Science.gov

Sample records for releases encapsulated hydrophobic

  1. Multifunctional Nanocapsules for Simultaneous Encapsulation of Hydrophilic and Hydrophobic Compounds and On-Demand Release

    PubMed Central

    Hu, Shang-Hsiu; Chen, San-Yuan; Gao, Xiaohu

    2012-01-01

    Cocktail therapy by delivering multiple drugs to diseased cells can elicit synergistic therapeutic effects and better modulate the complex cell signaling network. Besides selection of drug combinations, a difficulty in delivery is how to encapsulate drugs with various solubility into a common vehicle, particularly when both hydrophobic and hydrophilic compounds are involved. Furthermore, it is highly desirable that the drug release profile can be controlled in an on-demand fashion for balanced therapeutic and side effects. Based on a simple and scalable double-emulsion approach, we report a new class of nanocapsules that can solve these problems simultaneously. Further linking the nanocapsules with peptides targeting cell surface integrins leads to significantly enhanced cell uptake of the nanocapsules. Intracellular drug release triggered by external stimuli has also been achieved without affecting cell viability. Further development of this technology should open exciting opportunities in treating tough diseases such as cancer, cardiovascular diseases, neurological disorders, and infectious diseases. PMID:22339040

  2. Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis

    PubMed Central

    Ruan, Liping; Zhang, Hangyu; Luo, Hanlin; Liu, Jingping; Tang, Fushan; Shi, Ying-Kang; Zhao, Xiaojun

    2009-01-01

    How do you design a peptide building block to make 2-dimentional nanowebs and 3-dimensional fibrous mats? This question has not been addressed with peptide self-assembling nanomaterials. This article describes a designed 9-residue peptide, N-Pro-Ser-Phe-Cys-Phe-Lys-Phe-Glu-Pro-C, which creates a strong fishnet-like nanostructure depending on the peptide concentrations and mechanical disruptions. This peptide is intramolecularly amphiphilic because of a single pair of ionic residues, Lys and Glu, at one end and nonionic residues, Phe, Cys, and Phe, at the other end. Circular dichroism and Fourier transform infrared spectroscopy analysis demonstrated that this peptide adopts stable β-turn and β-sheet structures and self-assembles into hierarchically arranged supramolecular aggregates in a concentration-dependent fashion, demonstrated by atomic force microscopy and electron microscopy. At high concentrations, the peptide dominantly self-assembled into globular aggregates that were extensively connected with each other to form “beads-on-a-thread” type nanofibers. These long nanofibers were extensively branched and overlapped to form a self-healing peptide hydrogel consisting of >99% water. This peptide can encapsulate the hydrophobic model drug pyrene and slowly release pyrene from coated microcrystals to liposomes. It can effectively stop animal bleeding within 30 s. We proposed a plausible model to interpret the intramolecular amphiphilic self-assembly process and suggest its importance for the future development of new biomaterials for drug delivery and regenerative medicine. PMID:19289834

  3. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes.

    PubMed

    Xu, Qingguo; Tanaka, Yasuhiro; Czernuszka, Jan T

    2007-06-01

    Hydroxyapatite (HA) coated liposomes (HACL) have been successfully manufactured and filled with a model hydrophobic (lipophilic) drug, indomethacin (IMC). These HACL particles have been characterized in terms of particle size and zeta-potential. The liposomes are formed from 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Altering their relative proportions caused the zeta-potential to change from -38.8 to -67.0 mV, with a concomitant change in phase transition temperature from 36.4 to 53.3 degrees C. These changes also affect the drug loading efficiency. The release profiles of IMC have been measured. HA coating of the liposome reduces the release rate of IMC over uncoated liposomes. Under the present experimental conditions 70% of the drug is released after approximately 5h from the liposome, but coating with HA changes this time to over 20 h. Perhaps most importantly, it has been observed that for uncoated liposomes, IMC is released at a greater rate at pH=7.4 than at pH=4. However, coating with HA reduced the rate at pH=7.4 compared to pH=4. This behaviour arises because IMC is more soluble under basic conditions, but HA is more soluble under acidic conditions. This behaviour shows that it is now possible to have environmental control over the release of drugs from HA-coated liposomes. PMID:17331574

  4. Nanoparticle encapsulation and controlled release of a hydrophobic kinase inhibitor: Three stage mathematical modeling and parametric analysis.

    PubMed

    Lucero-Acuña, Armando; Guzmán, Roberto

    2015-10-15

    A mathematical model of drug release that incorporates the simultaneous contributions of initial burst, nanoparticle degradation-relaxation and diffusion was developed and used to effectively describe the release of a kinase inhibitor and anticancer drug, PHT-427. The encapsulation of this drug into PLGA nanoparticles was performed by following the single emulsion-solvent evaporation technique and the release was determined in phosphate buffer pH 7.4 at 37 °C. The size of nanoparticles was obtained in a range of 162-254 nm. The experimental release profiles showed three well defined phases: an initial fast drug release, followed by a nanoparticle degradation-relaxation slower release and then a diffusion release phase. The effects of the controlled release most relevant parameters such as drug diffusivity, initial burst constant, nanoparticle degradation-relaxation constant, and the time to achieve a maximum rate of drug release were evaluated by a parametrical analysis. The theoretical release studies were corroborated experimentally by evaluating the cytotoxicity effectiveness of the inhibitor AKT/PDK1 loaded nanoparticles over BxPC-3 pancreatic cancer cells in vitro. These studies show that the encapsulated inhibitor AKT/PDK1 in the nanoparticles is more accessible and thus more effective when compared with the drug alone, indicating their potential use in chemotherapeutic applications. PMID:26216413

  5. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    SciTech Connect

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang

    1996-10-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer.

  6. Encapsulation and suspension of hydrophobic liquids via electro-hydrodynamics.

    PubMed

    Díaz Gómez, Juan E; Marín, Alvaro G; Marquez, Manuel; Barrero, Antonio; Loscertales, Ignacio G

    2006-09-01

    There are situations in which bioactive products of interest in biotechnology turn out to be hydrophobic. To reach high uniform levels of such products in water-based host fluids, such as those existing in many biological environments, one strategy consists on dividing the bioactive product into tiny micrometer (or sub-micrometer) pieces, since these are much more amenable of being uniformly dispersed and stabilized in the host fluid. On the other hand, if the bioactive product must act at specific locations, these micrometer pieces need to be hold in place, an objective that may be achieved by encapsulating them in mats of fibers. Here we demonstrate how these tasks may be accomplished by resorting to the generation and control of electrified coaxial jets of a hydrophilic liquid surrounding the hydrophobic liquid carrying the bioactive substance. When the process is carried out inside a dielectric liquid, double oil/water/oil and simple oil/water emulsions may be formed. On the other hand, when the process runs in air and a biopolymer is added to the hydrophilic liquid, then non woven mats of beaded nanofibers, encapsulating the bioactive product in the beads, are generated. PMID:16941444

  7. Encapsulation of ketoprofen for controlled drug release.

    PubMed

    Arida, Adi I; Al-Tabakha, Moawia M

    2007-04-01

    Ketoprofen particles were encapsulated with polyions and gelatin to control the release of the drug in aqueous solutions. Charged linear polyions and gelatin were alternatively deposited on 6 microm drug microcrystals through layer-by-layer (LbL) assembly. Sequential layers of poly(dimethyldiallyl ammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS) were followed by adsorption of two to six gelatin/PSS bilayers with corresponding capsule wall thicknesses ranging from 41 to 111 nm. The release of Ketoprofen from the coated microparticles was measured in aqueous solutions of pH 1.4, 4.1, and 7.4. The release rate has changed at these different pH values. At pH 7.4 the release rate of Ketoprofen from the encapsulated particles was less by 107 times compared to uncoated Ketoprofen. The results provide a method of achieving prolonged drug release through self-assembly of polymeric shells on drug crystals. PMID:17098404

  8. One-step synthesis of iron oxide polypyrrole nanoparticles encapsulating ketoprofen as model of hydrophobic drug.

    PubMed

    Attia, Mohamed F; Anton, Nicolas; Khan, Ikram Ullah; Serra, Christophe A; Messaddeq, Nadia; Jakhmola, Anshuman; Vecchione, Raffaele; Vandamme, Thierry

    2016-07-11

    This study reports a novel one-step synthesis of hybrid iron oxide/polypyrrole multifunctional nanoparticles encapsulating hydrophobic drug and decorated with polyethylene glycol. The overall process is based on the in situ chemical oxidative polymerization of pyrrole along with the reduction of ferric chloride (FeCl3) in the presence of ketoprofen as model drug and PEGylated surfactants. The final product is a nanocomposite composed of polypyrrole and a mixture of FeO/Fe2O3. Different concentrations of ketoprofen were encapsulated in the nanocomposite, and were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Encapsulation efficiency of the final product was measured by absorption, which can reach up to 98%. The release experiments confirmed complete drug release after about 3h in PBS solution. Morphological characterization of the nanocomposites was performed by electron microscopy (scanning and transmission electron microscopy) which confirmed the spherical geometry and opaque nature of nanoparticles with average particle size well below 50 nm. The final product is multifunctional system, which could act both as a nanocarrier for drug molecules as well as a contrasting agent. Magnetic relaxometry studies confirmed their possible applications as potential contrast agent in the field of magnetic resonance imaging (MRI). PMID:27163525

  9. Drug encapsulation and release behavior of telechelic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Shimiao; Arshad, Muhammad; Ullah, Aman

    2015-10-01

    The encapsulation and release of hydrophobic drug, carbamazepine (CBZ) was investigated using three previously synthesized amphiphilic Lipid-b-poly(ethylene glycol) (Lipid-PEG) conjugates. Their micellization, drug encapsulation, and release behavior was investigated by dynamic light scattering (DLS), transmission electron microscope (TEM), and fluorescence spectroscopy. The highest capacity of drug entrapment was observed for the CPE-PEG-a telechelic with the shorter PEG block and the size of the nanoparticles decreased evidently after the drug was loaded, while a slight decrease in size was also observed for the CPE-PEG-b telechelic with longer PEG block and the three-armed CPE-GE conjugate. TEM images showed that all three types of the drug-loaded micelles had spherical or near-spherical morphology. In the study of the in vitro drug release, slower drug-release patterns were observed for CPE-PEG-a and CPE-GE micelles. Almost all the drug entrapped inside the three types of micelles could be released within 50 h.

  10. Encapsulation and enzyme-mediated release of molecular cargo in polysulfide nanoparticles.

    PubMed

    Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P

    2011-06-28

    Poly(propylene sulfide) nanoparticles (<150 nm) have been synthesized by an anionic, ring-opening emulsion polymerization. Upon exposure to parts per million (ppm) levels of oxidizing agent (NaOCl), hydrophobic polysulfide particles are oxidized to hydrophilic polysulfoxides and polysulfones. Utilizing this mechanism, the encapsulation of hydrophobic molecular cargo, including Nile red and Reichardt's dye, within polysulfide nanoparticles has been characterized by a variety of microscopic and spectroscopic methods and its release demonstrated via chemical oxidation. Moreover, release of cargo has been enzymatically driven by oxidoreductase enzymes such as chloroperoxidase and myeloperoxidase in the presence of low concentrations of sodium chloride (200 mM) and hydrogen peroxide (500 μM). This oxidation-driven mechanism holds promise for controlled encapsulation and release of a variety of hydrophobic cargos. PMID:21595444

  11. Degradable thermoresponsive nanogels for protein encapsulation and controlled release.

    PubMed

    Bhuchar, Neha; Sunasee, Rajesh; Ishihara, Kazuhiko; Thundat, Thomas; Narain, Ravin

    2012-01-18

    Reversible addition-fragmentation chain transfer (RAFT) polymerization technique was used for the fabrication of stable core cross-linked micelles (CCL) with thermoresponsive and degradable cores. Well-defined poly(2-methacryloyloxyethyl phosphorylcholine), poly(MPC) macroRAFT agent, was first synthesized with narrow molecular weight distribution via the RAFT process. These CCL micelles (termed as nanogels) with hydrophilic poly(MPC) shell and thermoresponsive core consisting of poly(methoxydiethylene glycol methacrylate) (poly(MeODEGM) and poly(2-aminoethyl methacrylamide hydrochloride) (poly(AEMA) were then obtained in a one-pot process by RAFT polymerization in the presence of an acid degradable cross-linker. These acid degradable nanogels were efficiently synthesized with tunable sizes and low polydispersities. The encapsulation efficiencies of the nanogels with different proteins such as insulin, BSA, and β-galactosidase were studied and found to be dependent of the cross-linker concentration, size of protein, and the cationic character of the nanogels imparted by the presence of AEMA in the core. The thermoresponsive nature of the synthesized nanogels plays a vital role in protein encapsulation: the hydrophilic core and shell of the nanogels at low temperature allow easy diffusion of the proteins inside out and, with an increase in temperature, the core becomes hydrophobic and the nanogels are easily separated out with entrapped protein. The release profile of insulin from nanogels at low pH was studied and results were analyzed using bicinchoninic assay (BCA). Controlled release of protein was observed over 48 h. PMID:22171688

  12. Encapsulation of the synthetic retinoids Am80 and LE540 into polymeric micelles and the retinoids' release control.

    PubMed

    Satoh, Taku; Higuchi, Yuriko; Kawakami, Shigeru; Hashida, Mitsuru; Kagechika, Hiroyuki; Shudo, Koichi; Yokoyama, Masayuki

    2009-06-19

    The objective of this study was to encapsulate two synthetic retinoids Am80 and LE540 into polymeric micelles and to control the retinoids' release rate in vitro. Highly efficient encapsulation yields of these retinoids were obtained for micelles forming from PEG-poly(benzyl aspartate) block copolymers in the wide range of the benzyl substitution degree. The in vitro release examination for LE540 indicated very stable encapsulation of this retinoid owing to its strongly hydrophobic nature. On the other hand, Am80 exhibited a rapid release in Dulbecco's phosphate buffer saline. An addition of a hydrophobic alkyl amine in the Am80-encapsulation process successfully led to significant retardation of the Am80 release rate. A mechanism of the retardation was considered an increase of Am80 hydrophobicity due to an ion-pairing with the alkyl amine. This paper is the first report on release control in the polymeric micelle carrier system through the ion-pairing between an encapsulated drug and an additive. PMID:19289148

  13. Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-04-08

    The hydrophobic interior cavity of a self-assembled supramolecular assembly exploits the hydrophobic effect for the encapsulation of tertiary amides. Variable temperature 1H NMR experiments reveal that the free energy barrier for rotation around the C-N amide bond is lowered by up to 3.6 kcal/mol upon encapsulation. The hydrophobic cavity of the assembly is able to stabilize the less polar transition state of the amide rotation process. Carbon-13 labeling studies showed that the {sup 13}C NMR carbonyl resonance increases with temperature for the encapsulated amides which suggests that the assembly is able to favor a twisted for of the amide.

  14. Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites

    PubMed Central

    Hsu, Myat Noe; Luo, Rongcong; Kwek, Kerwin Zeming; Por, Yong Chen; Zhang, Yong; Chen, Chia-Hung

    2015-01-01

    The poor solubility of many newly discovered drugs has resulted in numerous challenges for the time-controlled release of therapeutics. In this study, an advanced drug delivery platform to encapsulate and deliver hydrophobic drugs, consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporated within poly (ethylene glycol) (PEG) microgels, was developed. PLGA nanoparticles were used as the hydrophobic drug carrier, while the PEG matrix functioned to slow down the drug release. Encapsulation of the hydrophobic agents was characterized by fluorescence detection of the hydrophobic dye Nile Red within the microgels. In addition, the microcomposites prepared via the droplet-based microfluidic technology showed size tunability and a monodisperse size distribution, along with improved release kinetics of the loaded cargo compared with bare PLGA nanoparticles. This composite system has potential as a universal delivery platform for a variety of hydrophobic molecules. PMID:25825623

  15. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  16. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts.

    PubMed

    Flores, Floirendo P; Singh, Rakesh K; Kerr, William L; Phillips, Dennis R; Kong, Fanbin

    2015-02-01

    We aimed to determine the effect of encapsulation on the release properties of blueberry extracts during simulated gastrointestinal digestion. An ethanolic pomace extract was microencapsulated with whey protein isolate via spray drying. The in vitro release of monomeric anthocyanins, phenolics and ferric reducing antioxidant activity of the microcapsules (W) were evaluated for the microcapsules and two non-encapsulated systems: ethanolic pomace extract (P) and freeze-dried juice (F). Concentrations of anthocyanin and phenolics were normalised prior to digestion. Results showed that antioxidant activity was in the order of: F>W>P. Regardless of encapsulation, more phenolics were released from W and P than F. Anthocyanin concentration decreased after intestinal digestion for W, but remained constant for P and F. MALDI-MS showed similar spectra for P and F but not for W. The spray-dried product has comparable release characteristics to freeze-dried juice, and may be investigated for food applications. PMID:25172704

  17. Oxygen release from nanobubbles adsorbed on hydrophobic particles

    NASA Astrophysics Data System (ADS)

    Zhao, Wanchen; Hu, Xiutao; Duan, Juan; Liu, Ting; Liu, Minghuan; Dong, Yaming

    2014-07-01

    On the hydrophobic particles, the carrying capacity of nano/microbubbles and the quantity of oxygen released in the hypoxic environment are still unknown while the bubbles blow out. This is very important to the biological and medical systems. Here, an experiment was designed and the change of the dissolved oxygen in a solution was monitored. The results indicated that the concentrations of dissolved oxygen in hypoxic environment changed dramatically, especially when the ultrasound vibration was applied. Furthermore, the amount of oxygen release also implied the quantity dependence of nano/microbubbles on the sizes and the hydrophobicity of the particles.

  18. Composite chitosan hydrogels for extended release of hydrophobic drugs.

    PubMed

    Delmar, Keren; Bianco-Peled, Havazelet

    2016-01-20

    A composite chitosan hydrogel durable in physiological conditions intended for sustained release of hydrophobic drugs was investigated. The design is based on chitosan crosslinked with genipin with embedded biocompatible non-ionic microemulsion (ME). A prolonged release period of 48 h in water, and of 24h in phosphate buffer saline (PBS) of pH 7.4 was demonstrated for Nile red and curcumin. The differences in release patterns in water and PBS were attributed to distinct dissimilarities in the swelling behaviors; in water, the hydrogels swell enormously, while in PBS they expel water and shrink. The release mechanism dominating this system is complex due to intermolecular bonding between the oil droplets and the polymeric network, as confirmed by Fourier transform infrared spectroscopy (FTIR) experiments. This is the first time that oil in water microemulsions were introduced into a chitosan hydrogels for the creation of a hydrophobic drug delivery system. PMID:26572389

  19. 5-Fluorouracil-lipid conjugate: potential candidate for drug delivery through encapsulation in hydrophobic polyester-based nanoparticles.

    PubMed

    Ashwanikumar, N; Kumar, Nisha Asok; Nair, S Asha; Kumar, G S Vinod

    2014-11-01

    The encapsulation of 5-fluorouracil (5-FU) in hydrophobic polymeric materials is made feasible by a lipid-based prodrug approach. A lipid-5-FU conjugate of 5-FU with palmitic acid was synthesized in two-step process. A synthesized dipalmitoyl derivative (5-FUDIPAL) was characterized using Fourier transform infrared spectroscopy and (1)H-nuclear magnetic resonance. The 5-FUDIPAL was encapsulated in polyester-based polymers by the double emulsion-solvent evaporation method. The nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy and dynamic light scattering. The thermal stability was assessed by differential scanning calorimetry data. In vitro release kinetics measurements of the drug from nanoparticles showed the controlled release pattern over a period of time. Cytotoxicity measurements by MTT assay confirmed that dipalmitoyl derivative in nano formulation successfully inhibited the cell growth. Thus the combined physical and biological evaluation of the different polyester-based nanoparticle containing the modified drug showed a facile approach to delivering 5-FU to the tumour site with enhanced efficacy. PMID:25110286

  20. Template-assisted encapsulation of fluorinated silanes in silica films for sustained hydrophobic-oleophobic functionality.

    PubMed

    Kessman, Aaron J; Cairns, Darran R

    2011-08-15

    This work explores the use of templated silica films as scaffolds for encapsulating surface-segregating functional organic moieties as a mesoscopically dispersed phase with the goal of imparting sustained functionality. Block copolymer surfactant templated hydrophobic-oleophobic fluorinated silica films were synthesized via sol-gel co-condensation and coated on glass substrates. Fluorosilane and surfactant template concentrations were varied, and coating surface properties measured before and after abrasion of the top surface. Surface physical and chemical properties were investigated using XPS and contact angle measurements. Nitrogen adsorption porosimetry and TEM were used to examine the effect of templating and fluorosilane encapsulation on the surrounding silica framework. The results show that surfactant template concentration may be used to tune the dispersion of the fluorosilane-rich phase within the silica film in order to allow exposed surfaces to maintain much of the original functionality of the pristine top surface. PMID:21640999

  1. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy

    PubMed Central

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789

  2. Magnetically recoverable, thermostable, hydrophobic DNA/silica encapsulates and their application as invisible oil tags.

    PubMed

    Puddu, Michela; Paunescu, Daniela; Stark, Wendelin J; Grass, Robert N

    2014-03-25

    A method to encapsulate DNA in heat-resistant and inert magnetic particles was developed. An inexpensive synthesis technique based on co-precipitation was utilized to produce Fe2O3 nanoparticles, which were further functionalized with ammonium groups. DNA was adsorbed on this magnetic support, and the DNA/magnet nanocluster was surface coated with a dense silica layer by sol-gel chemistry. The materials were further surface modified with hexyltrimethoxysilane to achieve particle dispersibility in hydrophobic liquids. The hydrodynamic particle sizes were evaluated by analytical disc centrifugation, and the magnetic properties were investigated by vibrating sample magnetometry. The obtained nanoengineered encapsulates showed good dispersion abilities in various nonaqueous fluids and did not affect the optical properties of the hydrophobic dispersant when present at concentrations lower than 10(3) μg/L. Upon magnetic separation and particle dissolution, the DNA could be recovered unharmed and was analyzed by quantitative real-time PCR and Sanger sequencing. DNA encapsulated within the magnetic particles was stable for 2 years in decalin at room temperature, and the stability was further tested at elevated temperatures. The new magnetic DNA/silica encapsulates were utilized to developed a low-cost platform for the tracing/tagging of oils and oil-derived products, requiring 1 μg/L=1 ppb levels of the taggant and allowing quantification of taggant concentration on a logarithmic scale. The procedure was tested for the barcoding of a fuel (gasoline), a cosmetic oil (bergamot oil), and a food grade oil (extra virgin olive oil), being able to verify the authenticity of the products. PMID:24568212

  3. Preparation and comparative release characteristics of three anthocyanin encapsulation systems.

    PubMed

    Oidtmann, Johannes; Schantz, Markus; Mäder, Karsten; Baum, Matthias; Berg, Sonja; Betz, Michael; Kulozik, Ulrich; Leick, Sabine; Rehage, Heinz; Schwarz, Karin; Richling, Elke

    2012-01-25

    Bilberries (Vaccinium myrtillus L.) and their major polyphenolic constituents, anthocyanins, have preventive activities inter alia against colon cancer and inflammatory bowel diseases. However, anthocyanins are sensitive to environmental conditions; thus their bioavailability in the gastrointestinal tract is an important determinant of their in vivo activity. In the study reported here, the potential benefits of encapsulating an anthocyanin rich bilberry extract (BE) on anthocyanin stability were investigated. Nonencapsulated BE and three different BE loaded microcapsule systems were incubated in simulated gastric fluid (SGF) and fed state simulated intestinal fluid (FeSSIF). After exposure to these media, released anthocyanins were identified and quantified by HPLC with UV/Vis detection. Although a rapid release of anthocyanins was observed within the first 20 min, encapsulation of anthocyanins doubled the amount of available anthocyanins after 150 min of incubation. These results illustrate the ability of encapsulation to inhibit early degradation of anthocyanins in the intestinal system. PMID:22224434

  4. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  5. Release of Magnetic Nanoparticles from Cell-Encapsulating Biodegradable Nanobiomaterials

    PubMed Central

    Xu, Feng; Inci, Fatih; Mullick, Omer; Gurkan, Umut Atakan; Sung, Yuree; Kavaz, Doga; Li, Baoqiang; Denkbas, Emir Baki; Demirci, Utkan

    2013-01-01

    The future of tissue engineering requires development of intelligent biomaterials using nanoparticles. Magnetic nanoparticles (MNPs) have several applications in biology and medicine; one example is Food and Drug Administration (FDA)-approved contrast agents in magnetic resonance imaging. Recently, MNPs have been encapsulated within cell-encapsulating hydrogels to create novel nanobiomaterials (i.e., M-gels), which can be manipulated and assembled in magnetic fields. The M-gels can be used as building blocks for bottom-up tissue engineering to create 3D tissue constructs. For tissue engineering applications of M-gels, it is essential to study the release of encapsulated MNPs from the hydrogel polymer network and the effect of MNPs on hydrogel properties, including mechanical characteristics, porosity, swelling behavior, and cellular response (e.g., viability, growth). Therefore, we evaluated the release of MNPs from photocrosslinkable gelatin methacrylate hydrogels as the polymer network undergoes biodegradation using inductively coupled plasma atomic emission spectroscopy. MNP release correlated linearly with hydrogel biodegradation rate with correlation factors (Pearson product moment correlation coefficient) of 0.96 ± 0.03 and 0.99 ± 0.01 for MNP concentrations of 1% and 5%, respectively. We also evaluated the effect of MNPs on hydrogel mechanical properties, porosity, and swelling behavior, as well as cell viability and growth in MNP-encapsulating hydrogels. Fibroblasts encapsulated with MNPs in hydrogels remained viable (>80% at t = 144 h) and formed microtissue constructs in culture (t = 144 h). These results indicated that MNP-encapsulating hydrogels show promise as intelligent nanobiomaterials, with great potential to impact broad areas of bioengineering, including tissue engineering, regenerative medicine, and pharmaceutical applications. PMID:22680777

  6. pH dictates the release of hydrophobic drug cocktail from mesoporous nanoarchitecture.

    PubMed

    Muhammad, Faheem; Wang, Aifei; Guo, Mingyi; Zhao, Jianyun; Qi, Wenxiu; Yingjie, Guo; Gu, Jingkai; Zhu, Guangshan

    2013-11-27

    Combination therapy has been a norm in clinical practice to effectively treat cancer. Besides polytherapy, nowadays, smart and nanobased drug carriers are extensively being explored to deliver drugs according to pathophysiological environment of diseases. In this regard, herein we designed intelligent mesoporous architecture, incorporating both combinational therapy with smart nanotechnology, to simultaneously deliver two highly hydrophobic chemotherapeutic drugs in response to extracellular and/or intracellular acidic environ of tumor. Novelty of the system lies in the employment of acid responsive ZnO QDs to clog not only the nanochannels of mesoporous silica, encapsulating one hydrophobic drug, but also exploitation of chelate forming propensity of another hydrophobic drug (curcumin) to load a significant quantity onto the surface of ZnO nanolids. Cell viability results revealed an extraordinarily high cytotoxic efficiency of that lethal drug cocktail even at a concentration as low as 3 μg/mL nanocarrier. We envision that this sophisticated nanocarrier, which utilizes both interior pore and exterior surface of nanolids for loading different hydrophobic guest molecules and their subsequent acid responsive release, will undoubtedly, illustrates its remarkable potential in targeted chemotherapy. PMID:24138477

  7. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  8. Study on Supercooling Release in Encapsulated Ice System

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yooko; Hasegawa, Hiromi; Sasaki, Kazuhiro; Kurosaki, Kenji; Sato, Mamoru; Watanabe, Kenji; Iwatsubo, Tetsushiro

    As regards the supercooling phenomena which is important matter in encapsulated ice system, we studied the supercooling release agent using the microorganism. Though the nucleation active bacteria had the high super cooling release ability, it was proved that the performance gradually lowered in long terms continuous use, when the live microorganism was used. In order to solve this problem, the sterilization treatment of the microorganism was examined and it was clariiied that there was the high effect in the ultraviolet irradiation. In addition, the persistence of the supercooling release ability is improved by freeze-drying treatment.

  9. Determining drug release rates of hydrophobic compounds from nanocarriers.

    PubMed

    D'Addio, Suzanne M; Bukari, Abdallah A; Dawoud, Mohammed; Bunjes, Heike; Rinaldi, Carlos; Prud'homme, Robert K

    2016-07-28

    Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on 'lipid sinks' and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298440

  10. Design of Controlled Release PLGA Microspheres for Hydrophobic Fenretinide.

    PubMed

    Zhang, Ying; Wischke, Christian; Mittal, Sachin; Mitra, Amitava; Schwendeman, Steven P

    2016-08-01

    Fenretinide, a chemotherapeutic agent for cancer, is water-insoluble and has a very low oral bioavailability. Hence, the objective was to deliver it as an injectable depot and improve the drug solubility and release behavior from poly(lactide-co-glycolide) (PLGA) microspheres by incorporating nonionic surfactants with fenretinide. Enhancement of drug solubilization was observed with Brij 35 or 98, Tween 20, and Pluronic F127, but not Pluronic F68. Co-incorporation of Brij 98 with fenretinide significantly changed the microsphere morphology and improved the fenretinide release profile. The most optimal microsphere formulation, with 20% Brij 98 as excipient, showed an initial in vitro burst around 20% and a sustained release over 28 days in a solubilizing release medium at 37 °C. The effect of addition of MgCO3, drug loading, and polymer blending on the release of fenretinide from PLGA microspheres was also investigated and observed to enhance the drug release. Two sustained release formulations, one incorporating 20% Brij 98 and the other incorporating 3% MgCO3 in the oil phase, were selected for dosing in Sprague-Dawley rats and compared to a single injection of an equivalent dose of fenretinide drug suspension. These two formulations were chosen due to their high encapsulation efficiency, high cumulative release, and desirable in vitro release profile. The drug suspension resulted in a higher initial release in rats compared to the polymeric formulations, however, sustained release was also observed beyond 2 weeks, which may be attributed to the physiological disposition of the drug in vivo. The two PLGA based test formulations provided the desired low initial burst of fenretinide followed by 4 weeks of in vivo sustained release. PMID:27144450

  11. Encapsulation and Release of Amphotericin B from an ABC Triblock Fluorous Copolymer

    PubMed Central

    Jee, Jun-Pil; McCoy, Aaron; Mecozzi, Sandro

    2011-01-01

    Purpose PEG-phospholipid-based micelles have been successfully used for the solubilization of several hydrophobic drugs but generally lack sustained stability in blood. Our novel PEG-Fluorocarbon-DSPE polymers were designed to increase stability and improve time-release properties of drug-loaded micelles. Methods Novel ABC fluorous copolymers were synthesized, characterized, and used for encapsulation release of amphotericin B. FRET studies were used to study micelle stability. Results The micelles formed by the new polymers showed lower critical micelle concentrations and higher viscosity cores compared with those formed by the polymers lacking the fluorous block. FRET studies indicated that fluorocarbon-containing micelles had increased stability in the presence of human serum. Physicochemical properties and in vitro release profile of the micelles loaded with Amphotericin B (AmB) were studied. Conclusions The effect of PEG length and fluorocarbon incorporation were investigated. The shorter hydrophilic PEG-2K induced greater stability than PEG-5K by decreasing the proportion of hydrophilic block of the polymer. The fluorocarbon placed between hydrophilic and hydrophobic block formed a fluorous shell contributing to the enhanced thermodynamic stability of micelles and to the drug sustained release. Polymer mPEG2K-F10-DSPE, bearing both a fluorocarbon block and a shorter mPEG, showed the greatest stability and the longest half-life for AmB release. PMID:21739321

  12. Hydrophobic Drug Encapsulation Mechanisms of an Injectable Self-Assembling Peptide Hydrogel

    NASA Astrophysics Data System (ADS)

    Sun, Jessie E. P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-02-01

    We examined a beta-hairpin peptide network that is a shear thinning injectable solid with immediate rehealing behavior. These rheological properties result from the entangled and branched fibrillar nanostructure of the hydrogel networks. The fibrils are formed by the intramolecular folding and subsequent intermolecular assembly of the self-assembling peptides. Taking advantage of the nanofibrillar peptide structures, the hydrogel can be used to encapsulate curcumin, a hydrophobic, natural anticancer agent and indian spice. The hydrogel shields curcumin from the environment while depositing it exactly where it is intended through syringe injection, taking advantage of the hydrogel shear thinning and rehealing behavior. How the network envelopes and interacts with the curcumin is examined using fluoresence and electron microscopy methods to better understand the exact mechanisms and behaviors of the gel itself and the gel-curcumin construct.

  13. Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan /bentonite composite gel.

    PubMed

    Li, Jianfa; Yao, Jian; Li, Yimin; Shao, Ying

    2012-09-01

    A novel composite gel composed of carboxymethyl-chitosan (CM-chit) and bentonite (H-bent) was used as the carrier for encapsulating atrazine and imidacloprid to control their release in water and retard their leaching in soil. Strong interactions between CM-chit and H-bent in the composite were confirmed by FT-IR, and good dispersion of pesticides in the carrier was observed by SEM. According to the results of release experiments in water, the CM-chit/H-bent composite carrier showed double advantages of both encapsulation by the polymer and sorption by the bentonite. The time taken for 50 % of active ingredients to be released, t₅₀, was prolonged to 572 h for atrazine and 24 h for imidacloprid, respectively. The difference between the two pesticides on release behavior was related to their hydrophobicity and water solubility. Leaching experiments through a soil layer showed that this novel carrier reduced the amount of pesticides available for leaching, and would be useful for diminishing the environmental pollution of pesticides. PMID:22575006

  14. Steric environment around acetylcholine head groups of bolaamphiphilic nanovesicles influences the release rate of encapsulated compounds

    PubMed Central

    Stern, Avital; Guidotti, Matteo; Shaubi, Eleonora; Popov, Mary; Linder, Charles; Heldman, Eliahu; Grinberg, Sarina

    2014-01-01

    Two bolaamphiphilic compounds with identical acetylcholine (ACh) head groups, but with different lengths of an alkyl chain pendant adjacent to the head group, as well as differences between their hydrophobic skeleton, were investigated for their ability to self-assemble into vesicles that release their encapsulated content upon hydrolysis of their head groups by acetylcholinesterase (AChE). One of these bolaamphiphiles, synthesized from vernolic acid, has an alkyl chain pendant of five methylene groups, while the other, synthesized from oleic acid, has an alkyl chain pendant of eight methylene groups. Both bolaamphiphiles formed stable spherical vesicles with a diameter of about 130 nm. The ACh head groups of both bolaamphiphiles were hydrolyzed by AChE, but the hydrolysis rate was significantly faster for the bolaamphiphile with the shorter aliphatic chain pendant. Likewise, upon exposure to AChE, vesicles made from the bolaamphiphile with the shorter alkyl chain pendant released their encapsulated content faster than vesicles made from the bolaamphiphile with the longer alkyl chain pendant. Our results suggest that the steric environment around the ACh head group of bolaamphiphiles is a major factor affecting the hydrolysis rate of the head groups by AChE. Attaching an alkyl chain to the bolaamphiphile near the ACh head group allows self-assembled vesicles to form with a controlled release rate of the encapsulated materials, whereas shorter alkyl chains enable a faster head group hydrolysis, and consequently faster release, than longer alkyl chains. This principle may be implemented in the design of bolaamphiphiles for the formation of vesicles for drug delivery with desired controlled release rates. PMID:24531296

  15. Densely Packed Hydrophobic Clustering: Encapsulated Valerates Form a High-Temperature-Stable {Mo132 } Capsule System.

    PubMed

    Garai, Somenath; Bögge, Hartmut; Merca, Alice; Petina, Olga A; Grego, Alina; Gouzerh, Pierre; Haupt, Erhard T K; Weinstock, Ira A; Müller, Achim

    2016-06-01

    Porous molecular nanocontainers of {Mo132 }-type Keplerates offer unique opportunities to study a wide variety of relevant phenomena. An impressive example is provided by the highly reactive {Mo132 -CO3 } capsule, the reaction of which with valeric acid results in the very easy release of carbon dioxide and the uptake of 24 valerate ions/ligands that are integrated as a densely packed aggregate, thus indicating the unique possibility of hydrophobic clustering inside the cavity. Two-dimensional NMR techniques were used to demonstrate the presence of the 24 valerates and the stability of the capsule up to ca. 100 °C. Increasing the number of hydrophobic parts enhances the stability of the whole system. This situation also occurs in biological systems, such as globular proteins or protein pockets. PMID:27140207

  16. Encapsulation and characterization of controlled release flurbiprofen loaded microspheres using beeswax as an encapsulating agent.

    PubMed

    Ranjha, Nazar M; Khan, Hafeezullah; Naseem, Shahzad

    2010-05-01

    The aim of the present study was to extend the use of flurbiprofen in clinical settings by avoiding its harmful gastric effects. For this purpose, we designed the controlled release solid lipid flurbiprofen microspheres (SLFM) by emulsion congealing technique. Drug was entrapped into gastro resistant biodegradable beeswax microspheres which were prepared at different drug/beeswax ratios 1:1, 1:2 and 1:3 using gelatin and tween 20 as emulsifying agents. The effect of emulsifiers and the effect drug/beeswax ratios were studied on hydration rate, encapsulating efficiency, micromeritic properties, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (X-RD) analysis and in vitro drug release at pH 1.2 for 2 h and at pH 6.8 for 10 h. SEM revealed that microspheres made with tween 20 were smooth while microspheres made with gelatin showed porous morphology, however, they were all spherical in nature. The practical yield (recovery) showed a dependence on drug-beeswax ratio and it was variable from 53 to 84%. High loading encapsulating efficiency of flurbiprofen from 8 to 94% was achieved. FTIR and DSC analysis confirmed the absence of any drug polymer interaction indicating drug stability during microencapsulation. X-RD of pure flurbiprofen shows sharp peaks, which decreases on encapsulation, indicating decrease in the crystallinity of drug in microspheres. The micromeritic studies confirmed the presence of excellent and good flow properties of microspheres. Entrapment efficiency, morphology, practical yield, hydration rate, flow properties demonstrated their dependence on the HLB value of emulsifiers and emulsifiers with higher HLB were found more appropriate for effective microencapsulation of flurbiprofen. The release kinetics followed zero order mechanism of drug release at pH 6.8. Release pattern depends on the morphology of flurbiprofen microspheres and amount of beeswax used in

  17. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    PubMed

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant. PMID:26344266

  18. Photodegradable macromers and hydrogels for live cell encapsulation and release

    PubMed Central

    Griffin, Donald R.; Kasko, Andrea M.

