Time Scales in a Quantum Newton's Cradle
NASA Astrophysics Data System (ADS)
van den Berg, R.; Wouters, B.; Eliëns, S.; De Nardis, J.; Konik, R. M.; Caux, J.-S.
2016-06-01
We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior.
NASA Astrophysics Data System (ADS)
Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.
2015-08-01
Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including
Hot-electron energy relaxation time in Ga-doped ZnO films
Šermukšnis, E. Liberis, J.; Ramonas, M.; Matulionis, A.; Toporkov, M.; Liu, H. Y.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2015-02-14
Hot-electron energy relaxation time is deduced for Ga-doped ZnO epitaxial layers from pulsed hot-electron noise measurements at room temperature. The relaxation time increases from ∼0.17 ps to ∼1.8 ps when the electron density increases from 1.4 × 10{sup 17 }cm{sup −3} to 1.3 × 10{sup 20 }cm{sup −3}. A local minimum is resolved near an electron density of 1.4 × 10{sup 19 }cm{sup −3}. The longest energy relaxation time (1.8 ps), observed at the highest electron density, is in good agreement with the published values obtained by optical time-resolved luminescence and absorption experiments. Monte Carlo simulations provide a qualitative interpretation of our observations if hot-phonon accumulation is taken into account. The local minimum of the electron energy relaxation time is explained by the ultrafast plasmon-assisted decay of hot phonons in the vicinity of the plasmon–LO-phonon resonance.
NASA Astrophysics Data System (ADS)
Singh, Jaswinder
2013-12-01
The analysis of a three-dimensional (3-D) wavelength/time/space (W-T-S) asynchronous optical CDMA code family is presented considering MAI only under relaxed cross-correlation (λc ⩾ 1). Based on the code performance, it is shown that for code-limited systems (when W and/or T are non-prime), the number of generated codes and hence the supported users can be significantly increased by relaxing the cross-correlation constraint if a slight degradation in code performance can be tolerated.
Reassessing the single relaxation time Lattice Boltzmann method for the simulation of Darcy’s flows
NASA Astrophysics Data System (ADS)
Prestininzi, Pietro; Montessori, Andrea; La Rocca, Michele; Succi, Sauro
2016-09-01
It is shown that the single relaxation time (SRT) version of the Lattice Boltzmann (LB) equation permits to compute the permeability of Darcy’s flows in porous media within a few percent accuracy. This stands in contrast with previous claims of inaccuracy, which we relate to the lack of recognition of the physical dependence of the permeability on the Knudsen number.
Observation of extremely long spin relaxation times in an organic nanowire spin valve.
Pramanik, S; Stefanita, C-G; Patibandla, S; Bandyopadhyay, S; Garre, K; Harth, N; Cahay, M
2007-04-01
Organic semiconductors that are pi-conjugated are emerging as an important platform for 'spintronics', which purports to harness the spin degree of freedom of a charge carrier to store, process and/or communicate information. Here, we report the study of an organic nanowire spin valve device, 50 nm in diameter, consisting of a trilayer of ferromagnetic cobalt, an organic, Alq3, and ferromagnetic nickel. The measured spin relaxation time in the organic is found to be exceptionally long-between a few milliseconds and a second-and it is relatively temperature independent up to 100 K. Our experimental observations strongly suggest that the primary spin relaxation mechanism in the organic is the Elliott-Yafet mode, in which the spin relaxes whenever a carrier scatters and its velocity changes. PMID:18654265
NASA Astrophysics Data System (ADS)
Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas
2014-11-01
NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2 ≈ 0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ⩾10-8 s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.
Relaxation rate and scaling function of the critical system 3-methylpentane-nitroethane-cyclohexane.
Iwanowski, I; Mirzaev, S Z; Kaatze, U
2008-08-14
The critical system 3-methylpentane-nitroethane-cyclohexane (3-MP-NE-CH) has been investigated and compared to the limiting binary systems 3-MP-NE as well as NE-CH in order to study the degree of renormalization in the critical exponents of the ternary system. The solubility curves of the 3-MP-NE-CH system have been determined at various molar ratios of the nonpolar constituents in order to obtain the plait points as a function of mixture composition. At the col point (the mixture with the lowest transition temperature) and two further plait point compositions shear viscosity, dynamic light scattering, and frequency-dependent ultrasonic attenuation coefficient measurements have been performed as a function of temperature near the critical temperatures. The fluctuation correlation length and the relaxation rate of fluctuations display power law behavior as a function of reduced temperature, with universal critical exponents nu = 0.63 and nuZ(0) = 1.928, respectively, as characteristic for binary critical mixtures. In conformity with the 3-MP-NE and NE-CH critical mixtures the scaling function in the ultrasonic spectra nicely agrees with the empirical scaling function of the Bhattacharjee-Ferrell dynamic scaling theory. Hence with respect to power laws and scaling the 3-MP-NE-CH system behaves like a quasibinary mixture. The individual amplitudes of the relaxation rate show a minimum at the col point composition, corresponding with a maximum in the background viscosity of the liquids. The amount of the adiabatic coupling constant g, derived from the amplitudes in the ultrasonic spectra, increases monotonously when going from NE-CH (/g/ = 0.1) to 3-MP-NE (/g/ = 0.26). PMID:18715094
NASA Astrophysics Data System (ADS)
Koda, T.; Mitani, S.; Takahashi, S.; Mizuguchi, M.; Sato, K.; Konno, T. J.; Maekawa, S.; Takanashi, K.
2016-02-01
We study the enhanced spin relaxation time of Au nanoparticles in nanopillar-shaped double-barrier junction devices with a stacked Fe/MgO/Au-nanoparticle/MgO/Fe structure. The size of Au nanoparticles located in a current path is deduced from a transmission electron micrograph and the Coulomb blockade behavior in the current-voltage characteristics of the devices. A finite tunnel magnetoresistance (TMR) is observed above a critical current and is attributable to spin accumulation in Au nanoparticles. Based on a simple model of TMR due to spin accumulation in a nanoparticle, the spin relaxation time τs is estimated from the magnitude of the critical current. The temperature and bias-voltage region where TMR appears are determined from systematic observations, showing that the appearance of TMR is not associated with the Coulomb blockade but with spin accumulation. We find that the obtained τs is anomalously extended (˜800 ns) at low temperatures and abruptly decreases above a critical temperature. Interestingly, the critical temperature strongly depends on the size of the Au nanoparticles and is much lower than the effective temperature corresponding to the discrete energy spacing. A theoretical analysis for the spin relaxation of electrons with discrete energy levels shows that not only the anomalously extended spin relaxation time, but also the strong temperature dependence of τs arise from the broadening of discrete energy levels due to coupling with phonons in the surrounding matrix. Numerical calculations using reasonable parameter values well reproduce the observed temperature and size dependence of the spin relaxation time in Au nanoparticles.
On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain
NASA Astrophysics Data System (ADS)
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt
2013-06-01
We present and demonstrate a new method for on-chip Brownian relaxation measurements on magnetic nanobeads in the time domain using magnetoresistive sensors. The beads are being magnetized by the sensor self-field arising from the bias current passed through the sensors and thus no external magnetic fields are needed. First, the method is demonstrated on Brownian relaxation measurements of beads with nominal sizes of 40, 80, 130, and 250 nm. The results are found to compare well to those obtained by an already established measurement technique in the frequency domain. Next, we demonstrate the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s, which is about six times faster than in the frequency domain. This substantial reduction of the measurement time allows for continuous monitoring of the bead dynamics vs. time and opens for time-resolved studies, e.g., of binding kinetics.
Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues
NASA Astrophysics Data System (ADS)
Lewa, Czesław J.; Lewa, Maria
Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.
Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots
Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen
2014-04-07
We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.
Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer.
Shushakov, O A
1996-01-01
A surface NMR investigation of groundwater in the geomagnetic field is under study. To detect the surface NMR a wire loop with a diameter of about 100 m, being an antenna for both an exciting field source and the NMR signal receiver, is laid out on the ground. A sinusoidal current pulse with a rectangular envelope is passed through the loop to excite the NMR signal. The carrier frequency of the oscillating current in this pulse is equal to the Larmor frequency of protons in the Earth's magnetic field. The current amplitude is changed up to 200 amps and the pulse duration is fixed and is equal to 40 ms. The exciting pulse is followed by an induction emf signal caused by the Larmor nuclear precession in geomagnetic field. The relaxation times T1, T2, and T2* were measured by the surface NMR for both groundwater in medium to coarse-grained sand at borehole and for bulk water under the ice surface of frozen lake. To determine T1, a longitudinal interference in experiments with repeated pulses was measured. A sequence with equal period between equal excitation pulses was used. The relaxation times T1, T2, measured for bulk water under the ice of the Ob reservoir were 1.0 s and 0.7 s, respectively. To estimate an influence of dissolved oxygen T1 of the same water at the same temperature was measured by lab NMR with and without pumping of oxygen. The relaxation time T1 measured for water in the medium to coarse-grained sand is 0.65 s. The relaxation time T2 estimated by spin echo sequence is found to be equal to 0.15 s. The relaxation time T2* is found to be about 80 ms. This result contradicts published earlier phenomenological correlation between relaxation time T2* and grain size of water-bearing rock. This could be as a result of unsound approach based on grain size or influence of paramagnetic impurities. PMID:8970122
NASA Astrophysics Data System (ADS)
Bolinger, Joshua C.; Hayes, Sophia C.; Reid, Philip J.
2004-09-01
Ultrafast time-resolved infrared absorption studies of aqueous chlorine dioxide (OClO) photochemistry are reported. Following photoexcitation at 401 nm, the evolution in optical density at frequencies between 1000 to 1100 cm-1 is monitored to investigate vibrational energy deposition and relaxation along the asymmetric-stretch coordinate following the reformation of ground-state OClO via geminate recombination of the primary photofragments. The measured kinetics are compared to two proposed models for the vibrational-relaxation dynamics along the asymmetric-stretch coordinate. This comparison demonstrates that the perturbation model derived from molecular dynamics studies is capable of qualitatively reproducing the observed kinetics, where the collisional model employed in previous UV-pump, visible probe experiments demonstrates poor agreement with experiment. The ability of the perturbation model to reproduce the optical-density evolution observed in these studies demonstrates that for aqueous OClO, frequency dependence of the solvent-solute coupling is important in defining the level-dependent vibrational relaxation rates along the asymmetric-stretch coordinate. The absence of optical-density evolution corresponding to the population of higher vibrational levels (n>8) along the asymmetric-stretch coordinate suggests that following geminate recombination, energy is initially deposited into a local Cl-O stretch, with the relaxation of vibrational energy from this coordinate providing for delayed vibrational excitation of the asymmetric- and symmetric-stretch coordinates relative to geminate recombination, as previously observed.
Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique
NASA Astrophysics Data System (ADS)
Udayakumar, K.; Sujatha, N.
2015-03-01
Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.
NASA Technical Reports Server (NTRS)
Spodick, D. H.; Quarry, V. M.; Khan, A. H.
1974-01-01
Systolic and diastolic time intervals in 14 cardiac patients with pulsus alternans revealed significant alternation of preinjection period (PEP), isovolumic contraction time (IVCT), left ventricular ejection time (LVET), ejection time index (ETI), PEP/LVET, and carotid dD/dt with better functional values in the strong beats. Cycle length, duration of electromechanical systole (EMS) and total diastole, i.e., isovolumic relaxation period (IRP) and diastolic filling period (DFP) occurred in 7 out of 8 patients. These diastolic intervals alternated reciprocally such that the IRP of the strong beats encroached upon the DFP of the next (weak) beats.
Kasturi, S R; Chang, D C; Hazlewood, C F
1980-01-01
The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530
The T1 ρ13C spin-lattice relaxation time of helical polyguanidines
NASA Astrophysics Data System (ADS)
Lim, A. R.; Stewart, J. R.; Novak, B. M.
1999-03-01
The solid state dynamics of three helical polyguanidines differing only in their stereochemistry was investigated by 13C CP/MAS NMR. From these studies, the structures of the polyguanidines were confirmed, and the 13C spin-lattice relaxation times in the rotating frame were measured. The relaxation times of all the polyguanidines indicated that they undergo fast motions, i.e. motions on the fast side of the T1 ρ minimum. The main chain carbon of polyguanidine I-( R/ S), with equal amounts of ( R) and ( S) chiral side chains, has higher activation energy, 10.7 kJ/mol, than the analogous polymers with enantiomerically pure side chains ( I-( R) and I-( S)), 5.1 kJ/mol.
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang; Kodama, Takeshi; Koide, Tomoi; Rischke, Dirk H.
2011-02-01
The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τΠ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and τΠ and ζ are related as τΠ=ζ/[β{(1/3-cs2)(ɛ+P)-2(ɛ-3P)/9}], where ɛ, P, and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τΠ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.
Differences in Patellar Cartilage Thickness, Transverse Relaxation Time, and Deformational Behavior
Farrokhi, Shawn; Colletti, Patrick M.; Powers, Christopher M.
2016-01-01
Background The origin of patellofemoral pain (PFP) may be associated with the inability of the patellofemoral joint cartilage to absorb and distribute patellofemoral joint forces. Hypothesis When compared with a pain-free control group, young active women with PFP will demonstrate differences in their baseline patellar cartilage thickness and transverse (T2) relaxation time, as well as a less adaptive response to an acute bout of joint loading. Study Design Controlled laboratory study; Level of evidence, 3. Methods Ten women between the ages of 23 to 37 years with PFP and 10 sex-, age-, and activity-matched pain-free controls participated. Quantitative magnetic resonance imaging of the patellofemoral joint was performed at baseline and after participants performed 50 deep knee bends. Differences in baseline cartilage thickness and T2 relaxation time, as well as the postexercise change in patellar cartilage thickness and T2 relaxation time, were compared between groups. Results Individuals with PFP demonstrated reductions in baseline cartilage thickness of 14.0% and 14.1% for the lateral patellar facet and total patellar cartilage, respectively. Similarly, individuals with PFP exhibited significantly lower postexercise cartilage thickness change for the lateral patellar facet (2.1% vs 8.9%) and the total patellar cartilage (4.4% vs 10.0%) when compared with the control group. No group differences in baseline or postexercise change in T2 relaxation time were found. Conclusion The findings suggest that a baseline reduction in patellar cartilage thickness and a reduced deformational behavior of patellar cartilage following an acute bout of loading are associated with presence of PFP symptoms. PMID:20962335
Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times.
Seta, Takeshi; Rojas, Roberto; Hayashi, Kosuke; Tomiyama, Akio
2014-02-01
In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision operator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method (IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that the relaxation time for the antisymmetric part controls the velocity gradient, the boundary velocity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework exactly agree with those of the multirelaxation time (MRT). The TRT is as effective in removing the boundary slip as the MRT. We demonstrate analytically and numerically that the error of the boundary velocity is caused by the smoothing technique using the δ function used in the interpolation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the implicit correction method with the TRT succeeds in preventing the flow penetration through the solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and the separation points calculated by the present IB-LBM agree well with previous studies at Re = 10, 20, and 40. PMID:25353605
Stability of Rasch Scales over Time
ERIC Educational Resources Information Center
Taylor, Catherine S.; Lee, Yoonsun
2010-01-01
Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items.…
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L.
2014-01-21
The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Extensional Relaxation Times and Pinch-off Dynamics of Dilute Polymer Solutions
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Zhang, Yiran; Jimenez, Leidy; Sharma, Vivek
2015-11-01
We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional viscosity of weakly elastic, polymeric complex fluids with low shear viscosity η< 20 mPa .s and relatively short relaxation time, λ <1 ms. Characterization of elastic effects and extensional relaxation times in these dilute solutions is beyond the range measurable in the standard geometries used in commercially available shear and extensional rheometers (including CaBER, capillary breakup extensional rheometer). As the radius of the neck that connects a sessile drop to a nozzle is detected optically, and the extensional response for viscoelastic fluids is characterized by analyzing their elastocapillary self-thinning, we refer to this technique as optically-detected elastocapillary self-thinning dripping-onto-substrate (ODES-DOS) extensional rheometry.
What controls the relaxation time? Lessons learnt from simple liquids' quasiuniversality
NASA Astrophysics Data System (ADS)
Dyre, Jeppe
2013-03-01
The relaxation time of a supercooled liquid is extremely temperature and density dependent, approaching hours upon cooling or compression. Is this quantity controlled by the entropy, is it controlled by high-frequency elastic properties as assumed in the shoving and related elastic models, or by another physical property? It is far from certain that there is a simple and generally valid answer to this question for glass-forming liquids with quite different chemistry, but as physicists we like to think that this is the case. The talk summarizes recent results on the quasiuniversality of simple liquids, where a simple liquid is defined as a system with strong virial / potential-energy correlations in the equilibrium NVT fluctuations. Such systems, which include e.g. the Lennard-Jones liquid, have good isomorphs. An isomorph is a curve in the phase diagram along which structure, dynamics, and some thermodynamic properties in reduced units are invariant to a good approximation. It was recently conjectured that simple liquids have almost the same isomorphs in the sense that these systems are characterized by a quasiuniversal one-parameter family of reduced-coordinate constant-potential-energy manifolds encoding all isomorph invariants. The entropy is the logarithm of the area of this manifold and the high-frequency elastic properties are basically the surface's curvature. Since the relaxation time is also encoded in the manifold, both quantities will appear to ``control'' the relaxation time, as will any isomorph invariant.
Compression stress relaxation apparatus for the long-time monitoring of the incremental modulus
NASA Astrophysics Data System (ADS)
Horst, Roland H.; Stephens, Thomas S.; Coons, James E.; Winter, H. Henning
2003-11-01
A compression apparatus for aging experiments on soft rubbers and foams is presented. The sample is compressed between two parallel surfaces and held there for long-time relaxation studies. The specific purpose of the test is twofold: possible exposure of the sample to aggressive environment under compression during aging and measurement of sample modulus without unloading, i.e., while leaving the sample under constant compression at all times. To determine the restoring force in the compressed sample, the compression strain is modulated with an incremental strain while measuring the force response. The total force gives the compression modulus, and the slope of the force-strain curve allows the determination of the incremental modulus. Stress relaxation data for silicon foam, Dow Corning S-5370 RTV, with 68% void fraction are shown. The modulus of the compressed sample decays over long experimental times of several days. The decay can be described by two relaxation modes, a short mode at 1500 s and a long mode at about 105 s. The incremental modulus changes sharply in the first 1000 s (first mode) and then levels off. The apparatus consists of two self-contained components, the removable sample holder (compression jig) and the stationary test station, which performs the modulation of the strain and all measurements (restoring force and incremental modulus). This allows separation of functions. The apparatus design specifically focused on the control of the incremental strain modulation.
NASA Astrophysics Data System (ADS)
Verlet, Jan R. R.; Bragg, Arthur E.; Kammrath, Aster; Cheshnovsky, Ori; Neumark, Daniel M.
2004-11-01
Electron-nuclear relaxation dynamics are studied in Hgn- (11⩽n⩽16,n=18) using time-resolved photoelectron imaging. The excess electron in the anion uniquely occupies the p band and is excited intraband by 1.53 eV pump photons; the subsequent dynamics are monitored by photodetachment at 3.06 eV and measurement of the photoelectron images as a function of pump-probe delay. The initially excited state decays on a time scale of ˜10 ps, and subsequent relaxation dynamics reveal a smooth evolution of the photoelectron spectra towards lower electron kinetic energy over 50-100 ps. Qualitatively, the relaxation process is captured by a simple kinetic model assuming a series of radiationless transitions within a dense manifold of electronic states. All the clusters studied show similar dynamics with the exception of Hg11- in which the initially prepared state does not decay as quickly as the others.
Temperature dependence of relaxation times and temperature mapping in ultra-low-field MRI
NASA Astrophysics Data System (ADS)
Vesanen, Panu T.; Zevenhoven, Koos C. J.; Nieminen, Jaakko O.; Dabek, Juhani; Parkkonen, Lauri T.; Ilmoniemi, Risto J.
2013-10-01
Ultra-low-field MRI is an emerging technology that allows MRI and NMR measurements in microtesla-range fields. In this work, the possibilities of relaxation-based temperature measurements with ultra-low-field MRI were investigated by measuring T1 and T2 relaxation times of agarose gel at 50 μT-52 mT and at temperatures 5-45 °C. Measurements with a 3 T scanner were made for comparison. The Bloembergen-Purcell-Pound relaxation theory was combined with a two-state model to explain the field-strength and temperature dependence of the data. The results show that the temperature dependencies of agarose gel T1 and T2 in the microtesla range differ drastically from those at 3 T; the effect of temperature on T1 is reversed at approximately 5 mT. The obtained results were used to reconstruct temperature maps from ultra-low-field scans. These time-dependent temperature maps measured from an agarose gel phantom at 50 μT reproduced the temperature gradient with good contrast.
De Mey, S; Thomas, J D; Greenberg, N L; Vandervoort, P M; Verdonck, P R
2001-06-01
The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau. PMID:11356655
NASA Technical Reports Server (NTRS)
De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.
2001-01-01
The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.
Introduction to the time scale problem
Voter, A. F.
2002-01-01
As motivation for the symposium on extended-scale atomistic methods, I briefly discuss the time scale problem that plagues molecular dynamics simulations, some promising recent developments for circumventing the problem, and some remaining challenges.
NASA Astrophysics Data System (ADS)
Klein, E.; Fleitout, L.; Vigny, C.; Garaud, J. D.
2016-03-01
Megathrust earthquakes of magnitude close to 9 are followed by large scale (thousands of km) and long-lasting (decades), significant crustal and mantle deformation. This deformation can be observed at the surface and quantified with GPS measurements. Here we report on deformation observed during the 5-years time span after the 2010 Mw8.8 Maule Megathrust Earthquake (February 27, 2010) over the whole South American continent. With the first two years of those data, we use finite element modelling (FEM) to relate this deformation to slip on the plate interface and relaxation in the mantle, using a realistic layered Earth model and Burgers rheologies. Slip alone on the interface, even up to large depths, is unable to provide a satisfactory fit simultaneously to horizontal and vertical displacements. The horizontal deformation pattern requires relaxation both in the asthenosphere and in a Low Viscosity Channel along the deepest part of the plate interface and no additional Low Viscosity Wedge is required by the data. The vertical velocity pattern (intense and quick uplift over the Cordillera) is well fitted only when the channel extends deeper than 100km. Additionally, viscoelastic relaxation alone cannot explain the characteristics and amplitude of displacements over the first 200 km from the trench and aseismic slip on the fault plane is needed. This aseismic slip on the interface generates stresses, which induce additional relaxation in the mantle. In the final model, all three components (relaxation due to the coseismic slip, aseismic slip on the fault plane and relaxation due to aseismic slip) are taken into account. Our best-fit model uses slip at shallow depths on the subduction interface decreasing as function of time and includes (i) an asthenosphere extending down to 200km, with a steady-state Maxwell viscosity of 4.75 × 1018 Pa.s; and (ii) a Low Viscosity Channel along the plate interface extending from depths of 55 to 135 km with viscosities below 1018 Pa.s.
NASA Astrophysics Data System (ADS)
Klein, E.; Fleitout, L.; Vigny, C.; Garaud, J. D.
2016-06-01
Megathrust earthquakes of magnitude close to 9 are followed by large-scale (thousands of km) and long-lasting (decades), significant crustal and mantle deformation. This deformation can be observed at the surface and quantified with GPS measurements. Here we report on deformation observed during the 5 yr time span after the 2010 Mw 8.8 Maule Megathrust Earthquake (2010 February 27) over the whole South American continent. With the first 2 yr of those data, we use finite element modelling (FEM) to relate this deformation to slip on the plate interface and relaxation in the mantle, using a realistic layered Earth model and Burgers rheologies. Slip alone on the interface, even up to large depths, is unable to provide a satisfactory fit simultaneously to horizontal and vertical displacements. The horizontal deformation pattern requires relaxation both in the asthenosphere and in a low-viscosity channel along the deepest part of the plate interface and no additional low-viscosity wedge is required by the data. The vertical velocity pattern (intense and quick uplift over the Cordillera) is well fitted only when the channel extends deeper than 100 km. Additionally, viscoelastic relaxation alone cannot explain the characteristics and amplitude of displacements over the first 200 km from the trench and aseismic slip on the fault plane is needed. This aseismic slip on the interface generates stresses, which induce additional relaxation in the mantle. In the final model, all three components (relaxation due to the coseismic slip, aseismic slip on the fault plane and relaxation due to aseismic slip) are taken into account. Our best-fit model uses slip at shallow depths on the subduction interface decreasing as function of time and includes (i) an asthenosphere extending down to 200 km, with a steady-state Maxwell viscosity of 4.75 × 1018 Pa s; and (ii) a low-viscosity channel along the plate interface extending from depths of 55-135 km with viscosities below 1018 Pa s.
Shores, D.A.; Stout, J.H.; Gerberich, W.W.
1993-06-01
This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.
Longitudinal rotating frame relaxation time measurements in infarcted mouse myocardium in vivo.
Musthafa, Haja-Sherief N; Dragneva, Galina; Lottonen, Line; Merentie, Mari; Petrov, Lyubomir; Heikura, Tommi; Ylä-Herttuala, Elias; Ylä-Herttuala, Seppo; Gröhn, Olli; Liimatainen, Timo
2013-05-01
Longitudinal relaxation time in the rotating frame (T1ρ) was measured using continuous wave irradiation in normal and infarcted mouse myocardium in vivo. Significant increase in T1ρ was found after 7 days of infarction when compared with reference myocardium or in myocardium before infarction. Cine MRI and histology were performed to verify the severity of infarction. The time course of T1ρ in the infarct fits better with granulation and scar tissue formation than necrosis and edema. The results of the study show that T1ρ could potentially be a noninvasive quantitative marker for tissue remodeling after ischemic damage. PMID:22736543
Electron spin relaxation time in (110) InGaAs/InAlAs quantum wells
Yokota, Nobuhide; Yasuda, Yusuke; Ikeda, Kazuhiro; Kawaguchi, Hitoshi
2014-07-14
Electron spin relaxation time τ{sub s} in InGaAs/InAlAs quantum wells (QWs) grown on (110) and (100) InP substrates was investigated by pump-probe transmission measurements. Similar τ{sub s} of 0.83–1.0 ns were measured at room temperature for all the measured (110) and (100) QWs, indicating suppression of the D'yakonov-Perel' spin relaxation mechanism in (110) QWs is not effective in InGaAs/InAlAs QWs as opposed to GaAs/AlGaAs QWs. Contribution of the Bir-Aronov-Pikus mechanism dominant in (110) GaAs/AlGaAs QWs was found to be small in both the (110) and (100) InGaAs/InAlAs QWs from the weak dependences of τ{sub s} on pump intensity at room temperature. These results suggest that the spin relaxation mechanism dominant in InGaAs/InAlAs QWs at a temperature higher than 200 K is the Elliott-Yafet mechanism independent of the crystal orientation among the above three major mechanisms.
NASA Astrophysics Data System (ADS)
Mohan Kumar, P.; Malathi, M.; Khirade, P. W.
2009-11-01
Dielectric relaxation measurements of methyl cellulose with substituted phenols p-cresol, m-cresol and o-cresol mixture in different non-polar solvents CCl 4, benzene and 1,4-dioxan for different concentrations over the frequency range of 10 MHz-20 GHz at 303 K have been carried out using Time Domain Reflectometry (TDR). Dielectric parameters such as static permittivity ( ε0) and relaxation time ( τ) were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The dielectric constant and relaxation time were found to be high for methyl cellulose with p-cresol in CCl 4 compared with the other mixtures.
The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?
Douzery, Emmanuel J. P.; Snell, Elizabeth A.; Bapteste, Eric; Delsuc, Frédéric; Philippe, Hervé
2004-01-01
The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950–1,259 million years ago (Mya), animals diverged from choanoflagellates 761–957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642–761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be ≈100 million years more ancient than the Cambrian boundary. PMID:15494441
Costabel, Stephan; Yaramanci, Ugur
2013-04-01
[1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water
Review of time scales. [Universal Time-Ephemeris Time-International Atomic Time
NASA Technical Reports Server (NTRS)
Guinot, B.
1974-01-01
The basic time scales are presented: International Atomic Time, Universal Time, and Universal Time (Coordinated). These scales must be maintained in order to satisfy specific requirements. It is shown how they are obtained and made available at a very high level of precision.
