Sample records for releases encapsulated hydrophobic

  1. Mechanism for Tuning the Hydrophobicity of Microfibrillated Cellulose Films by Controlled Thermal Release of Encapsulated Wax

    PubMed Central

    Rastogi, Vibhore Kumar; Stanssens, Dirk; Samyn, Pieter

    2014-01-01

    Although films of microfibrillated cellulose (MFC) have good oxygen barrier properties due to its fine network structure, properties strongly deteriorate after absorption of water. In this work, a new approach has been followed for actively tuning the water resistance of a MFC fiber network by the inclusion of dispersed organic nanoparticles with encapsulated plant wax. The modified pulp suspensions have been casted into films and were subsequently cured at 40 to 220 °C. As such, static water contact angles can be specifically tuned from 120 to 150° by selection of the curing temperature in relation with the intrinsic transition temperatures of the modified pulp, as determined by thermal analysis. The appearance of encapsulated wax after curing was followed by a combination of morphological analysis, infrared spectroscopy and Raman mapping, showing balanced mechanisms of progressive release and migration of wax into the fiber network controlling the surface properties and water contact angles. Finally, the appearance of nanoparticles covered with a thin wax layer after complete thermal release provides highest hydrophobicity. PMID:28788241

  2. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.

    PubMed

    Ben Yehuda Greenwald, Maya; Ben Sasson, Shmuel; Bianco-Peled, Havazelet

    2013-01-01

    Here we present the newly developed "solvent exchange" method that overcomes the challenge of encapsulating hydrophobic compounds within nanoparticle of water soluble polymers. Our studies involved the model polymer polyvinylpyrrolidone (PVP) and the hydrophobic dye Nile red. We found that the minimum molecular weight of the polymer required for nanoparticle formation was 49 KDa. Dynamic Light Scattering (DLS) and Cryo-Transmission Electron Microscopy (cryo-TEM) studies revealed spherical nanoparticles with an average diameter ranging from 20 to 33 nm. Encapsulation efficiency was evaluated using UV spectroscopy and found to be around 94%. The nanocarriers were found to be highly stable; less than 2% of Nile red release from nanoparticles after the addition of NaCl. Nanoparticles containing Nile red were able to penetrate into glioma cells. The solvent exchange method was proved to be applicable for other model hydrophobic drug molecules including ketoprofen, ibuprofen and indomethacin, as well as other solvents.

  3. Albumin-Encapsulated Liposomes: A Novel Drug Delivery Carrier With Hydrophobic Drugs Encapsulated in the Inner Aqueous Core.

    PubMed

    Okamoto, Yuko; Taguchi, Kazuaki; Yamasaki, Keishi; Sakuragi, Mina; Kuroda, Shun'ichi; Otagiri, Masaki

    2018-01-01

    Liposomes are clinically used in drug delivery, but loading hydrophobic substances is limited to the hydrophobic space of a lipid membrane, despite the fact that it is favorable to encapsulate substances into the inner aqueous core of liposome, from a drug stability of view. We report herein on the preparation of a liposome with bovine serum albumin encapsulated (BSA-liposome). Using this system, it is possible to encapsulate hydrophobic drugs in the inner aqueous core of the liposome based on the hypothesis that the water solubility of hydrophobic drugs is increased when bound to albumin. The physicochemical properties of the prepared BSA-liposomes could be easily regulated and the loading of hydrophobic drugs in the inner aqueous core of the liposome was dramatically improved by virtue of the drug-binding properties of albumin. An in vivo safety and pharmacokinetic study showed that BSA-liposomes possess favorable properties as a drug carrier, including biocompatibility and a stealth effect. This new type of hydrophobic drug carrier, an albumin-liposome, has the potential for use in delivering numerous hydrophobic drugs that typically bind to albumin. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Layer-by-layer polyelectrolyte-polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs.

    PubMed

    Luo, Rongcong; Venkatraman, Subbu S; Neu, Björn

    2013-07-08

    A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.

  5. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    PubMed Central

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396

  6. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    PubMed Central

    Cheng, Kuo-Wei; Hsu, Shan-hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. PMID:28280341

  7. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.

    PubMed

    Cheng, Kuo-Wei; Hsu, Shan-Hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.

  8. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives.

    PubMed

    Weissmueller, Nikolas T; Lu, Hoang D; Hurley, Amanda; Prud'homme, Robert K

    2016-11-14

    One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.

  9. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery.

    PubMed

    Sharma, Varsha; Anandhakumar, Sundaramurthy; Sasidharan, Manickam

    2015-11-01

    In this study, we have examined the encapsulation and release of hydrophilic and hydrophobic drugs in self-degrading niosomes as a unique method for anticancer therapy. Niosomes were prepared by amphiphilic self-assembly of Tween 80 and cholesterol through film hydration method. Encapsulation studies with two active molecules curcumin and doxorubicin hydrochloride (Dox) showed that curcumin is supposed to accumulate in the shell whereas Dox accumulates in the inner aqueous core of the niosome. Confocal studies indicated that nile red adsorbs preferentially to the head group of the Tween 80 and forms two separate layers in the shell. It was also seen that the niosomes undergo self-degradation in PBS through a sequential process, forming interconnected pores followed by complete collapse after 1week. The release profile shows two phases: i) initial Dox release in the first two days, followed by ii) curcumin release over 7days. Enhanced (synergistic) cytotoxicity was observed for dual-drug loaded niosomes against HeLa cell lines. Thus these niosomes are shown to offer a promising delivery system for hydrophobic and hydrophilic drugs collectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells.

    PubMed

    Pramod, P S; Takamura, Kathryn; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, M

    2012-11-12

    Dextran vesicular nanoscaffolds were developed based on polysaccharide and renewable resource alkyl tail for dual encapsulation of hydrophilic and hydrophobic molecules (or drugs) and delivery into cells. The roles of the hydrophobic segments on the molecular self-organization of dextran backbone into vesicles or nanoparticles were investigated in detail. Dextran vesicles were found to be a unique dual carrier in which water-soluble molecules (like Rhodamine-B, Rh-B) and polyaromatic anticancer drug (camptothecin, CPT) were selectively encapsulated in the hydrophilic core and hydrophobic layer, respectively. The dextran vesicles were capable of protecting the plasma-sensitive CPT lactone pharmacophore against the hydrolysis by 10× better than the CPT alone in PBS. The aliphatic ester linkage connecting the hydrophobic tail with dextran was found to be cleaved by esterase under physiological conditions for fast releasing of CPT or Rh-B. Cytotoxicity of the dextran vesicle and its drug conjugate were tested on mouse embryonic fibroblast cells (MEFs) using MTT assay. The dextran vesicular scaffold was found to be nontoxic to living cells. CPT loaded vesicles were found to be 2.5-fold more effective in killing fibroblasts compared to that of CPT alone in PBS. Confocal microscopic images confirmed that both Rh-B and CPT loaded vesicles to be taken up by fibroblasts compared to CPT alone, showing a distinctly perinuclear localization in cells. The custom designed dextran vesicular provides new research opportunities for dual loading and delivering of hydrophilic and hydrophobic drug molecules.

  11. Formation of vesicles through solvent assisted self-assembly of hydrophobic pentapeptides: encapsulation and pH responsive release of dyes by the vesicles.

    PubMed

    Kar, Sudeshna; Drew, Michael G B; Pramanik, Animesh

    2011-09-01

    In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe (I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: α-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while β-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated β-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.

  12. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.

    PubMed

    Min, Kyung Hyun; Park, Kyeongsoon; Kim, Yoo-Shin; Bae, Sang Mun; Lee, Seulki; Jo, Hyung Gon; Park, Rang-Woon; Kim, In-San; Jeong, Seo Young; Kim, Kwangmeyung; Kwon, Ick Chan

    2008-05-08

    To prepare a water-insoluble camptothecin (CPT) delivery carrier, hydrophobically modified glycol chitosan (HGC) nanoparticles were constructed by chemical conjugation of hydrophobic 5beta-cholanic acid moieties to the hydrophilic glycol chitosan backbone. Insoluble anticancer drug, CPT, was easily encapsulated into HGC nanoparticles by a dialysis method and the drug loading efficiency was above 80%. CPT-encapsulated HGC (CPT-HGC) nanoparticles formed nano-sized self-aggregates in aqueous media (280-330 nm in diameter) and showed sustained release of CPT for 1 week. Also, HGC nanoparticles effectively protected the active lactone ring of CPT from the hydrolysis under physiological condition, due to the encapsulation of CPT into the hydrophobic cores in the HGC nanoparticles. The CPT-HGC nanoparticles exhibited significant antitumor effects and high tumor targeting ability towards MDA-MB231 human breast cancer xenografts subcutaneously implanted in nude mice. Tumor growth was significantly inhibited after i.v. injection of CPT-HGC nanoparticles at doses of 10 mg/kg and 30 mg/kg, compared to free CPT at dose of 30 mg/kg. The significant antitumor efficacy of CPT-HGC nanoparticles was attributed to the ability of the nanoparticles to show both prolonged blood circulation and high accumulation in tumors, as confirmed by near infrared (NIR) fluorescence imaging systems. Thus, the delivery of CPT to tumor tissues at a high concentration, with the assistance of HGC nanoparticles, exerted a potent therapeutic effect. These results reveal the promising potential of HGC nanoparticles-encapsulated CPT as a stable and effective drug delivery system in cancer therapy.

  13. Floating-pulsatile release multiparticulate system for chronopharmacotherapy: effect of some hydrophobic additives on the buoyancy and release behavior of particles.

    PubMed

    Maghsoodi, M

    2014-01-01

    A blend of floating and pulsatile principles of a drug delivery system would have the advantage that a drug can be released in the upper gastrointestinal (GI) tract after a lag period, which is anticipated for chronotherapy. In this study, microballoons were prepared by an emulsion solvent diffusion technique using Eudragit S100, and hydrophobic additive (magnesium stearate, stearic acid or talc) for time- and site-specific drug release of piroxicam. The effect of hydrophobic additives on the production yield of floating microparticles, buoyant ability for 8 h, release of drug in simulated GI fluids (simulated gastric fluid [SGF] and simulated intestinal fluid [SIF]), mean particle size, apparent particle density, encapsulation efficiency of drug and physical state of incorporated drug were studied. Both production yield and buoyancy of the microballoons were affected by additives in the following order: magnesium stearate, stearic acid>free-additive>talc. The observed difference in yield and the buoyancy of the microballoons could be attributed to the hydrophobic character of the additives and the shell rigidity of the obtained microballoons. Incorporation of hydrophobic additives in the microballoons was found to impart the desired release properties to the microballoons by providing a 2-phase release pattern with initial slow release (5-6%) through 8 h in SGF followed by rapid pulse release (>92%) in SIF through 15 min. The microballoons co-formulated with magnesium stearate or stearic acid, combining excellent buoyancy and suitable drug release pattern of piroxicam, could be useful in chronopharmacotherapy in arthritis. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI.

    PubMed

    Cheng, Ziyong; Dai, Yunlu; Kang, Xiaojiao; Li, Chunxia; Huang, Shanshan; Lian, Hongzhou; Hou, Zhiyao; Ma, Pingan; Lin, Jun

    2014-08-01

    A facile method for transferring hydrophobic iron oxide nanoparticles (IONPs) from chloroform to aqueous solution via encapsulation of FITC-modified gelatin based on the hydrophobic-hydrophobic interaction is described in this report. Due to the existence of large amount of active groups such as amine groups in gelatin, the fluorescent labeling molecules of fluorescein isothiocyanate (FITC) and platinum (IV) prodrug functionalized with carboxylic groups can be conveniently conjugated on the IONPs. The nanoparticles carrying Pt(IV) prodrug exhibit good anticancer activities when the Pt(IV) complexes are reduced to Pt(II) in the intracellular environment, while the pure Pt(IV) prodrug only presents lower cytotoxicity on cancer cells. Meanwhile, fluorescence of FITC on the surface of nanoparticles was completely quenched due to the possible Förster Resonance Energy Transfer (FRET) mechanism and showed a fluorescence recovery after gelatin release and detachment from IONPs. Therefore FITC as a fluorescence probe can be used for identification, tracking and monitoring the drug release. In addition, adding pancreatic enzyme can effectively promote the gelatin release from IONPs owing to the degradation of gelatin. Noticeable darkening in magnetic resonance image (MRI) was observed at the tumor site after in situ injection of nanoparticles, indicating the IONPs-enhanced T2-weighted imaging. Our results suggest that the gelatin encapsulated Fe3O4 nanoparticles have potential applications in multi-functional drug delivery system for disease therapy, MR imaging and fluorescence sensor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil.

    PubMed

    Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz

    2018-10-15

    Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Hydrophobic drug concentration affects the acoustic susceptibility of liposomes.

    PubMed

    Nguyen, An T; Lewin, Peter A; Wrenn, Steven P

    2015-04-01

    The purpose of this study was to investigate the effect of encapsulated hydrophobic drug concentration on ultrasound-mediated leakage from liposomes. Studies have shown that membrane modifications affect the acoustic susceptibility of liposomes, likely because of changes in membrane packing. An advantage of liposome as drug carrier is its ability to encapsulate drugs of different chemistries. However, incorporation of hydrophobic molecules into the bilayer may cause changes in membrane packing, thereby affecting the release kinetics. Liposomes containing calcein and varying concentrations of papaverine, a hydrophobic drug, were exposed to 20 kHz, 2.2 Wcm(-2) ultrasound. Papaverine concentration was observed to affect calcein leakage although the effects varied widely based on liposome phase. For example, incorporation of 0.5mg/mL papaverine into Ld liposomes increased the leakage of hydrophilic encapsulants by 3× within the first minute (p=0.004) whereas the same amount of papaverine increased leakage by only 1.5× (p<0.0001). Papaverine was also encapsulated into echogenic liposomes and its concentration did not significantly affect calcein release rates, suggesting that burst release from echogenic liposomes is predictable regardless of encapsulants chemistry and concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fluorescence imaging of antibiotic clofazimine encapsulated within mesoporous silica particle carriers: relevance to drug delivery and the effect on its release kinetics.

    PubMed

    Angiolini, Lorenzo; Valetti, Sabrina; Cohen, Boiko; Feiler, Adam; Douhal, Abderrazzak

    2018-05-03

    We report on the encapsulation of the antibiotic clofazimine (CLZ) within the pores of mesoporous silica particles having hydrophilic (CBET value of 137) and more hydrophobic (CBET value of 94 after calcination at 600 °C) surfaces. We studied the effect of pH on the released amount of CLZ in aqueous solutions and observed a maximum at pH 4.1 in correlation with the solubility of the drug. Less release of the drug was observed from the more hydrophobic particles which was attributed to a difference in the affinity of the drug to the carrier particles. Fluorescence lifetime imaging microscopy, emission spectra, and fluorescence lifetimes of single drug loaded particles provided detailed understanding and new knowledge of the physical form of the encapsulated drug and the distribution within the particles. The distribution of CLZ within the particles was independent of the surface chemistry of the particles. The confirmation of CLZ molecules as monomers or aggregates was revealed by controlled removal of the drug with solvent. Additionally, the observed optical "halo effect" in the fluorescent images was interpreted in terms of specific quenching of high concentration of molecules. The emission lifetime experiments suggest stronger interaction of CLZ with the more hydrophobic particles, which is relevant to its release. The results reported in this work demonstrate that tuning the hydrophilicity/hydrophobicity of mesoporous silica particles can be used as a tool to control the release without impacting their loading ability.

  18. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.

    PubMed

    Dan, Nily

    2014-11-25

    Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.

  19. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  20. Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles

    PubMed Central

    Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping

    2015-01-01

    We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259

  1. Syntheses and self-assembly of novel asparagine-derived amphiphiles: Applications in the encapsulation of proteins, hydrophobic, and hydrophilic drug models

    NASA Astrophysics Data System (ADS)

    Mfuh, Adelphe Mbufung

    This thesis focuses mainly on the synthesis, characterization, and self-assembly of a novel series of asparagine-derived amphiphiles and their use in the preparation and stabilization of nano and microcapsules for the encapsulation of proteins, and hydrophilic and hydrophobic drug models. Chapter 1 gives a brief literature overview of lipid molecular assembly, which covers some aspects of morphological analyses, encapsulation of chemical entity and some reported characterization techniques of supramolecular assemblies. It introduces the scope of this dissertation and contains some information on stimulus responsive liposomal systems for controlled release of drug models. Chapter 2 introduces a novel asparagine-derived lipid bearing two fatty chains (C11 and C17) and a tetrahydropyrimidinone head group. It presents information on the synthesis and characterization of this lipid and describes the self-assembly and effects of this lipid in distearoyl phosphatidyl choline bilayer. Chapter 3 presents the synthesis and characterization of a series of ALAn,m (where n and m represent the length of the hydrocarbon chains on the asparagine-derived, heterocyclic head group). It contains data on the effect of chain length, solvent media and head group ionization on the conformational equilibrium about a tertiary amide bond in ALAn,m. The chapter also examines the influence of chain length on ALAn,m on the colloidal stability of DSPC liposomes. Chapter 4 presents the first example of an N,N-acetal linkage in a novel pH responsive nanocarrier system obtained from the cyclocondensation of dodecanal with sodium asparaginate. Data is presented on the spontaneous self-assembly, encapsulation studies and morphological characterization of the nano-systems with the inclusion of cholesterol as additive. Chapter 5 presents the development of a photoresponsive nanocarrier via the self- assembly of an asparagine-derived lipid containing a coumarin unit in the hydrophobic domain. The

  2. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy.

    PubMed

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery.

  3. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy

    PubMed Central

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789

  4. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules

    NASA Astrophysics Data System (ADS)

    Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro

    2016-08-01

    The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.

  6. A hydrophobic dye-encapsulated nano-hybrid as an efficient fluorescent probe for living cell imaging.

    PubMed

    Chang, Shu; Wu, Xumeng; Li, Yongsheng; Niu, Dechao; Ma, Zhi; Zhao, Wenru; Gu, Jinlou; Dong, Wenjie; Ding, Feng; Zhu, Weihong; Shi, Jianlin

    2012-07-01

    Water-soluble hydrophobic-dye@nano-hybrids (DPN@NHs) with extraordinarily enhanced fluorescent performance were fabricated by encapsulating the hydrophobic dye molecules into the core of the hybrid nanospheres based on the self-assembly of amphiphilic block copolymers followed by shell cross-linking using 3-mercaptopropyltrimethoxy-silane. The DPN@NHs are 50 nm in size, are monodispersed in aqueous solution and have a quantum yield enhanced by 30 times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes.

    PubMed

    Zhang, Licheng; Zhang, Lihai; Yang, Yun; Zhang, Wei; Lv, Houchen; Yang, Fei; Lin, Changjian; Tang, Peifu

    2016-07-01

    The antibacterial properties of super-hydrophobic silver (Ag) on implant surface have not yet to be fully illuminated. In our study, we investigate the protective effects of super-hydrophobic coating of silver/titanium dioxide (Ag/TiO2 ) nanotubes against bacterial pathogens, as well as its pattern of Ag release. Ag/TiO2 nanotubes are prepared by a combination of electrochemical anodization and pulse electrodeposition. The super-hydrophobic coating is prepared by modifying the surface of Ag/TiO2 nanotubes with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES). Surface features and Ag release are examined by SEM, X-ray photoelectron spectroscopy, contact-angle measurement, and inductively coupled plasma-mass spectrometry (ICP-MS). The antibacterial activity of super-hydrophobic coating Ag/TiO2 nanotubes is investigated both in vitro and in vivo. Consequently, the super-hydrophobic coating on Ag/TiO2 nanotubes shows a regularly arranged structure; and nano-Ag particles (10-30 nm) are evenly distributed on the surface or inside the nanotubes. The contact angles of water on the super-hydrophobic coating Ag/TiO2 nanotubes are all above 150°. In addition, the super-hydrophobic character displays a certain conserved effect that contributes to the sustained release of Ag. The super-hydrophobic Ag/TiO2 nanotubes are also effective in inhibiting bacterial adhesion, killing the adhering bacteria and preventing postoperative infection in rabbits. Therefore, it is expected that the super-hydrophobic Ag/TiO2 nanotubes which can contain the release of Ag, leading to stable release, may show a consistent surface antibacterial capability. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1004-1012, 2016. © 2015 Wiley Periodicals, Inc.

  9. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  10. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.

    PubMed

    Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim

    2003-07-01

    The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of

  11. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  12. Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.

    PubMed

    Marcuzzo, Eva; Debeaufort, Frédéric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andrée

    2012-12-12

    Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ι-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ι-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ι-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients.

  13. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity.

    PubMed

    Mobasseri, Rezvan; Karimi, Mahdi; Tian, Lingling; Naderi-Manesh, Hossein; Ramakrishna, Seeram

    2017-05-01

    Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca 2+ , Zn 2+ or Mg 2+ ). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl 2 ) facilitated the formation of bare (100.3±0.80nm) and drug-loaded nanoparticles (134.3±1.3nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was -16.8±0.47mV and its entrapment and loading efficiency were 76.74±1.73% and 47.36±1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study

    NASA Astrophysics Data System (ADS)

    Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.

    2018-05-01

    The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.

  15. Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release.

    PubMed

    Cunningham, Alexander J; Robinson, Mattieu; Banquy, Xavier; Leblond, Jeanne; Zhu, X X

    2018-03-05

    Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG) 4 ) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC 50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.

  16. Design of hydrophobic polyoxometalate hybrid assemblies beyond surfactant encapsulation.

    PubMed

    Song, Yu-Fei; McMillan, Nicola; Long, De-Liang; Thiel, Johannes; Ding, Yulong; Chen, Haisheng; Gadegaard, Nikolaj; Cronin, Leroy

    2008-01-01

    Grafting of C-6, C-16 and C-18 alkyl chains onto the hydrophilic Mn-Anderson clusters (compounds 2-4) has been achieved. Exchange of the tetrabutyl ammonium (TBA) with dimethyldioctadecyl ammonium (DMDOA) results in the formation of new polyoxometalate (POM) assemblies (compounds 5-6), in which the POM cores are covalently functionalized by hydrophilic alkyl-chains and enclosed by surfactant of DMDOABr. As a result, we have been able to design and synthesize POM-containing hydrophobic materials beyond surfactant encapsulation. In solid state, scanning electron and transmission electron microscopy (SEM and TEM) studies of the TBA salts of compounds 3 and 4 show highly ordered, uniform, reproducible assemblies with unique segmented rodlike morphology. SEM and TEM studies of the DMDOA salts of compounds 5 and 6 show that they form spherical and sea urchin 3D objects in different solvent systems. In solution, the physical properties of compound 5 and 6 (combination of surfactant-encapsulated cluster (SEC) and surface-grafted cluster (SGC)) show a liquid-to-gel phase transition in pure chloroform below 0 degrees C, which are much lower than other reported SECs. By utilizing light scattering measurements, the nanoparticle size for compounds 5 and 6 were measured at 5 degrees C and 30 degrees C, respectively. Other physical properties including differential scanning calorimetry have been reported.

  17. Encapsulation and controlled release of retinol from silicone particles for topical delivery.

    PubMed

    Shields, C Wyatt; White, John P; Osta, Erica G; Patel, Jerishma; Rajkumar, Shashank; Kirby, Nickolas; Therrien, Jean-Philippe; Zauscher, Stefan

    2018-05-28

    Retinol, a derivative of vitamin A, is a ubiquitous compound used to treat acne, reduce wrinkles and protect against conditions like psoriasis and ichthyosis. While retinol is used as the primary active ingredient (AI) in many skin care formulations, its efficacy is often limited by an extreme sensitivity to degrade and toxicity at high concentrations. While microencapsulation is an appealing method to help overcome these issues, few microencapsulation strategies have made a major translational impact due to challenges with complexity, cost, limited protection of the AI and poor control of the release of the AI. We have developed a class of silicone particles that addresses these challenges for the encapsulation, protection and controlled release of retinol and other hydrophobic compounds. The particles are prepared by the sol-gel polymerization of silane monomers, which enables their rapid and facile synthesis at scale while maintaining a narrow size distribution (i.e., CV < 20%). We show that our particles can: (i) encapsulate retinol with high efficiency (>85%), (ii) protect retinol from degradation (yielding a half-life 9× greater than unencapsulated retinol) and (iii) slowly release retinol over several hours (at rates from 0.14 to 0.67 μg cm -2  s -1/2 ). To demonstrate that the controlled release of retinol from the particles can reduce irritation, we performed a double blind study on human subjects and found that formulations containing our particles were 12-23% less irritating than identical formulations containing Microsponge® particles (an industry standard by Amcol, Inc.). To show that the silicone particles can elicit a favorable biological response, similar to the Microsponge® particles, we applied both formulations to reconstructed human epidermal tissues and found an upregulation of keratin 19 (K19) and a downregulation of K10, indicating that the reduced irritation observed in the human study was not caused by reduced activity. We

  18. Effect of medium-chain triglycerides on the release behavior of Endostar encapsulated PLGA microspheres.

    PubMed

    Meng, Boyu; Li, Ling; Hua, Su; Wang, Qingsong; Liu, Chunhui; Xu, Xiangyang; Yin, Xiaojin

    2010-09-15

    The incomplete release of Endostar from PLGA microspheres was observed in our previous study. In the present study, we focused on the effect of medium-chain triglycerides (MCT) on the in vitro/in vivo release behavior of Endostar encapsulated PLGA microspheres, which were prepared by a water-in-oil-in-water (W/O/W) double-emulsion method with or without MCT. The in vitro accumulated release of Endostar from microspheres co-encapsulated with 30% MCT was found to be 79.04% after a 30-day incubation period in PBS (pH 7.4) at 37 degrees C. However, the accumulated release of Endostar from MCT-free microspheres was found to be only 32.22%. Pouches containing Endostar encapsulated PLGA microspheres were implanted subcutaneously in rats. The effect of MCT on the in vivo release showed a similar trend to the in vitro release. After 30 days, only 9.87% of the total encapsulated Endostar was retained in microspheres co-encapsulated with 30% MCT, while 42.25% of Endostar was retained in MCT-free microspheres. The co-encapsulation of MCT provided the microspheres with a porous surface, which significantly improved the in vitro/in vivo release of Endostar from PLGA microspheres. In addition, in vitro experiments showed that MCT co-encapsulated PLGA microspheres had more inter-connected pores, faster degradation of PLGA, and faster swelling of microspheres, which helped to explain the mechanism of the effect of MCT on improving the release of Endostar from PLGA microspheres. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Cucurbit[7]uril Enables Multi-Stimuli-Responsive Release from the Self-Assembled Hydrophobic Phase of a Metal Organic Polyhedron.

    PubMed

    Samanta, Soumen K; Quigley, Jeffrey; Vinciguerra, Brittany; Briken, Volker; Isaacs, Lyle

    2017-07-05

    Mixed self-assembly of ligands 1, 2, 1,6-hexanediamine (HDA), and Pd(NO 3 ) 2 afforded Fujita-type metal organic polyhedron MOP1 (diameter ≈ 8.2 nm), which is covalently functionalized with an average of 18 cucurbit[7]uril (CB[7]) units, as evidenced by 1 H NMR, diffusion-ordered spectroscopy NMR, and transmission electron microscopy measurements. By virtue of the host-guest properties of CB[7], the inner cavity of MOP can be rendered hydrophobic by using octadecyl HDA (3) as guest during the self-assembly process. The hydrophobic cavity was successfully utilized to trap the hydrophobic dye Nile Red (NR) and the anticancer drug doxorubicin (DOX). The stimuli-responsive release of encapsulated NR or DOX occurs (1) upon addition of a competitive binder (e.g., adamantane ammonium (ADA)) for CB[7], (2) by a dual pH-chemical stimulus involving the protonation state change of adamantane carboxylate at pH 5.8, and (3) by a dual pH-photochemical stimulus involving photoisomerization of trans-6 to cis-6 at pH 5.8. NR is released from NR@MOP2 within HeLa cancer cells. This body of work suggests that the covalent attachment of cucurbit[n]uril to metal organic polyhedra constitutes a promising vehicle for the development of both diagnostic and therapeutic nanoparticles.

  20. Composite chitosan hydrogels for extended release of hydrophobic drugs.

    PubMed

    Delmar, Keren; Bianco-Peled, Havazelet

    2016-01-20

    A composite chitosan hydrogel durable in physiological conditions intended for sustained release of hydrophobic drugs was investigated. The design is based on chitosan crosslinked with genipin with embedded biocompatible non-ionic microemulsion (ME). A prolonged release period of 48 h in water, and of 24h in phosphate buffer saline (PBS) of pH 7.4 was demonstrated for Nile red and curcumin. The differences in release patterns in water and PBS were attributed to distinct dissimilarities in the swelling behaviors; in water, the hydrogels swell enormously, while in PBS they expel water and shrink. The release mechanism dominating this system is complex due to intermolecular bonding between the oil droplets and the polymeric network, as confirmed by Fourier transform infrared spectroscopy (FTIR) experiments. This is the first time that oil in water microemulsions were introduced into a chitosan hydrogels for the creation of a hydrophobic drug delivery system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Encapsulation of NF-κ B Decoy Oligonucleotides within Echogenic Liposomes and Ultrasound-Triggered Release

    PubMed Central

    Buchanan, Kyle D.; Huang, Shao-Ling; Kim, Hyunggun; McPherson, David D.; MacDonald, Robert C.

    2011-01-01

    Echogenic liposomes (ELIP) have additional promise, beyond diagnostic agents, as vehicles for delivering oligonucleotides (ODN), especially if the release of the agent can be triggered and its uptake can be enhanced by ultrasound application at a specific site. The purpose of this study was to co-encapsulate air and NF-κB decoy ODN within ELIP allowing ultrasound to release encapsulated ODN from ELIP, and to accurately quantify release of encapsulated ODN from ELIP upon ultrasound application. FITC-labeled sense ODN (2 mM) was incorporated within ELIP using freeze/thaw method. Encapsulation efficiency of FITC-ODN was spectrofluorometrically analyzed by quenching fluorescence of unencapsulated FITC-ODN using a complementary strand tagged with Iowa Black FQ-ODN. Quenching of FITC-ODN (0.05 μM) with Iowa Black FQ-ODN (0.1 μM) was found to be efficient (92.4 ± 0.2 %), allowing accurate determination of encapsulated ODN. Encapsulation efficiency of ODN was 14.2 ± 2.5 % in DPPC/DOPC/DPPG/CH liposomes and 29.6 ± 1.5 % in DPPC/DOPE/DPPG/CH liposomes. Application of ultrasound (1 MHz continuous wave, 0.26 MPa peak-to-peak pressure amplitude, 60 seconds.) to the latter formulation triggered 41.6 ± 4.3 % release of ODN from ODN-containing ELIP. We have thus demonstrated that ODN can be encapsulated into ELIP and released efficiently upon ultrasound application. These findings suggest potential applications for gene therapy in atherosclerosis treatment. PMID:19804805

  2. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs.

    PubMed

    Chen, Yongzhu; Tang, Chengkang; Zhang, Jie; Gong, Meng; Su, Bo; Qiu, Feng

    2015-01-01

    Finding a suitable delivery system to improve the water solubility of hydrophobic drugs is a critical challenge in the development of effective formulations. In this study, we used A6K, a self-assembling surfactant-like peptide, as a carrier to encapsulate and deliver hydrophobic pyrene. Pyrene was mixed with A6K by magnetic stirring to form a suspension. Confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, atomic force microscopy, fluorescence, and cell uptake measurements were carried out to study the features and stability of the nanostructures, the state and content of pyrene, as well as the pyrene release profile. The suspension formed contained pyrene monomers trapped in the hydrophobic cores of the micellar nanofibers formed by A6K, as well as nanosized pyrene crystals wrapped up and stabilized by the nanofibers. The two different encapsulation methods greatly increased the concentration of pyrene in the suspension, and formation of pyrene crystals wrapped up by A6K nanofibers might be the major contributor to this effect. Furthermore, the suspension system could readily release and transfer pyrene into living cells. A6K could be further exploited as a promising delivery system for hydrophobic drugs.

  3. Probiotic Encapsulation Technology: From Microencapsulation to Release into the Gut

    PubMed Central

    Gbassi, Gildas K.; Vandamme, Thierry

    2012-01-01

    Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area. PMID:24300185

  4. UV-screening chitosan nanocontainers: increasing the photostability of encapsulated materials and controlled release

    NASA Astrophysics Data System (ADS)

    Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.

    2008-05-01

    Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.

  5. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.

    PubMed

    Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-11-06

    Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Multicompartmental Microcapsules with Orthogonal Programmable Two-Way Sequencing of Hydrophobic and Hydrophilic Cargo Release.

    PubMed

    Xu, Weinan; Ledin, Petr A; Iatridi, Zacharoula; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2016-04-11

    Multicompartmental responsive microstructures with the capability for the pre-programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual-responsive blocks (temperature for poly(N-isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2-vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water-soluble hydrophilic macromolecules. For these dual-loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out-of-shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out-of-core release (pH). Reversing stimulus order completely alters the release process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-Assembly of a Tripodal Triszwitterion Forms a pH-Switchable Hydrogel that Can Reversibly Encapsulate Hydrophobic Guests in Water.

    PubMed

    Jana, Poulami; Schmuck, Carsten

    2017-01-05

    The development of supramolecular smart materials, which exhibit physicochemical structural changes in response to external stimuli is of current interest for various applications. Herein, we have developed the novel tripodal triszwitterion 1, derived from a C 3 -symmetric benzene-1,3,5-tricarboxamide (BTA) core, which forms a thermo-reversible and pH-switchable transparent hydrogel through intermolecular self-complementary zwitterionic interactions at a neutral pH value. The hierarchical supramolecular self-aggregation was fully analyzed by microscopy (AFM, field emission scanning electron microscopy (FESEM)), viscosity, dynamic light scattering (DLS), and rheology studies. Moreover, compound 1 enables to encapsulate hydrophobic guests, such as the dye Nile red in aqueous medium at pH 6, which makes it an interesting candidate for drug delivery and controlled release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  9. The interfacial, emulsification and encapsulation properties of hydrophobically modified inulin.

    PubMed

    Kokubun, S; Ratcliffe, I; Williams, P A

    2018-08-15

    Octenyl- and dodecenyl succinic anhydride derivatives (OSA- and DDSA-) of inulin have been synthesised and their solution and interfacial properties have been determined and compared to a commercially available alkylated inulin, Inutec SP1. All samples formed micellar aggregates in solution above a critical concentration (critical aggregation concentration) and were able to 'dissolve' a hydrophobic dye. They were also able to form stable oil-in-water (O/W) emulsions as assessed by measurements of their droplet size as a function of time. DDSA-inulin with a high degree of substitution was found to be effective at encapsulating beta carotene using the solvent evaporation method which yielded a solid which dissolved readily in simulated gastric fluid. The results confirm the potential application of these materials in a number of areas including, drug delivery, pharmaceuticals, neutraceuticals, cosmetics and personal care. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Hydrophobic Drug Encapsulation Mechanisms of an Injectable Self-Assembling Peptide Hydrogel

    NASA Astrophysics Data System (ADS)

    Sun, Jessie E. P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-02-01

    We examined a beta-hairpin peptide network that is a shear thinning injectable solid with immediate rehealing behavior. These rheological properties result from the entangled and branched fibrillar nanostructure of the hydrogel networks. The fibrils are formed by the intramolecular folding and subsequent intermolecular assembly of the self-assembling peptides. Taking advantage of the nanofibrillar peptide structures, the hydrogel can be used to encapsulate curcumin, a hydrophobic, natural anticancer agent and indian spice. The hydrogel shields curcumin from the environment while depositing it exactly where it is intended through syringe injection, taking advantage of the hydrogel shear thinning and rehealing behavior. How the network envelopes and interacts with the curcumin is examined using fluoresence and electron microscopy methods to better understand the exact mechanisms and behaviors of the gel itself and the gel-curcumin construct.

  11. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation.

    PubMed

    Pulicharla, Rama; Marques, Caroline; Das, Ratul Kumar; Rouissi, Tarek; Brar, Satinder Kaur

    2016-07-01

    Polyphenols (negative groups) of strawberry extract interacts with positively protonated amino groups of chitosan which helps in maximum encapsulation. This approach can improve the bioavailability and sustained release of phytochemicals having lower bioavailability. The optimum mass ratio of chitosan-tripolyphosphate and polyphenols (PPs) loading was investigated to be 3:1 and 0.5mg/ml of strawberry extract, respectively. Prepared nanoformulation were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The formed particles size ranged between 300 and 600nm and polydispersity index (PDI) of≈0.5. The optimized formulation showed encapsulation efficiency of 58.09% at 36.47% of polyphenols loading. Initial burst and continuous release of PPs was observed at pH 7.4 of in vitro release studies. PPs release profile at this pH was found to be non-Fickian analomous diffusion and the release was followed first order kinetics. And at pH 1.4, diffusion-controlled Fickian release of PPs was observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Nanoprecipitation process: From encapsulation to drug delivery.

    PubMed

    Martínez Rivas, Claudia Janeth; Tarhini, Mohamad; Badri, Waisudin; Miladi, Karim; Greige-Gerges, Hélène; Nazari, Qand Agha; Galindo Rodríguez, Sergio Arturo; Román, Rocío Álvarez; Fessi, Hatem; Elaissari, Abdelhamid

    2017-10-30

    Drugs encapsulation is a suitable strategy in order to cope with the limitations of conventional dosage forms such as unsuitable bioavailability, stability, taste, and odor. Nanoprecipitation technique has been used in the pharmaceutical and agricultural research as clean alternative for other drug carrier formulations. This technique is based on precipitation mechanism. Polymer precipitation occurs after the addition of a non-solvent to a polymer solution in four steps mechanism: supersaturation, nucleation, growth by condensation, and growth by coagulation that leads to the formation of polymer nanoparticles or aggregates. The scale-up of laboratory-based nanoprecipitation method shows a good reproducibility. In addition, flash nanoprecipitation is a good strategy for industrial scale production of nanoparticles. Nanoprecipitation is usually used for encapsulation of hydrophobic or hydrophilic compounds. Nanoprecipitation was also shown to be a good alternative for the encapsulation of natural compounds. As a whole, process and formulation related parameters in nanoprecipitation technique have critical effect on nanoparticles characteristics. Biodegradable or non-biodegradable polymers have been used for the preparation of nanoparticles intended to in vivo studies. Literature studies have demonstrated the biodistribution of the active loaded nanoparticles in different organs after administration via various routes. In general, in vitro drug release from nanoparticles prepared by nanoprecipitation includes two phases: a first phase of "burst release" which is followed by a second phase of prolonged release. Moreover, many encapsulated active molecules have been commercialized in the pharmaceutical market. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Super-hydrophobic yolk-shell nanostructure with enhanced catalytic performance in the reduction of hydrophobic nitroaromatic compounds.

    PubMed

    Shi, Song; Wang, Min; Chen, Chen; Gao, Jin; Ma, Hong; Ma, Jiping; Xu, Jie

    2013-10-25

    A self-templating method to fabricate a super-hydrophobic yolk-shell nano-reactor was reported. Metal nanoparticles were encapsulated in the porous super-hydrophobic shell. This super-hydrophobic catalyst showed excellent performance in the reduction of nitroaromatic compounds in aqueous phase and a positive correlation was found between the reaction rate and the hydrophobicity of the substrate.

  15. Application of Electrostatic Extrusion - Flavour Encapsulation and Controlled Release.

    PubMed

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-03-03

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 %) of guluronic residues and was rich in GG diadblocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC)under heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

  16. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Ming; Yuan, Jing; Leung, Ken Cham-Fai; Lee, Siu-Fung; Sham, Kathy W. Y.; Cheng, Christopher H. K.; Au, Doris W. T.; Teng, Gao-Jun; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2012-08-01

    With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 +/- 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC50) was 0.05 +/- 0.03 μg ml-1 for DOX/SPIO, while it was 0.13 +/- 0.02 μg ml-1 for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.

  17. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives.

    PubMed

    Gómez-Mascaraque, Laura G; López-Rubio, Amparo

    2016-03-01

    This work shows the potential of emulsion electrospraying of proteins using food-grade emulsions for the microencapsulation and enhanced protection of a model thermosensitive hydrophobic bioactive. Specifically, gelatin, a whey protein concentrate (WPC) and a soy protein isolate (SPI) were compared as emulsion stabilizers and wall matrices for encapsulation of α-linolenic acid. In a preliminary stage, soy bean oil was used as the hydrophobic component for the implementation of the emulsion electrospraying process, investigating the effect of protein type and emulsion protocol used (i.e. with or without ultrasound treatment) on colloidal stability. This oil was then substituted by the ω-3 fatty acid and the emulsions were processed by electrospraying and spray-drying, comparing both techniques. While the latter resulted in massive bioactive degradation, electrospraying proved to be a suitable alternative, achieving microencapsulation efficiencies (MEE) of up to ∼70%. Although gelatin yielded low MEEs due to the need of employing acetic acid for its processing by electrospraying, SPI and WPC achieved MEEs over 60% for the non-sonicated emulsions. Moreover, the degradation of α-linolenic acid at 80°C was significantly delayed when encapsulated within both matrices. Whilst less than an 8% of its alkene groups were detected after 27h of thermal treatment for free α-linolenic acid, up to 43% and 67% still remained intact within the electrosprayed SPI and WPC capsules, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The preparation and the sustained release of titanium dioxide hollow particles encapsulating L-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki

    2018-05-01

    The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.

  19. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    PubMed

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-04

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder.

  20. Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: The effects of hydrophilicity/hydrophobicity of a drug.

    PubMed

    Liu, Lin; Bai, Shaoqing; Yang, Huiqin; Li, Shubai; Quan, Jing; Zhu, Limin; Nie, Huali

    2016-10-01

    The thermo-sensitive copolymer poly(N-vinylcaprolactam-co-methacrylic acid) (PNVCL-co-MAA) was synthesized by free radical polymerization and the resulting nanofibers were fabricated using an electrospinning process. The molecular weight of the copolymer was adjusted by varying the content of methacrylic acid (MAA) while keeping that of N-vinylcaprolactam (NVCL) constant. Hydrophilic captopril and hydrophobic ketoprofen were used as model drugs, and PNVCL-co-MAA nanofibers were used as the drug carrier to investigate the effects of drug on its release properties from nanofibers at different temperatures. The results showed that slow release over several hours was observed at 40°C (above the lower critical solution temperature (LCST) of PNVCL-co-MAA), while the drugs exhibited a burst release of several seconds at 20°C (below the LCST). Drug release slowed with increasing content of the hydrophobic monomer NVCL. The hydrophilic captopril was released at a higher rate than the hydrophobic ketoprofen. The drug release characteristics were dependent on the temperature, the portion of hydrophilic groups and hydrophobic groups in the copolymer and hydrophilicity/hydrophobicity of drug. Study on the mechanism of release showed that Korsmeyer-Peppas model as a major drug release mechanism. Given these results, the PNVCL-co-MAA copolymers are proposed to have useful applications in intellectual drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril.

    PubMed

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2014-10-01

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA-PEG-PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs.

  2. Nanospheres Encapsulating Anti-Leishmanial Drugs for Their Specific Macrophage Targeting, Reduced Toxicity, and Deliberate Intracellular Release

    PubMed Central

    Shukla, Anil Kumar; Patra, Sanjukta

    2012-01-01

    Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019

  3. Gelled oil particles: a new approach to encapsulate a hydrophobic metallophthalocyanine.

    PubMed

    Siqueira-Moura, Marigilson P; Franceschi-Messant, Sophie; Blanzat, Muriel; Ré, Maria Inês; Perez, Emile; Rico-Lattes, Isabelle; Lattes, Armand; Tedesco, Antonio C

    2013-07-01

    Chloroaluminum phthalocyanine (ClAlPc) is a promising sensitizer molecule for photodynamic therapy, but its hydrophobicity makes it difficult to formulate. In this study, we have efficiently encapsulated ClAlPc into gelled soybean oil particles dispersed in water. 12-Hydroxystearic acid (HSA) and polyethyleneimine (PEI) were the gelling and stabilizing agents, respectively. The preparation process involved hot emulsification above the gelation temperature (Tgel), followed by cooling to room temperature, which gave a colloidal dispersion of gelled particles of oil in aqueous medium. The gelled particles containing ClAlPc had a medium diameter of 280 nm, homogeneous size distribution (polydispersity index ≈0.3) and large positive zeta potential (about +50 mV) and showed a spherical morphology. The gelled oil particle formulations exhibited good physical stability over a 6-month period. ClAlPc interfered with the HSA self-assembly only slightly, and decreased the gelation temperature to a small extent; however it did not affect gelation process of the oil droplets. The amounts of PEI and HSA employed during the preparation allowed us to control particle size and the dispersion stability, a phenomenon that results from complex electrostatic interactions between the positively charged PEI and the negatively charged HSA fibers present on the gelled particles surface. In summary, by using the right ClAlPc, HSA, and PEI proportions, we prepared very stable dispersions of gelled soybean oil particles with excellent ClAlPc encapsulation efficiency. The obtained colloidal formulation of gelled oil particles loaded with ClAlPc shall be very useful for photodynamic therapy protocols. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  4. Modifying the release of leuprolide from spray dried OED microparticles.

    PubMed

    Alcock, R; Blair, J A; O'Mahony, D J; Raoof, A; Quirk, A V

    2002-08-21

    A range of oligosaccharide ester derivatives (OEDs) have been designed as drug delivery matrices for controlled release. The synthetic hormone analogue, leuprolide, was encapsulated within these matrices using hydrophobic ion pairing and solvent spray drying. The particles produced modified the release of leuprolide in vitro (dissolution in phosphate buffered saline) and in vivo (subcutaneous and pulmonary delivery in the rat). Release rate was dependent on drug loading and could be manipulated by choice of OED and by combining different OEDs in different ratios. Leuprolide encapsulated in the OEDs retained biological activity as evidenced by elevation in plasma luteinising hormone levels following subcutaneous injection of leuprolide recovered from OED particles in vitro prior to in vivo administration.