    2012-01-01

    Hydrogel scaffolds are commonly used as 3D carriers for cells because their properties can be tailored to match natural extra-cellular matrix. Hydrogels may be used in tissue engineering and regenerative medicine to deliver therapeutic cells to injured or diseased tissue through controlled degradation. Hydrolysis and enzymolysis are the two most common mechanisms employed for hydrogel degradation, but neither allows sequential or staged release of cells. In contrast, photodegradation allows external real-time spatial and temporal control over hydrogel degradation, and allows for staged and sequential release of cells. We synthesized and characterized a series of macromers incorporating photodegradbale ortho-nitrobenzyl (o-NB) groups in the macromer backbone. We formed hydrogels from these macromers via redox polymerization and quantified the apparent rate constants of degradation (kapp) of each via photorheology at 370 nm, 10 mW/cm2. Decreasing the number of aryl ethers on the o-NB group increases kapp, and changing the functionality from primary to seconday at the benzylic site dramatically increases kapp. Human mesenchymal stem cells (hMSCs) survive encapsulation in the hydrogels (90% viability post-encapsulation). By exploiting the differences in reactivity of two different o-NB linkers, we quantitatively demonstrate the biased release of one stem cell population (green-fluroescent protein expressing hMSCs) over another (red-fluorescent protein expressing hMSCs). PMID:22765384

  19. Encapsulation and Delivery of Crystalline Hydrophobic Nutraceuticals using Nanoemulsions: Factors Affecting Polymethoxyflavone Solubility.

    PubMed

    Li, Yan; Xiao, Hang; McClements, David Julian

    2012-12-01

    Polymethoxyflavones (PMF) isolated from citrus peel have potent anti-cancer activity, however their utilization as functional ingredients in foods is currently limited because of their high melting point and poor water-solubility. The influence of oil type and concentration, hydrophilic polymer addition, and simulated intestinal conditions on PMF (5-hydroxytangeretin) solubility in solutions and nanoemulsions was examined. The saturation concentration of PMF in water was relatively low (0.93 µM), but could be increased appreciably by adding certain hydrophilic polymers: polyethylene glycol (PEG) and β-cyclodextrin (CD) were ineffective at increasing solubility, but poly(vinyl alcohol) (PVA) and hydroxypropyl methylcellulose (HPMC) greatly enhanced solubility (e.g., > 6 µM for 0.5 % polymer). PMF was more soluble in medium chain triglycerides (MCT, 6.1 mM) than long chain triglycerides (LCT, 4.2 mM). The encapsulation efficiency of PMF in oil-in-water nanoemulsions was higher when MCT was used as the oil phase rather than LCT, and could be increased by increasing the oil droplet content. The solubility of PMF in simulated small intestinal fluids was increased by solubilization in bile micelles and mixed micelles formed during lipid digestion. These results have important implications for the development of functional foods fortified with bioactive hydrophobic components aimed at improving human health and wellness. PMID:23646037

  20. Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.

    PubMed

    Marcuzzo, Eva; Debeaufort, Frédéric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andrée

    2012-12-12

    Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ι-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ι-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ι-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients. PMID:23163743

  1. Syntheses and self-assembly of novel asparagine-derived amphiphiles: Applications in the encapsulation of proteins, hydrophobic, and hydrophilic drug models

    NASA Astrophysics Data System (ADS)

    Mfuh, Adelphe Mbufung

    This thesis focuses mainly on the synthesis, characterization, and self-assembly of a novel series of asparagine-derived amphiphiles and their use in the preparation and stabilization of nano and microcapsules for the encapsulation of proteins, and hydrophilic and hydrophobic drug models. Chapter 1 gives a brief literature overview of lipid molecular assembly, which covers some aspects of morphological analyses, encapsulation of chemical entity and some reported characterization techniques of supramolecular assemblies. It introduces the scope of this dissertation and contains some information on stimulus responsive liposomal systems for controlled release of drug models. Chapter 2 introduces a novel asparagine-derived lipid bearing two fatty chains (C11 and C17) and a tetrahydropyrimidinone head group. It presents information on the synthesis and characterization of this lipid and describes the self-assembly and effects of this lipid in distearoyl phosphatidyl choline bilayer. Chapter 3 presents the synthesis and characterization of a series of ALAn,m (where n and m represent the length of the hydrocarbon chains on the asparagine-derived, heterocyclic head group). It contains data on the effect of chain length, solvent media and head group ionization on the conformational equilibrium about a tertiary amide bond in ALAn,m. The chapter also examines the influence of chain length on ALAn,m on the colloidal stability of DSPC liposomes. Chapter 4 presents the first example of an N,N-acetal linkage in a novel pH responsive nanocarrier system obtained from the cyclocondensation of dodecanal with sodium asparaginate. Data is presented on the spontaneous self-assembly, encapsulation studies and morphological characterization of the nano-systems with the inclusion of cholesterol as additive. Chapter 5 presents the development of a photoresponsive nanocarrier via the self- assembly of an asparagine-derived lipid containing a coumarin unit in the hydrophobic domain. The

  2. Floating-pulsatile release multiparticulate system for chronopharmacotherapy: effect of some hydrophobic additives on the buoyancy and release behavior of particles.

    PubMed

    Maghsoodi, M

    2014-01-01

    A blend of floating and pulsatile principles of a drug delivery system would have the advantage that a drug can be released in the upper gastrointestinal (GI) tract after a lag period, which is anticipated for chronotherapy. In this study, microballoons were prepared by an emulsion solvent diffusion technique using Eudragit S100, and hydrophobic additive (magnesium stearate, stearic acid or talc) for time- and site-specific drug release of piroxicam. The effect of hydrophobic additives on the production yield of floating microparticles, buoyant ability for 8 h, release of drug in simulated GI fluids (simulated gastric fluid [SGF] and simulated intestinal fluid [SIF]), mean particle size, apparent particle density, encapsulation efficiency of drug and physical state of incorporated drug were studied. Both production yield and buoyancy of the microballoons were affected by additives in the following order: magnesium stearate, stearic acid>free-additive>talc. The observed difference in yield and the buoyancy of the microballoons could be attributed to the hydrophobic character of the additives and the shell rigidity of the obtained microballoons. Incorporation of hydrophobic additives in the microballoons was found to impart the desired release properties to the microballoons by providing a 2-phase release pattern with initial slow release (5-6%) through 8 h in SGF followed by rapid pulse release (>92%) in SIF through 15 min. The microballoons co-formulated with magnesium stearate or stearic acid, combining excellent buoyancy and suitable drug release pattern of piroxicam, could be useful in chronopharmacotherapy in arthritis. PMID:23950100

  3. Smart Thin Hydrogel Coatings Harnessing Hydrophobicity and Topography to Capture and Release Cancer Cells.

    PubMed

    Wang, Luying; Liu, Hongliang; Zhang, Feilong; Li, Guannan; Wang, Shutao

    2016-09-01

    Smart thin hydrogel coatings are fabricated to capture and release targeted cancer cells by simultaneously tuning surface hydrophobicity and topography. At physiological temperature, the targeted cancer cells are captured on the hydrophobic and wrinkled coating surface. At room temperature, the captured cells are released from the hydrophilic and smooth coating surface. PMID:27295294

  4. Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery.

    PubMed

    Nam, Joung-Pyo; Park, Seong-Cheol; Kim, Tae-Hun; Jang, Jae-Yeang; Choi, Changyong; Jang, Mi-Kyeong; Nah, Jae-Woon

    2013-11-30

    Transferrin/PEG/O-carboxymethyl chitosan/fatty acid/paclitaxel (TPOCFP) micelles were tested for suitability as a drug carrier characterized by low cytotoxicity, sustained release, high cellular uptake, and site-specific targeted delivery of hydrophobic drugs. Characterization, drug content, encapsulation efficiency, and in vitro drug release were investigated. When the feeding amount of paclitaxel (PTX) was increased, the drug content increased, but loading efficiency decreased. TPOCFP micelles had a spherical shape, with a particle size of approximately 140-649 nm. In vitro cell cytotoxicity and hemolysis assays were conducted to confirm the safety of the micelles. Anticancer activity and confocal laser scanning microscopy (CLSM) were used to confirm the targeting efficiency of target ligand-modified TPOCFP micelles. Anticancer activity and CLSM results clearly demonstrated that transferrin-modified TPOCFP micelles were quickly taken up by the cell. The endocytic pathway of TPOCFP micelles was analyzed by flow cytometry, revealing transfection via receptor-mediated endocytosis. These results suggest that PTX-encapsulated TPOCFP micelles may be used as an effective cancer-targeting drug delivery system for chemotherapy. PMID:24076228

  5. Ciprofloxacin encapsulation into giant unilamellar vesicles: membrane binding and release.

    PubMed

    Kaszás, Nóra; Bozó, Tamás; Budai, Marianna; Gróf, Pál

    2013-02-01

    This study aimed at investigating some respects of binding and interaction between water-soluble drugs and liposomal carrier systems depending on their size and lamellarity. As model substance, ciprofloxacin hydrochloride (CPFX) was incorporated into giant unilamellar vesicles (GUVs) to study their CPFX encapsulation/binding capacity. To characterize molecular interactions of various CPFX microspecies with lipid bilayer, zeta potential and electron paramagnetic resonance (EPR) spectroscopy measurements were performed. The increase of the zeta potential at pH 5.4 but no change at pH 7.2 was interpreted in terms of the CPFX microspecies' distribution at the two pH values. EPR observations showed an increased fluidity because of CPFX binding to GUVs. We worked out and applied a three-compartment dialysis model to separately determine the rate of drug diffusion through the liposomal membrane. Equilibrium dialysis showed (a) different permeation of CPFX through the membranes of GUVs and multilamellar vesicles (MLVs), with characteristic half-lives of 54.4 and 18.1 h, respectively; and (b) increased retention of CPFX in case of GUVs with released amounts of 70% compared with about 97% in case of MLVs. Our results may provide further details for efficient design of liposomal formulations incorporating water-soluble drugs. PMID:23233199

  6. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. PMID:26490430

  7. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.

    PubMed

    Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-11-01

    Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells. PMID:22944443

  8. Controlled release of a microencapsulated arduous semi-hydrophobic active from coatings: Superhydrophilic polyelectrolyte shells as globally rate-determining barriers.

    PubMed

    Bergek, Jonatan; Andersson Trojer, Markus; Uhr, Hermann; Nordstierna, Lars

    2016-03-10

    Polymethylmethacrylate-based microcapsules containing the antimicrobial agent 2-n-octyl-4-isothiazolin-3-one (OIT) decorated by an anchored polyelectrolyte brush consisting of an amphiphilic diblock copolymer of polymethylmethacrylate-block-poly(sodium methacrylate) type have been formulated via a coacervation technique. The polyelectrolyte brush surface provided the microcapsule with a high and stable surface charge density. This enabled further surface modification of the colloidal particle with a thin and dense polyelectrolyte multilayer using the layer-by-layer technique. The addition of the highly charged and hydrophilic polyelectrolyte multilayer assembled on the microcapsule surface resulted in a considerable decrease of the release rate of the encapsulated OIT in aqueous suspension, corresponding to a 40 times reduction of the effective OIT diffusion coefficient in the polymethylmethacrylate matrix. Moreover, the release of encapsulated or freely dispersed OIT from coatings as a function of the matrix density was evaluated and analyzed within the framework of applied diffusion models. Encapsulation of OIT in polyelectrolyte multilayer composite microcapsules was found to significantly prolong the release and render the release rate more or less independent of the matrix density. In addition, the long-term antimicrobial properties of the coatings were evaluated in terms of their susceptibility for biofouling using the fungus and common biofouler Aspergillus niger as model organism. The results clearly demonstrated that the use of encapsulated OIT gave a significantly prolonged surface protection and allowed for the determination of the critical surface flux. The polyelectrolyte multilayer has therefore been recognized as the rate-determining barrier for OIT. The matrix density has a minor influence on the release rate of encapsulated OIT from these microcapsules and this concept may very well be expanded to cover a broad range of hydrophobic and semi-hydrophobic

  9. Demonstrating Encapsulation and Release: A New Take on Alginate Complexation and the Nylon Rope Trick

    ERIC Educational Resources Information Center

    Friedli, Andrienne C.; Schlager, Inge R.; Wright, Stephen W.

    2005-01-01

    Three variations on a classroom demonstration of the encapsulation of droplets and evidence for release of the interior solution are described. The first two demonstrations mimic biocompatible applications of encapsulation. Reversible formation of capsules from aqueous solutions of sodium alginate, a negatively charged polysaccharide derived from…

  10. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives.

    PubMed

    Gómez-Mascaraque, Laura G; López-Rubio, Amparo

    2016-03-01

    This work shows the potential of emulsion electrospraying of proteins using food-grade emulsions for the microencapsulation and enhanced protection of a model thermosensitive hydrophobic bioactive. Specifically, gelatin, a whey protein concentrate (WPC) and a soy protein isolate (SPI) were compared as emulsion stabilizers and wall matrices for encapsulation of α-linolenic acid. In a preliminary stage, soy bean oil was used as the hydrophobic component for the implementation of the emulsion electrospraying process, investigating the effect of protein type and emulsion protocol used (i.e. with or without ultrasound treatment) on colloidal stability. This oil was then substituted by the ω-3 fatty acid and the emulsions were processed by electrospraying and spray-drying, comparing both techniques. While the latter resulted in massive bioactive degradation, electrospraying proved to be a suitable alternative, achieving microencapsulation efficiencies (MEE) of up to ∼70%. Although gelatin yielded low MEEs due to the need of employing acetic acid for its processing by electrospraying, SPI and WPC achieved MEEs over 60% for the non-sonicated emulsions. Moreover, the degradation of α-linolenic acid at 80°C was significantly delayed when encapsulated within both matrices. Whilst less than an 8% of its alkene groups were detected after 27h of thermal treatment for free α-linolenic acid, up to 43% and 67% still remained intact within the electrosprayed SPI and WPC capsules, respectively. PMID:26674243

  11. Study of the mechanisms of laser-induced release of liposome-encapsulated dye

    SciTech Connect

    Khoobehi, B.; Char, C.A.; Peyman, G.A.; Schuele, K.M. )

    1990-01-01

    To differentiate the contributing factors (blood or encapsulated dye) leading to the release of encapsulated dyes from liposomes after laser exposure, we initiated an in vitro experimental study. The release of encapsulated calcein was quantified under various experimental conditions in whole blood and in buffered solution containing high-density lipoprotein. Generally, the amount of dye release improved with an increase in laser power, with a maximum release of approximately 80% of encapsulated dye. Because the laser exposure was not continuous, only 80% of each sample was actually exposed. Therefore, 80% release may be thought of as total release. In a lipoprotein/buffer mixture, the 488 nm wavelength caused greater dye release than the 577 nm wavelength, because the maximum absorption of calcein is near 488 nm. The laser wavelength at 577 nm, however, caused greater release in the blood mixture, reflecting the peak absorption of hemoglobin at near 577 nm. At a 3 x higher liposome concentration, the differences in the effects of wavelengths on the release of dye from liposomes were insignificant. Although the 577 nm wavelength is an optimum wavelength for dye and drug delivery in the presence of blood, the 488 nm wavelength might also be suitable for the release of dye from the liposomes.

  12. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. PMID:26773599

  13. Hydrophobic Effects in the Critical Destabilization and Release Dynamics of Degradable Multilayer Films

    PubMed Central

    Smith, Renée C.; Leung, Amy; Kim, Byeong-Su; Hammond, Paula T.

    2009-01-01

    Recent research has highlighted the ability of hydrolytically degradable electrostatic layer-by-layer films to act as versatile drug delivery systems capable of multi-agent release. A key element of these films is the potential to gain precise control of release by evoking a surface-erosion mechanism. Here we sought to determine the extent to which manipulation of chemical structure could be used to control release from hydrolytically degradable layer-by-layer films through modification of the degradable polycation. Toward this goal, films composed of poly(β-amino ester)s, varying only in the choice of diacrylate monomer, and the model biological drug, dextran sulfate, were used to ascertain the role of alkyl chain length, steric hindrance, and hydrophobicity on release dynamics. Above a critical polycation hydrophobicity, as determined using octanol:water coefficients, the film becomes rapidly destabilized and quickly released its contents. These findings indicate that in these unique electrostatic assemblies, hydrolytic susceptibility is dependent not only on hydrophobicity, but a complex balance between hydrophobic composition, charge density, and stability of electrostatic ion pairs. Computational determination of octanol:water coefficients allowed for the reliable prediction of release dynamics. The determination of a correlation between octanol:water coefficient and release duration will enables advanced engineering to produce custom drug delivery systems. PMID:20161308

  14. Hydrophobic Effects in the Critical Destabilization and Release Dynamics of Degradable Multilayer Films.

    PubMed

    Smith, Renée C; Leung, Amy; Kim, Byeong-Su; Hammond, Paula T

    2009-03-01

    Recent research has highlighted the ability of hydrolytically degradable electrostatic layer-by-layer films to act as versatile drug delivery systems capable of multi-agent release. A key element of these films is the potential to gain precise control of release by evoking a surface-erosion mechanism. Here we sought to determine the extent to which manipulation of chemical structure could be used to control release from hydrolytically degradable layer-by-layer films through modification of the degradable polycation. Toward this goal, films composed of poly(β-amino ester)s, varying only in the choice of diacrylate monomer, and the model biological drug, dextran sulfate, were used to ascertain the role of alkyl chain length, steric hindrance, and hydrophobicity on release dynamics. Above a critical polycation hydrophobicity, as determined using octanol:water coefficients, the film becomes rapidly destabilized and quickly released its contents. These findings indicate that in these unique electrostatic assemblies, hydrolytic susceptibility is dependent not only on hydrophobicity, but a complex balance between hydrophobic composition, charge density, and stability of electrostatic ion pairs. Computational determination of octanol:water coefficients allowed for the reliable prediction of release dynamics. The determination of a correlation between octanol:water coefficient and release duration will enables advanced engineering to produce custom drug delivery systems. PMID:20161308

  15. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study.

    PubMed

    Jingou, Ji; Shilei, Hao; Weiqi, Liu; Danjun, Wu; Tengfei, Wang; Yi, Xu

    2011-03-01

    The compound nanoparticles of chitosan (CS) and cyclodextrin (CD) loading with hydrophilic and hydrophobic drug simultaneously were prepared via the cross-linking method. Methotrexate (MTX) and calcium folinate (CaF) were selected as the model drugs. The prepared nanoparticles were characterized by FT-IR spectroscopy to confirm the cross-linking reaction between CS and cross-linking agent. X-ray diffraction (XRD) was performed to reveal the form of the drug after encapsulation. The average size of nanoparticles ranged from 308.4 ± 15.22 to 369.3 ± 30.01 nm. The nanoparticles formed were spherical in shape with high zeta potentials (higher than +30mV). In vitro release studies in phosphate buffer saline (pH 7.4) showed an initial burst effect and followed by a slow drug release. Cumulative release data were fitted to an empirical equation to compute diffusional exponent (n), which indicated the non-Fickian trend for drug release. PMID:21112190

  16. Encapsulation of NF-κ B Decoy Oligonucleotides within Echogenic Liposomes and Ultrasound-Triggered Release

    PubMed Central

    Buchanan, Kyle D.; Huang, Shao-Ling; Kim, Hyunggun; McPherson, David D.; MacDonald, Robert C.

    2011-01-01

    Echogenic liposomes (ELIP) have additional promise, beyond diagnostic agents, as vehicles for delivering oligonucleotides (ODN), especially if the release of the agent can be triggered and its uptake can be enhanced by ultrasound application at a specific site. The purpose of this study was to co-encapsulate air and NF-κB decoy ODN within ELIP allowing ultrasound to release encapsulated ODN from ELIP, and to accurately quantify release of encapsulated ODN from ELIP upon ultrasound application. FITC-labeled sense ODN (2 mM) was incorporated within ELIP using freeze/thaw method. Encapsulation efficiency of FITC-ODN was spectrofluorometrically analyzed by quenching fluorescence of unencapsulated FITC-ODN using a complementary strand tagged with Iowa Black FQ-ODN. Quenching of FITC-ODN (0.05 μM) with Iowa Black FQ-ODN (0.1 μM) was found to be efficient (92.4 ± 0.2 %), allowing accurate determination of encapsulated ODN. Encapsulation efficiency of ODN was 14.2 ± 2.5 % in DPPC/DOPC/DPPG/CH liposomes and 29.6 ± 1.5 % in DPPC/DOPE/DPPG/CH liposomes. Application of ultrasound (1 MHz continuous wave, 0.26 MPa peak-to-peak pressure amplitude, 60 seconds.) to the latter formulation triggered 41.6 ± 4.3 % release of ODN from ODN-containing ELIP. We have thus demonstrated that ODN can be encapsulated into ELIP and released efficiently upon ultrasound application. These findings suggest potential applications for gene therapy in atherosclerosis treatment. PMID:19804805

  17. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    NASA Astrophysics Data System (ADS)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  18. Multicompartmental Microcapsules with Orthogonal Programmable Two-Way Sequencing of Hydrophobic and Hydrophilic Cargo Release.

    PubMed

    Xu, Weinan; Ledin, Petr A; Iatridi, Zacharoula; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2016-04-11

    Multicompartmental responsive microstructures with the capability for the pre-programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual-responsive blocks (temperature for poly(N-isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2-vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water-soluble hydrophilic macromolecules. For these dual-loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out-of-shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out-of-core release (pH). Reversing stimulus order completely alters the release process. PMID:26990494

  19. A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients.

    PubMed

    Numata, Yukari; Mazzarino, Leticia; Borsali, Redouane

    2015-01-01

    A combination of bacterial cellulose (BC) gel and amphiphilic block copolymer nanoparticles was investigated as a drug delivery system (DDS) for hydrophobic active ingredients. Poly(ethylene oxide)-b-poly(caprolactone) (PEO-b-PCL) and retinol were used as the block copolymer and hydrophobic active ingredient, respectively. The BC gel was capable of incorporating copolymer nanoparticles and releasing them in an acetic acid-sodium acetate buffer solution (pH 5.2) at 37 °C. The percentage of released copolymer reached a maximum value of approximately 60% after 6h and remained constant after 24h. The percentage of retinol released from the copolymer-containing BC gel reached a maximum value at 4h. These results show that the combination of BC gel and nanoparticles is a slow-release system that may be useful in the cosmetic and biomedical fields for skin treatment and preparation. PMID:25840273

  20. Controlled-release NPK fertilizer encapsulated by polymeric membranes.

    PubMed

    Jarosiewicz, Anna; Tomaszewska, Maria

    2003-01-15

    The commercial granular fertilizer NPK6-20-30 was coated using polysulfone (PSF), polyacrylonitrile (PAN), and cellulose acetate (CA). The coatings were formed from the polymer solutions by the phase inversion technique. Measurements of the thickness and porosity of the prepared coatings and a microphotographic observation of the coatings were performed. The physical properties of the coatings influence the release rate of macronutrients which are present in the core of the coated fertilizer. In the case of PAN coating with 60.45% porosity, prepared from a 16% polymer solution, 100% of NH(4)(+) and P(2)O(5) was released after 4 h of test and 99.7% of K(+) after 5 h of test, whereas in the case of coating with 48.8% porosity, 31.8% of NH(4)(+), 16.7% of P(2)O(5), and 11.6% of K(+) was released after 5 h. In all experiments, different selectivities of the coatings in terms of the release of components were observed. The release of potassium through the coatings made of PSF and PAN was the slowest. The same tendency was observed for the release of nitrogen through a coating of CA. The release of fertilizer active components was the slowest in the case of PSF. The lowest porosity coating was prepared from the 18% PSF solution. PMID:12517104

  1. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes.

    PubMed

    Zhang, Licheng; Zhang, Lihai; Yang, Yun; Zhang, Wei; Lv, Houchen; Yang, Fei; Lin, Changjian; Tang, Peifu

    2016-07-01

    The antibacterial properties of super-hydrophobic silver (Ag) on implant surface have not yet to be fully illuminated. In our study, we investigate the protective effects of super-hydrophobic coating of silver/titanium dioxide (Ag/TiO2 ) nanotubes against bacterial pathogens, as well as its pattern of Ag release. Ag/TiO2 nanotubes are prepared by a combination of electrochemical anodization and pulse electrodeposition. The super-hydrophobic coating is prepared by modifying the surface of Ag/TiO2 nanotubes with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES). Surface features and Ag release are examined by SEM, X-ray photoelectron spectroscopy, contact-angle measurement, and inductively coupled plasma-mass spectrometry (ICP-MS). The antibacterial activity of super-hydrophobic coating Ag/TiO2 nanotubes is investigated both in vitro and in vivo. Consequently, the super-hydrophobic coating on Ag/TiO2 nanotubes shows a regularly arranged structure; and nano-Ag particles (10-30 nm) are evenly distributed on the surface or inside the nanotubes. The contact angles of water on the super-hydrophobic coating Ag/TiO2 nanotubes are all above 150°. In addition, the super-hydrophobic character displays a certain conserved effect that contributes to the sustained release of Ag. The super-hydrophobic Ag/TiO2 nanotubes are also effective in inhibiting bacterial adhesion, killing the adhering bacteria and preventing postoperative infection in rabbits. Therefore, it is expected that the super-hydrophobic Ag/TiO2 nanotubes which can contain the release of Ag, leading to stable release, may show a consistent surface antibacterial capability. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1004-1012, 2016. PMID:25995046

  2. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  3. Electronic nose screening of limonene release from multicomponent essential oils encapsulated in pectin gels.

    PubMed

    Monge, María Eugenia; Bulone, Donatella; Giacomazza, Daniela; Negri, Martín; Bernik, Delia L

    2004-06-01

    Multicomponent essential oils Tagetes Minuta and Poleo as well as pure limonene were encapsulated in Tween doped-high methoxylated pectin gels. Optical microscopy reveals that the obtained gels containing limonene consisted in a highly heterogeneous oil-in-water emulsion stabilised by the gelled medium. The influence of limonene encapsulation in pectin gelation kinetics and the gel structural properties were followed by dynamic rheological measurements. An electronic nose device developed in our laboratory was used to follow the flavour release of the three systems in order to discriminate the samples according to the main components released to the headspace. PCA and Neural Network Analysis allowed us to discriminate Tagetes Minuta from Poleo due to the difference in their limonene content. It is remarkable that the fingerprints of encapsulated complex mixtures differ from those obtained for the non-encapsulated oils, showing a preferential release of some components. In the case of limonene, the effect of the encapsulated concentration on the detected odour was also studied. PMID:15200381

  4. pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds.

    PubMed

    Lu, Lei; Unsworth, Larry D

    2016-04-11

    Self-assembling peptide based hydrogels have a wide range of applications in the field of tissue repair and tissue regeneration. Because of its physicochemical properties, (RADA)4 has been studied as a potential platform for 3D cell culture, drug delivery, and tissue engineering. Despite some small molecule and protein release studies with this system, there is a lack of work investigating the controlled release of hydrophobic compounds (i.e., anti-inflammatory, anticancer, antibacterial drugs, etc.) that are important for many clinical therapies. Attempts to incorporate hydrophobic compounds into self-assembling matrices usually inhibited nanofiber formation, rather resulting in a peptide-drug complex or microcrystal formation. Herein, a self-assembling chitosan/carboxymethyl-β-cyclodextrin nanoparticle system was used to load dexamethasone, which formed within a self-assembling (RADA)4 nanoscaffold matrix. Nanoparticles dispersed within the matrix were stabilized by the nanofibers within. The in vitro release of dexamethasone from the hybrid system was observed to be pH sensitive. At pH 7, release was observed for more than 8 days, with three distinct kinetic domains in the first 6 days. Data suggest that the deprotonation of chitosan at a solution pH > 6.8 leads to nanoparticle dissociation and ultimately the release of dexamethasone from the hybrid system. This system has the potential to form a multifunctional scaffold that can self-assemble with the ability to control the release of hydrophobic drugs for a wide variety of applications. PMID:26938197

  5. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. PMID:26987445

  6. Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-Fluorouracil and Temozolomide.

    PubMed

    Di Martino, Antonio; Pavelkova, Alena; Maciulyte, Sandra; Budriene, Saulute; Sedlarik, Vladimir

    2016-09-20

    Polysaccharide-based nanocomplexes, intended for simultaneous encapsulation and controlled release of 5-Fluorouracil (5-FU) and Temozolomide (TMZ) were developed via the complexation method using chitosan, alginic and polygalacturonic acid. Investigation focused on the influence of polysaccharides on the properties of the system and amelioration of the stability of the drugs, in particular TMZ. The dimensions of particles and their ζ-potential were found to range between 100 and 200nm and -25 to +40mV, respectively. Encapsulation efficiency varied from 16% to over 70%, depending on the given system. The influence of pH on the release and co-release of TMZ and 5-FU was evaluated under different pH conditions. The stability of the loaded drug, in particular TMZ, after release was evaluated and confirmed by LC-MS analysis. Results suggested that the amount of loaded drug(s) and the release rate is connected with the weight ratio of polysaccharides and the pH of the media. One-way ANOVA analysis on the obtained data revealed no interference between the drugs during the encapsulation and release process, and in particular no hydrolysis of TMZ occurred suggesting that CS-ALG and CS-PGA would represent interesting carriers for multi-drug controlled release and drugs protection. PMID:27154260

  7. Core-Shell Electrospun Fibers Encapsulating Chromophores or Luminescent Proteins for Microscopically Controlled Molecular Release.

    PubMed

    Romano, Luigi; Camposeo, Andrea; Manco, Rita; Moffa, Maria; Pisignano, Dario

    2016-03-01

    Core-shell fibers are emerging as interesting microstructures for the controlled release of drugs, proteins, and complex biological molecules, enabling the fine control of microreservoirs of encapsulated active agents, of the release kinetics, and of the localized delivery. Here we load luminescent molecules and enhanced green fluorescent proteins into the core of fibers realized by coaxial electrospinning. Photoluminescence spectroscopy evidences unaltered molecular emission following encapsulation and release. Moreover, the release kinetics is microscopically investigated by confocal analysis at individual-fiber scale, unveiling different characteristic time scales for diffusional translocation at the core and at the shell. These results are interpreted by a two stage desorption model for the coaxial microstructure, and they are relevant in the design and development of efficient fibrous systems for the delivery of functional biomolecules. PMID:26870885

  8. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid)☆

    PubMed Central

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs. PMID:25755999

  9. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release.

    PubMed

    Korzhikov, Viktor; Averianov, Ilia; Litvinchuk, Evgeniia; Tennikova, Tatiana B

    2016-05-01

    The paper is devoted to the investigation of the effect of polyester hydrophobicity and ability for crystallisation on lipophilic drug loading and release from microparticles fabricated on the base of these polymers. Poly(l-lactic acid), poly(d, l-lactic acid) and poly (lactic acid-co-glycolic acid) were synthesised by ring-opening polymerisation using stannous octoate as catalyst, while poly(caprolactone) (PCL) and poly(ω-pentadecalactone) (PPDL) formation was catalysed by lipase. The particles were formed via single emulsion evaporation/diffusion method. The particles obtained were studied using SEM, XRD and DSC methods. The degradation of particles based on different polyesters, entrapment and release of a model hydrophobic drug (risperidone®) were thoroughly studied. The effect of particles hydrophobicity and crystallinity on these parameters was of most interest. The drug entrapment is greater for the hydrophobic polymers. Drug release was more rapid from crystalline particles (PLLA, PCL, PPDL), than from amorphous PDLLA and PLGA ones. PMID:26888064

  10. Hydrophobically Modified Keratin Vesicles for GSH-Responsive Intracellular Drug Release.

    PubMed

    Curcio, Manuela; Blanco-Fernandez, Barbara; Diaz-Gomez, Luis; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-09-16

    Redox-responsive polymersomes were prepared by self-assembly of a hydrophobically modified keratin and employing a water addition/solvent evaporation method. Polyethylene glycol-40 stearate (PEG40ST) was chosen as hydrophobic block to be coupled to keratin via radical grafting. The amphiphilic polymer exhibited low critical aggregation concentration (CAC; 10 μg/mL), indicating a good thermodynamic stability. The polymeric vesicles loaded both hydrophilic methotrexate and hydrophobic curcumin with high entrapment efficiencies, and showed a GSH-dependent drug release rate. Confocal studies on HeLa cells revealed that the obtained polymersomes were efficiently internalized. Biocompatibility properties of the proposed delivery vehicle were assessed in HET-CAM test and Balb-3T3 mouse fibroblasts. Polymersomes loaded with either methotrexate or curcumin inhibited HeLa and CHO-K1 cancer cells proliferation. Overall, the proposed keratin polymersomes could be efficient nanocarriers for chemotherapeutic agents. PMID:26287808

  11. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids

    PubMed Central

    Knöös, Patrik

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  12. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids.

    PubMed

    Knöös, Patrik; Svensson, Anna V; Ulvenlund, Stefan; Wahlgren, Marie

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  13. Nitric oxide-releasing hydrophobic polymers: preparation, characterization, and potential biomedical applications.

    PubMed

    Reynolds, Melissa M; Frost, Megan C; Meyerhoff, Mark E

    2004-10-01

    The synthetic methods used recently in this laboratory to prepare a variety of novel nitric oxide (NO)-releasing hydrophobic polymers are reviewed. Nitric oxide is a well known inhibitor of platelet adhesion and activation. Thus, such NO release polymers have potential applications as thromboresistant coatings for a large number of blood-contacting biomedical devices (e.g., in vivo sensors, arteriovenous grafts, stents, catheters, extracorporeal circuits). The approaches taken to prepare NO releasing poly(vinyl chloride) (PVC), silicone rubber (SR), polymethacrylate (PM), and polyurethane (PU) materials are grouped into three categories: (1) dispersion/doping of discrete diazeniumdiolated molecules within the polymeric films; (2) chemical derivatization of polymeric filler microparticles (e.g., silicon dioxide, titanium dioxide) to possess NO release chemistry and then their dispersion within the hydrophobic polymers; and (3) covalent attachment of NO release moieties to polymer backbones. Specific chemical examples of each of these approaches are summarized and the advantages and disadvantages of each are discussed. Other related work in the field of NO release polymers is also cited. It is further shown that several of the NO-releasing polymeric materials already prepared exhibit the expected improved thromboresistivity when tested in vivo using appropriate animal models. PMID:15336308

  14. Water repellent spray-type encapsulation of quantum dot light-emitting diodes using super-hydrophobic self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Han, Junebeom; Bong, Jihye; Lim, Taekyung; Lee, Ki-Heon; Yang, Heesun; Ju, Sanghyun

    2015-10-01

    We have developed a spray-type encapsulation method for quantum dot light-emitting diode (QD-LED) displays designed to prevent the penetration of oxygen and moisture in ambient air and repel water. The non-wettability and oxygen/moisture repellency afforded by the super-hydrophobic (contact angle of ∼158°) self-assembled Al2O3 nanoparticles (SAM-NP) is attributed to a reduction in the number of defects sites such as pin-holes or cracks during the formation of the thin-film. The QD-LEDs with SAM-NP encapsulation were found to have an effective lifetime in ambient air and a stable light emission in water compared to those of equivalent QD-LEDs without encapsulation.

  15. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    PubMed

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents. PMID:24780265

  16. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts.

    PubMed

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-07-14

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. PMID:27304251

  17. Insights into hydrophobic molecule release from polyelectrolyte multilayer films using in situ and ex situ techniques.

    PubMed

    Shin, Yongjin; Cheung, Weng Hou; Ho, Tracey T M; Bremmell, Kristen E; Beattie, David A

    2014-10-28

    We report on the loading and release of curcumin (a hydrophobic polyphenol with anti-inflammatory and anti-bacterial properties) from polyelectrolyte multilayers composed of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS). We have used the in situ techniques of attenuated total reflectance (ATR) FTIR spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) to study the formation of the PEM and the incorporation of curcumin, providing direct evidence of the incorporation, in terms of molecular vibrations and gravimetric detection. The release of curcumin was followed using ex situ measurements of UV-visible spectroscopy of PEM films on quartz plates, in addition to in situ ATR FTIR measurements. Release was studied as a function of salt concentration of the release solution (0.001 M NaCl; 1 M NaCl). UV-visible spectroscopy indicated that salt concentration of the release solution had a major impact on release rates, with higher salt giving faster/more extensive release. However, prolonged timescale immersion and monitoring with UV-visible spectroscopy indicated that sample dehydration/rehydration cycling (required to measure UV absorbance) was responsible for the release of curcumin, rather than immersion time. In situ measurements of release kinetics with ATR FTIR confirmed that release does not occur spontaneously while the multilayer remains hydrated. PMID:25226281

  18. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    PubMed

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-01

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder. PMID:27071729

  19. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    SciTech Connect

    Krishnan,S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.

  20. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation.