Postmortem MRI of Human Brain Hemispheres: T2 Relaxation Times during Formaldehyde Fixation
Dawe, Robert J.; Bennett, David A.; Schneider, Julie A.; Vasireddi, Sunil K.; Arfanakis, Konstantinos
2009-01-01
Unlike in vivo imaging, postmortem MRI allows for invasive examination of the tissue specimen immediately following the MR scan. However, natural tissue decomposition and chemical fixation cause the postmortem tissue’s MRI properties to be different from those found in vivo. Moreover, these properties change as postmortem fixation time elapses. The goal of this study was to characterize the T2 relaxation changes that occur over time in cadaveric human brain hemispheres during fixation. Five hemispheres immersed in formaldehyde solution were scanned on a weekly basis for three months postmortem, and once again at six months postmortem. The T2 relaxation times were measured throughout the hemispheres. Over time, T2 values near the edges of the hemispheres decreased rapidly after death, while T2 values of deep tissue decreased more slowly. This difference is likely due to the relatively large distance from the hemisphere surface, and other barriers limiting diffusion of formaldehyde molecules to deep tissues. In addition, T2 values in deep tissue did not continuously decay to a plateau, but instead reached a minimum and then increased to a plateau. This final increase may be due to the effects of prolonged tissue decomposition, a hypothesis that is supported by numerical simulations of the fixation process. PMID:19189294
Van den Mooter, G; Augustijns, P; Kinget, R
1999-07-01
The enthalpic relaxation of three amorphous benzodiazepines, diazepam, temazepam and triazolam was studied using differential scanning calorimetry for ageing temperatures which were below the glass transition temperature, and ageing times up to 16 h. Experimental determination of the relaxation enthalpy and the heat capacity change, both accompanying the glass transition, enabled us to calculate the extent of relaxation of the amorphous drugs at specific ageing conditions. Fitting of the relaxation function to the Williams-Watts two parameter decay function led to calculation of the mean relaxation time constant tau and the molecular relaxation time distribution parameter beta. The mean relaxation time constants for the three drugs increased from approximately ten h at the glass transition temperature with more than eight orders of magnitude at 66 K below the glass transition temperature. It was found that the benzodiazepines exhibited significant molecular mobility until approximately 50 K below the glass transition temperature; below this temperature molecular mobility becomes unimportant with respect to the shelf life stability. Hence the presented procedure provides the formulation scientist with a tool to set storage conditions for amorphous drugs and glassy pharmaceutical products. PMID:10477327
The electron-phonon relaxation time in thin superconducting titanium nitride films
Kardakova, A.; Finkel, M.; Kovalyuk, V.; An, P.; Morozov, D.; Dunscombe, C.; Mauskopf, P.; Tarkhov, M.; Klapwijk, T. M.; Goltsman, G.
2013-12-16
We report on the direct measurement of the electron-phonon relaxation time, τ{sub eph}, in disordered TiN films. Measured values of τ{sub eph} are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T{sup −3} temperature dependence. The electronic density of states at the Fermi level N{sub 0} is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.
Measurement of energy relaxation time in a microwave-driven Josephson junction
NASA Astrophysics Data System (ADS)
Sun, Guozhu; Wang, Yiwen; Cao, Junyu; Chen, Jian; Ji, Zhengming; Kang, Lin; Xu, Weiwei; Yu, Yang; Han, Siyuan
2007-11-01
The switching current distributions P(I) with different sweep rates are obtained in microwave-driven current-biased Josephson tunnel junctions. We observe the resonant peak caused by microwave-assisted tunneling in P(I). By measuring the magnitude of the microwave resonant peak as a function of the sweep rate, we develop a novel method of extracting the energy relaxation time T1 of the junction. With this simple method, it is determined that T1 of a Nb/AlOx/Nb Josephson junction is approximately 0.5 µs.
A Novel Statistical Approach for Brain MR Images Segmentation Based on Relaxation Times
Ferraioli, Giampaolo; Pascazio, Vito
2015-01-01
Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets. PMID:26798631
Kalman plus weights: a time scale algorithm
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2001-01-01
KPW is a time scale algorithm that combines Kalman filtering with the basic time scale equation (BTSE). A single Kalman filter that estimates all clocks simultaneously is used to generate the BTSE frequency estimates, while the BTSE weights are inversely proportional to the white FM variances of the clocks. Results from simulated clock ensembles are compared to previous simulation results from other algorithms.
Multiple time scale methods in tokamak magnetohydrodynamics
Jardin, S.C.
1984-01-01
Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.
Time scale in quasifission reactions
Back, B.B.; Paul, P.; Nestler, J.
1995-08-01
The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.
Del Giudice, Francesco; D'Avino, Gaetano; Greco, Francesco; De Santo, Ilaria; Netti, Paolo A; Maffettone, Pier Luca
2015-02-01
A novel method to estimate the relaxation time of viscoelastic fluids, down to milliseconds, is here proposed. The adopted technique is based on the particle migration phenomenon occurring when the suspending viscoelastic fluid flows in microfluidic channels. The method is applied to measure the fluid relaxation times of two water-glycerol polymer solutions in an ample range of concentrations. A remarkable improvement in the accuracy of the measure of the relaxation time is found, as compared with experimental data obtained from shear or elongational experiments available in the literature. Good agreement with available theoretical predictions is also found. The proposed method is reliable, handy and does not need a calibration curve, opening an effective way to measure relaxation times of viscoelastic fluids otherwise not easily detectable by conventional techniques. PMID:25435258
A method for measuring the Néel relaxation time in a frozen ferrofluid
NASA Astrophysics Data System (ADS)
Tackett, Ronald J.; Thakur, Jagdish; Mosher, Nathaniel; Perkins-Harbin, Emily; Kumon, Ronald E.; Wang, Lihua; Rablau, Corneliu; Vaishnava, Prem P.
2015-08-01
We report a novel method of determining the average Néel relaxation time and its temperature dependence by calculating derivatives of the measured time dependence of temperature for a frozen ferrofluid exposed to an alternating magnetic field. The ferrofluid, composed of dextran-coated Fe3O4 nanoparticles (diameter 13.7 nm ± 4.7 nm), was synthesized via wet chemical precipitation and characterized by x-ray diffraction and transmission electron microscopy. An alternating magnetic field of constant amplitude ( H 0 = 20 kA/m) driven at frequencies of 171 kHz, 232 kHz, and 343 kHz was used to determine the temperature dependent magnetic energy absorption rate in the temperature range from 160 K to 210 K. We found that the specific absorption rate of the ferrofluid decreased monotonically with temperature over this range at the given frequencies. From these measured data, we determined the temperature dependence of the Néel relaxation time and estimate a room-temperature magnetocrystalline anisotropy constant of 40 kJ/m3, in agreement with previously published results.
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications. PMID:27376553
NASA Astrophysics Data System (ADS)
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.
NASA Astrophysics Data System (ADS)
Mahmoud, Sami; Trochet, Mickaël; Restrepo, Oscar; Mousseau, Normand
The microscopic mechanisms associated with the evolution of metallic materials are still a matter of debate as both experimental and numerical approaches fail to provide a detailed atomic picture of their time evolution. Here, we use the kinetic activation-relaxation technique (k-ART), an unbiased off-lattice kinetic Monte Carlo method with on-the-fly catalog building to overcome these limitations and follow the atomistic evolution of a 10.000-atom grain boundary Ni system over macroscopic time scales. We first characterize the kinetic properties of four different empirical potentials, the embedded atom method (EAM), the first and second modified embedded atom method (MEAM1NN and MEAM2NN respectively) and the Reax force field (ReaxFF) potentials. Comparing the energetics, the elastic effects and the diffusion mechanisms for systems with one to three vacancies and one to three self-interstitials in nickel simulated over second time scale, we conclude that ReaxFF and EAM potentials are closest to experimental values. We then proceed to study the long-time evolution of a grain boundary with the Reax forcefield and to offer a detailed description of its energy landscape, including the exact description of short and long-range effects on self-diffusion along the interface
Pressure jump relaxation setup with IR detection and millisecond time resolution
NASA Astrophysics Data System (ADS)
Schiewek, Martin; Krumova, Marina; Hempel, Günter; Blume, Alfred
2007-04-01
An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.
Theory of the ac spin valve effect: a new method to measure spin relaxation time
NASA Astrophysics Data System (ADS)
Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav
2012-02-01
Parallel (P) and antiparallel (AP) configurations of FNF junctions have, in a dc regime, different resistivities (RAP>RP), giving rise to the giant magnetoresistance (GMR) effect, which can be explained within the spin injection drift-diffusion model. We extend the model to include ac phenomena and predict new spin dynamical phenomenon; the resonant amplification and depletion of spin accumulation in the P and AP configurations, respectively. As the major new effect, the spin valve magnetoimpedance of the FNF junction oscillates with the driving ac frequency, which leads to negative GMR effect (|ZAP|<|ZP|). We show that from the spin-valve oscillation periods, measured all electrically in the GHz regime, the spin relaxation times could be extracted without any magnetic field and sample size changes (contrary to other techniques). For thin tunnel junctions the ac signal becomes pure Lorentzian, also enabling one to obtain the spin relaxation time of the N region from the signal width. This work, was published in Physical Review Letters,10, 176604 (2011).
Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.
1986-01-01
It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.
Mardini, I.A.; McCarter, R.J.; Fullerton, G.D.
1986-03-01
NMR studies of muscle have typically used muscles of mixed fiber composition and have not taken into account the metabolic state of the host. Samples of psoas (type IIB fibers) and soleus (type I fibers) muscles were obtained from 3 groups of rabbits: group C, fed regular chow; group DK fed a potassium deficient diet; and group HC fed a high cholesterol diet. The T/sub 1/ and T/sub 2/ relaxation times of psoas and soleus muscles were not significantly different for group C. Following dietary manipulation, (groups KD and HC), however, the relaxation times of the psoas and soleus muscles were significantly different. There was also a significant difference in water content of psoas muscles in groups KD and HC vs. group C but the observed differences in NMR results could be only partially accounted for by the shift in water content. The authors results suggest that (1) changes in ion or cholesterol concentration are capable of inducing changes in water bonding and structuring in muscle tissues; (2) diet must be added to the growing list of environmental factors that can cause NMR contrast changes; (3) selective use of muscles rich in one fiber type or another for NMR measurements could provide either control or diagnostic information, related to changes in body composition.
On the nonlinear variation of dc conductivity with dielectric relaxation time
NASA Astrophysics Data System (ADS)
Johari, G. P.; Andersson, Ove
2006-09-01
The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.
The Effect of Timed Relaxation on Keyboarding Achievement. Research Bulletin No. 46-B.
ERIC Educational Resources Information Center
Matthews, Doris B.
Research has shown that relaxation exercises produce physical changes in students. After relaxation exercises, students appear calmer, have reduced levels of anxiety, and are more responsive to instruction. In order to determine if relaxation exercises would improve the rate at which students learn keyboarding, a study was conducted in a South…
Going up in time and length scales in modeling polymers
NASA Astrophysics Data System (ADS)
Grest, Gary S.
Polymer properties depend on a wide range of coupled length and time scales, with unique macroscopic viscoelastic behavior stemming from interactions at the atomistic level. The need to probe polymers across time and length scales and particularly computational modeling is inherently challenging. Here new paths to probing long time and length scales including introducing interactions into traditional bead-spring models and coarse graining of atomistic simulations will be compared and discussed. Using linear polyethylene as a model system, the degree of coarse graining with two to six methylene groups per coarse-grained bead derived from a fully atomistic melt simulation were probed. We show that the degree of coarse graining affects the measured dynamic. Using these models we were successful in probing highly entangled melts and were able reach the long-time diffusive regime which is computationally inaccessible using atomistic simulations. We simulated the relaxation modulus and shear viscosity of well-entangled polyethylene melts for scaled times of 500 µs. Results for plateau modulus are in good agreement with experiment. The long time and length scale is coupled to the macroscopic viscoelasticity where the degree of coarse graining sets the minimum length scale instrumental in defining polymer properties and dynamics. Results will be compared to those obtained from simple bead-spring models to demonstrate the additional insight that can be gained from atomistically inspired coarse grained models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Hearn, E. H.
2001-12-01
Techniques for measuring displacements of the Earth's surface have recently advanced to the point where the time-dependence of postseismic deformation (as well as its spatial patterns) can be characterized for large earthquakes. Given the availability of such data (and the promise of increasingly detailed measurements from future earthquakes), describing differences in early postseismic deformation from different rheological profiles of the lithosphere is no longer just a theoretical exercise. If postseismic deformation is due to stress relaxation in a viscoelastic crust or upper mantle layer below an effectively elastic upper crust of known thickness, the viscoelastic layer thickness and viscosity (η ) may be determined independently using temporally detailed displacement observations (i.e., continuous GPS) from one or more locations. A related strategy of modeling postseismic displacements over a single time interval at several measurement points is currently used to estimate these parameters independently (e.g. Pollitz, 2001). For models of an earthquake in an elastic layer of known thickness overlying a viscoelastic halfspace, η /G (Maxwell time, or Tm) is the rate-controlling parameter. In a given location relative to the fault, displacements produced by models with various Maxwell times may all be represented with one curve, provided displacement is plotted against time/Tm. The time-depence of postseismic surface deformation even for this simple model is complicated, but the same complicated response occurs for models with identical Maxwell times. This is not so for earthquake models incorporating viscoelastic layers, however: thicker viscoelastic layers yield faster postseismic velocities early in the earthquake cycle than thinner layers with the same Maxwell time (e.g. Pollitz, 1997; Cohen, 1984). Elsasser time (proportional to η /w, where w is viscoelastic layer thickness) is often posited as a reasonable rate-governing parameter for layered
(39) K and (23) Na relaxation times and MRI of rat head at 21.1 T.
Nagel, Armin M; Umathum, Reiner; Rösler, Manuela B; Ladd, Mark E; Litvak, Ilya; Gor'kov, Peter L; Brey, William W; Schepkin, Victor D
2016-06-01
At ultrahigh magnetic field strengths (B0 ≥ 7.0 T), potassium ((39) K) MRI might evolve into an interesting tool for biomedical research. However, (39) K MRI is still challenging because of the low NMR sensitivity and short relaxation times. In this work, we demonstrated the feasibility of (39) K MRI at 21.1 T, determined in vivo relaxation times of the rat head at 21.1 T, and compared (39) K and sodium ((23) Na) relaxation times of model solutions containing different agarose gel concentrations at 7.0 and 21.1 T. (39) K relaxation times were markedly shorter than those of (23) Na. Compared with the lower field strength, (39) K relaxation times were up to 1.9- (T1 ), 1.4- (T2S ) and 1.9-fold (T2L ) longer at 21.1 T. The increase in the (23) Na relaxation times was less pronounced (up to 1.2-fold). Mono-exponential fits of the (39) K longitudinal relaxation time at 21.1 T revealed T1 = 14.2 ± 0.1 ms for the healthy rat head. The (39) K transverse relaxation times were 1.8 ± 0.2 ms and 14.3 ± 0.3 ms for the short (T2S ) and long (T2L ) components, respectively. (23) Na relaxation times were markedly longer (T1 = 41.6 ± 0.4 ms; T2S = 4.9 ± 0.2 ms; T2L = 33.2 ± 0.2 ms). (39) K MRI of the healthy rat head could be performed with a nominal spatial resolution of 1 × 1 × 1 mm(3) within an acquisition time of 75 min. The increase in the relaxation times with magnetic field strength is beneficial for (23) Na and (39) K MRI at ultrahigh magnetic field strength. Our results demonstrate that (39) K MRI at 21.1 T enables acceptable image quality for preclinical research. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27061712
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter
NASA Astrophysics Data System (ADS)
Johnson, W. R.; Nilsen, J.
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.
Field, Timothy R
2014-11-01
Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties. PMID:25493776
7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Zeghib, Nadir; Grucker, Daniel
2001-09-01
Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.
Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study
NASA Astrophysics Data System (ADS)
Brommer, Peter; Béland, Laurent Karim; Joly, Jean-François; Mousseau, Normand
2014-10-01
Vacancy diffusion and clustering processes in body-centered-cubic (bcc) Fe are studied using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities. For monovacancies and divacancies, k-ART recovers previously published results while clustering in a 50-vacancy simulation box agrees with experimental estimates. Applying k-ART to the study of clustering pathways for systems containing from one to six vacancies, we find a rich set of diffusion mechanisms. In particular, we show that the path followed to reach a hexavacancy cluster influences greatly the associated mean-square displacement. Aggregation in a 50-vacancy box also shows a notable dispersion in relaxation time associated with effective barriers varying from 0.84 to 1.1 eV depending on the exact pathway selected. We isolate the effects of long-range elastic interactions between defects by comparing to simulations where those effects are deliberately suppressed. This allows us to demonstrate that in bcc Fe, suppressing long-range interactions mainly influences kinetics in the first 0.3 ms, slowing down quick energy release cascades seen more frequently in full simulations, whereas long-term behavior and final state are not significantly affected.
Temperature dependence of proton NMR relaxation times at earth's magnetic field
NASA Astrophysics Data System (ADS)
Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd
The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
NASA Astrophysics Data System (ADS)
Prantner, Viktória; Isaksson, Hanna; Närväinen, Johanna; Lammentausta, Eveliina; Nissi, Mikko J.; Avela, Janne; Gröhn, Olli H. J.; Jurvelin, Jukka S.
2010-12-01
Nuclear magnetic resonance (NMR) spectroscopy provides a potential tool for non-invasive evaluation of the trabecular bone structure. The objective of this study was to determine the reproducibility of the NMR relaxation parameters (T2, Carr-Purcel-T2, T1ρ) for fat and water and relate those to the structural parameters obtained by micro-computed tomography (μCT). Especially, we aimed to evaluate the effect of freezing on the relaxation parameters. For storing bone samples, freezing is the standard procedure during which the biochemical and cellular organization of the bone marrow may be affected. Bovine trabecular bone samples were stored at -20 °C for 7 days and measured by NMR spectroscopy before and after freezing. The reproducibility of NMR relaxation parameters, as expressed by the coefficient of variation, ranged from 3.1% to 27.9%. In fresh samples, some correlations between NMR and structural parameters (Tb.N, Tb.Sp) were significant (e.g. the relaxation rate for T2 of fat versus Tb.Sp: r = -0.716, p < 0.01). Freezing did not significantly change the NMR relaxation times but the correlations between relaxation parameters and the μCT structural parameters were not statistically significant after freezing, suggesting some nonsystematic alterations of the marrow structure. Therefore, the use of frozen bone samples for NMR relaxation studies may provide inferior information about the trabecular bone structure.
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better
NASA Astrophysics Data System (ADS)
Costabel, Stephan; Yaramanci, Ugur
2013-04-01
For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation.
Effects of the individual particle relaxation time on superspin glass dynamics
NASA Astrophysics Data System (ADS)
Andersson, Mikael Svante; De Toro, Jose Angel; Lee, Su Seong; Normile, Peter S.; Nordblad, Per; Mathieu, Roland
2016-02-01
The low temperature dynamic magnetic properties of two dense magnetic nanoparticle assemblies with similar superspin glass transition temperatures Tg˜140 K are compared. The two samples are made from batches of 6 and 8 nm monodisperse γ -Fe2O3 nanoparticles, respectively. The properties of the individual particles are extracted from measurements on reference samples where the particles have been covered with a thick silica coating. The blocking temperatures of these dilute assemblies are found at 12.5 K for the 6 nm particles and at 35 K for the 8 nm particles, which implies different anisotropy energy barriers of the individual particles and vastly different temperature evolution of their relaxation times. The results of the measurements on the concentrated particle assemblies suggest a strong influence of the particle energy barrier on the details of the aging dynamics, memory behavior, and apparent superspin dimensionality of the particles.
Time constant of defect relaxation in ion-irradiated 3C-SiC
Wallace, J. B.; Bayu Aji, L. B.; Kucheyev, S. O.; Shao, L.
2015-05-18
Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage–depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ∼3 ms (for second order kinetics) and a dynamic annealing efficiency of ∼40% for defects in both Si and C sublattices. This demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.
Equilibrium distributions and relaxation times in gaslike economic models: an analytical derivation.
Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo
2011-03-01
A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics. PMID:21517559
NASA Astrophysics Data System (ADS)
Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek
Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.
Equilibrium distributions and relaxation times in gaslike economic models: An analytical derivation
NASA Astrophysics Data System (ADS)
Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo
2011-03-01
A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics.
Phase-field model of long-time glasslike relaxation in binary fluid mixtures.
Benzi, R; Sbragaglia, M; Bernaschi, M; Succi, S
2011-04-22
We present a new phase-field model for binary fluids, exhibiting typical signatures of soft-glassy behavior, such as long-time relaxation, aging, and long-term dynamical arrest. The present model allows the cost of building an interface to vanish locally within the interface, while preserving positivity of the overall surface tension. A crucial consequence of this property, which we prove analytically, is the emergence of free-energy minimizing density configurations, hereafter named "compactons," to denote their property of being localized to a finite-size region of space and strictly zero elsewhere (no tails). Thanks to compactness, any arbitrary superposition of compactons still is a free-energy minimizer, which provides a direct link between the complexity of the free-energy landscape and the morphological complexity of configurational space. PMID:21599369
A multiple relaxation time extension of the constant speed kinetic model
NASA Astrophysics Data System (ADS)
Zadehgol, Abed; Ashrafizaadeh, Mahmud
2016-02-01
In this work, a multiple relaxation time (MRT) extension of the recently introduced constant speed kinetic model (CSKM) is proposed. The CSKM, which is an entropic kinetic model and based on unconventional entropies of Burg and Tssalis, was introduced in [A. Zadehgol and M. Ashrafizaadeh, J. Comput. Phys. 274, 803 (2014)]; [A. Zadehgol Phys. Rev. E 91, 063311 (2015)] as an extension of the model of Boghosian et al. [Phys. Rev. E 68, 025103 (2003)] in the limit of fixed speed continuous velocities. The present extension improves the stability of the previous models at very high Reynolds numbers, while allowing for a more convenient orthogonal lattice. The model is verified by solving the following benchmark problems: (i) the lid driven square cavity and (ii) the Kelvin-Helmholtz instability of thin shear layers in a doubly periodic square domain.
Observing Reality on Different Time Scales
NASA Astrophysics Data System (ADS)
Alyushin, Alexey
2005-10-01
In the first part of the paper, I examine cases of acceleration of perception and cognition and provide my explanation of the mechanism of the effect. The explanation rests on the conception of neuronal temporal frames, or windows of simultaneity. Frames have different standard durations and yield to stretching and compressing. I suggest it to be the cause of the effect, as well as the ground for differences in perceptive time scales of living beings. In the second part, I apply the conception of temporal frames to model observation in the extended time scales that reach far beyond the temporal perceptive niche of individual living beings. Duration of a frame is taken as the basic parameter setting a particular time scale. By substituting a different frame duration, we set a hypothetical time scale and emulate observing reality in a wider or a narrower angle of embracing events in time. I discuss the status of observer in its relation to objective reality, and examine how reality does change its appearance when observed in different time scales.
NASA Astrophysics Data System (ADS)
Monaretto, Tatiana; Andrade, Fabiana Diuk; Moraes, Tiago Bueno; Souza, Andre Alves; deAzevedo, Eduardo Ribeiro; Colnago, Luiz Alberto
2015-10-01
T1 and T2 relaxation times have been frequently used as probes for physical-chemical properties in several time-domain NMR applications (TD-NMR) such as food, polymers and petroleum industries. T2 measurements are usually achieved using the traditional Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence because it is a fast and robust method. On the other hand, the traditional methods for determining T1, i.e., inversion and saturation recovery, are time-consuming, driving several authors to develop rapid 1D and 2D methods to obtain T1 and T2 or T1/T2 ratio. However, these methods usually require sophisticated processing and/or high signal to noise ratio (SNR). This led us to develop simple methods for rapid and simultaneous determination of T1 and T2 using Continuous Wave Free Precession (CWFP) and Carr-Purcell Continuous Wave Free Precession (CP-CWFP) pulse sequences. Nevertheless, a drawback of these sequences is that they require specific adjustment of the frequency offset or the time interval between pulses (Tp). In this paper we present an alternative form of these sequences, named CWFPx-x, CP-CWFPx-x, where a train of π/2 pulses with phases alternated by π enable performing the experiments on-resonance and independently of Tp, when Tp < T2∗. Moreover, a CPMG type sequence with π/2 refocusing pulses shows similar results to CP-CWFP when the pulses are alternated between y and -y axis, CPMG90y-y. In these approaches, the relaxation times are determined using the magnitude of the signals after the first pulse |M0| and in the steady-state |Mss|, as well as the exponential time constant T∗ to reach the steady-state regime, as in conventional CWFP. CP-CWFPx-x shows the highest dynamic range to measure T∗ among CWFP sequences and, therefore, is the best technique to measure T1 and T2 since it is less susceptible to SNR and can be performed for any T1/T2 ratio.
Monaretto, Tatiana; Andrade, Fabiana Diuk; Moraes, Tiago Bueno; Souza, Andre Alves; deAzevedo, Eduardo Ribeiro; Colnago, Luiz Alberto
2015-10-01
T1 and T2 relaxation times have been frequently used as probes for physical-chemical properties in several time-domain NMR applications (TD-NMR) such as food, polymers and petroleum industries. T2 measurements are usually achieved using the traditional Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence because it is a fast and robust method. On the other hand, the traditional methods for determining T1, i.e., inversion and saturation recovery, are time-consuming, driving several authors to develop rapid 1D and 2D methods to obtain T1 and T2 or T1/T2 ratio. However, these methods usually require sophisticated processing and/or high signal to noise ratio (SNR). This led us to develop simple methods for rapid and simultaneous determination of T1 and T2 using Continuous Wave Free Precession (CWFP) and Carr-Purcell Continuous Wave Free Precession (CP-CWFP) pulse sequences. Nevertheless, a drawback of these sequences is that they require specific adjustment of the frequency offset or the time interval between pulses (Tp). In this paper we present an alternative form of these sequences, named CWFPx-x, CP-CWFPx-x, where a train of π/2 pulses with phases alternated by π enable performing the experiments on-resonance and independently of Tp, when Tp
Time scales involved in emergent market coherence
NASA Astrophysics Data System (ADS)
Kwapień, J.; Drożdż, S.; Speth, J.
2004-06-01
In addressing the question of the time scales characteristic for the market formation, we analyze high-frequency tick-by-tick data from the NYSE and from the German market. By using returns on various time scales ranging from seconds or minutes up to 2 days, we compare magnitude of the largest eigenvalue of the correlation matrix for the same set of securities but for different time scales. For various sets of stocks of different capitalization (and the average trading frequency), we observe a significant elevation of the largest eigenvalue with increasing time scale. Our results from the correlation matrix study can be considered as a manifestation of the so-called Epps effect. There is no unique explanation of this effect and it seems that many different factors play a role here. One of such factors is randomness in transaction moments for different stocks. Another interesting conclusion to be drawn from our results is that in the contemporary markets the emergence of significant correlations occurs on time scales much smaller than in the more distant history.
Nuclear magnetic relaxation, correlation time spectrum, and molecular dynamics in a linear polymer
Chernov, V. M. Krasnopol'skii, G. S.
2008-08-15
The pulsed nuclear magnetic resonance (NMR) method at a proton frequency of 25 MHz at temperatures of 22-160{sup o}C is used to detect the transverse magnetization decay in polyisoprene rubbers with various molecular masses, to determine the NMR damping time T{sub 2}, and to measure spin-lattice relaxation time T{sub 1} and time T{sub 2eff} of damping of solid-echo signals under the action of a sequence of MW-4 pulses modified by introducing 180{sup o} pulses. The dispersion dependences of T{sub 2eff} obtained for each temperature are combined into one using the temperature-frequency equivalence principle. On the basis of the combined dispersion dependence of T{sub 2eff} and the data on T{sub 2} and T{sub 1}, the correlation time spectrum of molecular movements is constructed. Analysis of the shape of this spectrum shows that the dynamics of polymer molecules can be described in the first approximation by the Doi-Edwards tube-reptation model.
Soroushian, Behrouz; Yang, Xinmai
2011-01-01
Modulated tone-burst light was employed to measure non-radiative relaxation time of fluorophores with biomedical importance through photoacoustic effect. Non-radiative relaxation time was estimated through the frequency dependence of photoacoustic signal amplitude. Experiments were performed on solutions of new indocyanine green (IR-820), which is a near infrared dye and has biomedical applications, in two different solvents (water and dimethyl sulfoxide (DMSO)). A 1.5 times slower non-radiative relaxation for the solution of dye in DMSO was observed comparing with the aqueous solution. This result agrees well with general finding that non-radiative relaxation of molecules in triplet state depends on viscosity of solvents in which they are dissolved. Measurements of the non-radiative relaxation time can be used as a new source of contrast mechanism in photoacoustic imaging technique. The proposed method has potential applications such as imaging tissue oxygenation and mapping of other chemophysical differences in microenvironment of exogenous biomarkers. PMID:22025981
The Laplace transform on time scales revisited
NASA Astrophysics Data System (ADS)
Davis, John M.; Gravagne, Ian A.; Jackson, Billy J.; Marks, Robert J., II; Ramos, Alice A.