  5. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    PubMed

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  6. Release of tissue inhibitor of metalloproteinase-2 from alginate microcapsule encapsulating genetically engineered cells

    PubMed Central

    Kim, Yeon Seong; Jeong, Young-II; Jin, Shu-Guang; Pei, Jian; Wen, Min; Kim, In-Young; Moon, Kyung-Sub; Jung, Tae-Young; Ryu, Hyang-Hwa; Jung, Shin

    2013-01-01

    Background In this study, 293T cells were genetically engineered to secrete tissue inhibitor of metalloproteinase-2 (TIMP2) and encapsulated into alginate microcapsules to continuously release TIMP2 protein. Methods The anti-invasive potential of the microcapsules was studied in vitro using brain tumor cells. The TIMP2 gene was transfected to 293T cells, and genetically engineered 293TIMP2 cells were encapsulated into alginate microcapsules. Release of TIMP2 protein was detected with Western blot analysis and the anti-invasive potential against U87MG cells was tested using gelatin zymography and a Matrigel assay. Results Cell viability within the alginate microcapsules was maintained at a cell density of 5 × 106. Because polycationic polymers are helpful for maintaining the mechanical strength of microcapsules with good cell viability, the alginate microcapsules were reinforced with chitosan (0.1% w/v). Expression of TIMP2 protein in cell lysates and secretion of TIMP2 into the conditioned medium was confirmed by Western blot analysis. Alginate microcapsules encapsulating 293TIMP2 cells released TIMP2 protein into the medium efficiently, where the TIMP2 protein participated in degradation of the matrix metalloproteinase-2 enzyme and inhibited invasion of U87MG cells. Conclusion Alginate microcapsules encapsulating 293TIMP2 cells are promising candidates for anti-invasive treatment of glioma. PMID:24231999

  7. Demonstrating Encapsulation and Release: A New Take on Alginate Complexation and the Nylon Rope Trick

    ERIC Educational Resources Information Center

    Friedli, Andrienne C.; Schlager, Inge R.; Wright, Stephen W.

    2005-01-01

    Three variations on a classroom demonstration of the encapsulation of droplets and evidence for release of the interior solution are described. The first two demonstrations mimic biocompatible applications of encapsulation. Reversible formation of capsules from aqueous solutions of sodium alginate, a negatively charged polysaccharide derived from…

  8. Supramolecular gelation of a polymeric prodrug for its encapsulation and sustained release.

    PubMed

    Ma, Dong; Zhang, Li-Ming

    2011-09-12

    A polymeric prodrug, PEGylated indomethacin (MPEG-indo), was prepared and then used to interact with α-cyclodextrin (α-CD) in their aqueous mixed system. This process could lead to the formation of supramolecular hydrogel under mild conditions and simultaneous encapsulation of MPEG-indo in the hydrogel matrix. For the formed supramolecular hydrogel, its gelation kinetics, mechanical strength, shear-thinning behavior and thixotropic response were investigated with respect to the effects of MPEG-indo and α-CD amounts by dynamic and steady rheological tests. Meanwhile, the possibility of using this hydrogel matrix as injectable drug delivery system was also explored. By in vitro release and cell viability tests, it was found that the encapsulated MPEG-indo could exhibit a controlled and sustained release behavior as well as maintain its biological activity.

  9. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    PubMed Central

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  10. Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles.

    PubMed

    Ergul Yilmaz, Zeynep; Cordonnier, Thomas; Debuigne, Antoine; Calvignac, Brice; Jerome, Christine; Boury, Frank

    2016-11-20

    Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ precipitation of calcium carbonate particles prepared by a process based on supercritical CO 2 and using a new type of degradable well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and polyphosphoester blocks acting as templating agent for the calcium carbonate. For this study, lysozyme was chosen as a model for therapeutic protein for its availability and ease of detection. It was found that by this green process, loading into the CaCO 3 microparticles with a diameter about 2μm can be obtained as determined by scanning electron microscopy. A protein loading up to 6.5% active lysozyme was measured by a specific bioassay (Micrococcus lysodeikticus). By encapsulating fluorescent-labelled lysozyme (lysozyme-FITC), the confocal microscopy images confirmed its encapsulation and suggested a core-shell distribution of lysozyme into CaCO 3 , leading to a release profile reaching a steady state at 59% of release after 90min. Copyright © 2016. Published by Elsevier B.V.

  11. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  12. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques.

    PubMed

    Oster, C G; Kissel, T

    2005-05-01

    Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous

  13. Determining drug release rates of hydrophobic compounds from nanocarriers.

    PubMed

    D'Addio, Suzanne M; Bukari, Abdallah A; Dawoud, Mohammed; Bunjes, Heike; Rinaldi, Carlos; Prud'homme, Robert K

    2016-07-28

    Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on 'lipid sinks' and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. © 2016 The Author(s).

  14. Determining drug release rates of hydrophobic compounds from nanocarriers

    PubMed Central

    D’Addio, Suzanne M.; Bukari, Abdallah A.; Dawoud, Mohammed; Bunjes, Heike; Rinaldi, Carlos; Prud’homme, Robert K.

    2016-01-01

    Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on ‘lipid sinks’ and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298440

  15. Hydrophobic-Core Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry W. (Inventor); Li, Wenyan (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  16. Encapsulation of Ethylene Gas into Granular Cold-Water-Soluble Starch: Structure and Release Kinetics.

    PubMed

    Shi, Linfan; Fu, Xiong; Tan, Chin Ping; Huang, Qiang; Zhang, Bin

    2017-03-15

    Ethylene gas was introduced into granular cold-water-soluble (GCWS) starches using a solid encapsulation method. The morphological and structural properties of the novel inclusion complexes (ICs) were characterized using scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The V-type single helix of GCWS starches was formed through controlled gelatinization and ethanol precipitation and was approved to host ethylene gas. The controlled release characteristics of ICs were also investigated at various temperature and relative humidity conditions. Avrami's equation was fitted to understand the release kinetics and showed that the release of ethylene from the ICs was accelerated by increasing temperature or RH and was decelerated by increased degree of amylose polymerization. The IC of Hylon-7 had the highest ethylene concentration (31.8%, w/w) among the five starches, and the IC of normal potato starch showed the best controlled release characteristics. As a renewable and inexpensive material, GCWS starch is a desirable solid encapsulation matrix with potential in agricultural and food applications.

  17. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    NASA Astrophysics Data System (ADS)

    Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-04-01

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.

  18. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    PubMed

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  20. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    PubMed Central

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water–in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16–38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  1. Promoting fertilizer use via controlled release of a bacteria-encapsulated film bag.

    PubMed

    Wu, Chin-San

    2010-05-26

    A phosphate-solubilizing bacterium ( Burkholderia cepacia isolate) encapsulated in maleic anhydride (MA) grafted onto poly(butylene succinate adipate) (PBSA) and then combined with starch as film bag material (PBSA-g-MA/starch) incubated in a saline solution required approximately 20 days to deplete the starch in the film bags. Thereafter, the cell concentration in the saline solution increased significantly because of the release of cells from the severely destroyed film bags and also their growth by use of depolymerized PBSA-g-MA fragments as a substrate. The incubation proceeded for 60 days, by which time the PBSA-g-MA/starch composite had suffered a >80% weight loss. For practical application, effectiveness of the above-mentioned film bags was demonstrated because it could improve the absorbability of a fertilizer for plants and promote the growth of plants. As a result, it can avoid the accumulation of the phosphate in excess fertilizer that lead to the phenomenon of poor soils. These results demonstrate that PBSA-g-MA/starch can be used to encapsulate cells of an indigenous phosphate-solubilizing bacterium ( B. cepacia isolate) to form a controlled release of bacteria-encapsulated film bag (BEFB). The B. cepacia isolate was able to degrade the film bags material, causing cell release. Biodegradability of the film bags depended upon the type of material used, because the PBSA film bags were also degraded but to a lesser degree. The addition of starch made the film bags more biodegradable. The decrease in intrinsic viscosity was also higher for the starch composite, suggesting a strong connection between the biodegradability and these characteristics. The results suggest that the release of fertilizer-promoted bacteria might be controllable via a suitable film bag material formulation. In addition, this work adopted live bacteria to promote the absorption of phosphate, which is superior to the phosphate used in the traditional way.

  2. On the intracellular release mechanism of hydrophobic cargo and its relation to the biodegradation behavior of mesoporous silica nanocarriers.

    PubMed

    von Haartman, Eva; Lindberg, Desiré; Prabhakar, Neeraj; Rosenholm, Jessica M

    2016-12-01

    The intracellular release mechanism of hydrophobic molecules from surface-functionalized mesoporous silica nanoparticles was studied in relation to the biodegradation behavior of the nanocarrier, with the purpose of determining the dominant release mechanism for the studied drug delivery system. To be able to follow the real-time intracellular release, a hydrophobic fluorescent dye was used as model drug molecule. The in vitro release of the dye was investigated under varying conditions in terms of pH, polarity, protein and lipid content, presence of hydrophobic structures and ultimately, in live cancer cells. Results of investigating the drug delivery system show that the degradation and drug release mechanisms display a clear interdependency in simple aqueous solvents. In pure aqueous media, the cargo release was primarily dependent on the degradation of the nanocarrier, while in complex media, mimicking intracellular conditions, the physicochemical properties of the cargo molecule itself and its interaction with the carrier and/or surrounding media were found to be the main release-governing factors. Since the material degradation was retarded upon loading with hydrophobic guest molecules, the cargo could be efficiently delivered into live cancer cells and released intracellularly without pronounced premature release under extracellular conditions. From a rational design point of view, pinpointing the interdependency between these two processes can be of paramount importance considering future applications and fundamental understanding of the drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Plasmid DNA-encapsulating liposomes: effect of a spacer between the cationic head group and hydrophobic moieties of the lipids on gene expression efficiency.

    PubMed

    Obata, Yosuke; Saito, Shunsuke; Takeda, Naoya; Takeoka, Shinji

    2009-05-01

    We have synthesized a series of cationic amino acid-based lipids having a spacer between the cationic head group and hydrophobic moieties and examined the influence of the spacer on a liposome gene delivery system. As a comparable spacer, a hydrophobic spacer with a hydrocarbon chain composed of 0, 3, 5, 7, or 11 carbons, and a hydrophilic spacer with an oxyethylene chain (10 carbon and 3 oxygen molecules) were investigated. Plasmid DNA (pDNA)-encapsulating liposomes were prepared by mixing an ethanol solution of the lipids with an aqueous solution of pDNA. The zeta potentials and cellular uptake efficiency of the cationic liposomes containing each synthetic lipid were almost equivalent. However, the cationic lipids with the hydrophobic spacer were subject to fuse with biomembrane-mimicking liposomes. 1,5-Dihexadecyl-N-lysyl-N-heptyl-l-glutamate, having a seven carbon atom spacer, exhibited the highest fusogenic potential among the synthetic lipids. Increased fusion potential correlated with enhanced gene expression efficiency. By contrast, an oxyethylene chain spacer showed low gene expression efficiency. We conclude that a hydrophobic spacer between the cationic head group and hydrophobic moieties is a key component for improving pDNA delivery.

  4. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    NASA Astrophysics Data System (ADS)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  5. High pressure-assisted encapsulation of vitamin D2 in reassembled casein micelles

    NASA Astrophysics Data System (ADS)

    Menéndez-Aguirre, O.; Stuetz, W.; Grune, T.; Kessler, A.; Weiss, J.; Hinrichs, J.

    2011-03-01

    For the encapsulation of vitamin D2, native casein micelles and vitamin D2 with or without additional Ca2+-Pi were treated at 600 MPa and 37 °C for 60 min. The pressure release rate was set at 20 or 600 MPa/min. Vitamin D2 was quantified by reversed-phase high-performance liquid chromatography, and physical properties of the micelles were analysed by photon correlation spectroscopy. The results demonstrate that simultaneous application of Ca2+-Pi and high pressure treatment with a fast release rate significantly increased loading of vitamin D2 per casein by 6.9-fold. The addition of Ca2+-Pi enhanced micelle aggregation and the vitamin was entrapped within the formed aggregates. However, high pressure treatment without Ca2+-Pi with a slow pressure release rate revealed similar results, increasing vitamin D2 per casein by 6.7-fold. The vitamin D2 loading in reassembled casein micelles is supposed to be due to hydrophobic interactions between the hydrophobic domains of the micelles.

  6. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    NASA Astrophysics Data System (ADS)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  7. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  8. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  9. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence

  10. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity.

    PubMed

    Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San

    2016-12-01

    Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles

    PubMed Central

    2017-01-01

    Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles can be achieved. After centrifugal purification to remove excess non-encapsulated silica nanoparticles, SAXS, DCP, and TGA analysis indicates encapsulation of up to hundreds of silica nanoparticles per vesicle. In the present study, the thermally triggered release of these encapsulated silica nanoparticles is examined by cooling to 0 °C for 30 min, which causes in situ vesicle dissociation. Transmission electron microscopy studies confirm the change in diblock copolymer morphology and also enable direct visualization of the released silica nanoparticles. Time-resolved small-angle X-ray scattering is used to quantify the extent of silica release over time. For an initial silica concentration of 5% w/w, cooling induces a vesicle-to-sphere transition with subsequent nanoparticle release. For higher silica concentrations (20 or 30% w/w) cooling only leads to perforation of the vesicle membranes, but silica nanoparticles are nevertheless released through the pores. For vesicles prepared in the presence of 30% w/w silica, the purified silica-loaded vesicles were cooled to 0 °C for 30 min, and SAXS patterns were collected every 15 s. A new SAXS model has been developed to determine both the mean volume fraction of encapsulated silica within the vesicles and the scattering length density. Satisfactory data fits to the experimental SAXS patterns were obtained using this model. PMID:28626247

  12. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.

    PubMed

    Kimpel, Florian; Schmitt, Joachim J

    2015-11-01

    Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. © 2015 Institute of Food Technologists®

  13. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method.

    PubMed

    Wagner, Michael E; Spoth, Katherine A; Kourkoutis, Lena F; Rizvi, Syed S H

    2016-12-01

    Niosomes were prepared using a novel supercritical carbon dioxide based method to simultaneously encapsulate ferrous sulfate and vitamin D3 as hydrophilic and hydrophobic cargo, respectively. Vesicle particle size was determined to be bimodal with peak diameters of 1.44 ± 0.16 μm and 7.21 ± 0.64 μm, with the smaller peak comprising 98.8% of the total niosomal volume. Encapsulation efficiency of ferrous sulfate was 25.1 ± 0.2% and encapsulation efficiency of vitamin D3 was 95.9 ± 1.47%. Physical stability of the produced niosomes was assessed throughout a storage period of 21 days. Niosomes showed good physical stability at 20 °C, but storage at 4 °C showed an initial burst release, indicating possible rupture of the niosomal membrane. The Korsmeyer-Peppas equation was used to model the release of ferrous sulfate over time at both storage temperatures.

  14. A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching.

    PubMed

    Jiao, Xiangyu; Sun, Ruijuan; Cheng, Yaya; Li, Fengyu; Du, Xin; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2017-05-19

    Controlled-release systems based on mesoporous silica nanomaterials (MSNs) have drawn great attention owing to their potential biomedical applications. Various switches have been designed to control the release of cargoes through the construction of physical blocking units on the surface of MSNs. However, such physical blockages are limited by poor sealing ability and low biocompatibility, and most of them lack closure ability. Herein, a voltage-responsive controlled-release system was constructed by functionalizing the nanopore of MSNs with ferrocene. The system realized free-blockage controlled release and achieved pulsatile release. The nanopores of the ferrocene-functionalized MSNs were hydrophobic enough to prevent invasion of the solution. Once a suitable voltage was applied, the nanopores became hydrophilic, which was followed by invasion of the solution and the release of the cargos. Moreover, pulsatile release was realized, which avoided unexpected release after the stimulus disappeared. Thus, we believe that our studies provide new insight into highly effective blockage for MSNs. Furthermore, the voltage-responsive release system is expected to find use in electrical stimulation combination therapy and bioelectricity-responsive release. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design and evaluation of hydrophobic coated buoyant core as floating drug delivery system for sustained release of cisapride

    PubMed Central

    Jacob, Shery; Nair, Anroop B; Patil, Pandurang N

    2010-01-01

    An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997

  16. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.

    PubMed

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  17. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in in vivo, noninvasive imaging of biological structures at depths but it can also be used for drug release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  18. Encapsulation of basic fibroblast growth factor by polyelectrolyte multilayer microcapsules and its controlled release for enhancing cell proliferation.

    PubMed

    She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N

    2012-07-09

    Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.

  19. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles.

    PubMed

    Shima, Fumiaki; Akagi, Takami; Uto, Tomofumi; Akashi, Mitsuru

    2013-12-01

    The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. However, conventional vaccine adjuvants fail to induce potent cellular immunity, and their toxicity and side-effects hinder the clinical use. Therefore, a vaccine adjuvant which is safe and can induce an antigen-specific cellular immunity-biased immune response is urgently required. In the development of nanoparticle-based vaccine adjuvants, the hydrophobicity is one of the most important factors. It could control the interaction between the encapsulated antigens and/or nanoparticles with immune cells. In this study, nanoparticles (NPs) composed of amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine ethyl ester (γ-PGA-Phe) with various grafting degrees of hydrophobic side chains were prepared to evaluate the effect of hydrophobicity of vaccine carriers on the antigen encapsulation behavior, cellular uptake, activation of dendritic cells (DCs), and induction of antigen-specific cellular immunity-biased immune responses. These NPs could efficiently encapsulate antigens, and the uptake amount of the encapsulated antigen by DCs was dependent on the hydrophobicity of γ-PGA-Phe NPs. Moreover, the activation potential of the DCs and the induction of antigen-specific cellular immunity were correlated with the hydrophobicity of γ-PGA-Phe NPs. By controlling the hydrophobicity of antigen-encapsulated γ-PGA-Phe NPs, the activation potential of DCs was able to manipulate about 5 to 30-hold than the conventional vaccine, and the cellular immunity was about 10 to 40-hold. These results suggest that the hydrophobicity of NPs is a key factor for changing the interaction between NPs and immune cells, and thus the induction of cellular immunity-biased immune response could be achieved by controlling the hydrophobicity of them. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior.

    PubMed

    Becerra, Jose; Sudre, Guillaume; Royaud, Isabelle; Montserret, Roland; Verrier, Bernard; Rochas, Cyrille; Delair, Thierry; David, Laurent

    2017-05-01

    The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.

  1. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    This research investigated the technical feasibility of metal-organic frameworks (MOFs) as novel delivery systems for encapsulation and controlled release of volatile allyl isothiocyanate (AITC) molecules. We hypothesized that water vapor molecules could act as an external stimulus to trigger the re...

  2. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity.

    PubMed

    Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho

    2017-08-08

    Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.

  3. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.

    PubMed

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, T M; Meiler, Jens; Hamm, Heidi E

    2016-09-09

    G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery.

    PubMed

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Poly(lactic- co -glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, "PolyDots"), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene- b -ethylene oxide) (PS- b -PEO) micelles. PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS- b -PEO micelles (ie, ~7%). Increasing the PLGA:PS- b -PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications.

  5. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    PubMed

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. High-throughput screening of PLGA thin films utilizing hydrophobic fluorescent dyes for hydrophobic drug compounds.

    PubMed

    Steele, Terry W J; Huang, Charlotte L; Kumar, Saranya; Widjaja, Effendi; Chiang Boey, Freddy Yin; Loo, Joachim S C; Venkatraman, Subbu S

    2011-10-01

    Hydrophobic, antirestenotic drugs such as paclitaxel (PCTX) and rapamycin are often incorporated into thin film coatings for local delivery using implantable medical devices and polymers such as drug-eluting stents and balloons. Selecting the optimum coating formulation through screening the release profile of these drugs in thin films is time consuming and labor intensive. We describe here a high-throughput assay utilizing three model hydrophobic fluorescent compounds: fluorescein diacetate (FDAc), coumarin-6, and rhodamine 6G that were incorporated into poly(d,l-lactide-co-glycolide) (PLGA) and PLGA-polyethylene glycol films. Raman microscopy determined the hydrophobic fluorescent dye distribution within the PLGA thin films in comparison with that of PCTX. Their subsequent release was screened in a high-throughput assay and directly compared with HPLC quantification of PCTX release. It was observed that PCTX controlled-release kinetics could be mimicked by a hydrophobic dye that had similar octanol-water partition coefficient values and homogeneous dissolution in a PLGA matrix as the drug. In particular, FDAc was found to be the optimal hydrophobic dye at modeling the burst release as well as the total amount of PCTX released over a period of 30 days. Copyright © 2011 Wiley-Liss, Inc.

  7. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs.

    PubMed

    Paukkonen, Heli; Ukkonen, Anni; Szilvay, Geza; Yliperttula, Marjo; Laaksonen, Timo

    2017-03-30

    The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    PubMed

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    The present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described. The hydrophobicity of AZD2811 was increased through formation of ion pairs with these hydrophobic counterions, producing nanoparticles with exceptionally high drug loading-up to five fold higher encapsulation efficiency and drug loading compared to nanoparticles made without hydrophobic ion pairs. Furthermore, the rate at which the drug was released from the nanoparticles could be controlled by employing counterions with various hydrophobicities and structures, resulting in release half-lives ranging from about 2 to 120h using the same polymer, nanoparticle size, and nanoemulsion process. Process recipe variables affecting drug load and release rate were identified, including pH and molarity of quench buffer. Ion pair formation between AZD2811 and pamoic acid as a model counterion was investigated using solubility enhancement as well as nuclear magnetic resonance spectroscopy to demonstrate solution-state interactions. Further evidence for an ion pairing mechanism of controlled release was provided through the measurement of API and counterion release profiles using high-performance liquid chromatography, which had stoichiometric relationships. Finally, Raman spectra of an AZD2811-pamoate salt compared well with those of the formulated nanoparticles, while single components (AZD2811, pamoic acid) alone did not. A library of AZD2811 batches was created for analytical and preclinical characterization. Dramatically improved

  9. Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens

    PubMed Central

    Nardello-Rataj, Véronique

    2014-01-01

    Summary Host–guest chemistry is useful for the construction of nanosized objects. Some of the widely used hosts are probably the cyclodextrins (CDs). CDs can form water-soluble complexes with numerous hydrophobic compounds. They have been widespread used in medicine, drug delivery and are of interest for the biocides encapsulation. Indeed, this enables the development of more or less complex systems that release antimicrobial agents with time. In this paper, the general features of CDs and their applications in the field of biocides have been reviewed. As the key point is the formation of biocide–CD inclusion complexes, this review deals with this in depth and the advantages of biocide encapsulation are highlighted throughout several examples from the literature. Finally, some future directions of investigation have been proposed. We hope that scientists studying biocide applications receive inspiration from this review to exploit the opportunities offered by CDs in their respective research areas. PMID:25550722

  10. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  12. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  13. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    PubMed

    Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  14. Preparation of Robust Metal-Free Magnetic Nanoemulsions Encapsulating Low-Molecular-Weight Nitroxide Radicals and Hydrophobic Drugs Directed Toward MRI-Visible Targeted Delivery.

    PubMed

    Nagura, Kota; Takemoto, Yusa; Moronaga, Satori; Uchida, Yoshiaki; Shimono, Satoshi; Shiino, Akihiko; Tanigaki, Kenji; Amano, Tsukuru; Yoshino, Fumi; Noda, Yohei; Koizumi, Satoshi; Komatsu, Naoki; Kato, Tatsuhisa; Yamauchi, Jun; Tamura, Rui

    2017-11-07

    With a view to developing a theranostic nanomedicine for targeted drug delivery systems visible by magnetic resonance (MR) imaging, robust metal-free magnetic nanoemulsions (mean particle size less than 20 nm) consisting of a biocompatible surfactant and hydrophobic, low molecular weight 2,2,5-trimethyl-5-(4-alkoxy)phenylpyrrolidine-N-oxyl radicals were prepared in pH 7.4 phosphate-buffered saline (PBS). The structure of the nanoemulsions was characterized by electron paramagnetic resonance spectroscopy, and dynamic light scattering and small-angle neutron-scattering measurements. The nanoemulsions showed high colloidal stability, low cytotoxicity, enough reduction resistance to excess ascorbic acid, and sufficient contrast enhancement in the proton longitudinal relaxation time (T 1 ) weighted MR images in PBS in vitro (and preliminarily in vivo). Furthermore, the hydrophobic anticancer drug paclitaxel could be encapsulated inside the nanoparticles, and the resulting paclitaxel-loaded nanoemulsions were efficiently incorporated into HeLa cells to suppress cell growth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Encapsulation of anticancer drug copper bis(8-hydroxyquinoline) in hydroxyapatite for pH-sensitive targeted delivery and slow release.

    PubMed

    Weerasuriya, D R K; Wijesinghe, W P S L; Rajapakse, R M G

    2017-02-01

    There is a conspicuous progress in increasing anticancer drug delivery through the utilization of nanoparticles (NPs) as drug delivery agents. Hydroxyapatite (HA) gives improved clinical effectiveness of drugs by reducing systemic toxicity and broadening the spectrum of drug delivery since it is biocompatible and it can be targeted towards tumor cells. Herein, investigation of the potential of enhancing controlled drug release of the template model drug, copper bis-(8-hydroxyquinoline), by encapsulating it in hollow hydroxyapatite nano-carriers, is presented. Hydroxyapatite nanoparticles are synthesized by following four different routes to optimize its efficacy of drug loading. Copper bis-(8-hydroxyquinoline) is encapsulated by Method (a) which was effected by stirring the model drug and porous HA NPs in colloidal solution and Method (b) which was done during synthesis of hydroxyapatite nanoparticles in a solution of the model drug. In synthesizing nanoporous HA NPs, calcium carbonate is used as a template to create voids in HA. In each method, Ca/P ratio was ensured to be kept at 1.67:1. Appealing results are reported for the encapsulated product which was prepared by Method (a2). Method (a) was done at three different molar ratios of PO 4 3- :CO 3 2- and best result was obtained for that utilized 2.003:1 molar ratio (Method (a2).). It produced 98.67% of encapsulation efficiency and 2.9522mg/g of drug loading capacity. Release kinetics was studied at a range of pH values; the lower the pH of the medium the higher is the drug release. For instance, when considering the product which exhibited high encapsulation efficiency and high drug loading capacity, at pH3.5 during the first 8h it elicited about 13% of release, at pH5.0 about 8% release while at pH6.0 it was just 2.5%. During the 24-hour span, pH3.5 exhibited about 23.8%, at pH5.0 approximately 9% with an increasing trend of release and at pH6.0 showed a value just above 2.5%. As such, acidity of the cancerous

  16. Effects of Environmental Stresses and in Vitro Digestion on the Release of Tocotrienols Encapsulated Within Chitosan-Alginate Microcapsules.

    PubMed

    Tan, Phui Yee; Tan, Tai Boon; Chang, Hon Weng; Tey, Beng Ti; Chan, Eng Seng; Lai, Oi Ming; Sham Baharin, Badlishah; Nehdi, Imededdine Arbi; Tan, Chin Ping

    2017-12-06

    Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, β-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.

  17. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation.

    PubMed

    Silva, A L; Rosalia, R A; Sazak, A; Carstens, M G; Ossendorp, F; Oostendorp, J; Jiskoot, W

    2013-04-01

    Overlapping synthetic long peptides (SLPs) hold great promise for immunotherapy of cancer. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are being developed as delivery systems to improve the potency of peptide-based therapeutic cancer vaccines. Our aim was to optimize PLGA NP for SLP delivery with respect to encapsulation and release, using OVA24, a 24-residue long synthetic antigenic peptide covering a CTL epitope of ovalbumin (SIINFEKL), as a model antigen. Peptide-loaded PLGA NPs were prepared by a double emulsion/solvent evaporation technique. Using standard conditions (acidic inner aqueous phase), we observed that either encapsulation was very low (1-30%), or burst release extremely high (>70%) upon resuspension of NP in physiological buffers. By adjusting formulation and process parameters, we uncovered that the pH of the first emulsion was critical to efficient encapsulation and controlled release. In particular, an alkaline inner aqueous phase resulted in circa 330 nm sized NP with approximately 40% encapsulation efficiency and low (<10%) burst release. These NP showed enhanced MHC class I restricted T cell activation in vitro when compared to high-burst releasing NP and soluble OVA24, proving that efficient entrapment of the antigen is crucial to induce a potent cellular immune response. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Encapsulation and release of the hypnotic agent zolpidem from biodegradable polymer microparticles containing hydroxypropyl-beta-cyclodextrin.

    PubMed

    Trapani, Giuseppe; Lopedota, Angela; Boghetich, Giancarlo; Latrofa, Andrea; Franco, Massimo; Sanna, Enrico; Liso, Gaetano

    2003-12-11

    The goal of this study was to design a prolonged release system of the hypnotic agent zolpidem (ZP) useful for the treatment of insomnia. In this work, ZP alone or in the presence of HP-beta-CD was encapsulated in microparticles constituted by poly(DL-lactide) (PDLLA) and poly(DL-lactide-co-glycolide) (PLGA) and the drug release from these systems was evaluated. ZP alone-loaded microparticles were prepared by the classical O/W emulsion-solvent evaporation method. Conversely, ZP/HP-beta-CD containing microparticles were prepared by the W/O/W emulsion-solvent evaporation method following two different procedures (i.e. A and B). Following procedure A, the previously produced ZP/HP-beta-CD solid complex was added to the water phase of primary emulsion. In the procedure B, HP-beta-CD was added to the aqueous phase and ZP to the organic phase. The resulting microparticles were characterized about morphology, size, encapsulation efficiency and release rates. FT-IR, X-ray, and DSC results suggest the drug is in an essentially amorphous state within the microparticles. The release profiles of ZP from microparticles were in general biphasic, being characterized by an initial burst effect and a subsequent slow ZP release. It resulted that co-encapsulating ZP with or without HP-beta-CD in PDLLA and PLGA the drug release from the corresponding microparticles was protracted. Moreover, in a preliminary pharmacological screening, the ataxic activity in rats was investigated and it was found that intragastric administration of the ZP/HP-beta-CD/PLGA microparticles prepared according to procedure B produced the same ataxic induction time as the one induced by the currently used formulation Stilnox. Interestingly moreover, there was a longer ataxic lasting and a lower intensity of ataxia produced by the ZP/HP-beta-CD/PLGA-B-formulation already after 60 min following the administration. However, a need for further pharmacokinetic and pharmacodynamic studies resulted to fully evaluate

  19. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design.

    PubMed

    Abul Kalam, Mohd; Khan, Abdul Arif; Khan, Shahanavaj; Almalik, Abdulaziz; Alshamsan, Aws

    2016-06-01

    Indomethacin chitosan nanoparticles (NPs) were developed by ionotropic gelation and optimized by concentrations of chitosan and tripolyphosphate (TPP) and stirring time by 3-factor 3-level Box-Behnken experimental design. Optimal concentration of chitosan (A) and TPP (B) were found 0.6mg/mL and 0.4mg/mL with 120min stirring time (C), with applied constraints of minimizing particle size (R1) and maximizing encapsulation efficiency (R2) and drug release (R3). Based on obtained 3D response surface plots, factors A, B and C were found to give synergistic effect on R1, while factor A has a negative impact on R2 and R3. Interaction of AB was negative on R1 and R2 but positive on R3. The factor AC was having synergistic effect on R1 and on R3, while the same combination had a negative effect on R2. The interaction BC was positive on the all responses. NPs were found in the size range of 321-675nm with zeta potentials (+25 to +32mV) after 6 months storage. Encapsulation, drug release, and content were in the range of 56-79%, 48-73% and 98-99%, respectively. In vitro drug release data were fitted in different kinetic models and pattern of drug release followed Higuchi-matrix type. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery

    PubMed Central

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Purpose Poly(lactic-co-glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Methods Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles. Results PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS-b-PEO micelles (ie, ~7%). Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Conclusion Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications. PMID:29391794

  1. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin.

    PubMed

    Deng, Lingli; Kang, Xuefan; Liu, Yuyu; Feng, Fengqin; Zhang, Hui

    2017-09-15

    This work studied the effects of non-ionic Tween 80, anionic sodium dodecyl sulfonate (SDS) and cationic cetyltrimethyl ammonium bromide (CTAB) surfactants on the morphology of electrospun gelatin nanofibres, and on the release behaviour, antioxidant activity and antimicrobial activity of encapsulated curcumin. Scanning electron micrographs showed that addition of SDS significantly increased the nanofibre diameter. Fourier transform infrared and differential scanning calorimetry analysis indicated that gelatin and SDS intimately interacted via electrostatic and hydrophobic interactions. However, these interactions inhibited the release of curcumin from the nanofibres with SDS, while CTAB and Tween 80 both facilitated the release. SDS and Tween 80 showed protective effects on curcumin from the attack of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radicals, and the increased release of curcumin from nanofibres with CTAB or Tween 80 resulted in a higher reducing power. The antimicrobial activity results suggested that the curcumin encapsulated gelatin nanofibres with CTAB exhibited effective inhibition against Staphylococcus aureus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    PubMed

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  3. A study of properties of "micelle-enhanced" polyelectrolyte capsules: Structure, encapsulation and in vitro release.

    PubMed

    Li, Xiaodong; Lu, Tian; Zhang, Jianxiang; Xu, Jiajie; Hu, Qiaoling; Zhao, Shifang; Shen, Jiacong

    2009-07-01

    "Micelle-enhanced" polyelectrolyte capsules were fabricated via a layer-by-layer technique, templated on hybrid calcium carbonate particles with built-in polymeric micelles based on polystyrene-b-poly(acrylic acid). Due to the presence of a large number of negatively charged micelles inside the polyelectrolyte capsule, which were liberated from templates, the capsule wall was reconstructed and had properties different to those of conventional polyelectrolyte capsules. This type of capsule could selectively entrap positively charged water-soluble substances. The encapsulation efficiency of positively charged substances was dependent on their molecular weight or size. For some positively charged compounds, such as rhodamine B and lysozyme, the concentration in the capsules was orders of magnitude higher than that in the incubation solution. In addition, in vitro release study suggested that the encapsulated compounds could be released through a sustained manner to a certain degree. All these results point to the fact that these capsules might be used as novel delivery systems for some water-soluble compounds.

  4. Iron oxide nanoparticle-based magnetic resonance method to monitor release kinetics from polymeric particles with high resolution.

    PubMed

    Chan, Minnie; Schopf, Eric; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-09-18

    A new method to precisely monitor rapid release kinetics from polymeric particles using super paramagnetic iron oxide nanoparticles, specifically by measuring spin-spin relaxation time (T(2)), is reported. Previously, we have published the formulation of logic gate particles from an acid-sensitive poly-β-aminoester ketal-2 polymer. Here, a series of poly-β-aminoester ketal-2 polymers with varying hydrophobicities were synthesized and used to formulate particles. We attempted to measure fluorescence of released Nile red to determine whether the structural adjustments could finely tune the release kinetics in the range of minutes to hours; however, this standard technique did not differentiate each release rate of our series. Thus, a new method based on encapsulation of iron oxide nanoparticles was developed, which enabled us to resolve the release kinetics of our particles. Moreover, the kinetics matched the relative hydrophobicity order determined by octanol-water partition coefficients. To the best of our knowledge, this method provides the highest resolution of release kinetics to date.

  5. Follicle-stimulating hormone encapsulation in the cholesterol-modified chitosan nanoparticles via molecular dynamics simulations and binding free energy calculations.

    PubMed

    Yahyaei, Mohammad; Mehrnejad, Faramarz; Naderi-Manesh, Hossein; Rezayan, Ali Hossein

    2017-09-30

    Follicle-stimulating hormone (FSH) is widely applied in the modern ovarian stimulation techniques. However, it must be administered daily because of its short half-life. Recently, the cholesterol (CS) modified chitosan (CTS) nanogels have attracted significant interest as promising controlled release protein delivery because of their ability to minimize the aggregation and irreversible denaturation of proteins. Herein, we report a molecular dynamics (MD) simulation investigation on the molecular mechanisms of FSH encapsulation in the CS-CTS nanogels. The MD simulations have been performed using the GROMACS software for up to 200ns simulation time. Furthermore, the binding free energy has been calculated by the molecular mechanics [MM] with Poisson-Boltzmann [PB] and surface area solvation (MM/PBSA) method by using the g_mmpbsa tool. Our findings suggest that the main driving force of the formation of the CS-CTS nanogels is the hydrophobic interactions between the CS-CS moieties in water. The results have also indicated that the CS-CTS nanogel formation can occur through the hydrogen bonding in addition to the hydrophobic interactions. The obtained data demonstrate that the FSH encapsulation into the CS-CTS nanogels is a gradual process driven by the hydrophobic interactions between the hydrophobic patch of FSH and the hydrophobic nanodomains of the nanogel. Our results also reveal that except in the hydrophobic patch region, the flexibility of FSH was reduced in the presence of the nanogel. This study provides the elucidation of the nanogel-FSH interactions at the molecular level and presents new perspective for the ideal design and applications of the CS-CTS nanogel in protein delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  7. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum

    PubMed Central

    Chen, Yun; Li, Qian; Wu, Qingsheng

    2014-01-01

    cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded. PMID:25061294

  8. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  9. Green Synthesis of Cyclodextrin-Based Metal-Organic Frameworks through the Seed-Mediated Method for the Encapsulation of Hydrophobic Molecules.

    PubMed

    Qiu, Chao; Wang, Jinpeng; Qin, Yang; Fan, Haoran; Xu, Xueming; Jin, Zhengyu

    2018-04-25

    Metal-organic frameworks (MOFs) are attracting considerable attention as a result of their unique structural properties, such as a high surface area, highly porous topology, and tunable size and shape, which enable them to have potential applications as a new class of carriers for functional agent or drug delivery. However, most of the MOFs and the polymers used are not pharmaceutically acceptable. For the first time, this study successfully conducted the rapid synthesis of cyclodextrin metal-organic frameworks (CD-MOFs) through a facile and green seed-mediated method. The size control, crystal structure, and thermal properties of CD-MOFs with and without seeds were investigated. When 1 mg/mL seed was added, the size of γ-CD-MOF crystals decreased from 6.2 ± 0.8 to 1.8 ± 0.4 μm. The CD-MOFs synthesized though the seed-mediated method had higher crystallinity and thermal stability than those that were not. Furthermore, the CD-MOFs could encapsulate hydrophobic molecules, such as Nile red (NR), which was chosen as a model, and the interaction mechanism between γ-CD-MOFs and NR was investigated. Results showed the formation of a 1:1 complex between NR and CD-MOFs, demonstrating the potential of these polymers as carriers for hydrophobic drug delivery applications.

  10. Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats.

    PubMed

    Song, Botao; Wu, Chengtie; Chang, Jiang

    2012-11-01

    Co-delivery of several drugs has been regarded as an alternative strategy for achieving enhanced therapeutic effect. In this study, a co-delivery system based on the electrospun poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) composite mat was designed for the co-encapsulation and prolonged release of one hydrophilic and one hydrophobic drug simultaneously. MSNs were chosen to load the hydrophobic model drug fluorescein (FLU) and hydrophilic model drug rhodamine B (RHB), respectively (named as RHB-loaded MSNs and FLU-loaded MSNs). Two kinds of drug-loaded MSNs were incorporated into the polymer matrix to form a fibrous structure by blending electrospinning. The effect of the weight ratios for the two kinds of drug-loaded MSNs and the initial PLGA concentrations on the drug release kinetics were systematically investigated. The results showed that both model drugs RHB and FLU maintained sustained delivery with controllable release kinetics during the releasing period, and the release kinetics was closely dependent on the loading ratios of two drug-loaded MSNs and the initial PLGA concentrations in the composite mats. The results suggest that the co-drug delivery system may be used for wound dressing that requires the combined therapy of several kinds of drugs. Copyright © 2012 Wiley Periodicals, Inc.

  11. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release

    PubMed Central

    Liu, Yanfei; Zhang, Ling; Wei, Wei

    2017-01-01

    Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898

  12. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    PubMed

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  13. In vitro controlled release of clove essential oil in self-assembly of amphiphilic polyethylene glycol-block-polycaprolactone.

    PubMed

    Thonggoom, O; Punrattanasin, N; Srisawang, N; Promawan, N; Thonggoom, R

    2016-05-01

    In this study, a micellar delivery system with an amphiphilic diblock copolymer of poly (ethylene glycol) and poly (ɛ-caprolactone) was synthesised and used to incorporate hydrophobic clove essential oil (CEO). To determine an optimal delivery system, the effects of the copolymer's hydrophobic block length and the CEO-loading content on the encapsulation of CEO were investigated. Percentages of entrapment efficiency (%EE), CEO loading (%CEO), and in vitro release profiles were determined. The size, size distribution, zeta potential, and morphology of the obtained micelles were determined by DLS, FE-SEM, and TEM. The %EE, %CEO, and in vitro release profiles of CEO incorporated in micelles were analysed by HPLC. The study revealed a sustained release profile of CEO from CEO-loaded micelles. The results indicate the successful formulation of CEO-loaded PEG-b-PCL micelle nanoparticles. It is suggested that this micelle system has considerably potential applications in the sustained release of CEO in intravascular drug delivery.

  14. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.

    PubMed

    Fang, Aiping; Cathala, Bernard

    2011-01-01

    This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Combinatorial effects of charge characteristics and hydrophobicity of silk fibroin on the sorption and release of charged dyes.

    PubMed

    Wongpanit, Panya; Rujiravanit, Ratana

    2012-01-01

    The present study was designed to examine the influence of the charge characteristics of silk fibroin on the sorption and release of charged dyes by varying the pH values of the sorption and release media as well as types of charged dyes. Negatively charged dyes (phenol red and chromotrope 2R) and positively charged dyes (crystal violet and indoine blue) were used as the model compounds. Silk fibroin films were prepared by using a solution casting technique. The prepared films were then treated with an aqueous methanol solution or annealed with water to control their conformation. The sorption behavior of the model compounds made by the methanol-treated and water-annealed silk fibroin films was investigated. Compared to the water- annealed silk fibroin films, a higher hydrophobicity of the methanol-treated silk fibroin films caused a higher sorption of the hydrophobic dyes. The dye molecules had a fairly high affinity to the silk fibroin film, even though the dye and the matrix possessed the same charge. However, in the presence of two charged groups in a single dye molecule, the electrostatic repulsion become more dominant. Stronger interaction was observed when the charges of the film and the dye were opposite. The results of dye sorption and release experiments showed that the degree of synergism or competition between electrostatic and hydrophobic interactions directly depended on the charges and chemical structure of the dye molecules and the environmental pH conditions of the existing silk fibroin film.

  16. Photochemical mechanisms of light-triggered release from nanocarriers

    PubMed Central

    Fomina, Nadezda; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-01-01

    Over the last three decades, a handful of photochemical mechanisms have been applied to a large number of nanoscale assemblies that encapsulate a payload to afford spatio-temporal and remote control over activity of the encapsulated payload. Many of these systems are designed with an eye towards biomedical applications, as spatio-temporal and remote control of bioactivity would advance research and clinical practice. This review covers five underlying photochemical mechanisms that govern the activity of the majority of photoresponsive nanocarriers: 1. photo driven isomerization and oxidation, 2. surface plasmon absorption and photothermal effects, 3. photo driven hydrophobicity changes, 4. photo driven polymer backbone fragmentation and 5. photo driven de-crosslinking. The ways in which these mechanisms have been incorporated into nanocarriers and how they affect release is detailed, as well as the advantages and disadvantages of each system. PMID:22386560

  17. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  18. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention.

    PubMed

    Zhigaltsev, Igor V; Maurer, Norbert; Akhong, Quet-Fah; Leone, Robert; Leng, Esther; Wang, Jinfang; Semple, Sean C; Cullis, Pieter R

    2005-05-05

    A comparative study of the loading and retention properties of three structurally very closely related vinca alkaloids (vincristine, vinorelbine and vinblastine) in liposomal formulations has been performed. All three vinca alkaloids showed high levels of encapsulation when accumulated into egg sphingomyelin/cholesterol vesicles in response to a transmembrane pH gradient generated by the use of the ionophore A23187 and encapsulated MgSO4. However, despite the close similarities of their structures the different vinca drugs exhibited very different release behavior, with vinblastine and vinorelbine being released faster than vincristine both in vitro and in vivo. The differences in loading and retention can be related to the lipophilicity of the drugs tested, where the more hydrophobic drugs are released more rapidly. It was also found that increasing the drug-to-lipid ratio significantly enhanced the retention of vinca alkaloids when the ionophore-based method was used for drug loading. In contrast, drug retention was not dependent on the initial drug-to-lipid ratio for vinca drugs loaded into liposomes containing an acidic citrate buffer. The differences in retention can be explained on the basis of differences in the physical state of the drug inside the liposomes. The drug-to-lipid ratio dependence of retention observed for liposomes loaded with the ionophore technique may provide a way to improve the retention characteristics of liposomal formulations of vinca drugs.

  19. β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs

    NASA Astrophysics Data System (ADS)

    Lv, Shaonan; Zhao, Meiqin; Cheng, Changjing; Zhao, Zhigang

    2014-05-01

    β-Cyclodextrin (β-CD) polymer brushes decorated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@PG-CD) were fabricated by a combination of surface-initiated atom transfer radical polymerization on the surface of Br-anchored Fe3O4 colloidal nanocrystal clusters (Fe3O4-Br) and ring-opening reaction of epoxy groups. The resulted Fe3O4@PG-CD hybrid nanoparticles were characterized by several methods including Fourier transform infrared, transmission electron microscope, dynamic light scattering instrument, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Moreover, the potential of as-synthesized Fe3O4@PG-CD as a carrier of hydrophobic anticancer drug 5-fluorouracil (5-FU) was also investigated. The results showed that the prepared Fe3O4@PG-CD have core/shell structure and high saturated magnetism. 5-FU could be loaded into the Fe3O4@PG-CD via the formation of β-CD/5-FU inclusion complex. Furthermore, the Fe3O4@PG-CD displayed a high loading capacity and pH-dependent release behavior for 5-FU. The release behavior demonstrated a simple Fickian diffusion in the acidic environment (pH 2.0 and 4.0) but neither non-Fickian nor anomalous when neutral. The results reveal that this nanosystem seems to be a very promising vehicle for the hydrophobic drugs for pH-dependent controlled release.

  20. Improving the Efficacy of Anticancer Drugs via Encapsulation and Acoustic Release.

    PubMed

    Ahmed, Salma E; Awad, Nahid; Paul, Vinod; Moussa, Hesham G; Husseini, Ghaleb A

    2018-06-08

    Conventional chemotherapeutics lack the specificity and controllability, thus may poison healthy cells while attempting to kill cancerous ones. Newly developed nano-drug delivery systems have shown promise in delivering anti-tumor agents with enhanced stability, durability and overall performance; especially when used along with targeting and triggering techniques. This work traces back the history of chemotherapy, addressing the main challenges that have encouraged the medical researchers to seek a sanctuary in nanotechnological-based drug delivery systems that are grafted with appropriate targeting techniques and drug release mechanisms. A special focus will be paid towards acoustically triggered liposomes encapsulating doxorubicin. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.