    PubMed

    Pulicharla, Rama; Marques, Caroline; Das, Ratul Kumar; Rouissi, Tarek; Brar, Satinder Kaur

    2016-07-01

    Polyphenols (negative groups) of strawberry extract interacts with positively protonated amino groups of chitosan which helps in maximum encapsulation. This approach can improve the bioavailability and sustained release of phytochemicals having lower bioavailability. The optimum mass ratio of chitosan-tripolyphosphate and polyphenols (PPs) loading was investigated to be 3:1 and 0.5mg/ml of strawberry extract, respectively. Prepared nanoformulation were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The formed particles size ranged between 300 and 600nm and polydispersity index (PDI) of≈0.5. The optimized formulation showed encapsulation efficiency of 58.09% at 36.47% of polyphenols loading. Initial burst and continuous release of PPs was observed at pH 7.4 of in vitro release studies. PPs release profile at this pH was found to be non-Fickian analomous diffusion and the release was followed first order kinetics. And at pH 1.4, diffusion-controlled Fickian release of PPs was observed. PMID:27005769

  1. Hydrocolloid-based nutraceutical delivery systems: Effect of counter-ions on the encapsulation and release.

    PubMed

    Polowsky, Patrick J; Janaswamy, Srinivas

    2015-01-01

    Nutraceuticals provide health benefits, especially for the prevention and treatment of chronic diseases such as diabetes, obesity, cardiovascular disease and cancer. Their incorporation in food supplements, functional foods and medicinal foods is a major technological challenge due to lower water solubility, instability during processing and storage conditions. Carriers that can effectively overcome these predicaments and protect them during product development, consumption and delivery are in high demand. Toward this end, our research approach is to entrap nutraceuticals in the ordered networks of hydrocolloids. We have examined the effect cations in regulating the encapsulated amounts and release characteristics. Iota-carrageenan and eugenol have been chosen as models of hydrocolloid and nutraceutical, respectively, in the presence of Na and Ca ions. The results suggest that carrageenan maintains its network organization even after encapsulating the eugenol molecules. Increased eugenol amounts are found in the Na carrageenan complex compared to the Ca complex, and the release rate is faster from the former but it is more controlled from the latter. These differences highlight the vital role of cations on the encapsulation efficiency and release profiles of hydrocolloid-based nutraceutical carriers. The outcome offers an elegant opportunity for developing novel and value-added food systems employing low-in-cost, nontoxic and heavily consumed food grade hydrocolloids. PMID:25419030

  2. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  3. Hydrocolloid-based nutraceutical delivery systems: Effect of counter-ions on the encapsulation and release

    PubMed Central

    Polowsky, Patrick J.; Janaswamy, Srinivas

    2014-01-01

    Nutraceuticals provide health benefits, especially for the prevention and treatment of chronic diseases such as diabetes, obesity, cardiovascular disease and cancer. Their incorporation in food supplements, functional foods and medicinal foods is a major technological challenge due to lower water solubility, instability during processing and storage conditions. Carriers that can effectively overcome these predicaments and protect them during product development, consumption and delivery are in high demand. Toward this end, our research approach is to entrap nutraceuticals in the ordered networks of hydrocolloids. We have examined the effect cations in regulating the encapsulated amounts and release characteristics. Iota-carrageenan and eugenol have been chosen as models of hydrocolloid and nutraceutical, respectively, in the presence of Na and Ca ions. The results suggest that carrageenan maintains its network organization even after encapsulating the eugenol molecules. Increased eugenol amounts are found in the Na carrageenan complex compared to the Ca complex, and the release rate is faster from the former but it is more controlled from the latter. These differences highlight the vital role of cations on the encapsulation efficiency and release profiles of hydrocolloid-based nutraceutical carriers. The outcome offers an elegant opportunity for developing novel and value-added food systems employing low-in-cost, nontoxic and heavily consumed food grade hydrocolloids. PMID:25419030

  4. The production of volvox spheres and their potential application in multi-drugs encapsulation and release.

    PubMed

    Teong, Benjamin; Chang, Shwu Jen; Chuang, Chin Wen; Kuo, Shyh Ming; Manousakas, Ioannis

    2013-12-01

    Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (~4°C) and warm (~50°C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. PMID:24094197

  5. Binding and release of iron by gel-encapsulated human transferrin: Evidence for a conformational search

    PubMed Central

    Navati, Mahantesh S.; Samuni, Uri; Aisen, Philip; Friedman, Joel M.

    2003-01-01

    Human transferrin is a single-chain bilobal protein with each of the two similar but not identical lobes in turn composed of two domains. Each lobe may assume one of two stable structural conformations, open or closed, determined by a rigid rotation of the domains with respect to each other. In solution, the transformation of a lobe between open and closed conformations is associated with the release or binding of an Fe(III) ion. The results of the present study indicate that encapsulation of transferrin within a porous sol-gel matrix allows for a dramatic expansion, to days or weeks, of this interconversion time period, thus providing an opportunity to probe heretofore inaccessible transient intermediates. Sol-gel-encapsulated iron-free transferrin samples are prepared by using two protocols. In the first protocol, the equilibrium form of apotransferrin is encapsulated in the sol-gel matrix, whereas in the second protocol holotransferrin is first encapsulated and then iron is removed from the protein. Results of kinetic and spectroscopic studies allow for distinguishing between two models for iron binding. In the first, iron is assumed to bind to amino acid ligands of one domain, inducing a rigid rotation of the second domain to effect closure of the interdomain cleft. In the second, iron undertakes a conformational search among the thermally accessible states of the lobe, “choosing” the state which most nearly approximates the stable closed state when iron is bound. Our experimental results support the second mechanism. PMID:12486226

  6. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    NASA Astrophysics Data System (ADS)

    Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-04-01

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.

  7. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    SciTech Connect

    Wang Jiexin; Wang Zhihui; Chen Jianfeng Yun, Jimmy

    2008-12-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N{sub 2} adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 {mu}m, and had a specific surface area of about 306 m{sup 2}/g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties.

  8. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design.

    PubMed

    Abul Kalam, Mohd; Khan, Abdul Arif; Khan, Shahanavaj; Almalik, Abdulaziz; Alshamsan, Aws

    2016-06-01

    Indomethacin chitosan nanoparticles (NPs) were developed by ionotropic gelation and optimized by concentrations of chitosan and tripolyphosphate (TPP) and stirring time by 3-factor 3-level Box-Behnken experimental design. Optimal concentration of chitosan (A) and TPP (B) were found 0.6mg/mL and 0.4mg/mL with 120min stirring time (C), with applied constraints of minimizing particle size (R1) and maximizing encapsulation efficiency (R2) and drug release (R3). Based on obtained 3D response surface plots, factors A, B and C were found to give synergistic effect on R1, while factor A has a negative impact on R2 and R3. Interaction of AB was negative on R1 and R2 but positive on R3. The factor AC was having synergistic effect on R1 and on R3, while the same combination had a negative effect on R2. The interaction BC was positive on the all responses. NPs were found in the size range of 321-675nm with zeta potentials (+25 to +32mV) after 6 months storage. Encapsulation, drug release, and content were in the range of 56-79%, 48-73% and 98-99%, respectively. In vitro drug release data were fitted in different kinetic models and pattern of drug release followed Higuchi-matrix type. PMID:26893052

  9. Promoting fertilizer use via controlled release of a bacteria-encapsulated film bag.

    PubMed

    Wu, Chin-San

    2010-05-26

    A phosphate-solubilizing bacterium ( Burkholderia cepacia isolate) encapsulated in maleic anhydride (MA) grafted onto poly(butylene succinate adipate) (PBSA) and then combined with starch as film bag material (PBSA-g-MA/starch) incubated in a saline solution required approximately 20 days to deplete the starch in the film bags. Thereafter, the cell concentration in the saline solution increased significantly because of the release of cells from the severely destroyed film bags and also their growth by use of depolymerized PBSA-g-MA fragments as a substrate. The incubation proceeded for 60 days, by which time the PBSA-g-MA/starch composite had suffered a >80% weight loss. For practical application, effectiveness of the above-mentioned film bags was demonstrated because it could improve the absorbability of a fertilizer for plants and promote the growth of plants. As a result, it can avoid the accumulation of the phosphate in excess fertilizer that lead to the phenomenon of poor soils. These results demonstrate that PBSA-g-MA/starch can be used to encapsulate cells of an indigenous phosphate-solubilizing bacterium ( B. cepacia isolate) to form a controlled release of bacteria-encapsulated film bag (BEFB). The B. cepacia isolate was able to degrade the film bags material, causing cell release. Biodegradability of the film bags depended upon the type of material used, because the PBSA film bags were also degraded but to a lesser degree. The addition of starch made the film bags more biodegradable. The decrease in intrinsic viscosity was also higher for the starch composite, suggesting a strong connection between the biodegradability and these characteristics. The results suggest that the release of fertilizer-promoted bacteria might be controllable via a suitable film bag material formulation. In addition, this work adopted live bacteria to promote the absorption of phosphate, which is superior to the phosphate used in the traditional way. PMID:20420423

  10. Protein encapsulation in and release from monodisperse double-wall polymer microspheres

    PubMed Central

    Xia, Yujie; Xu, Qingxing; Wang, Chi-Hwa; Pack, Daniel W.

    2014-01-01

    Biodegradable polymer double-wall microspheres (DWMS) are promising vehicles for macromolecular therapeutics such as proteins and peptides. Using precision particle fabrication (PPF) technology, uniform DWMS with outer diameter ~55 μm were fabricated comprising poly(lactide-co-glycolide) cores encapsulating bovine serum albumin (BSA) and ~10 μm thick, drug-free, poly(lactic acid) shells of varying PLA molecular weight. Also, monolithic single-wall microspheres (SWMS) were fabricated to mimic the BSA-loaded core. The use of relatively fast extracting ethyl acetate and slowly extracting dichloromethane as shell- and core-phase solvents, respectively, was found to produce DWMS with well-defined core-shell structure, high BSA encapsulation efficiency, and the desired localization of protein in the particle core. Initial protein distribution, particle erosion, and in vitro protein release from DWMS and SWMS were examined. The presence of a BSA-free shell in DWMS decreased the protein release rate and extended the duration of release from ~50 days to 70-80 days, demonstrating the capacity of such DWMS to provide enhanced control of protein delivery rates. PMID:23529836

  11. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Ming; Yuan, Jing; Leung, Ken Cham-Fai; Lee, Siu-Fung; Sham, Kathy W. Y.; Cheng, Christopher H. K.; Au, Doris W. T.; Teng, Gao-Jun; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2012-08-01

    With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 +/- 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC50) was 0.05 +/- 0.03 μg ml-1 for DOX/SPIO, while it was 0.13 +/- 0.02 μg ml-1 for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.

  12. Development of subcutaneous sustained release nanoparticles encapsulating low molecular weight heparin

    PubMed Central

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2015-01-01

    The objective of the present research work was to prepare and evaluate sustained release subcutaneous (s.c.) nanoparticles of low molecular weight heparin (LMWH). The nanoparticles were prepared by water–in-oil in-water (w/o/w) emulsion and evaporation method using different grades of polylactide co-glycolide (50:50, 85:15), and different concentrations of polyvinyl alcohol (0.1%, 0.5%, 1%) aqueous solution as surfactant. The fabricated nanoparticles were evaluated for size, shape, zeta potential, encapsulation efficiency, in vitro drug release, and in vivo biological activity (anti-factor Xa activity) using the standard kit. The drug and excipient compatibility was analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The formation of nanoparticles was confirmed by scanning electron microscopy; nanoparticles were spherical in shape. The size of prepared nanoparticles was found between 195 nm and 251 nm. The encapsulation efficiency of the nanoparticles was found between 46% and 70%. In vitro drug, release was about 16–38% for 10 days. In vivo drug, release shows the sustained release of drug for 10 days in rats. FTIR studies indicated that there was no loss in chemical integrity of the drug upon fabrication into nanoparticles. DSC and XRD results demonstrated that the drug was changed from the crystalline form to the amorphous form in the formulation during the fabrication process. The results of this study revealed that the s.c. nanoparticles were suitable candidates for sustained delivery of LMWH. PMID:25878975

  13. Effects of formulation parameters on encapsulation efficiency and release behavior of thienorphine loaded PLGA microspheres.

    PubMed

    Yang, Yang; Gao, Yongliang; Mei, Xingguo

    2013-01-01

    To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19 ± 1.17 to 59.15 ± 0.67 μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established. PMID:21967467

  14. Marbofloxacin-encapsulated microparticles provide sustained drug release for treatment of veterinary diseases.

    PubMed

    Lee, Joohyeon; Kwon, Ho Jin; Ji, Hyunggun; Cho, Sun Hang; Cho, Eun-Haeng; Han, Hee Dong; Shin, Byung Cheol

    2016-03-01

    Fluoroquinolone antibiotics with concentration-dependent killing effects and a well-established broad spectrum of activity are used commonly to treat infectious diseases caused by bacteria. However, frequent and excessive administration of these antibiotics is a serious problem, and leads to increased number of drug-resistant bacteria. Thus, there is an urgent need for novel fluoroquinolone antibiotic formulations that minimize the risk of resistance while maximizing their efficacy. In this study, we developed intramuscularly injectable polymeric microparticles (MPs) that encapsulated with marbofloxacin (MAR) and were composed of poly(D,L-lactide-co-glycolic acid) (PLGA) and poloxamer (POL). MAR-encapsulated MP (MAR-MP) had a spherical shape with particle size ranging from 80 μm to 120 μm. Drug loading efficiency varied from 55 to 85% (w/w) at increasing amount of hydrophilic agent, POL. Drug release from MAR-MP demonstrated a significant and sustained increase at increased ratios of POL to PLGA. These results indicate that MAR-MP is an improved drug delivery carrier for fluoroquinolone antibiotics, which can reduce the number of doses needed and sustain a high release rate of MAR for 2-3 days. As a novel and highly effective drug delivery platform, MAR-MP has great potential for use in a broad range of applications for the treatment of various veterinary diseases. PMID:26706558

  15. Dual-drug encapsulation and release from core-shell nanofibers.

    PubMed

    Su, Yan; Su, Qianqian; Liu, Wei; Jin, Guori; Mo, Xiumei; Ramakrishn, Seeram

    2012-01-01

    The purpose of this work was to develop a type of tissue-engineering scaffold or drug-delivery carrier with the capability of encapsulation and controlled release of dual drugs. In this study, Rhodamine B and bovine serum albumin (BSA) were successfully incorporated into nanofibers by means of blending or coaxial electrospinning. The morphology of composite nanofibers was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite nanofibrous mats made from coaxial electrospinning were characterized by X-ray diffraction. In vitro dual-drug release behaviors from composite nanofibrous mats were investigated. From the drug-release profiles, it shows that the location where the drug or protein is put into (into the core or shell of the nanofibers) can affect the drug-release profile in the coaxially electrospun fibers. The results imply that the drug- and/or protein-release profile in composite fibrous mats made from electrospinning can be controlled by altering the coaxial electrospinning process and has significant implications for a wide range of applications such as tissue regeneration, combined therapies or even cancer treatments. PMID:21418751

  16. Optimizing the release process and modelling of in vitro release data of cis-dichlorodiamminoplatinum (II) encapsulated into poly(2-hydroxyethyl methacrylate) nanocarriers.

    PubMed

    Gupta, Meher Kanta; Bajpai, Jaya; Bajpai, Anil Kumar

    2016-01-01

    Drug encapsulated nanocarriers are vehicles to transport the drug molecules and release them at the immediate vicinity of the diseased sites. The aim of this study was to design poly (2-hydroxyethyl methacrylate) nanoparticles (PHEMANPs) as a swelling and diffusion controlled drug release system for achieving sustained release of (cis-dichlorodiamminoplatinum II) CDDP. The study undertakes designing and characterization of nanocarriers, optimization of drug encapsulation, and investigating release dynamics of the CDDP drug. PHEMANPs were prepared by suspension polymerization method followed by post loading of the CDDP onto the nanocarriers. The physicochemical and biopharmaceutical properties were evaluated by FTIR, TEM, FESEM, EDX, DLS, surface charge, water intake studies, in vitro cytotoxicity, protein adsorption and percent haemolysis. Chemical stability of the drug was assessed and in vitro release experiments were performed to optimize formulation by UV spectral analysis. The obtained cumulative release data were fitted to zero, first and Korsmeyer-Peppas kinetic models to gain insights into release kinetics and prevailing drug transport mechanisms. The successful encapsulation of CDDP was achieved in different PHEMANP formulations with maximum drug encapsulation efficiency of approx. 60% and the release kinetics was found to follow the Korsmeyer-Peppas model having non-Fickian mechanism. The results indicated that the CDDP can be formulated with a high payload of PHEMANPs which can serve as promising nanomedicine and help in achieving sustained delivery of drug for targeting tumour. PMID:26478380

  17. Core-Shell Composite Hydrogels for Controlled Nanocrystal Formation and Release of Hydrophobic Active Pharmaceutical Ingredients.

    PubMed

    Badruddoza, Abu Zayed Md; Godfrin, P Douglas; Myerson, Allan S; Trout, Bernhardt L; Doyle, Patrick S

    2016-08-01

    Although roughly 40% of pharmaceuticals being developed are poorly water soluble, this class of drugs lacks a formulation strategy capable of producing high loads, fast dissolution kinetics, and low energy input. In this work, a novel bottom-up approach is developed for producing and formulating nanocrystals of poorly water-soluble active pharmaceutical ingredients (APIs) using core-shell composite hydrogel beads. Organic phase nanoemulsion droplets stabilized by polyvinyl alcohol (PVA) and containing a model hydrophobic API (fenofibrate) are embedded in the alginate hydrogel matrix and subsequently act as crystallization reactors. Controlled evaporation of this composite material produces core-shell structured alginate-PVA hydrogels with drug nanocrystals (500-650 nm) embedded within the core. Adjustable loading of API nanocrystals up to 83% by weight is achieved with dissolution (of 80% of the drug) occurring in as little as 30 min. A quantitative model is also developed and experimentally validated that the drug release patterns of the fenofibrate nanocrystals can be modulated by controlling the thickness of the PVA shell and drug loading. Thus, these composite materials offer a "designer" drug delivery system. Overall, our approach enables a novel means of simultaneous controlled crystallization and formulation of hydrophobic drugs that circumvents energy intensive top-down processes in traditional manufacturing. PMID:27249402

  18. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release.

    PubMed

    Luo, Dandan; Carter, Kevin A; Razi, Aida; Geng, Jumin; Shao, Shuai; Giraldo, Daniel; Sunar, Ulas; Ortega, Joaquin; Lovell, Jonathan F

    2016-01-01

    Stealth liposomes can be used to extend the blood circulation time of encapsulated therapeutics. Inclusion of 2 molar % porphyrin-phospholipid (PoP) imparted optimal near infrared (NIR) light-triggered release of doxorubicin (Dox) from conventional sterically stabilized stealth liposomes. The type and amount of PoP affected drug loading, serum stability and drug release induced by NIR light. Cholesterol and PEGylation were required for Dox loading, but slowed light-triggered release. Dox in stealth PoP liposomes had a long circulation half-life in mice of 21.9 h and was stable in storage for months. Following intravenous injection and NIR irradiation, Dox deposition increased ∼ 7 fold in treated subcutaneous human pancreatic xenografts. Phototreatment induced mild tumor heating and complex tumor hemodynamics. A single chemophototherapy treatment with Dox-loaded stealth PoP liposomes (at 5-7 mg/kg Dox) eradicated tumors while corresponding chemo- or photodynamic therapies were ineffective. A low dose 3 mg/kg Dox phototreatment with stealth PoP liposomes was more effective than a maximum tolerated dose of free (7 mg/kg) or conventional long-circulating liposomal Dox (21 mg/kg). To our knowledge, Dox-loaded stealth PoP liposomes represent the first reported long-circulating nanoparticle capable of light-triggered drug release. PMID:26513413

  19. Novel Formulation of Chlorhexidine Spheres and Sustained Release with Multilayered Encapsulation.

    PubMed

    Luo, Dong; Shahid, Saroash; Wilson, Rory M; Cattell, Michael J; Sukhorukov, Gleb B

    2016-05-25

    This work demonstrates the synthesis of new chlorhexidine polymorphs with controlled morphology and symmetry, which were used as a template for layer-by-layer (LbL) encapsulation. LbL self-assembly of oppositely charged polyelectrolytes onto the drug surface was used in the current work, as an efficient method to produce a carrier with high drug content, improved drug solubility and sustained release. Coprecipitation of the chlorhexidine polymorphs was performed using chlorhexidine diacetate and calcium chloride solutions. Porous interconnected chlorhexidine spheres were produced by tuning the concentration of calcium chloride. The size of these drug colloids could be further controlled from 5.6 μm to over 20 μm (diameter) by adjusting the coprecipitation temperature. The chlorhexidine content in the spheres was determined to be as high as 90%. These particles were further stabilized by depositing 3.5 bilayers of poly(allylamine hydrochloride) (PAH) and polystyrenesulfonate (PSS) on the surface. In vitro release kinetics of chlorhexidine capsules showed that the multilayer shells could prolong the release, which was further demonstrated by characterizing the remaining chlorhexidine capsules with SEM and confocal microscopy. The new chlorhexidine polymorph and LbL coating has created novel chlorhexidine formulations. Further modification to the chlorhexidine polymorph structure is possible to achieve both sustained and stimuli responsive release, which will enhance its clinical performance in medicine and dentistry. PMID:27176115

  20. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  1. Chitosan crosslinked microparticles with encapsulated polyphenols: Water sorption and release properties.

    PubMed

    Trifković, Kata; Milašinović, Nikola; Djordjević, Verica; Zdunić, Gordana; Kalagasidis Krušić, Melina; Knežević-Jugović, Zorica; Šavikin, Katarina; Nedović, Viktor; Bugarski, Branko

    2015-11-01

    Chitosan-glutaraldehyde microparticles were produced by emulsion crosslinking method to be used as drug delivery system for polyphenols from Thymus serpyllum L. aqueous extract. The effect of preparation conditions, chitosan concentration (1.5-3% w/v), and glutaraldehyde/chitosan (GA/Ch) mass ratio (0.15-1.20) on water and polyphenols transport properties was investigated. Swelling ratio of dry particles (68-230 µm) in water ranged from 280% to 530%, depending on the formulation. The decrease in swelling was observed with increased GA/Ch mass ratio (i.e. crosslinking degree) at the same chitosan concentration, or with increased chitosan concentration at the same GA/Ch mass ratio. The increase in GA/Ch mass ratio was also manifested by increased particle compactness i.e. decreased size and reduced surface roughness. The sorption capacity for polyphenols seems to be a complex interplay of swelling behaviour and interactions chitosan-glutaraldehyde-polyphenols identified by Fourier transmission infrared analysis. An increase in crystallinity of chitosan was observed upon crosslinking with glutaraldehyde and encapsulation of polyphenols, as observed by X-ray diffraction analysis. The results obtained from release kinetics of selected polyphenolic compounds (caffeic acid, rosmarinic acid, total flavonoids, and total phenol content) showed that polyphenols were released at a lower amount (2-4 times) in water, but more rapidly (45-120 min) in comparison with the release in gastric followed by intestinal simulated fluid (SGF-SIF) (120-240 min). The experimental results of the time-dependent swelling in water and polyphenols release in both, water and SGF-SIF, were analyzed with several mathematical models. The results depicted Fickian diffusion as the water transport mechanism. In the case of polyphenols, only empirical Weibull model could be suggested for describing release kinetics. PMID:26250360

  2. Synthesis and Self-Aggregation of Poly(2-ethyl-2-oxazoline)-Based Photocleavable Block Copolymer: Micelle, Compound Micelle, Reverse Micelle, and Dye Encapsulation/Release.

    PubMed

    Jana, Somdeb; Saha, Anupam; Paira, Tapas K; Mandal, Tarun K

    2016-02-01

    We report on the synthesis of photocleavable poly(2-ethyl-2-oxazoline)-block-poly(2-nitrobenzyl acrylate) (PEtOx-b-PNBA) block copolymers (BCPs) with varying compositions via combination of microwave-assisted cationic ring-opening polymerization (CROP) and atom transfer radical polymerization (ATRP) using α-bromoisobutyryl bromide as an orthogonal initiator. The amphiphilic nature of this BCP causes them to self-assemble into primary micelles in THF/H2O, which further undergo secondary aggregation into nanostructured compound micelles as established through DLS, FESEM, and TEM. Upon UV irradiation (λ = 350 nm), the photocleavage of the PNBA block of the PEtOx-b-PNBA BCP takes place, and that leads to the formation of the doubly hydrophilic poly(2-ethyl-2-oxazoline)-b-poly(acrylic acid) (PEtOx-b-PAA) BCP causing the rupture of compound micelles as confirmed by spectroscopic and microscopic techniques. Encapsulation of a model hydrophobic guest molecule, nile red (NR), into the photocleavable BCP micellar core in aqueous solution and its UV-induced release is also investigated by fluorescence emission measurements. PEtOx-b-PNBA BCP amphiphiles are also shown to self-assemble into spherical nanostructures (∼90 nm) in dichloromethane as established by DLS and TEM analysis. These are referred to as reverse micelles and are able to encapsulate anionic hydrophilic dye, Eosin B, and facilitate its solubilization in organic media. PMID:26735171

  3. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-03-01

    Molecular dynamics simulation was used to study the potential of using a block copolymer containing three poly(epsilon-caprolactone) (PCL) blocks of equal length connected to one end of a poly(ethylene oxide) (PEO) block, designated as PEO-b-3PCL, to encapsulate two classes of hydrophobic drugs with distinctively different molecular structures. In particular, the first class of drugs consisted of two cucurbitacin drugs (CuB and CuI) that contain multiple hydrogen bond donors and acceptors evenly distributed on their molecules while the other class of drugs (fenofibrate and nimodipine) contain essentially only clustered hydrogen bond acceptors. In the case of cucurbitacin drugs, the results showed that PEO-b-3PCL lowered the Flory-Huggins interaction parameters (chi) considerably (i.e., increased the drug solubility) compared to the linear di-block copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1.0. However, the opposite effect was observed for fenofibrate and nimodipine. Analysis of the intermolecular interactions indicates that the number of hydrogen bonds formed between the three PCL blocks and cucurbitacin drugs is significantly higher than that of the linear di-block copolymer. On the other hand, owing to the absence of hydrogen bond donors and the clustering of the hydrogen bond acceptors on the fenofibrate and nimodipine molecules, this significantly reduces the number of hydrogen bonds formed in the multi-PCL block environment, leading to unfavourable chi values. The findings of the present work suggest that multi-hydrophobic block architecture could potentially increase the drug loading for hydrophobic drugs with structures containing evenly distributed multiple hydrogen bond donors and acceptors. PMID:19962756

  4. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method.

    PubMed

    Nabi-Meibodi, Mohsen; Vatanara, Alireza; Najafabadi, Abdolhossein Rouholamini; Rouini, Mohammad Reza; Ramezani, Vahid; Gilani, Kambiz; Etemadzadeh, Seyed Mohammad Hossein; Azadmanesh, Kayhan

    2013-12-01

    Raloxifene HCl (RH), a selective estrogen receptor modulator (SERM), is indicated for the prophylaxis or treatment of postmenopausal osteoporosis. RH shows extremely poor bioavailability due to limited solubility and an extensive intestinal/hepatic first-pass metabolism. Solid lipid nanoparticles (SLNs) are valuable carriers that can enhance drug bioavailability. However, in the case of RH, the encapsulation of the drug in SLNs remains a challenge because of its poor solubility in both water and lipids. In this study, a series of RH-containing SLNs (RH-SLNs) were generated using a modified double emulsion solvent evaporation (DESE) method. Briefly, RH with various drug/lipid ratios was solubilized in the inner core of a double emulsion using different water/organic solvent mixtures. Our best formulation was achieved with the formation of negatively charged nanoparticles, 180nm in diameter, with an encapsulation and loading efficiency of 85% and 4.5%, respectively. It also showed a Fickian mechanism of the drug release in the basic dissolution media. Thermal analysis revealed a distinct decrease in the crystallinity of lipids and RH in comparison with the unprocessed materials. The results of a cell viability assay also showed a better antiproliferative effect of the drug-loaded SLNs versus the free drug solution. Thus, these results indicated that the modified DESE method could be proposed for the effective encapsulation of RH in SLNs with appropriate physicochemical and biological properties. PMID:24036624

  5. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release.

    PubMed

    Noppakundilograt, Supaporn; Piboon, Phianghathai; Graisuwan, Wilaiporn; Nuisin, Roongkan; Kiatkamjornwong, Suda

    2015-10-20

    Sodium alginate microcapsules containing eucalyptus oil were prepared by oil-in-water emulsification via Shirasu porous glass (SPG) membrane and cross-linked by calcium chloride (CaCl2). SPG membrane pore size of 5.2μm was used to control the size of eucalyptus oil microdroplets. Effects of sodium alginate, having a mannuronic acid/guluronic acid (M/G) ratio of 1.13, eucalyptus oil and CaCl2 amounts on microdroplet sizes and size distribution were elucidated. Increasing sodium alginate amounts from 0.1 to 0.5% (wv(-1)) sodium alginate, the average droplets size increased from 42.2±2.0 to 48.5±0.6μm, with CVs of 16.5±2.2 and 30.2±4.5%, respectively. CaCl2 successfully gave narrower size distribution of cross-linked eucalyptus oil microcapsules. The optimum conditions for preparing the microcapsules, oil loading efficiency, and controlled release of the encapsulated eucalyptus oil from the microcapsules as a function of time at 40°C were investigated. Release model for the oil from microcapsules fitted Ritger-Peppas model with non-Fickian transport mechanism. PMID:26256156

  6. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions

    PubMed Central

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes. PMID:27330290

  7. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions.

    PubMed

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes. PMID:27330290

  8. Design and evaluation of hydrophobic coated buoyant core as floating drug delivery system for sustained release of cisapride

    PubMed Central

    Jacob, Shery; Nair, Anroop B; Patil, Pandurang N

    2010-01-01

    An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997

  9. Caffeic Acid Phenethyl Ester: Consequences of Its Hydrophobicity in the Oxidative Functions and Cytokine Release by Leukocytes

    PubMed Central

    Paracatu, Luana Chiquetto; Faria, Carolina Maria Quinello Gomes; Rennó, Camila; Palmeira, Patricia; da Fonseca, Luiz Marcos; Ximenes, Valdecir Farias

    2014-01-01

    Numerous anti-inflammatory properties have been attributed to caffeic acid phenethyl ester (CAPE), an active component of propolis. NADPH oxidases are multienzymatic complexes involved in many inflammatory diseases. Here, we studied the importance of the CAPE hydrophobicity on cell-free antioxidant capacity, inhibition of the NADPH oxidase and hypochlorous acid production, and release of TNF-α and IL-10 by activated leukocytes. The comparison was made with the related, but less hydrophobic, caffeic and chlorogenic acids. Cell-free studies such as superoxide anion scavenging assay, triene degradation, and anodic peak potential (Epa) measurements showed that the alterations in the hydrophobicity did not provoke significant changes in the oxidation potential and antiradical potency of the tested compounds. However, only CAPE was able to inhibit the production of superoxide anion by activated leukocytes. The inhibition of the NADPH oxidase resulted in the blockage of production of hypochlorous acid. Similarly, CAPE was the more effective inhibitor of the release of TNF-α and IL-10 by Staphylococcus aureus stimulated cells. In conclusion, the presence of the catechol moiety and the higher hydrophobicity were essential for the biological effects. Considering the involvement of NADPH oxidases in the genesis and progression of inflammatory diseases, CAPE should be considered as a promising anti-inflammatory drug. PMID:25254058

  10. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection.

    PubMed

    Huang, Xiao; Wang, Xiaoying; Wang, Sichun; Yang, Jiawen; Zhong, Li; Pan, Jun

    2013-06-21

    The present study reports a UV and dark-triggered highly intelligent drug delivery system for skin protection. ZnO nanoparticles (NPs), a UV filter, were synthesized and characterized to be the carrier for benzophenone-3 (Bp-3), a UV-absorption medicine, by varying the molar ratio of ZnO NPs to Bp-3 ranging from 300 : 1 to 20 : 1. The drug release under three cycles of UV and dark stimulation (each for two hours) and its cytotoxicity to human keratinocyte cells and skin fibroblasts were investigated. SEM studies showed the diameter of ZnO was around 30 to 40 nm, which assembled into loose and large NPs ranging from 500 to 1400 nm. Contact angle tests showed ZnO NPs switched to a more hydrophilic and back to a more hydrophobic state under two hours of UV and dark exposure. The optimized encapsulation efficiency and loading capacity of Bp-3 were 53.68 ± 0.13% and 133.61 ± 0.20% when the molar ratio of ZnO NPs to Bp-3 was 150 : 1 and 80 : 1. The Bp-3 was almost completely released from ZnO NPs under 2 hours of UV radiation and was mostly encapsulated in after 2 hours of dark stay in three cycles of UV and dark exposure. The Bp-3 loaded ZnO NPs showed low cytotoxicity to human keratinocyte cells and human skin fibroblasts. Overall, a UV and dark-triggered repetitively on-demand drug delivery system biocompatible to skin cells and potential for skin protection from UV radiation was developed. PMID:23680782

  11. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Wang, Xiaoying; Wang, Sichun; Yang, Jiawen; Zhong, Li; Pan, Jun

    2013-05-01

    The present study reports a UV and dark-triggered highly intelligent drug delivery system for skin protection. ZnO nanoparticles (NPs), a UV filter, were synthesized and characterized to be the carrier for benzophenone-3 (Bp-3), a UV-absorption medicine, by varying the molar ratio of ZnO NPs to Bp-3 ranging from 300 : 1 to 20 : 1. The drug release under three cycles of UV and dark stimulation (each for two hours) and its cytotoxicity to human keratinocyte cells and skin fibroblasts were investigated. SEM studies showed the diameter of ZnO was around 30 to 40 nm, which assembled into loose and large NPs ranging from 500 to 1400 nm. Contact angle tests showed ZnO NPs switched to a more hydrophilic and back to a more hydrophobic state under two hours of UV and dark exposure. The optimized encapsulation efficiency and loading capacity of Bp-3 were 53.68 +/- 0.13% and 133.61 +/- 0.20% when the molar ratio of ZnO NPs to Bp-3 was 150 : 1 and 80 : 1. The Bp-3 was almost completely released from ZnO NPs under 2 hours of UV radiation and was mostly encapsulated in after 2 hours of dark stay in three cycles of UV and dark exposure. The Bp-3 loaded ZnO NPs showed low cytotoxicity to human keratinocyte cells and human skin fibroblasts. Overall, a UV and dark-triggered repetitively on-demand drug delivery system biocompatible to skin cells and potential for skin protection from UV radiation was developed.

  12. Formulation and Evaluation of a Sustained-Release Tablets of Metformin Hydrochloride Using Hydrophilic Synthetic and Hydrophobic Natural Polymers

    PubMed Central

    Wadher, K. J.; Kakde, R. B.; Umekar, M. J.

    2011-01-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. PMID:22303065

  13. Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers.

    PubMed

    Wadher, K J; Kakde, R B; Umekar, M J

    2011-03-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. PMID:22303065

  14. In vitro Evaluation of the Effect of Combination of Hydrophilic and Hydrophobic Polymers on Controlled Release Zidovudine Matrix Tablets.

    PubMed

    Ganesh, S; Radhakrishnan, M; Ravi, M; Prasannakumar, B; Kalyani, J

    2008-01-01

    The aim of the present study was to prepare and characterize controlled-release matrix tablets of zidovudine using hydrophilic HPMC K4 M or Carbopol 934 alone or in combination with hydrophobic ethyl cellulose. Release kinetics was evaluated by using USP XXIV dissolution apparatus No.2 (paddle) type. Scanning electron microscopy was used to visualize the effect of dissolution medium on matrix tablet surface. The in vitro results of controlled - release zidovudine tablets were compared with conventional marketed tablet Zidovir. The in vitro drug release study revealed that HPMC K4 M or Carbopol 934 preparation was able to sustain the drug release near to 6 hours. Combining HPMC K4 M or Carbopol 934 with ethyl cellulose sustained the drug release for nearly 12 h. The in vitro evaluation showed that the drug release may be by diffusion along with erosion. Results suggest that the developed controlled-release tablets of zidovudine could perform therapeutically better than marketed dosage forms, leading to improve efficacy, controlling the release and better patient compliance. PMID:20046771

  15. Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release.

    PubMed

    Raei, Masoomeh; Rajabzadeh, Ghadir; Zibaei, Saeid; Jafari, Seid Mahdi; Sani, Ali Mohammad

    2015-08-01

    Lactoferrin is a glycoprotein, playing several biological roles. The main goal of our work was to nanoencapsulate the isolated lactoferrin from camel milk through alginate nanocapsuls. We studied the influence of alginate concentration (0.2 and 0.5 w/w%) and encapsulation method (thermal vs. non-thermal treatment) on the encapsulation efficiency, zeta potential, particle size and release of lactoferrin from nanocapsuls. Our results revealed in 0.8 and 0.9 M NaCl fractions, lactoperoxidase was present. So these fractions were not passed to further experiments. On average, we measured the lactoferrin content to be 0.5 g/l within the original camel milk. In general, higher alginate concentration resulted in higher encapsulation efficiency and nanocapsuls prepared with thermal treatment had a higher efficiency (almost 100%) along with smaller particle sizes (mostly<100 nm). By evaluating the release of lactoferrin from nanocapsuls, it was revealed that there was no release at the first 30 min in both pH values (2 and 7). This could be particularly useful since lactoferrin would be maintained intact within stomach conditions and it can reach lower gastrointestinal tract to be delivered safely into the body. PMID:26038107

  16. Pulmonary liposomal formulations encapsulated procaterol hydrochloride by a remote loading method achieve sustained release and extended pharmacological effects.