2007-08-01
In this work, we reexamine the time scale Laplace transform as defined by Bohner and Peterson [M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001; M. Bohner, A. Peterson, Laplace transform and Z-transform: Unification and extension, Methods Appl. Anal. 9 (1) (2002) 155-162]. In particular, we give conditions on the class of functions which have a transform, develop an inversion formula for the transform, and further, we provide a convolution for the transform. The notion of convolution leads to considering its algebraic structure--in particular the existence of an identity element--motivating the development of the Dirac delta functional on time scales. Applications and examples of these concepts are given.
Time Out from Tension: Teaching Young Children How To Relax. Teaching Strategies.
ERIC Educational Resources Information Center
Scully, Patricia
2003-01-01
Discusses how using relaxation and stress reduction activities with individual preschool and elementary school-age children during difficult periods can help them regain control, and how integrating relaxation techniques into everyday activities helps to establish positive behavior patterns to support healthy living. Presents breathing activities…
NASA Astrophysics Data System (ADS)
Portegies Zwart, S. F.; Chen, H.-C.
2008-06-01
We reconstruct the initial two-body relaxation time at the half mass radius for a sample of young ⪉ 300 Myr star clusters in the Large Magellanic cloud. We achieve this by simulating star clusters with 12288 to 131072 stars using direct N-body integration. The equations of motion of all stars are calculated with high precision direct N-body simulations which include the effects of the evolution of single stars and binaries. We find that the initial relaxation times of the sample of observed clusters in the Large Magellanic Cloud ranges from about 200 Myr to about 2 Gyr. The reconstructed initial half-mass relaxation times for these clusters have a much narrower distribution than the currently observed distribution, which ranges over more than two orders of magnitude.
NASA Astrophysics Data System (ADS)
de Lima, Isabel; Lovejoy, Shaun
2016-04-01
The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to
NASA Astrophysics Data System (ADS)
Misra, Sushil K.
The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 < T 1 < 10-6 s) is of great importance today for the study of relaxation processes. Recent case studies include, for example, glasses doped with paramagnetic ions (Vergnoux et al., 1996; Zinsou et al., 1996), amorphous Si (dangling bonds) and copper-chromium-tin spinel (Cr3+) (Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.
Analysis of the time scales in time periodic Darcy flows
NASA Astrophysics Data System (ADS)
Zhu, T.; Waluga, C.; Wohlmuth, B.; Manhart, M.
2014-12-01
We investigate unsteady flow in a porous medium under time - periodic (sinusoidal) pressure gradient. DNS were performed to benchmark the analytical solution of the unsteady Darcy equation with two different expressions of the time scale : one given by a consistent volume averaging of the Navier - Stokes equation [1] with a steady state closure for the flow resistance term, another given by volume averaging of the kinetic energy equation [2] with a closure for the dissipation rate . For small and medium frequencies, the analytical solutions with the time scale obtained by the energy approach compare well with the DNS results in terms of amplitude and phase lag. For large frequencies (f > 100 [Hz]) we observe a slightly smaller damping of the amplitude. This study supports the use of the unsteady form of Darcy's equation with constant coefficients to solve time - periodic Darcy flows at low and medium frequencies. Our DNS simulations, however, indicate that the time scale predicted by the VANS approach together with a steady - state closure for the flow resistance term is too small. The one obtained by the energy approach matches the DNS results well. At large frequencies, the amplitudes deviate slightly from the analytical solution of the unsteady Darcy equation. Note that at those high frequencies, the flow amplitudes remain below 1% of those of steady state flow. This result indicates that unsteady porous media flow can approximately be described by the unsteady Darcy equation with constant coefficients for a large range of frequencies, provided, the proper time scale has been found.
T2 relaxation time post febrile status epilepticus predicts cognitive outcome.
Barry, Jeremy M; Choy, ManKin; Dube, Celine; Robbins, Ashlee; Obenaus, Andre; Lenck-Santini, Pierre Pascal; Scott, Rod C; Baram, Tallie Z; Holmes, Gregory L
2015-07-01
Evidence from animal models and patient data indicates that febrile status epilepticus (FSE) in early development can result in permanently diminished cognitive abilities. To understand the variability in cognitive outcome following FSE, we used MRI to measure dynamic brain metabolic responses to the induction of FSE in juvenile rats. We then compared these measurements to the ability to learn an active avoidance spatial task weeks later. T2 relaxation times were significantly lower in FSE rats that were task learners in comparison to FSE non-learners. While T2 time in whole brain held the greatest predictive power, T2 in hippocampus and basolateral amygdala were also excellent predictors. These signal differences in response to FSE indicate that rats that fail to meet metabolic and oxygen demand are more likely to develop spatial cognition deficits. Place cells from FSE non-learners had significantly larger firing fields and higher in-field firing rate than FSE learners and control animals and imply increased excitability in the pyramidal cells of FSE non-learners. These findings suggest a mechanistic cause for the spatial memory deficits in active avoidance and are relevant to other acute neurological insults in early development where cognitive outcome is a concern. PMID:25939697
Picosecond-time-resolved studies of nonradiative relaxation in ruby and alexandrite
Gayen, S.K.; Wang, W.B.; Petricevic, V.; Alfano, R.R.
1985-01-01
Dynamics of the nonradiative transitions between the /sup 4/T/sub 2/ pump band and the /sup 2/E storage level of the Cr/sup 3 +/ ion in ruby and alexandrite crystals is studied using the picosecond excite-and-probe absorption technique. A 527-nm picosecond pulse excites the /sup 4/T/sub 2/ state of the Cr/sup 3 +/ ion, and an infrared picosecond probe pulse monitors the subsequent growth and decay of population in the excited states as a function of pump-probe delay. An upper limit of 7 ps is determined for the nonradiative lifetime of the /sup 4/T/sub 2/ state in ruby. A vibrational relaxation time of 25 ps for the /sup 4/T/sub 2/ band in alexandrite is estimated. The time to attain thermal equilibrium population between the /sup 2/E and /sup 4/T/sub 2/ levels of alexandrite following excitation of /sup 4/T/sub 2/ band is estimated to be approx. 100 ps.
Structure of Student Time Management Scale (STMS)
ERIC Educational Resources Information Center
Balamurugan, M.
2013-01-01
With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…
Strophoidal Argand diagram and the distribution of relaxation times in K1-xLixTaO3
NASA Astrophysics Data System (ADS)
Doussineau, P.; Farssi, Y.; Frénois, C.; Levelut, A.; McEnaney, K.; Toulouse, J.; Ziolkiewicz, S.
1993-01-01
We have studied the relaxation of off-center Li+ ions in KTaO3 by dielectric measurements on 1% and 1.5% crystals, from 20 Hz to 2 MHz and from 4 to 200 K. The shape of the ɛ'' vs ɛ' Argand diagrams demonstrates the existence of a distribution of relaxation times. In analogy with spin glasses, a new expression is proposed for the analysis of these diagrams, a strophoidal function, which leads to a distribution function D(θ) decreasing for large θ as θ-(1+α) with 0<α<1. The most probable relaxation time θmp of the distribution follows an Arrhenius law with a barrier height close to 950 K.
NASA Astrophysics Data System (ADS)
Ravi, S.; Subramanian, P.
2007-08-01
Electron paramagnetic resonance (EPR) of Cr doped in (NH4)Co(SO4)·6H2O single crystal has been studied using Q band EPR spectrometer to find spin lattice relaxation time (SLRT) (T1). The observation of resolved chromium spectra at room temperature has been interpreted in terms of random modulation of interaction between trivalent chromium and divalent cobalt ions by SLRT of cobalt ions. The relaxation time of the host is found to be 6.95×10s using Mitsuma theory and 9.85×10s using Misra et al. approach at room temperature (300 K). Debye temperature of the host lattice is evaluated using electron spin lattice relaxation processes. It is found that the Debye temperature of the host is 110 K.
Chang, Wen-Jer; Ku, Cheung-Chieh; Huang, Pei-Hwa; Chang, Wei
2009-07-01
In order to design a fuzzy controller for complex nonlinear systems, the work of this paper deals with developing the relaxed stability conditions for continuous-time affine Takagi-Sugeno (T-S) fuzzy models. By applying the passivity theory and Lyapunov theory, the relaxed stability conditions are derived to guarantee the stability and passivity property of closed-loop systems. Based on these relaxed stability conditions, the synthesis of fuzzy controller design problem for passive continuous-time affine T-S fuzzy models can be easily solved via the Optimal Convex Programming Algorithm (OCPA) and Linear Matrix Inequality (LMI) technique. At last, a simulation example for the fuzzy control of a nonlinear synchronous generator system is presented to manifest the applications and effectiveness of proposed fuzzy controller design approach. PMID:19389667
Mizuno, J; Araki, J; Mikane, T; Mohri, S; Imaoka, T; Matsubara, H; Okuyama, H; Kurihara, S; Ohe, T; Hirakawa, M; Suga, H
2000-10-01
We have found that a logistic function fits the left ventricular isovolumic relaxation pressure curve in the canine excised, cross-circulated heart more precisely than a monoexponential function. On this basis, we have proposed a logistic time constant (tau(L)) as a better index of ventricular isovolumic lusitropism than the conventional monoexponential time constant (tau(E)). We hypothesize in the present study that this tau(L) would also be a better index of myocardial isometric lusitropism than the conventional tau(E). We tested this hypothesis by analyzing the isometric relaxation force curve of 114 twitches of eight ferret isolated right ventricular papillary muscles. The muscle length was changed between 82 and 100% L(max) and extracellular Ca(2+) concentrations ([Ca(2+)](o)) between 0.2 and 8 mmol/l. We found that the logistic function always fitted the isometric relaxation force curve much more precisely than the monoexponential function at any muscle length and [Ca(2+)](o) level. We also found that tau(L) was independent of the choice of the end of isometric relaxation but tau(E) was considerably dependent on it as in ventricular relaxation. These results validated our present hypothesis. We conclude that tau(L) is a more reliable, though still empirical, index of lusitropism than conventional tau(E) in the myocardium as in the ventricle. PMID:11120914
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
NASA Astrophysics Data System (ADS)
Dinh, Thanh-Chung; Renger, Thomas
2016-07-01
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
NASA Astrophysics Data System (ADS)
Lukić, M.; Ćojbašić, Ž.; Rabasović, M. D.; Markushev, D. D.; Todorović, D. M.
2013-09-01
This paper concerns with the possibilities of computational intelligence application for simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases by pulsed photoacoustics. Results regarding the application of neural computing through the use of feed-forward multilayer perception networks are presented. Feed-forward multilayer perception networks are trained in an offline batch training regime to estimate simultaneously, and in real-time, the laser beam spatial profile (profile shape class) and the vibrational-to-translational relaxation time from given (theoretical) photoacoustic signals. The proposed method significantly shortens the time required for the simultaneous determination of the laser beam spatial profile and relaxation time and has the advantage of accurately calculating the aforementioned quantities.
Angular dependence of the FMR linewidth and the anisotropy of the relaxation time in iron garnets
NASA Astrophysics Data System (ADS)
Kobelev, A. V.; Shvachko, Yu. N.; Ustinov, V. V.
2016-01-01
This work is devoted to the problem of extracting the contribution of the anisotropy of relaxation to the angular dependence of the FMR linewidth and to the opportunity of determining the values of the parameters of relaxation. The results of the FMR study of films based on the yttrium iron garnet prepared by the method of liquid-phase epitaxy are given. The orientational dependence of the linewidth has been calculated using the traditional method of measuring an FMR spectrum and a method based on scanning at an angle to the resonance field for obtaining the minimum linewidth. A model for calculating the linewidth has been proposed that takes into account the anisotropy of the relaxation term in the equation of motion of the magnetic moment. The model leads to a dependence that agrees well with the experimental data, which makes it possible to state that the anisotropy of relaxation most likely takes place in the samples under consideration at the temperatures employed.
NASA Astrophysics Data System (ADS)
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions. PMID:27187211
[Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces
Not Available
1992-12-31
Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.
[Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces
Not Available
1992-01-01
Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.
NASA Astrophysics Data System (ADS)
Clay, M. P.; Yeung, P. K.; Warhaft, Z.
2015-11-01
Turbulence subjected to axisymmetric strain is a fundamental problem which is common in engineering equipment with variable cross-section, but is not yet fully understood. We have performed direct numerical simulations on a deforming domain with grids up to 10243 and a time-dependent strain history designed to mimic spatial gradients in wind-tunnel experiments. Isotropic turbulence with a specified energy spectrum is allowed to decay and then passed through a numerical conduit of 4:1 contraction ratio. The Reynolds stress tensor, velocity gradient variances, and longitudinal and transverse one-dimensional (1D) spectra are studied during both the contraction and subsequent relaxation. Contraction leads to amplification of energy in the compressed directions and departures from local isotropy. When the strain is removed local isotropy returns quickly while the energy decays with a power law exponent smaller than for decaying isotropic turbulence. The evolution of 1D spectra including changes in shape is consistent with experiments, but a large solution domain is important. Supported by NSF Grant CBET-1510749 (Fluid Dynamics Program).
Multiple-relaxation-time lattice Boltzmann simulations of turbulent channel and pipe flows.
NASA Astrophysics Data System (ADS)
Opadrishta, Harish; Peng, Cheng; Wang, Lian-Ping
2015-11-01
The mesoscopic Lattice Boltzmann method (LBM) has become a reliable alternative for solving incompressible turbulent flows. However, the statistics of a simulated turbulent flow near a curved boundary may deviate from the physical rotational invariance (RI) of lattice coordinates. The main objective of this study is to compare the effects of different lattice models on the simulation results of turbulent flows, and explore ways to restore RI near a curved boundary. We will apply D3Q19 and D3Q27 multiple-relaxation-time LBM models to simulate turbulent pipe and channel flows. The statistics of the simulated flows are examined to quantify the nature of departures from RI. To help understand whether the departure is originated from the bounce-back scheme at the solid wall, we will perform simulations of a turbulent channel flow with walls orientated at an angle from the lattice grid, and test the use of an overset lattice grid near a pipe wall. The Chapman-Enskog analysis of these models will be performed to probe RI errors near a boundary. Our goal is to eventually perform an accurate direct numerical simulation of a turbulent pipe flow, and compare the results to previous simulations based on the Navier-Stokes equations.
Lanier, Hayley C; Olson, Link E
2009-10-01
Although several studies have recently addressed phylogenetic relationships among Asian pikas (Ochotona spp.), the North American species have been relatively neglected and their monophyly generally unquestioned or assumed. Given the high degree of intraspecific diversity in pelage and call structure, the recent identification of previously unrecognized species of pika in Asia, and the increasing evidence for multiple trans-Beringian dispersals in several small mammal lineages, the monophyly of North American pikas warrants reexamination. In addition, previous studies have applied an externally calibrated rate to examine the timing of diversification within the genus. This method has been increasingly shown to return results that, at the very least, are overly narrow in their confidence intervals, and at the worst can be entirely spurious. For this study we combined GenBank sequences from the mitochondrial genes cyt b and ND4 with newly generated sequence data from O. hyperborea and O. collaris to investigate the origin of the North American lineages and the timing of phylogenetic diversification within the genus Ochotona. Specifically, we address three goals (1) summarize and reanalyze the molecular evidence for relationships within the genus using statistically supported models of evolution; (2) add additional sequences from O. collaris and O. hyperborea to rigorously test the monophyly of North American pikas; (3) examine the timing of the diversification within the genus using relaxed molecular clock methods. We found no evidence of multiple trans-Beringian dispersals into North America, thereby supporting the traditional hypothesis of a single invasion of North America. We also provide evidence that the major splits within the genus occurred in the Miocene, and the Nearctic pikas diverged sometime before the Pleistocene. PMID:19501176
A possible mechanism for aftershocks: time-dependent stress relaxation in a slider-block model
NASA Astrophysics Data System (ADS)
Gran, Joseph D.; Rundle, John B.; Turcotte, Donald L.
2012-08-01
We propose a time-dependent slider-block model which incorporates a time-to-failure function for each block dependent on the stress. We associate this new time-to-failure mechanism with the property of stress fatigue. We test two failure time functions including a power law and an exponential. Failure times are assigned to 'damaged' blocks with stress above a damage threshold, σW and below a static failure threshold, σF. If the stress of a block is below the damage threshold the failure time is infinite. During the aftershock sequence the loader-plate remains fixed and all aftershocks are triggered by stress transfer from previous events. This differs from standard slider-block models which initiate each event by moving the loader-plate. We show the resulting behaviour of the model produces both the Gutenberg-Richter scaling law for event sizes and the Omori's scaling law for the rate of aftershocks when we use the power-law failure time function. The exponential function has limited success in producing Omori's law for the rate of aftershocks. We conclude the shape of the failure time function is key to producing Omori's law.
Accuracy metrics for judging time scale algorithms
NASA Technical Reports Server (NTRS)
Douglas, R. J.; Boulanger, J.-S.; Jacques, C.
1994-01-01
Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.
Ikeda, Kazuhiro Kawaguchi, Hitoshi
2015-02-07
We performed measurements at room temperature for a GaAs/AlGaAs multiple quantum well grown on GaAs(110) using a time-resolved microscopic photoluminescence (micro-PL) technique to find what effects spin diffusion had on the measured electron spin relaxation time, τ{sub s}, and developed a method of estimating the spin diffusion coefficient, D{sub s}, using the measured data and the coupled drift-diffusion equations for spin polarized electrons. The spatial nonuniformities of τ{sub s} and the initial degree of electron spin polarization caused by the pump intensity distribution inside the focal spot were taken into account to explain the dependence of τ{sub s} on the measured spot size, i.e., a longer τ{sub s} for a smaller spot size. We estimated D{sub s} as ∼100 cm{sup 2}/s, which is similar to a value reported in the literature. We also provided a qualitative understanding on how spin diffusion lengthens τ{sub s} in micro-PL measurements.
ERIC Educational Resources Information Center
Gasyna, Zbigniew L.; Jurkiewicz, Antoni
2004-01-01
An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Ikari, M. J.; Marone, C.
2016-02-01
Interseismic recovery of fault strength (healing) following earthquake failure is a fundamental requirement of the seismic cycle and likely plays a key role in determining the stability and slip behavior of tectonic faults. We report on laboratory measurements of time- and slip-dependent frictional strengthening for natural and synthetic gouges to evaluate the role of mineralogy in frictional strengthening. We performed slide-hold-slide (SHS) shearing experiments on nine natural fault gouges and eight synthetic gouges at conditions of 20 MPa normal stress, 100% relative humidity (RH), large shear strain (~15), and room temperature. Phyllosilicate-rich rocks show the lowest rates of frictional strengthening. Samples rich in quartz and feldspar exhibit intermediate rates of frictional strengthening, and calcite-rich gouges show the largest values. Our results show that (1) the rates of frictional strengthening and creep relaxation scale with frictional strength, (2) phyllosilicate-rich fault gouges have low strength and healing characteristics that promote stable, aseismic creep, (3) most natural fault gouges exhibit intermediate rates of frictional strengthening, consistent with a broad range of fault slip behaviors, and (4) calcite-rich fault rocks show the highest rates of frictional strengthening, low values of dilation upon reshear, and high frictional strengths, all of which would promote seismogenic behavior.
Soil Hydrology Across Space And Time Scales
NASA Astrophysics Data System (ADS)
Mohanty, B.; Gaur, N.
2015-12-01
Soil moisture and hydrologic fluxes at the land surface are critical to climate feedback, hydrology, and biogeochemical cycling. Soil moisture temporal and spatial variability over catchment areas affects surface and subsurface runoff, modulates evaporation and transpiration, determines the extent of groundwater recharge and contaminant transport, and initiates or sustains feedback between the land surface and the atmosphere. At a particular point in time soil moisture content is influenced by: (1) the precipitation history, (2) the texture of the soil, which determines the water-holding capacity, (3) the slope of the land surface, which affects runoff and infiltration, and (4) the vegetation and land cover, which influences evapotranspiration and deep percolation. In other terms the partitioning of soil moisture to recharge to the groundwater, evapotranspiration to the atmosphere, and surface/subsurface runoff to the streams at different spatio-temporal scales and under different hydro-climatic conditions pose one of the greatest challenges to weather and climate prediction, water resources availability, sustainability, quality, and variability in agricultural, range and forested watersheds and hydro-climatic conditions. In this context we hypothesize that: 1) soil moisture variability is dominated by soil properties at the field scale, topographic features at the catchment/watershed scale, and vegetation characteristics and precipitation patterns at the regional scale and beyond; and 2) ensemble hydrologic fluxes (evapotranspiration, infiltration, and shallow ground water recharge) across the vadose zone at the corresponding scale can be effectively represented by one or more soil, topography, vegetation, or climate scale factors. Using ground-based and various active and passive microwave remote sensing measurements during the NASA field campaigns in the past decade we test these hypotheses. Various scaling techniques for soil moisture and soil hydrologic and
A comment on the use of flushing time, residence time, and age as transport time scales
Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, Stephen G.
2002-01-01
Applications of transport time scales are pervasive in biological, hydrologic, and geochemical studies yet these times scales are not consistently defined and applied with rigor in the literature. We compare three transport time scales (flushing time, age, and residence time) commonly used to measure the retention of water or scalar quantities transported with water. We identify the underlying assumptions associated with each time scale, describe procedures for computing these time scales in idealized cases, and identify pitfalls when real-world systems deviate from these idealizations. We then apply the time scale definitions to a shallow 378 ha tidal lake to illustrate how deviations between real water bodies and the idealized examples can result from: (1) non-steady flow; (2) spatial variability in bathymetry, circulation, and transport time scales; and (3) tides that introduce complexities not accounted for in the idealized cases. These examples illustrate that no single transport time scale is valid for all time periods, locations, and constituents, and no one time scale describes all transport processes. We encourage aquatic scientists to rigorously define the transport time scale when it is applied, identify the underlying assumptions in the application of that concept, and ask if those assumptions are valid in the application of that approach for computing transport time scales in real systems.
Locally activated Monte Carlo method for long-time-scale simulations
NASA Astrophysics Data System (ADS)
Kaukonen, M.; Peräjoki, J.; Nieminen, R. M.; Jungnickel, G.; Frauenheim, Th.
2000-01-01
We present a technique for the structural optimization of atom models to study long time relaxation processes involving different time scales. The method takes advantage of the benefits of both the kinetic Monte Carlo (KMC) and the molecular dynamics simulation techniques. In contrast to ordinary KMC, our method allows for an estimation of a true lower limit for the time scale of a relaxation process. The scheme is fairly general in that neither the typical pathways nor the typical metastable states need to be known prior to the simulation. It is independent of the lattice type and the potential which describes the atomic interactions. It is adopted to study systems with structural and/or chemical inhomogeneity which makes it particularly useful for studying growth and diffusion processes in a variety of physical systems, including crystalline bulk, amorphous systems, surfaces with adsorbates, fluids, and interfaces. As a simple illustration we apply the locally activated Monte Carlo to study hydrogen diffusion in diamond.
Hemispheric Asymmetries in Substorm Recovery Time Scales
NASA Technical Reports Server (NTRS)
Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.
2009-01-01
Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.
MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times
NASA Technical Reports Server (NTRS)
Grampp, S.; Majumdar, S.; Jergas, M.; Lang, P.; Gies, A.; Genant, H. K.
1995-01-01
The effective transverse relaxation time T2* is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2* in repeated bone marrow measurements. The T2* measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 degrees. An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2* and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm2) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2* and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2* times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm2 (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis.
Liquidity crises on different time scales
NASA Astrophysics Data System (ADS)
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Multidimensional scaling of musical time estimations.
Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel
2011-06-01
The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence. PMID:21853763
Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P
2006-08-22
The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
NASA Astrophysics Data System (ADS)
Sato, Daiki; Nishitani, Tomohiro; Honda, Yoshio; Amano, Hiroshi
2016-05-01
A thin p-type InGaN with a negative electron affinity (NEA) surface was used to measure the relaxation time of a surface charge limit (SCL) by irradiating rectangular laser beam pulses at changing time interval. The p-type InGaN film was grown by metal organic vapor phase epitaxy and the NEA activation was performed after the sample was heat cleaned. 13 nC per pulse with 10 ms width was obtained from the InGaN photocathode. The current decreased exponentially from the beginning of the pulse. The initial current value after the laser irradiation decreased with the time interval. As a result, the SCL relaxation time was estimated through the InGaN photocathode measurements at 100 ms.
A perspective on time: Loss frequencies, time scales, and lifetimes
NASA Astrophysics Data System (ADS)
Prather, Michael; Holmes, Christopher
2013-04-01
The need to describe the Earth system and its components with a quantity that has units of time is ubiquitous since the 1970s work of Bolin, Rodhe and Junge. These quantities are often used as metrics of the system to describe the duration or cumulative impact of an action, such as in global-warming and ozone-depletion potentials, as in the SPARC lifetime re-assessment. The quantity designated "lifetime" is often calculated inconsistently and/or misused when applied to the subsequent evaluations of impacts. A careful set of definitions and derivations is needed to ensure that we are reporting, publishing, and comparing the same quantities. There are many different ways to derive metrics of time, and they describe different properties of the system. Here we carefully define several of those metrics - denoted here as loss frequency, time scale, and lifetime - and demonstrate which properties of the system they describe. Three generalizable examples demonstrate (i) how the non-linear chemistry of tropospheric ozone makes simple approaches for tracking pollution in error; (ii) why the lifetime of a gas depends on the history of emissions, and (iii) when multiple reservoirs generate time scales quite separate from the traditionally defined lifetime. Proper use of the many "time" parameters in a system, however, gives a very powerful understanding of the response to anthropogenic perturbations.
South Atlantic Spreading Velocities and Time Scales
NASA Astrophysics Data System (ADS)
Clark, S. R.; Smethurst, M. A.; Bianchi, M. C.
2013-12-01
Plate reconstructions based on hierarchical spherical rotations have been around for many years. For the breakup of Pangea and Gondwana, these reconstructions are based on two major sources: magnetic isochrons and geological evidence for the onset of rifting and the tightness of the fit between continents. These reconstructions imply spreading velocities and it is the changes in velocities that can be used to probe questions of the forces moving plates around. In order to calculate the velocities correctly though, the importance of the choice of geologic time scale is often ignored. In this talk, we focus on the South Atlantic and calculate the spreading velocity errors implied by the choice of time scale for three major epochs: the Cenozoic and Late Mesozoic, the Cretaceous Quiet Zone and the Late Cretaceous to the Early Jurassic. In addition, we report the spreading velocities implied through these phases by various available magnetic isochron-derived reconstructions and the geological fits for South America and Africa used by large scale global reconstruction as well as in recent papers. Finally, we will highlight the implications for the choice of the mantle reference frame on African plate velocities.
Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.
Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H
2010-11-01
Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. PMID:20600981
COPD Patients Have Short Lung Magnetic Resonance T1 Relaxation Time.
Alamidi, Daniel F; Morgan, Alexandra R; Hubbard Cristinacce, Penny L; Nordenmark, Lars H; Hockings, Paul D; Lagerstrand, Kerstin M; Young, Simon S; Naish, Josephine H; Waterton, John C; Maguire, Niall C; Olsson, Lars E; Parker, Geoffrey J M
2016-04-01
Magnetic resonance imaging (MRI) may provide attractive biomarkers for assessment of pulmonary disease in clinical trials as it is free from ionizing radiation, minimally invasive and allows regional information. The aim of this study was to characterize lung MRI T1 relaxation time as a biomarker of chronic obstructive pulmonary disease (COPD); and specifically its relationship to smoking history, computed tomography (CT), and pulmonary function test (PFT) measurements in comparison to healthy age-matched controls. Lung T1 and inter-quartile range (IQR) of T1 maps from 24 COPD subjects and 12 healthy age-matched non-smokers were retrospectively analyzed from an institutional review board approved study. The subjects underwent PFTs and two separate MR imaging sessions at 1.5 tesla to test T1 repeatability. CT scans were performed on the COPD subjects. T1 repeatability (intraclass correlation coefficient) was 0.72 for repeated scans acquired on two visits. The lung T1 was significantly shorter (p < 0.0001) and T1 IQR was significantly larger (p = 0.0002) for the COPD subjects compared to healthy controls. Lung T1 significantly (p = 0.001) correlated with lung density assessed with CT. Strong significant correlations (p < 0.0001) between lung T1 and all PFT measurements were observed. Cigarette exposure did not correlate with lung T1 in COPD subjects. In conclusion, lung MRI T1 mapping shows potential as a repeatable, radiation free, non-invasive imaging technique in the evaluation of COPD. PMID:26488310
Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K.