    PubMed

    Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun

    2014-10-01

    By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electronic nose screening of ethanol release during sol-gel encapsulation. A novel non-invasive method to test silica polymerisation.

    PubMed

    Lovino, Magalí; Cardinal, M Fernanda; Zubiri, Diana B V; Bernik, Delia L

    2005-12-15

    Porous silica matrices prepared by sol-gel process yield biocompatible materials adequate for encapsulation of biomolecules or drugs. The procedure is simple and fast, but when alkoxyde precursors like tetraethoxysilane (TEOS) are used the polymerisation reaction leads to the formation of alcohol as a by-product, which can produce undesirable effects on the activity of entrapped enzymes or modify a drug release kinetic. Therefore, it is critical to determine that no remnant ethanol is left prior using or storing the obtained biomaterial. In this regard, the technique used in the alcohol determination should be non-invasive and non-destructive to preserve the encapsulation device intact and ready to use. In this work we have successfully used a portable electronic nose (e-nose) for the screening of silica polymerisation process during theophylline encapsulation. TEOS reaction was "smelt" since precursor pre-hydrolysis until the end of ethanol release, sensed directly at the headspace of matrices slabs. Measurements showed that ethanol was negligible since 10th day in polymeric slabs of 10 mm width and 2 cm diameter. This first use of e-nose following a polymerisation reaction opens a wide number of putative applications in pharmaceutical and biochemical fields.

  3. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.

    PubMed

    Qiao, Zeng-Ying; Ji, Ran; Huang, Xiao-Nan; Du, Fu-Sheng; Zhang, Rui; Liang, De-Hai; Li, Zi-Chen

    2013-05-13

    A series of well-defined thermoresponsive diblock copolymers (PEO45-b-PtNEAn, n=22, 44, 63, 91, 172) were prepared by the atom transfer radical polymerization of trans-N-(2-ethoxy-1,3-dioxan-5-yl) acrylamide (tNEA) using a poly(ethylene oxide) (PEO45) macroinitiator. All copolymers are water-soluble at low temperature, but upon quickly heating to 37 °C, laser light scattering (LLS) and transmission electron microscopy (TEM) characterizations indicate that these copolymers self-assemble into aggregates with different morphologies depending on the chain length of PtNEA and the polymer concentration; the morphologies gradually evolved from spherical solid nanoparticles to a polymersome as the degree of polymerization ("n") of PtNEA block increased from 22 to 172, with the formation of clusters with rod-like structure at the intermediate PtNEA length. Both the spherical nanoparticle and the polymersome are stable at physiological pH but susceptible to the mildly acidic medium. Acid-triggered hydrolysis behaviors of the aggregates were investigated by LLS, Nile red fluorescence, TEM, and (1)H NMR spectroscopy. The results revealed that the spherical nanoparticles formed from PEO45-b-PtNEA44 dissociated faster than the polymersomes of PEO45-b-PtNEA172, and both aggregates showed an enhanced hydrolysis under acidic conditions. Both the spherical nanoparticle and polymersome are able to efficiently load the hydrophobic doxorubicin (DOX), and water-soluble fluorescein isothiocyanate-lysozyme (FITC-Lys) can be conveniently encapsulated into the polymersome without using any organic solvent. Moreover, FITC-Lys and DOX could be coloaded in the polymersome. The drugs loaded either in the polymersome or in the spherical nanoparticle could be released by acid triggering. Finally, the DOX-loaded assemblies display concentration-dependent cytotoxicity to HepG2 cells, while the copolymers themselves are nontoxic.

  4. Micro-Encapsulation of Probiotics

    NASA Astrophysics Data System (ADS)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  5. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    PubMed

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Encapsulation in the food industry: a review.

    PubMed

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  7. Improvement of Tenofovir vaginal release from hydrophilic matrices through drug granulation with hydrophobic polymers.

    PubMed

    Notario-Pérez, Fernando; Martín-Illana, Araceli; Cazorla-Luna, Raúl; Ruiz-Caro, Roberto; Peña, Juan; Veiga, María-Dolores

    2018-05-30

    Sustained-release vaginal microbicides hold out great hope for the prevention of sexual transmission of HIV from men to women. Tenofovir (TFV) -an antiretroviral drug- sustained-release vaginal compacts combining two release control systems (by drug-loading granules with hydrophobic polymers and incorporating them in a hydrophilic matrix) are proposed in this work as a possible microbicide. The polymers used for the drug granules are Eudragit® RS (ERS), an acrylic derivative, and Zein, a maize protein. The hydrophilic matrix is composed of a mixture of hydroxypropylmethyl cellulose (HPMC) and chitosan (CH). The thermal, microscopic, spectrophotometric and X-ray diffraction analysis showed that the drug was not altered during the granulation process. Studies of TFV release, swelling and ex vivo mucoadhesion were subsequently performed on simulated vaginal fluid. The formulation whereby TFV is granulated using twice its weight in ERS, and then including these granules in a matrix in which the CH predominates over HPMC, allows the sustained release of TFV for 144 h, mucoadhesion to the vaginal mucosa for 150 h and a moderate swelling, making it the most suitable formulation of all those studied. These compacts would therefore offer women protection against the sexual acquisition of HIV. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Encapsulation of Organic Chemicals within a Starch Matrix.

    ERIC Educational Resources Information Center

    Wing, R. E.; Shasha, B. S.

    1983-01-01

    Three experiments demonstrating the feasibility of encapsulating liquids within a starch matrix are described, including encapsulation of linseed oil using the zanthate method and of turpentine and butylate using the calcium adduct procedure. Encapsulated materials, including pesticides, are slowly released from the resulting matrix. Considers…

  9. Alginate/cashew gum nanoparticles for essential oil encapsulation.

    PubMed

    de Oliveira, Erick F; Paula, Haroldo C B; de Paula, Regina C M

    2014-01-01

    Alginate/cashew gum nanoparticles were prepared via spray-drying, aiming at the development of a biopolymer blend for encapsulation of an essential oil. Nanoparticles were characterized regarding to their hydrodynamic volume, surface charge, Lippia sidoides essential oil content and release profile, in addition to being analyzed by infrared spectroscopy (FT-IR), thermal analysis (TGA/DSC) and X-ray diffractometry. Nanoparticles in solution were found to have averaged sizes in the range 223-399 nm, and zeta potential values ranging from -30 to -36 mV. Encapsulated oil levels varied from 1.9 to 4.4% with an encapsulation efficiency of up to 55%. The in vitro release profile showed that between 45 and 95% of oil was released within 30-50h. Kinetic studies revealed that release pattern follow a Korsmeyer-Peppas mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

    PubMed

    Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

    2016-07-01

    Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials

    PubMed Central

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.

    2013-01-01

    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  12. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOEpatents

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  13. Chitosan nanoparticles for the linear release of model cationic Peptide.

    PubMed

    Piras, Anna Maria; Sandreschi, Stefania; Maisetta, Giuseppantonio; Esin, Semih; Batoni, Giovanna; Chiellini, Federica

    2015-07-01

    The present study is focused on the development of a model drug delivery system (DDS) based on Chitosan (CS) nanoparticles using Renin substrate I (RSI) as model agent. RSI shares the main chemical-physical features of several biologically active antimicrobial peptides (AMPs). AMPs have a great therapeutic potential that is hampered by their lability in the biological fluids and as such they are perfect candidates for DDS. The development studies of quality DDS loaded with AMPs would require highly sensitive and specific quantification assays. The use of RSI allowed for the fine-tuning and optimization of the formulation parameters to promote the hydrophobic interactions between CS and the cationic peptide, favour the loading of the active ingredient and enhance the release properties of the carrier. RSI was encapsulated in chitosan NPs by mean of ionic gelation and a chromogenic enzymatic essay was carried out for the release kinetics evaluation. The developed formulations displayed almost 100% of encapsulation efficacy, low burst percentages, and a linear release of the model peptide. A release model was created showing a direct dependence on both the amount of RSI and NPs radius. Although CS has always been formulated with negatively charged active agents (e.g. oligonucleotides or anionic proteins), the use of ionotropic gelation in presence of a small cationic active agent promoted the formation of "core-shell" NPs. The described model, with tuneable linear release rates, appears eligible for further exploitation such as the loading of therapeutically active AMPs.

  14. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism.

    PubMed

    Babasola, Iyabo Oladunni; Zhang, Wei; Amsden, Brian G

    2013-11-01

    In this study, the potential of low molecular weight, viscous liquid polymers based on 5-ethylene ketal ε-caprolactone for localized delivery of proteins via an osmotic pressure release mechanism was investigated. Furthermore, the osmotic release mechanism from viscous liquid polymers was elucidated. 5-Ethylene ketal ε-caprolactone was homopolymerized or copolymerized with D,L-lactide (DLLA) by ring-opening polymerization. Polymer hydrophobicity was adjusted by choice of initiator; hydrophobic polymers were prepared by initiating with octan-1-ol, while more hydrophilic polymers were prepared by initiating with 350 g/mol methoxy poly(ethylene glycol) (PEG). Particles consisting of bovine serum albumin (BSA) as a model protein drug were co-lyophilized with trehalose at 50:50 and 10:90 (w/w) ratios and were mixed into the polymers at 1% and/or 5% (w/w) particle loading. The release and mechanism of release of BSA from the polymers were assessed in vitro. BSA was released in a sustained manner, with a near zero-order release profile and with minimal burst effect for 5-80 days depending on the polymer's hydrophilicity; the release was faster from the PEG initiated polymers than from the octan-1-ol initiated polymers. Increasing the particle loading from 1% to 5% (w/w) resulted in a more noticeable burst effect, but did not significantly increase the mass fraction release rate. This release behavior was determined to proceed as follows. Release from the polymer was triggered by the water activity gradient between the surrounding aqueous medium and the saturated solution, which forms when water is absorbed from the surrounding medium to dissolve a given particle. The generated pressure initiates swelling around the particle/polymer interface and creates a superhydrated polymer region through which the solute is transported by convection, at a rate determined by the osmotic pressure generated. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility.

    PubMed

    Islan, Germán A; de Verti, Ignacio Pérez; Marchetti, Sergio G; Castro, Guillermo R

    2012-07-01

    Screening of ciprofloxacin (Cip) with selected biopolymers brings about 90% antibiotic interactions with a coacervate composed of alginate/high metoxylated pectin in 2:1 ratio. Fourier transform infrared spectroscopy analysis provides information about the nature of this interaction, revealing ionic and hydrophobic patterns among the molecules. Alginate/high methoxylated pectin gel microspheres developed by ionic gelation encapsulates 46.8 ± 5.0% Cip. The gel matrix can release Cip in a sustained manner, releasing 42.7 ± 0.2% in 2 h under simulated stomach pH conditions, and 83.3 ± 1.1% Cip release in 80 mM phosphate at pH = 7.40 (intestinal). The increase of sodium chloride from 50 to 200 mM implies a Cip release from 69.0 ± 1.5% to 95.1 ± 3.6% respectively in 2 h. Scanning electron microscopy revealed the cohesive effect of HM pectin over alginate molecules on the microsphere surface. Those results guarantee all Cip contained in the alginate/HM pectin microspheres could be released in an established kinetic profile along the gastrointestinal tract, avoiding the Cip undesirable side effects during absorption.

  16. Investigation of in vitro Hydrophilic and Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium alginate-MaterBi® Drying Emulsions.

    PubMed

    Setti, Chiara; Suarato, Giulia; Perotto, Giovanni; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-18

    Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi ® , and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi ® /alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells. Copyright © 2018. Published by Elsevier B.V.

  17. Encapsulation and controlled release of rapamycin from polycaprolactone nanoparticles prepared by membrane micromixing combined with antisolvent precipitation.

    PubMed

    Othman, Rahimah; Vladisavljevic, Goran T; Nagy, Zoltan K; Holdich, Richard Graham

    2016-09-30

    Rapamycin loaded polycaprolactone nanoparticles (RAPA-PCL NPs) with a low polydispersity index of 0.006-0.073 were produced by anti-solvent precipitation using a ringed stainless steel membrane with 10-μm diameter laser-drilled pores. The organic phase composed of 6 g L -1 of PCL and 0.6-3.0 g L -1 of RAPA in acetone was injected through the membrane at 140 L m -2 h -1 into 0.2 wt% aqueous polyvinyl alcohol solution stirred at 1300 rpm, resulting in a Z-average mean of 189-218 nm, a drug encapsulation efficiency of 98.8-98.9 % and a drug loading in the NPs of 9-33 %. The encapsulation of RAPA was confirmed by UV-Vis spectroscopy, XRD, DSC, and ATR-FTIR. The disappearance of sharp characteristic peaks of crystalline RAPA in the XRD pattern of RAPA-PCL NPs revealed that the drug was molecularly dispersed in the polymer matrix or present in individual amorphous domains. The rate of drug release in pure water was negligible due to low aqueous solubility of RAPA. RAPA-PCL NPs released more than 91 % of their drug cargo after 2.5 h in the release medium composed of 0.78-1.5 M of the hydrotropic agent N,N-diethylnicotinamide (DENA), 10 vol% of ethanol, and 2 vol% of Tween 20 in phosphate buffered saline. The release rate of RAPA was faster when the concentra-tion of DENA in the dissolution medium was higher. The dissolution of RAPA was slower when the drug was embedded in the PCL matrix of the NPs than dispersed in the form of pure RAPA nanocrystals.

  18. Hydrophobization of Concrete Using Granular Nanostructured Aggregate

    NASA Astrophysics Data System (ADS)

    Ogurtsova, Y. N.; Strokova, V. V.; Labuzova, M. V.

    2017-11-01

    The possibility of giving hydrophobical properties to the fine-grained concrete matrix by using a granular nanostructured aggregate (GNA) with a hydrophobizing additive is investigated in this work. GNA is obtained by granulating the silica raw material with an alkaline component. The introduction of a hydrophobizing additive into the raw mix of GNA allows to encapsulate it reducing the negative effect on hydration processes, the intensity of migration of moisture and efflorescence in concrete and, consequently, improving the performance characteristics of fine-grained concrete products. The hydrophobizing ability of a solution of sodium polysilicates formed in the core of GNA during concrete heat and moisture treatment is proved. The analysis of IR spectra after the impregnation of cement stone samples with a solution of sodium polysilicates showed an increase in the degree of hydration and the formation of framework water aluminosilicates. Atmospheric processes modelling showed that the use of GNA on the basis of gaize with calcium stearate and on the basis of fly ash with GKZh-11 makes it possible to increase the resistance of fine-grained concrete to the atmospheric effect of the medium, namely, the outwashing of readily soluble compounds.

  19. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  20. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-04-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.

  1. Dextran based Polymeric Micelles as Carriers for Delivery of Hydrophobic Drugs.

    PubMed

    Mocanu, Georgeta; Nichifor, Marieta; Sacarescu, Liviu

    2017-01-01

    The improvement of drugs bioavailability, especially of the hydrophobic ones, by using various nanoparticles is a very exciting field of the modern research. The applicability of nano-sized shell crosslinked micelles based on dextran as supports for controlled release of several hydrophobic drugs (nystatin, rifampicin, resveratrol, and curcumin) was investigated by in vitro drug loading/release experiments. The synthesized crosslinked micelles were loaded with drugs of various hydrophobicities and their retention/release behavior was followed by dialysis procedure. Crosslinked micelles obtained from dextran with octadecyl end groups, with or without N-(2- hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups attached to the main dextran chains, could retain the drugs in amounts which increased with increasing drug hydrophobicity (water insolubility), as follows: 30-60 mg rifampicin/g, 70-100 mg nystatin/g, 120-144 mg resveratrol/g and 146-260 mg curcumin/g. The rate of drug release from the loaded micelles was also dependent on the drug hydrophobicity and was always slower than the free drug recovery. Antioxidant activity of curcumin and resveratrol released from the loaded micelles was preserved. The results highlighted the potential of the new nano-sized micelles as carriers for prolonged and controlled delivery of various hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    to release encapsulated agents completely. Also, sham samples without Triton X-100 or ultrasound exposure were used as negative controls. Color Doppler ultrasound did not release encapsulated calcein or papaverine from ELIP even though there was a complete loss of echogenicity. In subsequent experiments, calcein and rosiglitazone, a hydrophobic anti-diabetic drug, were separately encapsulated in ELIP and exposed to pulsed Doppler ultrasound in a flow system while monitoring cavitation. Samples were exposed to ultrasound pressures above and below cavitation thresholds. In addition, Triton X-100 was used for positive control samples and sham samples were also tested without ultrasound exposure. Adding Triton X-100 resulted in complete release of encapsulated calcein or rosiglitzone. However, Doppler ultrasound exposure did not induce calcein or rosiglitazone release from ELIP in the flow system even when there was persistent cavitation activity and a loss of echogenicity. The results of this dissertation indicate that cavitation of encapsulated bubbles in ELIP solutions is not sufficient to induce drug release. It is possible that ultrasoundmediated thermal processes may have a stronger effect on ELIP permeability than cavitation activity. Perhaps ultrasound-triggered drug release will be possible by improving the ELIP formulation or encapsulating a different gas instead of air. However, cavitation is not a reliable indicator of ultrasound-mediated drug release with the ELIP formulations used in this dissertation.

  3. Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

    2015-02-01

    The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL-1 and 36.2 μg mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.

  4. Nitric Oxide Releasing Coronary Stent: A New Approach Using Layer-by-Layer Coating and Liposomal Encapsulation.

    PubMed

    Elnaggar, Mahmoud A; Seo, Seong Ho; Gobaa, Samy; Lim, Kyung Seob; Bae, In-Ho; Jeong, Myung Ho; Han, Dong Keun; Joung, Yoon Ki

    2016-11-01

    The sustained or controlled release of nitric oxide (NO) can be the most promising approach for the suppression or prevention of restenosis and thrombosis caused by stent implantation. The aim of this study is to investigate the feasibility in the potential use of layer-by-layer (LBL) coating with a NO donor-containing liposomes to control the release rate of NO from a metallic stent. Microscopic observation and surface characterizations of LBL-modified stents demonstrate successful LBL coating with liposomes on a stent. Release profiles of NO show that the release rate is sustained up to 5 d. In vitro cell study demonstrates that NO release significantly enhances endothelial cell proliferation, whereas it markedly inhibits smooth muscle cell proliferation. Finally, in vivo study conducted with a porcine coronary injury model proves the therapeutic efficacy of the NO-releasing stents coated by liposomal LBL technique, supported by improved results in luminal healing, inflammation, and neointimal thickening except thrombo-resistant effect. As a result, all these results demonstrate that highly optimized release rate and therapeutic dose of NO can be achieved by LBL coating and liposomal encapsulation, followed by significantly efficacious outcome in vivo. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2016-10-01

    A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles

    PubMed Central

    Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.

    2011-01-01

    Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921

  7. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.

    PubMed

    Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D

    2010-06-22

    Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.

  8. Encapsulation of small ionic molecules within alpha-cyclodextrins.

    PubMed

    Rodriguez, Javier; Elola, M Dolores

    2009-02-05

    Results from molecular dynamics experiments pertaining to the encapsulation of ClO4- within the hydrophobic cavity of an aqueous alpha-cyclodextrin (alpha-CD) are presented. Using a biased sampling procedure, we constructed the Gibbs free energy profile associated with the complexation process. The profile presents a global minimum at the vicinity of the primary hydroxyl groups, where the ion remains tightly coordinated to four water molecules via hydrogen bonds. Our estimate for the global free energy of encapsulation yields DeltaGenc approximately -2.5 kBT. The decomposition of the average forces acting on the trapped ion reveals that the encapsulation is controlled by Coulomb interactions between the ion and OH groups in the CD, with a much smaller contribution from the solvent molecules. Changes in the previous results, arising from the partial methylation of the host CD and modifications in the charge distribution of the guest molecule are also discussed. The global picture that emerges from our results suggests that the stability of the ClO4- encapsulation involves not only the individual ion but also its first solvation shell.

  9. Using Dynamic Covalent Chemistry To Drive Morphological Transitions: Controlled Release of Encapsulated Nanoparticles from Block Copolymer Vesicles

    PubMed Central

    2017-01-01

    Dynamic covalent chemistry is exploited to drive morphological order–order transitions to achieve the controlled release of a model payload (e.g., silica nanoparticles) encapsulated within block copolymer vesicles. More specifically, poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate) (PGMA–PHPMA) diblock copolymer vesicles were prepared via aqueous polymerization-induced self-assembly in either the presence or absence of silica nanoparticles. Addition of 3-aminophenylboronic acid (APBA) to such vesicles results in specific binding of this reagent to some of the pendent cis-diol groups on the hydrophilic PGMA chains to form phenylboronate ester bonds in mildly alkaline aqueous solution (pH ∼ 10). This leads to a subtle increase in the effective volume fraction of this stabilizer block, which in turn causes a reduction in the packing parameter and hence induces a vesicle-to-worm (or vesicle-to-sphere) morphological transition. The evolution in copolymer morphology (and the associated sol–gel transitions) was monitored using dynamic light scattering, transmission electron microscopy, oscillatory rheology, and small-angle X-ray scattering. In contrast to the literature, in situ release of encapsulated silica nanoparticles is achieved via vesicle dissociation at room temperature; moreover, the rate of release can be fine-tuned by varying the solution pH and/or the APBA concentration. Furthermore, this strategy also works (i) for relatively thick-walled vesicles that do not normally exhibit stimulus-responsive behavior and (ii) in the presence of added salt. This novel molecular recognition strategy to trigger morphological transitions via dynamic covalent chemistry offers considerable scope for the design of new stimulus-responsive copolymer vesicles (and hydrogels) for targeted delivery and controlled release of cargoes. In particular, the conditions used in this new approach are relevant to liquid laundry formulations, whereby enzymes require

  10. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  11. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  12. Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation

    NASA Astrophysics Data System (ADS)

    Talwar, Sachin; Harding, Jonathon; Khan, Saad A.

    2008-07-01

    Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical network of intra- and inter-molecular hydrophobic junctions in solution arising from the interactions between hydrophobic groups grafted on the polymer backbone. The presence of these hydrophobic junctions significantly enhances the solution rheological properties with both the steady state viscosity and dynamic moduli exhibiting an increase by several orders of magnitude. The ability of nonionic surfactants to modulate and recover the hydrophobic interactions in these polymer solutions in the presence of cyclodextrin is examined. The presence of either a- or β-CD results in a dramatic decrease in viscosity and viscoelastic properties of the HASE polymer solution resulting from the encapsulation of polymer hydrophobes by CDs. Addition of nonionic surfactants to such systems promotes a competition between CDs and surfactant molecules to complex with polymer hydrophobes thereby altering the hydrophobic interactions. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide (EO) chain lengths, which determine the surfactant hydrophilic-lipophilic balance (HLB), are used.

  13. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    NASA Astrophysics Data System (ADS)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  14. Water repellency in hydrophobic nanocapsules--molecular view on dewetting.

    PubMed

    Müller, Achim; Garai, Somenath; Schäffer, Christian; Merca, Alice; Bögge, Hartmut; Al-Karawi, Ahmed Jasim M; Prasad, Thazhe Kootteri

    2014-05-26

    The hydrophobic effect plays a major role in a variety of important phenomena in chemistry, materials science and biology, for instance in protein folding and protein-ligand interactions. Studies--performed within cavities of the unique metal oxide based porous capsules of the type {(pentagon)12(linker)30}≡{(W)W5}12{Mo2(ligand)}30 with different acetate/water ligand ratios--have provided unprecedented results revealing segregation/repellency of the encapsulated "water" from the internal hydrophobic ligand walls of the capsules, while the disordered water molecules, interacting strongly with each other via hydrogen bonding, form in all investigated cases the same type of spherical shell. The present results can be (formally) compared--but only regarding the repellency effect--with the amazing "action" of the (super)hydrophobic Lotus (Nelumbo) leaves, which are self-cleaning based on water repellency resulting in the formation of water droplets picking up dirt. The present results were obtained by constructing deliberately suitable hydrophobic interiors within the mentioned capsules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced drug encapsulation and extended release profiles of calcium-alginate nanoparticles by using tannic acid as a bridging cross-linking agent.

    PubMed

    Abulateefeh, Samer R; Taha, Mutasem O

    2015-01-01

    Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.

  16. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  17. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  18. Encapsulation and delivery of food ingredients using starch based systems.

    PubMed

    Zhu, Fan

    2017-08-15

    Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    PubMed

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  20. pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs.

    PubMed

    Tabatabaei Rezaei, Seyed Jamal; Abandansari, Hamid Sadeghi; Nabid, Mohammad Reza; Niknejad, Hassan

    2014-07-01

    Novel unimolecular micelles from amphiphilic hyperbranched block copolymer H40-poly(ε-caprolactone)-b-poly(acrylic acid)-b'-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate (i.e., H40-PCL-b-PAA-b'-MPEG/PEG-FA (HCAE-FA)) as new multifunctional nanocarriers to pH-induced accelerated release and tumor-targeted delivery of poorly water-soluble anticancer drugs were developed. The hydrophobic core of the unimolecular micelle was hyperbranched polyester (H40-poly(ε-caprolactone) (H40-PCL)). The inner hydrophilic layer was composed of PAA segments, while the outer hydrophilic shell was composed of PEG segments. This copolymer formed unimolecular micelles in the aqueous solution with a mean particle size of 33 nm, as determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). To study the feasibility of micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, paclitaxel (PTX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 10.35 wt.%. In vitro release studies demonstrated that the drug-loaded delivery system is relatively stable at physiologic conditions but susceptible to acidic environments which would trigger the release of encapsulated drugs. Flow cytometry and fluorescent microscope studies revealed that the cellular binding of the FA-conjugated micelles against HeLa cells was higher than that of the neat micelles (without FA). The in vitro cytotoxicity studies showed that the PTX transported by these micelles was higher than that by the commercial PTX formulation Tarvexol®. All of these results show that these unique unimolecular micelles may offer a very promising approach for targeted cancer therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Microfluidic approach for encapsulation via double emulsions.

    PubMed

    Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin

    2014-10-01

    Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Encapsulation of micronutrients resveratrol, genistein, and curcumin by folic acid-PAMAM nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2018-05-21

    It has been shown that encapsulation of dietary polyphenols leads to increased solubility and bioavailability of these micronutrients. The encapsulation of dietary polyphenols resveratrol, genistein, and curcumin by folic acid-PAMAM-G3 and folic acid-PAMAM-G4 nanoparticles was studied in aqueous solution at physiological conditions, using multiple spectroscopic methods, TEM images, and docking studies. The polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As folic acid-PAMAM nanoparticle size increased, the loading efficacy and the stability of polyphenol-polymer conjugates were increased. Polyphenol encapsulation induced major alterations of dendrimer morphology. Folic acid-PAMAM nanoconjugates are capable of delivery of polyphenols in vitro.

  3. PLGA microspheres encapsulating siRNA.

    PubMed

    De Rosa, Giuseppe; Salzano, Giuseppina

    2015-01-01

    The therapeutic use of small interfering RNA (siRNA) represents a new and powerful approach to suppress the expression of pathologically genes. However, biopharmaceutical drawbacks, such as short half-life, poor cellular uptake, and unspecific distribution into the body, hamper the development of siRNA-based therapeutics. Poly(lactide-co-glycolide), (PLGA) microspheres can be a useful tool to overcome these issues. siRNA can be encapsulated into the PLGA microspheres, which protects the loaded nucleic acid against the enzymatic degradation. Moreover, PLGA microspheres can be injected directly into the action site, where the siRNA can be released in controlled manner, thus avoiding the need of frequent invasive administrations. The complete biodegradability of PLGA to monomers easily metabolized by the body, and its approval by FDA and EMA for parenteral administration, assure the safety of this copolymer and do not require the removal of the device after the complete drug release. In chapter, a basic protocol for the preparation of PLGA microspheres encapsulating siRNA is described. This protocol is based on a double emulsion/solvent evaporation technique, a well known and easy to reproduce method. This specific protocol has been developed to encapsulate a siRNA anti-TNFα in PLGA microspheres, and it has been designed and optimized to achieve high siRNA encapsulation efficiency and slow siRNA release in vitro. However, it can be extended also to other siRNA as well as other RNA or DNA-based oligonucleotides (miRNA, antisense, decoy, etc.). Depending on the applications, chemical modifications of the backbone and site-specific modification within the siRNA sequences could be required.

  4. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  5. Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release

    NASA Astrophysics Data System (ADS)

    Nkanga, Christian Isalomboto; Krause, Rui Werner Maçedo

    2018-05-01

    Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC-INH) was encapsulated in liposomes by film hydration method. PC-INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV-Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (%EE). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and %EE of PILs were about 506 nm, - 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.

  6. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    PubMed

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    PubMed

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Premature drug release of polymeric micelles and its effects on tumor targeting.

    PubMed

    Miller, Tobias; Breyer, Sandra; van Colen, Gwenaelle; Mier, Walter; Haberkorn, Uwe; Geissler, Simon; Voss, Senta; Weigandt, Markus; Goepferich, Achim

    2013-03-10

    Based on the enhanced permeability and retention (EPR) effect, nanoparticles are believed to accumulate in tumors. In this conjunction, the stability of drug encapsulation is assumed to be sufficient. For clarification purposes, PEGylated poly-(D,L-lactic acid) (PEG-PDLLA) micelles which incorporated the hydrophobic model drug dechloro-4-iodo-fenofibrate (IFF) were investigated. H2N-PEG-PDLLA was synthesized, coupled to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with 111-indium. From this polymeric species, mixed micelles with H3CO-PEG-PDLLA were prepared which encapsulated the 125-iodine or 131-iodine labeled drug IFF. Bioimaging and biodistribution experiments in healthy and AR42J-tumor bearing mice were carried out to quantify the uptake of the drug and its carrier in single organs. As a result, upon injection of this system, a rapid dissociation of the polymeric carrier and the incorporated drug (<10 min post inj.) was revealed. Regardless of the premature release, the drug showed an enhanced tumor accumulation compared to the polymeric carrier. In conclusion, the self-assembling system allowed for successful solubilization of the hydrophobic drug by physical incorporation into micelles whereas the tumor targeting properties of the drug delivery system could not be sufficiently shown. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    PubMed

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  10. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    PubMed

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-05

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution.

  11. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    , Cy5.5, was used to label the glycol chitosan nanoparticles to enable the noninvasive imaging of living cells. A model protein (bovine serum albumin, BSA) was encapsulated within the glycol chitosan nanoparticles, and its loading efficiency was calculated to be 88%. Release profile of the BSA showed that only 4% (cumulative mass) was achieved by day 7. Minimal cytotoxicity was observed after delivery of the chitosan vehicle alone. To test degradation kinetics, the BSA-loaded nanoparticles were incubated with lysozyme for up to 3 hours and were applied in SDS-PAGE to determine if enzyme-catalyzed degradation triggered premature release of the encapsulated protein. Confocal laser scanning microscopy was used to visualize the spatiotemporal distribution of FITC-BSA-loaded glycol chitosan nanoparticles after delivery to the rat osteosarcoma (ROS17/2.8) and mouse calvaria-derived (MC3T3-E1) cells.

  12. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  13. Antibiotic release from biodegradable PHBV microparticles.

    PubMed

    Sendil, D; Gürsel, I; Wise, D L; Hasirci, V

    1999-05-20

    For the treatment of periodontal diseases, design of a controlled release system seemed very appropriate for an effective, long term result. In this study a novel, biodegradable microbial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV of various valerate contents containing a well established antibiotic, tetracycline, known to be effective against many of the periodontal disease related microorganisms, was used in the construction of a controlled release system. Tetracycline was loaded in the PHBV microspheres and microcapsules both in its acidic (TC) and in neutral form (TCN). Microcapsules of PHBV were prepared under different conditions using w/o/w double emulsion and their properties such as encapsulation efficiency, loading, release characteristics, and morphological properties were investigated. It was found that concentration of emulsifiers polyvinyl alcohol (PVA) and gelatin (varied between 0-4%) influenced the encapsulation efficiency appreciably. In order to increase encapsulation efficiency (from the obtained range of 18.1-30.1%) and slow down the release of the highly soluble tetracycline.HCl, it was neutralized with NaOH. Encapsulation efficiency of neutralized tetracycline was much higher (51.9-65.3%) due to the insoluble form of the drug used during encapsulation. The release behaviour of neither of the drugs was found to be of zero order. Rather the trends fitted reasonably well to Higuchi's approach for release from spherical micropheres. Biodegradability was not an appreciable parameter in the release from microcapsules because release was complete before any signs of degradation were observed.

  14. Essential oils: from extraction to encapsulation.

    PubMed

    El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A

    2015-04-10

    Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sustained Release of Green Tea Polyphenols from Liposomal Nanoparticles; Release Kinetics and Mathematical Modelling.

    PubMed

    Prakash Upputuri, Ravi Theaj; Azad Mandal, Abul Kalam

    2017-01-01

    Background: Green tea polyphenols (GTP) are known to have several health benefits. In spite of these benefits, its application as a therapeutic agent is limited due to some of its limitations such as stability, bioavailability, and biotransformation. To overcome these limitations, liposomal nanoparticles have been used as a carrier of the GTP. Objective: Encapsulation of GTP to the liposomal nanoparticles in order to achieve a sustained release of the GTP and to determine the drug release kinetics and the mechanism of the release. Materials and Methods: GTP encapsulated liposomal nanoparticles were prepared using phosphatidyl choline and cholesterol. The synthesized particles were characterized for their particle size and morphology. In vitro release studies were carried out, followed by drug release kinetics, and determining the mechanism of release. In vitro , antioxidant assay was determined following 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Results: Atomic force microscope (AFM) and high resolution scanning electron microscope (HR SEM) images showed spherical particles of the size of 64.5 and 252 nm. An encapsulation efficiency as high as 77.7% was observed with GTP concentration of 5 mg.mL -1 . In vitro release studies showed that the loading concentrations of GTP were independent to the cumulative percentage of the drug release. GTP release by varying the pH and temperature showed a direct correlation between the release parameter and the percentage of drug release. The higher the pH and temperature, the higher was the percentage of the drug release. The release data showed a good correlation with Zero order kinetics and the mechanism of the release being anomalous mode. Radical scavenging activity of the released GTP showed a potent scavenging activity. Conclusion: GTP encapsulated liposomal nanoparticles could be used as a delivery vehicle for achieving a sustained release.

  16. Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Alipour, Elnaz; Halverson, Duncan; McWhirter, Samantha; Walker, Gilbert C.

    2017-05-01

    Nanoparticles are widely studied for their potential medical uses in diagnostics and therapeutics. The interface between a nanoparticle and its target has been a focus of research, both to guide the nanoparticle and to prevent it from deactivating. Given nature's frequent use of phospholipid vesicles as carriers, much attention has been paid to phospholipids as a vehicle for drug delivery. The physical chemistry of bilayer formation and nanoparticle encapsulation is complex, touching on fundamental properties of hydrophobicity. Understanding the design rules for particle synthesis and encapsulation is an active area of research. The aim of this review is to provide a perspective on what preparative guideposts have been empirically discovered and how these are related to theoretical understanding. In addition, we aim to summarize how modern theory is beginning to help guide the design of functional particles that can effectively cross biological membranes.

  17. Indocyanine Green-Encapsulated Hybrid Polymeric Nanomicelles for Photothermal Cancer Therapy.

    PubMed

    Jian, Wei-Hong; Yu, Ting-Wei; Chen, Chien-Ju; Huang, Wen-Chia; Chiu, Hsin-Cheng; Chiang, Wen-Hsuan

    2015-06-09

    Indocyanine green (ICG), an FDA approved medical near-infrared (NIR) imaging agent, has been extensively used in cancer theranosis. However, the limited aqueous photostability, rapid body clearance, and poor cellular uptake severely restrict its practical applications. For these problems to be overcome, ICG-encapsulated hybrid polymeric nanomicelles (PNMs) were developed in this work through coassociation of the amphiphilic diblock copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and hydrophobic electrostatic complexes composed of ICG molecules and branched poly(ethylenimine) (PEI). The ICG-encapsulated hybrid PNMs featured a hydrophobic PLGA/ICG/PEI core stabilized by hydrophilic PEG shells. The encapsulation of electrostatic ICG/PEI complexes into the compact PLGA-rich core not only facilitated the ICG loading but also promoted its aqueous optical stability. The effects of the chain length of PEI in combination with ICG on the physiochemical properties of PNMs and their drug leakage were also investigated. PEI(10k) (10 kDa) could form highly robust and dense complexes with ICG, and thus prominently reduced ICG outflow from the PNMs. The results of in vitro cellular uptake and cytotoxicity studies revealed that the ICG/PEI(10k)-loaded PNMs significantly promoted cellular uptake of ICG by HeLa cells due to their near-neutral surface, and thereby augmented the NIR-triggered hyperthermia effect in destroying cancer cells. These findings strongly indicate that the ICG/PEI10k-loaded PNMs have significant potential for attaining effective cancer imaging and photothermal therapy.

  18. Encapsulation of testosterone by chitosan nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    PubMed Central

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y.

    2016-01-01

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953

  20. Controlled Release of 5-Fluorouracil from Alginate Beads Encapsulated in 3D Printed pH-Responsive Solid Dosage Forms.

    PubMed

    Gioumouxouzis, Christos I; Chatzitaki, Aikaterini-Theodora; Karavasili, Christina; Katsamenis, Orestis L; Tzetzis, Dimitrios; Mystiridou, Emmanouela; Bouropoulos, Nikolaos; Fatouros, Dimitrios G

    2018-06-14

    Three-dimensional printing is being steadily deployed as manufacturing technology for the development of personalized pharmaceutical dosage forms. In the present study, we developed a hollow pH-responsive 3D printed tablet encapsulating drug loaded non-coated and chitosan-coated alginate beads for the targeted colonic delivery of 5-fluorouracil (5-FU). A mixture of Eudragit® L100-55 and Eudragit® S100 was fabricated by means of hot-melt extrusion (HME) and the produced filaments were printed utilizing a fused deposition modeling (FDM) 3D printer to form the pH-responsive layer of the tablet with the rest comprising of a water-insoluble poly-lactic acid (PLA) layer. The filaments and alginate particles were characterized for their physicochemical properties (thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction), their surface topography was visualized by scanning electron microscopy and the filaments' mechanical properties were assessed by instrumented indentation testing and tensile testing. The optimized filament formulation was 3D printed and the structural integrity of the hollow tablet in increasing pH media (pH 1.2 to pH 7.4) was assessed by means of time-lapsed microfocus computed tomography (μCT). In vitro release studies demonstrated controlled release of 5-FU from the alginate beads encapsulated within the hollow pH-sensitive tablet matrix at pH values corresponding to the colonic environment (pH 7.4). The present study highlights the potential of additive manufacturing in fabricating controlled-release dosage forms rendering them pertinent formulations for further in vivo evaluation.

  1. Förster resonance energy transfer between pyrene and bovine serum albumin: effect of the hydrophobic pockets of cyclodextrins.

    PubMed

    Maity, Arnab; Mukherjee, Puspal; Das, Tarasankar; Ghosh, Prasun; Purkayastha, Pradipta

    2012-06-15

    The phenomenon of Förster resonance energy transfer (FRET) between pyrene and bovine serum albumin (BSA) protein in presence of cyclodextrins (CDs) is explored in the present work. CDs provide hydrophobic environment and thus the aromatic molecules get encapsulated in them depending on the relative size and space. In this work we revealed that along with pyrene monomer, the side chains of amino acids in BSA can get trapped partly in the hydrophobic cavities of CDs if space permits. While being encapsulated by β-CD as pyrene monomer, it can interact with the BSA tryptophan moiety exposed toward the aqueous environment to form a dimer through π-π interaction. This, in turn, affects the energy transfer process by reducing the efficiency. On the other hand, pyrene excimer gets encapsulated in a γ-CD molecule due to availability of enough space. The excimer shows a new band at a higher wavelength. This further reduces FRET efficiency due to scarcity of acceptor for the tryptophan moieties in BSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides

    PubMed Central

    Sirsi, Shashank R; Schray, Rebecca C; Wheatley, Margaret A; Lutz, Gordon J

    2009-01-01

    Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD. PMID:19351396

  3. Increased dissolution rate and oral bioavailability of hydrophobic drug glyburide tablets produced using supercritical CO₂ silica dispersion technology.

    PubMed

    Guan, Jibin; Han, Jihong; Zhang, Dong; Chu, Chunxia; Liu, Hongzhuo; Sun, Jin; He, Zhonggui; Zhang, Tianhong

    2014-04-01

    The aim of this study was to design a silica-supported solid dispersion of a water-insoluble drug, glyburide, to increase its dissolution rate and oral absorption using supercritical fluid (SCF) technology. DSC and PXRD results indicated that the encapsulated drug in the optimal solid dispersion was in an amorphous state and the product was stable for 6 months. Glyburide was adsorbed onto the porous silica, as confirmed by the SEM images and BET analysis. Furthermore, FT-IR spectroscopy confirmed that there was no change in the chemical structure of glyburide after the application of SCF. The glyburide silica-based dispersion could also be compressed into tablet form. In vitro drug release analysis of the silica solid dispersion tablets demonstrated faster release of glyburide compared with the commercial micronized tablet. In an in vivo test, the AUC of the tablets composed of the new glyburide silica-based solid dispersion was 2.01 times greater than that of the commercial micronized glyburide tablets. In conclusion, SCF technology presents a promising approach to prepare silica-based solid dispersions of hydrophobic drugs because of its ability to increase their release and oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil.

    PubMed

    Olad, Ali; Zebhi, Hamid; Salari, Dariush; Mirmohseni, Abdolreza; Reyhani Tabar, Adel

    2018-09-01

    In this study, new slow release fertilizer encapsulated by superabsorbent nanocomposite was prepared by in-situ graft polymerization of sulfonated-carboxymethyl cellulose (SCMC) with acrylic acid (AA) in the presence of polyvinylpyrrolidone (PVP), silica nanoparticles and nitrogen (N), phosphorous (P), and potassium (K) (NPK) fertilizer compound. The prepared materials were characterized by FT-IR, XRD and scanning electron microscopy (SEM) techniques. The incorporation of NPK fertilizer into hydrogel nanocomposite network was verified by results of these analyses. Also, the swelling behavior in various pH and saline solutions as well as water retention capability of the prepared hydrogel nanocomposite was evaluated. The fertilizer release behavior of the NPK loaded hydrogel nanocomposite was in good agreement with the standard of Committee of European Normalization (CEN), indicating its excellent slow release property. These good characteristics revealed that the hydrogel nanocomposite fertilizer formulation can be practically used in agricultural and horticultural applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Silica-F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity

    NASA Astrophysics Data System (ADS)

    Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John

    2013-12-01

    To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile

  6. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  7. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  8. Vaults Engineered for Hydrophobic Drug Delivery

    PubMed Central

    Buehler, Daniel C.; Toso, Daniel B.; Kickhoefer, Valerie A.; Zhou, Z. Hong

    2013-01-01

    The vault nanoparticle is one of the largest known ribonucleoprotein complexes in the sub-100 nm range. Highly conserved and almost ubiquitously expressed in eukaryotes, vaults form a large nanocapsule with a barrel-shaped morphology surrounding a large hollow interior. These properties make vaults an ideal candidate for development into a drug delivery vehicle. In this study, we report the first example of using vaults towards this goal. We engineered recombinant vaults to encapsulate the highly insoluble and toxic hydrophobic compound All-trans Retinoic Acid (ATRA) using a vault binding lipoprotein complex that forms a lipid bilayer nanodisk. These recombinant vaults offer protection to the encapsulated ATRA from external elements. Furthermore, a cryo-electron tomography (cryo-ET) reconstruction shows the vault binding lipoprotein complex sequestered within the vault lumen. Finally, these ATRA loaded vaults have enhanced cytotoxicity against the hepatocellular carcinoma cell line HepG2. The ability to package therapeutic compounds into the vault is an important achievement toward their development into a viable and versatile platform for drug delivery. PMID:21506266

  9. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release.

    PubMed

    Zhou, Zaishuai; Guo, Feng; Wang, Nairong; Meng, Meng; Li, Guiying

    2018-05-23

    Star-shaped poly(2-(dimethylamino)ethyl methacrylate) based on β-cyclodextrin (β-CD-(PDMAEMA) 7 ) was synthesized by means of atomic transfer radical polymerization (ATRP). Dual pH-sensitive supramolecular micelles were formed from β-CD-(PDMAEMA) 7 and benzimidazole modified poly(ε-caprolactone) (BM-PCL) through the host-guest interactions between β-CD and benzimidazole. The supramolecular micelles have regular spherical structure with hydrophobic β-CD/BM-PCL as the core and pH-sensitive PDMAEMA as the shell. The hydrophobic PCL as well as the hydrophobic cavity of β-CD can efficiently encapsulate doxorubicin (DOX) with the drug-loading content and entrapment efficiency up to 40% and 86%. The drug release from micelles accelerated when the pH decreased from 7.0 to 2.0 and the temperature increased from 25 °C to 45 °C. MTT assay showed that drug loaded supramolecular micelles exhibited excellent anti-cancer activity than free DOX. These supramolecular micelles have promising potential applications as intelligent nanocarriers in drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Theranostic nanoemulsions: codelivery of hydrophobic drug and hydrophilic imaging probe for cancer therapy and imaging.

    PubMed

    Yang, Xinggang; Wang, Dun; Ma, Yan; Zhao, Qiang; Fallon, John K; Liu, Dan; Xu, Xian Emma; Wang, Yongjun; He, Zhonggui; Liu, Feng

    2014-12-01

    To develop a theranostic nanoemulsion (TNE) that can codeliver the conjugates of a hydrophobic drug paclitaxel (PTX) and a hydrophilic imaging probe sulforhodamine B (SRB). The TNE was established using core-matched technology, and can achieve high encapsulation efficiency and synchronized release of the loaded cargo. It has been examined for a correlation between the dynamic uptake of PTX and the intensity of SRB imaging signal in different organs. Our data demonstrate that the TNE, with improved circulation time, increases therapeutic efficacy and imaging efficiency in both drug-sensitive and drug-resistant cancer. The TNE could not satisfy the demand of visual diagnosis in the living animal because of interference. We therefore formulated a long-circulating theranostic nanoemulsion (LCTNE). Results showed that the LCTNE can meet imaging requirements in vivo. The LCTNE plays a good therapeutic and diagnostic role for subcutaneous tumors in the living animal.