    PubMed

    Tahara, Kohei; Tomida, Hiromasa; Ito, Yousuke; Tachikawa, Suguru; Onodera, Risako; Tanaka, Hiroyuki; Tozuka, Yuichi; Takeuchi, Hirofumi

    2016-05-30

    Drug inhalation provides localized drug therapy for respiratory diseases. However, the therapeutic efficacy of inhaled drugs is limited by rapid clearance from the lungs. Small hydrophilic compounds have short half-lives to systemic absorption. We developed a liposomal formulation as a sustained-release strategy for pulmonary delivery of procaterol hydrochloride (PRO), a short-acting pulmonary β2-agonist for asthma treatment. After PRO-loaded liposomes were prepared using a pH gradient (remote loading) method, 100-nm liposomes improved residence times of PRO in the lungs. PRO encapsulation efficiency and release profiles were examined by screening several liposomal formulations of lipid, cholesterol, and inner phase. Although PRO loading was not achieved using the conventional hydration method, PRO encapsulation efficiency was >60% using the pH gradient method. PRO release from liposomes was sustained for several hours depending on liposomal composition. The liposomal formulation effects on the PRO behavior in rat lungs were evaluated following pulmonary administration in vivo. Sustained PRO release was achieved using simplified egg phosphatidylcholine (EPC)/cholesterol (8/1) liposome in vitro, and greater PRO remnants were observed in rat lungs following pulmonary administration. Extended pharmacological PRO effects were observed for 120min in a histamine-induced bronchoconstriction guinea pig model. We indicated the simplified EPC/cholesterol liposome potential as a controlled-release PRO carrier for pulmonary administration. PMID:27012982

  17. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-04-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.

  18. Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications.

    PubMed

    Rassu, G; Nieddu, M; Bosi, P; Trevisi, P; Colombo, M; Priori, D; Manconi, P; Giunchedi, P; Gavini, E; Boatto, G

    2014-10-15

    The aim of this study was to encapsulate, thymol, in natural polymers in order to obtain (i) taste masking effect and, then, enhancing its palatability and (ii) two formulations for systemic and local delivery of herbal drug as adjuvants or substitutes to current medications to prevent and treat several human and animal diseases. Microspheres based on methylcellulose or hydroxypropyl methylcellulose phthalate (HPMCP) were prepared by spray drying technique. Microparticles were in vitro characterized in terms of yield of production, drug content and encapsulation efficiency, particle size, morphology and drug release. Both formulations were in vivo orally administered and pharmacokinetic analysis was carried out. The polymers used affect the release and, then, the pharmacokinetic profile of thymol. Encapsulation into methylcellulose microspheres leads to short half/life but bioavailability remarkably increases compared to the free thymol. In contrast, enteric formulation based on HPMCP shows very limited systemic absorption. These formulations could be proposed as alternative or adjuvants for controlling pathogen infections in human or animal. In particular, methylcellulose microspheres can be used for thymol systemic administration at low doses and HPMCP particles for local treatment of intestinal infections. PMID:25442269

  19. Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: The effects of hydrophilicity/hydrophobicity of a drug.

    PubMed

    Liu, Lin; Bai, Shaoqing; Yang, Huiqin; Li, Shubai; Quan, Jing; Zhu, Limin; Nie, Huali

    2016-10-01

    The thermo-sensitive copolymer poly(N-vinylcaprolactam-co-methacrylic acid) (PNVCL-co-MAA) was synthesized by free radical polymerization and the resulting nanofibers were fabricated using an electrospinning process. The molecular weight of the copolymer was adjusted by varying the content of methacrylic acid (MAA) while keeping that of N-vinylcaprolactam (NVCL) constant. Hydrophilic captopril and hydrophobic ketoprofen were used as model drugs, and PNVCL-co-MAA nanofibers were used as the drug carrier to investigate the effects of drug on its release properties from nanofibers at different temperatures. The results showed that slow release over several hours was observed at 40°C (above the lower critical solution temperature (LCST) of PNVCL-co-MAA), while the drugs exhibited a burst release of several seconds at 20°C (below the LCST). Drug release slowed with increasing content of the hydrophobic monomer NVCL. The hydrophilic captopril was released at a higher rate than the hydrophobic ketoprofen. The drug release characteristics were dependent on the temperature, the portion of hydrophilic groups and hydrophobic groups in the copolymer and hydrophilicity/hydrophobicity of drug. Study on the mechanism of release showed that Korsmeyer-Peppas model as a major drug release mechanism. Given these results, the PNVCL-co-MAA copolymers are proposed to have useful applications in intellectual drug delivery systems. PMID:27287157

  20. Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

    2015-02-01

    The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL-1 and 36.2 μg mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.

  1. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  2. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  3. Opening and closing of the hydrophobic cavity of LolA coupled to lipoprotein binding and release.

    PubMed

    Oguchi, Yuki; Takeda, Kazuki; Watanabe, Shoji; Yokota, Naoko; Miki, Kunio; Tokuda, Hajime

    2008-09-12

    Outer membrane-specific lipoproteins of Escherichia coli are released from the inner membrane through the action of Lol-CDE, which leads to the formation of a complex between the lipoprotein and LolA, a periplasmic chaperone. LolA then transfers lipoproteins to LolB, a receptor in the outer membrane. The structures of LolA and LolB are very similar, having an incomplete beta-barrel covered with an alpha-helical lid forming a hydrophobic cavity inside. The cavity of LolA, but not that of LolB, is closed and thus inaccessible to the bulk solvent. Previous studies suggested that Arg at position 43 of LolA is critical for maintaining this closed structure. We show here, through a crystallographic study, that the cavity of the LolA(R43L) mutant, in which Leu replaces Arg-43, is indeed open to the external milieu. We then found that the binding of a fluorescence probe distinguishes the open/close state of the cavity. Furthermore, it was revealed that the hydrophobic cavity of LolA opens upon the binding of lipoproteins. Such a liganded LolA was found to be inactive in the release of lipoproteins from the inner membrane. On the other hand, the liganded LolA became fully functional when lipoproteins were removed from LolA by detergent treatment or transferred to LolB. Free LolA thus formed was inaccessible to a fluorescence probe. These results, taken together, reveal the LolA cycle, in which the hydrophobic cavity undergoes opening and closing upon the binding and release of lipoproteins, respectively. PMID:18617521

  4. Redox-responsive gels with tunable hydrophobicity for controlled solubilization and release of organics.

    PubMed

    Akhoury, Abhinav; Bromberg, Lev; Hatton, T Alan

    2011-04-01

    The hydrophobicity of the chemical environment within a redox-responsive polymer gel synthesized by copolymerization of hydroxybutyl methacrylate (HBMA) and vinylferrocene (VF) can be controlled by tuning the oxidation state of the redox-responsive moiety, ferrocene. When ferrocene is in the uncharged reduced state, the gel is hydrophobic and selectively extracts butanol from aqueous solution. Upon oxidation to ferricenium ions, charge is induced at the ferrocene sites making the gel hydrophilic, with a reduced capacity for butanol relative to water. Equilibrium distribution coefficients and separation factors provide quantitative evidence for this changing preference for butanol depending on oxidation state. The selection of the monomer constituting the polymer backbone, HBMA, was based on an initial screening using the Hansen solubility parameters of commercially available monomers. The effect of the various constituents of the gel on the gel's butanol extraction ability has been ascertained experimentally. PMID:21410169

  5. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments. PMID:26593985

  6. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite.

    PubMed

    Rashidzadeh, Azam; Olad, Ali

    2014-12-19

    A novel slow released NPK fertilizer encapsulated by superabsorbent nanocomposite was prepared via in-situ free radical polymerization of sodium alginate, acrylic acid, acrylamide, and montmorillonite in the presence of fertilizer compounds. Evidence of grafting and component interactions, superabsorbent nanocomposite structure and morphology was obtained by a FT-IR, XRD and SEM techniques. The water absorbency behavior of superabsorbent nanocomposite was investigated. After those characterizations, the potential application was verified through the study of fertilizer release from prepared formulations. Results indicated that the presence of the montmorillonite caused the system to liberate the nutrient in a more controlled manner than that with the neat superabsorbent. The good slow release fertilizer property as well as good water retention capacity showed that this formulation is potentially viable for application in agriculture as a fertilizer carrier vehicle. PMID:25263891

  7. New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release.

    PubMed

    Paun, Gabriela; Neagu, Elena; Tache, Andreia; Radu, G L

    2014-01-01

    A new type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane have been developed for the encapsulation and controlled release of gallic acid. The morphology of the composite membrane was investigated by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), whereas swelling gallic acid and release properties were investigated by UV-visible spectroscopy. The release behavior with pH changes was also explored. The composite membrane based on chitosan/2-hydroxypropyl-β-cyclodextrin with gallic acid included showed improved antioxidant capacities compared to plain chitosan membrane. The information obtained in this study will facilitate the design and preparation of composite membrane based on chitosan and could open a wide range of applications, particularly its use as an antioxidant in food, food packaging, biomedical (biodegradable soft porous scaffolds for enhance the surrounding tissue regeneration), pharmaceutical and cosmetics industries. PMID:24664323

  8. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  9. Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets.

    PubMed

    Hussain, Talib; Saeed, Tariq; Mumtaz, Ahmad M; Javaid, Zeeshan; Abbas, Khizar; Awais, Azeema; Idrees, Hafiz Arfat

    2013-01-01

    Gliclazide is an oral hypoglycemic agent, indicated in non insulin dependent diabetes mellitus and in patients with diabetic retinopathy. It has good tolerability and is a short acting sulfonyl urea that requires large dose to maintain the blood glucose level. So development of a sustained release formulation of gliclazide (GLZ) is required for better patient compliance. This study was conducted to assess the effects of different drug polymer ratios on the release profile of gliclazide from the matrix. Oral matrix tablets of gliclazide were prepared by hot melt method, using pure and blended mixture of glyceryl monostearate (GMS) and stearic acid (SA) in different ratios. In vitro release pattern was studied for 8 h in phosphate buffer media (pH 7.4). Different kinetic models including zero order, first order, Higuchi and Peppas were applied to evaluate drug release behavior. Drug excipient compatibility was evaluated by scanning with DSC and FTIR. Higuchi model was found the most appropriate model for describing the release profile of GLZ and non-Fickian release was found predominant mechanism of drug release. The release of drug from the matrix was greatly controlled by GMS while SA appeared to facilitate the release of drug from matrix tablets. FTIR results showed no chemical interaction between drug and the polymers, and DSC results indicated amorphous state of GLZ and polymers without significant complex formation. The results indicate that matrix tablets of gliclazide using glyceryl monostearate and stearic acid showed marked sustained release properties. PMID:23923399

  10. Encapsulation of a model compound in pectin delays its release from a biobased polymeric material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model compound was encapsulated in pectin and then extruded with thermoplastic starch to form a composite. The intended product was a food-contact tray made of biobased polymers infused with an anti-microbial agent; however, caffeine was used as the model compound in the preliminary work. The mode...

  11. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper–Lin small composite design

    PubMed Central

    El-Say, Khalid Mohamed

    2016-01-01

    This study was aimed at developing a controlled-release cetirizine hydrochloride (CTZ)-loaded polymethacrylate microsphere by optimization technique using software-based response surface methodology. The emulsion solvent evaporation method was utilized in the preparation of microspheres. Four process variables were selected, namely, Eudragit RLPO loading percentage in total polymer, the emulsifier hydrophilic lipophilic balance (HLB), the antitacking percentage, and the dispersed phase volume. The desired responses were particle size, angle of repose, production yield, encapsulation efficiency, loading capacity, initial drug release, and the time for 85% of drug release from the microspheres. Optimization was carried out by fitting the experimental data to the software program (Statgraphics Centurion XV). Moreover, 18 batches were subjected to various characterization tests required for the production of dosage form. The pharmacokinetic parameters were evaluated after the oral administration of 10 mg CTZ in both optimized formulation and commercial product on healthy human volunteers using a double-blind, randomized, cross-over design. The optimized formulation showed satisfactory yield (84.43%) and drug encapsulation efficiency (87.1%). Microspheres were of spherical shape, smooth surface, and good flowability with an average size of 142.3 μm. The developed optimized batch of microspheres ensured 28.87% initial release after 2 hours, and the release of CTZ extended for >12 hours. In addition, the relative bioavailability of the optimized formulation was 165.5% with respect to the marketed CTZ tablets indicating a significant enhancement of CTZ bioavailability. Thus, there is an expectation to decrease the administered dose and the frequency of administration, and subsequently minimize the adverse effects that are faced by the patient during the treatment. PMID:26966353

  12. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper-Lin small composite design.

    PubMed

    El-Say, Khalid Mohamed

    2016-01-01

    This study was aimed at developing a controlled-release cetirizine hydrochloride (CTZ)-loaded polymethacrylate microsphere by optimization technique using software-based response surface methodology. The emulsion solvent evaporation method was utilized in the preparation of microspheres. Four process variables were selected, namely, Eudragit RLPO loading percentage in total polymer, the emulsifier hydrophilic lipophilic balance (HLB), the antitacking percentage, and the dispersed phase volume. The desired responses were particle size, angle of repose, production yield, encapsulation efficiency, loading capacity, initial drug release, and the time for 85% of drug release from the microspheres. Optimization was carried out by fitting the experimental data to the software program (Statgraphics Centurion XV). Moreover, 18 batches were subjected to various characterization tests required for the production of dosage form. The pharmacokinetic parameters were evaluated after the oral administration of 10 mg CTZ in both optimized formulation and commercial product on healthy human volunteers using a double-blind, randomized, cross-over design. The optimized formulation showed satisfactory yield (84.43%) and drug encapsulation efficiency (87.1%). Microspheres were of spherical shape, smooth surface, and good flowability with an average size of 142.3 μm. The developed optimized batch of microspheres ensured 28.87% initial release after 2 hours, and the release of CTZ extended for >12 hours. In addition, the relative bioavailability of the optimized formulation was 165.5% with respect to the marketed CTZ tablets indicating a significant enhancement of CTZ bioavailability. Thus, there is an expectation to decrease the administered dose and the frequency of administration, and subsequently minimize the adverse effects that are faced by the patient during the treatment. PMID:26966353

  13. Optimization of synthesis process of thermally-responsive poly-n-isopropylacrylamide nanoparticles for controlled release of antimicrobial hydrophobic compounds

    NASA Astrophysics Data System (ADS)

    Hill, Laura E.; Gomes, Carmen L.

    2014-12-01

    The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.

  14. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.

    PubMed

    Keshaw, Hussila; Forbes, Alastair; Day, Richard M

    2005-07-01

    Attempts to stimulate therapeutic angiogenesis using gene therapy or delivery of recombinant growth factors, such as vascular endothelial growth factor (VEGF), have failed to demonstrate unequivocal efficacy in human trials. Bioactive glass stimulates fibroblasts to secrete significantly increased amounts of angiogenic growth factors and therefore has a number of potential applications in therapeutic angiogenesis. The aim of this study was to assess whether it is possible to encapsulate specific quantities of bioactive glass and fibroblasts into alginate beads, which will secrete growth factors capable of stimulating angiogenesis. Human fibroblasts (CCD-18Co) were encapsulated in alginate beads with specific quantities of 45S5 bioactive glass and incubated in culture medium (0-17 days). The conditioned medium was collected and assayed for VEGF or used to assess its ability to stimulate angiogenesis by measuring the proliferation of human dermal microvascular endothelial cells. At 17 days the beads were lysed and the amount of VEGF retained by the beads measured. Fibroblasts encapsulated in alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass particles secreted increased quantities of VEGF compared with cells encapsulated with 0% or 1% (w/v) 45S5 bioactive glass particles. Lysed alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass contained significantly more VEGF (p<0.01) compared with beads containing no glass particles. Endothelial cell proliferation was significantly increased (p<0.01) by conditioned medium collected from alginate beads containing 0.1% (w/v) 45S5 bioactive glass particles. The results of this study demonstrate that bioactive glass and fibroblasts can be successfully incorporated into alginate beads for use in delivering angiogenic growth factors. With further optimization, this technique offers a novel delivery device for stimulating therapeutic angiogenesis. PMID:15664644

  15. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release.

    PubMed

    Tavano, L; Pinazo, A; Abo-Riya, M; Infante, M R; Manresa, M A; Muzzalupo, R; Pérez, L

    2014-08-01

    Physicochemical characteristics of cationic vesicular systems prepared from biocompatible diacyl glycerol-arginine surfactants are investigated. These systems form stable cationic vesicles by themselves and the average diameter of the vesicles decreases as the alkyl chain length of the surfactant increases. The addition of DPPC also modifies the physicochemical properties of these vesicles. Among the drugs these cationic formulations can encapsulate, we have considered Ciprofloxacin and 5-Fluorouracil (5-FU). We show that the percentage of encapsulated drug depends on both the physicochemical properties of the carrier and the type of drug. The capacity of these systems to carry different molecules was evaluated performing in vitro drug release studies. Finally, the antimicrobial activity of empty and Ciprofloxacin-loaded vesicles against Gram-positive and Gram-negative bacteria has been determined. Three bacteria were tested: Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The in vitro drug release from all formulations was effectively delayed. Empty cationic vesicles showed antimicrobial activity and Ciprofloxacin-loaded vesicles showed similar or higher antimicrobial activity than the free drug solution. These results suggest that our formulations represent a great innovation in the pharmaceutical field, due to their dual pharmacological function: one related to the nature of the vehiculated drug and the other related to the innate antibacterial properties of the surfactant-based carriers. PMID:24907585

  16. Evaluation of fluorescence in situ hybridization to detect encapsulated Bacillus pumilus SAFR-032 spores released from poly(methylmethacrylate).

    PubMed

    Mohapatra, Bidyut R; La Duc, Myron T

    2012-01-01

    Bacillus pumilus SAFR-032 spores originally isolated from the Jet Propulsion Laboratory spacecraft assembly facility clean room are extremely resistant to UV radiation, H(2)O(2), desiccation, chemical disinfection and starvation compared to spores of other Bacillus species. The resistance of B. pumilus SAFR-032 spores to standard industrial clean room sterilization practices is not only a major concern for medical, pharmaceutical and food industries, but also a threat to the extraterrestrial environment during search for life via spacecraft. The objective of the present study was to investigate the potential of Alexa-FISH (fluorescence in situ hybridization with Alexa Fluor® 488 labeled oligonucleotide) method as a molecular diagnostic tool for enumeration of multiple sterilant-resistant B. pumilus SAFR-032 spores artificially encapsulated in, and released via organic solvent from, a model polymeric material: poly(methylmethacrylate) (Lucite, Plexiglas). Plexiglas is used extensively in various aerospace applications and in medical, pharmaceutical and food industries. Alexa-FISH signals were not detected from spores via standard methods for vegetative bacterial cells. Optimization of a spore permeabilization protocol capitalizing on the synergistic action of proteinase-K, lysozyme, mutanolysin and Triton X-100 facilitated efficient spore detection by Alexa-FISH microscopy. Neither of the Alexa-probes tested gave rise to considerable levels of Lucite- or solvent-associated background autofluorescence, demonstrating the immense potential of Alexa-FISH for rapid quantification of encapsulated B. pumilus SAFR-032 spores released from poly(methylmethacrylate). PMID:22145981

  17. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.

    PubMed

    Lee, Do-Hyun; Jang, Miran; Park, Je-Kyun

    2014-10-01

    By virtue of the biocompatibility and physical properties of hydrogel, picoliter-sized hydrogel microcapsules have been considered to be a biometric signature containing several features similar to that of encapsulated single cells, including phenotype, viability, and intracellular content. To maximize the experimental potential of encapsulating cells in hydrogel microcapsules, a method that enables efficient hydrogel microcapsule purification from oil is necessary. Current methods based on centrifugation for the conventional stepwise rinsing of oil, are slow and laborious and decrease the monodispersity and yield of the recovered hydrogel microcapsules. To remedy these shortcomings we have developed a simple one-step method to purify alginate microcapsules, containing a single live cell, from oil to aqueous phase. This method employs oil impregnation using a commercially available hydrophobic filter paper without multistep centrifugal purification and complicated microchannel networks. The oil-suspended alginate microcapsules encapsulating single cells from mammalian cancer cell lines (MCF-7, HepG2, and U937) and microorganisms (Chlorella vulgaris) were successfully exchanged to cell culture media by quick (~10 min) depletion of the surrounding oil phase without coalescence of neighboring microcapsules. Cell proliferation and high integrity of the microcapsules were also demonstrated by long-term incubation of microcapsules containing a single live cell. We expect that this method for the simple and rapid purification of encapsulated single-cell microcapsules will attain widespread adoption, assisting cell biologists and clinicians in the development of single-cell experiments. PMID:25130499

  18. TNF-α alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells

    PubMed Central

    Alexy, Tamas; Rooney, Kimberly; Weber, Martina; Gray, Warren D.

    2014-01-01

    MicroRNAs (miRNAs) encapsulated within microparticles (MPs) are likely to have a role in cell-to-cell signaling in a variety of diseases, including atherosclerosis. However, little is known about the mechanisms by which different cell types release and transfer miRNAs. Here, we examined TNF-α-induced release of MP-encapsulated miR-126, miR-21, and miR-155 from human aortic endothelial cells (ECs) and their transfer to recipient cells. ECs were treated with TNF-α (100 ng/ml) in the presence or absence of inhibitors that target different MP production pathways. MPs released in response to TNF-α were characterized by: 1) 70–80% decrease in miRNA/MP levels for miR-126 and -21 but a significant increase in pre-miR-155 and miR-155 (P < 0.05), 2) 50% reduction in uptake by recipient cells (P < 0.05), and 3) diminished ability to transfer miRNA to recipient cells. Cotreatment of donor ECs with TNF-α and caspase inhibitor (Q-VD-OPH, 10 μM) produced MPs that had: 1) 1.5- to 2-fold increase in miRNA/MP loading, 2) enhanced uptake by recipient cells (2-fold), and 3) increased ability to transfer miR-155. Cotreatment of ECs with TNF-α and Rho-associated kinase (ROCK) inhibitor (10 μM) produced MPs with features similar to those produced by TNF-α treatment alone. Our data indicate that TNF-α induced the production of distinct MP populations: ROCK-dependent, miRNA-rich MPs that effectively transferred their cargo and were antiapoptotic, and caspase-dependent, miRNA-poor MPs that were proapoptotic. These data provide insight into the relationship between MP production and extracellular release of miRNA, as well as the potential of encapsulated miRNA for cell-to-cell communication. PMID:25315114

  19. Copper ion-mediated liposomal encapsulation of mitoxantrone: the role of anions in drug loading, retention and release.

    PubMed

    Li, Chunlei; Cui, Jingxia; Li, Yingui; Wang, Caixia; Li, Yanhui; Zhang, Lan; Zhang, Li; Guo, Wenmin; Wang, Jinxu; Zhang, Hongwu; Hao, Yanli; Wang, Yongli

    2008-08-01

    Besides pH gradient, other transmembrane gradients such as metal ion gradient could be also employed to load drugs into liposomes. In pH gradient method, anions have an important role since they could form specific aggregates with drugs, and then affect drug release kinetics from vesicles. To explore the role of anions in metal ion gradient method, copper ion-mediated mitoxantrone (MIT) loading was investigated systematically. When empty liposomes exhibiting a transmembrane copper ion gradient (300 mM) were mixed with MIT in a molar ratio of 0.2:1, after 5 min incubation at 60 degrees C, >95% MIT could be loaded into vesicles and the encapsulation was stable, regardless of the kinds of anions and initial intraliposomal pH values. The encapsulation ratio decreased with increased MIT/lipid molar ratio. But even when the molar ratio increased to 0.4, >90% encapsulation could still be achieved. In the presence of nigericin and ammonium, the drug loading profiles were affected to different degree with respect to both drug loading rate and encapsulation ratio. Relative to CuSO(4)-containing systems, CuCl(2) mediated MIT loading was unstable. Both nigericin and ammonium could alter the absorption spectra of liposomal MITs loaded with CuSO(4) gradient. In vitro release studies were performed in glucose/histidine buffer and in 50% human plasma using a dialysis method. In both of release media, CuCl(2)-containing vesicles displayed rapid release kinetics in comparison with CuSO(4) systems; and during the experiment period, MIT was lost from the vesicles continuously. When the formulations were injected into BDF1 mice at a dose of 4 mg/kg, all the liposomal formulations exhibited enhanced blood circulation time, with half-life values of 6.8-7.2h, significantly compared to the rapid clearance of free-MIT. In L1210 ascitic model, CuCl(2) formulation was more therapeutically active than CuSO(4) formulation. At a dose of 6 mg/kg, the treatment with CuCl(2) formulation resulted in

  20. Emulsion-based encapsulation and delivery of nanoparticles for the controlled release of alkalinity within the subsurface environment

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Muller, K.; Gill, J.

    2012-12-01

    Many current approaches to managing groundwater contamination rely on further advances in amendment delivery in order to initiate and sustain contaminant degradation or immobilization. In fact, limited or ineffective delivery is often cited when treatment objectives are not attained. Emulsions, specifically oil-in-water emulsions, have demonstrated potential to aid delivery of remediation amendments. Emulsions also afford opportunities to control the release of active ingredients encapsulated within the droplets. Our research is currently focused on the controlled release of nanoparticle-based buffering agents using oil-in-water emulsions. This interest is motivated by the fact that chemical and biological processes employed for the remediation and stewardship of contaminated sites often necessitate control of pH during treatment and, in some cases, long thereafter. Alkalinity-release nanoparticles (e.g., CaCO3, MgO) were suspended within soybean oil and subsequently encapsulated by through the creation of oil-in-water emulsions. These oil-in-water emulsions are designed to have physical properties which are favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet diameter). Buffer capacity titrations suggest that MgO particles are moderately more accessible within the oil phase and nearly twice as effective (on a per mass basis) at releasing alkalinity (as compared to the CaCO3 particles). Results from experiments designed to assess the release kinetics suggest that a linear driving force model is capable of describing the release process and mass transfer coefficients are constant through the reactive life of the emulsion. The release kinetics in emulsions containing MgO particles were found to be three orders of magnitude faster than those quantified for emulsions containing CaCO3. The slower release kinetics of the emulsions containing CaCO3 particles may prove beneficial when considering pH control at sites

  1. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate.

    PubMed

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Assadpour, Elham; Faridi Esfanjani, Afshin

    2016-01-01

    In this study, W/O micro-emulsions as primary emulsions and a complex of whey protein concentrate (WPC) and pectin in the external aqueous phase were used to produce W/O/W emulsions. Average droplet size of primary W/O emulsion and multiple emulsions stabilized by WPC or WPC-pectin after one day of production was 6.16, 675.7 and 1443 nm, respectively, which achieved to 22.97, 347.7 and, 1992.4 nm after 20 days storage without any sedimentation. The encapsulation efficiency of phenolic compounds for stabilized W/O/W emulsions with WPC and WPC-pectin were 93.34% and 96.64%, respectively, which was decreased to 72.73% and 88.81% at 20th storage day. The lowest release of phenolics observed in multiple emulsions of WPC-pectin. These results suggest that nano-encapsulation of olive leaf extract within inner aqueous phase of W/O/W emulsions was successful, and there could be a high potential for the application of olive leaf extract in fortification of food products. PMID:26459167

  2. Beta-cyclodextrins conjugated magnetic Fe3O4 colloidal nanoclusters for the loading and release of hydrophobic molecule

    NASA Astrophysics Data System (ADS)

    Lv, Shaonan; Song, Yubei; Song, Yaya; Zhao, Zhigang; Cheng, Changjing

    2014-06-01

    Herein, we report a facile method to prepare beta-cyclodextrin (β-CD)-conjugated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@GLY-CD) using (3-glycidyloxypropyl) trimethoxysilane (GLY) as the intermediate linker. The resulting Fe3O4@GLY-CD was characterized by several methods including Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). In addition, the loading and release properties of the synthesized Fe3O4@GLY-CD for the hydrophobic molecule 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) were also investigated. The results show that the Fe3O4@GLY-CD has a spherical structure with an average diameter of 186 nm and high saturated magnetism of 51.2 emu/g. The grafting of β-CD onto Fe3O4 colloidal nanocrystal clusters can markedly increase the loading capacity of ANS because of β-CD/ANS inclusion complex formation. The in vitro delivery profile shows that the release of ANS from the Fe3O4@GLY-CD nanosystem exhibits an initial burst followed by a slow and steady release. Moreover, Fe3O4@GLY-CD also demonstrates a temperature-dependent release behavior for ANS owing to the effect of temperature on the association constants of β-CD/ANS inclusion complexes. The developed magnetic hybrid nanomaterial is expected to find potential applications in several fields including separation science and biomedicine.

  3. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOEpatents

    Peterson, Kenneth A.

    2005-10-18

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  4. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release

    PubMed Central

    Atefyekta, Saba; Ercan, Batur; Karlsson, Johan; Taylor, Erik; Chung, Stanley; Webster, Thomas J; Andersson, Martin

    2016-01-01

    Implant-associated infections are undesirable complications that might arise after implant surgery. If the infection is not prevented, it can lead to tremendous cost, trauma, and even life threatening conditions for the patient. Development of an implant coating loaded with antimicrobial substances would be an effective way to improve the success rate of implants. In this study, the in vitro efficacy of mesoporous titania thin films used as a novel antimicrobial release coating was evaluated. Mesoporous titania thin films with pore diameters of 4, 6, and 7 nm were synthesized using the evaporation-induced self-assembly method. The films were characterized and loaded with antimicrobial agents, including vancomycin, gentamicin, and daptomycin. Staphylococcus aureus and Pseudomonas aeruginosa were used to evaluate their effectiveness toward inhibiting bacterial colonization. Drug loading and delivery were studied using a quartz crystal microbalance with dissipation monitoring, which showed successful loading and release of the antibiotics from the surfaces. Results from counting bacterial colony-forming units showed reduced bacterial adhesion on the drug-loaded films. Interestingly, the presence of the pores alone had a desired effect on bacterial colonization, which can be attributed to the documented nanotopographical effect. In summary, this study provides significant promise for the use of mesoporous titania thin films for reducing implant infections. PMID:27022263

  5. Encapsulating magnetic and fluorescent mesoporous silica into thermosensitive chitosan microspheres for cell imaging and controlled drug release in vitro.

    PubMed

    Gui, Rijun; Wang, Yanfeng; Sun, Jie

    2014-01-01

    In this study, for the first time, multifunctional inorganic/organic core/shell hybrid microspheres consisted of Fe3O4 nanoparticles/CdTe quantum dots dual-embedded mesoporous silica nanocomposites (MQ-MSN) as cores and P(N-isopropylacrylamide)-graft-Chitosan microgels (PNIPAM-g-CS) as shells were prepared by copolymerization of NIPAM and CS in the presence of MQ-MSN. The preparation of microspheres (i.e., MQ-MSN/PNIPAM-g-CS) included three stages. First, Fe3O4/CdTe nanocomposites (MQ NCs) were prepared by self-assembly of electrostatic adsorption. Second, MQ NCs were encapsulated into silica spheres by modified Stöber method to obtain MQ-MSN. Third, NIPAM monomers were initiated to fabricate PNIPAM networks with MQ-MSN distributed below the lower critical solution temperature (LCST) of PNIPAM, and then PNIPAM reacted with CS to form PNIPAM-g-CS copolymers above the LCST, meanwhile the PNIPAM networks collapsed to form microspheres, resulting in the MQ-MSN encapsulated into microspheres. The microspheres were systematically characterized, displaying perfect magnetic/fluorescent properties and thermo-sensitivity. HepG2 cancer cells treated with the microspheres revealed bright fluorescence imaging. Both the efficiency and capacity of Adriamycin (ADM) loaded into the microspheres were gradually increased with ADM concentration increasing. The ADM cumulative release in vitro from ADM-loaded microspheres was significant at a higher temperature (or a lower pH). The released ADM still maintained high anticancer activity, and the blank microsphere carriers hardly produced toxicity to HepG2 cells. Hence, the multifunctional microspheres exhibited a promising application especially as thermo/pH-sensitive drug carriers for in vivo therapy. PMID:24060924

  6. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    PubMed

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-01

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution. PMID:27291890

  7. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer.

    PubMed

    Qiao, Dongling; Liu, Hongsheng; Yu, Long; Bao, Xianyang; Simon, George P; Petinakis, Eustathios; Chen, Ling

    2016-08-20

    To enhance the effectiveness of fertilizers, a novel double-coated slow-release fertilizer was developed using ethyl cellulose (EC) as inner coating and starch-based superabsorbent polymer (starch-SAP) as outer coating. For starch-SAPs synthesized by a twin-roll mixer using starches from three botanical origins, a reduced grid size and an increased fractal gel size on nano-scale (i.e., increased stretch of 3D network) contributed to increasing the water absorbing capacity with a reduced absorbing rate and thus improving the slow-release property of fertilizer. The fertilizer particles coated with starch-SAP displayed well slow-release behaviors. In soil, compared to urea particles without and with EC coating, the particles further coated with starch-SAP showed reduced nitrogen release rate, and in particular, those with potato starch-SAP coating exhibited a steady release behavior for a period longer than 96h. Therefore, this work has demonstrated the potential of this new slow-release fertilizer system for improving the effectiveness of fertilizers. PMID:27178919

  8. The stability and controlled release of I-ascorbic acid encapsulated in poly (ethyl-2-cyanoacrylate) nanocapsules prepared by interfacial polymerization of water-in-oil microemulsions.

    PubMed

    Zhang, Su-Ning; Chen, Tao; Guo, Yi-Guang; Zhang, Jian; Song, Xiaoqiu; Zhou, Lei

    2015-01-01

    The L-ascorbic acid (AA) was encapsulated into biodegradable and biocompatible poly(ethyl-2-cyanoacrylate) (PECA) nanocapsules by interfacial polymerization of water-in-oil (W/O) microemulsions. The influences of surfactant concentration, pH value of the dispersed aqueous phase, and W/O ratio on nanocapsule size were discussed. The stability and in vitro release of encapsulated AA were also investigated. The results show that nanocapsules could be obtained under the conditions with low pH value, high fraction of aqueous phase, and appropriate surfactant concentration. The encapsulated AA was protected by nanocapsules from oxidation and presented superior storage stability in aqueous medium than pure AA. Releasing AA from the inner core of nanocapsules could be controlled by adjusting the enzyme hydrolysis extent of the PECA wall. PMID:26665980

  9. Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics.

    PubMed

    Wang, Bailiang; Liu, Huihua; Zhang, Binjun; Han, Yuemei; Shen, Chenghui; Lin, Quankui; Chen, Hao

    2016-05-01

    Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials. PMID:26896654

  10. Release of PLGA-encapsulated dexamethasone from microsphere loaded porous surfaces.

    PubMed

    Dawes, G J S; Fratila-Apachitei, L E; Necula, B S; Apachitei, I; Witkamp, G J; Duszczyk, J

    2010-01-01

    The aim of the present study was to investigate the morphology and function of a drug eluting metallic porous surface produced by the immobilization of poly lactide-co-glycolide microspheres bearing dexamethasone onto plasma electrolytically oxidized Ti-6Al-7Nb medical alloy. Spheres of 20 microm diameter were produced by an oil-in-water emulsion/solvent evaporation method and thermally immobilized onto titanium discs. The scanning electron microscopy investigations revealed that the size distribution and morphology of the attached spheres had not changed significantly. The drug release profiles following degradation in phosphate buffered saline for 1000 h showed that, upon immobilisation, the spheres maintained a sustained release, with a triphasic profile similar to the non-attached system. The only significant change was an increased release rate during the first 100 h. This difference was attributed to the effect of thermal attachment of the spheres to the surface. PMID:19669866

  11. Release of PLGA–encapsulated dexamethasone from microsphere loaded porous surfaces

    PubMed Central

    Fratila-Apachitei, L. E.; Necula, B. S.; Apachitei, I.; Witkamp, G. J.; Duszczyk, J.

    2009-01-01

    The aim of the present study was to investigate the morphology and function of a drug eluting metallic porous surface produced by the immobilization of poly lactide-co-glycolide microspheres bearing dexamethasone onto plasma electrolytically oxidized Ti–6Al–7Nb medical alloy. Spheres of 20 μm diameter were produced by an oil-in-water emulsion/solvent evaporation method and thermally immobilized onto titanium discs. The scanning electron microscopy investigations revealed that the size distribution and morphology of the attached spheres had not changed significantly. The drug release profiles following degradation in phosphate buffered saline for 1000 h showed that, upon immobilisation, the spheres maintained a sustained release, with a triphasic profile similar to the non-attached system. The only significant change was an increased release rate during the first 100 h. This difference was attributed to the effect of thermal attachment of the spheres to the surface. PMID:19669866

  12. Drying of micro-encapsulated lactic acid bacteria — Effects of trehalose and immobilization on cell survival and release properties

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Chen, Xiguang

    2009-03-01

    Lactic acid bacteria (LAB) were encapsulated with alginate, gelatin and trehalose additives by the extrusion method and dried at 4 °C. The microcapsules were generally spherical and had a wrinkled surface with a size of 1.7 mm ± 0.2 mm. Trehalose as a carbohydrate source in the culture medium could reduce acid production and performed no function in the positive proliferation of LAB. Using trehalose as a carbohydrate source and protective medium simultaneously had a benefit in the protection of LAB cells during the storage at 4 °C. The density of live LAB cells could be 107 CFU g-1 after 8 weeks of storage. Cells of LAB could be continuously released from the capsules from the acidic (pH 1.2) to neutral conditions (pH 6.8). The release amounts and proliferation speeds of LAB cells in neutral medium were much larger and faster than those in acidic conditions. Additionally, immobilization of LAB could improve the survival of cells when they were exposed to acidic medium (pH 1.2) with a survival rate of 76 %.

  13. Photothermally Triggered Lipid Bilayer Phase Transition and Drug Release from Gold Nanorod and Indocyanine Green Encapsulated Liposomes.