2015-09-28
We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.
Deciphering Time Scale Hierarchy in Reaction Networks.
Nagahata, Yutaka; Maeda, Satoshi; Teramoto, Hiroshi; Horiyama, Takashi; Taketsugu, Tetsuya; Komatsuzaki, Tamiki
2016-03-01
Markovian dynamics on complex reaction networks are one of the most intriguing subjects in a wide range of research fields including chemical reactions, biological physics, and ecology. To represent the global kinetics from one node (corresponding to a basin on an energy landscape) to another requires information on multiple pathways that directly or indirectly connect these two nodes through the entire network. In this paper we present a scheme to extract a hierarchical set of global transition states (TSs) over a discrete-time Markov chain derived from first-order rate equations. The TSs can naturally take into account the multiple pathways connecting any pair of nodes. We also propose a new type of disconnectivity graph (DG) to capture the hierarchical organization of different time scales of reactions that can capture changes in the network due to changes in the time scale of observation. The crux is the introduction of the minimum conductance cut (MCC) in graph clustering, corresponding to the dividing surface across the network having the "smallest" transition probability between two disjoint subnetworks (superbasins on the energy landscape) in the network. We present a new combinatorial search algorithm for finding this MCC. We apply our method to a reaction network of Claisen rearrangement of allyl vinyl ether that consists of 23 nodes and 66 links (saddles on the energy landscape) connecting them. We compare the kinetic properties of our DG to those of the transition matrix of the rate equations and show that our graph can properly reveal the hierarchical organization of time scales in a network. PMID:26641663
Difference between nuclear spin relaxation and ionic conductivity relaxation in superionic glasses
NASA Astrophysics Data System (ADS)
Ngai, K. L.
1993-04-01
Tatsumisago, Angell, and Martin [J. Chem. Phys. 97, 6968 (1992)] have compared conductivity relaxation data and 7Li nuclear spin lattice relaxation (SLR) data measured on a lithium chloroborate glass and found pronounced differences in the most probable relaxation times. The electrical conductivity relaxation (ECR) time, τ*σ, at some temperature occurs on a time scale shorter by some two orders of magnitude than the 7Li spin lattice relaxation correlation time, τ*s, and has a significantly lower activation energy. SLR and ECR monitor the motions of ions through different dynamic variables and correlation functions. Using this fact and the coupling model, I am able to explain quantitatively all aspects of the difference between SLR and ECR, and to establish relations between their different relaxation characteristics. The large difference between the observed activation energies of SLR and ECR alone should have implications on the validity of any proposed theory of the dynamics of ionic transport.
Scaling laws from geomagnetic time series
Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.
1998-01-01
The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.
RADIAL TRANSPORT OF LARGE-SCALE MAGNETIC FIELDS IN ACCRETION DISKS. II. RELAXATION TO STEADY STATES
Takeuchi, Taku; Okuzumi, Satoshi
2014-12-20
We study the time evolution of a large-scale magnetic flux threading an accretion disk. The induction equation of the mean poloidal field is solved under the standard viscous disk model. Magnetic flux evolution is controlled by two timescales: one is the timescale of the inward advection of the magnetic flux, τ{sub adv}. This is induced by the dragging of the flux by the accreting gas. The other is the outward diffusion timescale of the magnetic flux τ{sub dif}. We consider diffusion due to the Ohmic resistivity. These timescales can be significantly different from the disk viscous timescale τ{sub disk}. The behaviors of the magnetic flux evolution are quite different depending on the magnitude relationship of the timescales τ{sub adv}, τ{sub dif}, and τ{sub disk}. The most interesting phenomena occur when τ{sub adv} << τ{sub dif}, τ{sub disk}. In such a case, the magnetic flux distribution approaches a quasi-steady profile much faster than the viscous evolution of the gas disk, and the magnetic flux has also been tightly bundled to the inner part of the disk. In the inner part, although the poloidal magnetic field becomes much stronger than the interstellar magnetic field, the field strength is limited to the maximum value that is analytically given by our previous work. We also find a condition for the initial large magnetic flux, which is a fossil of the magnetic field dragging during the early phase of star formation that survives for a duration in which significant gas disk evolution proceeds.
Time sequence and time scale of intermediate mass fragment emission
De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Politi, G.; Wilczynski, J.
2005-04-01
Semiperipheral collisions in the {sup 124}Sn+{sup 64}Ni reaction at 35 MeV/nucleon were studied using the forward part of the Charged Heavy Ion Mass and Energy Resolving Array. Nearly completely determined ternary events involving projectilelike fragments (PLF), targetlike fragments (TLF), and intermediate mass fragments (IMF) were selected. A new method of studying the reaction mechanism, focusing on the analysis of the correlations between relative velocities in the IMF+PLF and IMF+TLF subsystems, is proposed. The relative velocity correlations provide information on the time sequence and time scale of the neck fragmentation processes leading to production of IMFs. It is shown that the majority of light IMFs are produced within 40-80 fm/c after the system starts to reseparate. Heavy IMFs are formed at times of about 120 fm/c or later and can be viewed as resulting from two-step (sequential) neck rupture processes.
Dynamic Relaxation of Financial Indices
NASA Astrophysics Data System (ADS)
Shen, J.; Zheng, B.; Lin, H.; Qiu, T.
The dynamic relaxation of the German DAX both before and after a large price-change is investigated. The dynamic behavior is characterized by a power law. At the minutely time scale, the exponent p governing the power-law behavior takes a same value before and after the large price change, while at the daily time scale, it is different. Numerical simulations of an interacting EZ herding model are performed for comparison.
Parametric instabilities in picosecond time scales
Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.
1993-03-01
The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.
The T1 ρ13C spin-lattice relaxation time of interpenetrating networks by solid state NMR
NASA Astrophysics Data System (ADS)
Lim, Ae Ran; Schueneman, G. T.; Novak, B. M.
1999-02-01
Poly (2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate) interpenetrated with 5% SiO 2 (PHEMA-IPN) were studied by 13C CP/MAS NMR. From these results, the structure of two polymers were verified by 13C NMR. Spin-lattice relaxation times for the polymer carbons in the rotating frame, T1 ρ, have been measured as a function of temperature. The T1 ρ spin-lattice relaxation times of the α-quarternary and carbonyl in the PHEMA and PHEMA-IPN undergo slow motions, i.e., motions on the slow side of the T1 ρ minimum, while those of the 1-,2-, β-methylene, and 3-methyl undergo fast motions, i.e., motions on the fast side of the T1 ρ minimum. From these T1 ρ spin-lattice relaxation times, we discuss the mobility, the correlation time, and activation energy for the PHEMA and PHEMA-IPN, respectively. The activation energies for the PHEMA-IPN were found to be generally higher than those of PHEMA. The higher activation energy for the side-chain 2-methylene in the PHEMA-IPN is attributed to bonding between the SiO 2 and the hydroxyl group of the PHEMA.
Krishnan, S H; Ayappa, K G
2005-12-15
The density of states for bulk and confined fluids have been modeled using a recently proposed gamma distribution (Krishnan, S. H.; Ayappa, K. G. J. Chem. Phys. 2004, 121, 3197). The gamma distribution results in a closed form analytical expression for the velocity autocorrelation function and the relaxation time of the fluid. The two parameters of the gamma distribution are related analytically to the second and fourth frequency moments of the fluid using short time expansions. The predictions by the proposed gamma model are compared with the velocity autocorrelation functions obtained using the theory of instantaneous normal modes (INMs) and from molecular dynamics simulations. The model is applied to a bulk soft sphere liquid and fluids confined in a spherical cavity and slit-shaped pores. The gamma model is able to capture the resulting changes in relaxation time due to changes in density and temperature extremely well for both the bulk liquid and confined inhomogeneous fluid situations. In all cases, the predictions by the gamma model are superior to those obtained from the INM theory. In the case of the fluid confined in a slit pore, the loadings were obtained from a grand canonical Monte Carlo simulation where the pore is equilibrated with a bulk fluid. This is similar to a confinement situation in a surface force apparatus. The predicted relaxation times vs pore widths from the gamma model are seen to accurately capture the oscillations due to formation and disruption of layers within the slit pore. PMID:16375288
Colla, M. -S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J. -P.; Schryvers, D.; Pardoen, T.
2015-01-01
The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as palladium membranes for hydrogen applications. PMID:25557273
SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats
Song, K-H; Lee, D-W; Choe, B-Y
2015-06-15
Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)
Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals
NASA Astrophysics Data System (ADS)
Castañar, Laura; Nolis, Pau; Virgili, Albert; Parella, Teodor
2014-07-01
The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods.
NASA Astrophysics Data System (ADS)
Hess, C.; Herick, J.; Berlin, A.; Meyer, W.; Reicherz, G.
2012-12-01
The electron spin-lattice relaxation time (T1e) of TEMPO- and trityl-doped butanol samples at 2.5 T and temperatures between 0.95 K and 2.17 K was studied by pulsed nuclear magnetic resonance (NMR) using the nuclear-electron double resonance (NEDOR) method. This method is based on the idea to measure the NMR lineshift produced by the local field of paramagnetic impurities, whose polarization can be manipulated. This is of technical advantage as measurements can be performed under conditions typically used for the dynamic nuclear polarization (DNP) process - in our case 2.5 T and temperatures around 1 K - where a direct measurement on the electronic spins would be far more complicated to perform. As T1e is a crucial parameter determining the overall efficiency of DNP, the effect of the radical type, its spin concentration, the temperature and the oxygen content on T1e has been investigated. For radical concentrations as used in DNP (several 1019 spins/cm3) the relaxation rate (T1e-1) has shown a linear dependence on the paramagnetic electron concentration for both radicals investigated. Experiments with perdeuterated and ordinary butanol have given no indication for any influence of the host materials isotopes. The measured temperature dependence has shown an exponential characteristic. It is further observed that the oxygen content in the butanol samples has a considerable effect on the electron relaxation time and thus influences the nuclear relaxation time and polarization rate during the DNP. The experiments also show a variation in the NMR linewidth, leading to comparable time constants as determined by the lineshift. NEDOR measurements were also performed on irradiated, crystal grains of 6LiD. These samples exhibited a linewidth behavior similar to that of the cylindrically shaped butanol samples.
NASA Astrophysics Data System (ADS)
Yulmetyev, R. M.; Hänggi, P.; Yulmetyeva, D. G.; Shimojo, S.; Khusaenova, E. V.; Watanabe, K.; Bhattacharya, J.
2007-09-01
To analyze the crucial role of fluctuation and relaxation effects for the function of the human brain we studied some statistical quantifiers that support the information characteristics of neuromagnetic brain responses (magnetoencephalogram, MEG). The signals to a flickering stimulus of different color combinations have been obtained from a group of control subjects which is then contrasted with those of a patient suffering photosensitive epilepsy (PSE). We found that the existence of the specific stratification of the phase clouds and the concomitant relaxation singularities of the corresponding nonequilibrium dynamics of the chaotic behavior of the signals in separate areas in a patient provide likely indicators for the zones which are responsible for the appearance of PSE.
Singh, Sheela P.; Lu, Chunhua; Han, Lin; Hobbs, Brian P.; Pradeep, Sunila; Choi, Hyun J.; Bankson, James A.
2015-01-01
Purpose To assess whether T1 relaxation time of tumors may be used to assess response to bevacizumab anti-angiogenic therapy. Procedures: 12 female nude mice bearing subcutaneous SKOV3ip1-LC ovarian tumors were administered bevacizumab (6.25ug/g, n=6) or PBS (control, n=6) therapy twice a week for two weeks. T1 maps of tumors were generated before, two days, and 2 weeks after initiating therapy. Tumor weight was assessed by MR and at necropsy. Histology for microvessel density, proliferation, and apoptosis was performed. Results Bevacizumab treatment resulted in tumor growth inhibition (p<0.04, n=6), confirming therapeutic efficacy. Tumor T1 relaxation times increased in bevacizumab treated mice 2 days and 2 weeks after initiating therapy (p<.05, n=6). Microvessel density decreased 59% and cell proliferation (Ki67+) decreased 50% in the bevacizumab treatment group (p<.001, n=6), but not apoptosis. Conclusions Findings suggest that increased tumor T1 relaxation time is associated with response to bevacizumab therapy in ovarian cancer model and might serve as an early indicator of response. PMID:26098849
Dreher, Wolfgang; Bardenhagen, Ingo; Huang, Li; Bäumer, Marcus
2016-04-01
Modern NMR imaging systems used for biomedical research are equipped with B0 gradient systems with strong maximum gradient strength and short switching time enabling (1)H NMR measurements of samples with very short transverse relaxation times. However, background signal originating from non-optimized RF coils may hamper experiments with ultrashort delays between RF excitation and signal reception. We demonstrate that two simple means, outer volume suppression and the use of shaped B0 fields produced by higher-order shim coils, allow a considerable suppression of disturbing background signals. Thus, the quality of NMR images acquired at ultrashort or zero echo time is improved and systematic errors in quantitative data evaluation are avoided. Fields of application comprise MRI with ultrashort echo time or relaxation time analysis, for both biomedical research and characterizing porous media filled with liquids or gases. PMID:26597837
NASA Astrophysics Data System (ADS)
Chelcea, R. I.; Fechete, R.; Culea, E.; Demco, D. E.; Blümich, B.
2009-02-01
The single-sided NMR-MOUSE sensor that operates in highly inhomogeneous magnetic fields is used to record a CPMG 1H transverse relaxation decay by CPMG echo trains for a series of cross-linked natural rubber samples. Effective transverse relaxation rates 1/ T2,short and 1/ T2,long were determined by a bi-exponential fit. A linear dependence of transverse relaxation rates on cross-link density is observed for medium to large values of cross-link density. As an alternative to multi-exponential fits the possibility to analyze the dynamics of soft polymer network in terms of multi-exponential decays via the inverse Laplace transformation was studied. The transient regime and the effect of the T1/ T2 ratio in inhomogeneous static and radiofrequency magnetic fields on the CPMG decays were studied numerically using a dedicated C++ program to simulate the temporal and spatial dependence of the CPMG response. A correction factor T2/ T2,eff is derived as a function of the T1/ T2 ratio from numerical simulations and compared with earlier results from two different well logging devices. High-resolution T1- T2 correlations maps are obtained by two-dimensional Laplace inversion of CPMG detected saturation recovery curves. The T1- T2 experimental correlations maps were corrected for the T1/ T2 effect using the derived T2/ T2,eff correction factor.
Direct Time-Domain Observation of Conformational Relaxation in Gas-Phase Cold Collisions.
Drayna, Garrett K; Hallas, Christian; Wang, Kenneth; Domingos, Sergio R; Eibenberger, Sandra; Doyle, John M; Patterson, David
2016-04-11
Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6 K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from σ=4.7(3.0)×10(-18) cm(2) to σ>5×10(-16) cm(2) . Our method is applicable to a broad class of molecules and could be used to provide information about the potential energy surfaces of previously uninvestigated molecules. PMID:26992036
NASA Astrophysics Data System (ADS)
Kingsley, Peter B.; Monahan, W. Gordon
2000-04-01
In the presence of an off-resonance radiofrequency field, recovery of longitudinal magnetization to a steady state is not purely monoexponential. Under reasonable conditions with zero initial magnetization, recovery is nearly exponential and an effective relaxation rate constant R1eff = 1/T1eff can be obtained. Exact and approximate formulas for R1eff and steady-state magnetization are derived from the Bloch equations for spins undergoing cross-relaxation and chemical exchange between two sites in the presence of an off-resonance radiofrequency field. The relaxation formulas require that the magnetization of one spin is constant, but not necessarily zero, while the other spin relaxes. Extension to three sites with one radiofrequency field is explained. The special cases of off-resonance effects alone and with cross-relaxation or chemical exchange, cross-relaxation alone, and chemical exchange alone are compared. The inaccuracy in saturation transfer measurements of exchange rate constants by published formulas is discussed for the creatine kinase reaction.
EDITORIAL: Special issue on time scale algorithms
NASA Astrophysics Data System (ADS)
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than
EDITORIAL: Special issue on time scale algorithms
NASA Astrophysics Data System (ADS)
Matsakis, Demetrios; Tavella, Patrizia
2008-12-01
This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than
Livshits, V A; Páli, T; Marsh, D
1998-07-01
The EPR spectra of nitroxide spin labels have been simulated as a function of microwave field, H1, taking into account both magnetic field modulation and molecular rotation. It is found that the saturation of the second integral, S, of the first harmonic in-phase absorption spectrum is approximated by that predicted for slow-passage conditions, that is, S approximately H1/1 + PH21, in all cases. This result is independent of the degree of inhomogeneous broadening. In general, the fitting parameter, P, depends not only on the T1 and T2 relaxation times, but also on the rate of molecular reorientation and on the modulation frequency. Calibrations for determining the relaxation times are established from the simulations. For a given modulation frequency and molecular reorientation rate, the parameter obtained by fitting the saturation curves is given by 1/P = a + 1/gamma2eT1 . Teff2, where Teff2 is the effective T2. For molecular reorientation frequencies in the range 2 x 10(7)-2 x 10(8) s-1, Teff2 is dominated by the molecular dynamics and is only weakly dependent on the intrinsic T02, allowing a direct estimation of T1. For reorientation frequencies outside this range, the (T1T2) product may be determined from the calibrations. The method is applied to determining relaxation times for spin labels undergoing different rates of rotational reorientation in a variety of environments, including those of biological relevance, and is verified experimentally by the relaxation rate enhancements induced by paramagnetic ions. PMID:9654471
NASA Astrophysics Data System (ADS)
Walbrecker, Jan O.; Behroozmand, Ahmad A.
2012-12-01
Surface nuclear magnetic resonance (surface NMR) is a geophysical technique used in the exploration of shallow aquifers. It is based on measuring the NMR response of water molecules to excitation by electromagnetic pulses. By increasing the moment of applied pulses, successively deeper regions of an aquifer can be probed. The longitudinal relaxation time T1, determined from the NMR experiment, depends on pore size and can be potentially used to estimate hydraulic conductivity. A novel scheme was recently proposed that was shown theoretically to be more reliable for acquiring surface-NMR T1 data than traditional acquisition. In this proof-of-concept study we provide the first empirical evidence for the superiority of the novel scheme. We chose a survey site close to Skive, Denmark, where proximate boreholes indicate a homogeneous sandy aquifer in the top 30 m. The homogeneous composition implies that the distribution of pore sizes does not vary significantly across the formation. Because pore size is reflected by the T1 relaxation time, we therefore assume that the homogeneous aquifer can be characterized by a single T1 independent of the applied pulse moment (i.e., sampled depth region)—this is the benchmark condition we tested with our surface-NMR measurements. We collected surface-NMR T1 data employing the traditional as well as the novel acquisition scheme at various pulse moments. For each pulse moment we infer a T1 relaxation time based on extensively sampled data (14 delay-time data points). The T1 relaxation times obtained using the novel scheme show a constant value of about 820 ms (± 38 ms) for all pulse moments. In contrast, the T1 relaxation times determined using the traditional scheme vary significantly between 530 and 750 ms with pulse moment, which in an inversion would result in a spatial variation of T1 across the aquifer. The results based on the novel scheme are consistent with a homogeneous aquifer, which we expect based on the borehole
Time Horizon and Social Scale in Communication
NASA Astrophysics Data System (ADS)
Krantz, D. H.
2010-12-01
In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large
NASA Astrophysics Data System (ADS)
Wang, Can-Jun; Wei, Qun; Mei, Dong-Cheng
2008-03-01
The associated relaxation time T and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ, the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ cannot affect the tumor cell numbers; The relaxation time T is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ and τ enhance the related activity between two states at different time; However, τ has no effect on the related activity between two states at different time.
Liu, Y H; Hawk, R M; Ramaprasad, S
1995-01-01
RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment. PMID:7739367
NASA Astrophysics Data System (ADS)
Hlaváček, Bořivoj; Drašar, Čestmír; Kalendová, Andréa; Menc, Pavel; Veselý, David
The temperature-dependent changes of molecular and sub-molecular motions are studied in amorphous substances. The solid and liquid phases of amorphous bodies are characterized at the micro-level by two types of oscillators, linear and non-linear. It is accepted that an amorphous liquid is formed by domains that group the linear oscillators into the form of icebergs. The serial connection of the viscoelastic elements are arranged inside of these icebergs. The size of the linear connection within the domains is characterized by the number "n", which increases during the cooling process. The linear viscoelastic behavior of the individual serial connections is connected to the individual relaxation processes α, β, and γ. Only the "alpha" process exhibits growth of "n" to infinity on cooling. Therefore, the corresponding relaxation time, τα, for the infinite chain of "n" elements (Voigt or Maxwell elements) can also reach infinity as the material transforms to a glassy state. In contrast to the "alpha" process, the β and γ processes are limited in growth for serial connections in a chain structure. Therefore, the relaxation times for the β and γ processes, τβ and τγ, will only follow the temperature dependence of the sample viscosity on cooling, which is, of course, Arrhenian. We discuss the role of non-linear oscillators in the solid-liquid transition in relation to Brownian motion.
Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.
2006-03-01
Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.
NASA Astrophysics Data System (ADS)
Bolinger, Joshua C.; Bixby, Teresa J.; Reid, Philip J.
2005-08-01
We report a series of time-resolved infrared absorption studies on chlorine dioxide (OClO) dissolved in H2O, D2O, and acetonitrile. Following the photoexcitation at 401 nm, the evolution in optical density for frequencies corresponding to asymmetric stretch of OClO is measured with a time resolution of 120±50fs. The experimentally determined optical-density evolution is compared with theoretical models of OClO vibrational relaxation derived from collisional models as well as classical molecular-dynamics (MD) studies. The vibrational relaxation rates in D2O are reduced by a factor of 3 relative to H2O consistent with the predictions of MD. This difference reflects modification of the frequency-dependent solvent-solute coupling accompanying isotopic substitution of the solvent. Also, the geminate-recombination quantum yield for the primary photofragments resulting in the reformation of ground-state OClO is reduced in D2O relative to H2O. It is proposed that this reduction reflects enhancement of the dissociation rate accompanying vibrational excitation along the asymmetric-stretch coordinate. In contrast to H2O and D2O, the vibrational-relaxation dynamics in acetonitrile are not well described by the theoretical models. Reproduction of the optical-density evolution in acetonitrile requires significant modification of the frequency-dependent solvent-solute coupling derived from MD. It is proposed that this modification reflects vibrational-energy transfer from the asymmetric stretch of OClO to the methyl rock of acetonitrile. In total, the results presented here provide a detailed description of the solvent-dependent geminate-recombination and vibrational-relaxation dynamics of OClO in solution.
Bolinger, Joshua C.; Bixby, Teresa J.; Reid, Philip J.
2005-08-22
We report a series of time-resolved infrared absorption studies on chlorine dioxide (OClO) dissolved in H{sub 2}O, D{sub 2}O, and acetonitrile. Following the photoexcitation at 401 nm, the evolution in optical density for frequencies corresponding to asymmetric stretch of OClO is measured with a time resolution of 120{+-}50 fs. The experimentally determined optical-density evolution is compared with theoretical models of OClO vibrational relaxation derived from collisional models as well as classical molecular-dynamics (MD) studies. The vibrational relaxation rates in D{sub 2}O are reduced by a factor of 3 relative to H{sub 2}O consistent with the predictions of MD. This difference reflects modification of the frequency-dependent solvent-solute coupling accompanying isotopic substitution of the solvent. Also, the geminate-recombination quantum yield for the primary photofragments resulting in the reformation of ground-state OClO is reduced in D{sub 2}O relative to H{sub 2}O. It is proposed that this reduction reflects enhancement of the dissociation rate accompanying vibrational excitation along the asymmetric-stretch coordinate. In contrast to H{sub 2}O and D{sub 2}O, the vibrational-relaxation dynamics in acetonitrile are not well described by the theoretical models. Reproduction of the optical-density evolution in acetonitrile requires significant modification of the frequency-dependent solvent-solute coupling derived from MD. It is proposed that this modification reflects vibrational-energy transfer from the asymmetric stretch of OClO to the methyl rock of acetonitrile. In total, the results presented here provide a detailed description of the solvent-dependent geminate-recombination and vibrational-relaxation dynamics of OClO in solution.
NASA Astrophysics Data System (ADS)
Weston, Joseph; Waintal, Xavier
2016-04-01
We report on a "source-sink" algorithm which allows one to calculate time-resolved physical quantities from a general nanoelectronic quantum system (described by an arbitrary time-dependent quadratic Hamiltonian) connected to infinite electrodes. Although mathematically equivalent to the nonequilibrium Green's function formalism, the approach is based on the scattering wave functions of the system. It amounts to solving a set of generalized Schrödinger equations that include an additional "source" term (coming from the time-dependent perturbation) and an absorbing "sink" term (the electrodes). The algorithm execution time scales linearly with both system size and simulation time, allowing one to simulate large systems (currently around 106 degrees of freedom) and/or large times (currently around 105 times the smallest time scale of the system). As an application we calculate the current-voltage characteristics of a Josephson junction for both short and long junctions, and recover the multiple Andreev reflection physics. We also discuss two intrinsically time-dependent situations: the relaxation time of a Josephson junction after a quench of the voltage bias, and the propagation of voltage pulses through a Josephson junction. In the case of a ballistic, long Josephson junction, we predict that a fast voltage pulse creates an oscillatory current whose frequency is controlled by the Thouless energy of the normal part. A similar effect is found for short junctions; a voltage pulse produces an oscillating current which, in the absence of electromagnetic environment, does not relax.
Dynamics of nanoscale ripple relaxation on alloy surfaces.
Ramasubramaniam, Ashwin; Shenoy, Vivek B
2008-02-01
As an alloy surface evolves under capillary forces, differing mobilities of the individual components can lead to kinetic alloy decomposition at the surface. In this paper, we address the relaxation of nanoscale sinusoidal ripples on alloy surfaces by considering the effects of both surface and bulk diffusion. In the absence of bulk diffusion, we derive exact analytical expressions for relaxation rates and identify two natural time scales that govern the relaxation dynamics. Bulk diffusion is shown to reduce kinetic surface segregation and enhance relaxation rates, owing to intermixing near the surface. Our results provide a quantitative framework for the interpretation of relaxation experiments on alloy surfaces. PMID:18352033
Relaxing the electroweak scale: the role of broken dS symmetry
NASA Astrophysics Data System (ADS)
Patil, Subodh P.; Schwaller, Pedro
2016-02-01
Recently, a novel mechanism to address the hierarchy problem has been proposed [1], where the hierarchy between weak scale physics and any putative `cutoff' M is translated into a parametrically large field excursion for the so-called relaxion field, driving the Higgs mass to values much less than M through cosmological dynamics. In its simplest incarnation, the relaxion mechanism requires nothing beyond the standard model other than an axion (the relaxion field) and an inflaton. In this note, we critically re-examine the requirements for successfully realizing the relaxion mechanism and point out that parametrically larger field excursions can be obtained for a given number of e-folds by simply requiring that the background break exact de Sitter invariance. We discuss several corollaries of this observation, including the interplay between the upper bound on the scale M and the order parameter ɛ associated with the breaking of dS symmetry, and entertain the possibility that the relaxion could play the role of a curvaton. We find that a successful realization of the mechanism is possible with as few as O(1{0}^3) e-foldings, albeit with a reduced cutoff M ˜ 106 GeV for a dark QCD axion and outline a minimal scenario that can be made consistent with CMB observations.
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Kibble-Zurek mechanism beyond adiabaticity: Finite-time scaling with critical initial slip
NASA Astrophysics Data System (ADS)
Huang, Yingyi; Yin, Shuai; Hu, Qijun; Zhong, Fan
2016-01-01
The Kibble-Zurek mechanism demands an initial adiabatic stage before an impulse stage to have a frozen correlation length that generates topological defects in a cooling phase transition. Here we study such a driven critical dynamics but with an initial condition that is near the critical point and that is far away from equilibrium. In this case, there is no initial adiabatic stage at all and thus adiabaticity is broken. However, we show that there again exists a finite length scale arising from the driving that divides the evolution into three stages. A relaxation-finite-time-scaling-adiabatic scenario is then proposed in place of the adiabatic-impulse-adiabatic scenario of the original Kibble-Zurek mechanism. A unified scaling theory, which combines finite-time scaling with critical initial slip, is developed to describe the universal behavior and is confirmed with numerical simulations of a two-dimensional classical Ising model.