  11. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  12. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-03-01

    Molecular dynamics simulation was used to study the potential of using a block copolymer containing three poly(epsilon-caprolactone) (PCL) blocks of equal length connected to one end of a poly(ethylene oxide) (PEO) block, designated as PEO-b-3PCL, to encapsulate two classes of hydrophobic drugs with distinctively different molecular structures. In particular, the first class of drugs consisted of two cucurbitacin drugs (CuB and CuI) that contain multiple hydrogen bond donors and acceptors evenly distributed on their molecules while the other class of drugs (fenofibrate and nimodipine) contain essentially only clustered hydrogen bond acceptors. In the case of cucurbitacin drugs, the results showed that PEO-b-3PCL lowered the Flory-Huggins interaction parameters (chi) considerably (i.e., increased the drug solubility) compared to the linear di-block copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1.0. However, the opposite effect was observed for fenofibrate and nimodipine. Analysis of the intermolecular interactions indicates that the number of hydrogen bonds formed between the three PCL blocks and cucurbitacin drugs is significantly higher than that of the linear di-block copolymer. On the other hand, owing to the absence of hydrogen bond donors and the clustering of the hydrogen bond acceptors on the fenofibrate and nimodipine molecules, this significantly reduces the number of hydrogen bonds formed in the multi-PCL block environment, leading to unfavourable chi values. The findings of the present work suggest that multi-hydrophobic block architecture could potentially increase the drug loading for hydrophobic drugs with structures containing evenly distributed multiple hydrogen bond donors and acceptors. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Efficient co-delivery of immiscible hydrophilic/hydrophobic chemotherapeutics by lipid emulsions for improved treatment of cancer

    PubMed Central

    Zhang, Bo; Song, Yunmei; Wang, Tianqi; Yang, Shaomei; Zhang, Jing; Liu, Yongjun; Zhang, Na; Garg, Sanjay

    2017-01-01

    Combinational nanomedicine is becoming a topic of much interest in cancer therapy, although its translation into the clinic remains extremely challenging. One of the main obstacles lies in the difficulty to efficiently co-deliver immiscible hydrophilic/hydrophobic drugs into tumor sites. The aim of this study was to develop co-loaded lipid emulsions (LEs) to co-deliver immiscible hydrophilic/hydrophobic drugs to improve cancer therapy and to explore the co-delivery abilities between co-loaded LEs and mixture formulation. Multiple oxaliplatin/irinotecan drug–phospholipid complexes (DPCs) were formulated. Co-loaded LEs were prepared using DPC technique to efficiently encapsulate both drugs. Co-loaded LEs exhibited uniform particle size distribution, desired stability and synchronous release profiles in both drugs. Co-loaded LEs demonstrated superior anti-tumor activity compared with the simple solution mixture and the mixture of single-loaded LEs. Furthermore, co-loaded nanocarriers could co-deliver both drugs into the same cells more efficiently and exhibited the optimized synergistic effect. These results indicate that co-loaded LEs could be a desired formulation for enhanced cancer therapy with potential application prospects. The comparison between co-loaded LEs and mixture formulation is significant for pharmaceutical designs aimed at co-delivery of multiple drugs. PMID:28435264

  14. Efficient co-delivery of immiscible hydrophilic/hydrophobic chemotherapeutics by lipid emulsions for improved treatment of cancer.

    PubMed

    Zhang, Bo; Song, Yunmei; Wang, Tianqi; Yang, Shaomei; Zhang, Jing; Liu, Yongjun; Zhang, Na; Garg, Sanjay

    2017-01-01

    Combinational nanomedicine is becoming a topic of much interest in cancer therapy, although its translation into the clinic remains extremely challenging. One of the main obstacles lies in the difficulty to efficiently co-deliver immiscible hydrophilic/hydrophobic drugs into tumor sites. The aim of this study was to develop co-loaded lipid emulsions (LEs) to co-deliver immiscible hydrophilic/hydrophobic drugs to improve cancer therapy and to explore the co-delivery abilities between co-loaded LEs and mixture formulation. Multiple oxaliplatin/irinotecan drug-phospholipid complexes (DPCs) were formulated. Co-loaded LEs were prepared using DPC technique to efficiently encapsulate both drugs. Co-loaded LEs exhibited uniform particle size distribution, desired stability and synchronous release profiles in both drugs. Co-loaded LEs demonstrated superior anti-tumor activity compared with the simple solution mixture and the mixture of single-loaded LEs. Furthermore, co-loaded nanocarriers could co-deliver both drugs into the same cells more efficiently and exhibited the optimized synergistic effect. These results indicate that co-loaded LEs could be a desired formulation for enhanced cancer therapy with potential application prospects. The comparison between co-loaded LEs and mixture formulation is significant for pharmaceutical designs aimed at co-delivery of multiple drugs.

  15. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.

    PubMed

    Cheng, Hefa; Reinhard, Martin

    2006-06-01

    Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.

  16. Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture.

    PubMed

    Gu, Dunyin; Tan, Shereen; Xu, Chenglong; O'Connor, Andrea J; Qiao, Greg G

    2017-06-20

    By precisely tuning the network architecture, tough, highly compressible hydrogels were engineered. The hydrogels were made by interconnecting high-functionality hydrophobic domains through linear tri-block chains, consisting of soft hydrophilic middle blocks, flanked with flexible hydrophobic blocks. In showing their applicability, the efficient encapsulation and prolonged release of hydrophobic drugs were achieved.

  17. Stable Encapsulated Air Nanobubbles in Water.

    PubMed

    Wang, Yu; Liu, Guojun; Hu, Heng; Li, Terry Yantian; Johri, Amer M; Li, Xiaoyu; Wang, Jian

    2015-11-23

    The dispersion into water of nanocapsules bearing a highly hydrophobic fluorinated internal lining yielded encapsulated air nanobubbles. These bubbles, like their micrometer-sized counterparts (microbubbles), effectively reflected ultrasound. More importantly, the nanobubbles survived under ultrasonication 100-times longer than a commercial microbubble sample that is currently in clinical use. We justify this unprecedented stability theoretically. These nanobubbles, owing to their small size and potential ability to permeate the capillary networks of tissues, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Emulsion-based encapsulation and delivery of nanoparticles for the controlled release of alkalinity within the subsurface environment

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Muller, K.; Gill, J.

    2012-12-01

    Many current approaches to managing groundwater contamination rely on further advances in amendment delivery in order to initiate and sustain contaminant degradation or immobilization. In fact, limited or ineffective delivery is often cited when treatment objectives are not attained. Emulsions, specifically oil-in-water emulsions, have demonstrated potential to aid delivery of remediation amendments. Emulsions also afford opportunities to control the release of active ingredients encapsulated within the droplets. Our research is currently focused on the controlled release of nanoparticle-based buffering agents using oil-in-water emulsions. This interest is motivated by the fact that chemical and biological processes employed for the remediation and stewardship of contaminated sites often necessitate control of pH during treatment and, in some cases, long thereafter. Alkalinity-release nanoparticles (e.g., CaCO3, MgO) were suspended within soybean oil and subsequently encapsulated by through the creation of oil-in-water emulsions. These oil-in-water emulsions are designed to have physical properties which are favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet diameter). Buffer capacity titrations suggest that MgO particles are moderately more accessible within the oil phase and nearly twice as effective (on a per mass basis) at releasing alkalinity (as compared to the CaCO3 particles). Results from experiments designed to assess the release kinetics suggest that a linear driving force model is capable of describing the release process and mass transfer coefficients are constant through the reactive life of the emulsion. The release kinetics in emulsions containing MgO particles were found to be three orders of magnitude faster than those quantified for emulsions containing CaCO3. The slower release kinetics of the emulsions containing CaCO3 particles may prove beneficial when considering pH control at sites

  19. Encapsulation of cosmetic active ingredients for topical application--a review.

    PubMed

    Casanova, Francisca; Santos, Lúcia

    2016-02-01

    Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.

  20. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement.

    PubMed

    Shadrack, Daniel M; Mubofu, Egid B; Nyandoro, Stephen S

    2015-11-04

    The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer-TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity.

  1. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety.

    PubMed

    El-Ridy, Mohammed Shafik; Yehia, Soad Aly; Kassem, Mahfouz Abd-El-Megeid; Mostafa, Dina Mahmoud; Nasr, Essam Amin; Asfour, Marwa Hasanin

    2015-01-01

    Tuberculosis (TB) is a worldwide health concern. In 2011, about 8.7 million new cases developed TB and 1.4 million people died from it. Enhancement of ethambutol hydrochloride activity and safety in treatment of TB through niosomal encapsulation. Niosomes were prepared by the thin-film hydration method. They were characterized, investigated for in vitro release, lung disposition and in vivo biological evaluation. Entrapment efficiency of ethambutol hydrochloride ranged from 12.20% to 25.81%. Zeta potential values inferred stability of neutral and negatively charged formulations. In vitro release was biphasic. Lung targeting was increased by niosomal encapsulation. Biological evaluation revealed superiority of niosomal ethambutol hydrochloride over the free drug. Neutral and negatively charged niosomal vesicles are dispersed homogenously unlike positively charged vesicles. Niosomal encapsulation results in controlled drug release. Niosomal formulations targeted more drugs to mice lungs for a prolonged period of time resulting in: decreased root-specific lung weight, bacterial counts in lung homogenates and optimizing pathological effect on guinea pigs lungs, livers and spleens. Encapsulation of ethambutol hydrochloride in niosomal formulations for the treatment of TB provides higher efficacy and safety compared with the free drug.

  2. Ramizol® encapsulation into extended release PLGA micro- and nanoparticle systems for subcutaneous and intramuscular administration: in vitro and in vivo evaluation.

    PubMed

    Wright, Leah; Rao, Shasha; Thomas, Nicky; Boulos, Ramiz A; Prestidge, Clive A

    2018-04-11

    Novel antibiotic Ramizol ® is advancing to clinical trials for the treatment of gastrointestinal Clostridium difficile associated disease. Despite this, previous studies have shown a rapid plasma clearance upon intravenous administration and low oral bioavailability indicating pure drug is unsuitable for systemic infection treatment following oral dosing. The current study aims to investigate the development of poly-lactic-(co-glycolic) acid (PLGA) particles to overcome this limitation and increase the systemic half-life following subcutaneous and intramuscular dosing. The development of new antibiotic treatments will help in combatting the rising incidence of antimicrobial resistance. Ramizol ® was encapsulated into PLGA nano and microparticles using nanoprecipitation and emulsification solvent evaporation techniques. Formulations were analyzed for particle size, loading level and encapsulation efficiency as well as in vitro drug release profiles. Final formulation was advanced to in vivo pharmacokinetic studies in Sprague-Dawley rats. Formulation technique showed major influence on particle size and loading levels with optimal loading of 9.4% and encapsulation efficiency of 92.06%, observed using emulsification solvent evaporation. Differences in formulation technique were also linked with subsequent differences in release profiles. Pharmacokinetic studies in Sprague-Dawley rats confirmed extended absorption and enhanced bioavailability following subcutaneous and intramuscular dosing with up to an 8-fold increase in T max and T 1/2 when compared to the oral and IV routes. Subcutaneous and intramuscular dosing of PLGA particles successfully increased systemic half-life and bioavailability of Ramizol ® . This formulation will allow further development of Ramizol ® for systemic infection eradication.

  3. A novel bubble-forming material for preparing hydrophobic-agent-loaded bubbles with theranostic functionality.

    PubMed

    Yang, Pei-Sin; Tung, Fu-I; Chen, Hsiao-Ping; Liu, Tse-Ying; Lin, Yi-Ying

    2014-08-01

    In the present study, a new bubble-forming material (carboxymethyl hexanoyl chitosan, CHC), together with superparamagnetic iron oxide (SPIO) nanoparticles, was employed to prepare image-guided bubbles for efficiently encapsulating and delivering hydrophobic agents to kill tumor cells. The results showed that CHC could be used for preparing not only micronized bubbles (CHC/SPIO MBs) to exhibit ultrasound imaging functionality but also nanosized bubbles (CHC/SPIO NBs) to exhibit magnetic resonance T2 image contrast. It was found that the amounts of SPIO nanoparticles and hexane during preparation process were the key factors to obtaining CHC/SPIO NBs. Most importantly, under in vitro cell culture conditions with the same amount of camptothecin (CPT) and therapeutic sonication, CPT-loaded CHC/SPIO NBs demonstrated more significant transcellular delivery and cytotoxicity than free CPT. Subsequently, an intratumoral injection was proposed for the in vivo administration of hydrophobic-agent-loaded CHC/SPIO NBs. After injection, the distribution of a hydrophobic dye (DiR, an agent with near-infrared (NIR) fluorescence used as a model drug) released from the CHC/SPIO NBs was tracked by an NIR imaging technique. A significant tumor-specific accumulation was observed in the mouse that received the DiR-loaded CHC/SPIO NBs; the same was not observed in the mouse that received the free dye (without incorporating with CHC/SPIO NBs). It is expected, in the future, both the dose of the therapeutic agent administered and its side effects can be significantly lowered by using novel CHC/SPIO NBs together with local delivery (intratumoral injection), targeted imaging and enhanced cellular uptake of the drug. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts.

    PubMed

    Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko

    2016-12-20

    The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties.

    PubMed

    Shi, Meng; Yang, Yi-Yan; Chaw, Cheng-Shu; Goh, Suat-Hong; Moochhala, Shabbir M; Ng, Steve; Heller, Jorge

    2003-04-29

    The poly(orthoester) (POE)-poly(D,L-lactide-co-glycolide) (50:50) (PLGA) double-walled microspheres with 50% POE in weight were loaded with hydrophilic bovine serum albumin (BSA) and hydrophobic cyclosporin A (CyA). Most of the BSA and CyA was entrapped within the shell and core, respectively, because of the difference in their hydrophilicity. The morphologies and release mechanisms of proteins-loaded double-walled POE/PLGA microspheres were investigated. Scanning electron microscope studies revealed that the CyA-BSA-loaded double-walled POE/PLGA microspheres yielded a more porous surface and PLGA shell than those without BSA. The neat POE and PLGA yielded slow and incomplete CyA and BSA release. In contrast, nearly complete BSA and more than 95% CyA were released in a sustained manner from the double-walled POE/PLGA microspheres. Both the BSA- and CyA-BSA-loaded POE/PLGA microspheres yielded a sustained BSA release over 5 days. The CyA release pattern of the CyA-loaded double-walled POE/PLGA microspheres was biphasic, characterized by a slow release over 15 days followed by a sustained release over 27 days. However, the CyA-BSA-loaded double-walled POE/PLGA microspheres provided a more constant and faster CyA release due to their more porous shell. In the CyA-BSA-loaded double-walled POE/PLGA microspheres system, the PLGA layer acted as a carrier for BSA and mild reservoir for CyA. During the first 5 days, most BSA was released from the shell but only 14% CyA was left from the microspheres. Subsequently, more than 80% CyA were released in the next 25 days. The distinct structure of double-walled POE/PLGA microspheres would make an interesting device for controlled delivery of therapeutic agents.

  6. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone

    PubMed Central

    Liu, Jinsong; Zeng, Youyun; Shi, Shuai; Xu, Lihua; Zhang, Hualin; Pathak, Janak L; Pan, Yihuai

    2017-01-01

    Treatment of cancer metastasized to bone is still a challenge due to hydrophobicity, instability, and lack of target specificity of anticancer drugs. Poly (ethylene glycol)-poly (ε-caprolactone) polymer (PEG-PCL) is an effective, biodegradable, and biocompatible hydrophobic drug carrier, but lacks bone specificity. Polyaspartic acid with eight peptide sequences, that is, (Asp)8, has a strong affinity to bone surface. The aim of this study was to synthesize (Asp)8-PEG-PCL nanoparticles as a bone-specific carrier of hydrophobic drugs to treat cancer metastasized to bone. 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and transmission electron microscopy data showed that (Asp)8-PEG-PCL nanoparticles (size 100 nm) were synthesized successfully. (Asp)8-PEG-PCL nanoparticles did not promote erythrocyte aggregation. Fluorescence microscopy showed clear uptake of Nile red-loaded (Asp)8-PEG-PCL nanoparticles by cancer cells. (Asp)8-PEG-PCL nanoparticles did not show cytotoxic effect on MG63 and human umbilical vein endothelial cells at the concentration of 10–800 μg/mL. (Asp)8-PEG-PCL nanoparticles bound with hydroxyapatite 2-fold more than PEG-PCL. Intravenously injected (Asp)8-PEG-PCL nanoparticles accumulated 2.7-fold more on mice tibial bone, in comparison to PEG-PCL. Curcumin is a hydrophobic anticancer drug with bone anabolic properties. Curcumin was loaded in the (Asp)8-PEG-PCL. (Asp)8-PEG-PCL showed 11.07% loading capacity and 95.91% encapsulation efficiency of curcumin. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles gave sustained release of curcumin in high dose for >8 days. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles showed strong antitumorigenic effect on MG63, MCF7, and HeLa cancer cells. In conclusion, (Asp)8-PEG-PCL nanoparticles were biocompatible, permeable in cells, a potent carrier, and an efficient releaser of hydrophobic anticancer drug and were bone specific. The curcumin-loaded (Asp)8-PEG-PCL nanoparticles showed

  7. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone.

    PubMed

    Liu, Jinsong; Zeng, Youyun; Shi, Shuai; Xu, Lihua; Zhang, Hualin; Pathak, Janak L; Pan, Yihuai

    2017-01-01

    Treatment of cancer metastasized to bone is still a challenge due to hydrophobicity, instability, and lack of target specificity of anticancer drugs. Poly (ethylene glycol)-poly (ε-caprolactone) polymer (PEG-PCL) is an effective, biodegradable, and biocompatible hydrophobic drug carrier, but lacks bone specificity. Polyaspartic acid with eight peptide sequences, that is, (Asp) 8 , has a strong affinity to bone surface. The aim of this study was to synthesize (Asp) 8 -PEG-PCL nanoparticles as a bone-specific carrier of hydrophobic drugs to treat cancer metastasized to bone. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and transmission electron microscopy data showed that (Asp) 8 -PEG-PCL nanoparticles (size 100 nm) were synthesized successfully. (Asp) 8 -PEG-PCL nanoparticles did not promote erythrocyte aggregation. Fluorescence microscopy showed clear uptake of Nile red-loaded (Asp) 8 -PEG-PCL nanoparticles by cancer cells. (Asp) 8 -PEG-PCL nanoparticles did not show cytotoxic effect on MG63 and human umbilical vein endothelial cells at the concentration of 10-800 μg/mL. (Asp) 8 -PEG-PCL nanoparticles bound with hydroxyapatite 2-fold more than PEG-PCL. Intravenously injected (Asp) 8 -PEG-PCL nanoparticles accumulated 2.7-fold more on mice tibial bone, in comparison to PEG-PCL. Curcumin is a hydrophobic anticancer drug with bone anabolic properties. Curcumin was loaded in the (Asp) 8 -PEG-PCL. (Asp) 8 -PEG-PCL showed 11.07% loading capacity and 95.91% encapsulation efficiency of curcumin. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles gave sustained release of curcumin in high dose for >8 days. The curcumin-loaded (Asp) 8 -PEG-PCL nanoparticles showed strong antitumorigenic effect on MG63, MCF7, and HeLa cancer cells. In conclusion, (Asp) 8 -PEG-PCL nanoparticles were biocompatible, permeable in cells, a potent carrier, and an efficient releaser of hydrophobic anticancer drug and were bone specific. The curcumin-loaded (Asp) 8 -PEG

  8. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-07

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.

  9. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

    PubMed

    Zhao, Junqiang; Wang, Haiyang; Liu, Jinjian; Deng, Liandong; Liu, Jianfeng; Dong, Anjie; Zhang, Jianhua

    2013-11-11

    The pH-responsive micelles have enormous potential as nanosized drug carriers for cancer therapy due to their physicochemical changes in response to the tumor intracellular acidic microenvironment. Herein, a series of comb-like amphiphilic copolymers bearing acetal-functionalized backbone were developed based on poly[(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate-co-poly(ethylene glycol) methyl ether methacrylate] [P(TTMA-co-mPEGMA)] as effective nanocarriers for intracellular curcumin (CUR) release. P(TTMA-co-mPEGMA) copolymers with different hydrophobic-hydrophilic ratios were prepared by one-step reversible addition fragmentation chain transfer (RAFT) copolymerization of TTMA and mPEGMA. Their molecular structures and chemical compositions were confirmed by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). P(TTMA-co-mPEGMA) copolymers could self-assemble into nanosized micelles in aqueous solution and displayed low critical micelle concentration (CMC). All P(TTMA-co-mPEGMA) micelles displayed excellent drug loading capacity, due to the strong π-π conjugate action and hydrophobic interaction between the PTTMA and CUR. Moreover, the hydrophobic PTTMA chain could be selectively hydrolyzed into a hydrophilic backbone in the mildly acidic environment, leading to significant swelling and final disassembly of the micelles. These morphological changes of P(TTMA-co-mPEGMA) micelles with time at pH 5.0 were determined by DLS and TEM. The in vitro CUR release from the micelles exhibited a pH-dependent behavior. The release rate of CUR was significantly accelerated at mildly acidic pH of 4.0 and 5.0 compared to that at pH 7.4. Toxicity test revealed that the P(TTMA-co-mPEGMA) copolymers exhibited low cytotoxicity, whereas the CUR-loaded micelles maintained high cytotoxicity for HepG-2 and EC-109 cells. The results indicated that the novel P(TTMA-co-mPEGMA) micelles with low CMC, small and tunable

  10. Design documentation: Krypton encapsulation preconceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs,more » technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.« less

  11. Amphiphilic Polyurethane Hydrogels as Smart Carriers for Acidic Hydrophobic Drugs.

    PubMed

    Fonseca, Lucas P; Trinca, Rafael B; Isabel Felisberti, Maria

    2018-05-14

    Amphiphilic hydrogels are widely reported as systems with great potential for controlled drug release. Nevertheless, the majority of studies make use of functionalization or attachment of drugs to the polymer chains. In this study, we propose a strategy of combining amphiphilic polyurethanes with pH-responsive drugs to develop smart drug carriers. While the amphiphilic character of the polymer imparts an efficient load of hydrophobic and hydrophilic drugs, the drug's characteristics determine the selectivity of the medium delivery. Drug loading and release behavior as well as hydrolytic degradation of chemically crosslinked polyurethane hydrogels based on PEG and PCL-triol (PU (polyurethane) hydrogels) synthesized by an easy one-pot route were studied. PU hydrogels have been shown to successfully load the hydrophobic acidic drug sodium diclofenac, reaching a partition coefficient of 8 between the most hydrophobic PU and diclofenac/ethanol solutions. Moreover, an oral administration simulation was conducted by changing the environment from an acidic to a neutral medium. PU hydrogels release less than 5 % of the drug in an acidic medium; however, in a PBS pH 7.4 solution, diclofenac is delivered in a sustained fashion for up to 40 hours, achieving 80% of cumulative release. Copyright © 2018. Published by Elsevier B.V.

  12. Capreomycin oleate microparticles for intramuscular administration: Preparation, in vitro release and preliminary in vivo evaluation.

    PubMed

    Cambronero-Rojas, Adrián; Torres-Vergara, Pablo; Godoy, Ricardo; von Plessing, Carlos; Sepúlveda, Jacqueline; Gómez-Gaete, Carolina

    2015-07-10

    Capreomycin sulfate (CS) is a second-line drug used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The adverse effects profile and uncomfortable administration scheme of CS has led to the development of formulations based on liposomes and polymeric microparticles. However, as CS is a water-soluble peptide that does not encapsulate properly into hydrophobic particulate matrices, it was necessary to reduce its aqueous solubility by forming the pharmacologically active capreomycin oleate (CO) ion pair. The aim of this research was to develop a new formulation of CO for intramuscular injection, based on biodegradable microparticles that encapsulate CO in order to provide a controlled release of the drug with reduced local and systemic adverse effects. The CO-loaded microparticles prepared by spray drying or solvent emulsion-evaporation were characterized in their morphology, encapsulation efficiency, in vitro/in vivo kinetics and tissue tolerance. Through scanning electron microscopy it was confirmed that the microparticles were monodisperse and spherical, with an optimal size for intramuscular administration. The interaction between CO and the components of the microparticle matrix was confirmed on both formulations by X-ray powder diffraction and differential scanning calorimetry analyses. The encapsulation efficiencies for the spray-dried and emulsion-evaporation microparticles were 92% and 56%, respectively. The in vitro kinetics performed on both formulations demonstrated a controlled and continuous release of CO from the microparticles, which was successfully reproduced on an in vivo rodent model. The results of the histological analysis demonstrated that none of the formulations produced significant tissue damage on the site of injection. Therefore, the results suggest that injectable CO microparticles obtained by spray drying and solvent emulsion-evaporation could represent an interesting therapeutic alternative for the treatment of MDR

  13. Elevating bioavailability of cyclosporine a via encapsulation in artificial oil bodies stabilized by caleosin.

    PubMed

    Chen, Miles C M; Wang, Jui-Ling; Tzen, Jason T C

    2005-01-01

    To elevate its bioavailability via oral administration, cyclosporine A (CsA), a hydrophobic drug, was either incorporated into olive oil directly or encapsulated in artificial oil bodies (AOBs) constituted with olive oil and phospholipid in the presence or absence of recombinant caleosin purified from Escherichia coli. The bioavailabilities of CsA in these formulations were assessed in Wistar rats in comparison with the commercial formulation, Sandimmun Neoral. Among these tests, CsA-loaded AOBs stabilized by the recombinant caleosin exhibited better bioavailability than the commercial formulation and possessed the highest maximum whole blood concentration (C(max)), 1247.4 +/- 106.8 ng/mL, in the experimental animals 4.3 +/- 0.7 h (t(max)) after oral administration. C(max) and the area under the plasma concentration-time curve (AUC(0-24)) were individually increased by 50.8% and 71.3% in the rats fed with caleosin-stabilized AOBs when compared with those fed with the reference Sandimmun Neoral. The results suggest that constitution of AOBs stabilized by caleosin may be a suitable technique to encapsulate hydrophobic drugs for oral administration.

  14. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  15. Dexamethasone acetate encapsulation into Trojan particles.

    PubMed

    Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas

    2008-05-22

    We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.

  16. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres.

    PubMed

    El-Bary, Ahmed Abd; Aboelwafa, Ahmed A; Al Sharabi, Ibrahim M

    2012-03-01

    The aim of this work was to understand the influence of different formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres prepared by O/O emulsion solvent evaporation method, employing pH-dependent Eudragit S and hydrophobic pH-independent ethylcellulose polymers. Formulation variables studied included concentration of Eudragit S in the internal phase and the ratios between; internal to external phase, drug to Eudragit S and Eudragit S to ethylcellulose to mesalamine. Prepared microspheres were evaluated by carrying out in vitro release studies and determination of particle size, production yield, and encapsulation efficiency. In addition, morphology of microspheres was examined using optical and scanning electron microscopy. Emulsion solvent evaporation method was found to be sensitive to the studied formulation variables. Particle size and encapsulation efficiency increased by increasing Eudragit S concentration in the internal phase, ratio of internal to external phase, and ratio of Eudragit S to the drug. Employing Eudragit S alone in preparation of the microspheres is only successful in forming acid-resistant microspheres with pulsatile release pattern at high pH. Eudragit S and ethylcellulose blend microspheres were able to control release under acidic condition and to extend drug release at high pH. The stability studies carried out at 40°C/75% RH for 6 months proved the stability of the optimized formulation. From the results of this investigation, microencapsulation of mesalamine in microspheres using blend of Eudragit S and ethylcellulose could constitute a promising approach for site-specific and controlled delivery of drug in colon.

  17. Optimization of synthesis process of thermally-responsive poly-n-isopropylacrylamide nanoparticles for controlled release of antimicrobial hydrophobic compounds

    NASA Astrophysics Data System (ADS)

    Hill, Laura E.; Gomes, Carmen L.

    2014-12-01

    The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.

  18. Studies of Drug Delivery and Drug Release of Dendrimer by Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Min; Wu, Yi-Fan; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2008-02-01

    Dendrimers, like unimolecular micelles, may encapsulate guest biomolecules (drug) and therefore are attractive candidates as carriers in drug delivery applications. Hydrophobic drugs can be complexed within the hydrophobic dendrimer interior to make them water-soluble. The equilibrium partition of hydrophobic solutes into a dendrimer with hydrophobic interior from aqueous solutions is studied by dissipative particle dynamics. The drug is mainly distributed in the vicinity of the interface between hydrophobic interior and hydrophilic exterior within a dendrimer. The partition coefficient, which is defined as the concentration ratio of the drug distributed within dendrimer to aqueous phases, depends on the interaction between drug and hydrophilic dendrimer exterior. Increasing the repulsion between them reduces the solubilization ability associated with the dendrimer.

  19. Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release.

    PubMed

    Chen, Haimei; MacDonald, Robert C; Li, Shuyou; Krett, Nancy L; Rosen, Steven T; O'Halloran, Thomas V

    2006-10-18

    Arsenic trioxide (ATO, As2O3) is emerging as a front line agent for treatment of acute promyelocytic leukemia with giving a complete remission rate of 83-95%. ATO also shows significant activity in relapsed/refactory multiple myeloma; however, efforts to expand clinical utility to other cancers have been limited by its toxicity profile at higher doses. New bioavailable, liposome encapsulated As(III) materials exhibit a significantly attenuated cytotoxicity that undergoes pH-triggered release of an active drug. The arsenic drugs are loaded into 100-nm-scale liposomes at high concentration (>270 mM) and excellent retention (shelf life > 6 months at 4 degrees C), as determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) diffraction. In the loading mechanism, arsenous acid crosses the bilayer membrane in exchange for acetic acid and an insoluble transitional metal (e.g., Ni2+, Co2+) arsenite salt is formed. The resultant liposomal arsenic nanoparticles appear to be stable in physiological situations but release the drug cargo in a lower pH environment, as encountered in intracellular endosomes. These drugs exhibit attenuated cytotoxicities against human lymphoma tumor cells compared with that of free As2O3. Controlled release of arsenic drugs, and hence control of toxicity, is feasible with this system. The results demonstrate that cytotoxicity can be controlled via transitions of the inorganic drug between solid and solution phases and suggest a mechanism for further improvement of the risk/benefit ratio of As2O3 in treatment of a variety of cancers.

  20. Insertion and confinement of hydrophobic metallic powder in water: the bubble-marble effect.

    PubMed

    Meir, Yehuda; Jerby, Eli

    2014-09-01

    Metallic powders such as thermite are known as efficient fuels also applicable in oxygen-free environments. However, due to their hydrophobicity, they hardly penetrate into water. This paper presents an effect that enables the insertion and confinement of hydrophobic metallic powders in water, based on encapsulating an air bubble surrounded by a hydrophobic metallic shell. This effect, regarded as an inverse of the known liquid-marble effect, is named here "bubble marble" (BM). The sole BM is demonstrated experimentally as a stable, maneuverable, and controllable soft-solid-like structure, in a slightly deformed hollow spherical shape of ∼1-cm diameter. In addition to experimental and theoretical BM aspects, this paper also demonstrates its potential for underwater applications, such as transportation of solid objects within BM and underwater combustion of thermite BM by localized microwaves. Hence, the BM phenomena may open new possibilities for heat and thrust generation, as well as material processing and mass transfer underwater.

  1. Insertion and confinement of hydrophobic metallic powder in water: The bubble-marble effect

    NASA Astrophysics Data System (ADS)

    Meir, Yehuda; Jerby, Eli

    2014-09-01

    Metallic powders such as thermite are known as efficient fuels also applicable in oxygen-free environments. However, due to their hydrophobicity, they hardly penetrate into water. This paper presents an effect that enables the insertion and confinement of hydrophobic metallic powders in water, based on encapsulating an air bubble surrounded by a hydrophobic metallic shell. This effect, regarded as an inverse of the known liquid-marble effect, is named here "bubble marble" (BM). The sole BM is demonstrated experimentally as a stable, maneuverable, and controllable soft-solid-like structure, in a slightly deformed hollow spherical shape of ˜1-cm diameter. In addition to experimental and theoretical BM aspects, this paper also demonstrates its potential for underwater applications, such as transportation of solid objects within BM and underwater combustion of thermite BM by localized microwaves. Hence, the BM phenomena may open new possibilities for heat and thrust generation, as well as material processing and mass transfer underwater.

  2. Stability of lipid encapsulated ferulic acid particles

    USDA-ARS?s Scientific Manuscript database

    Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...

  3. Flow-directed loading of block copolymer micelles with hydrophobic probes in a gas-liquid microreactor.

    PubMed

    Wang, Chih-Wei; Bains, Aman; Sinton, David; Moffitt, Matthew G

    2013-07-02

    We investigate the loading efficiencies of two chemically distinct hydrophobic fluorescent probes, pyrene and naphthalene, for self-assembly and loading of polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles in gas-liquid segmented microfluidic reactors under different chemical and flow conditions. On-chip loading efficiencies are compared to values obtained via off-chip dropwise water addition to a solution of copolymer and probe. On-chip, probe loading efficiencies depend strongly on the chemical probe, initial solvent, water content, and flow rate. For pyrene and naphthalene probes, maximum on-chip loading efficiencies of 73 ± 6% and 11 ± 3%, respectively, are obtained, in both cases using the more polar solvent (DMF), an intermediate water content (2 wt % above critical), and a low flow rate (∼5 μL/min); these values are compared to 81 ± 6% and 48 ± 2%, respectively, for off-chip loading. On-chip loading shows a significant improvement over the off-chip process where shear-induced formation of smaller micelles enables increased encapsulation of probe. As well, we show that on-chip loading allows off-chip release kinetics to be controlled via flow rate: compared to vehicles produced at ∼5 μL/min, pyrene release kinetics from vehicles produced at ∼50 μL/min showed a longer initial period of burst release, followed by slow release over a longer total period. These results demonstrate the necessity to match probes, solvents, and running conditions to achieve effective loading, which is essential information for further developing these on-chip platforms for manufacturing drug delivery formulations.

  4. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    PubMed

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  5. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material.

    PubMed

    González, M E; Cea, M; Medina, J; González, A; Diez, M C; Cartes, P; Monreal, C; Navia, R

    2015-02-01

    Biochar constitutes a promising support material for the formulation of controlled-release fertilizers (CRFs). In this study we evaluated the effect of different polymeric materials as encapsulating agents to control nitrogen (N) leaching from biochar based CRFs. Nitrogen impregnation onto biochar was performed in a batch reactor using urea as N source. The resulting product was encapsulated by using sodium alginate (SA), cellulose acetate (CA) and ethyl cellulose (EC). Leaching potential was studied in planted and unplanted soil columns, monitoring nitrate, nitrite, ammonium and urea concentrations. After 90 days, plants were removed from the soil columns and plant yield was evaluated. It was observed that the ammonium concentration in leachates presented a maximum concentration for all treatments at day 22. The highest concentration of N in the leachates was the nitrate form. The crop yield was negatively affected by all developed CRFs using biochar compared with the traditional fertilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Encapsulation of Citronellal from Citronella Oil using β-Cyclodextrin and Its Application as Mosquito (Aedes aegypti) Repellent

    NASA Astrophysics Data System (ADS)

    Pujiastuti, A.; Cahyono, E.; Sumarni, W.

    2017-04-01

    Mosquito (Aedes aegypti) is a threat to human health due to its capability to spread dengue fever. Citronellal in citronella oil is one ofnatural active compound that has repellent activity. Essential oil is a sensitive material whichiseasy to degrade. Encapsulation is coating technology use to avoid essential oil from degradation problems. β-Cyclodextrin is frequently used as acoating material in encapsulation. The aims of this study wereto prepare the citronellal encapsulation and to evaluate its control-released and repellency. In this study, encapsulated citronellal was prepared using 83.65% citronellal and encapsulation were prepared with the theemulsion-based method and dried using freeze-dryer. The best-controlled release was performed in citronellal encapsulate with a weight ratio of 1:1 (citronellal : β-Cyclodextrin). The morphology of encapsulated citronellal was analyzed using SEM. SEM result showed it has three dimensions random shape and agglomerate in some part with thebrighter spot. Citronellal encapsulate showed the highest repellent effect at 84,67% for 5 minutes in mosquito repellency test although it has lower result compared with citronellal inliquid form.

  7. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Saleh; Kathuria, Ajay; Abiad, Mohamad; Auras, Rafael

    2016-10-01

    Gamma cyclodextrin (γ-CD) metal organic frameworks (CDMOFs) were synthesized by coordinating γ-CDs with potassium hydroxide (KOH), referred hereafter as CDMOF-a, and potassium benzoate (C7H5KO2), denoted as CDMOF-b. The obtained CDMOF structures were characterized using nitrogen sorption isotherm, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). High surface areas were achieved by the γ-CD based MOF structures where the Langmuir specific surface areas (SSA) of CDMOF-a and CDMOF-b were determined as 1376 m2 g-1 and 607 m2 g-1; respectively. The dehydrated CDMOF structures demonstrated good thermal stability up to 250 °C as observed by the TGA studies. XRD results for CDMOF-a and CDMOF-b reveal a body centered-cubic (BCC) and trigonal crystal system; respectively. Due to its accessible porous structure and high surface area, acetaldehyde was successfully encapsulated in CDMOF-b. During the release kinetic studies, we observed peak release of 53 μg of acetaldehyde per g of CDMOF-b, which was 100 times greater than previously reported encapsulation in β-CD. However, aldol condensation reaction occurred during encapsulation of acetaldehyde into CDMOF-a. This research work demonstrates the potential to encapsulate volatile organic compounds in CDMOF-b, and their associated release for applications including food, pharmaceuticals and packaging.

  8. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.

    PubMed

    Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can

    2012-05-01

    A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. Copyright © 2012 Wiley Periodicals, Inc.

  9. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.

    PubMed

    Tomcin, Stephanie; Kelsch, Annette; Staff, Roland H; Landfester, Katharina; Zentel, Rudolf; Mailänder, Volker

    2016-04-15

    We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles' core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic drug model without the necessity of nanoparticle uptake. In addition, CLSM studies and quantitative calculations using the image processing program Volocity® show the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake. Our findings offer the possibility to combine the advantages of a fast release for hydrophobic and a controlled release for an amphiphilic molecule therefore pointing to the possibility to a 'multi-step and multi-site' targeting by one nanocarrier. We describe thoroughly how different components of a nanocarrier end up in cells. This enables different cargos of a nanocarrier having a consecutive release and delivery of distinct components. Most interestingly we demonstrate individual kinetics of distinct components of such a system: first the release of a fluorescent hydrophobic drug model at contact with the cell membrane without the necessity of nanoparticle uptake. Secondly, the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake occurs. This offers the possibility to combine the advantages of a fast release for a hydrophobic substance at the time of interaction of the nanoparticle with the cell surface and a controlled release for an amphiphilic molecule later on therefore

  10. Investigation of drug loading and in vitro release mechanisms of insulin-lauryl sulfate complex loaded PLGA nanoparticles.

    PubMed

    Shi, K; Cui, F; Yamamoto, H; Kawashima, Y

    2008-12-01

    Insulin, a water soluble peptide hormone, was hydrophobically ion-paired with sodium lauryl sulfate (SDS) at the stoichiometric molar ratio of 6:1. The obtained insulin-SDS complex precipitation was subsequently formulated in biodegradable poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles by a modified spontaneous emulsion solvent diffusion method. Compared with a conventional method for free insulin encapsulation, direct dissolution of SDS-paired insulin in the non-aqueous organic phase led to an increase in drug recovery from 42.5% to 89.6%. The more hydrophobic complex contributes to the improved affinity of insulin to the polymer matrix, resulting in a higher drug content in the nanoparticles. The drug loading was investigated by determining initial burst release at the first 30 min. The results showed that 64.8% of recovered drug were preferentially surface bound on complex loaded nanoparticles. The in vitro drug release was characterized by an initial burst and subsequent delayed release in dissolution media of deionized water and phosphate buffer saline (PBS). Compared with that in PBS, nanoparticles in deionized water medium presented very low initial burst release (15% vs. 65%) and incomplete cumulative release (25% vs. 90%) of the drug. In addition, dialysis experiments were performed to clarify the form of the released insulin in the dissolution media. The results suggested that the ion-pair complex was sensitive to ionic strength, insulin was released from the particular matrix as complex form and subsequently suffered dissociation from SDS in buffer saline. Moreover, the in vivo bioactivity of the SDS-paired insulin and nanoparticulate formulations were evaluated in mice by estimation of their blood sugar levels. The results showed that the bioactivity of insulin was unaltered after the ion-pairing process.

  11. Development of thermosensitive poly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Liang; Tsai, Han-Min; Yang, Shu-Jyuan; Luo, Tsai-Yueh; Lin, Chia-Fu; Lin, Wuu-Jyh; Shieh, Ming-Jium

    2011-07-01

    Thermosensitive nanoparticles based on poly(N-isopropylacrylamide-co-((2-dimethylamino)ethylmethacrylate)) (poly(NIPA-co-DMAEMA)) copolymers were successfully fabricated by free radical polymerization. The lower critical solution temperature (LCST) of the synthesized nanoparticles was 41 °C and a temperature above which would cause the nanoparticles to undergo a volume phase transition from 140 to 100 nm, which could result in the expulsion of encapsulated drugs. Therefore, we used the poly(NIPA-co-DMAEMA) nanoparticles as a carrier for the controlled release of a hydrophobic anticancer agent, 7-ethyl-10-hydroxy-camptothecin (SN-38). The encapsulation efficiency and loading content of SN-38-loaded nanoparticles at an SN-38/poly(NIPA-co-DMAEMA) ratio of 1/10 (D/P = 1/10) were about 80% and 6.293%, respectively. Moreover, the release profile of SN-38-loaded nanoparticles revealed that the release rate at 42 °C (above LCST) was higher than that at 37 °C (below LCST), which demonstrated that the release of SN-38 could be controlled by increasing the temperature. The cytotoxicity of the SN-38-loaded poly(NIPA-co-DMAEMA) nanoparticles was investigated in human colon cancer cells (HT-29) to compare with the treatment of an anticancer drug, Irinotecan® (CPT-11). The antitumor efficacy evaluated in a C26 murine colon tumor model showed that the SN-38-loaded nanoparticles in combination with hyperthermia therapy efficiently suppressed tumor growth. The results indicate that these thermo-responsive nanoparticles are potential carriers for controlled drug delivery.

  12. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    PubMed

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir.

    PubMed

    Perret, Florent; Duffour, Marine; Chevalier, Yves; Parrot-Lopez, Hélène

    2013-01-01

    Acyclovir possesses low solubility in water and in lipid bilayers, so that its dosage forms do not allow suitable drug levels at target sites following oral, local, or parenteral administration. In order to improve this lack of solubility, new cyclodextrin-based amphiphilic derivatives have been designed to form nanoparticles, allowing the efficient encapsulation of this hydrophobic antiviral agent. The present work first describes the synthesis and characterization of five new O-2,O-3 permethylated O-6 alkylthio- and perfluoroalkyl-propanethio-amphiphilic β-cyclodextrins. These derivatives have been obtained with good overall yields. The capacity of these molecules to form nanoparticles in water and to encapsulate acyclovir has then been studied. The nanoparticles prepared from the new β-cyclodextrin derivatives have been characterized by dynamic light scattering and have an average size of 120nm for the fluorinated derivatives and 220nm for the hydrogenated analogs. They all allowed high loading and sustained release of acyclovir. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cell-Responsive Hydrogel for Encapsulation of Vascular Cells

    PubMed Central

    Kraehenbuehl, Thomas P.; Ferreira, Lino S.; Zammaretti, Prisca; Hubbell, Jeffrey A.; Langer, Robert

    2014-01-01

    The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive polyethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin β4 (Tp4), was examined. We show that the physical incorporation of Tβ4 in this bioactive matrix creates a three-dimensional (3D) environment conducive for human umbilical vein endothelial cell (HUVEC) adhesion, survival, migration and organization. Gels with entrapped Tβ4 increased the survival of HUVEC compared to gels without Tp4, and significantly up-regulated the endothelial genes vascular endothelial-cadherin and angiopoietin-2, whereas von Willebrand factor was significantly down-regulated. Incorporation of Tβ4 significantly increased MMP-2 and MMP-9 secretion of encapsulated HUVEC. The gel acts as a controlled Tβ4-release system, as MMP-2 and MMP-9 enzymes trigger the release. In addition, Tβ4 facilitated HUVEC attachment and induced vascular-like network formation upon the PEG-hydrogels. These MMP-responsive PEG-hydrogels may thus serve as controlled co-encapsulation system of vascular cells and bioactive factors for in situ regeneration of ischemic tissues. PMID:19500842

  15. Dual-coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel

    2017-11-01

    Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome

  16. Application of supercritical antisolvent method in drug encapsulation: a review

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2011-01-01

    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO2 flow rate, and the liquid phase flow rate on particle size and its distribution. PMID:21796245

  17. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    PubMed Central

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  18. Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system

    PubMed Central

    Zhang, Shanshan; Anderson, Mark A.; Ao, Yan; Khakh, Baljit S.; Fan, Jessica; Deming, Timothy J.; Sofroniew, Michael V.

    2014-01-01

    Many hydrophobic small molecules are available to regulate gene expression and other cellular functions. Locally restricted application of such molecules in the central nervous system (CNS) would be desirable in many experimental and therapeutic settings, but is limited by a lack of innocuous vehicles able to load and easily deliver hydrophobic cargo. Here, we tested the potential for diblock copolypeptide hydrogels (DCH) to serve as such vehicles. In vitro tests on loading and release were conducted with cholesterol and the anti-cancer agent, temozolomide (TMZ). Loading of hydrophobic cargo modified DCH physical properties such as stiffness and viscosity, but these could readily be tuned to desired ranges by modifying DCH concentration, amino acid composition or chain lengths. Different DCH formulations exhibited different loading capacities and different rates of release. For example, comparison of different DCH with increasing alanine contents showed corresponding increases in both cargo loading capacity and time for cargo release. In vivo tests were conducted with tamoxifen, a small synthetic hydrophobic molecule widely used to regulate transgene expression. Tamoxifen released from DCH depots injected into healthy or injured CNS efficiently activated reporter gene expression in a locally restricted manner in transgenic mice. These findings demonstrate the facile and predictable tunability of DCH to achieve a wide range of loading capacities and release profiles of hydrophobic cargos while retaining CNS compatible physical properties. In addition, the findings show that DCH depots injected into the CNS can efficiently deliver small hydrophobic molecules that regulate gene expression in local cells. PMID:24314556

  19. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  20. Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics.