    PubMed

    Viitala, Lauri; Pajari, Saija; Lajunen, Tatu; Kontturi, Leena-Stiina; Laaksonen, Timo; Kuosmanen, Päivi; Viitala, Tapani; Urtti, Arto; Murtomäki, Lasse

    2016-05-10

    In light-activated liposomal drug delivery systems (DDSs), the light sensitivity can be obtained by a photothermal agent that converts light energy into heat. Excess heat increases the drug permeability of the lipid bilayer, and drug is released as a result. In this work, two near-IR responsive photothermal agents in a model drug delivery system are studied: either gold nanorods (GNRs) encapsulated inside the liposomes or indocyanine green (ICG) embedded into the lipid bilayer. The liposome system is exposed to light, and the heating effect is studied with fluorescent thermometers: laurdan and CdSe quantum dots (QDs). Both photothermal agents are shown to convert light into heat in an extent to cause a phase transition in the surrounding lipid bilayer. This phase transition is also proven with laurdan generalized polarization (GP). In addition to the heating results, we show that the model drug (calcein) is released from the liposomal cavity with both photothermal agents when the light power is sufficient to cause a phase transition in the lipid bilayer. PMID:27089512

  14. A parsimonious model for the release of volatile organic compounds (VOCs) encapsulated in products

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Jolliet, Olivier

    2016-02-01

    Studies have demonstrated that near-field chemical intakes may exceed environmentally mediated exposures and are therefore essential to be considered when assessing chemical emissions across a product's life cycle. VOCs encapsulated in materials/products can be a major emission source in the use phase. Previous models describing such emissions require complex analytical or numerical solutions, which poses a great computational burden and lack transparency for use in high-throughput screening of chemicals. In the present study, we adapted a model which describes VOC emissions from building materials and subsequent removal by ventilation, and decoupled the material and air governing equations by assuming a pseudo-steady-state between emission and loss. Results of this decoupled model show good agreement with the original more complex model and the experimental data. The solution of this decoupled model for mass fraction emitted, which still consists of an infinite sum of exponential terms, is further reduced to a sum of only two exponentials with parameters which can be predicted from physiochemical properties using explicit equations. Results of this simple two-exponential model agree well with the original full model over a 15-year time period with R-square greater than 0.99 for a wide range of compounds and material thicknesses. Moreover, the chemical concentration at the material surface can be simply calculated from the derivative of this two-exponential model, which also agrees well with the surface concentration calculated using the original full model. The present parsimonious approach greatly reduces the computational burden, and can be easily implemented for high-throughput screening.

  15. Encapsulation of beraprost sodium in nanoparticles: analysis of sustained release properties, targeting abilities and pharmacological activities in animal models of pulmonary arterial hypertension.

    PubMed

    Ishihara, Tomoaki; Hayashi, Erika; Yamamoto, Shuhei; Kobayashi, Chisa; Tamura, Yuichi; Sawazaki, Ryoichi; Tamura, Fumiya; Tahara, Kayoko; Kasahara, Tadashi; Ishihara, Tsutomu; Takenaga, Mitsuko; Fukuda, Keiichi; Mizushima, Tohru

    2015-01-10

    Prostaglandin I2 (PGI2) and its analogues (such as beraprost sodium, BPS) are beneficial for the treatment of pulmonary arterial hypertension (PAH). The encapsulation of BPS in nanoparticles to provide sustained release and targeting abilities would improve both the therapeutic effect of BPS on PAH and the quality of life of patients treated with this drug. BPS was encapsulated into nanoparticles prepared from a poly(lactic acid) homopolymer and monomethoxy poly(ethyleneglycol)-poly(lactide) block copolymer. The accumulation of nanoparticles in damaged pulmonary arteries was examined using fluorescence-emitting rhodamine S-encapsulated nanoparticles. The monocrotaline-induced PAH rat model and the hypoxia-induced mouse model were used to examine the pharmacological activity of BPS-encapsulated nanoparticles. A nanoparticle, named BPS-NP, was selected among various types of BPS-encapsulated nanoparticles tested; this was based on the sustained release profile in vitro and blood clearance profile in vivo. Fluorescence-emitting rhodamine S-encapsulated nanoparticles were prepared in a similar manner to that of BPS-NP, and showed accumulation and prolonged residence in monocrotaline-damaged pulmonary peripheral arteries. Intravenous administration of BPS-NP (once per week, 20μg/kg) protected against monocrotaline-induced pulmonary arterial remodeling and right ventricular hypertrophy. The extent of this protection was similar to that observed with oral administration (once per day, 100μg/kg) of BPS alone. The once per week intravenous administration of BPS-NP (20μg/kg) also exhibited an ameliorative effect on hypoxia-induced pulmonary arterial remodeling and right ventricular hypertrophy. The beneficial effects of BPS-NP on PAH animal models seem to be mediated by its sustained release and tissue targeting profiles. BPS-NP may be useful for the treatment of PAH patients due to reduced dosages and frequency of BPS administration. PMID:25449809

  16. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels.

    PubMed

    Chandel, Arvind K Singh; Kumar, Chinta Uday; Jewrajka, Suresh K

    2016-02-10

    We synthesized agarose-polycaprolactone (Agr-PCL) bicomponent and Agr-polyethylene glycol-PCL (Agr-PEG-PCL) tricomponent amphiphilic co-network (APCN) gels by the sequential nucleophilic substitution reaction between amine-functionalized Agr and activated halide terminated PCL or PCL-b-PEG-b-PCL copolymer for the sustained and localized delivery of hydrophilic and hydrophobic drugs. The biodegradability of the APCNs was confirmed using lipase and by hydrolytic degradation. These APCN gels displayed good cytocompatibility and blood compatibility. Importantly, these APCN gels exhibited remarkably high drug loading capacity coupled with sustained and triggered release of both hydrophilic and hydrophobic drugs. PEG in the APCNs lowered the degree of phase separation and enhanced the mechanical property of the APCN gels. The drug loading capacity and the release kinetics were also strongly influenced by the presence of PEG, the nature of release medium, and the nature of the drug. Particularly, PEG in the APCN gels significantly enhanced the 5-fluorouracil loading capacity and lowered its release rate and burst release. Release kinetics of highly water-soluble gemcitabine hydrochloride and hydrophobic prednisolone acetate depended on the extent of water swelling of the APCN gels. Cytocompatibility/blood compatibility and pH and enzyme-triggered degradation together with sustained release of drugs show great promise for the use of these APCN gels in localized drug delivery and tissue engineering applications. PMID:26760672

  17. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: ligand binding properties.

    PubMed

    Kainthan, Rajesh Kumar; Mugabe, Clement; Burt, Helen M; Brooks, Donald E

    2008-03-01

    This paper discusses the binding and release properties of hydrophobically modified hyperbranched polyglycerol-polyethylene glycol copolymers that were originally developed as human serum albumin (HSA) substitutes. Their unimolecular micellar nature in aqueous solution has been proven by size measurements and other spectroscopic methods. These polymers aggregate weakly in solution, but the aggregates are broken down by low shear forces or by encapsulating a hydrophobic ligand within the polymer. The small molecule binding properties of these polymers are compared with those of HSA. The preliminary in vitro paclitaxel release studies showed very promising sustained drug release characteristics achieved by these unimolecular micelles. PMID:18247528

  18. The Binding And Release of Oxygen And Hydrogen Peroxide are Directed 1 By a Hydrophobic Tunnel in Cholesterol Oxidase

    SciTech Connect

    Chen, L.; Lyubimov, A.Y.; Brammer, L.; Vrielink, A.; Sampson, N.S.

    2009-05-12

    The usage by enzymes of specific binding pathways for gaseous substrates or products is debated. The crystal structure of the redox enzyme cholesterol oxidase, determined at sub-angstrom resolution, revealed a hydrophobic tunnel that may serve as a binding pathway for oxygen and hydrogen peroxide. This tunnel is formed by a cascade of conformational rearrangements and connects the active site with the exterior surface of the protein. To elucidate the relationship between this tunnel and gas binding and release, three mutant enzymes were constructed to block the tunnel or its putative gate. Mutation of the proposed gating residue Asn485 to Asp or tunnel residue Phe359 or Gly347 to Trp or Asn reduces the catalytic efficiency of oxidation. The K mO 2 increases from 300 +/- 35 microM for the wild-type enzyme to 617 +/- 15 microM for the F359W mutant. The k cat for the F359W mutant-catalyzed reaction decreases 13-fold relative to that of the wild-type-catalyzed reaction. The N485D and G347N mutants could not be saturated with oxygen. Transfer of hydride from the sterol to the flavin prosthetic group is no longer rate-limiting for these tunnel mutants. The steady-state kinetics of both wild-type and tunnel mutant enzymes are consistent with formation of a ternary complex of steroid and oxygen during catalysis. Furthermore, kinetic cooperativity with respect to molecular oxygen is observed with the tunnel mutants, but not with the wild-type enzyme. A rate-limiting conformational change for binding and release of oxygen and hydrogen peroxide, respectively, is consistent with the cooperative kinetics. In the atomic-resolution structure of F359W, the indole ring of the tryptophan completely fills the tunnel and is observed in only a single conformation. The size of the indole is proposed to limit conformational rearrangement of residue 359 that leads to tunnel opening in the wild-type enzyme. Overall, these results substantiate the functional importance of the tunnel for

  19. Formulation and in vitro, in vivo evaluation of extended- release matrix tablet of zidovudine: influence of combination of hydrophilic and hydrophobic matrix formers.

    PubMed

    Kuksal, Atul; Tiwary, Ashok K; Jain, Narendra K; Jain, Subheet

    2006-01-01

    The aim of the present study was to prepare and characterize extended-release matrix tablets of zidovudine using hydrophilic Eudragit RLPO and RSPO alone or their combination with hydrophobic ethyl cellulose. Release kinetics was evaluated by using United States Pharmacopeia (USP)-22 type I dissolution apparatus. Scanning electron microscopy was used to visualize the effect of dissolution medium on matrix tablet surface. Furthermore, the in vitro and in vivo newly formulated sustained-release zidovudine tablets were compared with conventional marketed tablet (Zidovir, Cipla Ltd, Mumbai, India). The in-vitro drug release study revealed that either Eudragit preparation was able to sustain the drug release only for 6 hours (94.3% +/- 4.5% release). Combining Eudragit with ethyl cellulose sustained the drug release for 12 hours (88.1% +/- 4.1% release). Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. In vivo investigation in rabbits showed sustained-release pharmacokinetic profile of zidovudine from the matrix tablets formulated using combination of Eudragits and ethylcellulose. In conclusion, the results suggest that the developed sustained-release tablets of zidovudine could perform therapeutically better than conventional dosage forms, leading to improve efficacy and better patient compliance. PMID:16584139

  20. A Tunable Protein Piston That Breaks Membranes to Release Encapsulated Cargo.

    PubMed

    Polka, Jessica K; Silver, Pamela A

    2016-04-15

    Movement of molecules across membranes in response to a stimulus is a key component of cellular programming. Here, we characterize and manipulate the response of a protein-based piston capable of puncturing membranes in a pH-dependent manner. Our protein actuator consists of modified R bodies found in a bacterial endosymbiont of paramecium. We express and purify R bodies from in E. coli; these pistons undergo multiple rounds of rapid extension and retraction. We developed a high throughput screen for mutants with altered pH sensitivity for tuning of the extension process. We show that the R bodies are capable of acting as synthetic pH-dependent pistons that can puncture E. coli membranes to release the trapped content. As such, these protein machines present a novel way to selectively rupture membrane compartments and will be important for programming cellular compartmentalization. PMID:26814170

  1. Monodisperse nanoparticles from self-assembling amphiphilic cyclodextrins: modulable tools for the encapsulation and controlled release of pharmaceuticals.

    PubMed

    Mendez-Ardoy, Alejandro; Gómez-García, Marta; Gèze, Annabelle; Putaux, Jean-Luc; Wouessidjewe, Denis; Ortiz Mellet, Carmen; Defaye, Jacques; García Fernández, José M; Benito, Juan M

    2012-07-01

    Selective chemical functionalization of cyclodextrins (CDs) is a readily amenable methodology to produce amphiphilic macromolecules endowed with modulable self-organizing capabilities. Herein, the synthesis of well-defined amphiphilic CD derivatives, with a "skirt-type" architecture, that incorporate long-chain fatty esters at the secondary hydroxyl rim and a variety of chemical functionalities (e. g. iodo, bromo, azido, cysteaminyl or isothiocyanato) at the primary hydroxyls rim is reported. Nanoprecipitation of the new CD facial amphiphiles, or binary mixtures of them, resulted in nanoparticles with average hydrodynamic diameters ranging from 100 to 240 nm that were stable in suspension for several months. The precise size, zeta potential and topology of the nanoparticles are intimately dependent on the functionalization pattern at the CD scaffold. Highly efficient molecular encapsulation capabilities of poorly bioavailable drugs such as diazepam (DZ) were demonstrated for certain derivatives, the drug release profile being dependent on the type of formulation (nanospheres or nanocapsules). The efficiency and versatility of the synthetic strategy, together with the possibility of exploiting the reactivity of the functional groups at the nanoparticle surface, offer excellent opportunities to further manipulate the carrier capabilities of this series of amphiphilic CDs from a bottom-up approach. PMID:22571191

  2. Self-destructing "mothership" capsules for timed release of encapsulated contents.

    PubMed

    Dowling, Matthew B; Bagal, Anand S; Raghavan, Srinivasa R

    2013-06-25

    We describe a new class of hierarchical containers that are formed via single-step assembly and, at a later time, self-destruct because of their packaged contents. These containers are spherical capsules formed by electrostatic complexation of the anionic biopolymer, gellan gum, with the cationic biopolymer, chitosan. The capsules are termed "motherships" and are engineered to carry a cargo of much smaller containers (e.g., nanoscale liposomes ("babyships")), within their lumen. Additionally, we package an enzyme, chitosanase, in the capsule that is capable of degrading polymeric chitosan into short oligomers. Thereby, we create motherships that self-destruct, liberating their cargo of babyships into the external solution. The time scale for self-destruction can be engineered based on the internal concentration of enzyme. The motherships are stable when stored in a freeze-dried form and can be readily dispersed into water or buffer solutions at a later time, whereupon their "internal clock" for self-destruction is initiated. The above concept could be useful for the triggered release of a variety of payloads including drugs, biological therapeutics, cosmetics, and flavor ingredients. PMID:23984817

  3. Effect of hydrophobic and hydrophilic additives on sol–gel transition and release behavior of timolol maleate from polycaprolactone-based hydrogel

    PubMed Central

    Mishra, Gyan P.; Tamboli, Viral

    2011-01-01

    The objective of this work was to delineate the effect of hydrophilic and hydrophobic polymeric additives on sol–gel transition and release profile of timolol maleate (TM) from poly (ethylene glycol)–poly (ε-caprolactone)– poly (ethylene glycol) (PEG–PCL–PEG)-based thermosensitive hydrogel. Polycaprolactone (hydrophobic additive) and polyvinyl alcohol (PVA) (hydrophilic additive) reduced critical gel concentration of PEG–PCL–PEG triblock polymer. The effect of PCL on sol–gel transition was more pronounced than PVA. However, with PCL no statistically significant difference in release profile was observed. The effect of PVA on release profile was more pronounced, which reduced the cumulative percentage release of TM from 86.4±0.8% to 73.7±1.8% over 316 h. Moreover, cytotoxicity of the hydrogel was also investigated utilizing rabbit primary corneal epithelial culture cells. No significant cytotoxicity of hydrogel alone or in presence of additives was observed. So, polymeric additive strategy serves as a valuable tool for optimizing TM release kinetics from PEG–PCL–PEG hydrogel matrix. PMID:21892247

  4. Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release

    PubMed Central

    2015-01-01

    Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer which facilitates TEM analysis, and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be calculated using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ≈ 0.25 nm–1. A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermoresponsive nature of the diblock copolymer vesicles enables thermally triggered release of the encapsulated silica nanoparticles simply by cooling to 0–10 °C, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes, or antibodies for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy. PMID:26600089

  5. Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release.

    PubMed

    Mable, Charlotte J; Gibson, Rebecca R; Prevost, Sylvain; McKenzie, Beulah E; Mykhaylyk, Oleksandr O; Armes, Steven P

    2015-12-30

    Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer which facilitates TEM analysis, and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be calculated using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ≈ 0.25 nm(-1). A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermoresponsive nature of the diblock copolymer vesicles enables thermally triggered release of the encapsulated silica nanoparticles simply by cooling to 0-10 °C, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes, or antibodies for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy. PMID:26600089

  6. Comparative study on the different techniques for the preparation of sustained-release hydrophobic matrices of a highly water-soluble drug.

    PubMed

    Abd El-Halim, S M; Amin, M M; El-Gazayerly, O N; Abd El-Gawad, N A

    2010-12-01

    The objective of the present study was to control the release of freely water-soluble salbutamol sulphate (SS) over a prolonged period of time by embedding the drug into slowly eroding waxy matrix materials such as Precirol® ATO5, Compritol® 888 ATO, beeswax, paraffin wax, carnauba wax, and stearyl alcohol. The matrices were prepared by either direct compression or hot fusion techniques. The compatibility of the drug with the various excipients was examined using differential scanning calorimetry (DSC). A factorial design was employed to study the effect of polymer type, polymer concentration (15% and 35%), and filler type (Avicel® PH101 and dibasic calcium phosphate dehydrate (DCP) on the in vitro drug release at 6 h. Results of DSC confirmed drugexcipient compatibility. Increasing the polymer ratio resulted in a significant retardation of drug release. The use of DCP resulted in significant retardation and incomplete drug release while the use of Avicel did not. The hot fusion method was found to be more effective than the direct compression method in retarding SS release. A Precirol formulation, prepared using the hot fusion technique, had the slowest drug release, releasing about 31.3% of SS over 6 h. In contrast, Compritol, prepared using the direct compression technique, had the greatest retardation, providing sustained release of 59.3% within 6 h. A hydrophobic matrix system is thus a useful technique for prolonging the release of freely water-soluble drugs such as salbutamol sulphate. PMID:22491314

  7. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva.

    PubMed

    Krishnan, Sitaraman; Wang, Nick; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Hexemer, Alexander; Sohn, Karen E; Kramer, Edward J; Fischer, Daniel A

    2006-05-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates. PMID:16677026

  8. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence

  9. Poly(DL-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate): synthesis, characterization, micellization behavior in aqueous solutions, and encapsulation of the hydrophobic drug dipyridamole.

    PubMed

    Karanikolopoulos, Nikos; Zamurovic, Miljana; Pitsikalis, Marinos; Hadjichristidis, Nikos

    2010-02-01

    We synthesized a series of well-defined poly(dl-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PDLLA-b-PDMAEMA) amphiphilic diblock copolymers by employing a three-step procedure: (a) ring-opening polymerization (ROP) of dl-lactide using n-decanol and stannous octoate, Sn(Oct)(2), as the initiating system, (b) reaction of the PDLLA hydroxyl end groups with bromoisobutyryl bromide, and (c) atom transfer radical polymerization, ATRP, of DMAEMA with the newly created bromoisobutyryl initiating site. The aggregation behavior of the prepared block copolymers was investigated by dynamic light scattering and zeta potential measurements at 25 degrees C in aqueous solutions of different pH values. The hydrophobic drug dipyridamole was efficiently incorporated into the copolymer aggregates in aqueous solutions of pH 7.40. High partition coefficient values were determined by fluorescence spectroscopy. PMID:20041661

  10. An Investigation into Some Effective Factors on Encapsulation Efficiency of Alpha-Tocopherol in MLVs and the Release Profile from the Corresponding Liposomal Gel

    PubMed Central

    Tabandeh, Hosseinali; Mortazavi, Seyed Alireza

    2013-01-01

    Vitamin E (α-tocopherol) is a natural antioxidant very useful for preventing the harmful effects of UV sun rays as skin aging and cancers. In this study, different MLV formulations were made using egg lecithin and varying molar ratios of α-tocopherol and/or cholesterol, and their encapsulation efficiencies were determined. The best liposomal product was incorporated into a carbomer 980 gel. The resulting preparation was then studied with regard to the rheology and release profile using r2 values and Korsmeyer-Peppas equation. The encapsulation efficiency was dramatically decreased when using α-tocopherol at molar ratios of 1:10 or more, which is suggested to be due to the defect in regular linear structure of the bilayer membrane. Addition of cholesterol to formulations caused a decrease in encapsulation efficiency directly related to its molar ratio, which is due to the condensation of the bilayer membrane as well as competition of cholesterol with α-tocopherol. The liposomal gel showed a yield value of 78.5 ± 1.8 Pa and a plastic viscosity of 27.35 ± 2.3 cp. The release showed a two-phase pattern with the zero-order model being the best fitted model for the first phase. However, the “n” and r2 values suggested a minor contribution of Higuchi model due to some diffusion of α-tocopherol from the outermost bilayers of the MLVs to the gel. The second phase showed a non-Fickian release indicating a more prominent role for diffusion. This combinational release profile provides a high initial concentration of α-tocopherol followed by a slow release throughout a 10 h period. PMID:24250668

  11. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions.

    PubMed

    Wu, Zhansheng; Guo, Lina; Qin, Shaohua; Li, Chun

    2012-02-01

    The plant growth-promoting bacteria (PGPR) Raoultella planticola Rs-2 was encapsulated with the various blends of alginate, starch, and bentonite for development of controlled-release formulations. The stability and release characteristics of these different capsule formulations were evaluated. The entrapment efficiency of Rs-2 in the beads (capsules) was more than 99%. The diameter of dry beads ranged from 0.98 to 1.41 mm. The bacteria release efficiency, swelling ratio, and biodegradability of the different bead formulations were enhanced by increasing the starch or alginate contents, but were impeded by higher bentonite content. The release kinetics of viable cells from capsules and the swelling ratio of capsules were studied in simulated soil media of varying temperature, moisture, pH, and salt content. The release of loaded Rs-2 cells and swelling of capsules are greatly affected by moisture, temperature, pH and salt content of the release medium. The release of viable Rs-2 cells from capsules was positively associated with the swelling properties of the capsules. The release of Rs-2 cells occurred through a Case II diffusion mechanism. In summary, this work indicates that alginate-starch-bentonite blends are a viable option for the development of efficient controlled-release formulations of Rs-2 biofertilizer, and which could have a promising application in natural field conditions. PMID:21879356

  12. In Situ Strategy to Encapsulate Antibiotics in a Bioinspired CaCO3 Structure Enabling pH-Sensitive Drug Release Apt for Therapeutic and Imaging Applications.

    PubMed

    Begum, Gousia; Reddy, Thuniki Naveen; Kumar, K Pranay; Dhevendar, Koude; Singh, Shashi; Amarnath, Miriyala; Misra, Sunil; Rangari, Vijaya K; Rana, Rohit Kumar

    2016-08-31

    Herein we demonstrate a bioinspired method involving macromolecular assembly of anionic polypeptide with cationic peptide-oligomer that allows for in situ encapsulation of antibiotics like tetracycline in CaCO3 microstructure. In a single step one-pot process, the encapsulation of the drug occurs under desirable environmentally benign conditions resulting in drug loaded CaCO3 microspheres. While this tetracycline-loaded sample exhibits pH dependent in vitro drug-release profile and excellent antibacterial activity, the encapsulated drug or the dye-conjugated peptide emits fluorescence suitable for optical imaging and detection, thereby making it a multitasking material. The efficacy of tetracycline loaded calcium carbonate microspheres as pH dependent drug delivery vehicles is further substantiated by performing cell viability experiments using normal and cancer cell lines (in vitro). Interestingly, the pH-dependent drug release enables selective cytotoxicity toward cancer cell lines as compared to the normal cells, thus having the potential for further development of therapeutic applications. PMID:27513816

  13. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material.

    PubMed

    González, M E; Cea, M; Medina, J; González, A; Diez, M C; Cartes, P; Monreal, C; Navia, R

    2015-02-01

    Biochar constitutes a promising support material for the formulation of controlled-release fertilizers (CRFs). In this study we evaluated the effect of different polymeric materials as encapsulating agents to control nitrogen (N) leaching from biochar based CRFs. Nitrogen impregnation onto biochar was performed in a batch reactor using urea as N source. The resulting product was encapsulated by using sodium alginate (SA), cellulose acetate (CA) and ethyl cellulose (EC). Leaching potential was studied in planted and unplanted soil columns, monitoring nitrate, nitrite, ammonium and urea concentrations. After 90 days, plants were removed from the soil columns and plant yield was evaluated. It was observed that the ammonium concentration in leachates presented a maximum concentration for all treatments at day 22. The highest concentration of N in the leachates was the nitrate form. The crop yield was negatively affected by all developed CRFs using biochar compared with the traditional fertilization. PMID:25461046

  14. Effects of hydrophobic drug polyesteric core interactions on drug loading and release properties of poly(ethylene glycol) polyester poly(ethylene glycol) triblock core shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Khoee, Sepideh; Hassanzadeh, Salman; Goliaie, Bahram

    2007-05-01

    BAB amphiphilic triblock copolymers consisting of poly(ethylene glycol) (B) (PEG) as the hydrophilic segment and different polyesters (A) as the hydrophobic block were prepared by a polycondensation reaction as efficient model core-shell nanoparticles to assay the effect of interactions between the hydrophobic drug and the polyesteric core in terms of drug loading content and release profile. PEG-poly(hexylene adipate)-PEG (PEG-PHA-PEG) and PEG-poly(butylene adipate)-PEG (PEG-PBA-PEG) to PEG-poly(ethylene adipate)-PEG (PEG-PEA-PEG) core-shell type nanoparticles entrapping quercetin (an anticarcinogenic, allergy inhibitor and antibacterial agent), were prepared by a nanoprecipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. It was found that the obtained nanoparticles showed a smooth surface and spherical shape with controllable sizes in the range of 64-74 nm, while drug loading varied from 7.24% to 19% depending on the copolymer composition and the preparation conditions. The in vitro release behaviour exhibited a sustained release and was affected by the polymer-drug interactions. UV studies revealed the presence of hydrogen bonding as the main existing interaction between quercetin and polyesters in the nanosphere cores.

  15. Multi-layered polymeric nanoparticles for pH-responsive and sequenced release of theranostic agents.

    PubMed

    Wang, Hai; Zhao, Shuting; Agarwal, Pranay; Dumbleton, Jenna; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-05-01

    In this study, multi-layered pH-responsive polymeric nanoparticles (NPs) are prepared by multiple (up to 4) emulsifications to encapsulate multiple hydrophilic and hydrophobic theranostic agents for controlled and sequenced release. It is found that the sequence of release of multiple chemotherapeutic agents from the NPs significantly affects their efficacy against cancer cells. PMID:25850616

  16. Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers.

    PubMed

    Tang, Juan; Huang, Yapei; Liu, Huiqiong; Zhang, Cengceng; Tang, Dianping

    2016-05-15

    Methods based on surfactant-responsive controlled release systems of cargoes from nanocontainers have been developed for bioanalytical applications, but most were utilized for drug delivery and a few reports were focused on immunoassays. Herein we design an in situ amplified immunoassay protocol for high-efficient detection of aflatoxins (aflatoxin B1, AFB1 used in this case) based on surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers with sensitivity enhancement. Initially, biotinylated liposome nanocarrier encapsulated with glucose was synthesized using a reverse-phase evaporation method. Thereafter, the nanocarrier was utilized as the signal-generation tag on capture antibody-coating microplate through classical biotin-avidin linkage after reaction with biotinylated detection antibody. Upon addition of buffered surfactant (1X PBS-Tween 20 buffer) into the medium, the surfactant immediately hydrolyzed the conjugated liposome, and released the encapsulated glucose from the nanocarriers, which could be quantitatively determined by using a low-cost personal glucometer (PGM). The detectable signal increased with the increment of target analyte. Under the optimal conditions, the assay could allow PGM detection toward target AFB1 as low as 0.6 pg mL(-1) (0.6 ppt). Moreover, the methodology also showed good reproducibility and high specificity toward target AFB1 against other mycotoxins and proteins, and was applicable for quantitatively monitoring target AFB1 in the complex systems, e.g., naturally contaminated/spiked peanut samples and serum specimens, with the acceptable results. Taking these advantages of simplification, low cost, universality and sensitivity, our design provides a new horizon for development of advanced immunoassays in future point-of-care testing. PMID:26748368

  17. pH-responsive amphiphilic hydrogel networks with IPN structure: a strategy for controlled drug release.

    PubMed

    Liu, Yu-Yang; Fan, Xiao-Dong; Wei, Bo-Rong; Si, Qing-Fa; Chen, Wei-Xing; Sun, Le

    2006-02-01

    A pH-responsive amphiphilic hydrogel with interpenetrating polymer networks (IPN) structure for controlled drug release was proposed. The IPN was constructed with hydrophilic poly(acrylic acid) (PAA) and hydrophobic poly(butyl acrylate) (PBA). Using drug N-acetyl-5-methoxytryptamine (melatonin, MEL) as a model molecule, the controlled drug release behaviors of the IPN were investigated. It is found that not only the release of MEL from the IPN can respond to change in pH, but also the presence of hydrophobic network can overcome disadvantageous burst effect of hydrophilic network. This may be a result of hydrophobic aggregation encapsulating MEL molecules. PMID:16321489

  18. Controlled release of encapsulated bioactive volatiles by rupture of the capsule wall through the light-induced generation of a gas.

    PubMed

    Paret, Nicolas; Trachsel, Alain; Berthier, Damien L; Herrmann, Andreas

    2015-02-01

    The encapsulation of photolabile 2-oxoacetates in core-shell microcapsules allows the light-induced, controlled release of bioactive compounds. On irradiation with UVA light these compounds degrade to generate an overpressure of gas inside the capsules, which expands or breaks the capsule wall. Headspace measurements confirmed the light-induced formation of CO and CO2 and the successful release of the bioactive compound, while optical microscopy demonstrated the formation of gas bubbles, the cleavage of the capsule wall, and the leakage of the oil phase out of the capsule. The efficiency of the delivery system depends on the structure of the 2-oxoacetate, the quantity used with respect to the thickness of the capsule wall, and the intensity of the irradiating UVA light. PMID:25589352

  19. Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties

    SciTech Connect

    Park, D.; Weinman, C; Finlay, J; Fletcher, B; Paik, M; Sundaram, H; Dimitriou, M; Sohn, K; Callow, M; et al.

    2010-01-01

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M{sub n} {approx} 550 g/mol (PEG550)] and a semifluorinated alcohol (CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 10}OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  20. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug.

    PubMed

    Pereira Camelo, Sarah Regina; Franceschi, Sophie; Perez, Emile; Girod Fullana, Sophie; Ré, Maria Inês

    2016-06-01

    This article proposes solid-like systems from sunflower oil structured with a fibrillar network built by the assembly of 12-hydroxystearic acid (12-HSA), a gelator molecule for an oil phase. The resulting organogels were studied as oral controlled release formulations for a lipophilic drug, Efavirenz (EFV), dissolved in the oil. The effects of the gelator concentration on the thermal properties of the organogels were studied by Differential Scanning Calorimetry (DSC) and showed that drug incorporation did not change the sol-gel-sol transitions. The erosion and drug release kinetics from organogels under conventional (filling gelatin capsules) or multiparticulate (beads obtained by prilling) dosage forms were measured in simulated gastric and intestinal fluids. EFV release profiles were analyzed using model-dependent (curve-fitting) and independent approaches (Dissolution Efficiency DE). Korsmeyer-Peppas was the best fitting release kinetic model based on the goodness of fit, revealing a release mechanism from organogels loaded with EFV different from the simple drug diffusion release mechanism obtained from oily formulations. From organogels, EFV probably diffuses through an outer gel layer that erodes releasing oil droplets containing dissolved EFV into the aqueous medium. PMID:26548427

  1. Hydrophobic-Core Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  2. N,O6-partially acetylated chitosan nanoparticles hydrophobically-modified for controlled release of steroids and vitamin E.

    PubMed

    Quiñones, Javier Pérez; Gothelf, Kurt Vesterager; Kjems, Jørgen; Caballero, Ángeles María Heras; Schmidt, Claudia; Covas, Carlos Peniche

    2013-01-01

    Diosgenin, two synthetic analogs of brassinosteroids, testosterone and dl-α-tocopherol were covalently linked to synthetic water-soluble N,O6-partially acetylated chitosan, for their controlled release. Drug linking was confirmed by FTIR spectroscopy and proton NMR. Conjugates were also characterized by differential scanning calorimetry and wide-angle X-ray diffraction. These conjugates formed self-assembled nanoparticles in aqueous solution with particle sizes ranging from 197 to 358 nm and drug contents between 11.8 and 56.4% (w/w). Spherical 30-60 nm nanoparticles were observed by scanning electron microscopy and transmission electron microscopy upon drying. In vitro release studies performed at acid pH indicated a drug release dependence on substitution degree and particle sizes. Almost constant release rates were observed during the first 6-8h. Brassinosteroids-modified nanoparticles showed good agrochemical activity in radish seeds bioassay at 10(-1) to 10(-4) mg mL(-1). Tocopheryl-modified nanoparticles exhibited radical scavenging activity in DPPH test. PMID:23044115

  3. Novel pH-sensitive polysialic acid based polymeric micelles for triggered intracellular release of hydrophobic drug.

    PubMed

    Zhang, Wuxia; Dong, Dongqi; Li, Peng; Wang, Dongdong; Mu, Haibo; Niu, Hong; Duan, Jinyou

    2016-03-30

    Polysialic acid (PSA), a non-immunogenic and biodegradable natural polymer, is prone to hydrolysis under endo-lysosomal pH conditions. Here, we synthesized an intracellular pH-sensitive polysialic acid-ursolic acid conjugate by a condensation reaction. To further test the drug loading capability, we prepared paclitaxel-loaded polysialic acid-based amphiphilic copolymer micelle (PTX-loaded-PSAU) by a nanoprecipitation method. Results showed PTX-loaded-PSAU exhibited well-defined spherical shape and homogeneous distribution. The drug-loading was 4.5% with an entrapment efficiency of 67.5%. PTX released from PTX-loaded-PSAU was 15% and 42% in 72 h under simulated physiological condition (pH 7.4) and mild acidic conditions (pH 5.0), respectively. In addition, In vitro cytotoxicity assay showed that PTX-loaded-PSAU retained anti-tumor (SGC-7901) activity with a cell viability of 53.8% following 72 h incubation, indicating PTX-loaded-PSAU could efficiently release PTX into the tumor cells. These results indicated that the pH-responsive biodegradable PTX-loaded-PSAU possess superior extracellular stability and intracellular drug release ability. PMID:26794949

  4. Photo activation of HPPH encapsulated in "Pocket" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts.

    PubMed

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them "Pocket" liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0-5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5-8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  5. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.

    PubMed

    Kimpel, Florian; Schmitt, Joachim J

    2015-11-01

    Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. PMID:26467442

  6. Micro-Encapsulation of Probiotics

    NASA Astrophysics Data System (ADS)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  7. Photochemical release of nitric oxide from a regenerable, sol-gel encapsulated Ru-salen-nitrosyl complex.

    PubMed

    Bordini, Jeane; Ford, Peter C; Tfouni, Elia

    2005-09-01

    Light activation leads to release of NO from a silicate sol-gel material SG-RuNO prepared from the ruthenium complex, [Ru(salen)(OH2)(NO)]+ (salen = N,N'-bis-(salicylidene)ethyl-enediaminato); after photochemical NO photolabilization, SG-RuNO can be regenerated from the spent material via the subsequent reaction with aqueous nitrite. PMID:16100592

  8. Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens

    PubMed Central

    Nardello-Rataj, Véronique

    2014-01-01

    Summary Host–guest chemistry is useful for the construction of nanosized objects. Some of the widely used hosts are probably the cyclodextrins (CDs). CDs can form water-soluble complexes with numerous hydrophobic compounds. They have been widespread used in medicine, drug delivery and are of interest for the biocides encapsulation. Indeed, this enables the development of more or less complex systems that release antimicrobial agents with time. In this paper, the general features of CDs and their applications in the field of biocides have been reviewed. As the key point is the formation of biocide–CD inclusion complexes, this review deals with this in depth and the advantages of biocide encapsulation are highlighted throughout several examples from the literature. Finally, some future directions of investigation have been proposed. We hope that scientists studying biocide applications receive inspiration from this review to exploit the opportunities offered by CDs in their respective research areas. PMID:25550722

  9. Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens.

    PubMed

    Nardello-Rataj, Véronique; Leclercq, Loïc

    2014-01-01

    Host-guest chemistry is useful for the construction of nanosized objects. Some of the widely used hosts are probably the cyclodextrins (CDs). CDs can form water-soluble complexes with numerous hydrophobic compounds. They have been widespread used in medicine, drug delivery and are of interest for the biocides encapsulation. Indeed, this enables the development of more or less complex systems that release antimicrobial agents with time. In this paper, the general features of CDs and their applications in the field of biocides have been reviewed. As the key point is the formation of biocide-CD inclusion complexes, this review deals with this in depth and the advantages of biocide encapsulation are highlighted throughout several examples from the literature. Finally, some future directions of investigation have been proposed. We hope that scientists studying biocide applications receive inspiration from this review to exploit the opportunities offered by CDs in their respective research areas. PMID:25550722

  10. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    PubMed

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy. PMID:26886821

  11. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release.