Time Scales, Bedforms and Bedload Transport
NASA Astrophysics Data System (ADS)
Dhont, B.
2015-12-01
Bedload transport rates in mountain streams may exhibit wide fluctuations even under constant flow conditions. A better understanding of bedload pulses is key to predict natural hazards induced by torrential activity and sediment issues in mountainous areas. Several processes such as bedforms migration, grain sorting and random particles' trajectories are evoked as the driving agents of pulse formation and development. Quantifying the effects of these processes is a difficult task. This work aims to investigate the interactions between bedload transport and bedform dynamics in steep gravel-bed rivers. Experiments are carried out in a 17-m long 60-cm wide flume inclined at an angle of 2.7%. The bed is initially flat and made of homogenous natural gravel with a mean diameter of 6 mm. We imposed 200 identical hydrographs (of 1 hr duration) at the flume inlet (the bed surface was not flattened out during these cycling floods). The input hydrograph and the input sediment discharge are nearly triangular. Bed topography is measured after each flood using ultrasound sensors while the bedload transport rate is steadily monitored at the outlet using accelerometers (accelerometers fixed on metallic plates record the impacts of the grains flowing out of the flume). For the sake of comparison, a similar experiment consisting of 19 floods of 10 hours is carried out under constant supply conditions. We show that accelerometers are a cost effective technique to obtain high-frequency bedload discharge data. Spectral analysis of the bedload timeseries is used to highlight the different time scales corresponding to different bedload transport processes. We show that long timeseries are necessary to capture the different processes that drive bedload transport, including the resilience time after a perturbation of the bed. The alternate bars that develop and migrate along the flume are found to significantly influence bedload transport rate fluctuations.
An optimal modification of a Kalman filter for time scales
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
2003-01-01
The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.
A relaxation of tilt angle in a ferroelectric liquid crystal studied by time-resolved FT-IR
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Sakaguchi, K.; Yasuda, A.; Ozaki, Y.
1998-06-01
Polarization angle dependences of infrared (IR) and time-resolved IR have been measured for a FLC mixture containing 20% cis-(2R,4R)-γ-butyrolactone 1 (YK230C) as a chiral dopant and 80% 5-octyl-2-(4-nonyloxyphenyl) pyrimidine (ONPP) as a nonchiral smectic base LC. These measurements and the measurements of the dichroic ratios of IR bands show that the apparent tilt angle and dichroic ratio in the dynamic state are larger than those in the static state. It seemed therefore that the order of the orientation is higher in the dynamic state than in the static state. In order to confirm the higher orientation order in the dynamic state, we performed time-resolved IR measurements of the FLC mixture for the delay time ranging from 0 to 500μs, which is much longer than the response time. The relaxation process was clearly observed after the response time.
Ellipsoidal Relaxation of Deformed Vesicles
NASA Astrophysics Data System (ADS)
Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao
2015-09-01
Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.
NASA Astrophysics Data System (ADS)
Lai, W. L.; Kind, T.; Wiggenhauser, H.
2010-12-01
Ground penetrating radar (GPR) was used to characterize the frequency-dependent dielectric relaxation phenomena in ordinary Portland cement (OPC) hydration in concrete changing from fresh to hardened state. The study was experimented by measuring the changes of GPR A-scan waveforms over a period of 90 days, and processed the waveforms with short-time Fourier transform (STFT) in joint time-frequency analysis (JTFA) domain rather than a conventional time or frequency domain alone. The signals of the direct wave traveled at the concrete surface and the reflected wave from an embedded steel bar were transformed with STFT, in which the changes of peak frequency over ages were tracked. The peak frequencies were found to increase with ages and the patterns were found to match closely with primarily the well-known OPC hydration process and secondarily, the evaporation effect. The close match is contributed to the simultaneous effects converting free to bound water over time, on both conventional OPC hydration and dielectric relaxation mechanisms.
NASA Astrophysics Data System (ADS)
de Hoop, Adrianus T.
2004-06-01
A uniqueness theorem for the (analytic or computational) time-domain modeling of the elastic wave motion in a scattering configuration that consists of inhomogeneous, anisotropic solids with arbitrary relaxation properties, occupying a bounded subdomain in an unbounded homogeneous, isotropic, perfectly elastic embedding, is presented. No direct time-domain uniqueness proof seems to exist for this kind of configuration. As an intermediate step, the one-to-one correspondence between the causal time-domain wavefield components and the constitutive material response functions on the one hand, and their time Laplace-transform counterparts for (a sequence of) real, positive values of the transform parameter on the other hand, seems a necessary tool. It is shown that such an approach leads to simple, explicit, sufficiency conditions on the inertial loss and compliance relaxation tensors describing the solid's constitutive behavior for uniqueness to hold. In it, the property of causality plays an essential role. In Christensen [Theory of Viscoelasticity-An Introduction (Academic, New York, 1971)] a similar approach is applied to the problem of uniqueness of the elastodynamic initial-/boundary-value problem associated with a viscoelastic object of bounded extent, the surface of which is subject to an admissible set of explicit boundary values. In the scattering configuration of unbounded extent, no explicit boundary values occur and the far-field compressional and shear wave radiation characteristics at ``infinity'' in the embedding play a key role in the proof.
NASA Astrophysics Data System (ADS)
Geissman, J. W.; Walker, J. D.
2012-12-01
Geologic time scales, of one form or another, are used in most undergraduate geosciences courses, even including introductory physical geology or equivalent. However, satisfactory discussions of how geologic time scales originated, and how they have evolved to modern versions, are far too often conveniently or inconveniently left out of classroom discussions. Yet it is these kinds of discussions that have the potential of solidifying student appreciation of deep time and rates of geologic processes. We use the history and development of the Geological Society of America Geologic Time Scale, which reflects major developments in the fields of stratigraphy, geochronology, magnetic polarity stratigraphy, astrochronology, and chemostratigraphy, as a focus of how specific details of time scales can be used to teach about time. Advances in all of these fields have allowed many parts of the time scale to be calibrated to precisions approaching less than 0.05 %. Notable time intervals for which collaborative, multifaceted efforts have led to dramatic improvements in our understanding of the character and temporal resolution of key evolutionary events, in both marine and terrestrial environments, include the Triassic-Jurassic, Permo-Triassic, and Neoproterozoic-Phanerozoic boundaries (or transitions). Many of the details, but certainly not all, can be incorporated in discussions of how we know about geologic time in the classroom. For example, we presently understand that both the end-Permian ecological crisis and the biostratigraphic Permian-Triassic boundary, as calibrated by conodonts, lie within a ca. 700 ka long normal polarity chron. The reverse to normal polarity transition at the beginning of this chron is ca. 100 ka earlier than the ecological crisis and thus slightly older than the current estimate, based on high precision U-Pb zircon age determinations, of ca. 252.4 Ma for the Permian-Triassic boundary. This polarity transition occurred during the early part of
NMR spin-lattice relaxation time T(1) of thin films obtained by magnetic resonance force microscopy.
Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil
2015-05-01
We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment. PMID:25828244
NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy
NASA Astrophysics Data System (ADS)
Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil
2015-05-01
We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.
Ultra-Slow Dielectric Relaxation Process in Polyols
NASA Astrophysics Data System (ADS)
Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke
2004-04-01
Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; Coppari, F.; Fratanduono, D.; Huntington, C. M.; Maddox, B. R.; Park, H. -S.; Plechaty, C.; Prisbrey, S. T.; et al
2015-09-29
We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less
Time scales in Galveston Bay: An unsteady estuary
NASA Astrophysics Data System (ADS)
Rayson, Matthew D.; Gross, Edward S.; Hetland, Robert D.; Fringer, Oliver B.
2016-04-01
Estuarine time scales including the turnover, particle e-folding time, the age (calculated with a passive tracer), and residence time (calculated with Lagrangian particles) were computed using a three-dimensional hydrodynamic model of Galveston Bay, a low-flow, partially stratified estuary. Time scales were computed during a time period when river flow varied by several orders of magnitude and all time scales therefore exhibited significant temporal variability because of the unsteadiness of the system. The spatial distributions of age and residence time were qualitatively similar and increased from 15 days in a shipping channel to >45 days in the upper estuary. Volume-averaged age and residence time decreased during high-flow conditions. Bulk time scales, including the freshwater and salinity turnover times, were far more variable due to the changing river discharge and salt flux through the estuary mouth. A criterion for calculating a suitable averaging time is discussed to satisfy a steady state assumption and to estimate a more representative bulk time scale. When scaled with a freshwater advective time, all time scales were approximately equal to the advective time scale during high-flow conditions and many times higher during low-flow conditions. The mean age, Lagrangian residence, and flushing times exhibited a relationship that was weakly dependent on the freshwater advective time scale demonstrating predictability even in an unsteady, realistic estuary.
NASA Astrophysics Data System (ADS)
Ye, Qiang
The search for the existence of a nonzero neutron electric dipole moment (nEDM) has the potential to reveal new sources of T and CP violation beyond the Standard Model and may have a significant impact on our understanding of the universe. A new experiment aiming at two orders of magnitude improvement (˜ 10--28 e·cm) over the current experimental upper limit has been proposed in the United States. In the experiment, the measurement cell will be made of dTPB-dPS coated acrylic and filled with superfluid 4He at ˜300-500 mK. The measurement of the neutron precession frequency will rely on the spin-dependence of the cross section of the nuclear reaction between polarized neutrons and 3He atoms: n⃗+H3 ⃗e → p + t + 764 keV. Polarized 3He will also be used as a comagnetometer based on the nuclear magnetic resonance technique. The 3He polarization needs to have sufficiently long relaxation time so that little polarization is lost during the measurement period in order to achieve the proposed sensitivity. Understanding the relaxation mechanism of 3He polarization in the measurement cell under the nEDM experimental conditions and maintaining 3He polarization is crucial for the experiment. With the presence of superfluid 4He, 3He relaxation time measurements in a dTPB-dPS coated cylindrical acrylic cell at the temperature of 1.9 K and ˜400 mK have been performed at the Triangle University Nuclear Laboratory (TUNL) on the campus of Duke University. The extracted depolarization probabilities of polarized 3He on the cell surface are on the order of (1 -- 2) x 10--7 at 1.9 K and ˜ 4.7 x 10--7 at ˜400 mK. The extrapolated relaxation time of polarized 3He in the nEDM cell geometry is ˜ 4870 seconds at ˜400 mK, which is sufficiently long for the nEDM experiment and further improvements are anticipated.
A Quaternary Geomagnetic Instability Time Scale
NASA Astrophysics Data System (ADS)
Singer, B. S.
2013-12-01
Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought
NASA Astrophysics Data System (ADS)
Hu, Yan; Bürgmann, Roland; Uchida, Naoki; Banerjee, Paramesh; Freymueller, Jeffrey T.
2016-01-01
Understanding of postseismic deformation following great subduction zone earthquakes is complicated by the combined effects of viscoelastic relaxation of earthquake-induced stresses in the upper mantle and time-dependent afterslip on the megathrust. We integrate geodetic observations and constraints on afterslip from small repeating earthquakes on the megathrust to better distinguish contributions from these two postseismic processes. We have developed a three-dimensional, spherical viscoelastic finite element model to study the postseismic deformation of the 2011 Mw9.0 Tohoku earthquake that has been recorded at unprecedented high resolution in space and time. We model stress-driven afterslip in a 2 km thick weak shear zone away from historic rupture zones on the megathrust. We model both the viscoelastic relaxation of the upper mantle and shear zone deformation with a transient Burgers body rheology. The transient Kelvin viscosity is assumed to be one order of magnitude lower than that of the Maxwell viscosity. Viscoelastic relaxation of the mantle wedge alone causes postseismic uplift and seaward motion in the upper plate, opposite to the pattern from relaxation of just the oceanic upper mantle. Afterslip on the fault produces uplift updip of the afterslip zone and subsidence over its downdip edge and mostly seaward motion above the afterslip zone. The best fit Maxwell viscosity of the shear zone at depths ≤50 km is 1017 Pa s, constrained by afterslip estimates from repeating earthquakes. The optimal viscosities of the deep weak shear zone, continental mantle wedge, and oceanic upper mantle are determined to be 5 × 1017 Pa s, 3 × 1019 Pa s, and 5 × 1019 Pa s, respectively. The stress-driven afterslip in the shear zone is up to ~3.5 m in the first 2 years after the earthquake, equivalent to an Mw8.4. Our model reproduces the first-order pattern of the GPS observations both in horizontal and in vertical directions. Seafloor geodetic observations of subsidence
Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd
Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
NASA Astrophysics Data System (ADS)
Wers, E.; Oudadesse, H.; Lefeuvre, B.; Merdrignac-Conanec, O.; Barroug, A.
2015-10-01
Chitosan scaffolds, combined with bioactive glass 46S6, were prepared to serve as gentamicin sulfate delivery in situ systems for bone biomaterials. This work presents a study about the effect of the ratio chitosan/bioactive glass (CH/BG) on the release of gentamicin sulfate and on the bioactivity during in vitro experiments. SEM observations allowed understanding the bond between the glass grains and the chitosan matrix. In vitro results showed that scaffolds form a hydroxyapatite (HA) Ca10(PO4)6(OH)2 after 15 days of immersion in a simulated body fluid (SBF).The interest of this study is to see that the increase of the content of bioactive glass in the chitosan matrix slows the release of gentamicin sulfate in the liquid medium. Starting concentration of gentamicin sulfate has an influence on the relaxation time of the scaffolds. Indeed, an increasing concentration delays the return to a new equilibrium. Contents of chitosan and bioactive glass do not affect the relaxation time. Synthesized scaffolds could be adapted to a clinical situation: severity and type of infection, weight and age of the patient.
On time scales and time synchronization using LORAN-C as a time reference signal
NASA Technical Reports Server (NTRS)
Chi, A. R.
1974-01-01
The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.
Linking Response-Time Parameters onto a Common Scale
ERIC Educational Resources Information Center
van der Linden, Wim J.
2010-01-01
Although response times on test items are recorded on a natural scale, the scale for some of the parameters in the lognormal response-time model (van der Linden, 2006) is not fixed. As a result, when the model is used to periodically calibrate new items in a testing program, the parameter are not automatically mapped onto a common scale. Several…
NASA Astrophysics Data System (ADS)
Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.
2016-09-01
Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.
NASA Astrophysics Data System (ADS)
Scully, C. N.; Cregg, P. J.; Crothers, D. S. F.
1992-01-01
It is known that the direction of the magnetization vector of very fine single-domain ferromagnetic particles fluctuates under the influence of thermal agitation. Perturbation theory is applied rigorously to a singular integral equation to derive an asymptotic formula for the relaxation time of the magnetization, for the case of uniaxial anisotropy and an applied magnetic field. The result agrees with that of Brown [Phys. Rev. 130, 1677 (1963)] as described succinctly by Aharoni [Phys. Rev. 177, 793 (1969)]. It should be emphasized that both Gilbert's equation and the earlier Landau-Lifshitz equation are merely phenomenological equations, which are used to explain the time decay of the average magnetization. Brown suggested that the Gilbert equation should be augmented by a white-noise driving term in order to explain the effect of thermal fluctuations of the surroundings on the magnetization.
NASA Astrophysics Data System (ADS)
Kusaka, R.; Ebata, T.
2010-06-01
The benzene dimer is excited to the CH stretching vibrational levels by a picosecond IR pulse, and the time evolution of the population of the pumped and redistributed levels are probed by (1+1)REMPI with a picosecond UV pulse. In order to accomplish IR excitation localized in the site of the T-shaped dimer, two dimer isotopomers [(1) Top=C_6H_6, Stem=C_6D_6, (2) Top=C_6D_6, Stem=C_6H_6] are used. From the time profiles of the pumped and the relaxed levels, the rate constants of intracluster vibrational redistribution (ICVR) at each site and subsequent vibrational predissociation (VP) are discussed.
Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.
2013-01-01
The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627
Detecting separate time scales in genetic expression data
2010-01-01
Background Biological processes occur on a vast range of time scales, and many of them occur concurrently. As a result, system-wide measurements of gene expression have the potential to capture many of these processes simultaneously. The challenge however, is to separate these processes and time scales in the data. In many cases the number of processes and their time scales is unknown. This issue is particularly relevant to developmental biologists, who are interested in processes such as growth, segmentation and differentiation, which can all take place simultaneously, but on different time scales. Results We introduce a flexible and statistically rigorous method for detecting different time scales in time-series gene expression data, by identifying expression patterns that are temporally shifted between replicate datasets. We apply our approach to a Saccharomyces cerevisiae cell-cycle dataset and an Arabidopsis thaliana root developmental dataset. In both datasets our method successfully detects processes operating on several different time scales. Furthermore we show that many of these time scales can be associated with particular biological functions. Conclusions The spatiotemporal modules identified by our method suggest the presence of multiple biological processes, acting at distinct time scales in both the Arabidopsis root and yeast. Using similar large-scale expression datasets, the identification of biological processes acting at multiple time scales in many organisms is now possible. PMID:20565716
Mechanism of Void Nucleation and Growth in bcc Fe: Atomistic Simulations at Experimental Time Scales
Fan Yue; Kushima, Akihiro; Yip, Sidney; Yildiz, Bilge
2011-03-25
Evolution of small-vacancy clusters in bcc Fe is simulated using a multiscale approach coupling an atomistic activation-relaxation method for sampling transition-state pathways with environment-dependent reaction coordinate calculations and a kinetic Monte Carlo simulation to reach time scales on the order of {approx}10{sup 4} s. Under vacancy-supersaturated condition, di- and trivacancy clusters form and grow by coalescence (Ostwald ripening). For cluster size greater than four we find a transition temperature of 150 deg. C for accelerated cluster growth, as observed in positron annihilation spectroscopy experiments. Implications for the mechanism of stage-IV radiation-damage-recovery kinetics are discussed.
Phase transitions in semidefinite relaxations
Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico
2016-01-01
Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856
Phase transitions in semidefinite relaxations.
Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico
2016-04-19
Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856
On the depletion and accretion time-scales of cold gas in local early-type galaxies
NASA Astrophysics Data System (ADS)
Davis, Timothy A.; Bureau, Martin
2016-03-01
We consider what can be learnt about the processes of gas accretion and depletion from the kinematic misalignment between the cold/warm gas and stars in local early-type galaxies. Using simple analytic arguments and a toy model of the processes involved, we show that the lack of objects with counter-rotating gas reservoirs strongly constrains the relaxation, depletion and accretion time-scales of gas in early-type galaxies. Standard values of the accretion rate, star-formation efficiency and relaxation rate are not simultaneously consistent with the observed distribution of kinematic misalignments. To reproduce that distribution, both fast gas depletion (tdep ≲ 108 yr; e.g. more efficient star formation) and fast gas destruction (e.g. by active galactic nucleus feedback) can be invoked, but both also require a high rate of gas-rich mergers (>1 Gyr-1). Alternatively, the relaxation of misaligned material could happen over very long time-scales (≃100 dynamical times or ≈1-5 Gyr). We explore the various physical processes that could lead to fast gas depletion and/or slow gas relaxation, and discuss the prospects of using kinematic misalignments to probe gas-rich accretion processes in the era of large integral-field spectroscopic surveys.
Timing signatures of large scale solar eruptions
NASA Astrophysics Data System (ADS)
Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.
2016-05-01
We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.
Cudalbu, Cristina; Mlynárik, Vladimír; Xin, Lijing; Gruetter, Rolf
2009-10-01
Knowledge of T(1) relaxation times can be important for accurate relative and absolute quantification of brain metabolites, for sensitivity optimizations, for characterizing molecular dynamics, and for studying changes induced by various pathological conditions. (1)H T(1) relaxation times of a series of brain metabolites, including J-coupled ones, were determined using a progressive saturation (PS) technique that was validated with an adiabatic inversion-recovery (IR) method. The (1)H T(1) relaxation times of 16 functional groups of the neurochemical profile were measured at 14.1T and 9.4T. Overall, the T(1) relaxation times found at 14.1T were, within the experimental error, identical to those at 9.4T. The T(1)s of some coupled spin resonances of the neurochemical profile were measured for the first time (e.g., those of gamma-aminobutyrate [GABA], aspartate [Asp], alanine [Ala], phosphoethanolamine [PE], glutathione [GSH], N-acetylaspartylglutamate [NAAG], and glutamine [Gln]). Our results suggest that T(1) does not increase substantially beyond 9.4T. Furthermore, the similarity of T(1) among the metabolites (approximately 1.5 s) suggests that T(1) relaxation time corrections for metabolite quantification are likely to be similar when using rapid pulsing conditions. We therefore conclude that the putative T(1) increase of metabolites has a minimal impact on sensitivity when increasing B(0) beyond 9.4T. PMID:19645007
NASA Astrophysics Data System (ADS)
Grzybowska, K.; Grzybowski, A.; Pawlus, S.; Pionteck, J.; Paluch, M.
2015-06-01
In this paper, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy S is not sufficient to govern the time scale defined by structural relaxation time τ. In the density scaling regime, we argue that the decoupling between τ and S is a consequence of different values of the scaling exponents γ and γS in the density scaling laws, τ =f (ργ/T ) and S =h (ργS/T ) , where ρ and T denote density and temperature, respectively. It implies that the proper relation between τ and S requires supplementing with a density factor, u (ρ), i.e., τ =g ( u (ρ )w (S ) ) . This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. The relation reported by us between τ and S constitutes a general pattern based on nonconfigurational quantities for describing the thermodynamic evolution of the characteristic time scale of molecular dynamics near the glass transition in the density scaling regime, which is a promising alternative to the approaches based as the Adam-Gibbs model on the configurational entropy that is difficult to evaluate in the entire thermodynamic space. As an example, we revise the Avramov entropic model of the dependence τ(T ,ρ), giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy Sex, the density scaling of which is found to mimic the density scaling of the total system entropy S .
NASA Astrophysics Data System (ADS)
Xie, Hai-Qiong; Zeng, Zhong; Zhang, Liang-Qi; Liang, Gong-You; Hiroshi, Mizuseki; Yoshiyuki, Kawazoe
2012-12-01
In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.
Oelschläger, H; Wange, J; Letsch, J; Seeling, A
2003-02-01
2-(4-Chlorophenyl)-4-metathiazanone (2) is the intermediate product for the two step-synthesis of chlormezanone (1), a centrally acting muscle relaxant. The second step includes the oxidation of its sulfur atom. It has been found that the foregoing reaction of 4-chlorobenzaldehyde with methylamine forming the hemiaminale and the subsequent addition of beta-mercaptopropionic acid leads to a remarkable better yield (67% of th.) than the route via the hemimercaptale (42% of th.). 2 could be oxidized with sodium perborate superior to potassium permanganate. The racemic chlormezanone (1) is resolved quickly on a gram scale by preparative column chromatography on a Chiralcel OD column (tris(3,5-dimethyl-phenyl-carbamoyl)cellulose on silicagel). The resolution needed only 40 min, if flow rate, composition of the mobile phase and temperature as the most important factors are determined prior with an analytical column. Both dissociation constants could be determined for the first time with the aid of a log pKa-Titrator of the Sirius Co., which needs for the registration of the curves only 15-17 min in the pH range of 2-12. This speed outplayed the disturbing cleavage of the S-C bond of chlormezanone at strong acidic and alkaline pH values. PMID:12641322
An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers
Gelb, Anne; Archibald, Richard K
2015-01-01
Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.
Imaging of relaxation times and microwave field strength in a microfabricated vapor cell
NASA Astrophysics Data System (ADS)
Horsley, Andrew; Du, Guan-Xiang; Pellaton, Matthieu; Affolderbach, Christoph; Mileti, Gaetano; Treutlein, Philipp
2013-12-01
We present a characterization technique for atomic vapor cells, combining time-domain measurements with absorption imaging to obtain spatially resolved information on decay times, atomic diffusion, and coherent dynamics. The technique is used to characterize a 5-mm-diameter, 2-mm-thick microfabricated Rb vapor cell, with N2 buffer gas, placed inside a microwave cavity. Time-domain Franzen and Ramsey measurements are used to produce high-resolution images of the population (T1) and coherence (T2) lifetimes in the cell, while Rabi measurements yield images of the σ-, π, and σ+ components of the applied microwave magnetic field. For a cell temperature of 90∘C, the T1 times across the cell center are found to be a roughly uniform 265μs, while the T2 times peak at around 350μs. We observe a “skin” of reduced T1 and T2 times around the edge of the cell due to the depolarization of Rb after collisions with the silicon cell walls. Our observations suggest that these collisions are far from being 100% depolarizing, consistent with earlier observations made with Na and glass walls. Images of the microwave magnetic field reveal regions of optimal field homogeneity, and thus coherence. Our technique is useful for vapor cell characterization in atomic clocks, atomic sensors, and quantum information experiments.
Macías-Hernández, Salvador Israel; Miranda-Duarte, Antonio; Ramírez-Mora, Isabel; Cortés-González, Socorro; Morones-Alba, Juan Daniel; Olascoaga-Gómez, Andrea; Coronado-Zarco, Roberto; Soria-Bastida, María de Los Angeles; Nava-Bringas, Tania Inés; Cruz-Medina, Eva
2016-08-01
The objective of this study is to correlate T2 relaxation time (T2RT), measured by magnetic resonance imaging (MRI) with quadriceps and hamstring strength in young participants with risk factors for knee osteoarthritis (OA). A descriptive cross-sectional study was conducted with participants between 20 and 40 years of age, without diagnosis of knee OA. Their T2 relaxation time was measured through MRI, and their muscle strength (MS) was measured with an isokinetic dynamometer. Seventy-one participants were recruited, with an average age of 28.3 ± 5.5 years; 39 (55 %) were females. Negative correlations were found between T2RT and quadriceps peak torque (QPT) in males in the femur r = -0.46 (p = 0.01), tibia r = -0.49 (p = 0.02), and patella r = -0.44 (p = 0.01). In women, correlations were found among the femur r = -0.43 (p = 0.01), tibia r = -0.61 (p = 0.01), and patella r = -0.32 (p = 0.05) and among hamstring peak torque (HPT), in the femur r = -0.46 (p = 0.01), hamstring total work (HTW) r = -0.42 (p = 0.03), and tibia r = -0.33 (p = 0.04). Linear regression models showed good capacity to predict T2RT through QPT in both genders. The present study shows that early changes in femoral, tibial, and patellar cartilage are significantly correlated with MS, mainly QPT, and that these early changes might be explained by MS, which could play an important role in pre-clinical phases of the disease. PMID:27334115
Modeling orbital changes on tectonic time scales
NASA Technical Reports Server (NTRS)
Crowley, Thomas J.
1992-01-01
Geologic time series indicate significant 100 ka and 400 ka pre-Pleistocene climate fluctuations, prior to the time of such fluctuations in Pleistocene ice sheets. The origin of these fluctuations must therefore depend on phenomena other than the ice sheets. In a previous set of experiments, we tested the sensitivity of an energy balance model to orbital insolation forcing, specifically focusing on the filtering effect of the Earth's geography. We found that in equatorial areas, the twice-yearly passage of the sun across the equator interacts with the precession index to generate 100 ka and 400 ka power in our modeled time series. The effect is proportional to the magnitude of land in equatorial regions. We suggest that such changes may reflect monsoonal variations in the real climate system, and the subsequent wind and weathering changes may transfer some of this signal to the marine record. A comparison with observed fluctuations of Triassic lake levels is quite favorable. A number of problems remain to be studied or clarified: (1) the EBM experiments need to be followed up by a limited number of GCM experiments; (2) the sensitivity to secular changes in orbital forcing needs to be examined; (3) the possible modifying role of sedimentary processes on geologic time series warrants considerably more study; (4) the effect of tectonic changes on Earth's rotation rate needs to be studied; and (5) astronomers need to make explicit which of their predictions are robust and geologists and astronomers have to agree on which of the predictions are most testable in the geologic record.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Yu, T.; Wu, M. W.
2013-06-01
We report an anomalous scaling of the D’yakonov-Perel’ spin relaxation with the momentum relaxation in semiconductor quantum wells under a strong magnetic field in the Voigt configuration. We focus on the case in which the external magnetic field is perpendicular to the spin-orbit-coupling-induced effective magnetic field and its magnitude is much larger than the latter one. It is found that the longitudinal spin relaxation time is proportional to the momentum relaxation time even in the strong-scattering limit, indicating that the D’yakonov-Perel’ spin relaxation demonstrates Elliott-Yafet-like behavior. Moreover, the transverse spin relaxation time is proportional (inversely proportional) to the momentum relaxation time in the strong- (weak-) scattering limit, both in the opposite trends against the well-established conventional D’yakonov-Perel’ spin relaxation behaviors. We further demonstrate that all the above anomalous scaling relations come from the unique form of the effective inhomogeneous broadening.