    PubMed

    Phunpee, Sarunya; Ruktanonchai, Uracha Rangsadthong; Yoshii, Hidefumi; Assabumrungrat, Suttichai; Soottitantawat, Apinan

    2017-04-01

    Inclusion of the two isomers of citral (E-citral and Z-citral), components of lemongrass oil, was investigated within the confines of various cyclodextrin (α-CD, β-CD and γ-CD) host molecules. Aqueous complex formation constants for E-citral with α-CD, β-CD and γ-CD were determined to be 123, 185, and 204 L/mol, respectively, whereas Z-citral exhibited stronger affinities (157, 206, and 253 L/mol, respectively). The binding trend γ-CD > β-CD > α-CD is a reflection of the more favorable geometrical accommodation of the citral isomers with increasing cavity size. Encapsulation of lemongrass oil within CDs was undertaken through shaking citral:CD (1:1, 1.5:1, and 2:1 molar ratio) mixtures followed by spray drying. Maximum citral retention occurred at a 1:1 molar ratio with β-CD and α-CD demonstrating the highest levels of total E-citral and Z-citral retention, respectively. Furthermore, the β-CD complex demonstrated the slowest release rate of all inclusion complex powders.

  1. Methodology for Evaluating Encapsulated Beneficial Uses of Coal Combustion Residuals

    EPA Pesticide Factsheets

    The primary purpose of this document is to present an evaluation methodology developed by the EPA for making determinations about environmental releases from encapsulated products containing coal combustion residuals.

  2. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI. © 2016 Wiley Periodicals, Inc.

  3. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS BY GEOSORBENTS. (R822626)

    EPA Science Inventory

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena ...

  4. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva.

    PubMed

    Krishnan, Sitaraman; Wang, Nick; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Hexemer, Alexander; Sohn, Karen E; Kramer, Edward J; Fischer, Daniel A

    2006-05-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.

  5. Preparation of a novel composite nanofiber gel-encapsulated human placental extract through layer-by-layer self-assembly

    PubMed Central

    LIU, GUOHUI; CHEN, XI; ZHOU, WU; YANG, SHUHUA; YE, SHUNAN; CAO, FAQI; LIU, YI; XIONG, YUAN

    2016-01-01

    Aqueous human placenta extract (HPE) has been previously used to treat chronic soft tissue ulcer; however, the optimal dosage of HPE has yet to be elucidated. The present study investigated a novel nanofiber gel composed through layer-by-layer (LbL) self-assembly, in which HPE was encapsulated. IKVAV, RGD, RAD16 and FGL-PA were screened and combined to produce an optimal vehicle nanofiber gel through LbL assembly. Subsequently, the aqueous HPE was encapsulated into this nanofiber at the appropriate concentration, and the morphology, particle size, drug loading efficacy, encapsulation rate, release efficiency and structure validation were detected. The encapsulation efficiency of all three HPE samples was >90%, the nanofiber gel exhibited a slow releasing profile, and the structure of HPE encapsulated in the nanofiber gel was unvaried. In conclusion, this type of novel composite nanocapsules may offer a promising delivery system for HPE. PMID:27073463

  6. Deep in vivo two-photon imaging of blood vessels with a new dye encapsulated in pluronic nanomicelles

    NASA Astrophysics Data System (ADS)

    Maurin, Mathieu; Stéphan, Olivier; Vial, Jean-Claude; Marder, Seth R.; van der Sanden, Boudewijn

    2011-03-01

    Our purpose is to test if Pluronic® fluorescent nanomicelles can be used for in vivo two-photon imaging of both the normal and the tumor vasculature. The nanomicelles were obtained after encapsulating a hydrophobic two-photon dye: di-stryl benzene derivative, in Pluronic block copolymers. Their performance with respect to imaging depth, blood plasma staining, and diffusion across the tumor vascular endothelium is compared to a classic blood pool dye Rhodamin B dextran (70 kDa) using two-photon microscopy. Pluronic nanomicelles show, like Rhodamin B dextran, a homogeneous blood plasma staining for at least 1 h after intravenous injection. Their two-photon imaging depth is similar in normal mouse brain, using 10 times less injected mass. In contrast with Rhodamin B dextran, no extravasation is observed in leaky tumor vessels due to their large size: 20-100 nm. In conclusion, Pluronic nanomicelles can be used as a blood pool dye, even in leaky tumor vessels. The use of Pluronic block copolymers is a valuable approach for encapsulating two-photon fluorescent dyes that are hydrophobic and not suitable for intravenous injection.

  7. Polymer Coated Echogenic Lipid Nanoparticles with Dual Release Triggers

    PubMed Central

    Nahire, Rahul; Haldar, Manas K.; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H.; Katti, Kalpana S.; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2013-01-01

    Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging. PMID:23394107

  8. Encapsulation Efficiency and Micellar Structure of Solute-Carrying Block Copolymer Nanoparticles

    PubMed Central

    Woodhead, Jeffrey L.; Hall, Carol K.

    2011-01-01

    We use discontinuous molecular dynamics (DMD) computer simulation to investigate the encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles as a function of packing fraction, polymer volume fraction, solute mole fraction, and the interaction parameters between the hydrophobic head blocks and between the head and the solute. The encapsulation efficiency increases with increasing polymer volume fraction and packing fraction but decreases with increasing head-head interaction strength. The latter is due to an increased tendency for the solute to remain on the micelle surface. We compared two different nanoparticle assembly methods, one in which the solute and copolymer co-associate and the other in which the copolymer micelle is formed before the introduction of solute. The assembly method does not affect the encapsulation efficiency but does affect the solute uptake kinetics. Both head-solute interaction strength and head-head interaction strength affect the density profile of the micelles; increases in the former cause the solute to distribute more evenly throughout the micelle, while increases in the latter cause the solute to concentrate further from the center of the micelle. We explain our results in the context of a model of drug insertion into micelles formulated by Kumar and Prud’homme; as conditions become more conducive to micelle formation, a stronger energy barrier to solute insertion forms which in turn decreases the encapsulation efficiency of the system. PMID:21918582

  9. Synthesis and application of hydroxyapatite and fluoroapatite to scorodite encapsulation

    NASA Astrophysics Data System (ADS)

    Katsarou, Lydia

    Recent research has investigated the precipitation of crystalline scorodite (FeAsO4˙2H2O) as a method to stabilise arsenic for disposal due to its good stability performance according to EPA's TCLP test. It has been determined, however, that scorodite releases arsenic in significant concentrations under alkaline pH or under anoxic conditions. With the objective of enhancing the stability of scorodite, its encapsulation with minerals inert to pH and redox potential variations is considered in this work. Such encapsulation materials are hydroxyapatite (HAP-Ca5(PO4)3OH) and fluoroapatite (FAP-Ca5(PO4)3F), the two most stable of the calcium phosphates. The work described in this thesis includes: 1) the preparation of hydroxyapatite and fluoroapatite powders and their characterisation, 2) the synthesis of crystalline scorodite under atmospheric conditions and its characterisation, 3) the encapsulation of scorodite with hydroxyapatite and fluoroapatite, and 4) the long term stability testing of the encapsulated solids. Hydroxyapatite and fluoroapatite were prepared first by homogeneous precipitation from a metastable solution, to which "Ca" and "PO4" source reagents of different concentrations were added at variable rates. The crystallinity of the produced materials was found to increase with temperature. Crystalline scorodite was produced by seeded crystallisation in ambient pressure. For the encapsulation of the scorodite particles various methods of direct precipitation by controlled supersaturation were attempted, by adjusting the pH and adding/mixing feed solutions of individual calcium and phosphate source reagents. Heterogeneous deposition of HAP on scorodite proved rather difficult. Optimum results were obtained via prior conditioning of the scorodite substrate in a calcium solution and employment of low agitation regime and high (37 °C rather than 22°C) temperature. The stability tests were done in oxic and anoxic environments and their results demonstrated

  10. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE)

    DOE PAGES

    Kim, Miju; Yeo, Seon Ju; Highley, Christopher B.; ...

    2015-07-14

    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pHmore » or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.« less

  11. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE).

    PubMed

    Kim, Miju; Yeo, Seon Ju; Highley, Christopher B; Burdick, Jason A; Yoo, Pil J; Doh, Junsang; Lee, Daeyeon

    2015-08-25

    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.

  12. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Miju; Yeo, Seon Ju; Highley, Christopher B.

    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pHmore » or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.« less

  13. Polyelectrolyte capsules preloaded with interconnected alginate matrix: An effective capsule system for encapsulation and release of macromolecules.

    PubMed

    Sundaramurthy, Anandhakumar; Sundramoorthy, Ashok K

    2018-02-01

    In recent years, the design of stimuli-responsive hollow polymeric capsules is of tremendous interest for the scientific community because of the broad application of these capsules in the biomedical field. The use of weak polyelectrolytes as layer components for capsule fabrication is especially interesting as it results in hollow capsules that show unique release characteristics under physiological conditions. In this work, a methodology to prepare sub-micron sized alginate doped calcium carbonate (CaCO 3 ) particles through controlled precipitation in the presence of alginate is reported. Hollow capsules obtained by Layer-by-Layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) are showing an interconnected alginate matrix in the interior of the capsules. Investigations showed that the presence of alginate matrix enhances the encapsulation of cationic molecules (e.g. doxorubicin hydrochloride) manifold by charge controlled attraction mechanism. Capsule permeability investigated by confocal laser scanning microscopy revealed that the transformation from an open state to closed state is accompanied by an intermediate state where capsules are neither open nor closed. Furthermore, time dependent study indicated that the encapsulation process is linear as a function of time. The cell viability experiments demonstrated excellent biocompatibility of hollow capsules with mouse embryonic fibroblast cells. Anticancer investigations showed that DOX loaded capsules have significant anti-proliferative characteristics against HeLa cells. Such capsules have high potential for use as drug carrier for cationic drugs in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds.

    PubMed

    Wang, Ruoxi; Tian, Zhigang; Chen, Lingyun

    2011-03-15

    Novel microparticles (3-5 μm) were created by pre-emulsifying barley proteins with a homogenizer followed a microfluidizer system. These microparticles exhibited a high oil carrying capacity (encapsulation efficiency, 93-97%; loading efficiency, 46-49%). Microparticle degradation and bioactive compound release behaviours were studied in the simulated gastro-intestinal (GI) tract. The data revealed that nano-encapsulations (20-30 nm) were formed as a result of enzymatic degradation of barley protein microparticle bulk matrix in the simulated gastric tract. These nano-encapsulations delivered β-carotene to a simulated human intestinal tract intact, where they were degraded by pancreatic enzymes and steadily released the β-carotene. These uniquely structured microparticles may provide a new strategy for the nutraceutical and pharmaceutical industries to develop targeted delivery systems for lipophilic bioactive compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Water-Soluble Pd8L4 Self-assembled Molecular Barrel as an Aqueous Carrier for Hydrophobic Curcumin.

    PubMed

    Bhat, Imtiyaz Ahmad; Jain, Ruchi; Siddiqui, Mujahuddin M; Saini, Deepak K; Mukherjee, Partha Sarathi

    2017-05-01

    A tetrafacial water-soluble molecular barrel (1) was synthesized by coordination driven self-assembly of a symmetrical tetrapyridyl donor (L) with a cis-blocked 90° acceptor [cis-(en)Pd(NO 3 ) 2 ] (en = ethane-1,2-diamine). The open barrel structure of (1) was confirmed by single crystal X-ray diffraction. The presence of a hydrophobic cavity with large windows makes it an ideal candidate for encapsulation and carrying hydrophobic drug like curcumin in an aqueous medium. The barrel (1) encapsulates curcumin inside its molecular cavity and protects highly photosensitive curcumin from photodegradation. The photostability of encapsulated curcumin is due to the absorption of a high proportion of the incident photons by the aromatic walls of 1 with a high absorption cross-sectional area, which helps the walls to shield the guest even against sunlight/UV radiations. As compared to free curcumin in water, we noticed a significant increase in solubility as well as cellular uptake of curcumin upon encapsulation inside the water-soluble molecular barrel (1) in aqueous medium. Fluorescence imaging confirmed that curcumin was delivered into HeLa cancer cells by the aqueous barrel (1) with the retention of its potential anticancer activity. While free curcumin is inactive toward cancer cells in aqueous medium at room temperature due to negligible solubility, the determined IC 50 value of ∼14 μM for curcumin in aqueous medium in the presence of the barrel (1) reflects the efficiency of the barrel as a potential curcumin carrier in aqueous medium without any other additives. Thus, two major challenges of increasing the bioavailability and stability of curcumin in aqueous medium even in the presence of UV light have been addressed by using a new supramolecular water-soluble barrel (1) as a drug carrier.

  16. Mixed micelles for encapsulation of doxorubicin with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil®.

    PubMed

    Cagel, Maximiliano; Bernabeu, Ezequiel; Gonzalez, Lorena; Lagomarsino, Eduardo; Zubillaga, Marcela; Moretton, Marcela A; Chiappetta, Diego A

    2017-11-01

    Doxorubicin (DOX) is used as a "first-line" antineoplastic drug in ovarian and metastatic breast cancer. However, serious side effects, such as cardiotoxicity have been reported after DOX intravenous administration. Hence, we investigated different micelle-former biomaterials, as Soluplus ® , Pluronic F127, Tetronic T1107 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) to develop a potential mixed micellar nanocarrier for DOX delivery. Since DOX hydrochloride is a poor candidate to be encapsulated inside the hydrophobic core of the mixed micelles, we assayed a hydrophobic complex between DOX and sodium deoxycholate (NaDC) as an excellent candidate to be encapsulated within polymeric micelles. The combination of T1107:TPGS (1:3, weight ratio) demonstrated the best physicochemical properties together with a high DL capacity (6.43% w/v). Particularly, DOX in vitro release was higher at acidic tumour microenvironment pH value (5.5) than at physiological counterpart (7.4). The hydrodynamic diameter of the DOX/NaDC-loaded mixed micellar system was 10.7nm (PDI=0.239). The in vitro cytotoxicity of the mixed micellar formulation resulted significantly (p<0.05) higher than Doxil ® against ovarian (SKOV-3) and triple-negative breast cancer cells (MDA-MB- 231). Further, the in vitro cellular uptake assays demonstrated a significant increment (p<0.05) of the DOX intracellular content for the mixed micelles versus Doxil ® for both, SKOV-3 (at 2, 4 and 6h of incubation) and MDA-MB-231 (at 4h of incubation) cells. These findings suggest that T1107:TPGS (1:3) mixed micelles could be employed as a potential nanotechnological platform for drug delivery of DOX. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Bioactive Encapsulation for Military Food Applications: Request for Enhanced Nano and Micro Particle Fabrication and Characterization Facilities

    DTIC Science & Technology

    2016-01-25

    2013 21-Jul-2014 Approved for Public Release; Distribution Unlimited Final Report: Bioactive Encapsulation for Military Food Applications: Request for...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Bioactive Encapsulation for Military Food Applications...Total Number: ...... Inventions (DD882) Scientific Progress Equipment was purchased. Technology Transfer 1 Bioactive Encapsulation for Military Food

  18. Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery.

    PubMed

    Smitha, K T; Sreelakshmi, M; Nisha, N; Jayakumar, R; Biswas, Raja

    2014-02-01

    This work reports the development of amidase encapsulated O-carboxymethyl chitosan nanoparticles (Ami-O-CMC NPs) of 300±50 nm size by ionic cross-linking method. The prepared Ami-O-CMC NPs had an encapsulation efficiency of 55.39%. Haemolysis assay and cytotoxicity studies proved the hemocompatibility and cytocompatibility of the prepared NPs. The sustained release of Ami from the NPs is expected to prolong its immunogenicity and in turn lead to development of better protective immunity against Staphylococcus aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Photo activation of HPPH encapsulated in "Pocket" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts.

    PubMed

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them "Pocket" liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0-5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5-8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  20. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.

    PubMed

    Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V

    2018-04-06

    Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.

  1. Modification of Sodium Release Using Porous Corn Starch and Lipoproteic Matrix.

    PubMed

    Christina, Josephine; Lee, Youngsoo

    2016-04-01

    Excessive sodium consumption can result in hypertension, diabetes, heart diseases, stroke, and kidney diseases. Various chips and extruded snacks, where salt is mainly applied on the product surface, accounted for almost 56% of snacks retail sales in 2010. Hence, it is important to target sodium reduction for those snack products. Past studies had shown that modifying the rate-release mechanism of sodium is a promising strategy for sodium reduction in the food industry. Encapsulation of salt can be a possible technique to control sodium release rate. Porous corn starch (PCS), created by enzymatic treatment and spray drying and lipoproteic matrix, created by gelation and freeze drying, were evaluated as carriers for controlled sodium release targeting topically applied salts. Both carriers encapsulated salt and their in vitro sodium release profiles were measured using a conductivity meter. The sodium release profiles of PCS treated with different enzymatic reaction times were not significantly different. Protein content and fat content altered sodium release profile from the lipoproteic matrix. The SEM images of PCS showed that most of the salt crystals coated the starch instead of being encapsulated in the pores while the SEM images and computed tomography scan of lipoproteic matrix showed salt dispersed throughout the matrix. Hence, PCS was found to have limitations as a sodium carrier as it could not effectively encapsulate salt inside its pores. The lipoproteic matrix was found to have a potential as a sodium carrier as it could effectively encapsulate salt and modify the sodium release profile. © 2016 Institute of Food Technologists®

  2. Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery.

    PubMed

    Sun, Qihang; Ma, Xinpeng; Zhang, Bo; Zhou, Zhuxian; Jin, Erlei; Shen, Youqing; Van Kirk, Edward A; Murdoch, William J; Radosz, Maciej; Sun, Weilin

    2016-06-24

    An inherent dilemma in the use of nanomedicines for cancer drug delivery is their limited penetration into tumors due to their large size. We have demonstrated that dendrimer/lipid nanoassemblies can solve this problem by means of tumor-triggered disassembly and the release of small (several nanometers) dendrimers to facilitate tumor penetration. Herein, we report a general strategy for the fabrication of nanoassemblies from hydrophobic and hydrophilic dendrimers with phospholipids. Hydrophobic dendrimers could assemble with lipids via hydrophobic interactions, whereas hydrophilic dendrimers could only assemble with lipids in the presence of anionic surfactants via both electrostatic and hydrophobic interactions. The nanoassemblies of hydrophobic dendrimers/lipids were found to be capable of stripping off their lipid layers via fusion with the cell membrane and then intracellular or extracellular release of dendrimers, whereas the nanoassemblies of hydrophilic dendrimers/lipids were internalized via endocytosis and then released their dendrimers inside the cells. Therefore, these dendrimer/lipid nanoassemblies could be used for the delivery of different cancer drugs.

  3. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  4. High-quality graphene flakes exfoliated on a flat hydrophobic polymer

    NASA Astrophysics Data System (ADS)

    Pedrinazzi, Paolo; Caridad, José M.; Mackenzie, David M. A.; Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Sordan, Roman; Booth, Timothy J.; Bøggild, Peter

    2018-01-01

    We show that graphene supported on a hydrophobic and flat polymer surface results in flakes with extremely low doping and strain as assessed by their Raman spectroscopic characteristics. We exemplify this technique by micromechanical exfoliation of graphene on flat poly(methylmethacrylate) layers and demonstrate Raman peak intensity ratios I(2D)/I(G) approaching 10, similar to pristine freestanding graphene. We verify that these features are not an artifact of optical interference effects occurring at the substrate: they are similarly observed when varying the substrate thickness and are maintained when the environment of the graphene flake is completely changed, by encapsulating preselected flakes between hexagonal boron nitride layers. The exfoliation of clean, pristine graphene layers directly on flat polymer substrates enables high performance, supported, and non-encapsulated graphene devices for flexible and transparent optoelectronic studies. We additionally show that the access to a clean and supported graphene source leads to high-quality van der Waals heterostructures and devices with reproducible carrier mobilities exceeding 50 000 cm2 V-1 s-1 at room temperature.

  5. Effect of Hydrophobic Side Chains in the Induction of Immune Responses by Nanoparticle Adjuvants Consisting of Amphiphilic Poly(γ-glutamic acid).

    PubMed

    Shima, Fumiaki; Akagi, Takami; Akashi, Mitsuru

    2015-05-20

    The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. Adjuvants that can control the balance and induction level of cellular and humoral immunities are urgently required for the treatment of and/or protection from infectious diseases and cancers. However, there are no adjuvants which can achieve these requirements. In this study, amphiphilic poly(γ-glutamic acid) (γ-PGA) with various kinds of hydrophobic amino acid ethyl esters (AAE) was synthesized (γ-PGA-AAE) and used to prepare antigen-encapsulated nanoparticles (NPs). γ-PGA-graft-Leu (γ-PGA-Leu, where Leu = leucine ethyl ester), γ-PGA-graft-Phe (γ-PGA-Phe, where Phe = phenylalanine ethyl ester), and γ-PGA-graft-Trp (γ-PGA-Trp, where Trp = tryptophan ethyl ester) formed monodispersed NPs that encapsulated ovalbumin (OVA). The type and the induction level of the antigen-specific cellular and humoral immunities could be controlled by the kinds of hydrophobic segments and vaccine formulation (encapsulation or mixture) used. When OVA was encapsulated into NPs, the cellular immunity was dominantly induced, while humoral immunity was dominant when OVA was mixed with NPs. These results are a first report to demonstrate that the balance and induction level of cellular and humoral immunities could be controlled by modifying compositions of NPs and vaccine formulation. Our results suggest that γ-PGA-AAE NPs can provide safe and efficient nanoparticle-based vaccine adjuvants, and the results also provide guidelines in the rational design of amphiphilic polymers as vaccine adjuvants which can control the balance of immune responses.

  6. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermes, Robert E.

    2017-08-15

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  7. Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropyl)cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex.

    PubMed

    Xia, Yu; Wang, Chuan-Zeng; Tian, Mengkui; Tao, Zhu; Ni, Xin-Long; Prior, Timothy J; Redshaw, Carl

    2018-01-15

    The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8]) was studied by ¹H NMR spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.

  8. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.

    PubMed

    Cheow, Wean Sin; Hadinoto, Kunn

    2011-07-01

    Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All

  9. Nano spray drying for encapsulation of pharmaceuticals.

    PubMed

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy

    NASA Astrophysics Data System (ADS)

    Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L.; Taratula, Oleh

    2015-02-01

    Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm-2), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm-2 to 1.3 W cm-2 the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure.Multifunctional theranostic platforms capable of

  11. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.

    PubMed

    Elliott Donaghue, Irja; Shoichet, Molly S

    2015-10-01

    Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG

  12. Electrosprayed nanoparticle delivery system for controlled release.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan; Harker, Anthony

    2016-09-01

    This study utilises an electrohydrodynamic technique to prepare core-shell lipid nanoparticles with a tunable size and high active ingredient loading capacity, encapsulation efficiency and controlled release. Using stearic acid and ethylvanillin as model shell and active ingredients respectively, we identify the processing conditions and ratios of lipid:ethylvanillin required to form nanoparticles. Nanoparticles with a mean size ranging from 60 to 70nm at the rate of 1.37×10(9) nanoparticles per minute were prepared with different lipid:ethylvanillin ratios. The polydispersity index was ≈21% and the encapsulation efficiency ≈70%. It was found that the rate of ethylvanillin release was a function of the nanoparticle size, and lipid:ethylvanillin ratio. The internal structure of the lipid nanoparticles was studied by transmission electron microscopy which confirmed that the ethylvanillin was encapsulated within a stearic acid shell. Fourier transform infrared spectroscopy analysis indicated that the ethylvanillin had not been affected. Extensive analysis of the release of ethylvanillin was performed using several existing models and a new diffusive release model incorporating a tanh function. The results were consistent with a core-shell structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  14. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  15. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieler-Ferguson, Heidi M.; Chan, Darren; Sockolosky, Jonathan

    Here, we employed a recently introduced class of sterol-modified lipids (SML) to produce m-PEG-DSPE containing liposome compositions with a range of cis-platinum content release rates. SML have a cholesterol succinate attached to the phosphatidylglycerol head group and a fatty acid at the 2 position. These compositions were compared to the well-studied liposome phospholipid compositions: mPEG-DSPE/Hydrogenated Soy PC/cholesterol or mPEG-DSPE/POPC/cholesterol to determine the effect of the cis-platinum release extent on C26 tumor proliferation in the BALB/c colon carcinoma mouse model. The release rates of cis-platinum from liposomes composed of SML are a function of the acyl chain length. SML-liposomes with shortermore » acyl chain lengths C-8 provided more rapid cisplatin release, lower in vitro IC50, and were easier to formulate compared to liposomes using traditional phospholipid compositions. Similar to other liposome cis-platinum formulations, the half-life of m-PEG-DSPE SML liposome cisplatin is substantially longer than the free drug. This resulted in a higher tumor cisplatin concentration at 48 h post-dosing compared to the free drug and higher Pt-DNA adducts in the tumor. Moreover, the maximum tolerated dose of the liposome formulations where up to four fold greater than the free drug. Using X-ray fluorescence spectroscopy on tumor sections, we compared the location of platinum, to the location of a fluorescence lipid incorporated in the liposomes. The liposome platinum co-localized with the fluorescent lipid and both were non-uniformly distributed in the tumor. Non-encapsulated Cis-platinum, albeit at a low concentration, was more uniformly distributed thorough the tumor. Three liposome formulations, including the well studied hydrogenated HSPC composition, had better antitumor activity in the murine colon 26 carcinoma model as compared to the free drug at the same dose but the SML liposome platinum formulations did not perform better than the HSPC

  16. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids

    DOE PAGES

    Kieler-Ferguson, Heidi M.; Chan, Darren; Sockolosky, Jonathan; ...

    2017-03-03

    Here, we employed a recently introduced class of sterol-modified lipids (SML) to produce m-PEG-DSPE containing liposome compositions with a range of cis-platinum content release rates. SML have a cholesterol succinate attached to the phosphatidylglycerol head group and a fatty acid at the 2 position. These compositions were compared to the well-studied liposome phospholipid compositions: mPEG-DSPE/Hydrogenated Soy PC/cholesterol or mPEG-DSPE/POPC/cholesterol to determine the effect of the cis-platinum release extent on C26 tumor proliferation in the BALB/c colon carcinoma mouse model. The release rates of cis-platinum from liposomes composed of SML are a function of the acyl chain length. SML-liposomes with shortermore » acyl chain lengths C-8 provided more rapid cisplatin release, lower in vitro IC50, and were easier to formulate compared to liposomes using traditional phospholipid compositions. Similar to other liposome cis-platinum formulations, the half-life of m-PEG-DSPE SML liposome cisplatin is substantially longer than the free drug. This resulted in a higher tumor cisplatin concentration at 48 h post-dosing compared to the free drug and higher Pt-DNA adducts in the tumor. Moreover, the maximum tolerated dose of the liposome formulations where up to four fold greater than the free drug. Using X-ray fluorescence spectroscopy on tumor sections, we compared the location of platinum, to the location of a fluorescence lipid incorporated in the liposomes. The liposome platinum co-localized with the fluorescent lipid and both were non-uniformly distributed in the tumor. Non-encapsulated Cis-platinum, albeit at a low concentration, was more uniformly distributed thorough the tumor. Three liposome formulations, including the well studied hydrogenated HSPC composition, had better antitumor activity in the murine colon 26 carcinoma model as compared to the free drug at the same dose but the SML liposome platinum formulations did not perform better than the HSPC

  17. Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

    PubMed Central

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  18. Physico-chemical state influences in vitro release profile of curcumin from pectin beads.

    PubMed

    Nguyen, An Thi-Binh; Winckler, Pascale; Loison, Pauline; Wache, Yves; Chambin, Odile

    2014-09-01

    Curcumin is a polyphenolic compound with diverse effects interesting to develop health benefit products but its formulation in functional foods or in food supplement is hampered by its poor water solubility and susceptibility to alkaline conditions, light, oxidation and heat. Encapsulation of curcumin could be a mean to overcome these difficulties. In this paper, curcumin was encapsulated by ionotropic gelation method in low methoxyl pectin beads associated with different surfactants: Solutol(®), Transcutol(®) and sodium caseinate. After encapsulation, physico-chemical properties of encapsulated curcumin such as its solubility, physical state, tautomeric forms and encapsulation efficiency as well as encapsulation yield were characterized. In vitro dissolution of curcumin from beads displayed different kinetic profiles according to bead composition due to different matrix network. As Solutol(®) was a good solvent for curcumin, the drug was present into amorphous form in these beads inducing a rapid release of curcumin in the simulated digestive fluids. In contrast, drug release was slower from sodium caseinate beads since curcumin was not totally dissolved during the manufacturing process. Moreover, the FLIM studies showed that a part of curcumin was encapsulated in caseinate micelles and that 34% of this drug was in keto form which may delay the curcumin release. The Transcutol beads showed also a slow drug release because of the low curcumin solubility and the high density of the matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Boar semen controlled delivery system: storage and in vitro spermatozoa release.

    PubMed

    Torre, M L; Faustini, M; Norberti, R; Stacchezzini, S; Maggi, L; Maffeo, G; Conte, U; Vigo, D

    2002-12-13

    Swine spermatozoa were encapsulated in barium alginate and protamine-barium alginate membranes to lengthen their preservation time and to provide a means of controlling their release. Precocious acrosome reactions and secondary anomalies were measured as indices of semen quality. These characteristics were observed for two forms of encapsulated spermatozoa when stored at 18 and 38 degrees C for 24 h and for semen diluted in a classical extender at both temperatures. The results indicate that encapsulation enhances semen preservation, providing protection against membrane damage upon dilution. The effect is even more evident at the higher temperature (38 degrees C), where cell metabolism is higher. An in vitro release test of spermatozoa showed a massive cell delivery from barium alginate capsules within 6 h, and a slow release from protamine-barium alginate capsules. The properties of spermatozoa 24 h after release did not differ from the semen stored at the same temperature in capsules, indicating that the release process does not impair semen quality.

  20. Drug Release Kinetics, Cell Uptake, and Tumor Toxicity of Hybrid VVVVVVKK Peptide-Assembled Polylactide Nanoparticles

    PubMed Central

    Jabbari, Esmaiel; Yang, Xiaoming; Moeinzadeh, Seyedsina; He, Xuezhong

    2013-01-01

    An exciting approach to tumor delivery is encapsulation of the drug in self-assembled polymer-peptide nanoparticles. The objective of this work was to synthesize a conjugate of low molecular weight polylactide (LMW PLA) and V6K2 peptide, and investigate self-assembly, drug release kinetics, cell uptake and toxicity, drug pharmacokinetics, and tumor cell invasion with Doxorubicin (DOX) or paclitaxel (PTX). The results for PLA-V6K2 self-assembled NPs were compared with those of polyethylene glycol stabilized PLA (PLA-EG) NPs. The size of PLA-V6K2 and PLA-EG NPs were 100±20 and 130±50 nm, respectively, with polydispersity index of 1.04 and 1.14. The encapsulation efficiency of DOX in PLA-V6K2 and PLA-EG NPs was 44±9% and 55±5%, respectively, and that of PTX was >90 for both NP types. The release of DOX and PTX from PLA-V6K2 was slower than that of PLA-EG and the release rate was relatively constant with time. Based on molecular dynamic simulation, the less hydrophobic DOX was distributed in the lactide core as well as the peptide shell while the hydrophobic PTX was localized mainly to the lactide core. PLA-V6K2 NPs had significantly higher cell uptake by 4T1 mouse breast carcinoma cells compared to PLA-EG NPs, which was attributed to the electrostatic interactions between the peptide and negatively charged moieties on the cell membrane. PLA-V6K2 NPs showed no toxicity to marrow stromal cells. DOX loaded PLA-V6K2 NPs showed higher toxicity to 4T1 cells and the DNA damage response and apoptosis was delayed compared to the free DOX. DOX or PTX encapsulated in PLA-V6K2 NPs significantly reduced invasion of 4T1 cells compared to those cells treated with the drug in PLA-EG NPs. Invasion of 4T1 cells treated with DOX in PLA-V6K2 and PLA-EG NPs was 5±1% and 30±5%, respectively, and that of PTX was 11±2% and 40±7%. The AUC of DOX in PLA-V6K2 NPs was 67% and 21% higher than those of free DOX and PLA-EG NPs, respectively. DOX loaded PLA-V6K2 NPs injected in C3He

  1. Encapsulation and antioxidant activity of ascorbyl palmitate with maize starch during pasting.

    PubMed

    Bamidele, O P; Duodu, K G; Emmambux, M N

    2017-06-15

    Ascorbyl palmitate can interact with amylose to form amylose-lipid complexes. This study determined the effects of ascorbyl palmitate (0, 15 and 50mg/g starch) on the pasting properties of maize starch, amount of ascorbyl palmitate bound in the starch paste, release of ascorbyl palmitate after enzymatic hydrolysis and its antioxidant activity. Pasting of starch with ascorbyl palmitate at 91°C for 120min resulted in the formation of type II amylose-lipid complexes as shown by DSC melting enthalpies. About 93% and 66% of ascorbyl palmitate were encapsulated when 15mg and 50mg was respectively added to maize starch during pasting. Less than 50% of the bound ascorbyl palmitate was released during pancreatic α-amylase hydrolysis suggesting that some of the complexes were not hydrolysed to release the ligand. The antioxidant activities of the ascorbyl palmitate correlated (R=0.937) to the amount released during enzymatic hydrolysis. It can be concluded that pasting of maize starch can be used to encapsulate ascorbyl palmitate by possibly forming amylose-lipid complexes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Morphological changes in vesicles and release of an encapsulated compound triggered by a photoresponsive Malachite Green leuconitrile derivative.

    PubMed

    Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi

    2010-04-20

    Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios <5 mol %. This Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.

  3. pH-Triggered Echogenicity and Contents Release from Liposomes

    PubMed Central

    2015-01-01

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%). PMID:25271780

  4. pH-triggered echogenicity and contents release from liposomes.

    PubMed

    Nahire, Rahul; Hossain, Rayat; Patel, Rupa; Paul, Shirshendu; Meghnani, Varsha; Ambre, Avinash H; Gange, Kara N; Katti, Kalpana S; Leclerc, Estelle; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2014-11-03

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%).

  5. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Stabilization of Tetanus Toxoid Encapsulated in PLGA Microspheres

    PubMed Central

    Jiang, Wenlei; Schwendeman, Steven P.

    2014-01-01

    Delivery of vaccine antigens from controlled-release poly(lactic/glycolic acid) (PLGA) microspheres is a novel approach to reduce the number of antigen doses required for protection against infection. A major impediment to developing single-shot vaccines is encapsulated antigen instability during months of exposure to physiological conditions. For example, efforts to control neonatal tetanus in developing countries with a single-dose TT vaccine have been plagued by poor stability of the 150 kDa formaldehyde-detoxified protein antigen, tetanus toxoid (TT) in PLGA microspheres. We examined the denatured states of PLGA-encapsulated TT, revealing two primary TT instability mechanisms: 1) protein aggregation mediated by formaldehyde and 2) acid-induced protein unfolding and epitope damage. Further, we systemically identified excipients which can efficiently inhibit TT aggregation and retain TT antigenicity under simulated deleterious conditions, i.e., elevated temperature and humidity. By employing these novel additives in the PLGA system, we report the slow and continuous release of high doses of TT for one month with retained antigen stability during bioerosion of PLGA. PMID:18710256

  7. Stabilization of tetanus toxoid encapsulated in PLGA microspheres.

    PubMed

    Jiang, Wenlei; Schwendeman, Steven P

    2008-01-01

    Delivery of vaccine antigens from controlled-release poly(lactic/glycolic acid) (PLGA) microspheres is a novel approach to reduce the number of antigen doses required for protection against infection. A major impediment to developing single-shot vaccines is encapsulated antigen instability during months of exposure to physiological conditions. For example, efforts to control neonatal tetanus in developing countries with a single-dose TT vaccine based on PLGA microspheres have been plagued by poor stability of the 150 kDa formaldehyde-detoxified protein antigen, tetanus toxoid (TT), in the polymer. We examined the denatured states of PLGA-encapsulated TT, revealing two primary TT instability mechanisms: (1) protein aggregation mediated by formaldehyde and (2) acid-induced protein unfolding and epitope damage. Further, we systematically identified excipients, which can efficiently inhibit TT aggregation and retain TT antigenicity under simulated deleterious conditions, i.e., elevated temperature and humidity. By employing these novel additives in the PLGA system, we report the slow and continuous release of high doses of TT for one month with retained antigen stability during bioerosion of PLGA.

  8. Extended-release mesalamine granules for ulcerative colitis.

    PubMed

    Love, Bryan L; Miller, April D

    2012-11-01

    To evaluate the efficacy and safety of extended-release mesalamine granules in the maintenance of remission in ulcerative colitis (UC). Literature was obtained through searches of MEDLINE (1990-June 2012) using the terms mesalamine granules, ulcerative colitis, Apriso, and Salofalk. Bibliographies from retrieved articles were searched for additional citations. All English-language articles reporting on use of extended-release mesalamine granules in humans identified through the search were evaluated and included. The preferred initial treatment for induction and maintenance of remission in mild to moderate UC is agents from the 5-aminosalicylate class (balsalazide, mesalamine, olsalazine, sulfasalazine). Mesalamine granules are available as an encapsulated product in the US and as a nonencapsulated formulation in Europe. Data evaluating encapsulated mesalamine granules for induction of remission are lacking; however, the European mesalamine granule formulation has been evaluated for induction of remission. Patients receiving mesalamine granules for induction achieved clinical and endoscopic remission more frequently than those receiving placebo. Two pivotal, randomized, double-blind, placebo-controlled, multicenter studies have evaluated encapsulated mesalamine granules for maintenance in 562 adults in remission from UC. In both studies, the proportion of patients who remained relapse-free at 6 months was higher for those receiving encapsulated mesalamine granules than placebo. Mesalamine granules are well tolerated, with headache, nausea, and upper respiratory infections being the most frequently reported adverse effects. Current evidence supports the use of extended-release mesalamine granules for maintenance of remission in mild to moderate UC. Further studies are necessary to examine the ideal dose and regimen of encapsulated mesalamine granules for induction of remission in UC.

  9. Quantification of intracellular payload release from polymersome nanoparticles

    NASA Astrophysics Data System (ADS)

    Scarpa, Edoardo; Bailey, Joanne L.; Janeczek, Agnieszka A.; Stumpf, Patrick S.; Johnston, Alexander H.; Oreffo, Richard O. C.; Woo, Yin L.; Cheong, Ying C.; Evans, Nicholas D.; Newman, Tracey A.

    2016-07-01

    Polymersome nanoparticles (PMs) are attractive candidates for spatio-temporal controlled delivery of therapeutic agents. Although many studies have addressed cellular uptake of solid nanoparticles, there is very little data available on intracellular release of molecules encapsulated in membranous carriers, such as polymersomes. Here, we addressed this by developing a quantitative assay based on the hydrophilic dye, fluorescein. Fluorescein was encapsulated stably in PMs of mean diameter 85 nm, with minimal leakage after sustained dialysis. No fluorescence was detectable from fluorescein PMs, indicating quenching. Following incubation of L929 cells with fluorescein PMs, there was a gradual increase in intracellular fluorescence, indicating PM disruption and cytosolic release of fluorescein. By combining absorbance measurements with flow cytometry, we quantified the real-time intracellular release of a fluorescein at a single-cell resolution. We found that 173 ± 38 polymersomes released their payload per cell, with significant heterogeneity in uptake, despite controlled synchronisation of cell cycle. This novel method for quantification of the release of compounds from nanoparticles provides fundamental information on cellular uptake of nanoparticle-encapsulated compounds. It also illustrates the stochastic nature of population distribution in homogeneous cell populations, a factor that must be taken into account in clinical use of this technology.

  10. Release and Degradation of Microencapsulated Spinosad and Emamectin Benzoate.

    PubMed

    Huang, Bin Bin; Zhang, Shao Fei; Chen, Peng Hao; Wu, Gang

    2017-09-07

    The dynamics of release and degradation of the microencapsulation formulation containing spinosad (SP) and emamectin benzoate (EM) were evaluated in the present study. SP and EM were microencapsulated using biodegradable poly-lactic acid (PLA) as the wall material. Their release from and degradation within the prepared SP and EM microspheres (SP-EM-microspheres) were studied. It was found that the encapsulation significantly prolonged the insecticide release. The release could be further extended if the external aqueous phase was pre-saturated with the insecticides and the microspheres were additionally coated with gelatin. On the other hand, increasing the water content of the emulsion or the hydrophilic polycaprolactone (PCL) content in the PLA/PCL mixture accelerated the release. Due to the photolysis and hydrolysis of SP and EM by sunlight, the toxicity of the non-encapsulated insecticides in water declined continuously from 0 through the 9 th day (d), and dissipated in 13 d. In contrast, an aqueous suspension containing 5% SP-EM-microspheres maintained a mostly constant toxicity to Plutella xylostella for 17 d. The biodegradable SP-EM-microspheres showed significantly higher long-term toxicity to P. xylostella due to lower release, reduced photolysis and hydrolysis of the encapsulated insecticides, which were affected by the varied preparation conditions.

  11. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk

    PubMed Central

    Cheema, M.; Mohan, M. S.; Campagna, S. R.; Jurat-Fuentes, J. L.; Harte, F. M.

    2015-01-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  12. MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations

    NASA Astrophysics Data System (ADS)

    Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.

    1993-04-01

    In a series of pH 7 continuous-flow column experiments, removal of the bacteriophage MS-2 by attachment to silica beads had a strong, systematic dependence on the amount of hydrophobic surface present on the beads. With no hydrophobic surface, removal of phage at pH 5 was much greater than at pH 7. Release of attached phage at both pH values did occur, but was slow; breakthrough curves exhibited tailing. Poliovirus attached to silica beads at pH 5.5 much more than at pH 7.0, and attachment was also slowly reversible. Time scales for phage and poliovinis attachment were of the order of hours. The sticking efficiency factor (α), reflecting microscaie physicochemical influences on virus attachment, was in the range of 0.0007-0.02. Phage release was small but measurable under steady state conditions. Release was enhanced by lowering ionic strength and by introducing beef extract, a high-ionic-strength protein solution. Results show that viruses experience reversible attachment/detachment (sometimes termed sorption), that large chemical perturbations are needed to induce rapid virus detachment, and that viruses should be quite mobile in sandy porous media. Even small amounts of hydrophobic organic material in the porous media (≥0.001%) can retard virus transport.

  13. Use of encapsulated bacteriophages to enhance farm to fork food safety.

    PubMed

    Hussain, Malik A; Liu, Huan; Wang, Qi; Zhong, Fang; Guo, Qian; Balamurugan, Sampathkumar

    2017-09-02

    Bacteriophages have been successfully applied to control the growth of pathogens in foods and to reduce the colonization and shedding of pathogens by food animals. They are set to play a dominant role in food safety in the future. However, many food-processing operations and the microenvironments in food animals' guts inactivate phages and reduce their infectivity. Encapsulation technologies have been used successfully to protect phages against extreme environments, and have been shown to preserve their activity and enable their release in targeted environments. A number of encapsulation technologies have shown potential for use with bacteriophages. This review discusses the current state of knowledge about the use of encapsulation technologies with bacteriophages to control pathogens in foods and food animals.

  14. Stability of lutein encapsulated whey protein nano-emulsion during storage

    PubMed Central

    Guo, Mingruo

    2018-01-01

    Lutein is a hydrophobic carotenoid that has multiple health functions. However, the application of lutein is limited due to its poor solubility in water and instability under certain conditions during storage. Hereby we generated lutein loaded nano-emulsions using whey protein isolate (WPI) or polymerized whey protein isolate (PWP) with assistance of high intensity ultrasound and evaluate their stability during storage at different conditions. We measured the particle size, zeta-potential, physical stability and lutein content change. Results showed that the PWP based nano-emulsion system was not stable in the tested Oil/Water/Ethanol system indicated by the appearance of stratification within only one week. The WPI based nano-emulsion system showed stable physiochemical stability during the storage at 4°C. The lutein content of the system was reduced by only 4% after four weeks storage at 4°C. In conclusion, our whey protein based nano-emulsion system provides a promising strategy for encapsulation of lutein or other hydrophobic bioactive molecules to expand their applications. PMID:29415071

  15. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy

    PubMed Central

    Iqbal, Sakib; Rashid, Mohammad H.; Arbab, Ali S.; Khan, Mujibur

    2017-01-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19–23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50–160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22–90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52–53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%. PMID:28845137

  16. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy.

    PubMed

    Iqbal, Sakib; Rashid, Mohammad H; Arbab, Ali S; Khan, Mujibur

    2017-04-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19-23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50-160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22-90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52-53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%.

  17. Electrospinning of calcium phosphate-poly (d,l-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization

    PubMed Central

    Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong

    2016-01-01

    Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering. PMID:27785016

  18. Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery

    PubMed Central

    Song, Lei; Zhi, Zheng-liang; Pickup, John C

    2014-01-01

    Current oral insulin formulations reported in the literature are often associated with an unpredictable burst release of insulin in the intestine, which may increase the risk for problematic hypoglycemia. The aim of the study was to develop a solution based on a nanolayer encapsulation of insulin-chitosan complexes to afford sustained release after oral administration. Chitosan/heparin multilayer coatings were deposited onto insulin-chitosan microparticulate cores in the presence of poly(ethylene) glycol (PEG) in the precipitating and coating solutions. The addition of PEG improved insulin loading and minimized an undesirable loss of the protein resulting from redissolution. Nanolayer encapsulation and the formation of complexes enabled a superior loading capacity of insulin (>90%), as well as enhanced stability and 74% decreased solubility at acid pH in vitro, compared with nonencapsulated insulin. The capsulated insulin administered by oral gavage lowered fasting blood glucose levels by up to 50% in a sustained and dose-dependent manner and reduced postprandial glycemia in streptozotocin-induced diabetic mice without causing hypoglycemia. Nanolayer encapsulation reduced the possibility of rapid and erratic falls of blood glucose levels in animals. This technique represents a promising strategy to promote the intestinal absorption efficiency and release behavior of the hormone, potentially enabling an efficient and safe route for oral insulin delivery of insulin in diabetes management. PMID:24833901

  19. Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing.