    PubMed

    Kern, Aurelie; Zhou, Chensheng W; Jia, Feng; Xu, Qiaobing; Hu, Linden T

    2016-08-31

    The incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks. One potential drawback to vaccinia virus vectored vaccines is the risk of accidental infection of humans. To reduce this risk, we developed a process to encapsulate vaccinia virus with a pH-sensitive polymer that inactivates the virus until it is ingested and dissolved by stomach acids. We demonstrate that the vaccine is inactive both in vitro and in vivo until it is released from the polymer. Once released from the polymer by contact with an acidic pH solution, the virus regains infectivity. Vaccination with coated vaccinia virus confers protection against B. burgdorferi infection and reduction in acquisition of the pathogen by naïve feeding ticks. PMID:27502570

  12. Nanoflower-Like Bi2 WO6 Encapsulated in ORMOSIL as a Novel Photocatalytic Antifouling and Foul-Release Coating.

    PubMed

    Scandura, Gabriele; Ciriminna, Rosaria; Xu, Yi-Jun; Pagliaro, Mario; Palmisano, Giovanni

    2016-05-17

    Herein, the first multi-purpose antifouling and foul-release photocatalytic coating based on ORMOSIL thin films doped with nanoflower-like Bi2 WO6 is described. Irradiation with visible light of the new films immersed in water produces significant amounts of H2 O2 by photocatalytic oxidation of water, and allows the degradation of (bio)organic pollutants at the outer surface of the xerogel film. PMID:26945837

  13. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency. PMID:23137392

  14. Magnetic targeted drug delivery carriers encapsulated with pH-sensitive polymer: synthesis, characterization and in vitro doxorubicin release studies.

    PubMed

    Wu, Juan; Shen, Yueqing; Jiang, Wei; Jiang, Wei; Shen, Yewen

    2016-09-01

    Targeted and efficient delivery of drug to tumor is one of the crucial issues in cancer therapy. In this work, we have successfully designed and prepared the pH-sensitive magnetic nanoparticles (MNPs) as targeted anticancer drug carriers, in which the MNPs were coated by poly(acrylic acid) (PAA) and the obtained PAA@MNPs exhibited a size within 100 nm, good stability, and superparamagnetic responsibility (Ms 45.97 emu/g). Doxorubicin (DOX) can be successfully loaded onto MNPs via electrostatic interaction, and the drug loading content and loading efficiency are 26.4 and 88.1%, respectively. Moreover, the release studies showed that the drug-loaded carriers (MNPs-DOX) had excellent pH sensitivity, 75.6% of the loaded DOX was released at pH 4.0 within 48 h. Importantly, MTT assays in HUVEC and MCF-7 cells demonstrated that MNPs-DOX exhibited high anti-tumor activity, while the PAA@MNPs were practically nontoxic. Thus, our results revealed that PAA@MNPs would be a competitive candidate for biomedical application and MNPs-DOX could be used in targeted cancer therapy. PMID:27252073

  15. Preliminary evaluation of the encapsulation of new antidiabetic sulphonylhydrazone and antitumor N-acylhydrazone derivatives using PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Ibiapino, A. L.; de Figueiredo, L. P.; Barreiro, E. J.; Lima, L. M.; do Amaral, D. N.; de Castro, C. E.; Giacomelli, F. C.; Ferreira, F. F.

    2015-05-01

    It has been demonstrated the feasibly of using PLGA nanoparticles to promote the encapsulation of novel anti-diabetic sulphonylhydrazone and antitumor N-acylhydrazone derivatives. The motivation is to further demonstrate the possibility of long-term release of anti-diabetic as well as higher accumulation of the antitumor derivative by using the nanotechnology-based production. The produced nanoparticles were obtained by the nanoprecipitation method, which revealed to be effective in the encapsulation of the bioactive compounds. The determined sizes were in the range of ∼100 nm, which are supposed to be suitable for both potential applications. The preliminary experimental data demonstrated the formation of stable nanosystems and further experiments are underway in order to determine the loading content, encapsulation efficiency and release profile of the hydrophobic bioactive compounds.

  16. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS.

    PubMed

    Rabanel, Jean-Michel; Faivre, Jimmy; Paka, Ghislain Djiokeng; Ramassamy, Charles; Hildgen, Patrice; Banquy, Xavier

    2015-10-01

    We developed a nanoparticles (NPs) library from poly(ethylene glycol)-poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a "micelle-like" or "polymer nano-aggregate" structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to "polymer nano-aggregate" particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers. PMID:26409200

  17. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel.

    PubMed

    Barati, Danial; Shariati, Seyed Ramin Pajoum; Moeinzadeh, Seyedsina; Melero-Martin, Juan M; Khademhosseini, Ali; Jabbari, Esmaiel

    2016-02-10

    Reconstruction of large bone defects is limited by insufficient vascularization and slow bone regeneration. The objective of this work was to investigate the effect of spatial and temporal release of recombinant human bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) on the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) encapsulated in a patterned hydrogel. Nanogels (NGs) based on polyethylene glycol (PEG) macromers chain-extended with short lactide (L) and glycolide (G) segments were used for grafting and timed-release of BMP2 and VEGF. NGs with 12kDa PEG molecular weight (MW), 24 LG segment length, and 60/40L/G ratio (P12-II, NG(10)) released the grafted VEGF in 10days. NGs with 8kDa PEG MW, 26 LG segment length, and 60/40L/G ratio (P8-I, NG(21)) released the grafted BMP2 in 21days. hMSCs and NG-BMP2 were encapsulated in a patterned matrix based on acrylate-functionalized lactide-chain-extended star polyethylene glycol (SPELA) hydrogel and microchannel patterns filled with a suspension of hMSCs+ECFCs and NG-VEGF in a crosslinked gelatin methacryloyl (GelMA) hydrogel. Groups included patterned constructs without BMP2/VEGF (None), with directly added BMP2/VEGF, and NG-BMP2/NG-VEGF. Based on the results, timed-release of VEGF in the microchannels in 10days from NG(10) and BMP2 in the matrix in 21days from NG(21) resulted in highest extent of osteogenic and vasculogenic differentiation of the encapsulated hMSCs and ECFCs compared to direct addition of VEGF and BMP2. Further, timed-release of VEGF from NG(10) in hMSC+ECFC encapsulating microchannels and BMP2 from NG(21) in hMSC encapsulating matrix sharply increased bFGF expression in the patterned constructs. The results suggest that mineralization and vascularization are coupled by localized secretion of paracrine signaling factors by the differentiating hMSCs and ECFCs. PMID:26721447

  18. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience.

    PubMed

    Grijalvo, Santiago; Mayr, Judith; Eritja, Ramon; Díaz, David Díaz

    2016-04-22

    Hydrogels are hydrophilic three-dimensional networks with demonstrated potential for medical and pharmaceutical applications. Specifically, biopolymer-based hydrogels offer certain advantages over synthetic polymers in terms of biocompatibility and biodegradability. Because of their inherent properties, hydrogels are able to efficiently encapsulate and liberate in a controlled release manner, different hydrophobic and hydrophilic therapeutic molecules, including nucleic acids, proteins and antibodies. Several strategies have been reported in the literature to minimize the potential burst release of encapsulated drugs, thus preventing their local accumulation and consequent toxic responses. Within this context, liposomes embedded in hydrogels have emerged as an attractive strategy to reduce this undesirable effect. This tutorial review covers a selection of the most promising cationic, neutral and anionic biopolymer-based hydrogels containing liposomes, niosomes or vesicles for drug delivery or tissue engineering applications. PMID:26818789

  19. Tamoxifen encapsulation within polyethylene glycol-coated nanospheres. A new antiestrogen formulation.

    PubMed

    Brigger, I; Chaminade, P; Marsaud, V; Appel, M; Besnard, M; Gurny, R; Renoir, M; Couvreur, P

    2001-02-19

    When dealing with solid tumors in vivo, pegylated long-circulating carrier systems show, after intravenous administration, an attractive extravasation profile with an enhanced localization in the tumoral interstitium. These systems could be of help for the delivery of cancer fighting drugs, such as Tamoxifen, a well known antiestrogen used in breast cancer therapy that possesses an extended biodistribution in vivo. This work aimed at encapsulating Tamoxifen in long-circulating poly(MePEGcyanoacrylate-co-hexadecylcyanoacrylate) 1:4 nanospheres. Tamoxifen-loaded poly(MePEGcyanoacrylate-co-hexadecylcyanoacrylate) nanospheres were successfully synthesized and characterized in terms of hydrophilicity/hydrophobicity by a model made up from near infrared spectra using principal component analysis. Zeta potential, drug loading, encapsulation efficiency, as well as biological effect, in vitro release and nanospheres integrity were also investigated. Even though near infrared spectroscopy could not detect Tamoxifen, it revealed that Pluronic F68 was associated with the pegylated nanospheres. HPLC measurements demonstrated that Tamoxifen was encapsulated in the pegylated nanospheres following a partition equilibrium between the polymeric and the aqueous phases. The Tamoxifen encapsulated in the nanospheres still showed a transcription inhibitory activity in ex vivo experiments. However, zeta potential and in vitro release suggested that Tamoxifen was essentially localized at the nanoparticles surface, resulting in an important and immediate drug release. PMID:11282234

  20. Noncovalent Surface Locking of Mesoporous Silica Nanoparticles for Exceptionally High Hydrophobic Drug Loading and Enhanced Colloidal Stability.

    PubMed

    Palanikumar, L; Kim, Ho Young; Oh, Joon Yong; Thomas, Ajesh P; Choi, Eun Seong; Jeena, M T; Joo, Sang Hoon; Ryu, Ja-Hyoung

    2015-09-14

    Advances in water-insoluble drug delivery systems are limited by selective delivery, loading capacity, and colloidal and encapsulation stability. We have developed a simple and robust hydrophobic-drug delivery platform with different types of hydrophobic chemotherapeutic agents using a noncovalent gatekeeper's technique with mesoporous silica nanoparticles (MSNs). The unmodified pores offer a large volume of drug loading capacity, and the loaded drug is stably encapsulated until it enters the cancer cells owing to the noncovalently bound polymer gatekeeper. In the presence of polymer gatekeepers, the drug-loaded mesoporous silica nanoparticles showed enhanced colloidal stability. The simplicity of drug encapsulation allows any combination of small chemotherapeutics to be coencapsulated and thus produce synergetic therapeutic effects. The disulfide moiety facilitates decoration of the nanoparticles with cysteine containing ligands through thiol-disulfide chemistry under mild conditions. To show the versatility of drug targeting to cancer cells, we decorated the surface of the shell-cross-linked nanoparticles with two types of peptide ligands, SP94 and RGD. The nanocarriers reported here can release encapsulated drugs inside the reducing microenvironment of cancer cells via degradation of the polymer shell, leading to cell death. PMID:26200587

  1. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  2. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  3. Preparation and characterization of hydrophobic superparamagnetic gel.

    SciTech Connect

    Liu, X.; Kaminski, M. D.; Guan, Y.; Chen, H.; Liu, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Pritzker School of Medicine; Chinese Academy of Sciences

    2006-01-01

    The present study describes the preparation and analysis of a highly concentrated hydrophobic oleic acid-coated magnetite gel. By contrast to conventional techniques to prepare magnetic fluids, herein the oleic acid was introduced as a reactant during the initial crystallization phase of magnetite that was obtained by the co-precipitation of Fe(II) and Fe(III) salts by addition of ammonium hydroxide. The resulting gelatinous hydrophobic magnetite was characterized in terms of morphology, particle size, magnetic properties, crystal structure, and hydrophobicity/hydrophilicity. This magnetic gel exhibited superparamagnetism with a saturation magnetization of 46.0 emu/g at room temperature and could be well dispersed both in polar and nonpolar carrier liquids. This protocol produced highly concentrated hydrophobic magnetic gel for biopolymer encapsulations.

  4. Novel biocompatible nanocapsules for slow release of fragrances on the human skin.

    PubMed

    Hosseinkhani, Baharak; Callewaert, Chris; Vanbeveren, Nelleke; Boon, Nico

    2015-01-25

    There is a growing demand for fragranced products, but due to the poor aqueous solubility and instability of fragrance molecules, their use is limited. Nowadays, fragrance encapsulation in biocompatible nanocontainer material is emerging as a novel strategy to overcome the evaporation of volatile molecules and to prolong the sensory characteristics of fragrance molecules and the longevity of perfumes. The objective of this study was to develop an innovative sustained release system of perfume, by entrapping fragrance molecules in a polymeric nanocarrier; the impact of this strategy on the human axillary microbiome was further assessed. Stabilised poly-l-lactic acid nanocapsules (PLA-NCs) with a diameter of approximately 115 nm were prepared through nanoprecipitation. Size and morphology of the capsules were evaluated using Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). Two model hydrophobic compounds, chlorobenzene and fluorescein, representing two different types of functionalised molecules, were encapsulated in PLA-NCs with an efficiency rate of 50%. Different release behaviours were seen, dependent on hydrophobicity. For hydrophobic compounds, a steady release was observed over 48hours. The polymeric nanocarriers did not impact the human axillary microbiome. Because of the slow and sustained release of fragrances, encapsulation of molecules in biocompatible NCs can represent a revolutionary contribution to the future of toiletries, body deodorant products, and in washing and cleaning sectors. PMID:25224920

  5. Encapsulation of lipophilic kiteplatin Pt(iv) prodrugs in PLGA-PEG micelles.

    PubMed

    Margiotta, Nicola; Savino, Salvatore; Denora, Nunzio; Marzano, Cristina; Laquintana, Valentino; Cutrignelli, Annalisa; Hoeschele, James D; Gandin, Valentina; Natile, Giovanni

    2016-08-16

    Biodegradable, PEG-coated, nanoparticles (NPs) have gained therapeutic application as injectable colloidal systems for the controlled and site-specific release of drugs. In this paper, encapsulation in PLGA-PEG polymer NPs has been exploited to lower the toxicity and to increase the antitumor activity of kiteplatin ([PtCl2(cis-1,4-DACH)]). Kiteplatin contains an isomeric form of the diamine ligand present in oxaliplatin and proved to be particularly active against ovarian and colon cancers. To favor encapsulation of the platinum drug in the hydrophobic core of the polymeric micelles, Pt(iv) prodrugs having hydrophobic carboxylic ligands at the axial positions were used in place of hydrophilic Pt(ii) complexes (compounds 1-4). The size, size distribution, and zeta potential (ZP) were measured by dynamic light scattering (DLS) and laser Doppler velocimetry (LDV), and drug encapsulation efficiency (EE) correlated to the alkyl chain length of the different Pt(iv) prodrugs. The number of the Pt atoms per NP (in the range of 1.3-2.4 × 10(6)) is comparable to that of polysilsesquioxane-based NPs and higher than that found for other nanoparticle platforms. The platinum-loaded PLGA-PEG NPs, tested in vivo in a syngeneic murine solid tumor (LLC), had a higher antitumor effect and, most importantly, were markedly less toxic than kiteplatin. PMID:27094010

  6. Antitumor Activity of Peptide Amphiphile Nanofiber-Encapsulated Camptothecin

    SciTech Connect

    Soukasene, Stephen; Toft, Daniel J.; Moyer, Tyson J.; Lu, Hsuming; Lee, Hyung-Kun; Standley, Stephany M.; Cryns, Vincent L.; Stupp, Samuel I.

    2012-04-02

    Self-assembling peptide amphiphile (PA) nanofibers were used to encapsulate camptothecin (CPT), a naturally occurring hydrophobic chemotherapy agent, using a solvent evaporation technique. Encapsulation by PA nanofibers was found to improve the aqueous solubility of the CPT molecule by more than 50-fold. PAs self-assembled into nanofibers in the presence of CPT as demonstrated by transmission electron microscopy. Small-angle X-ray scattering results suggest a slight increase in diameter of the nanofiber to accommodate the hydrophobic cargo. In vitro studies using human breast cancer cells show an enhancement in antitumor activity of the CPT when encapsulated by the PA nanofibers. In addition, using a mouse orthotopic model of human breast cancer, treatment with PA nanofiber-encapsulated CPT inhibited tumor growth. These results highlight the potential of this model PA system to be adapted for delivery of hydrophobic therapies to treat a variety of diseases including cancer.

  7. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOEpatents

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  8. Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability.

    PubMed

    Wang, Shanshan; Chen, Yuying; Liang, Hao; Chen, Yiming; Shi, Mengxuan; Wu, Jiande; Liu, Xianwu; Li, Zuseng; Liu, Bin; Yuan, Qipeng; Li, Yuan

    2015-10-01

    An intestine-specific delivery system for hydrophobic bioactives with improved stability was developed. It consists of oxidized potato starch polymers, where the carboxyl groups were physically cross-linked via ferric ions. The model hydrophobic ingredients (β-carotene) were incorporated inside the starch microspheres via a double-emulsion method. Confocal laser scanning microscopy images showed that β-carotene were distributed homogeneously in the inner oil phase of the starch microspheres. The negative value of the ζ-potential of microspheres increased with increasing pH and decreasing ionic strength. In vitro release experiments showed that the microspheres were stable at acidic stomach conditions (pH < 2), whereas at neutral intestinal conditions (pH 7.0), they rupture to release the loaded β-carotene. The 1,1-diphenyl-2-picrylhydrazyl radical, 2,2-diphenyl-1-(2,4,6-trinitriphenyl), scavenging activity results suggested that microsphere-encapsulated β-carotene had an improved activity after thermal treatment at 80 °C. The storage stability of encapsulated β-carotene at room temperature was also enhanced. The starch microspheres showed potential as intestine-specific carriers with an enhanced stability. PMID:26414436

  9. Capsules with external navigation and triggered release.

    PubMed

    Shchukin, Dmitry G; Shchukina, Elena

    2014-10-01

    Encapsulation is an important technology for pharmaceutical industry, food production, et cetera. Its current level of development requires capsule functionalization. One of the interesting ideas to provide new functionality to the microcapsule and nanocapsule is layer-by-layer deposition of functional species. This technique provides step-by-step adsorption of various species (polyelectrolytes, nanoparticles, proteins) when the layer growth is controlled by electrostatic, hydrogen bonding, hydrophobic forces and forming multilayer shells with nanometer precision. This review article introduces recent achievements of layer-by-layer technique attaining external navigation ability and release properties the capsule shell. PMID:25233260

  10. Amphiphilic Interpenetrating Networks for the Delivery of Hydrophobic, Low Molecular Weight Therapeutic Agents

    PubMed Central

    Schoener, Cody A.; Hutson, Heather N.; Fletcher, Grace K.; Peppas, Nicholas A.

    2011-01-01

    To investigate the delivery of hydrophobic therapeutic agents, a novel class of interpenetrating networks (IPNs) were synthesized and composed of two networks: methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and poly(n-butyl acrylate) (PBA). The hydrophilic P(MAA-g-EG) networks are pH-responsive hydrogels capable of triggered release of an encapsulated therapeutic agent, such as a low molecular weight drug or a protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). PBA is a hydrophobic homopolymer that can affect the IPN swelling behavior, the therapeutic agent loading efficiencies in IPNs, and solute release profiles from IPNs. In dynamic swelling conditions, IPNs had greater swelling ratios than P(MAA-g-EG), but in equilibrium swelling conditions the IPN swelling ratio decreased with increasing PBA content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 21 – 44%. Release studies from neat P(MAA-g-EG) and the ensuing IPNs indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophilicity of the carriers used in these studies. PMID:22247592

  11. Encapsulation of Organic Chemicals within a Starch Matrix.

    ERIC Educational Resources Information Center

    Wing, R. E.; Shasha, B. S.

    1983-01-01

    Three experiments demonstrating the feasibility of encapsulating liquids within a starch matrix are described, including encapsulation of linseed oil using the zanthate method and of turpentine and butylate using the calcium adduct procedure. Encapsulated materials, including pesticides, are slowly released from the resulting matrix. Considers…

  12. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  13. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    PubMed

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    The present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described. The hydrophobicity of AZD2811 was increased through formation of ion pairs with these hydrophobic counterions, producing nanoparticles with exceptionally high drug loading-up to five fold higher encapsulation efficiency and drug loading compared to nanoparticles made without hydrophobic ion pairs. Furthermore, the rate at which the drug was released from the nanoparticles could be controlled by employing counterions with various hydrophobicities and structures, resulting in release half-lives ranging from about 2 to 120h using the same polymer, nanoparticle size, and nanoemulsion process. Process recipe variables affecting drug load and release rate were identified, including pH and molarity of quench buffer. Ion pair formation between AZD2811 and pamoic acid as a model counterion was investigated using solubility enhancement as well as nuclear magnetic resonance spectroscopy to demonstrate solution-state interactions. Further evidence for an ion pairing mechanism of controlled release was provided through the measurement of API and counterion release profiles using high-performance liquid chromatography, which had stoichiometric relationships. Finally, Raman spectra of an AZD2811-pamoate salt compared well with those of the formulated nanoparticles, while single components (AZD2811, pamoic acid) alone did not. A library of AZD2811 batches was created for analytical and preclinical characterization. Dramatically improved

  14. Local Affinity Release.

    PubMed

    Delplace, Vianney; Obermeyer, Jaclyn; Shoichet, Molly S

    2016-07-26

    The use of hydrogels for therapeutic delivery is a burgeoning area of investigation. These water-swollen polymer matrices are ideal platforms for localized drug delivery that can be further combined with specific ligands or nanotechnologies to advance the controlled release of small-molecule drugs and proteins. Due to the advantage of hydrophobic, electrostatic, or specific extracellular matrix interactions, affinity-based strategies can overcome burst release and challenges associated with encapsulation. Future studies will provide innovative binding tools, truly stimuli-responsive systems, and original combinations of emerging technologies to control the release of therapeutics spatially and temporally. Local drug delivery can be achieved by directly injecting a therapeutic to its site of action and is advantageous because off-target effects associated with systemic delivery can be minimized. For prolonged benefit, a vehicle that provides sustained drug release is required. Hydrogels are versatile platforms for localized drug release, owing to the large library of biocompatible building blocks from which they can be formed. Injectable hydrogel formulations that gel quickly in situ and provide sustained release of therapeutics are particularly advantageous to minimize invasiveness. The incorporation of polymers, ligands or nanoparticles that have an affinity for the therapeutic of interest improve control over the release of small-molecule drugs and proteins from hydrogels, enabling spatial and temporal control over the delivery. Such affinity-based strategies can overcome drug burst release and challenges associated with protein instability, allowing more effective therapeutic molecule delivery for a range of applications from therapeutic contact lenses to ischemic tissue regeneration. PMID:27403513

  15. Encapsulated environment.

    PubMed

    McLellan, Tom M; Daanen, Hein A M; Cheung, Stephen S

    2013-07-01

    In many occupational settings, clothing must be worn to protect individuals from hazards in their work environment. However, personal protective clothing (PPC) restricts heat exchange with the environment due to high thermal resistance and low water vapor permeability. As a consequence, individuals who wear PPC often work in uncompensable heat stress conditions where body heat storage continues to rise and the risk of heat injury is greatly enhanced. Tolerance time while wearing PPC is influenced by three factors: (i) initial core temperature (Tc), affected by heat acclimation, precooling, hydration, aerobic fitness, circadian rhythm, and menstrual cycle (ii) Tc tolerated at exhaustion, influenced by state of encapsulation, hydration, and aerobic fitness; and (iii) the rate of increase in Tc from beginning to end of the heat-stress exposure, which is dependent on the clothing characteristics, thermal environment, work rate, and individual factors like body composition and economy of movement. Methods to reduce heat strain in PPC include increasing clothing permeability for air, adjusting pacing strategy, including work/rest schedules, physical training, and cooling interventions, although the additional weight and bulk of some personal cooling systems offset their intended advantage. Individuals with low body fatness who perform regular aerobic exercise have tolerance times in PPC that exceed those of their sedentary counterparts by as much as 100% due to lower resting Tc, the higher Tc tolerated at exhaustion and a slower increase in Tc during exercise. However, questions remain about the importance of activity levels, exercise intensity, cold water ingestion, and plasma volume expansion for thermotolerance. PMID:23897690

  16. Increased fiber outgrowth from xeno-transplanted human embryonic dopaminergic neurons with co-implants of polymer-encapsulated genetically modified cells releasing glial cell line-derived neurotrophic factor.

    PubMed

    Ahn, Young-Hwan; Bensadoun, Jean-Charles; Aebischer, Patrick; Zurn, Anne D; Seiger, Ake; Björklund, Anders; Lindvall, Olle; Wahlberg, Lars; Brundin, Patrik; Kaminski Schierle, Gabriele S

    2005-07-30

    We investigated whether a continuous supply of glial cell line-derived neurotrophic factor (GDNF) via encapsulated genetically modified cells can promote survival and fiber outgrowth from xenotransplanted human dopaminergic neurons. Cells genetically engineered to continuously secrete GDNF were confined in hollow fiber-based macrocapsules. Each hemiparkinsonian rat received either a single C2C12-hGDNF capsule (n=8) or a C2C12-control capsule (n=8) concomitantly with human embryonic ventral mesencephalic cell suspension transplants. Our results show that fiber outgrowth in the area between the capsule and the graft is more extensive in rats with GDNF-releasing capsules than in rats with control capsules. We suggest that continuous and safe delivery of GDNF to the brain could be a potential way to optimize neural transplantation as a therapy for Parkinson's disease. PMID:15982530

  17. Amphiphilic block copolyesters bearing pendant cyclic ketal groups as nanocarriers for controlled release of camptothecin

    PubMed Central

    Wang, Xiaoying; Gurski, Lisa A.; Zhong, Sheng; Xu, Xian; Pochan, Darrin J.; Farach-Carson, Mary C.; Jia, Xinqiao

    2010-01-01

    Amphiphilic block copolymers consisting of hydrophilic poly(ethylene glycol) and hydrophobic polyester bearing pendent cyclic ketals were synthesized by ring-opening copolymerization of ε-caprolactone (CL) and 1,4,8-trioxaspiro-[4,6]-9-undecanone (TSU) using α-hydroxyl, ω-methoxy, polyethylene glycol as the initiator and stannous octoate as the catalyst. Compositional analyses indicate that TSU was randomly distributed in the hydrophobic blocks. When the TSU content in the copolymers increased, the polymer crystallinity decreased progressively and the glass transition temperature increased accordingly. Hydrophobic, anticancer drug, camptothecin (CPT), was successfully encapsulated in the block copolymer nanoparticles. The CPT encapsulation efficiency and release kinetics were strongly dependent on the copolymer composition and crystallinity. CPT release from nanoparticles constructed from copolymers containing 0, 39 and 100 mol% TSU in the hydrophobic block followed the same trend, with an initial burst of ~40% within one day followed by a moderate and slow release lasting up to 7 days. At a TSU content of 14 mol%, CPT was released in a continuous and controlled fashion with a reduced initial burst and a 73% cumulative release by day 7. In vitro cytoxicity assay showed that the blank nanoparticles were not toxic to the cultured bone metastatic prostate cancer cells (C4-2B). Compared to the free drug, the encapsulated CPT was more effective in inducing apoptotic responses in C4-2B cells. Modulating the physical characteristics of the amphiphilic copolymers via copolymerization offers a facile method for controlling the bioavailability of anticancer drugs ultimately increasing effectiveness and minimizing toxicity. PMID:20594408

  18. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    PubMed

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37±10.45nm with excellent drug encapsulation efficiency (95.66±2.25%) and loading (8.69±0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel. PMID:26792170

  19. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  20. The role of hyaluronic acid inclusion on the energetics of encapsulation and release of a protein molecule from chitosan-based nanoparticles.

    PubMed

    Al-Qadi, Sonia; Alatorre-Meda, Manuel; Martin-Pastor, Manuel; Taboada, Pablo; Remuñán-López, Carmen

    2016-05-01

    The synergistic effects of the polysaccharides chitosan (CS) and hyaluronic acid (HA) formulated into hybrid nanoparticles are promising for drug delivery. In the present work, we performed a detailed analysis of the molecular interactions involved in the TPP-assisted ionotropic gelation of CS hybrid nanoparticles with the objective of investigating the impact of HA inclusion on the particle formulation and on the in vitro release of insulin (INS) as a protein cargo. To do that, an in-depth thermodynamic study was carried out by isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. Such analysis allowed us to elucidate the type and extent of interactions established by INS within the hybrid nanoparticles and to get further knowledge on the nature of its release mechanism in vitro. Overall, INS release from the CS nanoparticles was thermodynamically driven, and when including HA a weaker INS binding to the nanoparticles, hence, a faster release rate in vitro were observed. As a negative polyelectrolyte, HA might have sterically blocked the activated sites of CS, such as the amino groups, through chain entanglement, thereby, attenuating the competitive binding interactions of INS. As a consequence, INS might have experienced a spatial exclusion onto the surface of the hybrid nanoparticles to a greater extent which, in turn, would explain its initial abrupt release. PMID:26854581

  1. Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections.

    PubMed

    Imbuluzqueta, Edurne; Elizondo, Elisa; Gamazo, Carlos; Moreno-Calvo, Evelyn; Veciana, Jaume; Ventosa, Nora; Blanco-Prieto, María J

    2011-04-01

    Gentamicin (GEN) is an aminoglycoside antibiotic with a potent antibacterial activity against a wide variety of bacteria. However, its poor cellular penetration limits its use in the treatment of infections caused by intracellular pathogens. One potential strategy to overcome this problem is the use of particulate carriers that can target the intracellular sites of infection. In this study GEN was ion-paired with the anionic AOT surfactant to obtain a hydrophobic complex (GEN-AOT) that was formulated as a particulated material either by the precipitation with a compressed antisolvent (PCA) method or by encapsulation into poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The micronization of GEN-AOT by PCA yielded a particulated material with a higher surface area than the non-precipitated complex, while PLGA NPs within a size range of 250-330 nm and a sustained release of the drug over 70 days were obtained by preparing the NPs using the emulsion solvent evaporation method. For the first time, GEN encapsulation efficiency values of ∼100% were achieved for the different NP formulations with no signs of interaction between the drug and the polymer. Finally, in vitro studies against the intracellular bacteria Brucella melitensis, used as a model of intracellular pathogen, demonstrated that the bactericidal activity of GEN was unmodified after ion-pairing, precipitation or encapsulation into NPs. These results encourage their use for treatment for infections caused by GEN-sensitive intracellular bacteria. PMID:21115143

  2. Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel.

    PubMed

    Sun, Jessie E P; Stewart, Brandon; Litan, Alisa; Lee, Seung Joon; Schneider, Joel P; Langhans, Sigrid A; Pochan, Darrin J

    2016-05-26

    MAX8 β-hairpin peptide hydrogel is a solid, preformed gel that can be syringe injected due to shear-thinning properties and can recover solid gel properties immediately after injection. This behavior makes the hydrogel an excellent candidate as a local drug delivery vehicle. In this study, vincristine, a hydrophobic and commonly used chemotherapeutic, is encapsulated within MAX8 hydrogel and shown to release constantly over the course of one month. Vincristine was observed to be cytotoxic in vitro at picomolar to nanomolar concentrations. The amounts of drug released from the hydrogels over the entire time-course were in this concentration range. After encapsulation, release of vincristine from the hydrogel was observed for four weeks. Further characterization showed the vincristine released during the 28 days remained biologically active, well beyond its half-life in bulk aqueous solution. This study shows that vincristine-loaded MAX8 hydrogels are excellent candidates as drug delivery vehicles, through sustained, low, local and effective release of vincristine to a specific target. Oscillatory rheology was employed to show that the shear-thinning and re-healing, injectable-solid properties that make MAX8 a desirable drug delivery vehicle are unaffected by vincristine encapsulation. Rheology measurements also were used to monitor hydrogel nanostructure before and after drug encapsulation. PMID:26906463

  3. Magnetocubosomes for the delivery and controlled release of therapeutics.

    PubMed

    Montis, Costanza; Castroflorio, Benedetta; Mendozza, Marco; Salvatore, Annalisa; Berti, Debora; Baglioni, Piero

    2015-07-01

    The design of nanostructured drug delivery systems (DDS) that improve the efficacy of therapeutic principles by enhancing their biocompatibility, bioavailability and targeting, has been the focus of extensive research over the past years. Of particular relevance in this field is the development of multifunctional architectures that can deliver different therapeutics or diagnostic agents and release them in a controlled way. In this study we report on the design, preparation and characterization of a DDS where hydrophobic Fe3O4 magnetic nanoparticles (NPs) are included in the bilayer of bicontinuous cubic lipid nanoparticles of Glyceryl Monooleate (GMO). The "magnetocubosomes" are characterized and investigated in terms of their ability to encapsulate and release both hydrophilic and hydrophobic model drugs. For the first time Fluorescence Correlation Spectroscopy (FCS) is used to study the diffusion of encapsulated molecules inside the bicontinuous cubic phase and to monitor their release from the matrix towards the aqueous phase. In addition, we show with the same technique that magnetocubosomes are responsive to a low frequency alternating magnetic field (LF-AMF), which acts as an external trigger to boost the release of model drugs confined in the cubic phase. Magnetocubosomes, reported for the first time in this paper, represent a novel biocompatible, multifunctional and responsive DDS. PMID:25533536

  4. Essential oils: from extraction to encapsulation.

    PubMed

    El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A

    2015-04-10

    Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. PMID:25683145

  5. Module encapsulation technology

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    The identification and development techniques for low-cost module encapsulation materials were reviewed. Test results were displayed for a variety of materials. The improved prospects for modeling encapsulation systems for life prediction were reported.

  6. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  7. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    PubMed

    Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system. PMID:25470374

  8. Modulating Drug Release from Gastric-Floating Microcapsules through Spray-Coating Layers

    PubMed Central

    Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system. PMID:25470374

  9. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid.

    PubMed

    Aytac, Zeynep; Kusku, Semran Ipek; Durgun, Engin; Uyar, Tamer

    2016-06-01

    Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and (1)H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers. PMID:27040215

  10. Functionalized nanoscale oil bodies for targeted delivery of a hydrophobic drug

    NASA Astrophysics Data System (ADS)

    Chiang, Chung-Jen; Lin, Che-Chin; Lu, Tzu-Li; Wang, Hesin-Fu

    2011-10-01

    Effective formulations of hydrophobic drugs for cancer therapies are challenging. To address this issue, we have sought to nanoscale artificial oil bodies (NOBs) as an alternative. NOBs are lipid-based particles which consist of a central oil space surrounded by a monolayer of oleosin (Ole)-embedded phospholipids (PLs). Ole was first fused with the anti-HER2/neu affibody (Ole-ZH2), and the resulting hybrid protein was overproduced in Escherichia coli. ZH2-displayed NOBs were then assembled by sonicating the mixture containing plant oil, PLs, and isolated Ole-ZH2 in one step. To illustrate their usefulness, functionalized NOBs were employed to encapsulate a hydrophobic anticancer drug, Camptothecin (CPT). As a result, these CPT-loaded NOBs remained stable in serum and the release of CPT at the non-permissive condition exhibited a sustained and prolonged profile. Moreover, plain NOBs were biocompatible whereas CPT-loaded NOBs exerted a strong cytotoxic effect on HER2/neu-positive cells in vitro. Administration of xenograft nude mice with CPT-loaded NOBs also led to the regression of solid tumors in an effective way. Overall, the result indicates the potential of NOBs for targeted delivery of hydrophobic drugs.

  11. Hydrophobic photonic crystal fibers.

    PubMed

    Xiao, Limin; Birks, T A; Loh, W H

    2011-12-01

    We propose and demonstrate hydrophobic photonic crystal fibers (PCFs). A chemical surface treatment for making PCFs hydrophobic is introduced. This repels water from the holes of PCFs, so that their optical properties remain unchanged even when they are immersed in water. The combination of a hollow core and a water-repellent inner surface of the hydrophobic PCF provides an ultracompact dissolved-gas sensor element, which is demonstrated for the sensing of dissolved ammonia gas. PMID:22139276

  12. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  13. Interfacial Rheology of Hydrogen-Bonded Polymer Multilayers Assembled at Liquid Interfaces: Influence of Anchoring Energy and Hydrophobic Interactions.

    PubMed

    Le Tirilly, Sandrine; Tregouët, Corentin; Reyssat, Mathilde; Bône, Stéphane; Geffroy, Cédric; Fuller, Gerald; Pantoustier, Nadège; Perrin, Patrick; Monteux, Cécile

    2016-06-21

    We study the 2D rheological properties of hydrogen-bonded polymer multilayers assembled directly at dodecane-water and air-water interfaces using pendant drop/bubble dilation and the double-wall ring method for interfacial shear. We use poly(vinylpyrrolidone) (PVP) as a proton acceptor and a series of polyacrylic acids as proton donors. The PAA series of chains with varying hydrophobicity was fashioned from poly(acrylic acid), (PAA), polymethacrylic acid (PMAA), and a homemade hydrophobically modified polymer. The latter consisted of a PAA backbone covalently grafted with C12 moieties at 1% mol (referred to as PAA-1C12). Replacing PAA with the more hydrophobic PMAA provides a route for combining hydrogen bonding and hydrophobic interactions to increase the strength and/or the number of links connecting the polyacid chains to PVP. This systematic replacement allows for control of the ability of the monomer units inside the absorbed polymer layer to reorganize as the interface is sheared or compressed. Consequently, the interplay of hydrogen bonding and hydrophobic interactions leads to control of the resistance of the polymer multilayers to both shear and dilation. Using PAA-1C12 as the first layer improves the anchoring energy of a few monomers of the chain without changing the strength of the monomer-monomer contact in the complex layer. In this way, the layer does not resist shear but resists compression. This strategy provides the means for using hydrophobicity to control the interfacial dynamics of the complexes adsorbed at the interface of the bubbles and droplets that either elongate or buckle upon compression. Moreover, we demonstrate the pH responsiveness of these interfacial multilayers by adding aliquots of NaOH to the acidic water subphase surrounding the bubbles and droplets. Subsequent pH changes can eventually break the polymer complex, providing opportunities for encapsulation/release applications. PMID:27176147

  14. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.