NASA Astrophysics Data System (ADS)
Yesinowski, James P.
2015-03-01
Measuring true spin-lattice relaxation times T1 of half-integral quadrupolar nuclei having non-zero nuclear quadrupole coupling constants (NQCCs) presents challenges due to the presence of satellite-transitions (STs) that may lie outside the excitation bandwidth of the central transition (CT). This leads to complications in establishing well-defined initial conditions for the population differences in these multi-level systems. In addition, experiments involving magic-angle spinning (MAS) can introduce spin exchange due to zero-crossings of the ST and CT (or possibly rotational resonance recoupling in the case of multiple sites) and greatly altered initial conditions as well. An extensive comparison of pulse sequences that have been previously used to measure T1 in such systems is reported, using the 71Ga (I = 3/2) NMR of a Ge-doped h-GaN n-type semiconductor sample as the test case. The T1 values were measured at the peak maximum of the Knight shift distribution. Analytical expressions for magnetization-recovery of the CT appropriate to the pulse sequences tested were used, involving contributions from both a magnetic relaxation mechanism (rate constant W) and a quadrupolar one (rate constants W1 and W2, approximately equal in this case). An asynchronous train of high-power saturating pulses under MAS that is able to completely saturate both CT and STs is found to be the most reliable and accurate method for obtaining the "true T1", defined here as (2W + 2W1,2)-1. All other methods studied yielded poor agreement with this "true T1" value or even resulted in gross errors, for reasons that are analyzed in detail. These methods involved a synchronous train of saturating pulses under MAS, an inversion-recovery sequence under MAS or static conditions, and a saturating comb of pulses on a static sample. Although the present results were obtained on a sample where the magnetic relaxation mechanism dominated the quadrupolar one, the asynchronous saturating pulse train
NMR Relaxation and Petrophysical Properties
NASA Astrophysics Data System (ADS)
Fleury, Marc
2011-03-01
NMR relaxation is routinely used in the field of geosciences to give basic petrophysical properties such as porosity, pore size distribution, saturation etc. In this tutorial, we focus on the pore size distribution deduced from NMR. We recall the basic principle used in the interpretation of the NMR signal and compare the results with other standard petrophysical techniques such as mercury pore size distribution, BET specific surface measurements, thin section visualizations. The NMR pore size distribution is a unique information available on water saturated porous media and can give similar results as MICP in certain situations. The scaling of NMR relaxation time distribution (s) into pore sizes (μm) requires the knowledge of the surface relaxivity (μm/s) and we recommend using specific surface measurements as an independent determination of solid surface areas. With usual surface relaxivities, the NMR technique can explore length-scales starting from nano-meters and ending around 100 μm. Finally, we will introduce briefly recent techniques sensitive to the pore to pore diffusional exchange, providing new information on the connectivity of the pore network, but showing another possibility of discrepancy in the determination of pore size distribution with standard techniques.
Vďačný, Peter
2015-08-01
The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes. PMID:26204556
Stress Relaxation for Granular Materials near Jamming under Cyclic Compression
NASA Astrophysics Data System (ADS)
Farhadi, Somayeh; Zhu, Alex Z.; Behringer, Robert P.
2015-10-01
We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states. We observe a transition point ϕm above which P persists over many cycles; below ϕm, P relaxes slowly. The relaxation time scale associated with P increases with packing fraction, while the relaxation time scale for collective particle motion remains constant. The collective motion of the ellipses is hindered compared to disks because of the rotational constraints on elliptical particles.
Tunneling with very long relaxation times in glasses, organic materials, and Nb-Ti-H (D)
NASA Astrophysics Data System (ADS)
Schwark, M.; Pobell, F.; Kubota, M.; Mueller, R. M.
1985-01-01
The long-time ( t=10 200 h) heat releasedot Q from glasses, from organic materials, and from Nb-Ti-H (D) was measured at 30≤ T≤70 mK. For Suprasil W glass, Dimethyl-Siloxan, Stycast 1266, Stycast 2850 FT, Vespel, and for Nb-Ti-H (D) with various Ti and D concentrations, we founddot Q ˜ t^{ - 1}. Typical values aredot Q = 0.05 nW/g for the organic materials and for Nb-Ti-H (D) anddot Q = 0.005 nW/g for the glass at t=100 h after cooldown from room temperature. For charging temperatures T i <5 K, we find the predicted dependencedot Q ˜ t_i^2 (investigated for Suprasil W glass and for Nb-Ti-D). The observed time and temperature dependences agree with predictions of the conventional two-level tunneling model for amorphous materials even at these very long times. No heat release was observed for Teflon, graphite, and Al2O3.
Pennsylvanian time scales and cycle periods
deV. Klein, G. )
1990-05-01
Geochronological results from central Europe indicate that the duration of Pennsylvanian time is only 19 m.y., compared to the Harland et al. and Palmer estimates of 34 m.y. Prior calculations of Pennsylvanian cycle periods from the midcontinent of North America suggesting a fit with Milankovitch orbital parameters may well be in errors; as a consequence, other mechanisms for possible eustatic sea-level changes represented in those cycles are needed. Calculation of cycle periods of 100 ka or less lack precision in stratigraphic intervals representing ages characterized by error margins of millions of years. Thus, cycle periods may be less reliable as an indicator of global process than previously considered, particularly in rocks of Paleozoic and early and middle Mesozoic age.
NASA Astrophysics Data System (ADS)
Polson, James M.; Fyfe, J. D. Dean; Jeffrey, Kenneth R.
1991-03-01
Deuterium nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times were determined in order to study the dynamics of t-butyl groups in butylated hydroxytoluene. The results are consistent with a model first proposed by Beckmann et al. [J. Magn. Reson. 36, 199 (1979)], where there is an inequivalence between the methyl groups within each t-butyl group. While two methyl groups reorient rapidly relative to the whole t-butyl rotation, the remaining methyl group is more restricted in its motion, reorienting at a rate comparable to that of the t-butyl group itself. The spin-lattice relaxation data show two T1 minima, the high temperature minimum (40 °C) corresponding to the combined t-butyl and ``slow'' methyl rotations, and the low temperature minimum corresponding to ``fast'' methyl group rotation. Using an explicitly defined T1 fitting function, the T1 data yield activation energies of 2.2 and 6.0 kcal/mol for the fast methyl and t-butyl rotations, respectively, both in agreement with Beckmann's values obtained from proton T1 experiments. It was also possible to simulate the low temperature deuterium NMR spectra from T=-160 °C to T=-80 °C using the aforementioned dynamical inequivalence between the t-butyl methyl groups. While the fast methyl group rotation was in the motional narrowing region for T>-160 °C, it was possible, from the simulations, to determine the t-butyl exchange rates to within 10%. The jump rates are remarkably close to the values predicted from the T1 results. Above -80 °C, the spectra could not be simulated, implying that a third motion must be present to further alter the high temperature line shapes. The effective axial asymmetry of the T>-20° spectra indicates that the additional motion involves a two site exchange.
A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record
Berney, Cédric; Pawlowski, Jan
2006-01-01
Recent attempts to establish a molecular time-scale of eukaryote evolution failed to provide a congruent view on the timing of the origin and early diversification of eukaryotes. The major discrepancies in molecular time estimates are related to questions concerning the calibration of the tree. To limit these uncertainties, we used here as a source of calibration points the rich and continuous microfossil record of dinoflagellates, diatoms and coccolithophorids. We calibrated a small-subunit ribosomal RNA tree of eukaryotes with four maximum and 22 minimum time constraints. Using these multiple calibration points in a Bayesian relaxed molecular clock framework, we inferred that the early radiation of eukaryotes occurred near the Mesoproterozoic–Neoproterozoic boundary, about 1100 million years ago. Our results indicate that most Proterozoic fossils of possible eukaryotic origin cannot be confidently assigned to extant lineages and should therefore not be used as calibration points in molecular dating. PMID:16822745
2016-01-01
Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829
Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik
2016-07-19
Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325829
Rapid evaluation of time scale using an optical clock
NASA Astrophysics Data System (ADS)
Ido, T.; Hachisu, H.; Nakagawa, F.; Hanado, Y.
2016-06-01
Feasibility of steering a time scale using an optical clock is investigated. Since the high stability of optical frequency standards enables rapid evaluation of the scale interval, the requirement for the continuous operation is mitigated. Numerical simulations with the input of real calibration data by a 87Sr lattice clock indicated that the calibrations once in two weeks maintain the time scale within 5 ns level using a currently available hydrogen maser at NICT. “Optical” steering of a time scale by the intermittent calibrations frees an optical frequency standard from being dedicated to the steering, enabling other applications using the same apparatus.
Relaxation time mapping of single quantum dots and substrate background fluorescence
NASA Astrophysics Data System (ADS)
Pshenay-Severin, E.; Mukhin, I.; Fasold, S.; Geiss, R.; Steinbrück, A.; Grange, R.; Chipouline, A.; Pertsch, T.
2015-08-01
We experimentally investigated the role of background signal in time resolved photoluminescence experiments with single quantum dots on substrates. We show that the background fluorescence signal from thin gold films fabricated by electron-beam evaporation and from Al2O3 layers fabricated by atomic layer deposition have to be taken into consideration in experiments on the single photon level. Though all investigated components can be distinguished by their photoluminescence decay rates, the presence of the background signal prevents the observation of photon antibunching from single quantum dots. Moreover, a single quantum dot acts as a hot spot enabling the plasmon supported fluorescence enhancement of gold.
Do quasars evolve over cosmological time scales?
NASA Astrophysics Data System (ADS)
Wampler, E. J.; Ponz, D.
Systematic biases that are redshift dependent can influence the optical discovery of quasars and the evolution laws derived from counts of quasars. New data and their interpretation for quasars brighter than MB = -24 in the Palomar Bright Quasar Survey (BQS) (Schmidt and Green, 1983) are consistent with no evolution. A comparison of BQS quasars with the brightest quasars from the CTIO Schmidt Telescope Survey (Osmer and Smith, 1980) shows that if q(0) is near zero, the comoving density of bright quasars in a Friedmann cosmology is about 15 times higher for the CTIO survey quasars (mean z of about 2.8) than for the BQS quasars (mean z of about 1.8). In this case spectral evolution is also required since the CTIO quasars have stronger CIV 1548 A lines than the BQS quasars of similar luminosity. Alternatively, if q(0) is taken to be near 1, the CTIO survey quasars would then have a lower luminosity than the BQS quasars and these data would be consistent with no evolution. Strong CIV 1548 A lines for the CTIO quasars would then fit the general correlation between absolute quasar luminosity and emission line strength (Wampler, Gaskell, Burke and Baldwin, 1984).
Critical time scale of coarse-graining entropy production
NASA Astrophysics Data System (ADS)
Sohn, Jang-il
2016-04-01
We study coarse-grained entropy production in an asymmetric random walk system on a periodic one-dimensional lattice. In coarse-grained systems, the original dynamics are unavoidably destroyed, but the coarse-grained entropy production is not hidden below the critical time-scale separation. The hidden entropy production is rapidly increasing near the critical time-scale separation.
Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation
Baker-Jarvis, James
2005-12-15
This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied to the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance.
Evolutionary time-scale of primate bocaviruses.
Babkin, Igor V; Tyumentsev, Alexander I; Tikunov, Artem Yu; Kurilshikov, Alexander M; Ryabchikova, Elena I; Zhirakovskaya, Elena V; Netesov, Sergei V; Tikunova, Nina V
2013-03-01
Human bocavirus (HBoV) is associated with acute gastroenteritis in humans, occurring mostly in young children and elderly people. Four bocavirus genotypes (HBoV1-HBoV4) have been found so far. Since there were no data on the contribution of HBoV to gastroenteritis in Russia, 1781 fecal samples collected from infants hospitalized with acute gastroenteritis in Novosibirsk, Russia during one year were tested for the presence of nucleic acids from HBoV and three major gastrointestinal viruses (rotavirus A, norovirus II, and astrovirus). HBoV was detected only in 1.9% of the samples: HBoV1 was detected in 0.6% and HBoV2, in 1.3%. Complete genome sequencing of three Novosibirsk isolates was performed. An evolutionary analysis of these sequences and the available sequences of human and great apes bocaviruses demonstrated that the current HBoV genotypes diverged comparatively recently, about 60-300years ago. The independent evolution of bocaviruses from chimpanzees and gorillas commenced at the same time period. This suggests that these isolates of great apes bocaviruses belong to separate genotypes within the species of human bocavirus, which is actually the primate bocavirus. The rate of mutation accumulation in the genome of primate bocaviruses has been estimated as approximately 9×10(-4)substitutions/site/year. It has been demonstrated that HBoV1 diverged from the ancestor common with chimpanzee bocavirus approximately 60-80years ago, while HBoV4 separated from great apes bocaviruses about 200-300years ago. The hypothesis postulating independent evolution of HBoV1 and HBoV4 genotypes from primate bocaviruses has been proposed. PMID:23313830
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang; Koide, Tomoi
2012-09-01
The microscopic formulas for the shear viscosity η, the bulk viscosity ζ, and the corresponding relaxation times τπ and τΠ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potential by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure. We show that, when the operator definition for the bulk viscous pressure Π is appropriately chosen, the leading-order result of the ratio, ζ over τΠ, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al. (2008) [8] by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.
NASA Astrophysics Data System (ADS)
Fantazzini, Paola; Galassi, Francesca; Bortolotti, Villiam; Brown, Robert J. S.; Vittur, Franco
2011-06-01
When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with αLt1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal
Spatially resolved measurements of mean spin-spin relaxation time constants
NASA Astrophysics Data System (ADS)
Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J.
2014-02-01
Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples.
Spatially resolved measurements of mean spin-spin relaxation time constants.
Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J
2014-02-01
Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples. PMID:24361482
Scaling analysis of multi-variate intermittent time series
NASA Astrophysics Data System (ADS)
Kitt, Robert; Kalda, Jaan
2005-08-01
The scaling properties of the time series of asset prices and trading volumes of stock markets are analysed. It is shown that similar to the asset prices, the trading volume data obey multi-scaling length-distribution of low-variability periods. In the case of asset prices, such scaling behaviour can be used for risk forecasts: the probability of observing next day a large price movement is (super-universally) inversely proportional to the length of the ongoing low-variability period. Finally, a method is devised for a multi-factor scaling analysis. We apply the simplest, two-factor model to equity index and trading volume time series.
Kang, Nam Lyong
2014-12-07
The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.
NASA Astrophysics Data System (ADS)
Kang, Nam Lyong
2014-12-01
The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were Ppe=4.0 ×1022 eV/m for InSb and Ppe=1.2 ×1023 eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.
NASA Astrophysics Data System (ADS)
Hammou, H.; Ginzburg, I.; Boulerhcha, M.
2011-06-01
We develop two-relaxation-times Lattice Boltzmann schemes (TRT) with two relaxation functions Λ±(r→,t) for solving highly non-linear equations for groundwater modeling in d-dimensions, namely, the Richards equation for water content distribution θ(r→,t) in unsaturated flow and the associated transport equation for solute concentration C(r→,t), advected by the local Darcian water flux. The method is verified against the analytical solutions and the HYDRUS code where the TRT schemes behave more robustly for small diffusion coefficients and sharp infiltration profiles. The focus is on the stability and efficiency of two transport schemes. The first scheme conventionally prescribes C for diffusive flux equilibrium variable while conserving θC. The second scheme prescribes θC for both variables, expecting to retain the stable parameter areas and velocity amplitudes recently predicted by linear von Neumann stability analysis. We show that the first scheme reduces the stable diffusion range, e.g. from Λ-/ d to θΛ-/ d for simplest velocity sets, but it also modifies the linearized numerical diffusion, from - Λ-UαUβ to - θΛ-UαUβ, giving rise to possible enhancement of stable velocity U2, max by a factor 1/ θ. This analysis indicates that the first scheme is most efficient for infiltration into dry soil. When the product Λ+Λ- is kept constant, we find a good agreement between the attainable velocity and our predictions providing that Λ- does not exceed ≈5. Otherwise, approaching two opposite stability limits, Λ+ → 0 when Λ- → ∞ , the stable velocity amplitude drastically falls for the two transport TRT schemes. At the same time, their BGK submodels Λ+ = Λ- may keep the optimal stability for diffusion-dominant problems but their boundary and bulk approximations are completely destroyed. The analysis presented here may serve as a starting point for construction of the suitable equilibrium transformations, based on the analytical stability
On time scale invariance of random walks in confined space.
Bearup, Daniel; Petrovskii, Sergei
2015-02-21
Animal movement is often modelled on an individual level using simulated random walks. In such applications it is preferable that the properties of these random walks remain consistent when the choice of time is changed (time scale invariance). While this property is well understood in unbounded space, it has not been studied in detail for random walks in a confined domain. In this work we undertake an investigation of time scale invariance of the drift and diffusion rates of Brownian random walks subject to one of four simple boundary conditions. We find that time scale invariance is lost when the boundary condition is non-conservative, that is when movement (or individuals) is discarded due to boundary encounters. Where possible analytical results are used to describe the limits of the time scaling process, numerical results are then used to characterise the intermediate behaviour. PMID:25481837
Deelchand, Dinesh Kumar; Henry, Pierre-Gilles; Marjańska, Małgorzata
2014-01-01
Purpose To investigate the effect of Carr-Purcell (CP) pulse trains on transverse relaxation times, T2, of tissue water and metabolites (both non-coupled and J-coupled spins) in the rat brain at 9.4 T using LASER, CP-LASER and T2ρ-LASER sequences. Methods Proton NMR spectra were measured in rat brain in vivo at 9.4 T. Spectra were acquired at multiple echo times ranging from 18 to 402 ms. All spectra were analyzed using LCModel with simulated basis sets. Signals of metabolites as a function of echo time were fitted using a mono-exponential function to determine their T2 relaxation times. Results Measured T2s for tissue water and all metabolites were significantly longer with CP-LASER and T2ρ-LASER compared to LASER. The T2 increased by a factor of ~1.3 for non-coupled and weakly coupled spins (e.g., N-acetylaspartate and total creatine) and by a factor of ~2 (e.g., glutamine and taurine) to ~4 (e.g., glutamate and myo-inositol) for strongly coupled spins. Conclusion Application of a CP pulse train results in a larger increase in T2 relaxation times for strongly coupled spins than for non-coupled (singlet) and weakly coupled spins. This needs to be taken into account when correcting for T2 relaxation in CP-like sequences such as LASER. PMID:24436256
ERIC Educational Resources Information Center
Ramey, Kyle
2004-01-01
Relaxed intensity refers to a professional philosophy, demeanor, and way of life. It is the key to being an effective educational leader. To be successful one must be relaxed, which means managing stress efficiently, having fun, and enjoying work. Intensity allows one to get the job done and accomplish certain tasks or goals. Educational leaders…
Liquidity Spillover in International Stock Markets through Distinct Time Scales
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918
Liquidity spillover in international stock markets through distinct time scales.
Righi, Marcelo Brutti; Vieira, Kelmara Mendes
2014-01-01
This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918
Space and Time Scale Variability and Interdependencies in Hydrological Processes
NASA Astrophysics Data System (ADS)
Feddes, Reinder A.
1995-09-01
The atmospheric, hydrologic, and terrestrial components of the earth's systems operate on different time and space scales. Resolving these scaling incongruities as well as understanding and modeling the complex interaction of land surface processes at the different scales represents a major challenge for hydrologists, ecologists and meteorologists alike. This book presents the contributions of hydrologists, meteorologists, and ecologists to the first IHP/IAHS George Kovacs Colloqium on global hydrology and climate change. It deals with time and space scale variations with reference to several topics including soil water balance, ecosystems and interaction of flow systems, and macroscale hydrologic modeling. This book will be of great use to researchers, engineers and forecasters with an interest in space and time scale variability.
Shear Relaxations of Confined Liquids.
NASA Astrophysics Data System (ADS)
Carson, George Amos, Jr.
Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.
Shear relaxations of confined liquids
Carson, G.A. Jr.
1992-01-01
Ultrathin (<40 [angstrom]) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s[sup [minus]1] were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celcius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes ([approximately]80 nm[sup 3]) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long-time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7 nm[sup 3]) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10[sup 4] Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.
Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
NASA Astrophysics Data System (ADS)
Hai-Qiong, Xie; Zhong, Zeng; Liang-Qi, Zhang
2016-01-01
We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. Project supported by the National Natural Science Foundation of China (Grant No. 11572062), the Fundamental Research Funds for the Central Universities, China (Grant No. CDJZR13248801), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13043), and Key Laboratory of Functional Crystals and Laser Technology, TIPC, Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Plumari, S.; Puglisi, A.; Scardina, F.; Greco, V.
2012-11-01
The shear viscosity η has been calculated by using the Green-Kubo relation in the framework of a partonic transport approach solved at cascade level. We compare the numerical results for η obtained from the Green-Kubo correlator with the analytical formulas in both the relaxation time approximation (RTA) and the Chapman-Enskog (CE) approximation. We investigate and emphasize the differences between the isotropic and anisotropic cross sections and between the massless and massive particles. We show that in the range of temperature explored in a heavy ion collision and for perturbative-QCD-like cross section, the RTA significantly underestimates the viscosity by about a factor of 2-3, while a good agreement is found between the CE approximation and Gree-Kubo relation already at first-order of approximation. The agreement with the CE approximation supplies an analytical formula that allows us to develop a kinetic transport theory at fixed shear-viscosity to entropy-density ratio, η/s. This opens the possibility of exploring dissipative nonequilibrium evolution of the distribution functions versus T-dependent η/s and particle momenta in the dynamics of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions.
Tyler, Damian J; Moore, Rachel J; Marciani, Luca; Gowland, Penny A
2004-09-01
Methods for making rapid and accurate measurements and maps of the transverse relaxation time from a single free induction decay (FID) are proposed. The methods use a multi-echo sequence in combination with B1 insensitive (hyperbolic secant or BIREF2b) refocusing pulses and rapid echo-planar imaging techniques. The results were calibrated against a single spin echo echo-planar imaging sequence using a phantom containing a range of CuSO4 concentrations. The mean percentage absolute difference between the multi-echo and single-echo results was 3% for the multi-echo sequence using the hyperbolic secant refocusing pulse, and 7% for the multi-echo sequence using the BIREF2b refocusing pulse, compared to 13% for a multi-echo sequence using a nonselective sinc refocusing pulse. The use of the sequences in vivo has been demonstrated in studies of gastric function, i.e., the measurement of gastric dilution and monitoring of formation of a raft of alginate polysaccharide within the stomach. PMID:15288145
Relaxation properties in classical diamagnetism
NASA Astrophysics Data System (ADS)
Carati, A.; Benfenati, F.; Galgani, L.
2011-06-01
It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.
NEA Scout Solar Sail: Half-scale Fold Time Lapse
In this time lapse, the Near-Earth Asteroid Scout (NEA Scout) CubeSat team rolls a half-scale prototype of the small satellite's solar sail in preparation for a deployment test. During its mission,...
Kibble-Zurek mechanism and finite-time scaling
NASA Astrophysics Data System (ADS)
Huang, Yingyi; Yin, Shuai; Feng, Baoquan; Zhong, Fan
2014-10-01
The Kibble-Zurek (KZ) mechanism has been applied to a variety of systems ranging from low-temperature Bose-Einstein condensations to grand unification scales in particle physics and cosmology and from classical phase transitions to quantum phase transitions. Here, we show that finite-time scaling (FTS) provides a detailed improved understanding of the mechanism. In particular, the finite time scale, which is introduced by the external driving (or quenching) and results in FTS, is the origin of the division of the adiabatic regimes from the impulse regime in the KZ mechanism. The origin of the KZ scaling for the defect density, generated during the driving through a critical point, is not that the correlation length ceases growing in the nonadiabatic impulse regime, but rather, is that it is taken over by the effective finite length scale corresponding to the finite time scale. We also show that FTS accounts well for and improves the scaling ansatz proposed recently by Liu, Polkovnikov, and Sandvik, [Phys. Rev. B 89, 054307 (2014), 10.1103/PhysRevB.89.054307]. Further, we show that their universal power-law scaling form applies only to some observables in cooling but not to heating. Even in cooling, it is invalid either when an appropriate external field is present. However, this finite-time-finite-size scaling calls for caution in application of FTS. Detailed scaling behaviors of the FTS and finite-size scaling, along with their crossover, are explicitly demonstrated, with the dynamic critical exponent z being estimated for two- and three-dimensional Ising models under the usual Metropolis dynamics. These values of z are found to give rise to better data collapses than the extant values do in most cases but take on different values in heating and cooling in both two- and three-dimensional spaces.
Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin
2014-06-07
The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation.
Diffusion Time-Scale of Porous Pressure-Sensitive Paint
NASA Technical Reports Server (NTRS)
Liu, Tianshu; Teduka, Norikazu; Kameda, Masaharu; Asai, Keisuke
2001-01-01
Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time response of the paint. There are two characteristic time-scales that are related to the time response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous polymer layer where diffusion is Fickian, the oxygen concentration 1021 can be described by the diffusion equation in one-dimension.
Time scale for point-defect equilibration in nanostructures
Millett, Paul C.; Wolf, Dieter; Desai, Tapan; Yamakov, Vesselin
2008-10-20
Molecular dynamics simulations of high-temperature annealing are performed on nanostructured materials enabling direct observation of vacancy emission from planar defects (i.e., grain boundaries and free surfaces) to populate the initially vacancy-free grain interiors on a subnanosecond time scale. We demonstrate a universal time-length scale correlation that governs these re-equilibration processes, suggesting that nanostructures are particularly stable against perturbations in their point-defect concentrations, caused for example by particle irradiation or temperature fluctuations.
Relaxation phenomena in disordered systems
NASA Astrophysics Data System (ADS)
Sciortino, F.; Tartaglia, P.
1997-02-01
In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.
Scale-dependent intrinsic entropies of complex time series.
Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E
2016-04-13
Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. PMID:26953181
Evidence for non-diverging time-scales in glass-forming liquids
NASA Astrophysics Data System (ADS)
McKenna, Gregory
2013-03-01
One perceived important signature of the ``ideal'' glass transition and of the complex fluid nature of glass-forming liquids remains the apparent divergence of the dynamics at temperatures above zero Kelvin. Recently, however, this perception has been increasingly challenged both through experiments and in new theories of the dynamics of glass forming systems. In this presentation we summarize some of the prior evidence suggesting that time scales actually do not diverge in glasses that are aged into equilibrium, perhaps 15 K below the conventional glass transition temperature Tg. We then show new results from an extremely densified glass, 20 Ma old Jamaican amber, in which we were able to obtain the upper bound to the relaxation times through a step-wise temperature scan in which the stress relaxation response of the amber was measured both below and above the fictive temperature TF . We find that in the case of the upper bound responses at T>TF , there is a strong deviation of the response from the Super-Arrhenius Vogel-Fulcher behavior and this persists to the fictive temperature which is some 33.8 K below Tg. The results are compared to the parabolic model of Chandler and co-workers and we find the model to be consistent with our results if the value of Tx in the model is taken to be the calorimetric glass transition temperature. The significance of the results will be discussed. We acknowledge NSF grants DMR-0804438 and DMR-1207070 for support of this work
Dielectric Relaxation of Hexadeutero Dimethylsulfoxide
NASA Astrophysics Data System (ADS)
Betting, H.; Stockhausen, M.
1999-11-01
The dielectric relaxation parameters of the title substance (DMSO-d6) in its pure liquid state are determined from meas-urements up to 72 GHz at 20°C in comparison to protonated DMSO. While the relaxation strengths do not differ, the relax-ation time of DMSO-d 6 is significantly longer (21.3 ps) than that of DMSO (19.5 ps).
Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.
2011-01-01
There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate (T−11) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T−11 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T−11 profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T−11 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz). PMID:21868272
Russian national time scale long-term stability
NASA Technical Reports Server (NTRS)
Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.
1994-01-01
The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.