    PubMed

    Rasekh, Manoochehr; Ahmad, Zeeshan; Cross, Richard; Hernández-Gil, Javier; Wilton-Ely, James D E T; Miller, Philip W

    2017-06-05

    Naturally occurring polymers are promising biocompatible materials that have many applications for emerging therapies, drug delivery systems, and diagnostic agents. The handling and processing of such materials still constitutes a major challenge, which can limit the full exploitation of their properties. This study explores an ambient environment processing technique: coaxial electrospray (CO-ES) to encapsulate genistein (an isoflavonoid and model drug), superparamagnetic iron oxide nanoparticles (SPIONs, 10-15 nm), and a fluorophore (BODIPY) into a layered (triglyceride tristearin shell) particulate system, with a view to constructing a theranostic agent. Mode mapping of CO-ES led to an optimized atomization engineering window for stable jetting, leading to encapsulation of SPIONs within particles of diameter 0.65-1.2 μm and drug encapsulation efficiencies of around 92%. Electron microscopy was used to image the encapsulated SPIONs and confirm core-shell triglyceride encapsulation in addition to further physicochemical characterization (AFM, FTIR, DSC, and TGA). Cell viability assays (MTT, HeLa cells) were used to determine optimal SPION loaded particles (∼1 mg/mL), while in vitro release profile experiments (PBS, pH = 7.4) demonstrate a triphasic release profile. Further cell studies confirmed cell uptake and internalization at selected time points (t = 1, 2, and 4 h). The results suggest potential for using the CO-ES technique as an efficient way to encapsulate SPIONs together with sensitive drugs for the development of multimodal particles that have potential application for combined imaging and therapy.

  20. Antimicrobial drugs encapsulated in fibrin nanoparticles for treating microbial infested wounds.

    PubMed

    Alphonsa, B Maria; Sudheesh Kumar, P T; Praveen, G; Biswas, Raja; Chennazhi, K P; Jayakumar, R

    2014-05-01

    In vitro evaluation of antibacterial and antifungal drugs encapsulated fibrin nanoparticles to prove their potential prospect of using these nanocomponent for effective treatment of microbial infested wounds. Surfactant-free oil-in-water emulsification-diffusion method was adopted to encapsulate 1 mg/ml each of antimicrobial drugs (Ciprofloxacin and Fluconazole) in 4 ml of aqueous fibrinogen suspension and subsequent thrombin mediated cross linking to synthesize drug loaded fibrin nanoparticles. Ciprofloxacin loaded fibrin nanoparticles (CFNPs) showed size range of 253 ± 6 nm whereas that of Fluconazole loaded fibrin nanoparticles (FFNPs) was 260 ± 10 nm. Physico chemical characterizations revealed the firm integration of antimicrobial drugs within fibrin nanoparticles. Drug release studies performed at physiological pH 7.4 showed a release of 16% ciprofloxacin and 8% of fluconazole while as the release of ciprofloxacin at alkaline pH 8.5, was 48% and that of fluconazole was 37%. The antimicrobial activity evaluations of both drug loaded systems independently showed good antibacterial activity against Escherichia coli (E.coli), Staphylococcus aureus (S. aureus) and antifungal activity against Candida albicans (C. albicans). The in vitro toxicity of the prepared drug loaded nanoparticles were further analyzed using Human dermal fibroblast cells (HDF) and showed adequate cell viability. The efficacies of both CFNPs and FFNPs for sustained delivery of encapsulated anti microbial drugs were evaluated in vitro suggesting its potential use for treating microbial infested wounds (diabetic foot ulcer).

  1. Kinetics and Antioxidant Capacity of Proanthocyanidins Encapsulated in Zein Electrospun Fibers by Cyclic Voltammetry.

    PubMed

    Wang, Hualin; Hao, Lilan; Niu, Baicheng; Jiang, Suwei; Cheng, Junfeng; Jiang, Shaotong

    2016-04-20

    The proanthocyanidins encapsulated in zein (zein-PA) fibers was via electrospinning technique. The kinetics and antioxidant capacity of PA from zein fibers was investigated by cyclic voltammetry. Circular dichroism was used to investigate the secondary structure change of zein and its influence on the shape of fibers. The addition of PA caused a significant increase in viscosity and made fibers wider. These hydrogen bonds between zein and PA molecules would favor the α-helix change and decrease the β-folds of zein in electrospinning solutions, leading to a round-shaped tendency of fibers and enhancing the thermal properties slightly. Zein-PA fibers showed high encapsulation efficiency close to 100%, and the encapsulated PA retained its antioxidant capacity in fibers. Zein-PA fibers showed a good controlled release toward PA, and the predominant release of PA from fibers was Fickian diffusion, which could be well described by first-order model and Hixson-Crowell model.

  2. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity.

    PubMed

    Popat, Amirali; Karmakar, Surajit; Jambhrunkar, Siddharth; Xu, Chun; Yu, Chengzhong

    2014-05-01

    Curcumin (CUR), a naturally derived anti-cancer cocktail is arguably the most widely studied neutraceutical. Despite a lot of promises, it is yet to reach the market as an active anti-cancer formulation. In the present study, we have prepared highly soluble (3 mg/ml) CUR-γ-hydroxypropyl cyclodextrin (CUR-CD) hollow spheres. CUR-CD hollow spheres were prepared by a novel and scalable spray drying method. CUR-CD was then encapsulated into positively charged biodegradable chitosan (CUR-CD-CS) nanoparticles. The CUR-CD-CS nanoparticles were characterised by TEM, SEM, DLS, drug loading and in vitro release. We tested the efficacy of these CUR-CD-CS nanoparticles in SCC25 cell lines using MTT assay and investigated its cellular uptake mechanism. We also studied Oligo DNA loading in CUR-CD-CS nanoparticles and its delivery via confocal imaging and FACS analysis. Our results demonstrated that CUR-CD-CS nanoparticles showed superior in vitro release performance and higher cytotoxicity in SCC25 cell line amongst all tested formulations. The cytotoxicity results were corroborated by cell cycle analysis and apoptosis test, showing nearly 100% apoptotic cell death in the case of CUR-CD-CS nanoparticles. Compared to CS nanoparticles, CS-CD nanoformulation showed higher cellular delivery of Cy3-Oligo DNA which was tested quantitatively using flowcytometry analysis, indicating that CD not only enhanced CUR solubility but also boosted the cellular uptake. Our study shows that rationally designed bio-degradable natural biomaterials have great potential as next generation nano-carriers for hydrophobic drug delivery such as CUR with potential of dual drug-gene delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Aluminum Doped MCM-41 Nanoparticles as Platforms for the Dual Encapsulation of a CO-Releasing Molecule and Cisplatin.

    PubMed

    Carmona, Francisco J; Jiménez-Amezcua, Ignacio; Rojas, Sara; Romão, Carlos C; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2017-09-05

    Mesoporous silica Al-MCM-41 nanoparticles have been used, for the first time, as vehicles for the single and dual encapsulation of the cationic CO-releasing molecule (CORM) [Mn(1,4,7-triazacyclononane)(CO) 3 ] + (ALF472 + ) and the well-known antineoplastic drug, cis-[PtCl 2 (NH 3 ) 2 ] (cisplatin). Thus, two new hybrid materials, namely, ALF472@Al-MCM-41 and ALF472-cisplatin@Al-MCM-41, have been isolated and fully characterized. The results reveal that the presence of CORM molecules enhances cisplatin loading 3-fold, yielding a cargo of 0.45 mmol g -1 of ALF472 + and 0.12 mmol g -1 of the platinum complex for ALF472-cisplatin@Al-MCM-41. It is worth noting that ALF472@Al-MCM-41 shows a good dispersion in phosphate buffered saline solution, while the dual hybrid material slightly aggregates in this simulated physiological medium (hydrodynamic size: 112 ± 23 and 336 ± 50 nm, respectively). In addition, both hybrid materials (ALF472@Al-MCM-41 and ALF472-cisplatin@Al-MCM-41) behave as photoactive CO-releasing materials, delivering 0.25 and 0.11 equiv of CO, respectively, after 24 h and exhibiting a more controlled CO delivery than that of the free CORM. Finally, metal leaching studies have confirmed the good retention capacity of Al-MCM-41 toward the potentially toxic manganese fragments (86% of retention after 72 h) as well as the low release of cisplatin (ca. 7% after 72 h).

  4. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    PubMed

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  5. Magnetic Resonance Imaging-Guided Multi-Drug Chemotherapy and Photothermal Synergistic Therapy with pH and NIR-Stimulation Release.

    PubMed

    Yang, Ji-Chun; Chen, Yang; Li, Yu-Hao; Yin, Xue-Bo

    2017-07-12

    The combination of multidrug chemotherapy and photothermal therapy (PTT) enhances cancer therapeutic efficacy. Herein, we develop a simple and smart pH/NIR dual-stimulus-responsive degradable mesoporous CoFe 2 O 4 @PDA@ZIF-8 sandwich nanocomposite. The mesoporous CoFe 2 O 4 core acts as T 2 -weighted magnetic resonance (MR) imaging probe, PTT agent, and loading platform of hydrophilic doxorubicin (DOX). A polydopamine (PDA) layer is used to avoid the premature leakage of DOX before arriving at tumor site, enhance PTT efficiency, and facilitate the integration of ZIF-8 (a kind of metal-organic framework). The ZIF-8 shell serves to encapsulate hydrophobic camptothecin (CPT) and as the switch for the pH and NIR stimulation-responsive release of the two drugs. Therefore, T 2 -weighted MR imaging-guided multidrug chemotherapy and PTT synergistic treatment is achieved. Two kinds of anticancer drugs, hydrophilic DOX and hydrophobic CPT, are successfully loaded in CoFe 2 O 4 and ZIF-8, respectively, so no mutual interference between the two drugs exists. A unique two-stage stepwise release process is exhibited for CPT and DOX with an interval of 12 h to improve the anticancer efficacy under the acidic microenvironment of tumor tissue. NIR irradiation achieves the burst drug-release and PTT after laser stimulation, simultaneously. With this smart design, high drug concentration is achieved at the tumor site by quick release, especially for the therapeutic drugs that show nonlinear pharmacokinetics, and PTT is integrated efficiently. Furthermore, negligible biotoxicity and a remarkable synergic antitumor effect of the hybrid nanocomposites are validated by HepG2 cells and tumor-bearing mice as models. Our multidrug delivery-releasing composite improves tumor therapeutic efficiency significantly compared with a single-drug chemotherapy system. The simple multifunctional composite system can be applied as an effective platform for personal nanomedicine with diagnosis, smart

  6. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  7. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning

    PubMed Central

    Dutta, Dipankar; Salifu, Mariama; Sirianni, Rachael W.; Stabenfeldt, Sarah E.

    2016-01-01

    Poly(D,L-lactic-co-glycolic) acid (PLGA)-based submicron particles are uniquely posed to overcome limitations of conventional drug delivery systems. However, tailoring cargo/payload release profiles from PLGA micro/nanoparticles typically requires optimization of the multi-parameter formulation, where small changes may cause drastic shifts in the resulting release profiles. In this study, we aimed to establish whether refining the average diameter of submicron particle populations after formulation alters protein release profiles. PLGA particles were first produced via double emulsion-solvent evaporation method to encapsulate bovine serum albumin. Particles were then subjected to centrifugal fractioning protocols varying in both spin time and force to determine encapsulation efficiency and release profile of differently sized populations that originated from a single batch. We found the average particle diameter was related to marked alterations in encapsulation efficiencies (range: 36.4–49.4%), burst release (range: 15.8–49.1%), and time for total cargo release (range: 38–78 days). Our data corroborate previous reports relating PLGA particle size with such release characteristics, however, this is the first study, to our knowledge, to directly compare particle population size while holding all formulation parameters constant. In summary, centrifugal fractioning to selectively control the population distribution of sub-micron PLGA particles represents a feasible tool to tailor release characteristics. PMID:26517011

  8. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-01

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can

  9. Mammalian Cell Encapsulation in Alginate Beads Using a Simple Stirred Vessel.

    PubMed

    Hoesli, Corinne A; Kiang, Roger L J; Raghuram, Kamini; Pedroza, René G; Markwick, Karen E; Colantuoni, Antonio M R; Piret, James M

    2017-06-29

    Cell encapsulation in alginate beads has been used for immobilized cell culture in vitro as well as for immunoisolation in vivo. Pancreatic islet encapsulation has been studied extensively as a means to increase islet survival in allogeneic or xenogeneic transplants. Alginate encapsulation is commonly achieved by nozzle extrusion and external gelation. Using this method, cell-containing alginate droplets formed at the tip of nozzles fall into a solution containing divalent cations that cause ionotropic alginate gelation as they diffuse into the droplets. The requirement for droplet formation at the nozzle tip limits the volumetric throughput and alginate concentration that can be achieved. This video describes a scalable emulsification method to encapsulate mammalian cells in 0.5% to 10% alginate with 70% to 90% cell survival. By this alternative method, alginate droplets containing cells and calcium carbonate are emulsified in mineral oil, followed by a decrease in pH leading to internal calcium release and ionotropic alginate gelation. The current method allows the production of alginate beads within 20 min of emulsification. The equipment required for the encapsulation step consists in simple stirred vessels available to most laboratories.

  10. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Bilan; Wei, Xiawei; Men, Ke; Zheng, Fengjin; Zhou, Yingfeng; Zheng, Yu; Gou, Maling; Huang, Meijuan; Guo, Gang; Huang, Ning; Qian, Zhiyong; Wei, Yuquan

    2012-10-01

    Encapsulation of hydrophobic agents in polymer micelles can improve the water solubility of cargos, contributing to develop novel drugs. Quercetin (QU) is a hydrophobic agent with potential anticancer activity. In this work, we encapsulated QU into biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles and tried to provide proof-of-principle for treating ovarian cancer with this nano-formulation of quercetin. These QU loaded MPEG-PCL (QU/MPEG-PCL) micelles with drug loading of 6.9% had a mean particle size of 36 nm, rendering the complete dispersion of quercetin in water. QU inhibited the growth of A2780S ovarian cancer cells on a dose dependent manner in vitro. Intravenous administration of QU/MPEG-PCL micelles significantly suppressed the growth of established xenograft A2780S ovarian tumors through causing cancer cell apoptosis and inhibiting angiogenesis in vivo. Furthermore, the anticancer activity of quercetin on ovarian cancer cells was studied in vitro. Quercetin treatment induced the apoptosis of A2780S cells associated with activating caspase-3 and caspase-9. MCL-1 downregulation, Bcl-2 downregulation, Bax upregulation and mitochondrial transmembrane potential change were observed, suggesting that quercetin may induce apoptosis of A2780S cells through the mitochondrial apoptotic pathway. Otherwise, quercetin treatment decreased phosphorylated p44/42 mitogen-activated protein kinase and phosphorylated Akt, contributing to inhibition of A2780S cell proliferation. Our data suggested that QU/MPEG-PCL micelles were a novel nano-formulation of quercetin with a potential clinical application in ovarian cancer therapy.

  11. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE PAGES

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...

    2015-05-15

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less

  12. Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter.

    PubMed

    Wicke, Daniel; Reemtsma, Thorsten

    2010-02-01

    The effect of hydrolytic exoenzymes on the release of hydrophobic organic contaminants (HOC) from two different surface soils was studied in laboratory batch experiments. Incubation of the soils with cellulase with an activity fivefold above the inherent soil activity enhanced the release of hydrophobic contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and hydroxylated PCB) by 40-200%. Xylanase and invertase did not show measurable effects at comparable relative activity levels. This suggests that cellulose substructures are important for the retention of HOC in soil organic matter (SOM). Hydrolytic exoenzymes, and the microorganisms that release them, contribute to the mobilization of HOC from soil, by shifting the sorption equilibrium in the course of SOM transformation into dissolved organic matter or by facilitating HOC diffusion as a consequence of reduced rigidity of SOM. We conclude that not only biodegradation but also sorption and desorption of HOC in soil can be influenced by (micro-) biology and the factors that determine its activity.

  13. Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics.

    PubMed

    Wang, Bailiang; Liu, Huihua; Zhang, Binjun; Han, Yuemei; Shen, Chenghui; Lin, Quankui; Chen, Hao

    2016-05-01

    Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  14. Spherical and tubule nanocarriers for sustained drug release

    PubMed Central

    Shutava, T.; Fakhrullin, R.; Lvov, Y.

    2014-01-01

    We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50–150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2–3 mg/mL concentration in isotonic buffers and serum. For 120–170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyelectrolyte shell thickness controls drug dissolution. As for nanotube carriers, we concentrated on natural halloysite clay nanotubes as cores for LbL encapsulation that allows high drug loading and sustains its release over tens and hundreds hours. Further drug release prolongation was reached with formation of the tube-end stoppers. PMID:25450068

  15. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics.

    PubMed

    Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N

    2017-03-15

    The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    PubMed

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. A photosensitive liposome with NIR light triggered doxorubicin release as a combined photodynamic-chemo therapy system.

    PubMed

    Li, Qingpo; Li, Wei; Di, Haixiao; Luo, Lihua; Zhu, Chunqi; Yang, Jie; Yin, Xiaoyi; Yin, Hang; Gao, Jianqing; Du, Yongzhong; You, Jian

    2018-05-10

    The targeted drug delivery with the help of nanocarriers and the controlled drug release at the lesion sites are the most effective ways to enhance therapeutic efficacy and reduce side effects. Here, we built a light sensitive liposome (Her2-I&D-LSL) which was formed by a special phospholipid (PLsPC) and a hydrophobically modified photosensitizer (ICG-ODA). DOX was employed as the therapeutic drug, encapsulating in the internal phase of the liposome whose surface was modified by Her2 antibodies for recognizing tumor cells with high Her2 receptor expression. Mediated by NIR light, Her2-I&D-LSL was proved to generate sufficient ROS to realize PDT, which then triggered the release of DOX for combined chemotherapy. The ROS generation and DOX release were verified to be strictly controlled by NIR light and the proportion of ICG-ODA. Thanks to the mediation of Her2 receptor, the specific DOX release and the combination of PDT-chemotherapy triggered by NIR light, Her2-I&D-LSL showed a significant accumulation in MCF7 and SKOV3 tumors, thus leading to the strongest tumor growth inhibition effect compared to PDT alone (I-LSL) or chemotherapy alone (D-LSL). Her2-I&D-LSL also possessed a great biocompatibility due to the targeted treatment, holding promise for future cancer therapy in clinic. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core

    PubMed Central

    Rajasekar, Karthik V.; Zdanowski, Konrad; Yan, Jun; Hopper, Jonathan T. S.; Francis, Marie-Louise R.; Seepersad, Colin; Sharp, Connor; Pecqueur, Ludovic; Werner, Jörn M.; Robinson, Carol V.; Mohammed, Shabaz; Potts, Jennifer R.; Kleanthous, Colin

    2016-01-01

    Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σR preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA–σR complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σR-binding residues are sequestered back into its hydrophobic core, releasing σR to activate transcription of anti-oxidant genes. PMID:27432510

  19. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells.

    PubMed

    Pillai, Jisha Jayadevan; Thulasidasan, Arun Kumar Theralikattu; Anto, Ruby John; Chithralekha, Devika Nandan; Narayanan, Ashwanikumar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod

    2014-07-15

    The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed

  20. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.

    PubMed

    Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang

    2018-01-01

    Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sustained release of methotrexate through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2014-09-01

    To make chemotherapy more effective, sustained release of the drug is desirable. By controlling the release rates, constant therapeutic levels can be achieved which can avoid re-administration of drug. This helps to combat tumors more effectively with minimal side effects. The present study reports the control release of methotrexate through liquid-crystalline folate nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate methotrexate molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming methotrexate encapsulated folate nanoparticles as well as the release of methotrexate through these nanoparticles. It has been demonstrated that methotrexate release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on methotrexate release rates was also studied.

  2. Anti-Inflammatory Peptide Functionalized Hydrogels for Insulin-Secreting Cell Encapsulation

    PubMed Central

    Su, Jing; Hu, Bi-Huang; Lowe, William L.; Kaufman, Dixon B.; Messersmith, Phillip B.

    2009-01-01

    Pancreatic islet encapsulation within semi-permeable materials has been proposed for transplantation therapy of Type I diabetes mellitus. Polymer hydrogel networks used for this purpose have been shown to provide protection from islet destruction by immunoreactive cells and antibodies. However, one of the fundamental deficiencies with current encapsulation methods is that the permselective barriers cannot protect islets from cytotoxic molecules of low molecular weight that are diffusible into the capsule material, which subsequently results in β-cell destruction. Use of materials that can locally inhibit the interaction between the permeable small cytotoxic factors and islet cells may prolong the viability and function of encapsulated islet grafts. Here we report the design of anti-inflammatory hydrogels supporting islet cell survival in the presence of diffusible pro-inflammatory cytokines. We demonstrated that a poly(ethylene glycol)-containing hydrogel network, formed by native chemical ligation and presenting an inhibitory peptide for islet cell surface IL-1 receptor, was able to maintain the viability of encapsulated islet cells in the presence of a combination of cytokines including IL-1β, TNF-α, and INF-γ. In stark contrast, cells encapsulated in unmodified hydrogels were mostly destroyed by cytokines which diffused into the capsules. At the same time, these peptide-modified hydrogels were able to efficiently protect encapsulated cells against β-cell specific T-lymphocytes and maintain glucose-stimulated insulin release by islet cells. With further development, the approach of encapsulating cells and tissues within hydrogels presenting anti-inflammatory agents may represent a new strategy to improve cell and tissue graft function in transplantation and tissue engineering applications. PMID:19782393

  3. Thermally stable silica-coated hydrophobic gold nanoparticles.

    PubMed

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  4. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed Central

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar

    2015-01-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  5. Acceleration through passive destabilization: protein folding in a weak hydrophobic environment

    NASA Astrophysics Data System (ADS)

    Jewett, Andrew; Baumketner, Andrij; Shea, Joan-Emma

    2004-03-01

    The GroEL chaperonin is a biomolecule which assists the folding of an extremely diverse range of proteins in Eubacteria. Some proteins undergo many rounds of ATP-regulated binding and dissociation from GroEL/ES before folding. It has been proposed that transient stress from ATP-regulated binding and release from GroEL/ES frees frustrated proteins from misfolded conformations. However recent evidence suggests that chaperonin-accelerated protein folding can take place entirely within a mutated GroEL+ES cavity that is unable to open and release the protein. Using molecular dynamics, we demonstrate that static confinement within a weakly hydrophobic (attractive) cavity (similar to the interior of the cavity formed by the GroEL+ES complex) is sufficient to significantly accelerate the folding of a highly frustrated protein-like heteropolymer. Our frustrated molecule benifits kinetically from a static hydrophobic environment that destabilizes misfolded conformations. This may shed light on the mechanisms used by other chaperones which do not depend on ATP.

  6. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release.

    PubMed

    Kern, Aurelie; Zhou, Chensheng W; Jia, Feng; Xu, Qiaobing; Hu, Linden T

    2016-08-31

    The incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks. One potential drawback to vaccinia virus vectored vaccines is the risk of accidental infection of humans. To reduce this risk, we developed a process to encapsulate vaccinia virus with a pH-sensitive polymer that inactivates the virus until it is ingested and dissolved by stomach acids. We demonstrate that the vaccine is inactive both in vitro and in vivo until it is released from the polymer. Once released from the polymer by contact with an acidic pH solution, the virus regains infectivity. Vaccination with coated vaccinia virus confers protection against B. burgdorferi infection and reduction in acquisition of the pathogen by naïve feeding ticks. Copyright © 2016. Published by Elsevier Ltd.

  7. Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy.

    PubMed

    Sheng, Guoping; Chen, Ying; Han, Lijie; Huang, Yong; Liu, Xiaoli; Li, Lanjuan; Mao, Zhengwei

    2016-10-01

    Although indocyanine green (ICG) has promising applications in photothermal therapy (PPT) because of its low toxicity and high efficiency in inducing heat and singlet oxygen formation in response to near-infrared light with a wavelength of approximately 800nm, its clinical application has been restricted because of its rapid body clearance and poor water stability. Therefore, cell membrane capsules (CMCs) derived from mammalian cells were used to encapsulate negatively charged ICG by temporarily permeating the plasma membrane and resealing using positively charged doxorubicin hydrochloride (DOX). The resulting CMCs@DOX/ICG exhibited a spherical shape, with a diameter of approximately 800nm. The DOX and ICG encapsulation was confirmed by the UV-vis spectrum; a very small amount of DOX (0.8μg) and a very high amount of ICG (∼110μg) were encapsulated in 200μg CMCs. Encapsulation in the CMCs leads to sustained release of ICG, especially in the presence of positively charged DOX. The temperature enhancement and generation of ROS by ICG encapsulated in CMCs were confirmed upon laser irradiation in vitro, leading to cell death. CMCs@DOX/ICG also can significantly enhance the retention of ICG in a tumor after intratumoral injection in vivo. As a result, combination treatment with CMCs@DOX/ICG and laser irradiation demonstrated much better anticancer efficacy than that of free DOX/ICG and CMCs@ICG. The encapsulation of ICG into CMCs, especially with the assistance of DOX, significantly slows down the body clearance of ICG, with a retained PPT effect against tumors, an important step forward in the practical application of ICG in cancer therapy. In this study, cell membrane capsules (CMCs) derived from mammalian cells were used to encapsulate negatively charged indocyanine green (ICG) by temporarily permeating the plasma membrane and resealing, in the presence of positively charged doxorubicin hydrochloride (DOX). The resulting CMCs@DOX/ICG exhibited a spherical shape

  8. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes.

    PubMed

    Yurinskaya, M M; Kochetkova, O Yu; Shabarchina, L I; Antonova, O Yu; Suslikov, A V; Evgen'ev, M B; Vinokurov, M G

    2017-01-01

    Human heat shock protein Hsp70 was experimentally inserted into polyelectrolyte microcapsules. Encapsulated recombinant Hsp70 was studied in terms of its effects on neutrophil apoptosis, the production of reactive oxygen species, and the secretion of tumor necrosis factor alpha by promonocytic THP-1 cells. It was found that encapsulated Hsp70 effectively inhibits neutrophil apoptosis, unlike free exogenous protein used in solution. In THP-1 cells, encapsulated and free Hsp70 reduced LPS-induced tumor necrosis factor alpha production with a similar efficiency. Encapsulated Hsp70 reduces LPS-induced reactive oxygen species production by neutrophils in the course of its release from the microcapsules but not as much as free Hsp70. Thus, the polyelectrolyte microcapsules can be used as containers for the effective delivery of Hsp70 to neutrophils and monocytes to significantly improve the functioning of the innate immune system.

  9. Insulin-egg yolk dispersions in self microemulsifying system.

    PubMed

    Singnurkar, P S; Gidwani, S K

    2008-11-01

    Formulation of insulin into a microemulsion very often presents a physicochemical instability during their preparation and storage. In order to overcome this lack of stability and facilitate the handling of these colloidal systems, stabilization of insulin in presence of hydrophobic components of a microemulsion appears as the most promising strategy. The present paper reports the use of egg yolk for stabilization of insulin in self microemulsifying dispersions. Insulin loaded egg yolk self microemulsifying dispersions were prepared by lyophilization followed by dispersion into self microemulsifying vehicle. The physicochemical characterization of selfmicroemulsifying dispersions includes such as insulin encapsulation efficiency, in vitro stability of insulin in presence of proteolytic enzymes and in vitro release. The biological activity of insulin from the dispersion was estimated by enzyme-linked immunosorbant assay and in vivo using Wistar diabetic rats. The particle size ranged 1.023±0.316 μm in diameter and insulin encapsulation efficiency was 98.2±0.9 %. Insulin hydrophobic self microemulsifying dispersions suppressed insulin release in pH 7.4 phosphate buffer and shown to protect insulin from enzymatic degradation in vitro in presence of chymotripsin. Egg yolk encapsulated insulin was bioactive, demonstrated through both in vivo and in vitro.

  10. Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability.

    PubMed

    Tumbas Šaponjac, Vesna; Čanadanović-Brunet, Jasna; Ćetković, Gordana; Jakišić, Mirjana; Djilas, Sonja; Vulić, Jelena; Stajčić, Slađana

    2016-04-30

    One of the great problems in food production are surplus by-products, usually utilized for feeding animals and for preparation of dietary fibre or biofuel. These products represent potential sources of bioactive antioxidants and colour-giving compounds which could be used in the pharmaceutical industry and as food additives. In the present study beetroot pomace extract was encapsulated in soy protein by a freeze drying method. Process parameters (core: wall ratio, extract concentration and mixing time) were optimized using response surface methodology (RSM) in order to obtain the optimum encapsulate (OE) with the highest polyphenol encapsulation efficiency (EE) and radical scavenging activity on DPPH radicals (SA). Using the calculated optimum conditions, the EE (86.14%) and SA (1668.37 μmol Trolox equivalents/100 g) of OE did not differ significantly (p < 0.05) from the predicted ones. The contents of total polyphenols (326.51 mg GAE/100 g), flavonoids (10.23 mg RE/100 g), and betalains (60.52 mg betanin/100 g and 61.33 mg vulgaxanthin-I/100 g), individual content of phenolic compounds and betalains by HPLC, and the ability to reduce Fe(3+) ions, i.e., reducing power (394.95 μmol Trolox equivalents/100 g) of OE were determined as well. During three months of storage at room temperature, polyphenol retention was much higher (76.67%) than for betalain pigments, betacyanins (17.77%) and betaxanthins (17.72%). In vitro digestion and release of phenolics from OE showed higher release rate in simulated intestinal fluid than in gastric fluid. These results suggest encapsulation as a contemporary method for valorisation of sensitive bioactive compounds from food industry by-products.

  11. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of therasnostic agents

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ~87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases.

  12. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat

    2015-07-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Encapsulation of lutein in liposomes using supercritical carbon dioxide.

    PubMed

    Zhao, Lisha; Temelli, Feral; Curtis, Jonathan M; Chen, Lingyun

    2017-10-01

    Liposomes loaded with lutein were prepared utilizing supercritical carbon dioxide (SC-CO 2 ). The effects of pressure, depressurization rate, temperature and lutein-to-lipid ratio on particle size distribution, zeta potential, encapsulation efficiency (EE), bioactive loading, morphology, phase transition and crystallinity were investigated. Liposomes prepared by the SC-CO 2 method had a particle size of 147.6±1.9nm-195.4±2.3nm, an encapsulation efficiency of 56.7±0.7%-97.0±0.8% and a zeta potential of -54.5±1.2mV to -61.7±0.6mV. A higher pressure (200-300bar) and depressurization rate (90-200bar/min) promoted a higher encapsulation of lutein whereas the lutein-to-lipid ratio had the dominant effect on the morphology of vesicles along with size distribution and EE. X-ray diffraction data implied a substantial drop in the crystallinity of lutein upon its redistribution in the liposome membranes. Differential scanning calorimetry indicated a broadened phase transition upon the simultaneous rearrangement of lutein and phospholipid molecules into liposomal vesicles. The SC-CO 2 method resulted in particle characteristics highly associated with the ability of CO 2 to disperse phospholipids and lutein molecules. It offers a promising approach to use dense phase CO 2 to homogenize hydrophobic or amphiphilic aggregates suspended in an aqueous medium and regulate the vesicular characteristics via pressure and depressurization rate. The SC-CO 2 method has potential for scalable production of liposomal nanovesicles with desirable characteristics and free of organic solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Rapid and efficient crossing blood-brain barrier: Hydrophobic drug delivery system based on propionylated amylose helix nanoclusters.

    PubMed

    Gao, Wei; Liu, Yongchun; Jing, Guixia; Li, Ke; Zhao, Yuan; Sha, Baoyong; Wang, Qiang; Wu, Daocheng

    2017-01-01

    A novel strategy of rapid transport across the blood-brain barrier (BBB) via phosphatidylethanolamine-triggered release is developed through both molecular dynamics (MD) simulation and experiments. Hydrophobic drugs, namely, propofol, iodine, and 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide, were loaded with propionylated amylose helix (HLPAH) nanoclusters to form PLPAH, ILPAH, and DLPAH nanoclusters, respectively. These clusters were subjected to MD simulation, structure measurement, in vitro triggered study, in vivo DLPAH imaging, and analysis of PLPAH sedative effects on rabbits. Results indicated that HLPAH nanoclusters were initially located on the BBB, and the helix was unfolded to release the loaded hydrophobic drugs. The released drugs crossed the BBB and performed their functions in the central nervous system (CNS) through concentration gradient and hydrophobicity. This mechanism of HLPAH across the BBB featured high membrane permeability and specificity, rapid onset, short maintenance, rapid recovery, and lower dosage of drugs. Hence, this novel strategy is very meaningful for the development of CNS drug carriers and the proposed system could be used to improve the therapeutic effects of CNS diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Controlled release of sulfasalazine release from "smart" pectin gel microspheres under physiological simulated fluids.

    PubMed

    Costas, Luciana; Pera, Licia M; López, Azucena Gómez; Mechetti, Magdalena; Castro, Guillermo R

    2012-07-01

    Sulfasalazine (SLZ) is a synthetic nonsteroidal anti-inflammatory drug used mainly for the treatment of an inflammatory bowel and other diseases. Two pectins with different methylation degrees were blended to synthesized gel microspheres by ionotropic gelation for SLZ encapsulation. The encapsulation efficiency was found to be around of 99% in all formulations tested. However, different SLZ release profiles related to the methylation degrees of pectin were observed. Mixture of low methylated (LM) and high methylated (HM) pectins in the presence of calcium(II) displayed the best microsphere morphologies among the formulations tested determined by optical and electronic microscopies. The percentage of drug release using a mixture of LM and HM pectins after 255 min in simulated gastric fluid (pH = 1.2), simulated intestinal fluid (pH = 6.8), and phosphate buffer (pH = 7.4) were 15.0%, 47.0%, and 52.2%, respectively.

  16. Encapsulation of grape seed extract in polylactide microcapsules for sustained bioactivity and time-dependent release in dental material applications.

    PubMed

    Yourdkhani, Mostafa; Leme-Kraus, Ariene Arcas; Aydin, Berdan; Bedran-Russo, Ana Karina; White, Scott R

    2017-06-01

    To sustain the bioactivity of proanthocyanidins-rich plant-derived extracts via encapsulation within biodegradable polymer microcapsules. Polylactide microcapsules containing grape seed extract (GSE) were manufactured using a combination of double emulsion and solvent evaporation techniques. Microcapsule morphology, size distribution, and cross-section were examined via scanning electron microscopy. UV-vis measurements were carried out to evaluate the core loading and encapsulation efficiency of microcapsules. The bioactivity of extracts was evaluated after extraction from capsules via solvent partitioning one week or one year post-encapsulation process. Fifteen human molars were cut into 7mm×1.7mm×0.5mm thick mid-coronal dentin beams, demineralized, and treated with either encapsulated GSE, pristine GSE, or left untreated. The elastic modulus of dentin specimens was measured based on three-point bending experiments as an indirect assessment of the bioactivity of grape seed extracts. The effects of the encapsulation process and storage time on the bioactivity of extracts were analyzed. Polynuclear microcapsules with average diameter of 1.38μm and core loading of up to 38wt% were successfully manufactured. There were no statistically significant differences in the mean fold increase of elastic modulus values among the samples treated with encapsulated or pristine GSE (p=0.333), or the storage time (one week versus one year storage at room temperature, p=0.967). Polynuclear microcapsules containing proanthocyanidins-rich plant-derived extracts were prepared. The bioactivity of extracts was preserved after microencapsulation. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630

    PubMed Central

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was −10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs. PMID:28260893

  18. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630.

    PubMed

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was -10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs.

  19. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.

    PubMed

    Thote, Amol J; Gupta, Ram B

    2005-03-01

    Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release. The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles. The nanoparticles are then encapsulated in poly(lactide-co-glycolide) (PLGA) polymer by use of the anhydrous solid-oil-oil-oil technique. This results in a well-dispersed encapsulation of drug nanoparticles in polymer microspheres. In vitro drug release from these microparticles is studied. With supercritical CO2 used as an antisolvent, nanoparticles of dexamethasone phosphate were obtained in the range of 150 to 200 nm. On encapsulation in polylactide coglycolide, composite microspheres of approximately 70 microm were obtained. The in vitro drug release of these nanoparticles/microparticles composites shows sustained release of dexamethasone phosphate over a period of 700 hours with almost no initial burst release. Nanoparticles of dexamethasone phosphate can be produced with the SAS-EM technique. When microencapsulated, these particles can provide sustained drug release without initial burst release. Because the complete process is anhydrous, it can be easily extended to produce sustained release formulations of other hydrophilic drugs.

  20. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    PubMed

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  1. New trends in encapsulation of liposoluble vitamins.

    PubMed

    Gonnet, M; Lethuaut, L; Boury, F

    2010-09-15

    Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway. 2010 Elsevier B.V. All rights reserved.

  2. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects.

    PubMed

    McClements, David Julian

    2017-02-01

    Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  4. Curcumin Encapsulated in Milk Exosomes Resists Human Digestion and Possesses Enhanced Intestinal Permeability in Vitro.

    PubMed

    Vashisht, Monika; Rani, Payal; Onteru, Suneel Kumar; Singh, Dheer

    2017-11-01

    Exosomes, the extracellular secretary nano-vesicles, act as carriers of biomolecules to the target cells. They exhibit several attributes of an efficient drug delivery system. Curcumin, despite having numerous bioactive and therapeutic properties, has limited pharmaceutical use due to its poor water solubility, stability, and low systemic bioavailability. Hence, this study aims to enhance the therapeutic potential of curcumin, a model hydrophobic drug, by its encapsulation into milk exosomes. In the present study, we investigated the stability of free curcumin and exosomal curcumin in PBS and in vitro digestive processes. Additionally, their uptake and trans-epithelial transport were studied on Caco-2 cells. Curcumin in milk exosomes had higher stability in PBS, sustained harsh digestive processes, and crossed the intestinal barrier than free curcumin. In conclusion, the encapsulation of curcumin into the exosomes enhances its stability, solubility, and bioavailability. Therefore, the present study demonstrated that milk exosomes act as stable oral drug delivery vehicles.

  5. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil

    PubMed Central

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation. PMID:28496464

  6. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.

    PubMed

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.

  7. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  8. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate.

    PubMed

    Azevedo, Helena S; Reis, Rui L

    2009-10-01

    This paper reports the effect of alpha-amylase encapsulation on the degradation rate of a starch-based biomaterial. The encapsulation method consisted in mixing a thermostable alpha-amylase with a blend of corn starch and polycaprolactone (SPCL), which were processed by compression moulding to produce circular disks. The presence of water was avoided to keep the water activity low and consequently to minimize the enzyme activity during the encapsulation process. No degradation of the starch matrix occurred during processing and storage (the encapsulated enzyme remained inactive due to the absence of water), since no significant amount of reducing sugars was detected in solution. After the encapsulation process, the released enzyme activity from the SPCL disks after 28days was found to be 40% comparatively to the free enzyme (unprocessed). Degradation studies on SPCL disks, with alpha-amylase encapsulated or free in solution, showed no significant differences on the degradation behaviour between both conditions. This indicates that alpha-amylase enzyme was successfully encapsulated with almost full retention of its enzymatic activity and the encapsulation of alpha-amylase clearly accelerates the degradation rate of the SPCL disks, when compared with the enzyme-free disks. The results obtained in this work show that degradation kinetics of the starch polymer can be controlled by the amount of encapsulated alpha-amylase into the matrix.

  9. Progesterone binding nano-carriers based on hydrophobically modified hyperbranched polyglycerols

    NASA Astrophysics Data System (ADS)

    Alizadeh Noghani, M.; Brooks, D. E.

    2016-02-01

    Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The results provide evidence to justify more detailed studies of interactions with biological systems, both single cells and in animal models.Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The

  10. The incorporation of hydrophobic protein receptors and artificial lipid membranes.

    PubMed

    Reader, T A; Fiszer de Plazas, S; Salas, P J; de Robertis, E

    1976-01-01

    The mechanism of chemical synaptic transmission implies: 1) the existence of a specific protein receptor at the postsynaptic membrane, and 2) the interaction between the transmitter released and the receptor, thus producing a change in ionic permeability. Previous studies from our laboratory have shown that special hydrophobic proteins extracted from postsynpatic membranes of different tissues showed a high affinity binding for the different pharmacological agents. The present paper describes experiments in which different hydrophobic protein binding acetylcholine, noradrenaline, gamma-aminobutyric acid, and glutamate were incorporated into artificial lipid membranes, similar to those first described by Mueller et al. (19). The effect of the different pharmacological agents was tested under experimental conditions of voltage clamp and the d.c. current changes measured. The results were then compared for the different lipid-protein membranes employed during the steady state and during transient conductance changes. The specificity of the responses indicate that artificial lipid membranes containing these hydrophobic proteins from electroplax, myocardium, spleen capsule and shrimp muscle can be used as a model to study pharmacologic receptors.

  11. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    PubMed

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis.

    PubMed

    Cheng, Nai-Chen; Lin, Wei-Jhih; Ling, Thai-Yen; Young, Tai-Horng

    2017-03-15

    Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we

  13. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent.

    PubMed

    Santra, Santimukul; Jativa, Samuel D; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J Manuel

    2012-08-28

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.

  14. Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees

    PubMed Central

    Yarce, Cristhian J.; Echeverri, Juan D.; Palacio, Mario A.; Rivera, Carlos A.; Salamanca, Constain H.

    2017-01-01

    This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate), besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be used in the pharmaceutical field as modified delivery excipients. To do this, we used copolymeric materials derived from maleic anhydride with decreasing polarity corresponding to poly(isobutylene-alt-maleic acid) (hydrophilic), sodium salt of poly(maleic acid-alt-octadecene) (amphiphilic), poly(maleic anhydride-alt-octadecene) (hydrophobic) and the reference polymer hydroxyl-propyl-methyl-cellulose (HPMC). Each material alone and in blends underwent spectroscopic characterization by FTIR, thermal characterization by DSC and granulometric characterization using flow and compaction tests. Each tablet was prepared at different polymer ratios of 0%, 10%, 20%, 30% and 40%, and the surface properties were determined, including the roughness by micro-visualization, contact angle and water absorption rate by the sessile drop method and obtaining Wadh and surface free energy (SFE) using the semi-empirical models of Young–Dupré and  Owens-Wendt-Rabel-Käelbe (OWRK), respectively. Dissolution profiles were determined simulating physiological conditions in vitro, where the kinetic models of order-zero, order-one, Higuchi and Korsmeyer–Peppas were evaluated. The results showed a strong relationship between the proportion and nature of the polymer to the surface thermodynamic properties and kinetic release mechanism. PMID:28125020

  15. Oil encapsulation in core-shell alginate capsules by inverse gelation II: comparison between dripping techniques using W/O or O/W emulsions.

    PubMed

    Martins, Evandro; Poncelet, Denis; Rodrigues, Ramila Cristiane; Renard, Denis

    2017-09-01

    In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.

  16. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives.

    PubMed

    Speranza, Barbara; Petruzzi, Leonardo; Bevilacqua, Antonio; Gallo, Mariangela; Campaniello, Daniela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-06-01

    The production of value-added and/or functional juices has increased significantly in recent years, following an increased consumer demand to promote health and/or prevent disease through diet and nutrition. Micro and nano-encapsulation are promising technologies to protect and deliver sensitive compounds, allowing a controlled release in the target sites. This paper offers an overview of current applications, limits and challenges of encapsulation technologies in the production of fruit and vegetable juices, with a particular emphasis on products derived from different botanical sources. © 2017 Institute of Food Technologists®.

  17. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOEpatents

    Peterson, Kenneth A.

    2005-10-18

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  18. Fast and efficient proteolysis by reusable pepsin-encapsulated magnetic sol-gel material for mass spectrometry-based proteomics applications.

    PubMed

    Kayili, H Mehmet; Salih, Bekir

    2016-08-01

    Hydrophobic silicon-based material having magnetic properties was fairly synthesized by a classical sol-gel approach. Pepsin enzyme was encapsulated in the sol-gel material and the enzyme activity was evaluated in consequence of the digestion of some common proteins such as α- and β-casein, cytochrome c, myoglobin, and bovine serum albumin (BSA) both in a single protein batch and in the protein mixture. The optimum digestion time of the studied proteins using pepsin-encapsulated magnetic sol-gel material was found to be 20min. To produce the magnetic sol-gel material for convenient and easy proteomics applications, Fe3O4 was doped inside sol-gel material during the gelation step. It was observed that the activity of encapsulated pepsin was not affected by the amount of Fe3O4. Poly(ethylene glycol) was also inserted in sol-gel bulk to obtain suitable roughness and increase the hydrophilicity of the material surface to let protein molecules reach to the sol-gel material easily. The digestion of the protein mixture and non-fat bovine milk was performed with the pepsin-encapsulated magnetic sol-gel material and the digested solutions were analyzed using SDS-PAGE, MALDI-TOF-MS and LC-MS/MS for the protein identification. Reusability of the pepsin-encapsulated sol-gel material was examined and it was determined that they could be used at least 20 times. Finally, IgG digestions with a fast incubation time period were carried out using pepsin-encapsulated sol-gel material for generation of (Fab)2 product to evaluate the kinetic performance of the material. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. IGF-1 Release Kinetics from Chitosan Microparticles Fabricated Using Environmentally Benign Conditions

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p<0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with Von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx 2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. PMID:25063148

  20. Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    van Ruth, Saskia M.; Buhr, Katja

    2004-12-01

    The influence of mastication rate on the dynamic release of seven volatile flavour compounds from sunflower oil was evaluated by combined model mouth/proton transfer reaction-mass spectrometry (PTR-MS). Air/oil partition coefficients were measured by static headspace gas chromatography. The dynamic release of the seven volatile flavour compounds from sunflower oil was significantly affected by the compounds' hydrophobicity and the mastication rate employed in the model mouth. The more hydrophobic compounds were released at a higher rate than their hydrophilic counterparts. Increase in mastication rate increased the maximum concentration measured by 36% on average, and the time to reach this maximum by 35% on average. Mastication affected particularly the release of the hydrophilic compounds. The maximum concentration of the compounds correlated significantly with the compounds' air/oil partition coefficients. The initial release rates over the first 15 s were affected by the type of compound, but not by the mastication rate. During the course of release, the proportions of the hydrophilic compounds to the overall flavour mixture in air decreased. The contribution of the hydrophobic compounds increased. Higher mastication rates, however, increased the proportions of the hydrophilic compounds and decreased those of the hydrophobic compounds.