    PubMed

    Ungaro, Francesca; d'Angelo, Ivana; Coletta, Ciro; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Perfetto, Brunella; Tufano, Maria Antonietta; Miro, Agnese; La Rotonda, Maria Immacolata; Quaglia, Fabiana

    2012-01-10

    Although few experimental studies have been handled so far to exploit the potential of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in the production of dry powders for antibiotic inhalation, there has been no comprehensive study on the role played by NP composition. In this work, we try to shed light on this aspect by designing and developing a pulmonary delivery system for antibiotics, such as tobramycin (Tb), based on PLGA NPs embedded in an inert microcarrier made of lactose, referred to as nano-embedded micro-particles (NEM). At nanosize level, helper hydrophilic polymers were used to impart the desired surface, bulk and release properties to PLGA NPs prepared by a modified emulsion-solvent diffusion technique. Results showed that poly(vinyl alcohol) (PVA) and chitosan (CS) are essential to optimise the size and modulate the surface properties of Tb-loaded PLGA NPs, whereas the use of alginate (Alg) allows efficient Tb entrapment within NPs and its release up to one month. Optimized formulations display good in vitro antimicrobial activity against P. aeruginosa planktonic cells. Furthermore, spray-drying of the NPs with lactose yielded NEM with peculiar but promising flow and aerosolization properties, while preserving the peculiar NP features. Nonetheless, in vivo biodistribution studies showed that PVA-modified Alg/PLGA NPs reached the deep lung, while CS-modified NPs were found in great amounts in the upper airways, lining lung epithelial surfaces. In conclusion, PLGA NP composition appears to play a crucial role in determining not only the technological features of NPs but, once processed in the form of NEM, also their in vitro/in vivo deposition pattern. PMID:21864595

  15. Hydrophobic character of pretreated coal surfaces

    SciTech Connect

    Jin, R.; Ye, Y.; Miller, J.D.

    1988-01-01

    Increased hydrophobicity and hence the flotability of coals of different rank has been observed for CO/sub 2/ pretreatment and/or controlled thermal pretreatment. DRIFT- and ATR-FTIR and XPS techniques have been used to determine the surface chemical characteristics in order to evaluate coal hydrophobicity. These results agree very well with those determined by traditional methods. The enhanced hydrophobicity of CO/sub 2/-treated coal is attributed to the high specific affinity of coal for CO/sub 2/ which results in the displacement of pore water and hydration water by CO/sub 2/ and on pressure release leads to nanobubble formation at the coal surface in aqueous suspension. Increased hydrophobicity of lignite by thermal treatment arises from the removal of pore water, hydration water and some organic OH functional groups as well as the diffusion of volatile matter to the surface and the reorientation of surface functional groups.

  16. Prediction of coal hydrophobicity

    SciTech Connect

    Labuschagne, B.C.J.; Wheelock, T.D.; Guo, R.K.; David, H.T.; Markuszewski, R.

    1988-12-31

    Many coals exhibit a certain degree of native hydrophobicity. The more hydrophobic coals (the higher-rank coals) are easily beneficiated by froth flotation or oil agglomeration, while the more hydrophilic coals (the lower-rank coals) are floated or agglomerated with difficulty. Coals of different ranks and often even of the same rank sometimes differ greatly in hydrophobicity as measured by contact angle or natural floatability. Although the degree of hydrophobicity of a coal is related to its rank and has been correlated with other surface properties of the coal , the known information is still not sufficient to allow a good estimation to be made of the hydrophobicity of a given coal and does not explain the variation of coal hydrophobicity as a function of rank. A statistical analysis of previously published data, as well as newly acquired data, shows that coal hydrophobicity correlates better with moisture content than with carbon content, and better with the moisture/carbon molar ratio than with the hydrogen/carbon or oxygen/carbon atomic ratios. These findings indicate that there is a strong association between hydrophobicity and coal moisture content.

  17. Triggered Release from Polymer Capsules

    SciTech Connect

    Esser-Kahn, Aaron P.; Odom, Susan A.; Sottos, Nancy R.; White, Scott R.; Moore, Jeffrey S.

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  18. Photochemical mechanisms of light-triggered release from nanocarriers

    PubMed Central

    Fomina, Nadezda; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-01-01

    Over the last three decades, a handful of photochemical mechanisms have been applied to a large number of nanoscale assemblies that encapsulate a payload to afford spatio-temporal and remote control over activity of the encapsulated payload. Many of these systems are designed with an eye towards biomedical applications, as spatio-temporal and remote control of bioactivity would advance research and clinical practice. This review covers five underlying photochemical mechanisms that govern the activity of the majority of photoresponsive nanocarriers: 1. photo driven isomerization and oxidation, 2. surface plasmon absorption and photothermal effects, 3. photo driven hydrophobicity changes, 4. photo driven polymer backbone fragmentation and 5. photo driven de-crosslinking. The ways in which these mechanisms have been incorporated into nanocarriers and how they affect release is detailed, as well as the advantages and disadvantages of each system. PMID:22386560

  19. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  20. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  1. Multiple polymersomes for programmed release of multiple components.

    PubMed

    Kim, Shin-Hyun; Shum, Ho Cheung; Kim, Jin Woong; Cho, Jun-Cheol; Weitz, David A

    2011-09-28

    Long-term storage and controlled release of multiple components while avoiding cross-contamination have potentially important applications for pharmaceuticals and cosmetics. Polymersomes are very promising delivery vehicles but cannot be used to encapsulate multiple independent components and release them in a controlled manner. Here, we report a microfluidic approach to produce multiple polymersomes, or polymersomes-in-polymersome by design, enabling encapsulation and programmed release of multiple components. Monodisperse polymersomes are prepared from templates of double-emulsion drops, which in turn are injected as the innermost phase to form the second level of double-emulsion drops, producing double polymersomes. Using the same strategy, higher-order polymersomes are also prepared. In addition, incorporation of hydrophobic homopolymer into the different bilayers of the multiple polymersomes enables controlled and sequential dissociation of the different bilayer membranes in a programmed fashion. The high encapsulation efficiency of this microfluidic approach, as well as its programmability and the biocompatibility of the materials used to form the polymersomes, will provide new opportunities for practical delivery systems of multiple components. PMID:21838246

  2. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins.

    PubMed

    Joye, Iris J; Davidov-Pardo, Gabriel; Ludescher, Richard D; McClements, David J

    2015-10-15

    Several health benefits have been ascribed to consumption of resveratrol, a polyphenol that can be extracted from grape skins. However, its use as a nutraceutical ingredient is compromised by its low water solubility, chemical stability, and bioavailability. Encapsulation of resveratrol in protein nanoparticles can be used to overcome these issues. Fluorescence quenching experiments were used to study the interaction of resveratrol with gliadin and zein. Resveratrol interacted with both proteins, but the binding constant was higher for zein than for gliadin at 35 °C. Furthermore, binding between resveratrol and gliadin increased at higher temperatures, which was not observed for zein. Analysis of the thermodynamic parameters suggested that resveratrol-gliadin binding mainly occurs through hydrophobic interactions while the binding with zein is predominantly mediated through hydrogen bonds. These results help rationalise ingredient selection and production of protein nanoparticles and microparticles for encapsulation, protection and release of resveratrol and potentially other bioactive compounds. PMID:25952867

  3. A novel multifunctional poly(amidoamine) dendrimeric delivery system with superior encapsulation capacity for targeted delivery of the chemotherapy drug 10-hydroxycamptothecin.

    PubMed

    Kong, Xiuqi; Yu, Kui; Yu, Min; Feng, Yupeng; Wang, Jin; Li, Mingjie; Chen, Zeming; He, Minghao; Guo, Rui; Tian, Ruisong; Li, Yuxi; Wu, Wenjie; Hong, Zhangyong

    2014-04-25

    With the aim of developing an efficient targeted delivery system for cancer therapy that overcomes drug leakage during circulation, we prepared a novel multifunctional dendrimeric carrier by integrating long hydrophobic C₁₂ alkyl chains, poly(ethylene glycol) chains and c(RGDfK) ligands presented on the surface. This dendrimer was able to tightly encapsulate the hydrophobic anticancer drug 10-hydroxycamptothecin (10-HCPT) through simple complexation and selectively target the drug to cancer cells overexpressing integrin αvβ₃ through high affinity interactions. The complex has a high loading efficiency, with each molecule encapsulating approximately 20 drug molecules; high stability, without any detectable drug release during dialysis for three days; and high water solubility, achieving an approximately 600-fold increase over the water solubility of free 10-HCPT. This complex exhibited notably high cytotoxicity against 22RV1 cells overexpressing integrin αvβ₃ and a far lower cytotoxicity against MCF-7 cells, which express low levels of integrin αvβ₃. We expected encapsulated 10-HCPT to regain its anti-cancer activity following selective internalization of the complex into carcinoma cells via integrin receptor mediated endocytosis. As the drug remains inactive before internalization, this carrier has the ability to overcome problems associated with drug leakage in the circulation and off-target effects on normal tissues. PMID:24530519

  4. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  5. Anti-Tumor Activity of Peptide Amphiphile Nanofiber-Encapsulated Camptothecin

    PubMed Central

    Soukasene, Stephen; Toft, Daniel J.; Moyer, Tyson J.; Lu, Hsuming; Lee, Hyung-Kun; Standley, Stephany M.; Cryns, Vincent L.; Stupp, Samuel I.

    2011-01-01

    Self-assembling peptide amphiphile (PA) nanofibers were used to encapsulate camptothecin (CPT), a naturally occurring hydrophobic chemotherapy agent, using a solvent evaporation technique. Encapsulation by PA nanofibers was found to improve the aqueous solubility of the CPT molecule by more than 50-fold. PAs self-assembled into nanofibers in the presence of CPT as demonstrated by transmission electron microscopy. Small-angle X-ray scattering results suggest a slight increase in diameter of the nanofiber to accommodate the hydrophobic cargo. In vitro studies using human breast cancer cells show an enhancement in antitumor activity of the CPT when encapsulated by the PA nanofibers. In addition, using a mouse orthotopic model of human breast cancer, treatment with PA nanofiber encapsulated CPT inhibited tumor growth. These results highlight the potential of this model PA system to be adapted for delivery of hydrophobic therapies to treat a variety of diseases including cancer. PMID:22044255

  6. Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers.

    PubMed

    de Freitas Zômpero, Rafael Henrique; López-Rubio, Amparo; de Pinho, Samantha Cristina; Lagaron, José María; de la Torre, Lucimara Gaziola

    2015-10-01

    Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes incorporated within the polymeric ultrathin fibers produced through electrospinning were developed to improve the photostability of the antioxidant. These novel materials were intended to incorporate β-carotene into water-based food formulations, overcoming the existing limitations associated with its hydrophobic character. Initially, both empty and antioxidant-loaded nanoliposomes were developed and incorporated into polyvinyl alcohol (PVOH) and polyethylene oxide (PEO) solutions. The changes in the solution properties were evaluated to determine their effects on the electrospinning processing. The mixed polymer solutions were subsequently electrospun to produce hybrid nanoliposome-loaded ultrathin fibers. FTIR analysis confirmed the presence of phospholipid molecules inside the electrospun fibers. These ultrathin fibers were evaluated regarding their morphology, diameter, internal β-carotene distribution and stability against UV irradiation. Liposomal release studies from the electrospun fibers were also undertaken, confirming the presence of the liposomal structures after dissolving the electrospun fibers in water. PMID:25819464

  7. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGESBeta

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; Xu, Huifang; Rathod, Shailendra; Shah, Pratik; Brinker, C. Jeffrey

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  8. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  9. Stability of lipid encapsulated ferulic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...

  10. Electrohydrodynamics Near Hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Maduar, S. R.; Belyaev, A. V.; Lobaskin, V.; Vinogradova, O. I.

    2015-03-01

    We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.

  11. Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics.

    PubMed

    Niaz, Taskeen; Shabbir, Saima; Manzoor, Shahid; Rehman, Asma; Rahman, Abdur; Nasir, Habib; Imran, Muhammad

    2016-05-20

    Prime risk factor behind cardiovascular associated mortality and morbidity is hypertension. The main challenge with antihypertensive (AHT) drug therapy is their extreme hydrophobic nature and very low oral bio-availability; which result into higher dosage/frequency and associated side effects of drugs. The main objective of this study was to fabricate AHT nano-ceuticals in hydrophilic carriers of natural origin to improve drugs' solubility, protection and sustained release. AHT nano-carrier systems (NCS) encapsulating captopril, amlodipine and valsartan were fabricated using chitosan (CS) polymer by ionic gelation assisted ultra-sonication method. Drug encapsulation efficiencies of 92±1.6%, 91±0.9% and 87±0.5% were observed for captopril, valsartan and amlodipine respectively. Scanning electron microscopy (SEM) based analysis had revealed that captopril loaded polymeric NCS were regular, smooth and without any agglomeration. FTIR analyses of drug loaded and empty NCS demonstrated that drugs were molecularly dispersed inside the nanoparticles via week hydrogen bonding. Captopril and valsartan have demonstrated grafting reaction with N-H group of chitosan. Zeta sizer results had confirmed that average size of chitosan nanoparticles was below 100 nm. Encapsulation of captopril had reduced the surface charge value from +52.6±4.8 to +46.5±5.2 mV. Controlled release evaluation of highly encapsulated drug captopril had revealed a slow release in vitro from NCS in physiological buffer. Thus, here reported innovative AHT nano-ceuticals of polymeric origin can improve the oral administration of currently available hydrophobic drugs while providing the extended-release function. PMID:26917399

  12. Dual Stimuli-Responsive Hybrid Polymeric Nanoparticles Self-Assembled from POSS-Based Starlike Copolymer-Drug Conjugates for Efficient Intracellular Delivery of Hydrophobic Drugs.

    PubMed

    Yang, Qingqing; Li, Lian; Sun, Wei; Zhou, Zhou; Huang, Yuan

    2016-06-01

    To further fine tune drug release and enhance therapeutic effects of polyhedral oligomericsilsesquioxane (POSS)-based nanomedicine, a starlike organic-inorganic conjugate was synthesized by grafting semitelechelic N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers to a POSS rigid core through reductively degradable disulfide bonds. The hydrophobic docetaxel (DTX) was attached to the grafts by pH-sensitive hydrazone bonds and also encapsulated into the POSS core (SP-DTX). Thus, the final amphiphilic star-shaped conjugates could self-assemble into nanoparticles and exhibited conspicuous drug-loading capacity (20.1 wt %) based on the covalently conjugated accompanied by physically encapsulated DTX. The stimuli-responsive DTX release under acidic lysosomal and reducing cytoplasmic environments was verified, leading to enhanced cytotoxicity against PC-3 human prostate carcinoma cells. To evaluate the in vivo therapeutic effects of the DTX-loaded nanovehicles objectively, a stroma-rich, prostate xenograft tumor model was generated. SP-DTX displayed uniform tumor distribution and suppressed tumor growth to a more pronounced level (tumor inhibition of 78.9%) than nonredox-sensitive SP-DTX-A (67.4%), SP-DTX-C contained DTX only in the core (65.5%) or linear P-DTX (60.7%) through enhanced depletion of cancer-associated fibroblasts and induction of apoptosis. The hybrid POSS-based polymeric nanoparticles offer an efficient approach to transport hydrophobic drugs for cancer therapy. PMID:27167898

  13. Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots

    PubMed Central

    Xu, Lu; Shen, Qiwen; Mao, Zhongqi; Lee, L. James; Ziouzenkova, Ouliana

    2015-01-01

    Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants. PMID:26066392

  14. The Reactivity of Polymersome Encapsulated Hemoglobin with Physiologically Important Gaseous Ligands: Oxygen, Carbon Monoxide and Nitric Oxide.

    PubMed

    Rameez, Shahid; Banerjee, Uddyalok; Fontes, Jorge; Roth, Alexander; Palmer, Andre F

    2012-03-13

    Two distinct preparations of amphiphilic diblock copolymer vesicles (i.e. polymersomes), composed of (poly(ethylene oxide)-poly(butadiene)) (PEO-PBD), with molecular weights of 1.8 kDa and 10.4 kDa, offering different hydrophobic membrane thicknesses, were used to encapsulate the oxygen (O(2)) storage and transport protein hemoglobin (Hb) for possible application as a red blood cell (RBC) substitute. Key biophysical properties as well as the kinetics of polymersome encapsulated Hb (PEH) interaction with physiologically important gaseous ligands (O(2), carbon monoxide and nitric oxide) were measured as a function of the hydrophobic membrane thickness of the PEH particle. Taken together, the results of this work show that PEHs exhibit biophysical properties and retarded ligand binding/release kinetics (compared to cell-free Hb), which are similar to the behavior of RBCs. Therefore, PEHs have the potential to serve as safe and efficacious RBC substitutes for use in transfusion medicine. PMID:22865934

  15. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  16. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS BY GEOSORBENTS. (R822626)

    EPA Science Inventory

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena ...

  17. Stable Encapsulated Air Nanobubbles in Water.

    PubMed

    Wang, Yu; Liu, Guojun; Hu, Heng; Li, Terry Yantian; Johri, Amer M; Li, Xiaoyu; Wang, Jian

    2015-11-23

    The dispersion into water of nanocapsules bearing a highly hydrophobic fluorinated internal lining yielded encapsulated air nanobubbles. These bubbles, like their micrometer-sized counterparts (microbubbles), effectively reflected ultrasound. More importantly, the nanobubbles survived under ultrasonication 100-times longer than a commercial microbubble sample that is currently in clinical use. We justify this unprecedented stability theoretically. These nanobubbles, owing to their small size and potential ability to permeate the capillary networks of tissues, may expand the applications of microbubbles in diagnostic ultrasonography and find new applications in ultrasound-regulated drug delivery. PMID:26439669

  18. Fluorescent graphene oxide via polymer grafting: an efficient nanocarrier for both hydrophilic and hydrophobic drugs.

    PubMed

    Kundu, Aniruddha; Nandi, Sudipta; Das, Pradip; Nandi, Arun K

    2015-02-18

    Functionalized graphene-based drug delivery vehicles have conquered a significant position because functionalization improves its biocompatibility and stability in cell medium, leaving sufficient graphitic basal plane for drug loading through π-π stacking. In this study, poly(N-isopropylacrylamide) (PNIPAM) is covalently grafted from the surface of graphene oxide (GO) via a facile, eco-friendly and an easy procedure of free radical polymerization (FRP) using ammonium persulfate initiator. Various spectroscopic and microscopic studies confirm the successful grafting of PNIPAM from GO surface. PNIPAM-grafted GO (GPNM) exhibits enhanced thermal stability, improved dispersibility both in aqueous and cell medium, and better biocompatibility and cell viability compared to GO. Interestingly, GPNM displays an exciting fluorescence property in aqueous medium, which is a hike of intensity at 36 °C due to the lower critical solution temperature (LCST) of PNIPAM chains (32 °C). Moreover both hydrophilic (doxorubicin (DOX)) and hydrophobic (indomethacin (IMC)) drugs loaded on the surface of GPNM hybrid exhibits its efficacy as an efficient carrier for both types of drugs. Cellular uptakes of free DOX and DOX-loaded GPNM (GPNM-DOX) are evidenced both from optical and fluorescence imaging of live cells, and the efficiency of drug is significantly improved in the loaded system. The release of DOX from GPNM-DOX was achieved at pH 4, relevant to the environment of cancer cells. The pH-triggered release of hydrophobic drug was also studied using UV-vis spectroscopy via alginate encapsulation, showing a great enhancement at pH = 7.4. The IMC is also found to be released by human serum albumin using dialysis technique. The GPNM nanomaterial shows the property of simultaneous loading of DOX and IMC as well as pH-triggered simultaneous release of both of the drugs. PMID:25612470

  19. Effect of emulsifier blend on the characteristics of sustained release diclofenac microspheres.

    PubMed

    Lewis, L; Boni, R; Adeyeye, C M

    1998-01-01

    This investigation involved the evaluation of the emulsifier blend effect on the development of sustained release diclofenac microspheres intended for use in a suspension formulation. The microspheres were prepared using the hydrophobic congealable disperse phase method. The emulsifier blend consisted of glycerol, monostearate (GMS), a hydrophobic emulsifier with HLB = 3.8, and Tween 80, a hydrophilic emulsifier with a HLB value of 15. The effect of this blend on the encapsulation efficiency, size distribution and drug release from the microspheres was studied. A critical amount of GMS (> 0.2 g) was found to be necessary for good encapsulation efficiency. X-ray diffractograms revealed that the drug retains its crystalline state within the microspheres, indicating that the drug is present as a dispersion within the wax matrix. Increasing amounts of Tween 80 caused an increase in the drug release while increased amounts of GMS retarded the release. The hydrophilic emulsifier and the emulsifier blend influenced the size distribution of the formed microspheres. With an increase in the amount of hydrophilic emulsifier, there was an initial increase in the percent of desired size fraction (137.5 microns) of microspheres followed by a decrease. Microspheres with a larger size released the drug slowly compared to smaller size microspheres, while increase in drug load increased the rate of drug release. The release pattern fitted the Higuchi dissolution kinetics for spherical matrices. Different impeller blade designs formed microspheres that exhibited different release rates. The microspheres (mean size 137.5 microns), had a release profile that made them suitable to be formulated as a sustained release suspension. PMID:9608393

  20. Hyperbranched Polyester Hydrogels with Controlled Drug Release and Cell Adhesion Properties

    PubMed Central

    Zhang, Hongbin; Patel, Alpesh; Gaharwar, Akhilesh K.; Mihaila, Silvia M.; Iviglia, Giorgio; Mukundan, Shilpaa; Bae, Hojae; Yang, Huai; Khademhosseini, Ali

    2013-01-01

    Hyperbranched polyesters (HPE) have a high efficiency to encapsulate bioactive agents, including drugs, genes and proteins, due to their globe-like nanostructure. However, the use of these highly branched polymeric systems for tissue engineering applications has not been broadly investigated. Here, we report synthesis and characterization of photocrosslinkable HPE hydrogels with sustained drug release characteristics for cellular therapies. These HPE can encapsulate hydrophobic drug molecules within the HPE cavities, due to the presence of hydrophobic inner structure that is otherwise difficult to achieve in conventional hydrogels. The functionalization of HPE with photocrosslinkable acrylate moieties renders the formation of hydrogels with highly porous interconnected structure, and mechanically tough network. The compressive modulus of HPE hydrogels was tunable by changing the crosslinking density. The feasibility of using these HPE networks for cellular therapies was investigated by evaluating cell adhesion, spreading and proliferation on hydrogel surface. Highly crosslinked and mechanically stiff HPE hydrogels have higher cell adhesion, spreading, proliferation compared to soft and complaint HPE hydrogels. Overall, we showed that hydrogels made from HPE could be used for biomedical applications that require control cell adhesion and control release of hydrophobic clues. PMID:23394067

  1. Styrene-maleic acid copolymer-encapsulated CORM2, a water-soluble carbon monoxide (CO) donor with a constant CO-releasing property, exhibits therapeutic potential for inflammatory bowel disease.

    PubMed

    Yin, Hongzhuan; Fang, Jun; Liao, Long; Nakamura, Hideaki; Maeda, Hiroshi

    2014-08-10

    Carbon monoxide (CO), the physiological product of heme oxygenase during catabolic breakdown of heme, has versatile functions and fulfills major anti-oxidative and anti-apoptotic roles in cell systems. Administration of CO is thus thought to be a reasonable therapeutic approach in diseases-such as inflammatory bowel disease-that are induced by reactive oxygen species (ROS). Tricarbonyldichlororuthenium(II) dimer (CORM2) is a commonly used CO donor, but it has poor aqueous solubility and a very short CO-releasing half-life (t1/2). In the present study, we prepared micelles consisting of water-soluble styrene-maleic acid copolymer (SMA) encapsulating CORM2 (SMA/CORM2) that had a hydrodynamic size of 165.3nm. Compared with free CORM2, SMA/CORM2 demonstrated better water solubility (>50mg/ml in a physiological water solution). Moreover, because of micelle formation in an aqueous environment, the CO release rate was slow and sustained. These properties resulted in much longer in vivo bioactivity of SMA/CORM2 compared with that of free CORM2, i.e. the t1/2 in blood of SMA/CORM2 in mice after intravenous (i.v.) injection was about 35 times longer than that of free CORM2. We then evaluated the therapeutic potential of SMA/CORM2 in a murine model of inflammatory colitis induced by dextran sulfate sodium (DSS). Administration (either i.v. or oral) of SMA/CORM2 once at the beginning of colitis, 3days after DSS treatment, significantly improved colitis symptoms-loss of body weight, diarrhea, and hematochezia-as well as histopathological colonic changes-shortening of the colon and necrosis or ulcers in the colonic mucosa. Up-regulation of inflammatory cytokines including monocyte chemotactic protein-1, tumor necrosis factor-α, and interleukin-6 in this DSS-induced colitis was significantly suppressed in SMA/CORM2-treated mice. SMA/CORM2 may thus be a superior CO donor and may be a candidate drug, which involves cytokine suppression, for ROS-related diseases including

  2. Temperature responsive hydroxypropyl cellulose for encapsulation

    SciTech Connect

    Heitfeld, Kevin A.; Guo, Tingtai; Yang, George; Schaefer, Dale W.

    2009-08-26

    This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. We have successfully synthesized a cellulose gel that exhibits this volume change and have encapsulated an oil phase inside the gel. The flavor-loaded encapsulated oil exhibited an increased release time when compared to similar gelatin capsules.

  3. Synthesis of novel polymeric nanoparticles for hydrophobic and hydrophilic drug delivery

    NASA Astrophysics Data System (ADS)

    Sartor, Marta

    high loading and steady release of hydrophobic drugs. A new technique was examined to encapsulate hydrophilic oligonucleotides into hydrophobic nanoparticles. PMAL-C8, a zwitterionic polymer, interacts with oligonucleotides of different length and improves their loading into the hydrophobic core. The nanoparticles created were successfully used in transfection experiments, showing the bioavailability of the loaded oligonucleotides.

  4. Stable low-loss optical nanofibres embedded in hydrophobic aerogel.

    PubMed

    Xiao, Limin; Grogan, M D W; Wadsworth, W J; England, R; Birks, T A

    2011-01-17

    Nanofibres, optical fibres narrower than the wavelength of light, degrade in hours on exposure to air. We show that encapsulation in hydrophobic silica aerogel (refractive index 1.05) provides protection and stability (over 2 months) without sacrificing low attenuation, strong confinement and accessible evanescent field. The measured attenuation was <0.03 dB/mm, over 10 × lower than reported with other encapsulants. This enables many nanofibre applications based on their extreme small size and strong external evanescent field, such as optical sensors, nonlinear optics, nanofibre circuits and high-Q resonators. The aerogel is more than a waterproof box, it is a completely-compatible gas-permeable material in intimate contact with the nanofibre and hydrophobic on both the macroscopic and molecular scales. Its benefits are illustrated by experiments on gas sensing (exploiting the aerogel's porosity) and supercontinuum generation (exploiting its ultra-low index). PMID:21263617

  5. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  6. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  7. On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase.

    PubMed

    Zhang, Kai; Liang, Qionglin; Ai, Xiaoni; Hu, Ping; Wang, Yiming; Luo, Guoan

    2011-04-01

    Multiple essential microdroplet operation units, including splitting, dispensing, oil-phase exchange, trapping, release and demulsification, were successfully implemented by combining hydrophobic ferrofluid with microfluidic chips. PMID:21327251

  8. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice.

    PubMed

    Imbuluzqueta, Edurne; Gamazo, Carlos; Lana, Hugo; Campanero, Miguel Ángel; Salas, David; Gil, Ana Gloria; Elizondo, Elisa; Ventosa, Nora; Veciana, Jaume; Blanco-Prieto, María J

    2013-07-01

    The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis. PMID:23650167

  9. Encapsulation with structured triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  10. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    , Cy5.5, was used to label the glycol chitosan nanoparticles to enable the noninvasive imaging of living cells. A model protein (bovine serum albumin, BSA) was encapsulated within the glycol chitosan nanoparticles, and its loading efficiency was calculated to be 88%. Release profile of the BSA showed that only 4% (cumulative mass) was achieved by day 7. Minimal cytotoxicity was observed after delivery of the chitosan vehicle alone. To test degradation kinetics, the BSA-loaded nanoparticles were incubated with lysozyme for up to 3 hours and were applied in SDS-PAGE to determine if enzyme-catalyzed degradation triggered premature release of the encapsulated protein. Confocal laser scanning microscopy was used to visualize the spatiotemporal distribution of FITC-BSA-loaded glycol chitosan nanoparticles after delivery to the rat osteosarcoma (ROS17/2.8) and mouse calvaria-derived (MC3T3-E1) cells.

  11. Affinity-controlled protein encapsulation into sub-30 nm telodendrimer nanocarriers by multivalent and synergistic interactions.

    PubMed

    Wang, Xu; Shi, Changying; Zhang, Li; Bodman, Alexa; Guo, Dandan; Wang, Lili; Hall, Walter A; Wilkens, Stephan; Luo, Juntao

    2016-09-01

    Novel nanocarriers are highly demanded for the delivery of heterogeneous protein therapeutics for disease treatments. Conventional nanoparticles for protein delivery are mostly based on the diffusion-limiting mechanisms, e.g., physical trapping and entanglement. We develop herein a novel linear-dendritic copolymer (named telodendrimer) nanocarrier for efficient protein delivery by affinitive coating. This affinity-controlled encapsulation strategy provides nanoformulations with a small particle size (<30 nm), superior loading capacity (>50% w/w) and maintained protein bioactivity. We integrate multivalent electrostatic and hydrophobic functionalities synergistically into the well-defined telodendrimer scaffold to fine-tune protein binding affinity and delivery properties. The ion strength and density of the charged groups as well as the structure of the hydrophobic segments are important and their combinations in telodendrimers are crucial for efficient protein encapsulation. We have conducted a series of studies to understand the mechanism and kinetic process of the protein loading and release, utilizing electrophoresis, isothermal titration calorimetry, Förster resonance energy transfer spectroscopy, bio-layer interferometry and computational methods. The optimized nanocarriers are able to deliver cell-impermeable therapeutic protein intracellularly to kill cancer cells efficiently. In vivo imaging studies revealed cargo proteins preferentially accumulate in subcutaneous tumors and retention of peptide therapeutics is improved in an orthotopic brain tumor, these properties are evidence of the improved pharmacokinetics and biodistributions of protein therapeutics delivered by telodendrimer nanoparticles. This study presents a bottom-up strategy to rationally design and fabricate versatile nanocarriers for encapsulation and delivery of proteins for numerous applications. PMID:27294543

  12. Evaluation of glycosylated docetaxel-encapsulated liposomes prepared by remote loading under solubility gradient.

    PubMed

    Shigehiro, Tsukasa; Zhai, Wenjia; Vaidyanath, Arun; Masuda, Junko; Mizutani, Akifumi; Kasai, Tomonari; Murakami, Hiroshi; Hamada, Hiroki; Salomon, David S; Mikuni, Katsuhiko; Seno, Yuhki; Mandai, Tadakatsu; Seno, Masaharu

    2016-01-01

    Docetaxel comprises one of the most effective anti-cancer drugs despite of serious side effects. Liposomes encapsulation is practically feasible to deliver the drug. However, due to the significant hydrophobicity, docetaxel will be integrated into the lipid bilayer resulting in poor encapsulation capacity. Here, we evaluated a remote loading strategy using a solubility gradient made between the two solvents for 7-glucosyloxyacetyldocetaxel, which has enhanced water solubility of docetaxel with a coupled glucose moiety. Therefore, 7-glucosyloxyacetyldocetaxel was more effectively encapsulated into liposomes with 71.0% of encapsulation efficiency than docetaxel. While 7-glucosyloxyacetyldocetaxel exhibited 90.9% of tubulin stabilisation activity of docetaxel, 7-glucosyloxyacetyldocetaxel encapsulated in liposomes significantly inhibited the growth of tumour in vivo with side effects less than unencapsulated drug. Collectively, the encapsulation of 7-glucosyloxyacetyldocetaxel into liposomes by remote loading under the solubility gradient is considered to be a promising application to prepare practical drug delivery system. PMID:26885749

  13. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  14. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery.

    PubMed

    Ding, Yongling; Shen, Shirley Z; Sun, Huadong; Sun, Kangning; Liu, Futian; Qi, Yushi; Yan, Jun

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host-guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7±1.8%) with a high saturation magnetization of 43.8emu/g. UV-Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3(+), and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed. PMID:25579950

  15. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing.

    PubMed

    Gong, ChangYang; Wu, QinJie; Wang, YuJun; Zhang, DouDou; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2013-09-01

    A biodegradable in situ gel-forming controlled drug delivery system composed of curcumin loaded micelles and thermosensitive hydrogel was prepared and applied for cutaneous wound repair. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent. Due to its high hydrophobicity, curcumin was encapsulated in polymeric micelles (Cur-M) with high drug loading and encapsulation efficiency. Cur-M loaded thermosensitive hydrogel (Cur-M-H) was prepared and applied as wound dressing to enhance the cutaneous wound healing. Cur-M-H was a free-flowing sol at ambient temperature and instantly converted into a non-flowing gel at body temperature. In vitro studies suggested that Cur-M-H exhibited well tissue adhesiveness and could release curcumin in an extended period. Furthermore, linear incision and full-thickness excision wound models were employed to evaluate the in vivo wound healing activity of Cur-M-H. In incision model, Cur-M-H-treated group showed higher tensile strength and thicker epidermis. In excision model, Cur-M-H group exhibited enhancement of wound closure. Besides, in both models, Cur-M-H-treated groups showed higher collagen content, better granulation, higher wound maturity, dramatic decrease in superoxide dismutase, and slight increase in catalase. Histopathologic examination also implied that Cur-M-H could enhance cutaneous wound repair. In conclusion, biodegradable Cur-M-H composite might have great application for wound healing. PMID:23726229

  16. Dual Stimuli-Responsive Polymer Prodrugs Quantitatively Loaded by Nanoparticles for Enhanced Cellular Internalization and Triggered Drug Release.

    PubMed

    Huang, Mingming; Zhao, Kaijie; Wang, Lei; Lin, Shanqing; Li, Junjie; Chen, Jingbo; Zhao, Chengai; Ge, Zhishen

    2016-05-11

    Direct encapsulation of hydrophobic drugs into amphiphilic block copolymer micelles is frequently subjected to low drug loading efficiency (DLE) and loading content (DLC), as well as lower micellar stability and uncontrollable drug release. In this report, we prepare the copolymer prodrugs (PPEMA-co-PCPTM) via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(piperidin-1-yl)ethyl methacrylate (PEMA) and reduction-responsive CPT monomer (CPTM), which were quantitatively encapsulated into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles. The polymer prodrug-loaded nanoparticles showed high stability for a long time in aqueous solution or blood serum and even maintain similar size after a lyophilization-dissolution cycle. The tumoral pH (∼6.8)-responsive properties of PPEMA segments endow the micellar cores with triggered transition from neutral to positively charged and swellable properties. The PEG-b-PCL nanoparticles loading polymer prodrugs (PPEMA-b-PCPTM) eliminated burst drug release. Simultaneously, CPT drug release can be triggered by reductive agents and solution pH. At pH 6.8, efficient cellular internalization was achieved due to positively charged cores of the nanoparticles. As compared with nanoparticles loading PCPTM, higher cytotoxicity was observed by the nanoparticles loading PPEMA-b-PCPTM at pH 6.8. Further multicellular tumor spheroid (MCTs) penetration and growth suppression studies demonstrated that high-efficiency penetration capability and significant size shrinkage of MCTs were achieved after treatment by PPEMA-b-PCPTM-loaded nanoparticles at pH 6.8. Therefore, the responsive polymer prodrug encapsulation strategy represents an effective method to overcome the disadvantages of common hydrophobic drug encapsulation approaches by amphiphilic block copolymer micelles and simultaneously endows the nanoparticles with responsive drug release behaviors as well as enhanced cellular internalization and

  17. Design documentation: Krypton encapsulation preconceptual design

    SciTech Connect

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  18. Hydrophobic sugar holograms

    NASA Astrophysics Data System (ADS)

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Hernández-Garay, M. P.; Fontanilla-Urdaneta, R.; Fuentes-Tapia, I.

    2008-02-01

    The sugar matrix is used to record of phase holograms; it was modified with the purpose of obtaining a hydrophobic material to improve the stability of the registered image and to stimulate the photosensitivity of the sugar. The new material is formed by a sugar, pectin and vanillin dissolution. The diffraction efficiency parameter increases in comparison with only the sugar matrix, obtaining already of 10%.

  19. Review of encapsulation technologies

    SciTech Connect

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

  20. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  1. Design and synthesis of lipidic organoalkoxysilanes for the self-assembly of liposomal nanohybrid cerasomes with controlled drug release properties.