NASA Astrophysics Data System (ADS)
Fairbanks, Ethan Jefferson
1994-01-01
Off-resonance spin locking makes use of the novel relaxation time T_{1rho} ^{rm off}, which may be useful in characterizing breast disease. Knowledge of T _{rm 1rho}^{rm off} is essential for optimization of spin -locking imaging methods. The purpose of this work was to develop an optimal imaging technique for in vivo measurement of T_{rm 1rho}^ {rm off}. Measurement of T _{1rho}^{rm off } using conventional methods requires long exam times which are not suitable for patients. Exam time may be shortened by utilizing a one-shot method developed by Look and Locker, making in vivo measurements possible. The imaging method consisted of a 180^circ inversion pulse followed by a series of small-angle alpha pulses to tip a portion of the longitudinal magnetization into the transverse plane for readout. During each relaxation interval (between alpha pulses), a spin-locking pulse was applied off-resonance to achieve T_ {1rho}^{rm off} relaxation. The value of T_{rm 1rho}^{rm off} was then determined using a three-parameter non-linear least-squares fitting procedure. Values of T_ {1rho}^{rm off} were measured for normal and pathologic breast tissues at several resonant offsets. These measurements revealed that image contrast can be manipulated by altering the resonant offset of the spin-locking pulse. Whereas T _1 relaxation times were nearly identical for normal and cancerous tissues, T_{1 rho}^{rm off} relaxation times differed significantly. These results may be useful in improving image contrast in magnetic resonance imaging.
Carballido-Gamio, Julio; Stahl, Robert; Blumenkrantz, Gabrielle; Romero, Adan; Majumdar, Sharmila; Link, Thomas M.
2009-01-01
Purpose: Studies have shown that functional analysis of knee cartilage based on magnetic resonance (MR) relaxation times is a valuable tool in the understanding of osteoarthritis (OA). In this work, the regional spatial distribution of knee cartilage T1ρ and T2 relaxation times based on texture and laminar analyses was studied to investigate if they provide additional insight compared to global mean values in the study of OA. Methods: Knee cartilage of 36 subjects, 19 healthy controls and 17 with mild OA, was divided into 16 compartments. T1ρ and T2 relaxation times were studied with first order statistics, eight texture parameters with four different orientations using gray-level co-occurrence matrices and by subdividing each compartment into two different layers: Deep and superficial. Receiver operating characteristic curve analysis was performed to evaluate the potential of each technique to correctly classify the populations. Results: Although the deep and superficial cartilage layers had in general significantly different T1ρ and T2 relaxation times, they performed similarly in terms of subject discrimination. The subdivision of lateral and medial femoral compartments into weight-bearing and non-weight-bearing regions did not improve discrimination. Also it was found that the most sensitive region was the patella and that T1ρ discriminated better than T2. The most important finding was that with respect to global mean values, laminar and texture analyses improved subject discrimination. Conclusions: Results of this study suggest that spatially assessing MR images of the knee cartilage relaxation times using laminar and texture analyses could lead to better and probably earlier identification of cartilage matrix abnormalities in subjects with OA. PMID:19810478
The development and relaxation of growth strains in thermally grown Al{sub 2}O{sub 3} scales.
Hou, P. Y.; Paulikas, A. P.; Veal, B. W.; LBNL
2009-01-01
The strains in alumina thin films growing on high-temperature alloys at 1,000-1,100 C and during cooling have been successfully measured in-situ using a novel x-ray technique, exploiting synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory. This paper summarizes results obtained from model alloys, with or without the presence of a reactive element, such as Zr, Hf, and Y, to show the importance of the dynamic nature of the stress evolution process and the effects of alloy composition on the generation and relaxation of these stresses.
Stress-relaxation behavior in gels with ionic and covalent crosslinks
NASA Astrophysics Data System (ADS)
Zhao, Xuanhe; Huebsch, Nathaniel; Mooney, David J.; Suo, Zhigang
2010-03-01
Long-chained polymers in alginate hydrogels can form networks by either ionic or covalent crosslinks. This paper shows that the type of crosslinks can markedly affect the stress-relaxation behavior of the gels. In gels with only ionic crosslinks, stress relaxes mainly through breaking and subsequent reforming of the ionic crosslinks, and the time scale of the relaxation is independent of the size of the sample. By contrast, in gels with only covalent crosslinks, stress relaxes mainly through migration of water, and the relaxation slows down as the size of the sample increases. Implications of these observations are discussed.
Trends in Surface Radiation Budgets at Climatic Time Scales
NASA Astrophysics Data System (ADS)
Pinker, R. T.; Zhang, B.; Ma, Y.
2015-12-01
For assessment of variability and trends in the Earth Radiation Balance, information is needed at climatic time scales. Satellite observations have been instrumental for advancing the understanding of radiative balance at global scale, however, the length of available satellite records is limited due to the frequent changes in the observing systems. In this paper we report on an effort to synthesize satellite observations from independent sources to estimates shortwave and longwave surface radiative fluxes at climatic time scales and use them to learn about their variability and trends at global scale with a focus on the tropics. An attempt will be made to learn from the comparison about possible causes of observed trends. The radiative fluxes were derived in the framework of the MEaSURES and NEWS programs; they are evaluated against ground observations and compared to independent satellite and model estimates. Attention is given to updated knowledge on radiative balance as compared to what is known from shorter time records.
Time scale construction from multiple sources of information (Invited)
NASA Astrophysics Data System (ADS)
Malinverno, A.
2013-12-01
Geological age estimates are provided by diverse chronometers, such as radiometric measurements, astrochronology, and the spacing of magnetic anomalies recorded on mid-ocean ridges by seafloor spreading. These age estimates are affected by errors that can be systematic (e.g., biased radiometric dates due to imperfect assumptions) or random (e.g., imprecise recording of astronomical cycles in sedimentary records). Whereas systematic errors can be reduced by improvements in technique and calibration, uncertainties due to random errors will always be present and need to be dealt with. A Bayesian framework can be used to construct an integrated time scale that is based on several uncertain sources of information. In this framework, each piece of data and the final time scale have an associated probability distribution that describes their uncertainty. The key calculation is to determine the uncertainty in the time scale from the uncertain data that constrain it. In practice, this calculation can be performed by Monte Carlo sampling. In Markov chain Monte Carlo algorithms, the time scale is iteratively perturbed and the perturbed time scale is accepted or rejected depending on how closely it fits the data. The final result is a large ensemble of possible time scales that are consistent with all the uncertain data; while the average of this ensemble defines a 'best' time scale, the ensemble variability quantifies the time scale uncertainty. An example of this approach is the M-sequence (Late Jurassic-Early Cretaceous, ~160-120 Ma) MHTC12 geomagnetic polarity time scale (GPTS) of Malinverno et al. (2012, J. Geophys. Res., B06104, doi:10.1029/2012JB009260). Previous GPTSs were constructed by interpolating between dated marine magnetic anomalies while assuming constant or smoothly varying spreading rates. These GPTSs were typically based on magnetic lineations from one or a few selected spreading centers, and an undesirable result is that they imply larger spreading rate
Multiple-time scales analysis of physiological time series under neural control
NASA Technical Reports Server (NTRS)
Peng, C. K.; Hausdorff, J. M.; Havlin, S.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.
1998-01-01
We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.
NASA Astrophysics Data System (ADS)
Yoder, Jacob
The Neutron Electric Dipole Moment (nEDM) experiment that will take place at the Spallation Neutron Source (SNS) in Oak Ridge, Tennessee will measure the electric dipole moment (EDM) of the neutron with a precision of order 10-28 e-cm, utilizing spin-polarized 3He in bulk liquid 4He to detect neutron precession in a 10 mG magnetic field and 50 kV/cm electric field. Since depolarized 3He will produce a background, relaxation of the polarized 3He, characterized by the probability of depolarization per bounce, Pd, was measured for materials that will be in contact with polarized 3He. Depolarization probabilities were determined from measurements of the longitudinal relaxation time of polarized 3He in bulk liquid 4He inside an acrylic cell coated with the wavelength shifter deuterated tetraphenyl butadiene (d-TPB), which will be used to coat the nEDM measurement cell. Relaxation measurements were also performed while rods, made from plumbing material Torlon and valve bellows material BeCu, were present in the cell. The BeCu was coated with Pyralin resin prior to relaxation measurements, while relaxation measurements were performed both before and after the Torlon rod was coated with Pyralin resin. The depolarization probabilities were found to be Pd-TPBd <1.32x10-7 PBareTorlon d=1.01+/-0.08 x10-6 PCoatedTorlon d=2.5+/-0.1 x10-7 PCoatedBeCu d=7.9+/-0.3 x10-7 The relaxation rates extrapolated from the observed values of Pd for d-TPB, coated Torlon, and coated BeCu in the nEDM apparatus were found to be consistent with design goals.
NASA Astrophysics Data System (ADS)
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs. PMID:27176432
Scaling properties in time-varying networks with memory
NASA Astrophysics Data System (ADS)
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
Thermodynamics Constrains Allometric Scaling of Optimal Development Time in Insects
Dillon, Michael E.; Frazier, Melanie R.
2013-01-01
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes
Deviations from uniform power law scaling in nonstationary time series
NASA Technical Reports Server (NTRS)
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
SOUZA, RICHARD B.; BAUM, THOMAS; WU, SAMUEL; FEELEY, BRIAN T.; KADEL, NANCY; LI, XIAOJUAN; LINK, THOMAS M.; MAJUMDAR, SHARMILA
2013-01-01
STUDY DESIGN Case series. BACKGROUND It has been shown in rodent and canine models that cartilage composition is significantly altered in response to long-term unloading. To date, however, no in vivo human studies have investigated this topic. The objective of this case series was to determine the influence of unloading and reloading on T1rho and T2 relaxation times of articular cartilage in healthy young joints. CASE DESCRIPTION Ten patients who required 6 to 8 weeks of non–weight bearing (NWB) for injuries affecting the distal lower extremity participated in the study. Quantitative T1rho and T2 imaging of the ipsilateral knee joint was performed at 3 time points: (1) prior to surgery (baseline), (2) immediately after a period of NWB (post-NWB), and (3) after 4 weeks of full weight bearing (post-FWB). Cartilage regions of interest were segmented and overlaid on T1rho and T2 relaxation time maps for quantification. Descriptive statistics are provided for all changes. OUTCOMES Increases of 5% to 10% in T1rho times of all femoral and tibial compartments were noted post-NWB. All values returned to near-baseline levels post-FWB. Increases in medial tibia T2 times were noted post-NWB and remained elevated post-FWB. The load-bearing regions showed the most significant changes in response to unloading, with increases of up to 12%. DISCUSSION The observation of a transient shift in relaxation times confirms that cartilage composition is subject to alterations based on loading conditions. These changes appear to be mostly related to proteoglycan content and more localized to the load-bearing regions. However, following 4 weeks of full weight bearing, relaxation times of nearly all regions had returned to baseline levels, demonstrating reversibility in compositional fluctuations. LEVEL OF EVIDENCE Therapy, level 4. PMID:22402583
Physics in space-time with scale-dependent metrics
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.
Inferring synaptic structure in presence of neural interaction time scales.
Capone, Cristiano; Filosa, Carla; Gigante, Guido; Ricci-Tersenghi, Federico; Del Giudice, Paolo
2015-01-01
Biological networks display a variety of activity patterns reflecting a web of interactions that is complex both in space and time. Yet inference methods have mainly focused on reconstructing, from the network's activity, the spatial structure, by assuming equilibrium conditions or, more recently, a probabilistic dynamics with a single arbitrary time-step. Here we show that, under this latter assumption, the inference procedure fails to reconstruct the synaptic matrix of a network of integrate-and-fire neurons when the chosen time scale of interaction does not closely match the synaptic delay or when no single time scale for the interaction can be identified; such failure, moreover, exposes a distinctive bias of the inference method that can lead to infer as inhibitory the excitatory synapses with interaction time scales longer than the model's time-step. We therefore introduce a new two-step method, that first infers through cross-correlation profiles the delay-structure of the network and then reconstructs the synaptic matrix, and successfully test it on networks with different topologies and in different activity regimes. Although step one is able to accurately recover the delay-structure of the network, thus getting rid of any a priori guess about the time scales of the interaction, the inference method introduces nonetheless an arbitrary time scale, the time-bin dt used to binarize the spike trains. We therefore analytically and numerically study how the choice of dt affects the inference in our network model, finding that the relationship between the inferred couplings and the real synaptic efficacies, albeit being quadratic in both cases, depends critically on dt for the excitatory synapses only, whilst being basically independent of it for the inhibitory ones. PMID:25807389
RELAXATION PROCESSES IN SOLAR WIND TURBULENCE
Servidio, S.; Carbone, V.; Gurgiolo, C.; Goldstein, M. L.
2014-07-10
Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-scale equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.
A methane-based time scale for Vostok ice
NASA Astrophysics Data System (ADS)
Ruddiman, William F.; Raymo, Maureen E.
2003-02-01
Tuning the Vostok methane signal to mid-July 30°N insolation yields a new ice-core gas time scale. This exercise has two rationales: (1) evidence supporting Kutzbach's theory that low-latitude summer insolation in the northern hemisphere controls the strength of tropical monsoons, and (2) interhemispheric CH 4 gradients showing that the main control of orbital-scale CH 4 variations is tropical (monsoonal) sources. The immediate basis for tuning CH 4 to mid-July insolation is the coincident timing of the most recent (pre-anthropogenic) CH 4 maximum at 11,000-10,500 calendar years ago and the most recent July 30°N insolation maximum (all ages in this paper are in calendar years unless specified as 14C years). The resulting CH 4 gas time scale diverges by as much as 15,000 years from the GT4 gas time scale (Petit et al., Nature 399 (1999) 429) prior to 250,000 years ago, but it matches fairly closely a time scale derived by tuning ice-core δ18O atm to a lagged insolation signal (Shackleton, Science 289 (2000) 1897). Most offsets between the CH 4 and δ18O atm time scales can be explained by assuming that tropical monsoons and ice sheets alternate in controlling the phase of the δ18O atm signal. The CH 4 time scale provides an estimate of the timing of the Vostok CO 2 signal against SPECMAP marine δ18O, often used as an index of global ice volume. On the CH 4 time scale, all CO 2 responses are highly coherent with SPECMAP δ18O at the orbital periods. CO 2 leads δ18O by 5000 years at 100,000 years (eccentricity), but the two signals are nearly in-phase at 41,000 years (obliquity) and 23,000 years (precession). The actual phasing between CO 2 and ice volume is difficult to infer because of likely SST overprints on the SPECMAP δ18O signal. CO 2 could lead, or be in phase with, ice volume, but is unlikely to lag behind the ice response.
Rousseaux, C.; Gremillet, L.; Casanova, M.; Loiseau, P.; Rabec Le Gloahec, M.; Baton, S.D.; Amiranoff, F.; Adam, J. C.; Heron, A.
2006-07-07
The excitation and the relaxation of the plasma waves and ion acoustic waves (IAW), respectively, driven by stimulated Raman (SRS) and Brillouin (SBS) backscatterings have been experimentally investigated with short-pulse lasers. The spectra have been obtained with a 0.3 ps time resolution. It is shown that SRS develops before SBS and suddenly decays around the peak of the pump, as the IAW reaches saturation. On this short time scale, electron kinetic effects play a major role for SRS saturation, contrary to ion dynamics. These results are supported by particle-in-cell simulations.
Trends in Surface Radiation Budgets at Climatic Time Scales
NASA Astrophysics Data System (ADS)
Pinker, Rachel T.; Zhang, Banglin; Ma, Yingtao
2015-04-01
For assessment of variability and trends in the Earth Radiation Balance, information is needed at climatic time scales. Satellite observations have been instrumental for advancing the understanding of the radiative balance at global scale, however, due to the frequent changes in the observing systems, the length of available satellite records is limited. In this paper we report on an effort to synthesize satellite observations from independent sources to estimates shortwave, longwave and spectral surface radiative fluxes at climatic time scales and use them to learn about their variability and trends. The radiative fluxes were derived in the framework of the MEaSURES and NEWS programs; they are evaluated against ground observations and compared to independent satellite and model estimates. Attention is given to updates on the radiative balance as compared to what is known from shorter time records and from models.
Segregation time-scales in model granular flows
NASA Astrophysics Data System (ADS)
Staron, Lydie; Phillips, Jeremy C.
2016-04-01
Segregation patterns in natural granular systems offer a singular picture of the systems evolution. In many cases, understanding segregation dynamics may help understanding the system's history as well as its future evolution. Among the key questions, one concerns the typical time-scales at which segregation occurs. In this contribution, we present model granular flows simulated by means of the discrete Contact Dynamics method. The granular flows are bi-disperse, namely exhibiting two grain sizes. The flow composition and its dynamics are systematically varied, and the segregation dynamics carefully analyzed. We propose a physical model for the segregation that gives account of the observed dependence of segregation time scales on composition and dynamics. References L. Staron and J. C. Phillips, Stress partition and micro-structure in size-segregating granular flows, Phys. Rev. E 92 022210 (2015) L. Staron and J. C. Phillips, Segregation time-scales in bi-disperse granular flows, Phys. Fluids 26 (3), 033302 (2014)
An algorithm for the Italian atomic time scale
NASA Technical Reports Server (NTRS)
Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.
1994-01-01
During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.
Improving the Geologic Time Scale (Jean Baptiste Lamarck Medal Lecture)
NASA Astrophysics Data System (ADS)
Gradstein, Felix M.
2010-05-01
The Geologic Time Scale (GTS) provides the framework for the physical, chemical and biological processes on Earth. The time scale is the tool "par excellence" of the geological trade, and insight in its construction, strength, and limitations enhances its function and its utility. Earth scientists should understand how time scales are constructed and its myriad of physical and abstract data are calibrated, rather than merely using ages plucked from a convenient chart or card. Calibration to linear time of the succession of events recorded in the rocks on Earth has three components: (1) the standard stratigraphic divisions and their correlation in the global rock record, (2) the means of measuring linear time or elapsed durations from the rock record, and (3) the methods of effectively joining the two scales, the stratigraphic one and the linear one. Under the auspices of the International Commission on Stratigraphy (ICS), the international stratigraphic divisions and their correlative events are now largely standardized, especially using the GSSP (Global Stratigraphic Section and Point) concept. The means of measuring linear time or elapsed durations from the rock record are objectives in the EARTH TIME and GTS NEXT projects, that also are educating a new generation of GTS dedicated scientists. The U/Pb, Ar/Ar and orbital tuning methods are intercalibrated, and external error analysis improved. Existing Ar/Ar ages become almost 0.5% older, and U/Pb ages stratigraphically more realistic. The new Os/Re method has potential for directly dating more GSSP's and its correlative events. Such may reduce scaling uncertainty between the sedimentary levels of an age date and that of a stage boundary. Since 1981, six successive Phanerozoic GTS have been published, each new one achieving higher resolution and more users. The next GTS is scheduled for 2011/2012, with over 50 specialists taking part. New chapters include an expanded planetary time scale, sequence stratigraphy
Evaluation of Scaling Invariance Embedded in Short Time Series
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356
Time scales of crystal mixing in magma mushes
NASA Astrophysics Data System (ADS)
Schleicher, Jillian M.; Bergantz, George W.; Breidenthal, Robert E.; Burgisser, Alain
2016-02-01
Magma mixing is widely recognized as a means of producing compositional diversity and preconditioning magmas for eruption. However, the processes and associated time scales that produce the commonly observed expressions of magma mixing are poorly understood, especially under crystal-rich conditions. Here we introduce and exemplify a parameterized method to predict the characteristic mixing time of crystals in a crystal-rich magma mush that is subject to open-system reintrusion events. Our approach includes novel numerical simulations that resolve multiphase particle-fluid interactions. It also quantifies the crystal mixing by calculating both the local and system-wide progressive loss of the spatial correlation of individual crystals throughout the mixing region. Both inertial and viscous time scales for bulk mixing are introduced. Estimated mixing times are compared to natural examples and the time for basaltic mush systems to become well mixed can be on the order of 10 days.
Time scales for molecule formation by ion-molecule reactions
NASA Technical Reports Server (NTRS)
Langer, W. D.; Glassgold, A. E.
1976-01-01
Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.
Kawamura, Izuru; Ohmine, Masato; Tanabe, Junko; Tuzi, Satoru; Saitô, Hazime; Naito, Akira
2007-12-01
Local dynamics of interhelical loops in bacteriorhodopsin (bR), the extracellular BC, DE and FG, and cytoplasmic AB and CD loops, and helix B were determined on the basis of a variety of relaxation parameters for the resolved 13C and 15N signals of [1-13C]Tyr-, [15N]Pro- and [1-13C]Val-, [15N]Pro-labeled bR. Rotational echo double resonance (REDOR) filter experiments were used to assign [1-13C]Val-, [15N]Pro signals to the specific residues in bR. The previous assignments of [1-13C]Val-labeled peaks, 172.9 or 171.1 ppm, to Val69 were revised: the assignment of peak, 172.1 ppm, to Val69 was made in view of the additional information of conformation-dependent 15N chemical shifts of Pro bonded to Val in the presence of 13C-15N correlation, although no assignment of peak is feasible for 13C nuclei not bonded to Pro. 13C or 15N spin-lattice relaxation times (T1), spin-spin relaxation times under the condition of CP-MAS (T2), and cross relaxation times (TCH and TNH) for 13C and 15N nuclei and carbon or nitrogen-resolved, 1H spin-lattice relaxation times in the rotating flame (1H T1 rho) for the assigned signals were measured in [1-13C]Val-, [15N]Pro-bR. It turned out that V69-P70 in the BC loop in the extracellular side has a rigid beta-sheet in spite of longer loop and possesses large amplitude motions as revealed from 13C and 15N conformation-dependent chemical shifts and T1, T2, 1H T1 rho and cross relaxation times. In addition, breakage of the beta-sheet structure in the BC loop was seen in bacterio-opsin (bO) in the absence of retinal. PMID:18036552
Dynamics symmetries of Hamiltonian system on time scales
Peng, Keke Luo, Yiping
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd
2016-01-01
Summary Background To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Material/Methods Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. Results The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. Conclusions The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving. PMID:27026795
NASA Astrophysics Data System (ADS)
Nagel, Hannes; Janke, Wolfhard
2016-05-01
Driven diffusive systems such as the zero-range process (ZRP) and the pair-factorized steady states (PFSS) stochastic transport process are versatile tools that lend themselves to the study of transport phenomena on a generic level. While their mathematical structure is simple enough to allow significant analytical treatment, they offer a variety of interesting phenomena. With appropriate dynamics, the ZRP and PFSS models feature a condensation transition where, for a supercritical density, the translational symmetry breaks spontaneously and excess particles form a single-site or spatially extended condensate, respectively. In this paper we numerically study the typical time scales of the two stages of this condensation process: Nucleation and coarsening. Nucleation is the first stage of condensation where the bulk system relaxes to its stationary distribution and droplet nuclei form in the system. These droplets then gradually grow or evaporate in the coarsening regime to coalesce in a single condensate when the system finally relaxes to the stationary state. We use the ZRP condensation model to discuss the choice of the estimation method for the nucleation time scale and present scaling exponents for the ZRP and PFSS condensation models with respect to the choice of the typical droplet nuclei mass. We then proceed to present scaling exponents in the coarsening regime of the ZRP for partially asymmetric dynamics and the PFSS model for symmetric and asymmetric dynamics.
NASA Technical Reports Server (NTRS)
Stephenson, Jack D.
1960-01-01
This report describes a technique which combines theory and experiments for determining relaxation times in gases. The technique is based on the measurement of shapes of the bow shock waves of low-fineness-ratio cones fired from high-velocity guns. The theory presented in the report provides a means by which shadowgraph data showing the bow waves can be analyzed so as to furnish effective relaxation times. Relaxation times in air were obtained by this technique and the results have been compared with values estimated from shock tube measurements in pure oxygen and nitrogen. The tests were made at velocities ranging from 4600 to 12,000 feet per second corresponding to equilibrium temperatures from 35900 R (19900 K) to 6200 R (34400 K), under which conditions, at all but the highest temperatures, the effective relaxation times were determined primarily by the relaxation time for oxygen and nitrogen vibrations.
Appropriate time scales for nonlinear analyses of deterministic jump systems
NASA Astrophysics Data System (ADS)
Suzuki, Tomoya
2011-06-01
In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.
ERIC Educational Resources Information Center
Hites, Lacey S.; Lundervold, Duane A.
2013-01-01
Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…
NASA Astrophysics Data System (ADS)
Chaumette, H.; Grandclaude, D.; Canet, D.
2003-08-01
NMR imaging by radio-frequency field gradients ( B1 gradients) is especially convenient for heterogeneous samples and/or in the case of relatively short transverse relaxation times. The method has been combined with the application of two spin-lock periods of different duration so as to produce rotating-frame spin-lattice relaxation time ( T1 ρ) images. In the case of natural rubber samples with different crosslink densities, such images are not only characteristic of the crosslink density but also reveal the way in which the material has been stressed. The strained parts can be visualized either directly or through histograms showing the T1 ρ distribution over the whole sample.
Richardson, P. M. Voice, A. M. Ward, I. M.
2013-12-07
Longitudinal relaxation (T{sub 1}) measurements of {sup 19}F, {sup 7}Li, and {sup 1}H in propylene carbonate/LiBF{sub 4} liquid electrolytes are reported. Comparison of T{sub 1} values with those for the transverse relaxation time (T{sub 2}) confirm that the measurements are in the high temperature (low correlation time) limit of the T{sub 1} minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T{sub 1} from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.
Lo, Y. C.; Chou, H. S.; Cheng, Y. T.; Huang, J. C.; Morris, James R; Liaw, Peter K
2010-01-01
Bulk metallic glasses are generally regarded as highly brittle materials at room temperature, with deformation localized within a few principal shear bands. In this simulation work, it is demonstrated that when the Zr-Cu metallic glass is in a small size-scale, it can deform under cyclic loading in a semi-homogeneous manner without the occurrence of pronounced mature shear bands. Instead, the plastic deformation in simulated samples proceeds via the network-like shear-transition zones (STZs) by the reversible and irreversible structure-relaxations during cyclic loading. Dynamic recovery and reversible/irreversible structure rearrangements occur in the current model, along with annihilation/creation of excessive free volumes. This behavior would in-turn retard the damage growth of metallic glass. Current studies can help to understand the structural relaxation mechanism in metallic glass under loading. The results also imply that the brittle bulk metallic glasses can become ductile with the sample size being reduced. The application of metallic glasses in the form of thin film or nano pieces in micro-electro-mechanical systems (MEMS) could be promising.
Satellite attitude prediction by multiple time scales method
NASA Technical Reports Server (NTRS)
Tao, Y. C.; Ramnath, R.
1975-01-01
An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.
NASA Technical Reports Server (NTRS)
1987-01-01
Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.
Gao, Ying; Erokwu, Bernadette O; DeSantis, David A; Croniger, Colleen M; Schur, Rebecca M; Lu, Lan; Mariappuram, Jose; Dell, Katherine M; Flask, Chris A
2016-01-01
Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1 = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease. PMID:26608869
Biller, Joshua R.; Meyer, Virginia M.; Elajaili, Hanan; Rosen, Gerald M.; Eaton, Sandra S.; Eaton, Gareth R.
2012-01-01
Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T2) or 3-pulse inversion recovery (T1) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T1 measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2, T1~ T2, as expected in the fast tumbling regime. At higher frequencies T2 was shorter than T1 due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T1 is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τR are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτR (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770
Biller, Joshua R; Meyer, Virginia M; Elajaili, Hanan; Rosen, Gerald M; Eaton, Sandra S; Eaton, Gareth R
2012-12-01
Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide (2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T(2)) or 3-pulse inversion recovery (T(1)) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T(1) measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2,T(1)~T(2), as expected in the fast tumbling regime. At higher frequencies T(2) was shorter than T(1) due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T(1) is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τ(R) are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτ(R) (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770
NASA Astrophysics Data System (ADS)
Amatya, J. M.; Floro, J. A.
2015-12-01
Chemical ordering in semiconductor alloys could modify thermal and electronic transport, with potential benefits to thermoelectric properties. Here, metastable ordering that occurs during heteroepitaxial growth of Si1-xGex thin film alloys on Si(001) and Ge(001) substrates is investigated. A parametric study was performed to study how strain, surface roughness, and growth parameters affect the order parameter during the alloy growth. The order parameter for the alloy films was carefully quantified using x-ray diffraction, taking into account an often-overlooked issue associated with the presence of multiple spatial variants associated with ordering along equivalent <111> directions. Optimal ordering was observed in the films having the smoothest surfaces. Extended strain relaxation is suggested to reduce the apparent order through creation of anti-phase boundaries. Ordering surprisingly persists even when the film surface extensively roughens to form {105} facets. Growth on deliberately miscut Si(001) surfaces does not affect the volume-averaged order parameter but does impact the relative volume fractions of the equivalent ordered variants in a manner consistent with geometrically necessary changes in step populations. These results provide somewhat self-contradictory implications for the role of step edges in controlling the ordering process, indicating that our understanding is still incomplete.
Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter
NASA Technical Reports Server (NTRS)
Tavella, Patrizia; Thomas, Claudine
1990-01-01
The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.
Speech Compensation for Time-Scale-Modified Auditory Feedback
ERIC Educational Resources Information Center
Ogane, Rintaro; Honda, Masaaki
2014-01-01
Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…
Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling
NASA Astrophysics Data System (ADS)
Birmingham, Danny; Sen, Siddhartha
2000-02-01
We study the formation of Bañados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.
Spectral decomposition of time-scales in hyporheic exchange
NASA Astrophysics Data System (ADS)
Wörman, Anders; Riml, Joakim
2015-04-01
Hyporheic exchange of heat and solute mass in streams is manifested both in form of different exchange mechanisms and their associated distributions of residence times as well as the range of time-scales characterizing the forcing boundary conditions. A recently developed analytical technique separates the spectrum of time-scales and relates the forcing boundary fluctuations of heat and solute mass through a physical model of the hydrological transport to the response of heat and solute mass. This spectral decomposition can be done both for local (point-scale) observations in the hyporhiec zone itself as well as for transport processes on the watershed scale that can be considered 'well-behaved' in terms of knowledge of the forcing (input) quantities. This paper presents closed-form solutions in spectral form for the point-, reach- and watershed-scale and discusses their applicability to selected data of heat and solute concentration. We quantify the reliability and highlight the benefits of the spectral approach to different scenarios and, peculiarly, the importance for linking the periods in the spectral decomposition of the solute response to the distribution of transport times that arise due to the multitude of exchange mechanisms existing in a watershed. In a point-scale example the power spectra of in-stream temperature is related to the power spectrum of the temperature at a specific sediment depth by means of exact solutions of a physically based formulation of the vertical heat transport. It is shown that any frequency (ω) of in-stream temperature fluctuation scales with the effective thermal diffusivity (κe) and the vertical separation distance between the pairs of temperature (É) data as ω ≈ κe/(2É2), which implies a decreasing weight to higher frequencies (shorter periods) with depth. Similarly on the watershed-scale one can link the watershed dispersion to the damping of the concentration fluctuations in selected frequency intervals
New technique for single-scan T1 measurements using solid echoes. [for spin-lattice relaxation time
NASA Technical Reports Server (NTRS)
Burum, D. P.; Elleman, D. D.; Rhim, W. K.
1978-01-01
A simple technique for single-scan T1 measurements in solids is proposed and analyzed for single exponential spin-lattice relaxation. In this technique, the direct spin heating caused by the sampling process is significantly reduced in comparison with conventional techniques by utilizing the 'solid echo' to refocus the magnetization. The applicability of this technique to both the solid and liquid phases is demonstrated.
NASA Astrophysics Data System (ADS)
García-García, J.; Oriols, X.; Martín, F.; Suñé, J.
1996-12-01
Carrier scattering in the Wigner formalism has been introduced for the simulation of dissipative electron transport in resonant tunnelling diodes. Two approaches have been considered: the relaxation time approximation and the Boltzmann collision operator. The relaxation time and transition rates have been evaluated and have been introduced in the discretized version of the Liouville equation to obtain the Wigner distribution function and the current density. Not only phonon scattering, but also ionized impurity scattering has been accounted for in both approaches. We have compared the two scattering models on the basis of the I-V characteristics which have been simulated under various temperature and doping conditions. The results clearly reveal a lower current peak in the Boltzmann collision operator approach. Since the results of both approaches are divergent and since no clear computation advantages are obtained from the relaxation time approximation, we prefer the use of the more realistic Boltzmann collision operator for the simulation of dissipative electron transport in resonant tunnelling diodes.
Characterization of a binary karst aquifer using process time scales
NASA Astrophysics Data System (ADS)
Birk, Steffen; Wagner, Thomas
2013-04-01
Within "a theoretical framework for the interpretation of karst spring signals" (Covington, EGU2012-853-1) process length scales that characterize the travel distances required for damping pulses of physicochemical parameters of spring waters such as electrical conductivity and temperature were derived (Covington et al., J. Geophys. Res., 2012). These length scales can be converted to corresponding process time scales characterizing the travel times needed for damping the pulses. This is particularly convenient if the travel distance is unknown. In this case the time lag between the increase of spring discharge and subsequent physicochemical responses at the spring may provide an estimate of the travel time. In binary karst aquifers with localized recharge from a sinking stream, the recharge pulse can be directly observed and thus travel times are readily obtained from the time delay of the physicochemical spring responses. If the spring response is strongly damped travel times can be inferred from artificial tracer testing. In this work, time scales for carbonate dissolution and heat transport were used for characterizing the binary Lurbach-Tanneben karst aquifer (Austria). This aquifer receives allogenic recharge from the sinking stream Lurbach and is drained by two springs, namely the Hammerbach and the Schmelzbach. The two springs show different thermal responses to two recharge events in December 2008: Whereas the temperature of the Schmelzbach responds within one day after the flood pulse in the Lurbach, the temperature signal is strongly damped at the Hammerbach. The evaluation based on the thermal time scale thus suggests that the Schmelzbach spring is fed by conduits with hydraulic diameters at least in the order of decimetres. In contrast, the damping of the thermal responses at the Hammerbach may be due to lower hydraulic diameters and/or longer residence times. Interestingly, the Hammerbach did show thermal responses in the time before a flood event in
The Available Time Scale: Measuring Foster Parents' Available Time to Foster
ERIC Educational Resources Information Center
Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.
2009-01-01
This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…
Energy and time determine scaling in biological and computer designs.
Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie
2016-08-19
Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID:27431524
Time scales and heterogeneous structure in geodynamic earth models
Bunge; Richards; Lithgow-Bertelloni; Baumgardner; Grand; Romanowicz
1998-04-01
Computer models of mantle convection constrained by the history of Cenozoic and Mesozoic plate motions explain some deep-mantle structural heterogeneity imaged by seismic tomography, especially those related to subduction. They also reveal a 150-million-year time scale for generating thermal heterogeneity in the mantle, comparable to the record of plate motion reconstructions, so that the problem of unknown initial conditions can be overcome. The pattern of lowermost mantle structure at the core-mantle boundary is controlled by subduction history, although seismic tomography reveals intense large-scale hot (low-velocity) upwelling features not explicitly predicted by the models. PMID:9525864
Relaxation dynamics in correlated quantum dots
Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.
2014-12-04
We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.
Wavelet analysis and scaling properties of time series
NASA Astrophysics Data System (ADS)
Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.
2005-10-01
We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.
Wavelet analysis and scaling properties of time series.
Manimaran, P; Panigrahi, Prasanta K; Parikh, Jitendra C
2005-10-01
We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior. PMID:16383481
Brownian motion at fast time scales and thermal noise imaging
NASA Astrophysics Data System (ADS)
Huang, Rongxin
This dissertation presents experimental studies on Brownian motion at fast time scales, as well as our recent developments in Thermal Noise Imaging which uses thermal motions of microscopic particles for spatial imaging. As thermal motions become increasingly important in the studies of soft condensed matters, the study of Brownian motion is not only of fundamental scientific interest but also has practical applications. Optical tweezers with a fast position-sensitive detector provide high spatial and temporal resolution to study Brownian motion at fast time scales. A novel high bandwidth detector was developed with a temporal resolution of 30 ns and a spatial resolution of 1 A. With this high bandwidth detector, Brownian motion of a single particle confined in an optical trap was observed at the time scale of the ballistic regime. The hydrodynamic memory effect was fully studied with polystyrene particles of different sizes. We found that the mean square displacements of different sized polystyrene particles collapse into one master curve which is determined by the characteristic time scale of the fluid inertia effect. The particle's inertia effect was shown for particles of the same size but different densities. For the first time the velocity autocorrelation function for a single particle was shown. We found excellent agreement between our experiments and the hydrodynamic theories that take into account the fluid inertia effect. Brownian motion of a colloidal particle can be used to probe three-dimensional nano structures. This so-called thermal noise imaging (TNI) has been very successful in imaging polymer networks with a resolution of 10 nm. However, TNI is not efficient at micrometer scale scanning since a great portion of image acquisition time is wasted on large vacant volume within polymer networks. Therefore, we invented a method to improve the efficiency of large scale scanning by combining traditional point-to-point scanning to explore large vacant
Abramowitch, Steven D; Woo, Savio L
2004-02-01
The quasi-linear viscoelastic (QLV) theory proposed by Fung (1972) has been frequently used to model the nonlinear time- and history-dependent viscoelastic behavior of many soft tissues. It is common to use five constants to describe the instantaneous elastic response (constants A and B) and reduced relaxation function (constants C, tau 1, and tau 2) on experiments with finite ramp times followed by stress relaxation to equilibrium. However, a limitation is that the theory is based on a step change in strain which is not possible to perform experimentally. Accounting for this limitation may result in regression algorithms that converge poorly and yield nonunique solutions with highly variable constants, especially for long ramp times (Kwan et al. 1993). The goal of the present study was to introduce an improved approach to obtain the constants for QLV theory that converges to a unique solution with minimal variability. Six goat femur-medial collateral ligament-tibia complexes were subjected to a uniaxial tension test (ramp time of 18.4 s) followed by one hour of stress relaxation. The convoluted QLV constitutive equation was simultaneously curve-fit to the ramping and relaxation portions of the data (r2 > 0.99). Confidence intervals of the constants were generated from a bootstrapping analysis and revealed that constants were distributed within 1% of their median values. For validation, the determined constants were used to predict peak stresses from a separate cyclic stress relaxation test with averaged errors across all specimens measuring less than 6.3 +/- 6.0% of the experimental values. For comparison, an analysis that assumed an instantaneous ramp time was also performed and the constants obtained for the two approaches were compared. Significant differences were observed for constants B, C, tau 1, and tau 2, with tau 1 differing by an order of magnitude. By taking into account the ramping phase of the experiment, the approach allows for viscoelastic
NASA Astrophysics Data System (ADS)
Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon; Soo Park, Young
2014-05-01
We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to the smooth surface topology of the CNT-polyimide mixture.
Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon; Soo Park, Young
2014-05-12
We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to the smooth surface topology of the CNT-polyimide mixture.
Unconstrained motions, dynamic heterogeneities, and relaxation in disordered solids
NASA Astrophysics Data System (ADS)
de Souza, Vanessa K.; Harrowell, Peter
2009-10-01
A disordered network of bonds with a fixed configuration can relax via a variety of unconstrained motions. These motions can be directly inferred from the topological arrangement of constraints without any geometrical information. We use the pebble game algorithm of Jacobs and Thorpe [D. J. Jacobs and M. F. Thorpe, Phys. Rev. Lett. 75, 4051 (1995)] to decompose the system into separate rigid clusters and identify the remaining degrees of freedom. Unconstrained motions can then be resolved in the form of translations and rotations of isolated groups of bonds and the internal motion within bond groups. We show that each motion can be assigned a characteristic thermal velocity and hence a relaxation time scale. We use this information to construct a relaxation function and also examine the spatial distribution of relaxation time scales. We investigate the sensitivity of the relaxation time scales and their spatial distribution when making individual bond changes in the system, and we consider the dependence of these time scales on the underlying structure.
Internal friction and mode relaxation in a simple chain model.
Fugmann, S; Sokolov, I M
2009-12-21
We consider the equilibrium relaxation properties of the end-to-end distance and of the principal components in a one-dimensional polymer chain model with nonlinear interaction between the beads. While for the single-well potentials these properties are similar to the ones of a Rouse chain, for the double-well interaction potentials, modeling internal friction, they differ vastly from the ones of the harmonic chain at intermediate times and intermediate temperatures. This minimal description within a one-dimensional model mimics the relaxation properties found in much more complex polymer systems. Thus, the relaxation time of the end-to-end distance may grow by orders of magnitude at intermediate temperatures. The principal components (whose directions are shown to coincide with the normal modes of the harmonic chain, whatever interaction potential is assumed) not only display larger relaxation times but also subdiffusive scaling. PMID:20025352
Surface charge measurements in barrier discharges on different time scales
NASA Astrophysics Data System (ADS)
Wild, Robert; Volkhausen, Christian; Benduhn, Johannes; Stollenwerk, Lars
2015-09-01
The deposition of surface charge in barrier discharges is a process that influences the ongoing discharge significantly. This contribution presents the measurement of absolute surface charge densities and their dynamics in a laterally extended setup. An electro-optic BSO crystal is used as dielectric. The absolute charge density on its surface is deduced from the change of polarisation of light passing the crystal. Using different temporal resolutions, the behavior of charge is investigated on three different time scales. The highest temporal resolution of the technique is in the order of hundreds of nanoseconds. Therefore it is possible for the first time to observe the charge deposition process during an active discharge. On the time scale of the applied voltage period (several microseconds), the conservation mechanisms of a lateral discharge pattern is investigated. For this, the influence of surface charge and metastable species in the volume is estimated. Further, the behavior of the surface charge spots on a variation of the external voltage and gas pressure is studied. Measurements on a time scale in the magnitude of seconds reveal charge decay and transport phenomena. This work was funded by the Deutsche Forschungsgemeinschaft.
Differential force microscope for long time-scale biophysical measurements
Choy, Jason L.; Parekh, Sapun H.; Chaudhuri, Ovijit; Liu, Allen P.; Bustamante, Carlos; Footer, Matthew J.; Theriot, Julie A.; Fletcher, Daniel A.
2011-01-01
Force microscopy techniques including optical trapping, magnetic tweezers, and atomic force microscopy (AFM) have facilitated quantification of forces and distances on the molecular scale. However, sensitivity and stability limitations have prevented the application of these techniques to biophysical systems that generate large forces over long times, such as actin filament networks. Growth of actin networks drives cellular shape change and generates nano-Newtons of force over time scales of minutes to hours, and consequently network growth properties have been difficult to study. Here, we present an AFM-based differential force microscope with integrated epifluorescence imaging in which two adjacent cantilevers on the same rigid support are used to provide increased measurement stability. We demonstrate 14 nm displacement control over measurement times of 3 hours and apply the instrument to quantify actin network growth in vitro under controlled loads. By measuring both network length and total network fluorescence simultaneously, we show that the average cross-sectional density of the growing network remains constant under static loads. The differential force microscope presented here provides a sensitive method for quantifying force and displacement with long time-scale stability that is useful for measurements of slow biophysical processes in whole cells or in reconstituted molecular systems in vitro. PMID:17477674
Reconstructions of solar irradiance on centennial time scales
NASA Astrophysics Data System (ADS)
Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo
Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.
Bansal, Ravi; Hao, Xuejun; Liu, Feng; Xu, Dongrong; Liu, Jun; Peterson, Bradley S
2013-12-01
Water content is the dominant chemical compound in the brain and it is the primary determinant of tissue contrast in magnetic resonance (MR) images. Water content varies greatly between individuals, and it changes dramatically over time from birth through senescence of the human life span. We hypothesize that the effects that individual- and age-related variations in water content have on contrast of the brain in MR images also have important, systematic effects on in vivo, MRI-based measures of regional brain volumes. We also hypothesize that changes in water content and tissue contrast across time may account for age-related changes in regional volumes, and that differences in water content or tissue contrast across differing neuropsychiatric diagnoses may account for differences in regional volumes across diagnostic groups. We demonstrate in several complementary ways that subtle variations in water content across age and tissue compartments alter tissue contrast, and that changing tissue contrast in turn alters measures of the thickness and volume of the cortical mantle: (1) We derive analytic relations describing how age-related changes in tissue relaxation times produce age-related changes in tissue gray-scale intensity values and tissue contrast; (2) We vary tissue contrast in computer-generated images to assess its effects on tissue segmentation and volumes of gray matter and white matter; and (3) We use real-world imaging data from adults with either Schizophrenia or Bipolar Disorder and age- and sex-matched healthy adults to assess the ways in which variations in tissue contrast across diagnoses affects group differences in tissue segmentation and associated volumes. We conclude that in vivo MRI-based morphological measures of the brain, including regional volumes and measures of cortical thickness, are a product of, or at least are confounded by, differences in tissue contrast across individuals, ages, and diagnostic groups, and that differences in
Sublinear scaling for time-dependent stochastic density functional theory
Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2015-01-21
A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.
Thermal lens measurements in liquids on a submicrosecond time scale
Isak, S. J.; Komorowski, S. J.; Merrow, C. N.; Poston, P. E.; Eyring, E. M.
1989-03-01
The use of the thermal lens method is shown to be quite suitable for kinetic studies of quenching on a submicrosecond time scale. The lower limit of time resolution that can be achieved is determined by the acoustic transit time, /tau//sub /ital a//, in the medium. A thermal lens signal with a 100-ns time constant due to the quenched triplet state of benzophenone is readily measured. The thermal lens method is superior to the photoacoustic (PA) method in the breadth of the accessible time range, and in the significantly fewer measurements required to obtain accurate data, including no requirement for a reference sample; it is also less sensitive to geometrical and laser power requirements than is the PA method.
Time scale of diffusion in molecular and cellular biology
NASA Astrophysics Data System (ADS)
Holcman, D.; Schuss, Z.
2014-05-01
Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.
Rejuvenation in scale-free optics and enhanced diffraction cancellation life-time.
Parravicini, J; Conti, C; Agranat, A J; DelRe, E
2012-11-19
We demonstrate rejuvenation in scale-free optical propagation. The phenomenon is caused by the non-ergodic relaxation of the dipolar glass that mediates the photorefractive nonlinearity in compositionally-disordered lithium-enriched potassium-tantalate-niobate (KTN:Li). We implement rejuvenation to halt aging in the dipolar glass and extend the duration of beam diffraction cancellation. PMID:23187594
Space and time scales in human-landscape systems.
Kondolf, G Mathias; Podolak, Kristen
2014-01-01
Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices. PMID:23716006
Tailored real-time scaling of heteronuclear couplings
NASA Astrophysics Data System (ADS)
Schilling, Franz; Glaser, Steffen J.
2012-10-01
Heteronuclear couplings are a valuable source of molecular information, which is measured from the multiplet splittings of an NMR spectrum. Radiofrequency irradiation on one coupled nuclear spin allows to modify the effective coupling constant, scaling down the multiplet splittings in the spectrum observed at the resonance frequency of the other nuclear spin. Such decoupling sequences are often used to collapse a multiplet into a singlet and can therefore simplify NMR spectra significantly. Continuous-wave (cw) decoupling has an intrinsic non-linear offset dependence of the scaling of the effective J-coupling constant. Using optimal control pulse optimization, we show that virtually arbitrary off-resonance scaling of the J-coupling constant can be achieved. The new class of tailored decoupling pulses is named SHOT (Scaling of Heteronuclear couplings by Optimal Tracking). Complementing cw irradiation, SHOT pulses offer an alternative approach of encoding chemical shift information indirectly through off-resonance decoupling, which however makes it possible for the first time to achieve linear J scaling as a function of offset frequency. For a simple mixture of eight aromatic compounds, it is demonstrated experimentally that a 1D-SHOT {1H}-13C experiment yields comparable information to a 2D-HSQC and can give full assignment of all coupled spins.
Statistical Analysis of Sensor Network Time Series at Multiple Time Scales
NASA Astrophysics Data System (ADS)
Granat, R. A.; Donnellan, A.
2013-12-01
Modern sensor networks often collect data at multiple time scales in order to observe physical phenomena that occur at different scales. Whether collected by heterogeneous or homogenous sensor networks, measurements at different time scales are usually subject to different dynamics, noise characteristics, and error sources. We explore the impact of these effects on the results of statistical time series analysis methods applied to multi-scale time series data. As a case study, we analyze results from GPS time series position data collected in Japan and the Western United States, which produce raw observations at 1Hz and orbit corrected observations at time resolutions of 5 minutes, 30 minutes, and 24 hours. We utilize the GPS analysis package (GAP) software to perform three types of statistical analysis on these observations: hidden Markov modeling, probabilistic principle components analysis, and covariance distance analysis. We compare the results of these methods at the different time scales and discuss the impact on science understanding of earthquake fault systems generally and recent large seismic events specifically, including the Tohoku-Oki earthquake in Japan and El Mayor-Cucupah earthquake in Mexico.
Kruk, D; Korpała, A; Taheri, S Mehdizadeh; Kozłowski, A; Förster, S; Rössler, E A
2014-05-01
Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained. PMID:24811643
King, Adam C; Newell, Karl M
2015-10-01
The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability. PMID:26041272
Entropy Production of Nanosystems with Time Scale Separation
NASA Astrophysics Data System (ADS)
Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-ichi; Tang, Lei-Han
2016-08-01
Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables.
Entropy Production of Nanosystems with Time Scale Separation.
Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-Ichi; Tang, Lei-Han
2016-08-12
Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables. PMID:27563943
Long-term variation time scales in OJ 287
NASA Astrophysics Data System (ADS)
Fan, Jun-Hui; Liu, Yi; Qian, Bo-Chun; Tao, Jun; Shen, Zhi-Qiang; Zhang, Jiang-Shui; Huang, Yong; Wang, Jin
2010-11-01
The light curve data from 1894 to 2008 are compiled for the BL Lacertae object OJ 287 from the available literature. Periodicity analysis methods (the Discrete Correlation Function-DCF, the Jurkevich method, the power spectral (Fourier) analysis, and the CLEANest method) are performed to search for possible periodicites in the light curve of OJ 287. Significance levels are given for the possible periods. The analysis results confirm the existence of the 12.2±0.6 yr time scale and show a hint of a ~53 yr time scale. The 12.2±0.6 yr period is used as the orbital period to investigate the supermassive binary black hole system parameters.
Sub-diffusive scaling with power-law trapping times
NASA Astrophysics Data System (ADS)
Luo, Liang; Tang, Lei-Han
2014-07-01
Thermally driven diffusive motion of a particle underlies many physical and biological processes. In the presence of traps and obstacles, the spread of the particle is substantially impeded, leading to subdiffusive scaling at long times. The statistical mechanical treatment of diffusion in a disordered environment is often quite involved. In this short review, we present a simple and unified view of the many quantitative results on anomalous diffusion in the literature, including the scaling of the diffusion front and the mean first-passage time. Various analytic calculations and physical arguments are examined to highlight the role of dimensionality, energy landscape, and rare events in affecting the particle trajectory statistics. The general understanding that emerges will aid the interpretation of relevant experimental and simulation results.
Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales
NASA Astrophysics Data System (ADS)
Gierz, I.; Calegari, F.; Aeschlimann, S.; Chávez Cervantes, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Link, S.; Starke, U.; Ast, C. R.; Cavalleri, A.
2015-08-01
Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is, instead, predicted to be dominant at the earliest time delays. Here, <8 fs extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time-and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme time scales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for petahertz electronics.
Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales.
Gierz, I; Calegari, F; Aeschlimann, S; Chávez Cervantes, M; Cacho, C; Chapman, R T; Springate, E; Link, S; Starke, U; Ast, C R; Cavalleri, A
2015-08-21
Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is, instead, predicted to be dominant at the earliest time delays. Here, <8 fs extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time-and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme time scales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for petahertz electronics. PMID:26340199
NASA Astrophysics Data System (ADS)
Chu, Hao; Torchinsky, Darius; Zhao, Liuyan; Rall, Patrick; Terrace, Jasminka; Cao, Gang; Hsieh, David; InstituteQuantum Information; Matter, California Institute of Technology Collaboration; Department of Physics; Astronomy, University of Kentucky Collaboration
2015-03-01
Ca2RuO4 is a multiband strongly correlated electron system that undergoes a structural phase transition at Ts 360K that is concomitant with an insulator-to-metal transition and a rearrangement of orbital occupancy. Understanding its structural and electronic response to ultrafast optical excitation can provide insight about the microscopic mechanism of this phase transition.We report temperature and fluence dependent time resolved optical reflectivity measurements from lightly doped Ca2RuO4 single crystals. Abrupt changes in both the electronic relaxation dynamics and multiple lattice vibrational modes are observed, including the softening of two optical phonon modes as Ts is approached. We will discuss the relevance of our results to existing theories of the mechanism underlying the structural phase transition in Ca2RuO4 as well as the possibility of photo-inducing this phase transition on ultrafast time scales.
Solar Irradiance Variations on Active Region Time Scales
NASA Technical Reports Server (NTRS)
Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)
1984-01-01
The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.
Adaptive Haar transforms with arbitrary time and scale splitting
NASA Astrophysics Data System (ADS)
Egiazarian, Karen O.; Astola, Jaakko T.
2001-05-01
The Haar transform is generalized to the case of an arbitrary time and scale splitting. To any binary tree we associate an orthogonal system of Haar-type functions - tree-structured Haar (TSH) functions. Unified fast algorithm for computation of the introduced tree-structured Haar transforms is presented. It requires 2(N - 1) additions and 3N - 2 multiplications, where N is transform order or, equivalently, the number of leaves of the binary tree.
Biogenic Calcium Phosphate Transformation in Soils over Millennium Time Scales
Sato, S.; Neves, E; Solomon, D; Liang, B; Lehmann, J
2009-01-01
Changes in bioavailability of phosphorus (P) during pedogenesis and ecosystem development have been shown for geogenic calcium phosphate (Ca-P). However, very little is known about long-term changes of biogenic Ca-P in soil. Long-term transformation characteristics of biogenic Ca-P were examined using anthropogenic soils along a chronosequence from centennial to millennial time scales. Phosphorus fractionation of Anthrosols resulted in overall consistency with the Walker and Syers model of geogenic Ca-P transformation during pedogenesis. The biogenic Ca-P (e.g., animal and fish bones) disappeared to 3% of total P within the first ca. 2,000 years of soil development. This change concurred with increases in P adsorbed on metal-oxides surfaces, organic P, and occluded P at different pedogenic time. Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the crystalline and therefore thermodynamically most stable biogenic Ca-P was transformed into more soluble forms of Ca-P over time. While crystalline hydroxyapatite (34% of total P) dominated Ca-P species after about 600-1,000 years, {Beta}-tricalcium phosphate increased to 16% of total P after 900-1,100 years, after which both Ca-P species disappeared. Iron-associated P was observable concurrently with Ca-P disappearance. Soluble P and organic P determined by XANES maintained relatively constant (58-65%) across the time scale studied. Conclusions - Disappearance of crystalline biogenic Ca-P on a time scale of a few thousand years appears to be ten times faster than that of geogenic Ca-P.
Time scale interactions and the coevolution of humans and water
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu; Blöschl, Günter
2015-09-01
We present a coevolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of coevolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative, and process studies of human-water feedbacks.
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research. PMID:20615808
Scale dependence of the directional relationships between coupled time series
NASA Astrophysics Data System (ADS)
Shirazi, Amir Hossein; Aghamohammadi, Cina; Anvari, Mehrnaz; Bahraminasab, Alireza; Rahimi Tabar, M. Reza; Peinke, Joachim; Sahimi, Muhammad; Marsili, Matteo
2013-02-01
Using the cross-correlation of the wavelet transformation, we propose a general method of studying the scale dependence of the direction of coupling for coupled time series. The method is first demonstrated by applying it to coupled van der Pol forced oscillators and coupled nonlinear stochastic equations. We then apply the method to the analysis of the log-return time series of the stock values of the IBM and General Electric (GE) companies. Our analysis indicates that, on average, IBM stocks react earlier to possible common sector price movements than those of GE.
Scale and time dependence of serial correlations in word-length time series of written texts
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.
NASA Astrophysics Data System (ADS)
Furman, Gregory B.; Goren, Shaul D.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-02-01
Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.
Furman, Gregory B; Goren, Shaul D; Meerovich, Victor M; Sokolovsky, Vladimir L
2016-02-01
Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample. PMID:26773529
Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales
NASA Technical Reports Server (NTRS)
Agrawal, Govind P.; Goorjian, Peter M.
1998-01-01
The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semiconductor amplifiers [I]. The code should take into account all relevant processes such as the interband and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb interaction among charge carriers [2]. This objective was fully accomplished. We made use of a previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested on several problems of practical importance. One such problem was related to the amplification of femtosecond optical pulses in semiconductors. These results were presented in several international conferences over a period of three years. With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the occurrence of absolute instabilities in lasers that contain a dispersive host material with third-order nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equations to distinguish between convective and absolute instabilities. We find that both self-phase modulation and intensity-dependent absorption can dramatically affect the absolute stability of such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can occur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs in the absence of intensity-dependent absorption. These results were presented in an international conference and published in the form of two papers.