  1. Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes.

    PubMed

    López-Cebral, Rita; Peng, Guangjia; Reys, Lara L; Silva, Simone S; Oliveira, Joaquim M; Chen, Jie; Silva, Tiago H; Reis, Rui L

    2018-02-02

    Oral administration of drugs presents important limitations, which are frequently not granted the importance that they really have. For instance, hepatic metabolism means an important drug loss, while some patients have their ability to swell highly compromised (i.e. unconsciousness, cancer…). Sublingual placement of an accurate Pharmaceutical Dosage Form is an attractive alternative. This work explores the use of the β-chitosan membranes, from marine industry residues, composed with marine sediments for dual sublingual drug delivery. As proof of concept, the membranes were loaded with a hydrophilic (gentamicin) and a hydrophobic (dexamethasone) drug. The physico-chemical and morphological characterization indicated the successful incorporated of diatomaceous earth within the chitosan membranes. Drug delivery studies showed the potential of all formulations for the immediate release of hydrophilic drugs, while diatomaceous earth improved the loading and release of the hydrophobic drug. These results highlight the interest of the herein developed membranes for dual drug delivery.

  2. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine.

    PubMed

    Anirudhan, T S; Nair, Syam S; Nair, Anoop S

    2016-11-05

    A novel efficient transdermal (TD) lidocaine (LD) delivery device based on chitosan (CS) and hyaluronic acid (HA) was successfully developed in the present investigation. CS was grafted with glycidyl methacrylate (GMA) and butyl methacrylate (BMA) to fabricate a versatile material with improved adhesion and mechanical properties. HA was hydrophobically modified by covalently conjugating 3-(dimethylamino)-1-propylamine (DMPA) to encapsulate poorly water soluble LD and was uniformly dispersed in modified CS matrix. The prepared materials were characterized through FTIR, NMR, XRD, SEM, TEM and tensile assay. The dispersion of amine functionalized HA (AHA) on modified CS matrix offered strong matrix - filler interaction, which improved the mechanical properties and drug retention behavior of the device. In vitro skin permeation study of LD was performed with modified Franz diffusion cell using rat skin and exhibited controlled release. The influence of storage time on release profile was investigated and demonstrated that after the initial burst, LD release profile of the device after 30 and 60days storage was identical to that of a device which was not stored. In vivo skin adhesion test and skin irritation assay in human subjects, water vapor permeability and environmental fitness test was performed to judge its application in biomedical field. All results displayed that the fabricated device is a potential candidate for TD LD administration to the systemic circulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nonencapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity.

    PubMed

    Ydjedd, Siham; Bouriche, Sihem; López-Nicolás, Rubén; Sánchez-Moya, Teresa; Frontela-Saseta, Carmen; Ros-Berruezo, Gaspar; Rezgui, Farouk; Louaileche, Hayette; Kati, Djamel-Edine

    2017-02-01

    To determine the effect of in vitro gastrointestinal digestion on the release and antioxidant capacity of encapsulated and nonencapsulated phenolics carob pulp extracts, unripe and ripe carob pulp extracts were microencapsulated with polycaprolactone via double emulsion/solvent evaporation technique. Microcapsules' characterization was performed using scanning electron microscopy and Fourier transform infrared spectrometry analysis. Total phenolics and flavonoids content and antioxidant activities (ORAC, DPPH, and FRAP) were evaluated after each digestion step. The release of phenolic acids and flavonoids was measured along the digestion process by HPLC-MS/MS analysis. The most important phenolics and flavonoids content as well as antioxidant activities were observed after gastric and intestinal phases for nonencapsulated and encapsulated extracts, respectively. The microencapsulation of carob polyphenols showed a protective effect against pH changes and enzymatic activities along digestion, thereby promoting a controlled release and targeted delivery of the encapsulated compound, which contributed to an increase in its bioaccessibility in the gut.

  4. Characteristics of Artemether-Loaded Poly(lactic-co-glycolic) Acid Microparticles Fabricated by Coaxial Electrospray: Validation of Enhanced Encapsulation Efficiency and Bioavailability.

    PubMed

    Mangrio, Farhana Akbar; Dwivedi, Pankaj; Han, Shuya; Zhao, Gang; Gao, Dayong; Si, Ting; Xu, Ronald X

    2017-12-04

    Artemether is one of the most effective drugs for the treatment of chloroquine-resistant and Plasmodium falciparum strains of malaria. However, its therapeutic potency is hindered by its poor bioavailability. To overcome this limitation, we have encapsulated artemether in poly(lactic-co-glycolic) acid (PLGA) core-shell microparticles (MPs) using the coaxial electrospray method. With optimized process parameters including liquid flow rates and applied electric voltages, experiments are systematically carried out to generate a stable cone-jet mode to produce artemether-loaded PLGA-MPs with an average size of 2 μm, an encapsulation efficiency of 78 ± 5.6%, and a loading efficiency of 11.7%. The in vitro release study demonstrates the sustained release of artemether from the core-shell structure in comparison with that of plain artemether and that of MPs produced by single-axial electrospray without any relevant cytotoxicity. The in vivo studies are performed to evaluate the pharmacokinetic characteristics of the artemether-loaded PLGA-MPs. Our study implies that artemether can be effectively encapsulated in a protective shell of PLGA for controlled release kinetics and enhanced oral bioavailability.

  5. Mesostructured Hydrophobic-Oleophobic Silica Films for Sustained Functionality in Tribological Environments

    NASA Astrophysics Data System (ADS)

    Kessman, Aaron J.

    The primary goal of this research was to synthesize water- and oil-repellent coatings that offer sustained functionality and durability. Engineered low surface energy materials generally suffer from a lack of mechanical robustness, which makes them susceptible to damage by abrasive wear. Fluorinated silanes are often combined with alkoxide precursors via sol-gel co-condensation to create coatings with high hardness and good substrate adhesion. However, a common problem with these materials is that the organic moieties that provide low surface energy also become surface segregated and highly concentrated at the solid-air interface. With such a structure, mechanical removal of the top surface by abrasion, for example, reveals subsurface areas that are then much less concentrated in terms of functional chemistry. The material developed in this study was designed to overcome this problem by means of a tailored and templated mesostructure that effectively encapsulated the low surface energy functional moieties, and thus achieves sustained functionality during abrasive wear. This material, applied as a thin coating to a variety of substrates, has the potential to reduce waste and pollution and the environmental degradation of materials and structures. Improving the performance of such materials can benefit a wide variety of applications. These include optoelectronic devices including photovoltaic panels; automobile and aircraft; architectural structures; the chemical, food, and medical industries for hygienic and anti-fouling requirements; textiles; and household applications. This approach has further implications in areas such as boundary lubrication and drug delivery systems. Hydrophobic-oleophobic mesoporous fluorinated silica films were synthesized via sol-gel co-condensation and coated on glass substrates. Fluorosilane and surfactant template concentrations were varied to elucidate the effect of organic functionality and porosity on performance. Structural

  6. The influence of bile acids on the oral bioavailability of vitamin K encapsulated in polymeric micelles.

    PubMed

    van Hasselt, P M; Janssens, G E P J; Slot, T K; van der Ham, M; Minderhoud, T C; Talelli, M; Akkermans, L M; Rijcken, C J F; van Nostrum, C F

    2009-01-19

    The purpose of this study was to assess the ability of polymeric micelles to enable gastrointestinal absorption of the extremely hydrophobic compound vitamin K, by comparison of its absorption in bile duct ligated and sham operated rats. Hereto, vitamin K was encapsulated in micelles composed of mPEG(5000)-b-p(HPMAm-lac(2)), a thermosensitive block copolymer. Vitamin K plasma levels rose significantly upon gastric administration of 1 mg vitamin K encapsulated in polymeric micelles in sham operated rats, but not after bile duct ligation (AUC 4543 and 1.64 ng/mL/h respectively, p<0.01). Duodenal administration of polymeric micelles together with bile acids in bile duct ligated rats fully restored absorption. Dynamic light scattering time series showed a significant and dose dependent rise in micellar size in the presence of bile acids in vitro, indicating the gradual formation of mixed micelles during the first 3 h of incubation. The highest bile acid amounts (11 mM deoxycholic acid and 41 mM taurocholic acid) eventually caused aggregation of the loaded micelles after the formation of mixed micelles. These data suggest that the gastrointestinal absorption of encapsulated vitamin K from polymeric micelles is mediated by free bile and that uptake of intact micelles through pinocytosis is insignificant.

  7. Module encapsulation technology

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    The identification and development techniques for low-cost module encapsulation materials were reviewed. Test results were displayed for a variety of materials. The improved prospects for modeling encapsulation systems for life prediction were reported.

  8. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Kim, Soo Hyun; Jung, Youngmee

    2015-05-28

    Mimicking the native tissue microenvironment is critical for effective tissue regeneration. Mechanical cues and sustained biological cues are important factors, particularly in load-bearing tissues such as articular cartilage or bone. Carriers including hydrogels and nanoparticles have been investigated to achieve sustained release of protein drugs. However, it is difficult to apply such carriers alone as scaffolds for cartilage regeneration because of their weak mechanical properties, and they must be combined with other biomaterials that have adequate mechanical strength. In this study, we developed the multifunctional scaffold which has similar mechanical properties to those of native cartilage and encapsulates TGF-β3 for chondrogenesis. In our previous work, we confirmed that poly(lactide-co-caprolacton) (PLCL) did not foam when exposed to supercritical CO2 below 45°C. Here, we used a supercritical carbon dioxide (scCO2)-1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) co-solvent system to facilitate processing under mild conditions because high temperature causes protein denaturation and decreases bioactivity of the protein. This processing made it possible to fabricate a TGF-β3 encapsulated elastic porous PLCL scaffold at 37°C. We investigated the tissue regeneration efficiency of the TGF-β3 encapsulated PLCL scaffold using human adipose-derived stem cells (ADSCs) in vitro and in vivo (Groups; i. PLCL scaffold+Fibrin gel+TGF-β3, ii. TGF-β3 encapsulated PLCL scaffold+Fibrin gel, iii. TGF-β3 encapsulated PLCL scaffold). We evaluated the chondrogenic abilities of the scaffolds at 4, 8, and 12weeks after subcutaneous implantation of the constructs in immune-deficient mice. Based on TGF-β3 release studies, we confirmed that TGF-β3 molecules were released by 8weeks and remained in the PLCL matrix. Explants of TGF-β3 encapsulated scaffolds by a co-solvent system exhibited distinct improvement in the compressive E-modulus and deposition of extracellular matrix

  9. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D [Albuquerque, NM; Shah, Pratik B [Albuquerque, NM; Singh, Seema [Rio Rancho, NM; Brinker, C Jeffrey [Albuquerque, NM

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  10. Structural, textural and morphological characteristics of tannins from Acacia mearnsii encapsulated using sol-gel methods: Applications as antimicrobial agents.

    PubMed

    Dos Santos, Cristiane; Vargas, Álvaro; Fronza, Ney; Dos Santos, João Henrique Zimnoch

    2017-03-01

    Tannins from Acacia mearnsii were encapsulated using four different sol-gel methods acid (SGAR), basic (SGBR), silicate (SGSR) and non-hydrolytic (SGNHR) routes. The hybrid materials were analyzed using a set of techniques to characterize their structure, texture and morphology. The antimicrobial performance of the encapsulated materials was evaluated against different microorganisms (Staphylococcus aureus, Escherichia coli, Aspergillus niger and Candida sp.). The data showed that the encapsulation route significantly affects the characteristics of the resulting hybrid materials. Better functional performances were obtained using the silicate route, which produced mesoporous materials with a small surface area (0.96m 2 g -1 ) and small particle size (<1nm). These characteristics promoted the gradual release of tannins in an aqueous medium and improved their interactions with microorganisms. Furthermore, the process demonstrated the preservation of tannins after synthesis and increased antimicrobial activity (via a controlled tannin release), as demonstrated by the moderate activity against filamentous fungi and yeast. Copyright © 2016. Published by Elsevier B.V.

  11. Thai Silk Fibroin/Gelatin Sponges for the Dual Controlled Release of Curcumin and Docosahexaenoic Acid for Anticancer Treatment.

    PubMed

    Lerdchai, Kantarat; Kitsongsermthon, Jutarat; Ratanavaraporn, Juthamas; Kanokpanont, Sorada; Damrongsakkul, Siriporn

    2016-01-01

    In this study, curcumin and/or docosahexaenoic acid (DHA) were encapsulated in Thai silk fibroin/gelatin (SF/G) sponges, prepared at different blending ratios, aimed to be applied as a controlled release system for localized cancer therapy. The SF/G sponges were fabricated by freeze-drying and glutaraldehyde cross-linking techniques. Physicochemical properties of the SF/G sponges were characterized. Then, curcumin and/or DHA were loaded in the sponges by physical adsorption. The encapsulation efficiency and the in vitro release of curcumin and/or DHA from the sponges were evaluated. SF/G sponges could encapsulate curcumin and/or DHA at high encapsulation efficiency. The highly cross-linked and slowly degrading SF/G (50/50) sponge released curcumin and/or DHA at the slowest rate. The in vitro cytotoxicity of the sponges against noncancer cells (L929 mouse fibroblast) and anticancer of curcumin and/or DHA released from the sponges against cervical cancer cells (CaSki) were tested. All sponges were not toxic to L929 mouse fibroblast. The mixed curcumin–DHA at the ratio of 1:4 had the highest inhibiting effect on the growth of CaSki, comparing with the release of curcumin or DHA alone. SF/G sponges could be a potential carrier for dual release of curcumin and DHA for anticancer effect.

  12. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems.

    PubMed

    Liu, Hui; Venkatraman, Subbu S

    2012-05-01

    Although injectable depot-forming solutions have been commercialized, the factors that influence the overall release kinetics from such systems are still not fully understood. In this work, we address the effect of cosolvent on the issue of excessive burst release of potent bioactives from injectable depot-forming solutions. Specifically, we have evaluated the influence of addition of a relatively hydrophobic cosolvent (triacetin) to more hydrophilic biocompatible solvents such as dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) on the burst release. Drug release and solvent release results demonstrate that high burst release that occurred when only hydrophilic solvent was used as solvent was significantly reduced by adding triacetin as a cosolvent. The profiles of drug release were in good agreement with the profiles of the hydrophilic solvent DMSO or NMP release, and the suppression of the burst by triacetin addition is due to the suppression of the solvent release. Surprisingly, the swelling of the depot increased with triacetin amount and the depot morphology became more porous compared with the absence of triacetin. Usage of hydrophobic solvent as a cosolvent to reduce the burst release was shown to be more effective on the hydrophobic PdlLA depot and less effective on the relatively hydrophilic RG502 depot. Copyright © 2012 Wiley Periodicals, Inc.

  13. Aptamer-based liposomes improve specific drug loading and release.

    PubMed

    Plourde, Kevin; Derbali, Rabeb Mouna; Desrosiers, Arnaud; Dubath, Céline; Vallée-Bélisle, Alexis; Leblond, Jeanne

    2017-04-10

    Aptamer technology has shown much promise in cancer therapeutics for its targeting abilities. However, its potential to improve drug loading and release from nanocarriers has not been thoroughly explored. In this study, we employed drug-binding aptamers to actively load drugs into liposomes. We designed a series of DNA aptamer sequences specific to doxorubicin, displaying multiple binding sites and various binding affinities. The binding ability of aptamers was preserved when incorporated into cationic liposomes, binding up to 15equivalents of doxorubicin per aptamer, therefore drawing the drug into liposomes. Optimization of the charge and drug/aptamer ratios resulted in ≥80% encapsulation efficiency of doxorubicin, ten times higher than classical passively-encapsulating liposomal formulations and similar to a pH-gradient active loading strategy. In addition, kinetic release profiles and cytotoxicity assay on HeLa cells demonstrated that the release and therapeutic efficacy of liposomal doxorubicin could be controlled by the aptamer's structure. Our results suggest that the aptamer exhibiting a specific intermediate affinity is the best suited to achieve high drug loading while maintaining efficient drug release and therapeutic activity. This strategy was successfully applied to tobramycin, a hydrophilic drug suffering from low encapsulation into liposomes, where its loading was improved six-fold using aptamers. Overall, we demonstrate that aptamers could act, in addition to their targeting properties, as multifunctional excipients for liposomal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chitosan/cashew gum nanogels for essential oil encapsulation.

    PubMed

    Abreu, Flávia O M S; Oliveira, Erick F; Paula, Haroldo C B; de Paula, Regina C M

    2012-08-01

    Nanogels based on chitosan and cashew gum were prepared and loaded with Lippia sidoides oil. Several parameters such as cashew gum concentration and relative oil content in the matrix had their influence on nanogel properties investigated. Nanogels were characterized regarding their morphologies, particle size distributions, zeta potential, Fourier transform infrared spectroscopy and essential oil contents. The release profile was investigated by UV/vis spectroscopy and its efficacy was determined through bioassays. Results showed that samples designed using relative ratios matrix:oil 10:2, gum:chitosan 1:1 and 5% gum concentration showed high loading (11.8%) and encapsulation efficiency (70%). Nanogels were found to exhibit average sizes in the range 335-558 nm. In vitro release profiles showed that nanoparticles presented slower and sustained release. Bioassays showed that larval mortality was related mainly to oil loading, with samples presenting more effective larvicide efficacies than the pure L. sidoides oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  16. New shell crosslinked micelles from dextran with hydrophobic end groups and their interaction with bioactive molecules.

    PubMed

    Mocanu, Georgeta; Nichifor, Marieta; Stanciu, Magdalena C

    2015-03-30

    Micelles formed in aqueous solution by dextran with hydrophobic (alkyl) end-groups were stabilized through divinyl sulfone crosslinking of the dextran shell. The efficacy of the crosslinking reaction was influenced by the divinyl sulfone amount, the pH and micelle concentration. Crosslinked micelles with a moderate crosslinking degree were further functionalized by attachment of 10 and 17 moles% N-(2-hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups along the dextran chain. The size and shape of both crosslinked micelles and their cationic derivatives were analyzed by DLS and TEM. The prepared micelles were able to bind anionic diclofenac (60-370 mg/g), hydrophobic anionic indometacin (70-120 mg/g), and hydrophobic alpha-tocopherol (170-220 mg/g) or ergocalciferol (90-110 mg/g) by hydrophobic or/and electrostatic forces. The release experiments and the antioxidant activity of bound alpha-tocopherol highlighted the potential of the new nano-sized micelles mainly as carriers for prolonged and controlled delivery of hydrophobic drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fisetin yeast-based bio-capsules via osmoporation: effects of process variables on the encapsulation efficiency and internalized fisetin content.

    PubMed

    de Câmara, Antonio Anchieta; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick; Rosenthal, Amauri; Correia, Roberta Targino Pinto; Pedrini, Márcia Regina da Silva

    2016-06-01

    Osmoporation is an innovative method that can be used with food-grade yeast cells of Saccharomyces cerevisiae as natural encapsulating matrices. This technique overcomes barriers that difficult encapsulation and enables the internalization of fragile bioactive molecules such as fisetin into yeasts. In the present study, we assessed the effects of concentration, osmotic pressure, and temperature on the encapsulation efficiency (EE) and internalized fisetin content (IF). Two different quantification strategies were investigated: direct extraction (DE) without cell washing or freeze-drying steps and indirect extraction (IE) performed after washings with ethanol and freeze-drying. Our results showed that osmoporation improved EE (33 %) and IF (1.199 mg). The best experimental conditions were found by using DE. High-resolution images showed that the yeast cell envelope was preserved during osmoporation at 30 MPa and 84 % of yeast cells remained viable after treatment. Washing cells with organic solvent led to decreased EE (0.65 %) and IF (0.023 mg). This was probably due to either damages caused to yeast cell envelope or fisetin dragged out of cell. Overall, the results demonstrated the adequacy and relevant biotechnological potential of yeasts as encapsulating matrices for hydrophobic compounds. This fresh biotechnological approach has proven to be a promising tool for the production of bioactive-rich food products.

  18. Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.

    PubMed

    Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W

    2015-01-01

    Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice.

    PubMed

    Haggag, Yusuf A; Osman, Mohamed A; El-Gizawy, Sanaa A; Goda, Ahmed E; Shamloula, Maha M; Faheem, Ahmed M; McCarron, Paul A

    2018-05-29

    Biodegradable PLGA nanoparticles, loaded with 5-fluorouracil (5FU), were prepared using a double emulsion method and characterised in terms of mean diameter, zeta potential, entrapment efficiency and in vitro release. Poly (vinyl alcohol) was used to modify both internal and external aqueous phases and shown have a significant effect on nanoparticulate size, encapsulation efficiency and the initial burst release. Addition of poly (ethylene glycol) to the particle matrix, as part of the polymeric backbone, improved significantly the encapsulation efficiency. 5FU-loaded NPs were spherical in shape and negatively charged with a size range of 185-350 nm. Biological evaluation was performed in vivo using a solid Ehrlich carcinoma (SEC) murine model. An optimised 5FU-loaded formulation containing PEG as part of a block copolymer induced a pronounced reduction in tumour volume and tumour weight, together with an improved percentage tumour growth inhibition. Drug-loaded nanoparticles showed no significant toxicity or associated changes on liver and kidney function in tested animals, whereas increased alanine aminotransferase, aspartate aminotransferase and serum creatinine were observed in animals treated with free 5FU. Histopathological examination demonstrated enhanced cytotoxic action of 5FU-loaded nanoparticles when compared to the free drug. Based on these findings, it was concluded that nano-encapsulation of 5FU using PEGylated PLGA improved encapsulation and sustained in vitro release. This leads to increased anti-tumour efficacy against SEC, with a reduction in adverse effects. Published by Elsevier Masson SAS.

  20. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    PubMed Central

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  1. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.

    PubMed

    Yan, Jing-Kun; Qiu, Wen-Yi; Wang, Yao-Yao; Wu, Jian-Yong

    2017-07-19

    Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.

  2. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages.

    PubMed

    Khorsand, Behnoush; Lapointe, Gabriel; Brett, Christopher; Oh, Jung Kwon

    2013-06-10

    Self-assembled micelles of amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) properties have a great promise as nanotherapeutics exhibiting enhanced release of encapsulated therapeutics into targeted cells. Here, thiol-responsive degradable micelles based on a new ABP consisting of a pendant disulfide-labeled methacrylate polymer block (PHMssEt) and a hydrophilic poly(ethylene oxide) (PEO) block were investigated as effective intracellular nanocarriers of anticancer drugs. In response to glutathione (GSH) as a cellular trigger, the cleavage of pendant disulfide linkages in hydrophobic PHMssEt blocks of micellar cores caused the destabilization of self-assembled micelles due to change in hydrophobic/hydrophilic balance. Such GSH-triggered micellar destabilization changed their size distribution with an appearance of large aggregates and led to enhanced release of encapsulated anticancer drugs. Cell culture results from flow cytometry and confocal laser scanning microscopy for cellular uptake as well as cell viability measurements for high anticancer efficacy suggest that new GSH-responsive degradable PEO-b-PHMssEt micelles offer versatility in multifunctional drug delivery applications.

  3. [Preparation and in vitro release characteristics of vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles].

    PubMed

    Tan, Rong; Liu, Ying; Feng, Nianping; Zhao, Jihui

    2011-06-01

    To prepare vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles (VCR-PBCA-NPs) and to investigate the in vitro release charactersitics. VCR-PBCA-NPs were prepared by emulsion polymerization method, and characterized for morphology, particle size, drug encapsulation efficiency and loading efficiency. The formulation was optimized using central composite design and response surface methodology. In vitro release study of VCR-PBCA-NPs was performed by dialysis technique. Model fitting was used to determine the kinetics and to discuss the mechanism. The nanoparticles were spherical and uniform with a mean diameter of (98.9 +/- 3.05) nm. The drug encapsulation efficiency and loading efficiency were (55.23 +/- 0.96)% and (7.87 +/- 0.11)%, respectively. In vitro release results showed that 63.66% of VCR was released from VCR-PBCA-NPs in 4 h, and the Weibull model fitted VCR release pattern best. The VCR-PBCA-NPs prepared in this study showed sustained release compared with VCR solution.

  4. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Assessment of porcine endogenous retrovirus transmission across an alginate barrier used for the encapsulation of porcine islets.

    PubMed

    Crossan, Claire; Mourad, Nizar I; Smith, Karen; Gianello, Pierre; Scobie, Linda

    2018-05-21

    Subcutaneous implantation of a macroencapsulated patch containing human allogenic islets has been successfully used to alleviate type 1 diabetes mellitus (T1DM) in a human recipient without the need for immunosuppression. The use of encapsulated porcine islets to treat T1DM has also been reported. Although no evidence of pathogen transfer using this technology has been reported to date, we deemed it appropriate to determine if the encapsulation technology would prevent the release of virus, in particular, the porcine endogenous retrovirus (PERV). HEK293 (human epithelial kidney) and swine testis (ST) cells were co-cultured with macroencapsulated pig islets embedded in an alginate patch, macroencapsulated PK15 (swine kidney epithelial) cells embedded in an alginate patch and free PK15 cells. Cells and supernatant were harvested at weekly time points from the cultures for up to 60 days and screened for evidence of PERV release using qRT-PCR to detect PERV RNA and SG-PERT to detect reverse transcriptase (RT). No PERV virus, or evidence of PERV replication, was detected in the culture medium of HEK293 or pig cells cultured with encapsulated porcine islets. Increased PERV activity relative to the background was not detected in ST cells cultured with encapsulated PK15 cells. However, PERV was detected in 1 of the 3 experimental replicates of HEK293 cells cultured with encapsulated PK15 cells. Both HEK293 and ST cells cultured with free PK15 cells showed an increase in RT detection. With the exception of 1 replicate, there does not appear to be evidence of transmission of replication competent PERV from the encapsulated islet cells or the positive control PK15 cells across the alginate barrier. The detection of PERV would suggest the alginate barrier of this replicate may have become compromised, emphasizing the importance of quality control when producing encapsulated islet patches. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.

    PubMed

    Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna

    2015-01-01

    The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.

  7. Selective encapsulation by Janus particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less

  8. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Oral Delivery of Chemotherapeutics

    PubMed Central

    Schoener, Cody A.; Hutson, Heather N.; Peppas, Nicholas A.

    2012-01-01

    Amphiphilic polymer carriers were formed by polymerizing a hydrophilic, pH-responsive hydrogel composed of poly(methacrylic – grafted – ethylene glycol) (P(MAA-g-EG)) in the presence of hydrophobic PMMA nanoparticles. These polymer carriers were varied in PMMA nanoparticle content to elicit a variety of physiochemical properties which would preferentially load doxorubicin, a hydrophobic chemotherapeutic, and release doxorubicin locally in the colon for the treatment of colon cancers. Loading levels ranged from 49% to 64% and increased with increasing nanoparticle content. Doxorubicin loaded polymers were released in a physiological model where low pH was used to simulate the stomach and then stepped to more neutral conditions to simulate the upper small intestine. P(MAA-g-EG) containing nanoparticles were less mucoadhesive as determined using a tensile tester, polymer samples, and fresh porcine small intestine. The cytocompatibility of the polymer materials were assessed using cell lines representing the GI tract and colon cancer and were non-cytotoxic at varying concentrations and exposure times. PMID:23281185

  9. Hydrophobic interactions between dissimilar surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, R.H.; Flinn, D.H.; Rabinovich, Y.I.

    1997-01-15

    An atomic force microscope (AFM) was used to measure surface forces between a glass sphere and a silica plate. When the measurements were conducted between untreated surfaces, a short-range hydration force with decay lengths of 0.4 and 3.0 nm was observed. When the surfaces were hydrophobized with octadecyltrichlorosilane (OTS), on the other hand, long-range hydrophobic forces with decay lengths in the range of 2--32 nm were observed. The force measurements were conducted between surfaces having similar and dissimilar hydrophobicities so that the results may be used for deriving an empirical combining rule. It was found that the power law forcemore » constants for asymmetric interactions are close to the geometric means of those for symmetric interactions. Thus, hydrophobic force constants can be combined in the same manner as the Hamaker constants. A plot of the power law force constants versus water contact angles suggests that the hydrophobic force is uniquely determined by contact angle. These results will be useful in predicting hydrophobic forces for asymmetric interactions and in estimating hydrophobic forces from contact angles.« less

  10. Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Fang; Kang, Chuan-Zhen; Kong, Ming; Li, Yang; Su, Jing; Yi, An; Cheng, Xiao-Jie; Chen, Xi-Guang

    2012-09-01

    Chitosan/α, β-glycerophosphate (CS/α, β-GP) thermo-sensitive hydrogels presented flowable solution state at low temperature and semisolid hydrogel when the ambient temperature increased. In this research, different concentrations of metronidazole encapsulated, CS and α, β-GP, as well as different acid solvents, were chosen to evaluate their influences on the drug release behaviors from CS/α, β-GP hydrogels. It was found that there was a sustaining release during the first 3 h followed by a plateau. SEM images showed that drugs were located both on the surface and in the interior of hydrogels. The optimal preparation conditions of this hydrogel for drug release were as follows: 1.8% (w/v) CS in HAc solvent, 5.6% (w/v) α, β-GP and 5 g/L metronidazole encapsulation. Cytotoxicity evaluation found no toxic effect. In order to control the release rate, 2.5 g/L chitosan microspheres with spherical shape and smooth surface were incorporated, and it was found that the initial release process was alleviated, while drug concentration had no obvious effect on the release rate. It could be concluded that the metronidzole release behaviors could be optimized according to practical applications.

  11. Encapsulation of a model compound in pectin delays its release from a biobased polymeric material

    USDA-ARS?s Scientific Manuscript database

    A model compound was encapsulated in pectin and then extruded with thermoplastic starch to form a composite. The intended product was a food-contact tray made of biobased polymers infused with an anti-microbial agent; however, caffeine was used as the model compound in the preliminary work. The mode...

  12. Polyamide nanocapsules and nano-emulsions containing Parsol® MCX and Parsol® 1789: in vitro release, ex vivo skin penetration and photo-stability studies.

    PubMed

    Hanno, Ibrahim; Anselmi, Cecilia; Bouchemal, Kawthar

    2012-02-01

    To prepare polyamide nanocapsules for skin photo-protection, encapsulating α-tocopherol, Parsol®MCX (ethylhexyl methoxycinnamate) and/or Parsol®1789 (butyl methoxydibenzoylmethane). Nanocapsules were obtained by combining spontaneous emulsification and interfacial polycondensation reaction between sebacoyl chloride and diethylenetriamine. Nano-emulsions used as control were obtained by the same process without monomers. The influence of carrier on release rate was studied in vitro with a membrane-free model. Epidermal penetration of encapsulated sunscreens was ex vivo evaluated using Franz diffusion cells. Ability of encapsulated sunscreens to improve photo-stability was verified by comparing percentage of degradation after UV radiation exposure. Sunscreen-containing nanocapsules (260-400 nm) were successfully prepared; yield of encapsulation was >98%. Parsol®MCX and Parsol®1789 encapsulation led to decreased release rate by up to 60% in comparison with nano-emulsion and allowed minimum penetration through pig ear epidermis. Presence of polyamide shell protected encapsulated sunscreen filters from photo-degradation without affecting their activity. Encapsulation of Parsol®MCX and Parsol®1789 into oil-core of polyamide nanocapsules allowed protection from photo-degradation, controlled release from nanocapsules, and limited penetration through pig ear epidermis.

  13. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.

    PubMed

    Esmaeili, Akbar; Asgari, Azadeh

    2015-11-01

    In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol.

    PubMed

    Azzi, Joyce; Auezova, Lizette; Danjou, Pierre-Edouard; Fourmentin, Sophie; Greige-Gerges, Hélène

    2018-07-30

    Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  16. Stability of hepatoprotecting agent IFC-305 encapsulated into sol-gel titania nanoparticles and drug release evaluation: water and drug concentration effect.

    PubMed

    Albarran, L; López, T; Quintana, P; Chagoya, V

    2012-03-01

    IFC-305 was encapsulated into nanostructured titania and functionalized with OH groups by the sol-gel process using titanium n-butoxide, to be used in a drug delivery system for the treatment of liver cancer. Synthesis was carried out at different molar hydrolysis ratios: 4, 8, 16 and 24 mol of water; and drug concentration of 10, 20 and 30%. Characterization of IFC-titania reservoirs was carried out by Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis (DTA-TGA), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherms (BET), confirms that IFC-305 is entrapped and stabilized in the TiO2-OH matrix. Drug liberation in vitro was determined by UV spectrometry over a period of 1000 h. This study demonstrated that the higher water content and the higher amount of loaded IFC, favored hydrogen bonding between titania-OH surface and IFC-NH groups, increasing the rate of drug release.

  17. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies.

    PubMed

    Ulbrich, Karel; Holá, Kateřina; Šubr, Vladimir; Bakandritsos, Aristides; Tuček, Jiří; Zbořil, Radek

    2016-05-11

    Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer-drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving hydrophobic and electrostatic interactions, coordination chemistry, and encapsulation in porous materials. Principles of covalent conjugation of drugs with SPIONs including thermo- and pH-degradable bonds, amide linkage, redox-cleavable bonds, and enzymatically-cleavable bonds are also thoroughly described. Finally, results of clinical trials obtained with polymeric and magnetic carriers are analyzed highlighting the potential advantages and future directions in targeted anticancer therapy.

  18. Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Kalwar, Kaleemullah; Zhang, Xuan; Aqeel Bhutto, Muhammad; Dali, Li; Shan, Dan

    2017-12-01

    Electrospun nanofibers with sustained drug release are a challenge but it can be improved by using hydrophobic polymer. Polycaprolactone (PCL) is a hydrophobic and biocompatible polymer. In this work, we have proposed a drug release mechanism by preparation of ciprofloxacin (Cip)/Laponite (LAP) complex and then incorporation in PCL nanofibers through electrospinning technique. In addition, drug incorporation was confirmed by FTIR and morphology of electrospun nanofibers was revealed by SEM. Drug loading was measured by using spectrophotometer. PCL/LAP/Cip NFs proved sustained drug release as compared to PCL NFs and PCL/Cip NFs. Furthermore, PCL/LAP/Cip NFs were used as antimicrobial agent and higher effect measured.

  19. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil.

    PubMed

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-09-01

    In this work, nanocomplexes based on chitosan grafted by carboxy-modified polylactic acid (SPLA) were prepared with the aim of loading simultaneously two anticancer drugs - doxorubicin and 5-fluorouracil, as well as to control their release, reduce the initial burst and boost cytotoxicity. The SPLA was prepared by a polycondensation reaction, using pentetic acid as the core molecule, and linked to the chitosan backbone through a coupling reaction. Nanocomplexes loaded with both drugs were formulated by the polyelectrolyte complexation method. The structure of the SPLA was characterized by 1 H NMR, while the product CS-SPLA was analyzed by FTIR-ATR to prove the occurrence of the reaction. Results showed that the diameters and ζ-potential of the nanocomplexes fall in the range 120-200nm and 20-37mV, respectively. SEM and TEM analysis confirmed the spherical shape and dimensions of the nanocomplexes. The presence of hydrophobic side chain SPLA did not influence the encapsulation efficiency of the drugs but strongly reduced the initial burst and prolonged release over time compared to unmodified chitosan. MS analysis showed that no degradation or interactions between the drugs and carrier were exhibited after loading or 24h of release had taken place, confirming the protective role of the nanocomplexes. In vitro tests demonstrated an increase in the cytotoxicity of the drugs when loaded in the prepared carriers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    , the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours

  1. Spray-dried nanofibrillar cellulose microparticles for sustained drug release.

    PubMed

    Kolakovic, Ruzica; Laaksonen, Timo; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni

    2012-07-01

    Nanofibrillar cellulose (also referred to as cellulose nanofibers, nanocellulose, microfibrillated or nanofibrillated cellulose) has gained a lot of attention in recent years in different research areas including biomedical applications. In this study we have evaluated the applicability of nanofibrillar cellulose (NFC) as a material for the formation of matrix systems for sustained drug delivery. For that purpose, drug loaded NFC microparticles were produced by a spray drying method. The microparticles were characterized in terms of size and morphology, total drug loading, and physical state of the encapsulated drug. Drug release from the microparticles was assessed by dissolution tests, and suitable mathematical models were used to explain the drug releasing kinetics. The particles had spherical shapes with diameters of around 5 μm; the encapsulated drug was mainly in amorphous form. The controlled drug release was achieved. The drug releasing curves were fitted to a mathematical model describing the drug releasing kinetics from a spherical matrix. Different drugs had different release kinetics, which was a consequence of several factors, including different solubilities of the drugs in the chosen medium and different affinities of the drugs to the NFC. It can be concluded that NFC microparticles can sustain drug release by forming a tight fiber network and thus limit drug diffusion from the system. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Sintering of wax for controlling release from pellets.

    PubMed

    Singh, Reena; Poddar, S S; Chivate, Amit

    2007-09-14

    The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.

  3. Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties

    DOE PAGES

    Dong, Fuping; Firkowska-Boden, Izabela; Arras, Matthias M. L.; ...

    2017-01-13

    Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabledmore » sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.« less

  4. Responsive copolymer–graphene oxide hybrid microspheres with enhanced drug release properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Fuping; Firkowska-Boden, Izabela; Arras, Matthias M. L.

    Here, the ability to integrate both high encapsulation efficiency and controlled release in a drug delivery system (DDS) is a highly sought solution to cure major diseases. However, creation of such a system is challenging. This study was aimed at constructing a new delivery system based on thermoresponsive poly(N-isopropylacrylamide-co-styrene) (PNIPAAm-co-PS) hollow microspheres prepared via two-step precipitation polymerization. To control the diffusion-driven drug release, the PNIPAAm-co-PS spheres were electrostatically coated with graphene oxide (GO) nanosheets. As a result of the coating the permeability of such copolymer-GO hybrid microspheres was reduced to the extent that suppressed the initial burst release and enabledmore » sustained drug release in in vitro testing. The hybrid microspheres showed improved drug encapsulation by 46.4% which was attributed to the diffusion barrier properties and -conjugated structure of GO. The system presented here is promising to advance, e.g., the anticancer drug delivery technologies by enabling sustained drug release and thus minimizing local and systemic side effects.« less

  5. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion.

    PubMed

    Aditya, N P; Aditya, Sheetal; Yang, Hanjoo; Kim, Hye Won; Park, Sung Ook; Ko, Sanghoon

    2015-04-15

    Curcumin and catechin are naturally occurring phytochemicals with extreme sensitivity to oxidation and low bioavailability. We fabricated a water-in-oil-in-water (W/O/W) double emulsion encapsulating hydrophilic catechin and hydrophobic curcumin simultaneously. The co-loaded emulsion was fabricated using a two-step emulsification method, and its physicochemical properties were characterised. Volume-weighted mean size (d43) of emulsion droplets was ≈3.88 μm for blank emulsions, whereas it decreased to ≈2.8-3.0 μm for curcumin and/or catechin-loaded emulsions, which was attributed to their capacity to act as emulsifiers. High entrapment efficiency was observed for curcumin and/or catechin-loaded emulsions (88-97%). Encapsulation of catechin and curcumin within an emulsion increased their stability significantly in simulated gastrointestinal fluid, which resulted in a four-fold augmentation in their bioaccessibility compared to that of freely suspended curcumin and catechin solutions. Co-loading of curcumin and catechin did not have adverse effects on either compound's stability or bioaccessibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. How the hydrophobic factor drives protein folding

    PubMed Central

    Baldwin, Robert L.; Rose, George D.

    2016-01-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki–Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484–7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473] for the number of waters in alkane hydration shells. PMID:27791131

  7. Cellular Encapsulation Enhances Cardiac Repair

    PubMed Central

    Levit, Rebecca D.; Landázuri, Natalia; Phelps, Edward A.; Brown, Milton E.; García, Andrés J.; Davis, Michael E.; Joseph, Giji; Long, Robert; Safley, Susan A.; Suever, Jonathan D.; Lyle, Alicia N.; Weber, Collin J.; Taylor, W. Robert

    2013-01-01

    Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases. PMID:24113327

  8. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.

    PubMed

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2008-08-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.

  9. Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform

    PubMed Central

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2014-01-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP is comprised of three distinct functional components: i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; ii) a hydrophilic polymeric shell with anti-biofouling properties to enhance NP stability and systemic circulation half-life; and iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up PMID:19206374

  10. Encapsulation of 3-hydroxyflavone and fisetin in β-cyclodextrins: Excited state proton transfer fluorescence and molecular mechanics studies

    NASA Astrophysics Data System (ADS)

    Banerjee, Anwesha; Sengupta, Pradeep K.

    2006-06-01

    Excited-state intramolecular proton-transfer (ESIPT) and dual emission properties (emission profile, anisotropy and decay kinetics) of 3-hydroxyflavone (a synthetic, model flavonol) and fisetin (3,7,3',4'-OH-flavone, a therapeutically active plant flavonol) have been exploited to study their encapsulation in nano-cavities comprising of natural and chemically modified β-cyclodextrins. In the presence of β-CDs, both the flavonols show significantly enhanced relative yields (along with changes in other emission parameters) of the tautomer emission. In addition, for fisetin, large blue shifts are observed for the normal emission (which has significant charge transfer character). From these we infer that the flavonols are encaged in predominantly hydrophobic micro-environments, where external hydrogen bonding perturbations (interfering with the intrinsic ESIPT), and dipolar relaxation effects, are minimized. This is further explained from results of molecular mechanics calculations which indicate selectivity in orientation of the encapsulated flavonols. Moreover, chemical modification of the β-CDs is found to profoundly influence the binding affinities of the guest flavonols.

  11. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation.

    PubMed

    Xu, Xiaolong; Qiu, Sujun; Zhang, Yuxian; Yin, Jie; Min, Shaoxiong

    2017-03-01

    Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.

  12. Electrospray-assisted encapsulation of caffeine in alginate microhydrogels.

    PubMed

    Nikoo, Alireza Mehregan; Kadkhodaee, Rassoul; Ghorani, Behrouz; Razzaq, Hussam; Tucker, Nick

    2018-05-02

    One of the major challenges with microencapsulation and delivery of low molecular weight bioactive compounds is their diffusional loss during storage and process conditions as well as under gastric conditions. In an attempt to slow down the release rate of core material, electrospray fabricated calcium alginate microhydrogels were coated with low molecular weight and high molecular weight chitosans. Caffeine as a hydrophilic model compound was used due to its several advantages on human behavior especially increasing consciousness. Mathematical modeling of the caffeine release by fitting the data with Korsmeyer-Peppas model showed that Fick's diffusion law could be the prevalent mechanism of the release. Electrostatic interaction between alginate and chitosan (particularly in the presence of 1% low molecular weight chitosan) provided an effective barrier against caffeine release and significantly reduced swelling of particles compared to control samples. The results of this study demonstrated that calcium alginate microhydrogels coated by chitosan could be used for encapsulation of low molecular compounds. However, more complementary research must be done in this field. In addition, electrospray, by producing monodisperse particles, would be as an alternative method for fabrication of microparticles based on natural polymers. Copyright © 2018. Published by Elsevier B.V.

  13. Controlled Embedding of Metal Oxide Nanoparticles in ZSM-5 Zeolites through Preencapsulation and Timed Release.

    PubMed

    Lai, Yungchieh; Rutigliano, Michael N; Veser, Götz

    2015-09-29

    We report a straightforward and transferrable synthesis strategy to encapsulate metal oxide nanoparticles (NPs) in mesoporous ZSM-5 via the encapsulation of NPs into silica followed by conversion of the NP@silica precursor to NP@ZSM-5. The systematic bottom-up approach allows for straightforward, precise control of both the metal weight loading and size of the embedded NP and yields uniform NP@ZSM-5 microspheres composed of stacked ZSM-5 nanorods with substantial mesoporosity. Key to the synthesis is the timed release of the embedded NPs during dissolution of the silica matrix in the hydrothermal conversion step, which finely balances the rate of NP release with the rate of SiO2 dissolution and the subsequent nucleation of aluminosilicate. The synthesis approach is demonstrated for Zn, Fe, and Ni oxide encapsulation in ZSM-5 but can be expected to be broadly transferrable for the encapsulation of metal and metal oxide nanoparticles into other zeolite structures.

  14. Silicone adhesive matrix of verapamil hydrochloride to provide pH-independent sustained release.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2014-02-01

    Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.

  15. Hydrophobic pocket targeting probes for enteroviruses.

    PubMed

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-11-07

    Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content

  16. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon.

    PubMed

    Wilpiszewska, Katarzyna; Spychaj, Tadeusz; Paździoch, Waldemar

    2016-01-20

    Preparation of novel high substituted carboxymethyl starch-based microparticles containing sodium montmorillonite (MMT) by crosslinking with Al(3+) was described. For preparing nanocomposite granules carboxymethyl starch (CMS) from native potato starch as well as CMS from amylopectin has been used. The hydrophilic CMS/MMT composite systems were used for herbicide, i.e. isoproturon encapsulation (ca. 75% encapsulation efficiency). The herbicide release rate from CMS/MMT composites in water was significantly reduced when compared to commercial isoproturon: 95% released after ca. 700 h and ca. 24h, respectively. Leaching in soil from composite systems was relatively slower than release in water. After a series of eight irrigations leached about 10% of isoproturon loaded. The CMS/MMT carriers could reduce the potential leaching of herbicide and beneficially reduce pollution of the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy

    PubMed Central

    Trigo Gutierrez, Jeffersson Krishan; Zanatta, Gabriela Cristina; Ortega, Ana Laura Mira; Balastegui, Maria Isabella Cuba; Sanitá, Paula Volpato; Pavarina, Ana Cláudia; Barbugli, Paula Aboud

    2017-01-01

    Curcumin (CUR) has been used as photosensitizer in antimicrobial Photodynamic Therapy (aPDT). However its poor water solubility, instability, and scarce bioavalibility hinder its in vivo application. The aim of this study was to synthesize curcumin in polymeric nanoparticles (NP) and to evaluate their antimicrobial photodynamic effect and cytoxicity. CUR in anionic and cationic NP was synthesized using polylactic acid and dextran sulfate by the nanoprecipitation method. For cationic NP, cetyltrimethylammonium bromide was added. CUR-NP were characterized by physicochemical properties, photodegradation, encapsulation efficiency and release of curcumin from nanoparticles. CUR-NP was compared with free CUR in 10% dimethyl sulfoxide (DMSO) as a photosensitizer for aPDT against planktonic and biofilms (mono-, dual- and triple-species) cultures of Streptococcus mutans, Candida albicans and Methicillin-Resistant Staphylococcus aureus. The cytotoxicity effect of formulations was evaluated on keratinocytes. Data were analysed by parametric (ANOVA) and non-parametric (Kruskal-Wallis) tests (α = 0.05). CUR-NP showed alteration in the physicochemical properties along time, photodegradation similar to free curcumin, encapsulation efficiency up to 67%, and 96% of release after 48h. After aPDT planktonic cultures showed reductions from 0.78 log10 to complete eradication, while biofilms showed no antimicrobial effect or reductions up to 4.44 log10. Anionic CUR-NP showed reduced photoinactivation of biofilms. Cationic CUR-NP showed microbicidal effect even in absence of light. Anionic formulations showed no cytotoxic effect compared with free CUR and cationic CUR-NP and NP. The synthesized formulations improved the water solubility of CUR, showed higher antimicrobial photodynamic effect for planktonic cultures than for biofilms, and the encapsulation of CUR in anionic NP reduced the cytotoxicity of 10% DMSO used for free CUR. PMID:29107978

  18. Encapsulation of sex sorted boar semen: sperm membrane status and oocyte penetration parameters.

    PubMed

    Spinaci, Marcella; Chlapanidas, Theodora; Bucci, Diego; Vallorani, Claudia; Perteghella, Sara; Lucconi, Giulia; Communod, Ricardo; Vigo, Daniele; Galeati, Giovanna; Faustini, Massimo; Torre, Maria Luisa

    2013-03-01

    Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P < 0.0001), and a significant reduction of polyspermic fertilization (60.76% vs. 36.43%, respectively, polyspermic ova/total ova; P < 0.0001). However, no difference (P > 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. PEG modulated release of etanidazole from implantable PLGA/PDLA discs.

    PubMed

    Wang, Fangjing; Lee, Timothy; Wang, Chi-Hwa

    2002-09-01

    In this work, etanidazole (one type of hypoxic radiosensitizer) is encapsulated into spray dried poly(D),L-lactide-co-glycolide) (PLGA) microspheres and then compressed into discs for controlled release applications. Etanidazole is characterized by intracellular glutathione depletion and glutathione transferases inhibition, thereby enhancing sensitivity to radiation. It is also cytotoxic to tumor cells and can chemosensitize some alkylating agents by activating their tumor cell killing capabilities. We observed the release characteristics of etanidazole in the dosage forms of microspheres and discs, subjected to different preparation conditions. The release characteristics, morphology changes, particle size, and encapsulation efficiency of microspheres are also investigated. The release rate of etanidazole from implantable discs (13 mm in diameter, 1 mm in thickness, fabricated by a press) is much lower than microspheres due to the reduced specific surface. After the initial burst of 1% release for the first day, the cumulative release within the first week is less than 2% until a secondary burst of release (caused by polymer degradation) occurs after one month. Some key preparation conditions such as drug loadings, disc thickness and diameter, and compression pressure can affect the initial burst of etanidazole from the discs. However, none of them can significantly make the release more uniform. In contrast, the incorporation of polyethylene glycol (PEG) can greatly enhance the release rate of discs and also reduces the secondary burst effect, thereby achieving a sustained release for about 2 months.

  20. Highly magneto-responsive multilayer microcapsules for controlled release of insulin.

    PubMed

    Zheng, Chunli; Ding, Yafei; Liu, Xiaoqing; Wu, Yunkai; Ge, Liang

    2014-11-20

    In this study, magneto-responsive polyelectrolyte multilayer microcapsules were successfully prepared by the formation of shell with biocompatible iron oxide nanoparticles (Fe₃O₄ NPs) and polyallylamine hydrochloride (PAH) by layer-by-layer (LbL) self-assembly technique. The self-assembled microcapsules were characterized by SEM, TEM and zeta-potential analyzer. According to the pH sensitivity of the microcapsule membrane permeability, insulin was encapsulated, with the encapsulation efficiency of 92.08±5.57%. The in vitro release behavior in an external alternating magnetic field indicated that once the magnetic field was applied, the drug release was greatly accelerated. In addition, according to the observed pulse release upon cyclic on-off operations of magnetic field, it could be assumed that the magneto-responsive microcapsules had an excellent "switching on" effect, which might be attributed to the rearrangement of shell structure caused by magnetic nanoparticles twisting and polyelectrolyte chains shaking, hence the increase of microcapsule membrane permeability and the enhancement of insulin release. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles.

    PubMed

    Terrón-Mejía, Ketzasmin A; Martínez-Benavidez, Evelin; Higuera-Ciapara, Inocencio; Virués, Claudia; Hernández, Javier; Domínguez, Zaira; Argüelles-Monal, Waldo; Goycoolea, Francisco M; López-Rendón, Roberto; Gama Goicochea, Armando

    2018-06-12

    The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.

  2. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  3. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary absorption of encapsulated insulin compared with co-administered insulin.

    PubMed

    Chono, Sumio; Togami, Kohei; Itagaki, Shirou

    2017-11-01

    We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer. The present study provides the useful information for development of noninvasive treatment of diabetes. Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin. DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased. We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.

  4. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    PubMed Central

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-01-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale. PMID:26083864

  5. Albumin/gentamicin microspheres produced by supercritical assisted atomization: optimization of size, drug loading and release.

    PubMed

    Della Porta, G; Adami, R; Del Gaudio, P; Prota, L; Aquino, R; Reverchon, E

    2010-11-01

    In this work, the supercritical assisted atomization (SAA) is proposed, for the first time, not only as a micronization technology but also as a thermal coagulation process for the production of bovine serum albumin (BSA) microspheres charged with Gentamicin sulfate (GS). Particularly, different water solutions of BSA/GS were processed by SAA to produce protein microspheres with different size and antibiotic content. SAA precipitation temperature was selected in the range 100-130 °C to generate protein coagulation and to recover micronized BSA in form of hydrophobic aggregates; GS loading was varied between 10% and 50% (w/w) with an encapsulation efficiency which often reached 100%. In all cases, spherical and noncoalescing particles were successfully produced with a mean particle size of 2 µm and with a standard deviation of about ±1 µm. The microspheres also showed a good stability and constant water content after 60 days of storage. The release profiles of the entrapped drug were monitored using Franz cells to evaluate the possible application of the produced microspheres in wound dressing formulations. Particularly, the microspheres with a BSA/GS ratio of 4:1 after the first burst effect (of 40% of GS loaded) were able to release the GS continuously over 10 days. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  6. Wear resistance of hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Martinez, MA; Abenojar, J.; Pantoja, M.; López de Armentia, S.

    2017-05-01

    Nature has been an inspiration source to develop artificial hydrophobic surfaces. During the latest years the development of hydrophobic surfaces has been widely researched due to their numerous ranges of industrial applications. Industrially the use of hydrophobic surfaces is being highly demanded. This is why many companies develop hydrophobic products to repel water, in order to be used as coatings. Moreover, these coating should have the appropriated mechanical properties and wear resistance. In this work wear study of a hydrophobic coating on glass is carried out. Hydrophobic product used was Sika Crystal Dry by Sika S.A.U. (Alcobendas, Spain). This product is currently used on car windshield. To calculate wear resistance, pin-on-disk tests were carried out in dry and water conditions. The test parameters were rate, load and sliding distance, which were fixed to 60 rpm, 5 N and 1000 m respectively. A chamois was used as pin. It allows to simulate a real use. The friction coefficient and loss weight were compared to determinate coating resistance

  7. Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix

    PubMed Central

    Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda

    2014-01-01

    Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593

  8. Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation.

    PubMed

    Park, Minsung; Shin, Sungchul; Cheng, Jie; Hyun, Jinho

    2017-02-20

    We describe the nanocomposite membrane for cell encapsulation using nanocelluose hydrogels. One of the surfaces of bacterial cellulose (BC) pellicles was coated with collagen to enhance cell adhesion and the opposite side of the BC pellicles was coated with alginate to protect transplanted cells from immune rejection by the reduced pore size of the composite membrane. The morphology of nanocomposite membrane was observed by scanning electron microscopy and the permeability of the membrane was estimated by the release test using different molecular weights of polymer solution. The nanocomposite membrane was permeable to small molecules but impermeable to large molecules such as IgG antibodies inferring the potential use in cell implantation. In addition, the BC-based nanocomposite membrane showed a superior mechanical property due to the incorporation of compared with alginate membranes. The cells attached efficiently to the surface of BC composite membranes with a high level of cell viability as well as bioactivity. Cells grown on the BC composite membrane kit released dopamine freely to the medium through the membrane, which showed that the BC composite membrane would be a promising cell encapsulation material in implantation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules.

    PubMed

    Zhang, Xueru; Chabot, Denise; Sultan, Yasir; Monreal, Carlos; DeRosa, Maria C

    2013-06-26

    Polyelectrolyte microcapsules have great potential for serving as carriers for the delivery of their contents when triggered by an external stimulus. Aptamers are synthetic ssDNA or RNA that can bind to specific targets with high affinity and selectivity. Aptamers may retain these superior molecular recognition properties after encapsulation within polymer microcapsules. In this work, stable polyelectrolyte microcapsules with encapsulated aptamers were obtained by the layer-by-layer (LbL) method. Polyelectrolyte films were deposited onto a CaCO3 template that had been predoped with polystyrene sulfonate (PSS) and aptamer sequences (SA) that have an affinity for the dye sulforhodamine B (SRB). The PSS and aptamers are thought to serve as an internal scaffold supporting the microcapsule walls. These microcapsules would present target-molecule-triggered rupture properties. Microcapsule collapse was triggered by the binding of SRB to the encapsulated aptamer. The specificity of microcapsule collapse was investigated using a similar dye, tetramethylrosamine (TMR), which does not have affinity for SA. A high concentration of TMR did not lead to the collapse of the microcapsules. The effect of target binding on the microcapsules was confirmed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These microcapsules may have potential applications in targeted delivery systems for the controlled release of drugs, pesticides, or other payloads.

  10. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and

  11. Encapsulation and solid state sequestration of gases by calix[6]arene-based molecular containers.

    PubMed

    Lavendomme, Roy; Ajami, Daniela; Moerkerke, Steven; Wouters, Johan; Rissanen, Kari; Luhmer, Michel; Jabin, Ivan

    2017-06-13

    Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.

  12. Thiolated graphene oxide as promising mucoadhesive carrier for hydrophobic drugs.

    PubMed

    Pereira de Sousa, Irene; Buttenhauser, Katrin; Suchaoin, Wongsakorn; Partenhauser, Alexandra; Perrone, Mara; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-07-25

    The aim of this study was to improve the mucoadhesive properties of graphene by conjugating thiol ligands, in order to formulate an oral delivery system for hydrophobic drugs showing long mucus residence time. Graphene oxide was obtained by oxidation of graphite and then was thiolated following two synthetic paths. On the one hand, the hydroxyl groups were conjugated with thiourea passing through the formation of a brominated intermediate. On the other hand, the carboxylic acid groups were conjugated with cysteamine via carbodiimide chemistry. The mucoadhesive properties of thiolated graphene were evaluated by rheological measurements and by residence time assay. Then, valsartan was loaded on thiolated graphene and the release profile was evaluated in simulated intestinal fluid. Following both synthetic paths it was possible to obtain thiolated graphene bearing 215-302μmol SH/g product. Both products induced after 1h incubation an increase of mucus viscosity of about 22-33-fold compared to unmodified graphite. The residence time assay confirmed that 60% of thiolated graphene could be retained on intestinal mucosa after 4h incubation, whereas just 20% of unmodified graphite could be retained. Valsartan could be loaded with a drug loading of about 31±0.3% and a sustained release profile was observed for both formulations. According to the presented data, the thiolation of graphene could improve its mucoadhesive properties. Therefore, thiolated graphene represents a promising platform for oral delivery of hydrophobic drugs, possessing a long residence time on intestinal mucosa which allows the release of the loaded drug close to the adsorptive epithelium. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Use of natural and biobased materials for controlled-release of urea in water: Environmental applications

    USDA-ARS?s Scientific Manuscript database

    Urea pearls were encapsulated in cloisite-based matrices using different natural materials (lignin, beeswax and latex) to control the release of urea over time. It was found that all cloisite-based fertilizer tablets showed better release profiles than neat urea tablets. The best release profile was...

  14. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  15. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  16. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  17. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  18. Wax-based sustained release matrix pellets prepared by a novel freeze pelletization technique II. In vitro drug release studies and release mechanisms.

    PubMed

    Cheboyina, Sreekhar; Wyandt, Christy M

    2008-07-09

    A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.

  19. Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(urea-urethane) Shells Containing Cellulose Nanocrystals.

    PubMed

    Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P

    2017-09-20

    The main objective of this study is to develop microencapsulation technology for thermal energy storage incorporating a phase change material (PCM) in a composite wall shell, which can be used to create a stable environment and allow the PCM to undergo phase change without any outside influence. Surface modification of cellulose nanocrystals (CNCs) was conducted by grafting poly(lactic acid) oligomers and oleic acid to improve the dispersion of nanoparticles in a polymeric shell. A microencapsulated phase change material (methyl laurate) with poly(urea-urethane) (PU) composite shells containing the hydrophobized cellulose nanocrystals (hCNCs) was fabricated using an in situ emulsion interfacial polymerization process. The encapsulation process of the PCMs with subsequent interfacial hCNC-PU to form composite microcapsules as well as their morphology, composition, thermal properties, and release rates was examined in this study. Oil soluble Sudan II dye solution in methyl laurate was used as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency as well as dye release rates were measured spectroscopically in a water medium. The influence of polyol content in the PU polymer matrix of microcapsules was investigated. An increase in polyol contents leads to an increase in the mean size of microcapsules but a decrease in the gel content (degree of cross-linking density) and permeability of their shell structure. The encapsulated PCMs for thermal energy storage demonstrated here exhibited promising performance for possible use in building or paving materials in terms of released heat, desired phase transformation temperature, chemical and physical stability, and concrete durability during placement.

  20. Preparation and optimization of chlorophene-loaded nanospheres as controlled release antimicrobial delivery systems.

    PubMed

    Phuengkham, Hathaichanok; Teeranachaideekul, Veerawat; Chulasiri, Malyn; Nasongkla, Norased

    2016-01-01

    Chlorophene-loaded nanospheres with various formulation parameters were evaluated. The optimal formulation was found at 0.1% w/v of poloxamer 407, 15 mL of ethyl acetate and 20% initial chlorophene loading that provided the suitable size (179 nm), the highest loading content (19.2%), encapsulation efficiency (88.0%) and yield (91.6%). Moreover, encapsulation of chlorophene in nanospheres was able to prolong and sustain drug release over one month. Chlorophene-loaded nanospheres were effective against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans), the main cause of hospital-acquired infections. Chlorophene-loaded nanospheres were effective against S. aureus (>46 µg/mL) and C. albicans (>184 µg/mL). These nanospheres appeared to have profound effect on the time-dependent hemolytic activity due to gradual release of chlorophene. At the concentration of 46 µg/mL, nearly no HRBC hemolysis in 24 h compared to 80% of hemolysis from free drug. In conclusion, polymeric nanospheres were successfully fabricated to encapsulate chlorophene which can eliminate inherent toxicity of drugs and have potential uses in prolonged release of antimicrobial.

  1. Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery.

    PubMed

    Yendluri, Raghuvara; Lvov, Yuri; de Villiers, Melgardt M; Vinokurov, Vladimir; Naumenko, Ekaterina; Tarasova, Evgenya; Fakhrullin, Rawil

    2017-10-01

    Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents.

    PubMed

    Angelova, Angelina; Garamus, Vasil M; Angelov, Borislav; Tian, Zhenfen; Li, Yawen; Zou, Aihua

    2017-11-01

    The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery

    PubMed Central

    2015-01-01

    Inspired by the lotus effect in nature, surface roughness engineering has led to novel materials and applications in many fields. Despite the rapid progress in superhydrophobic and superoleophobic materials, this concept of Mother Nature’s choice is yet to be applied in the design of advanced nanocarriers for drug delivery. Pioneering work has emerged in the development of nanoparticles with rough surfaces for gene delivery; however, the preparation of nanoparticles with hydrophilic compositions but with enhanced hydrophobic property at the nanoscale level employing surface topology engineering remains a challenge. Herein we report for the first time the unique properties of mesoporous hollow silica (MHS) nanospheres with controlled surface roughness. Compared to MHS with a smooth surface, rough mesoporous hollow silica (RMHS) nanoparticles with the same hydrophilic composition show unusual hydrophobicity, leading to higher adsorption of a range of hydrophobic molecules and controlled release of hydrophilic molecules. RMHS loaded with vancomycin exhibits an enhanced antibacterial effect. Our strategy provides a new pathway in the design of novel nanocarriers for diverse bioapplications. PMID:27162988

  4. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles

    PubMed Central

    Sirivisoot, Sirinrath; Harrison, Benjamin S

    2015-01-01

    To extend the external control capability of drug release, iron oxide nanoparticles (NPs) encapsulated into polymeric microspheres were used as magnetic media to stimulate drug release using an alternating magnetic field. Chemically synthesized iron oxide NPs, maghemite or hematite, and the antibiotic ciprofloxacin were encapsulated together within polycaprolactone microspheres. The polycaprolactone microspheres entrapping ciprofloxacin and magnetic NPs could be triggered for immediate drug release by magnetic stimulation at a maximum value of 40%. Moreover, the microspheres were cytocompatible with fibroblasts in vitro with a cell viability percentage of more than 100% relative to a nontreated control after 24 hours of culture. Macrophage cell cultures showed no signs of increased inflammatory responses after in vitro incubation for 56 hours. Treatment of Staphylococcus aureus with the magnetic microspheres under an alternating (isolating) magnetic field increased bacterial inhibition further after 2 days and 5 days in a broth inhibition assay. The findings of the present study indicate that iron oxide NPs, maghemite and hematite, can be used as media for stimulation by an external magnetic energy to activate immediate drug release. PMID:26185446

  5. In vivo monitoring of liposomal release in tumours following ultrasound stimulation.

    PubMed

    Evjen, Tove J; Hagtvet, Eirik; Moussatov, Alexei; Røgnvaldsson, Sibylla; Mestas, Jean-Louis; Fowler, R Andrew; Lafon, Cyril; Nilssen, Esben A

    2013-08-01

    Dioeleoylphosphatidylethanolamine (DOPE)-based liposomes were recently reported as a new class of liposomes for ultrasound (US)-mediated drug delivery. The liposomes showed both high stability and in vitro US-mediated drug release (sonosensitivity). In the current study, in vivo proof-of-principle of US triggered release in tumoured mice was demonstrated using optical imaging. Confocal non-thermal US was used to deliver cavitation to tumours in a well-controlled manner. To detect in vivo release, the near infrared fluorochrome Al (III) Phthalocyanine Chloride Tetrasulphonic acid (AlPcS₄) was encapsulated into both DOPE-based liposomes and control liposomes based on hydrogenated soy phosphatidylcholine (HSPC). Encapsulation causes concentration dependent quenching of fluorescence that is recovered upon AlPcS₄ release from the liposomes. Exposure of tumours to US resulted in a significant increase in fluorescence in mice administered with DOPE-based liposomes, but no change in the mice treated with HSPC-based liposomes. Thus, DOPE-based liposomes showed superior sonosensitivity compared to HSPC-based liposomes in vivo. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Development of matrix-based theophylline sustained-release microtablets.

    PubMed

    Rey, H; Wagner, K G; Wehrlé, P; Schmidt, P C

    2000-01-01

    Microtablets containing high theophylline content (from 60% to 80%) based on a Eudragit RS PO matrix were produced on a rotary tablet press. The influence of the compaction pressure, the plasticizer content used for the granulation of theophylline particles, and the amount of theophylline on the drug release were investigated. The effects of surface area and the addition of magnesium stearate as a hydrophobic agent on the drug release were studied. The storage stabilities of the release rate at room temperature and at 50 degrees C were also determined. Dissolution profiles expressed as percentage of theophylline dissolved were obtained over 8 hr in 900 ml of purified water at 37 degrees C and 75 rpm. It was observed that the compaction pressure (from 200 MPa to 250 MPa) had no effect on the theophylline release. The use of triethyl citrate (TEC) as a plasticizer in the granulation of theophylline enhanced the physical properties of the microtablets. Theophylline content in the range 60% to 80% did not affect the drug release. The theophylline release obtained was a function of the quotient surface area/tablet weight and therefore was dependent on the tablet diameter. To reduce the dissolution rates, magnesium stearate was added in a concentration up to 50% of the matrix material. Tablets of this hydrophobic formulation fulfilled the requirements of USP 23 for theophylline sustained-release preparations. Storage at room temperature for 3 months and at 50 degrees C for 2 months showed no significant influence on the theophylline release.

  7. Liposomal-Encapsulated Stroma-Free Hemoglobin as a Potential Blood Substitute.

    DTIC Science & Technology

    1980-01-02

    circulating life-time even further. If all liposomes are taken up by RE cells, then when 14C- inulin is administered i.v. encapsulated in liposomes one should...of inulin would result only when liposomes become leaky or decompose before being taken up by cells. If liposomes are not maximally stable, then after...some time any liposome which had not been taken-up by RE cells would have decomposed and the released inulin excreted. We have used these facts to

  8. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    PubMed

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluating Potential Exposures to Ecological Receptors Due to Transport of Hydrophobic Organic Contaminants in Subsurface Systems (Final Report)

    EPA Science Inventory

    EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Potential Exposures to Ecological Receptors Due to Transport of Hydrophobic Organic Contaminants in Subsurface Systems. This technical paper recommends several ty...

  10. Silk micrococoons for protein stabilisation and molecular encapsulation

    NASA Astrophysics Data System (ADS)

    Shimanovich, Ulyana; Ruggeri, Francesco S.; de Genst, Erwin; Adamcik, Jozef; Barros, Teresa P.; Porter, David; Müller, Thomas; Mezzenga, Raffaele; Dobson, Christopher M.; Vollrath, Fritz; Holland, Chris; Knowles, Tuomas P. J.

    2017-07-01

    Naturally spun silks generate fibres with unique properties, including strength, elasticity and biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk, obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules with controllable geometry and variable levels of intermolecular β-sheet content in their protein shells. We demonstrate that such micrococoons can store internally the otherwise highly unstable liquid native silk for several months and without apparent effect on its functionality. We further demonstrate that these native silk micrococoons enable the effective encapsulation, storage and release of other aggregation-prone proteins, such as functional antibodies. These results show that native silk micrococoons are capable of preserving the full activity of sensitive cargo proteins that can aggregate and lose function under conditions of bulk storage, and thus represent an attractive class of materials for the storage and release of active biomolecules.

  11. Formulation and evaluation of press coated tablets for pulsatile drug delivery using hydrophilic and hydrophobic polymers.

    PubMed

    Rane, Ashish Babulal; Gattani, Surendra Ganeshlal; Kadam, Vinayak Dinkar; Tekade, Avinash Ramrao

    2009-11-01

    The aim of present investigation was to develop press coated tablet for pulsatile drug delivery of ketoprofen using hydrophilic and hydrophobic polymers. The drug delivery system was designed to deliver the drug at such a time when it could be most needful to patient of rheumatoid arthritis. The press coated tablets containing ketoprofen in the inner core was formulated with an outer shell by different weight ratio of hydrophobic polymer (micronized ethyl cellulose powder) and hydrophilic polymers (glycinemax husk or sodium alginate). The release profile of press coated tablet exhibited a lag time followed by burst release, in which outer shell ruptured into two halves. Authors also investigated factors influencing on lag time such as particle size and viscosity of ethyl cellulose, outer coating weight and paddle rpm. The surface morphology of the tablet was examined by a scanning electron microscopy. Differential scanning calorimeter and Fourier transformed infrared spectroscopy study showed compatibility between ketoprofen and coating material.

  12. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano

    2011-08-01

    Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.

  13. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity

    PubMed Central

    Shao, Naimin; Su, Yunzhang; Hu, Jingjing; Zhang, Jiahai; Zhang, Hongfeng; Cheng, Yiyun

    2011-01-01

    Background Polyamidoamine (PAMAM) and polypropylenimine (PPI) dendrimers are the commercially available and most widely used dendrimers in pharmaceutical sciences and biomedical engineering. In the present study, the loading and release behaviors of generation 3 PAMAM and generation 4 PPI dendrimers with the same amount of surface amine groups (32 per dendrimer) were compared using phenylbutazone as a model drug. Methods The dendrimer-phenylbutazone complexes were characterized by 1H nuclear magnetic resonance and nuclear Overhauser effect techniques, and the cytotoxicity of each dendrimer was evaluated. Results Aqueous solubility results suggest that the generation 3 PAMAM dendrimer has a much higher loading ability towards phenylbutazone in comparison with the generation 4 PPI dendrimer at high phenylbutazone-dendrimer feeding ratios. Drug release was much slower from the generation 3 PAMAM matrix than from the generation 4 PPI dendrimer. In addition, the generation 3 PAMAM dendrimer is at least 50-fold less toxic than generation 4 PPI dendrimer on MCF-7 and A549 cell lines. Conclusion Although the nuclear Overhauser effect nuclear magnetic resonance results reveal that the generation 4 PPI dendrimer with a more hydrophobic interior encapsulates more phenylbutazone, the PPI dendrimer-phenylbutazone inclusion is not stable in aqueous solution, which poses a great challenge during drug development. PMID:22267921

  14. Oxaliplatin loaded PLAGA microspheres: design of specific release profiles.

    PubMed

    Lagarce, F; Cruaud, O; Deuschel, C; Bayssas, M; Griffon-Etienne, G; Benoit, J

    2002-08-21

    Oxaliplatin loaded PLAGA microspheres have been prepared by solvent extraction process. Parameters affecting the release kinetics in vitro have been studied in order to design specific release profiles suitable for direct intra-tumoral injection. By varying the nature and the relative proportions of different polymers we managed to prepare microspheres with good encapsulation efficiency (75-90%) and four different release profiles: zero order kinetics (type II) and the classical sigmoïd release profile with three different sizes of plateau and burst. These results, if correlated with in vivo activity, are promising to enhance effectiveness of local tumor treatment.

  15. Use of fibrin sealants for the localized, controlled release of cefazolin

    PubMed Central

    Tredwell, Stephen; Jackson, John K.; Hamilton, Donald; Lee, Vivian; Burt, Helen M.

    2006-01-01

    Background Fibrin sealants are used increasingly in surgery to reduce bleeding and improve wound healing. They have great potential as biocompatible, biodegradable drug delivery systems, because the sealant may adhere to the target tissue and allow controlled release of the drug over an extended period. We investigated the encapsulation, stability and controlled release of erythromycin and cefazolin from Beriplast fibrin sealants (Aventis Behring Canada). Methods Drug-loaded clots were cast in glass vials and allowed to set. We observed the clots for drug precipitation and aggregation, and we assessed the effect of drug encapsulation on clot strength. Drug stability and release from the clots in phosphate buffered saline (PBS) was quantified by ultraviolet and visible violet absorbance spectroscopy and high-performance liquid chromatography. Results Erythromycin was found to release slowly from the fibrin clots over the first 2 hours but then degrade rapidly. Cefazolin was found to be very stable in clots in PBS (97% stable at 2 d and 93% stable at 5 d). The drug released in a controlled manner over 2 days, with most being released during the first day. The dose of drug released could be varied by changing the amount placed in the thrombin solution. Clot thickness had no effect on the rate of cefazolin release. Conclusion Overall, the 2-day release profile and the excellent stability of the drug suggest that cefazolin-loaded fibrin sealants may offer an effective route of postoperative antibiotic delivery. PMID:17152573

  16. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile.

    PubMed

    Kumar, Nagendra; Chaurasia, Sundeep; Patel, Ravi R; Khan, Gayasuddin; Kumar, Vikas; Mishra, Brahmeshwar

    2017-03-01

    Atorvastatin calcium (ATR), a second generation statin drug, was encapsulated in eudragit RSPO-based polymeric nanoparticles. The effect of independent variables (polymer content, stabilizer concentration, volume of chloroform and homogenization speed) on response variables (mean diameter particle size and entrapment efficiency) were investigated by employing central composite experimental design. All the independent variables were found to be significant for determining the response variables. Solid-state characterization study indicated the absence of physicochemical interaction between drug and polymer in formulation. Morphological study exhibited homogenous spherical shape of formulated nanoparticles. In vitro release study in phosphate buffer (pH 7.4) demonstrated sustained release profile over 24 h. Pharmacokinetic study in Charles Foster rats showed significant enhancement in oral bioavailability as compared to pure drug suspension. Efficacy study (lipid profile and blood glucose level) significantly justified the effectiveness of formulation having 50% less dose of ATR as compared to pure drug suspension. The effectiveness of formulation was further justified with an improved plasma safety profile of treated rats. Hence, ATR encapsulated eudragit RSPO nanoparticles can serve as potential drug delivery approach to enhance drug bioavailability, efficacy and safety profiles to alter existing marketed drug products.

  17. Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release

    NASA Astrophysics Data System (ADS)

    Shao, Jingxin; Xuan, Mingjun; Si, Tieyan; Dai, Luru; He, Qiang

    2015-11-01

    Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid release of encapsulated water-soluble drug. In vivo antitumor tests demonstrate that this microcapsule has the effective ability of inhibiting tumor growth and preventing metastases. Real time in vivo fluorescence imaging results confirm that capsules can be excreted gradually from the animal body which in turn demonstrates the biocompatibility and biodegradation of these biointerfacing GNR-microcapsules. This intelligent system provides a novel anticancer platform with the advantages of controlled release, biological friendliness and credible biosafety.Seeking safe and effective water-soluble drug carriers is of great significance in nanomedicine. To achieve this goal, we present a novel drug delivery system based on biointerfacing hollow polymeric microcapsules for effectively encapsulating water-soluble antitumor drug and gold nanorod (GNR) functionalization for triggered release of therapeutic drugs on-demand using low power near-infrared (NIR) radiation. The surface of polymeric microcapsules is covered with fluidic lipid bilayers to decrease the permeability of the wall of polymeric capsules. The temperature increase upon NIR illumination deconstructs the structure of the lipid membrane and polyelectrolyte multilayers, which in turn results in the rapid

  18. Viability preserved capture of microorganism by plasma functionalized carbon-encapsulated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki

    2015-09-01

    Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).

  19. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin

    PubMed Central

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin–sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit® FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery. PMID:25999713

  20. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin.

    PubMed

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin-sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit(®) FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery.

  1. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo

    2016-10-01

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  2. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.

    PubMed

    Alavi, Saman; Ohmura, Ryo

    2016-10-21

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  3. Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets.

    PubMed

    Hussain, Talib; Saeed, Tariq; Mumtaz, Ahmad M; Javaid, Zeeshan; Abbas, Khizar; Awais, Azeema; Idrees, Hafiz Arfat

    2013-01-01

    Gliclazide is an oral hypoglycemic agent, indicated in non insulin dependent diabetes mellitus and in patients with diabetic retinopathy. It has good tolerability and is a short acting sulfonyl urea that requires large dose to maintain the blood glucose level. So development of a sustained release formulation of gliclazide (GLZ) is required for better patient compliance. This study was conducted to assess the effects of different drug polymer ratios on the release profile of gliclazide from the matrix. Oral matrix tablets of gliclazide were prepared by hot melt method, using pure and blended mixture of glyceryl monostearate (GMS) and stearic acid (SA) in different ratios. In vitro release pattern was studied for 8 h in phosphate buffer media (pH 7.4). Different kinetic models including zero order, first order, Higuchi and Peppas were applied to evaluate drug release behavior. Drug excipient compatibility was evaluated by scanning with DSC and FTIR. Higuchi model was found the most appropriate model for describing the release profile of GLZ and non-Fickian release was found predominant mechanism of drug release. The release of drug from the matrix was greatly controlled by GMS while SA appeared to facilitate the release of drug from matrix tablets. FTIR results showed no chemical interaction between drug and the polymers, and DSC results indicated amorphous state of GLZ and polymers without significant complex formation. The results indicate that matrix tablets of gliclazide using glyceryl monostearate and stearic acid showed marked sustained release properties.

  4. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration.

    PubMed

    Din, Fakhar Ud; Choi, Ju Yeon; Kim, Dong Wuk; Mustapha, Omer; Kim, Dong Shik; Thapa, Raj Kumar; Ku, Sae Kwang; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-11-01

    Intravenously administered for the treatment of rectum cancer, irinotecan produces severe side effects due to very high plasma concentrations. A novel irinotecan-encapsulated double reverse thermosensitive nanocarrier system (DRTN) for rectal administration was developed as an alternative. The DRTN was fabricated by dispersing the thermosensitive irinotecan-encapsulated solid lipid nanoparticles (SLN) in the thermosensitive poloxamer solution. Its gel properties, pharmacokinetics, morphology, anticancer activity and immunohistopathology were assessed after its rectal administration to rats and tumor-bearing mice. In the DRTN, the solid form of the SLN and the liquid form of the poloxamer solution persisted at 25 °C; the former melted to liquid, and the latter altered to gel at 36.5 °C. The DRTN was easily administered to the anus, gelling rapidly and strongly after rectal administration. Compared to the conventional hydrogel and intravenously administered solution, it retarded dissolution and initial plasma concentration. The DRTN gave sustained release and nearly constant plasma concentrations of irinotecan at 1-3 h in rats, resulting in improved anticancer activity. It induced no damage to the rat rectum and no body weight loss in tumor-bearing mice. Thus, this irinotecan-encapsulated DRTN associated with a reduced burst effect, lack of toxicity and excellent antitumor efficacy would be strongly recommended as a rectal pharmaceutical product alternative to commercial intravenous injection in the treatment of rectum and colon cancer.

  5. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, I. John; Murthy, N. Sanjeeva; Kohn, Joachim

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic componentmore » is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.« less

  6. Synthesis, characterisation and physicochemical properties of hydrophobically modified inulin using long-chain fatty acyl chlorides.

    PubMed

    Han, Lingyu; Ratcliffe, I; Williams, P A

    2017-12-15

    A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1 H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Surface analysis of selected hydrophobic materials

    NASA Astrophysics Data System (ADS)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  8. Development of Wax-Incorporated Emulsion Gel Beads for the Encapsulation and Intragastric Floating Delivery of the Active Antioxidant from Tamarindus indica L.

    PubMed

    Soradech, Sitthiphong; Petchtubtim, Intira; Thongdon-A, Jeerayu; Muangman, Thanchanok

    2016-03-22

    In this study, tamarind (Tamarindus indica L.) seed extracts with potential antioxidant activity and toxicity to cancer cells were developed as functional foods and nutraceutical ingredients in the form of emulsion gel beads. Three extracts were obtained from ethanol and water: TSCH50, TSCH95 and TSCH. All extracts exhibited high potential for superoxide anion scavenging activity over the IC50 range < 5-11 µg/mL and had no toxic effects on normal cells, however, the water extract (TSCH) was the most effective due to its free radical scavenging activity and toxicity in mitochondrial membranes of cancer cells. Next a study was designed to develop a new formulation for encapsulation and intragastric floating delivery of tamarind seed extract (TSCH) using wax-incorporated emulsion gel beads, which were prepared using a modified ionotropic gelation technique. Tamarind seed extract at 1% (w/w) was used as the active ingredient in all formulations. The effect of the types and amounts of wax on the encapsulation efficiency and percentage of the active release of alginate gel beads was also investigated. The results demonstrated that the incorporation of both waxes into the gel beads had an effect on the percentage of encapsulation efficiency (%) and the percentage of the active ingredient release. Furthermore, the addition of water insoluble waxes (carnauba and bee wax) significantly retarded the release of the active ingredient. The addition of both waxes had a slight effect on drug release behavior. Nevertheless, the increase in incorporated waxes in all formulations could sustain the percentage of active ingredient release. In conclusion, wax-incorporated emulsion gel beads using a modified ionotropic gelation technique could be applied for the intragastric floating delivery and controlled release of functional food and nutraceutical products for their antioxidant and anticancer capacity.

  9. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release

    PubMed Central

    Ilyinskii, Petr O.; Roy, Christopher J.; O’Neil, Conlin P.; Browning, Erica A.; Pittet, Lynnelle A.; Altreuter, David H.; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A.; Iannacone, Matteo; Radovic-Moreno, Aleksandar F.; Langer, Robert S.; Farokhzad, Omid C.; von Andrian, Ulrich H.; Johnston, Lloyd P.M.; Kishimoto, Takashi Kei

    2014-01-01

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-α and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  10. Alginate-hydroxypropylcellulose hydrogel microbeads for alkaline phosphatase encapsulation.

    PubMed

    Karewicz, A; Zasada, K; Bielska, D; Douglas, T E L; Jansen, J A; Leeuwenburgh, S C G; Nowakowska, M

    2014-01-01

    There is a growing interest in using proteins as therapeutics agents. Unfortunately, they suffer from limited stability and bioavailability. We aimed to develop a new delivery system for proteins. ALP, a model protein, was successfully encapsulated in the physically cross-linked sodium alginate/hydroxypropylcellulose (ALG-HPC) hydrogel microparticles. The obtained objects had regular, spherical shape and a diameter of ∼4 µm, as confirmed by optical microscopy and SEM analysis. The properties of the obtained microbeads could be controlled by temperature and additional coating or crosslinking procedures. The slow, sustained release of ALP in its active form with no initial burst effect was observed for chitosan-coated microspheres at pH = 7.4 and 37 °C. Activity of ALP released from ALG/HPC microspheres was confirmed by the occurance of effectively induced mineralization. SEM and AFM images revealed formation of the interpenetrated three-dimensional network of mineral, originating from the microbeads' surfaces. FTIR and XRD analyses confirmed formation of hydroxyapatite.

  11. The Impact of Bubbles on Measurement of Drug Release from Echogenic Liposomes

    PubMed Central

    Kopechek, Jonathan A.; Haworth, Kevin J.; Radhakrishnan, Kirthi; Huang, Shaoling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.

    2013-01-01

    Echogenic liposomes (ELIP) encapsulate gas bubbles and drugs within lipid vesicles, but the mechanisms of ultrasound-mediated drug release from ELIP are not well understood. The effect of cavitation activity on drug release from ELIP was investigated in flowing solutions using two fluorescent molecules: a lipophilic drug (rosiglitazone) and a hydrophilic drug substitute (calcein). ELIP samples were exposed to pulsed Doppler ultrasound from a clinical diagnostic ultrasound scanner at pressures above and below the inertial and stable cavitation thresholds. Control samples were exposed to a surfactant, Triton X-100 (positive control), or to flow alone (negative control). Fluorescence techniques were used to detect release. Encapsulated microbubbles reduced the measured fluorescence intensity and this effect should be considered when assessing drug release from ELIP. The origin of this effect is not specific to ELIP. Release of rosiglitazone or calcein compared to the negative control was only observed with detergent treatment, but not with ultrasound exposure, despite the presence of stable and inertial cavitation activity. Release of rosiglitazone or calcein from ELIP exposed to diagnostic ultrasound was not observed, even in the presence of cavitation activity. Ultrasound-mediated drug delivery strategies with ELIP will thus rely on passage of the drug-loaded liposomes to target tissues. PMID:23357288

  12. Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

    PubMed Central

    Nahire, Rahul; Paul, Shirshendu; Scott, Michael D.; Singh, Raushan K.; Muhonen, Wallace W.; Shabb, John; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2012-01-01

    The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, majority of these studies were performed with low frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging. PMID:22849291

  13. Encapsulation of biological active phenolic compounds extracted from wine wastes in alginate-chitosan microbeads.

    PubMed

    Moschona, Alexandra; Liakopoulou-Kyriakides, Maria

    2018-04-23

    Grapes (Vitis vinifera) are produced in large amounts worldwide and mostly are used for winemaking. Their untreated wastes are rich in valuable secondary metabolites, such as phenolics. Thus, in this study, white and red wine wastes (Malagouzia and Syrah variety) were investigated for their added value phenolics, which were analysed by high performance liquid chromatography (HPLC) and electrospray ionisation-mass spectrometry (ESI/MS) and subsequently encapsulated in several polymers. Extracts from all wastes gave high amounts of total phenolics (13 ± 2.72-22 ± 2.69 mg g -1 ) and possessed high antioxidant activity (67-97%). In addition to their significant antibacterial activity against gram-negative and gram-positive bacteria, interesting results were also obtained from their anti-inflammatory and antiplatelet activity, in vitro. Encapsulation of the extracts was selective, leaving out most of sugars and other organic compounds when alginate-chitosan was used. Encapsulation efficiency recorded for all extracts ranged from 55% to 79%. Release studies were also performed in several solutions aiming in their commercial use in food and pharmaceutical industries.

  14. Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles.

    PubMed

    Gayathri, N K; Aparna, V; Maya, S; Biswas, Raja; Jayakumar, R; Mohan, C Gopi

    2017-12-01

    We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute.

    PubMed

    Li, Xinning; Xu, Jianwen; Filion, Tera M; Ayers, David C; Song, Jie

    2013-08-01

    Bone grafts are widely used in orthopaedic procedures. Autografts are limited by donor site morbidity while allografts are known for considerable infection and failure rates. A synthetic composite bone graft substitute poly(2-hydroxyethyl methacrylate)-nanocrystalline hydroxyapatite (pHEMA-nHA) was previously developed to stably press-fit in and functionally repair critical-sized rat femoral segmental defects when it was preabsorbed with a single low dose of 300 ng recombinant human bone morphogenetic protein-2/7 (rhBMP-2/7). To facilitate clinical translation of pHEMA-nHA as a synthetic structural bone graft substitute, we examined its ability to encapsulate and release rhBMP-2 and the antibiotic vancomycin. We analyzed the compressive behavior and microstructure of pHEMA-nHA as a function of vancomycin incorporation doses using a dynamic mechanical analyzer and a scanning electron microscope. In vitro release of vancomycin was monitored by ultraviolet-visible spectroscopy. Release of rhBMP-2 from pHEMA-nHA-vancomycin was determined by ELISA. Bioactivity of the released vancomycin and rhBMP-2 was examined by bacterial inhibition and osteogenic transdifferentiation capabilities in cell culture, respectively. Up to 4.8 wt% of vancomycin was incorporated into pHEMA-nHA without compromising its structural integrity and compressive modulus. Encapsulated vancomycin was released in a dose-dependent and sustained manner in phosphate-buffered saline over 2 weeks, and the released vancomycin inhibited Escherichia coli culture. The pHEMA-nHA-vancomycin composite released preabsorbed rhBMP-2 in a sustained manner over 8 days and locally induced osteogenic transdifferentiation of C2C12 cells in culture. pHEMA-nHA can encapsulate and deliver vancomycin and rhBMP-2 in a sustained and localized manner with reduced loading doses. The elasticity, osteoconductivity, and rhBMP-2/vancomycin delivery characteristics of pHEMA-nHA may benefit orthopaedic reconstructions or fusions with

  16. Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials

    PubMed Central

    Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2016-01-01

    “Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236

  17. Effects of pore CaCO3 form agencies on dissolution mechanisms of amoxicillin drugs encapsulated in hydrogels full-IPN chitosan N-vinyl caprolactam

    NASA Astrophysics Data System (ADS)

    Budianto, Emil; Fauzia, Maghfira

    2018-04-01

    The administration of amoxicillin trihydrate in Helicobacter pylori infection is not effective enough because the conventional preparations used have a short retention time in the stomach. To overcome this problem, amoxicillin trihydrate was encapsulated into the floating drug delivery matrix-matrix. In this study, the full-ipn acetaldehyde crosslinked hydrogel (N-vinyl caprolactam) was synthesized with a 10% CaCO3 pore forming agent and then encapsulated on amoxicillin trihydrate and studied the mechanism of drug dissolution with its kinetic kinetics approach. The K-PNVCL Hydrogel produces optimal properties which are then loaded with amoxicillin trihydrate in situ and post loading. In this research, we have got the percentage of swelling, floating time, the efficiency of in situ and post loading 873%; 3.15 minutes; 99.8% and 99.4%. The dissolution test was performed on amoxicillin trihydrate which had been encapsulated K-PNVCL hydrogel in vitro at pH 1.2 resulting in 94.5% for in situ loading and 98.5% for post loading. Results of the kinetics of drug release for post loading and in situ loading methods tend to follow the Higuchi model kinetics. The drug release mechanism occurs by Fickian diffusion. Proof of drug release mechanism from K-PNVCL hydrogel matrix is further done by Scanning Electron Microscope (SEM) instrument.

  18. Fabrication of a microfluidic device for studying the in situ drug-loading/release behavior of graphene oxide-encapsulated hydrogel beads.

    PubMed

    Veerla, Sarath Chandra; Kim, Da Reum; Yang, Sung Yun

    2018-01-01

    Controlled drug delivery system is highly important for not only prolonged the efficacy of drug but also cellular development for tissue engineering. A number of biopolymer composites and nanostructured carriers behave been used for the controlled drug delivery of therapeutics. Recently, in vitro microfluidic devices that mimic the human body have been developed for drug-delivery applications. A microfluidic channel was fabricated via a two-step process: (i) polydimethyl siloxane (PDMS) and curing agent were poured with a 10:2 mass ratio onto an acrylic mold with two steel pipes, and (ii) calcium alginate beads were synthesized using sodium alginate and calcium chloride solutions. Different amounts (10, 25, 50 μg) of graphene oxide (GO) were then added by Hummers method, and studies on the encapsulation and release of the model drug, risedronate (Ris), were performed using control hydrogel beads (pH 6.3), GO-containing beads (10GO, 25GO and 50GO), and different pH conditions. MC3T3 osteoblastic cells were cultured in a microchannel with Ris-loaded GO-hydrogel beads, and their proliferation, viability, attachment and spreading were assessed for a week. The spongy and textured morphology of pristine hydrogel beads was converted to flowery and rod-shaped structures in drug-loaded hydrogel beads at reduced pH (6.3) and at a lower concentration (10 μg) of GO. These latter 10GO drug-loaded beads rapidly released their cargo owing to the calcium phosphate deposited on the surface. Notably, beads containing a higher amount of GO (50GO) exhibited an extended drug-release profile. We further found that MC3T3 cells proliferated continuously in vitro in the microfluidic channel containing the GO-hydrogel system. MTT and live/dead assays showed similar proliferative potential of MC3T3 cells. Therefore, a microfluidic device with microchannels containing hydrogel beads formulated with different amounts of GO and tested under various pH conditions could be a promising system

  19. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed

    Jones, Peter D; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.

  20. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids.

    PubMed

    Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim

    2017-10-06

    Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.