    PubMed

    Liang, Xiaolong; Li, Xiaoda; Jing, Lijia; Xue, Peng; Jiang, Lingdong; Ren, Qiushi; Dai, Zhifei

    2013-11-18

    This paper reports the facile design and synthesis of a series of lipidic organoalkoxysilanes with different numbers of triethoxysilane headgroups and hydrophobic alkyl chains linked by glycerol and pentaerythritol for the construction of cerasomes with regulated surface siloxane density and controlled release behavior. It was found that the number of triethoxysilane headgroups affected the properties of the cerasomes for encapsulation efficiency, drug loading capacity, and release behavior. For both water-soluble doxorubicin (DOX) and water-insoluble paclitaxel (PTX), the release rate from the cerasomes decreased as the number of triethoxysilane headgroups increased. The slower release rate from the cerasomes was attributed to the higher density of the siloxane network on the surface of the cerasomes, which blocks the drug release channels. In contrast to the release results with DOX, the introduction of one more hydrophobic alkyl chain into the cerasome-forming lipid resulted in a slower release rate of PTX from the cerasomes due to the formation of a more compact cerasome bilayer. An MTT viability assay showed that all of these drug-loaded cerasomes inhibited proliferation of the HepG2 cancer cell line. The fine tuning of the chemical structure of the cerasome-forming lipids would foster a new strategy to precisely regulate the release rate of drugs from cerasomes. PMID:24123292

  2. Vaults engineered for hydrophobic drug delivery.

    PubMed

    Buehler, Daniel C; Toso, Daniel B; Kickhoefer, Valerie A; Zhou, Z Hong; Rome, Leonard H

    2011-05-23

    The vault nanoparticle is one of the largest known ribonucleoprotein complexes in the sub-100 nm range. Highly conserved and almost ubiquitously expressed in eukaryotes, vaults form a large nanocapsule with a barrel-shaped morphology surrounding a large hollow interior. These properties make vaults an ideal candidate for development into a drug delivery vehicle. In this study, the first example of using vaults towards this goal is reported. Recombinant vaults are engineered to encapsulate the highly insoluble and toxic hydrophobic compound all-trans retinoic acid (ATRA) using a vault-binding lipoprotein complex that forms a lipid bilayer nanodisk. These recombinant vaults offer protection to the encapsulated ATRA from external elements. Furthermore, a cryo-electron tomography (cryo-ET) reconstruction shows the vault-binding lipoprotein complex sequestered within the vault lumen. Finally, these ATRA-loaded vaults show enhanced cytotoxicity against the hepatocellular carcinoma cell line HepG2. The ability to package therapeutic compounds into the vault is an important achievement toward their development into a viable and versatile platform for drug delivery. PMID:21506266

  3. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  4. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  5. Subcutaneous encapsulated fat necrosis.

    PubMed

    Aydin, Dogu; Berg, Jais O

    2016-04-01

    We have described subcutaneous encapsulated fat necrosis, which is benign, usually asymptomatic and underreported. Images have only been published on two earlier occasions, in which the necrotic nodules appear "pearly" than the cloudy yellow surface in present case. The presented image may help future surgeons to establish the diagnosis peroperatively. PMID:27099753

  6. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials

    PubMed Central

    Guziewicz, Nicholas A.; Massetti, Andrew J.; Perez-Ramirez, Bernardo J.; Kaplan, David L.

    2013-01-01

    The availability of stabilization and sustained delivery systems for antibody therapeutics remains a major clinical challenge, despite the growing development of antibodies for a wide range of therapeutic applications due to their specificity and efficacy. A mechanistic understanding of protein-matrix interactions is critical for the development of such systems and is currently lacking as a mode to guide the field. We report mechanistic insight to address this need by using well-defined matrices based on silk gels, in combination with a monoclonal antibody. Variables including antibody loading, matrix density, charge interactions, hydrophobicity and water access were assessed to clarify mechanisms involved in the release of antibody from the biomaterial matrix. The results indicate that antibody release is primarily governed by hydrophobic interactions and hydration resistance, which are controlled by silk matrix chemistry, peptide domain distribution and protein density. Secondary ionic repulsions are also critical in antibody stabilization and release. Matrix modification by free methionine incorporation was found to be an effective strategy for mitigating encapsulation induced antibody oxidation. Additionally, these studies highlight a characterization approach to improve the understanding and development of other protein sustained delivery systems, with broad applicability to the rapidly developing monoclonal antibody field. PMID:23859659

  7. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  8. Diffusion and Controlled Localized Drug Release from an Injectable Solid Self-Assembling Peptide Hydrogel

    NASA Astrophysics Data System (ADS)

    Sun, Jessie E. P.; Stewart, Brandon; Langhans, Sigrid; Stewart, Joel P.; Pochan, Darrin J.

    2014-03-01

    We use an injectable solid peptide hydrogel (first assembled into a solid hydrogel, can shear-thin flow and immediately reheal on cessation of shear) as a drug delivery vehicle for sustained and active drug release. The triggered intramolecular peptide folding into a beta-hairpin leads to intermolecular assmebly of the peptides into the entangled and branched nanofibrillar hydrogel network responsible for its advantageous rheological properties. The hydrogel is used to encapsulate a highly effective chemotherapeutic, vincristine, with hydrophobic behavior. We show that we are able to constantly maintain drug release in low but still potent concentrations after the shear-thinning injection process. Similarly, the mechanical and morphoogical properties of the gels remains identical after injection. Characterization of the hydrogel construct is through tritiated vincristine release, TEM, confocal microscopy, and in vitro methods.

  9. Encapsulated breaker for aqueous polymeric fluids

    SciTech Connect

    Gulbis, J.; King, M.T.; Hawkins, G.W.; Brannon, H.D. )

    1992-02-01

    Persulfates are commonly used as breakers for aqueous fluids viscosified with guar or cellulose derivatives. These breakers are necessary to minimize permeability damage to proppant packs at temperatures where there is little thermal degradation of the polymers. Unfortunately, dissolved persulfates are much too reactive, even at moderate temperatures (140 to 200{degrees} F), to be used at concentrations sufficient to degrade concentrated, high-molecular-weight polymers thoroughly. Technology described in this paper was used to produce a delayed breaker. The breaker is prepared by encapsulating ammonium persulfate (APS) with a water-resistant coating. The coating shields the fluid from the breaker so that high breaker concentrations can be added to the fluid without causing the premature loss of fluid properties, such as viscosity or fluid-loss control. Critical factors in the design of encapsulated breakers (such as coating barrier properties, release mechanisms, and reactive chemical properties) are discussed. The effects of encapsulated breaker on fluid rheology were compared for several encapsulated persulfates.

  10. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Delivery of Hydrophobic Therapeutic Agents

    PubMed Central

    Schoener, Cody A.; Hutson, Heather N.; Peppas, Nicholas A.

    2012-01-01

    To investigate the delivery of hydrophobic therapeutic agents, a new class of polymer carriers was synthesized. These carriers are composed of two components: (i) a pH-responsive hydrogel composed of methacrylic acid grafted with poly(ethylene glycol) tethers, P(MAA-g-EG), and (ii) hydrophobic poly(methyl methacrylate) (PMMA) nanoparticles. Before the P(MAA-g-EG) hydrogel was crosslinked, PMMA nanoparticles were added to the solution and upon exposure to UV light they were photoencapsulated throughout the P(MAA-g-EG) hydrogel structure. The pH-responsive behavior of P(MAA-g-EG) is capable of triggered release of a loaded therapeutic agent, such as a low molecular weight drug or protein, when it passes from the stomach (low pH) to upper small intestine (neutral pH). The introduction of PMMA nanoparticles into the hydrogel structure affected the swelling behavior, therapeutic agent loading efficiency, and solute release profiles. In equilibrium swelling conditions the swelling ratio of nanoparticle-containing hydrogels decreased with increasing nanoparticle content. Loading efficiencies of the model therapeutic agent fluorescein ranged from 38 – 51 % and increased with increasing hydrophobic content. Release studies from neat P(MAA-g-EG) and the ensuing P(MAA-g-EG) hydrogels containing nanoparticles indicated that the transition from low pH (2.0) to neutral pH (7.0) triggered fluorescein release. Maximum fluorescein release depended on the structure and hydrophobicity of the carriers used in these studies. PMID:23087546

  11. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  12. Investigation on hydrophobic films from a hydrophobic powder

    NASA Astrophysics Data System (ADS)

    Zhu, Liqun; Hao, Guofang; Chen, Yuan; Chen, Yizhi

    2012-11-01

    A hydrophobic powder was prepared based mainly on an organosiloxane and a corrosion inhibitor with the addition of a reaction promoter. Structure and thermal stability of the hydrophobic powder were characterized by FTIR and TG/DSC, respectively. Hydrophobic property and corrosion resistance of the hydrophobic film formed on phosphatized steel by immersion in 3 wt% NaCl aqueous solution were evaluated together with the electrochemical behavior. Results showed that the skeleton of the hydrophobic powder was composed mainly of sbnd Sisbnd Osbnd Sisbnd which comprises longer and more hydrophobic groups of sbnd Sisbnd R compared with the conventional BH-102 water-repellent agent. A thin hydrophobic film with a thickness of 15-20 μm was formed on surface of the phosphatized steel after immersion in the solution of 5 g/L of the hydrophobic powder in ethanol for 5 min. The hydrophobic film exhibited excellent stability at a temperature below 135 °C. Water contact angle on the film is about 117-132° and it was until 30 h later when a corrosion spot occurred on the film covered on steel which revealed better water-repellent and corrosion resistant properties compared to that of the BH-102.

  13. Multi-Drug-Loaded Microcapsules with Controlled Release for Management of Parkinson's Disease.

    PubMed

    Baek, Jong-Suep; Choo, Chee Chong; Qian, Cheng; Tan, Nguan Soon; Shen, Zexiang; Loo, Say Chye Joachim

    2016-07-01

    Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD. PMID:27253884

  14. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2016-10-01

    A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. PMID:27388968

  15. Cell as a factory for humanized encapsulation

    NASA Astrophysics Data System (ADS)

    Mao, Zhengwei; Wang, Dayang

    2012-03-01

    Variety efforts are being made to develop colloidal based drug delivery systems (DDSs), which encapsulate cytotoxic drug in a vehicle and release them in a controlled manner. However, the synthetic carriers developed thus far are hampered by rapidly clearance in the body, for example by phagocytes, possibly due to the non-natural surface characteristics in terms of chemistry, morphology, and mechanics. To circumvent this important challenge, we have exploited living mammalian cells as factories to encapsulate drugs in "natural vesicles". These natural vesicles are termed cell membrane capsules (CMCs), because they maintain the major membrane structure and functions as well as cytosolic proteins of the parental cells. We demonstrate that CMCs act as unique delivery vehicles, in which encapsulated substances can be processed stepwise by cellular enzymes and then be selectively released through protein channels built-in the membrane, in a controlled and sustained manner. The preliminary study investigating the macrophage response to CMCs indicated the potential of CMCs to avoid attack by the immune system.

  16. Photovoltaic encapsulation materials

    NASA Technical Reports Server (NTRS)

    Baum, B.; Willis, P. W.; Cuddihy, E. C.

    1981-01-01

    Candidate materials for the construction of cost-effective solar cell flat array modules are reviewed. Fabrication goals include electricity production at $.70/W with a lifetime of 20 yr. Research is currently directed toward low cost encapsulants and substrates for the cells, and outer covers which resist weathering. Ethylene/vinyl acetate copolymer (EVA) at $.09/sq ft has displayed the most promising results as the encapsulant laminate when subjected to peroxide cross-linking to prevent melting. EVA accepts the addition of antioxidants, quenchers, absorbers, and stabilizers. Wood is favored as the rigid substrate due to cost, while top covers in substrate modules comprise candidate acrylic and polyvinyl fluoride films and a copolymer. Finally, fiberglass mat is placed between the substrate and the EVA pottant as a mechanical support and for electrical insulation.

  17. Materials for Encapsulation

    NASA Astrophysics Data System (ADS)

    Wandrey, Christine; Bartkowiak, Artur; Harding, Stephen E.

    A multitude of substances are known which can be used to entrap, coat, or encapsulate solids, liquids, or gases of different types, origins, and properties. However, only a limited number thereof have been certified for food applications as “generally recognized as safe” (GRAS) materials. It is worth mentioning that the regulations for food additives are much stricter than for pharmaceuticals or cosmetics. Consequently, some compounds, which are widely accepted for drug encapsulation, have not been approved for use in the food industry. Moreover, different regulations can exist for different continents, economies, or countries, a problem which has to be addressed by food producers who wish to export their products or who intend expanding their markets.

  18. Air encapsulation during infiltration

    USGS Publications Warehouse

    Constantz, J.; Herkelrath, W.N.; Murphy, F.

    1988-01-01

    A series of field and laboratory experiments were performed to measure the effects of air encapsulation within the soil's transmission zone upon several infiltration properties. In the field, infiltration rates were measured using a double-cap infiltrometer and soil-water contents were measured using time-domain reflectometry (TDR). In the laboratory, infiltration experiments were peformed using repacked soil columns using TDR and CO 2 flooding. Results suggest that a significant portion of the total encapsulated air resided in interconnected pores within the soil's transmission zone. For the time scale considered, this residual air caused the effective hydraulic conductivity of the transmission zone to remain at a level no greater than 20% of the saturated hydraulic conductivity of the soil. -from Authors

  19. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    SciTech Connect

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  20. Phospholipid Encapsulated AuNR@Ag/Au Nanosphere SERS Tags with Environmental Stimulus Responsive Signal Property.

    PubMed

    Su, Xueming; Wang, Yunqing; Wang, Wenhai; Sun, Kaoxiang; Chen, Lingxin

    2016-04-27

    Surface-enhanced Raman scattering (SERS) tags draw much attention due to the ultrasensitivity and multiplex labeling capability. Recently, a new kind of SERS tags was rationally designed by encapsulating metal nanoparticles with phospholipid bilayers, showing great potential in theranostics. The lipid bilayer coating confers biocompatibility and versatility to changing surface chemistry of the tag; however, its "soft" feature may influence SERS signal stability, which is rarely investigated. Herein, we prepared phospholipid-coated AuNR@Ag/Au nanosphere SERS tags by using three different kinds of Raman reporters, i.e., thio-containing 4-nitrothiophenol (NT), nitrogen-containing hydrophobic chromophore cyanine 7 monoacid (Cy7), and alkyl chain-chromophore conjugate 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD). It was found that signal responses were different upon additional stimulation which the tags may encounter in theranostic applications including the presence of detergent Triton X-100, lipid membrane, and photothermal treatment. Living-cell imaging also showed signal changing distinction. The different SERS signal performances were attributed to the different Raman reporter releasing behaviors from the tags. This work revealed that Raman reporter structure determined signal stability of lipid-coated SERS tags, providing guidance for the design of stimulus responsive tags. Moreover, it also implied the potential of SERS technique for real time drug release study of lipid based nanomedicine. PMID:27052206

  1. Encapsulation of 10-hydroxy camptothecin in supramolecular hydrogel as an injectable drug delivery system.

    PubMed

    Li, Ruixin; Shu, Chang; Wang, Wei; Wang, Xiaoliang; Li, Hui; Xu, Danke; Zhong, Wenying

    2015-07-01

    10-Hydroxy camptothecin (HCPT) has been proven to be a cell cycle-specific chemotherapeutic agent, which is a necessary choice to inhibit tumor residue growth and prevent tumor metastasis after surgery. But it suffers from light decomposition, poor solubility, relatively low bioavailability, and some side effects, which are the major obstacles toward its clinical use. Integration of hydrophobic HCPT with hydrophilic hydrogel is a facile approach to change the disadvantageous situation of HCPT. In this study, a novel supramolecular hydrogelator with improved synthetic strategy was triggered by chemical hydrolysis, and then self-assembled to hydrogel. Taking advantage of the high-equilibrium solubility of HCPT in hydrogelator solution, this hydrogel was utilized to load HCPT via encapsulation as an effective carrier. HCPT hydrogels were characterized by several techniques including transmission electronic microscopy, rheology, and UV spectroscopy. In vitro release experiment indicated HCPT hydrogel could maintain long term and sustained release of HCPT at high accumulated rate. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed that HCPT hydrogel had an optimized anticancer efficacy. Besides, with prominent physical properties of carrier, HCPT hydrogel possessed satisfactory stability, syringeability, and recoverability, demonstrating itself as a potential localized injectable drug delivery system. PMID:25980666

  2. Encapsulation of Volatile Compounds in Silk Microparticles

    PubMed Central

    Elia, Roberto; Guo, Jin; Budijono, Stephanie; Normand, Valery; Benczédi, Daniel; Omenetto, Fiorenzo

    2015-01-01

    Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility. PMID:26568787

  3. Hysteresis free carbon nanotube thin film transistors comprising hydrophobic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefebvre, J.; Ding, J.; Li, Z.; Cheng, F.; Du, N.; Malenfant, P. R. L.

    2015-12-01

    We present two examples of carbon nanotube network thin film transistors with strongly hydrophobic dielectrics comprising either Teflon-AF or a poly(vinylphenol)/poly(methyl silsesquioxane) (PVP/pMSSQ) blend. In the absence of encapsulation, bottom gated transistors in air ambient show no hysteresis between forward and reverse gate sweep direction. Device threshold gate voltage and On-current present excellent time dependent stability even under dielectric stress. Furthermore, threshold gate voltage for hole conduction is negative upon device encapsulation with PVP/pMSSQ enabling much improved current On/Off ratio at 0 V. This work addresses two major challenges impeding solution based fabrication of relevant thin film transistors with printable single-walled carbon nanotube channels.

  4. Increased dissolution rate and oral bioavailability of hydrophobic drug glyburide tablets produced using supercritical CO₂ silica dispersion technology.

    PubMed

    Guan, Jibin; Han, Jihong; Zhang, Dong; Chu, Chunxia; Liu, Hongzhuo; Sun, Jin; He, Zhonggui; Zhang, Tianhong

    2014-04-01

    The aim of this study was to design a silica-supported solid dispersion of a water-insoluble drug, glyburide, to increase its dissolution rate and oral absorption using supercritical fluid (SCF) technology. DSC and PXRD results indicated that the encapsulated drug in the optimal solid dispersion was in an amorphous state and the product was stable for 6 months. Glyburide was adsorbed onto the porous silica, as confirmed by the SEM images and BET analysis. Furthermore, FT-IR spectroscopy confirmed that there was no change in the chemical structure of glyburide after the application of SCF. The glyburide silica-based dispersion could also be compressed into tablet form. In vitro drug release analysis of the silica solid dispersion tablets demonstrated faster release of glyburide compared with the commercial micronized tablet. In an in vivo test, the AUC of the tablets composed of the new glyburide silica-based solid dispersion was 2.01 times greater than that of the commercial micronized glyburide tablets. In conclusion, SCF technology presents a promising approach to prepare silica-based solid dispersions of hydrophobic drugs because of its ability to increase their release and oral bioavailability. PMID:24184803

  5. Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: photophysical and physicochemical characterisation, release and phototoxicity in vitro.

    PubMed

    de Paula, Carina Silva; Tedesco, Antonio Cláudio; Primo, Fernando Lucas; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Mosqueira, Vanessa Carla Furtado

    2013-06-14

    Nanoparticles of poly(d,l-lactide-co-glycolide), poly(d,l-lactide) and polyethylene glycol-block-poly(d,l-lactide) were developed to encapsulate chloroaluminium phthalocyanine (AlClPc), a new hydrophobic photosensitiser used in photodynamic therapy (PDT). The mean nanoparticle size varied from 115 to 274 nm, and the encapsulation efficiency ranged from 57% to 96% due to drug precipitation induced by different types of polymer. All nanoparticle formulations presented negative zeta potential values (-37 mV to -59 mV), explaining their colloidal stability. The characteristic photophysical parameters were analysed: the absorption spectrum profile, fluorescence quantum yield and transient absorbance decay, with similar values for free and nanoparticles of AlClPc. The time-resolved spectroscopy measurements for AlClPc triplet excited state lifetimes indicate that encapsulation in nanocapsules increases triplet lifetime, which is advantageous for PDT efficiency. A sustained release profile over 168 h was obtained using external sink method. An in vitro phototoxic effect higher than 80% was observed in human fibroblasts at low laser light doses (3 J/cm(2)) with 10 μM of AlClPc. The AlClPc loaded within polymeric nanocapsules presented suitable physical stability, improved photophysical properties, sustained released profile and suitable activity in vitro to be considered a promising formulation for PDT. PMID:23542495

  6. Etoposide encapsulation in surface-modified poly(lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency.

    PubMed

    Callewaert, Maïté; Dukic, Sylvain; Van Gulick, Laurence; Vittier, Mélanie; Gafa, Valérie; Andry, Marie-Christine; Molinari, Michaël; Roullin, V Gaëlle

    2013-05-01

    Etoposide (VP-16) is a hydrophobic anticancer agent inhibiting Topoisomerase II, commonly used in pediatric brain chemotherapeutic schemes as mildly toxic. Unfortunately, despite its appropriate solubilization in vehicle solvents, its poor bioavailability and limited passage of the blood-brain barrier concur to disappointing results requiring the development of new delivery system forms. In this study, etoposide formulated as a parenteral injectable solution (Teva®) was loaded into all-biocompatible poly(lactide-co-glycolide) (PLGA) or PLGA/P188-blended nanoparticles (size 110-130 nm) using a fully biocompatible nanoprecipitation technique. The presence of coprecipitated P188 on encapsulation efficacies and in vitro drug release was investigated. Drug encapsulation was determined using HPLC. Inflammatory response was checked by FACS analysis on human monocytes. Cytotoxic activity of the various simple (Teva®) or double (Teva®-loaded NPs) formulations was studied on the murine C6 and F98 cell lines. Obtained results suggest that, although noninflammatory neither nontoxic by themselves, the use of PLGA and PLGA/P188 nanoencapsulations over pre-existing etoposide formulation could induce a greatly improved cytotoxic activity. This approach demonstrated a promising perspective for parenteral delivery of VP16 and potential development of a therapeutic entity. PMID:23065812

  7. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  8. Active self-healing encapsulation of vaccine antigens in PLGA microspheres.

    PubMed

    Desai, Kashappa-Goud H; Schwendeman, Steven P

    2013-01-10

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to "actively" load the protein in the polymer pores and facilitate polymer self-healing at a temperature>the hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigens in PLGA was investigated. Active self-healing encapsulation of two antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvants (aluminum hydroxide (Al(OH)₃) or calcium phosphate). Active loading of vaccine antigen in Al(OH)₃-PLGA microspheres was found to: a) increase with an increasing loading of Al(OH)₃ (0.88-3 wt.%) and addition of porosigen, b) decrease when the inner Al(OH)₃/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively >0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)₃ in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt.% TT) and encapsulation efficiency (~97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d

  9. Selective encapsulation by Janus particles

    SciTech Connect

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  10. Module Encapsulant Diagnostic and Modeling

    SciTech Connect

    Kempe, M.

    2005-01-01

    Encapsulant materials are used in photovoltaic devices for mechanical support, electrical isolation, and protection against corrosion. The ability of an encapsulant to protect against surface corrosion is related to its adhesional strength. The adhesion of candidate encapsulants under accelerated environmental stress was examined to determine what materials have the best hydrolytic stability and are more likely to reduce corrosion rates. Under environmental exposure, the ingress of water has been correlated with increased corrosion rates. The diffusivity of different encapsulants has been measured to determine how long it takes for water to enter a module. The high diffusivity of ethylene vinyl acetate indicates that, even with the use of an impermeable back-sheet, moisture from the sides will diffuse throughout the entire module. To significantly reduce moisture ingress requires a true hermetic seal, the use of an encapsulant loaded with desiccant, or the use of a very low diffusivity encapsulant.

  11. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  12. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy. PMID:25974198

  13. Foam encapsulated targets

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  14. JPL encapsulation task

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    A detailed summary of the diverse encapsulation materials and techniques that evolved to meet the cost goals of the Flat-plate Solar Array (FSA) Project is presented. A typical solar cell now consists of low iron glass, two layers of ethylene vinyl acetate (EVA) polymers, a porous space, primers/adhesives, a back cover of Tedlar, and a gasket/seal for a volume cost of $1.30/sq ft. This compares well with the project goal of $1.40/sq ft.

  15. Water repellency in hydrophobic nanocapsules--molecular view on dewetting.

    PubMed

    Müller, Achim; Garai, Somenath; Schäffer, Christian; Merca, Alice; Bögge, Hartmut; Al-Karawi, Ahmed Jasim M; Prasad, Thazhe Kootteri

    2014-05-26

    The hydrophobic effect plays a major role in a variety of important phenomena in chemistry, materials science and biology, for instance in protein folding and protein-ligand interactions. Studies--performed within cavities of the unique metal oxide based porous capsules of the type {(pentagon)12(linker)30}≡{(W)W5}12{Mo2(ligand)}30 with different acetate/water ligand ratios--have provided unprecedented results revealing segregation/repellency of the encapsulated "water" from the internal hydrophobic ligand walls of the capsules, while the disordered water molecules, interacting strongly with each other via hydrogen bonding, form in all investigated cases the same type of spherical shell. The present results can be (formally) compared--but only regarding the repellency effect--with the amazing "action" of the (super)hydrophobic Lotus (Nelumbo) leaves, which are self-cleaning based on water repellency resulting in the formation of water droplets picking up dirt. The present results were obtained by constructing deliberately suitable hydrophobic interiors within the mentioned capsules. PMID:24782303

  16. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    SciTech Connect

    Hermes, Robert E.

    2015-12-22

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  17. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    to release encapsulated agents completely. Also, sham samples without Triton X-100 or ultrasound exposure were used as negative controls. Color Doppler ultrasound did not release encapsulated calcein or papaverine from ELIP even though there was a complete loss of echogenicity. In subsequent experiments, calcein and rosiglitazone, a hydrophobic anti-diabetic drug, were separately encapsulated in ELIP and exposed to pulsed Doppler ultrasound in a flow system while monitoring cavitation. Samples were exposed to ultrasound pressures above and below cavitation thresholds. In addition, Triton X-100 was used for positive control samples and sham samples were also tested without ultrasound exposure. Adding Triton X-100 resulted in complete release of encapsulated calcein or rosiglitzone. However, Doppler ultrasound exposure did not induce calcein or rosiglitazone release from ELIP in the flow system even when there was persistent cavitation activity and a loss of echogenicity. The results of this dissertation indicate that cavitation of encapsulated bubbles in ELIP solutions is not sufficient to induce drug release. It is possible that ultrasoundmediated thermal processes may have a stronger effect on ELIP permeability than cavitation activity. Perhaps ultrasound-triggered drug release will be possible by improving the ELIP formulation or encapsulating a different gas instead of air. However, cavitation is not a reliable indicator of ultrasound-mediated drug release with the ELIP formulations used in this dissertation.

  18. Effects of encapsulation of microorganisms on product formation during microbial fermentations.

    PubMed

    Westman, Johan O; Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J

    2012-12-01

    This paper reviews the latest developments in microbial products by encapsulated microorganisms in a liquid core surrounded by natural or synthetic membranes. Cells can be encapsulated in one or several steps using liquid droplet formation, pregel dissolving, coacervation, and interfacial polymerization. The use of encapsulated yeast and bacteria for fermentative production of ethanol, lactic acid, biogas, L-phenylacetylcarbinol, 1,3-propanediol, and riboflavin has been investigated. Encapsulated cells have furthermore been used for the biocatalytic conversion of chemicals. Fermentation, using encapsulated cells, offers various advantages compared to traditional cultivations, e.g., higher cell density, faster fermentation, improved tolerance of the cells to toxic media and high temperatures, and selective exclusion of toxic hydrophobic substances. However, mass transfer through the capsule membrane as well as the robustness of the capsules still challenge the utilization of encapsulated cells. The history and the current state of applying microbial encapsulation for production processes, along with the benefits and drawbacks concerning productivity and general physiology of the encapsulated cells, are discussed. PMID:23104646

  19. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

    PubMed Central

    Hamzah, Azrul Azlan; Yunas, Jumril; Majlis, Burhanuddin Yeop; Ahmad, Ibrahim

    2008-01-01

    This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG) as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP) as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.

  20. Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation

    NASA Astrophysics Data System (ADS)

    Talwar, Sachin; Harding, Jonathon; Khan, Saad A.

    2008-07-01

    Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical network of intra- and inter-molecular hydrophobic junctions in solution arising from the interactions between hydrophobic groups grafted on the polymer backbone. The presence of these hydrophobic junctions significantly enhances the solution rheological properties with both the steady state viscosity and dynamic moduli exhibiting an increase by several orders of magnitude. The ability of nonionic surfactants to modulate and recover the hydrophobic interactions in these polymer solutions in the presence of cyclodextrin is examined. The presence of either a- or β-CD results in a dramatic decrease in viscosity and viscoelastic properties of the HASE polymer solution resulting from the encapsulation of polymer hydrophobes by CDs. Addition of nonionic surfactants to such systems promotes a competition between CDs and surfactant molecules to complex with polymer hydrophobes thereby altering the hydrophobic interactions. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide (EO) chain lengths, which determine the surfactant hydrophilic-lipophilic balance (HLB), are used.

  1. Dexamethasone acetate encapsulation into Trojan particles.

    PubMed

    Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas

    2008-05-22

    We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release. PMID:18374442

  2. Stimuli-responsive HBPS-g-PDMAEMA and its application as nanocarrier in loading hydrophobic molecules

    PubMed Central

    Chen, Yongsheng; Zain-Ul-Abdin; Sun, Ruoli; Jing, Guanghui; Tong, Rongbai; Deng, Zheng

    2016-01-01

    Summary The topic of stimuli-responsive nanocarriers for loading guest molecules is dynamic. It has been widely studied in applications including drug controlled release, smart sensing, catalysis, and modeling. In this paper, a graft copolymer (hyperbranched polystyrene)-g-poly[2-(dimethylamino)ethyl methacrylate] (HBPS-g-PDMAEMA) was synthesized and characterized by 1H NMR and GPC. It was observed that the star-like HBPS-g-PDMAEMA formed aggregates in aqueous solution. The influence of polymer concentration, ionic strength and pH value on the aggregates in aqueous solution was investigated by using UV–vis spectroscopy and DLS analysis. The results showed that size of aggregates was affected by a corresponding stimulus. In addition, the loading ability of HBPS-g-PDMAEMA aggregates was investigated by using pyrene or Nile red as the model guest molecules by using UV–vis and fluorescence spectroscopy. The results showed that HBPS-g-PDMAEMA aggregates were capable to encapsulate small hydrophobic molecules. These newly prepared HBPS-g-PDMAEMA nanocarriers might be used in, e.g., medicine or catalysis. PMID:27340484

  3. Stimuli-responsive HBPS-g-PDMAEMA and its application as nanocarrier in loading hydrophobic molecules.

    PubMed

    Chen, Yongsheng; Wang, Li; Yu, Haojie; Zain-Ul-Abdin; Sun, Ruoli; Jing, Guanghui; Tong, Rongbai; Deng, Zheng

    2016-01-01

    The topic of stimuli-responsive nanocarriers for loading guest molecules is dynamic. It has been widely studied in applications including drug controlled release, smart sensing, catalysis, and modeling. In this paper, a graft copolymer (hyperbranched polystyrene)-g-poly[2-(dimethylamino)ethyl methacrylate] (HBPS-g-PDMAEMA) was synthesized and characterized by (1)H NMR and GPC. It was observed that the star-like HBPS-g-PDMAEMA formed aggregates in aqueous solution. The influence of polymer concentration, ionic strength and pH value on the aggregates in aqueous solution was investigated by using UV-vis spectroscopy and DLS analysis. The results showed that size of aggregates was affected by a corresponding stimulus. In addition, the loading ability of HBPS-g-PDMAEMA aggregates was investigated by using pyrene or Nile red as the model guest molecules by using UV-vis and fluorescence spectroscopy. The results showed that HBPS-g-PDMAEMA aggregates were capable to encapsulate small hydrophobic molecules. These newly prepared HBPS-g-PDMAEMA nanocarriers might be used in, e.g., medicine or catalysis. PMID:27340484

  4. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance.

    PubMed

    Han, Ning; Zhao, Qinfu; Wan, Long; Wang, Ying; Gao, Yikun; Wang, Pu; Wang, Zhanyou; Zhang, Jinghai; Jiang, Tongying; Wang, Siling

    2015-02-11

    Multidrug resistance (MDR) is known to be a great obstruction to successful chemotherapy, and considerable efforts have been devoted to reverse MDR including designing various functional drug delivery systems. In this study, hybrid lipid-capped mesoporous silica nanoparticles (LTMSNs), aimed toward achieving stimuli-responsive drug release to circumvent MDR, were specially designated for drug delivery. After modifying MSNs with hydrophobic chains through disulfide bond on the surface, lipid molecules composing polymer d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) with molar ratio of 5:1 were subsequently added to self-assemble into a surrounded lipid layer via hydrophobic interaction acting as smart valves to block the pore channels of carrier. The obtained LTMSNs had a narrow size distribution of ca. 190 nm and can be stably dispersed in body fluids, which may ensure a long circulating time and ideal enhanced permeability and retention effect. Doxorubicin (DOX) was chosen as a model drug to be encapsulated into LTMSNs. Results showed that this hybrid lipid-capped mesoporous silica drug delivery system can achieve redox and pH-responsive release of DOX, thereby avoiding the premature leakage of drug before reaching the specific site and releasing DOX within the cancerous cells. Owing to the presence of TPGS-containing lipid layer, LTMSNs-DOX exhibited higher uptake efficiency, cytotoxicity, and increased intracellular accumulation in resistant MCF-7/Adr cells compared with DOX solution, proving to be a promising vehicle to realize intracellular drug release and inhibit drug efflux. PMID:25584634

  5. Chemotaxigenesis and activation of the alternative complement pathway by encapsulated and non-encapsulated Cryptococcus neoformans.

    PubMed Central

    Laxalt, K A; Kozel, T R

    1979-01-01

    In the presence of serum, whole cells of encapsulated and non-encapsulated Cryptococcus neoformans generated a chemotactic response by neutrophils. Heat inactivation of serum ablated all chemotactic activity. Cryptococcal polysaccharide was not chemotaxigenic. Assays for alternative complement pathway activation such as depletion of alternative complement pathway factor B or electrophoretic conversion of factor B closely paralleled chemotaxis assays. Cells of encapsulated and non-encapsulated C. neoformans activated the alternative complement pathway, whereas cryptococcal polysaccharide was inactive. Failure of the capsular material to activate the alternative pathway was not due to serotype specificity because polysaccharide of several serotypes failed to achieve activation. The results suggest that chemotaxigenesis and alternative complement pathway activation are functions of the yeast cell wall. The results support our proposal that the cryptococcal capsul does not prevent potential opsonins from reaching binding and activation sites at the yeast cell wall or the release of biologically active soluble cleavage products into the surrounding medium; however, cell wall-bound cleavage products remain bound to the cell wall beneath the capsule. Therefore, they are unable to participate as opsonins in phagocytosis. PMID:397927

  6. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  7. Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization.

    PubMed

    Huang, Gang; Yang, Qihao; Xu, Qiang; Yu, Shu-Hong; Jiang, Hai-Long

    2016-06-20

    Surface wettability of active sites plays a crucial role in the activity and selectivity of catalysts. This report describes modification of surface hydrophobicity of Pd/UiO-66, a composite comprising a metal-organic framework (MOF) and stabilized palladium nanoparticles (NPs), using a simple polydimethylsiloxane (PDMS) coating. The modified catalyst demonstrated significantly improved catalytic efficiency. The approach can be extended to various Pd nanoparticulate catalysts for enhanced activity in reactions involving hydrophobic reactants, as the hydrophobic surface facilitates the enrichment of hydrophobic substrates around the catalytic site. PDMS encapsulation of Pd NPs prevents aggregation of NPs and thus results in superior catalytic recyclability. Additionally, PDMS coating is applicable to a diverse range of catalysts, endowing them with additional selectivity in sieving reactants with different wettability. PMID:27144320

  8. Investigation of the interactions between the hydrophobic cavities of cyclodextrins and pullulanase.

    PubMed

    Yu, Bo; Wang, Jinpeng; Zhang, Huanxin; Jin, Zhengyu

    2011-01-01

    The effects of cyclodextrins and derivatives on the activity and structure of pullulanase were investigated in this study. Our results showed that cyclodextrins and derivatives decreased the activity of pullulanase. This decrease was attributed to the interaction between the hydrophobic cavities of cyclodextrins and pullulanase. The hydrophobic cavity was confirmed to encapsulate the groups of pullulanase molecules by the addition of competitive guests. The results obtained from fluorescence spectroscopy analysis showed that β-CD showed more efficient interactions with pullulanase molecules and the side chain groups of cyclodextrin significantly prevented the interaction between the hydrophobic cavities of β-CD and pullulanase molecules. These findings suggest that the geometric dimension of hydrophobic cavities was crucial for matching between cyclodextrins and pullulanase and steric hindrance caused by side chains led to the decrease of the interaction. PMID:21475123

  9. Evaluation of microbial release probabilities

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work undertaken to improve the estimation of the probability of release of microorganisms from unmanned Martian landing spacecraft is summarized. An analytical model is described for the development of numerical values for release parameters and release mechanisms applicable to flight missions are defined. Laboratory test data are used to evolve parameter values for use by flight projects in estimating numerical values for release probabilities. The analysis treats microbial burden located on spacecraft surfaces, between mated surfaces, and encapsulated within materials.

  10. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy.

    PubMed

    Floyd, J Alaina; Galperin, Anna; Ratner, Buddy D

    2016-02-01

    The grim prognosis for patients diagnosed with malignant gliomas necessitates the development of new therapeutic strategies for localized and sustained drug delivery to combat tumor drug resistance and regrowth. Here we introduce drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy (DREAM BIG therapy). DREAM BIG therapy is envisioned to deliver three chemotherapeutics, temporally staged over one year, via a bioadhesive, biodegradable spray directly to the brain surgical site after tumor excision. In this proof-of-principle article exploring key components of the DREAM BIG therapy prototype, rhodamine B (RB) encapsulated poly(lactic-co-glycolic acid) and immunoglobulin G (IgG) encapsulated poly(lactic acid) microspheres were formulated and characterized. The encapsulation efficiency of RB and IgG and the release kinetics of the model drugs from the microspheres were elucidated in addition to the release kinetics of RB from poly(lactic-co-glycolic acid) microspheres formulated in a degradable poly(N-isopropylacrylamide) solution. The successful aerosolized application onto brain tissue ex-vivo demonstrated the conformal adhesion of the RB encapsulated poly(lactic-co-glycolic acid) microspheres to the convoluted brain surface mediated by the thermoresponsive carrier, poly(N-isopropylacrylamide). These preliminary results suggest the potential of the DREAM BIG therapy for future use with multiple chemotherapeutics and microsphere types to combat gliomas at a localized site. PMID:26238392

  11. Flexible Asymmetric Encapsulation for Dehydration-Responsive Hybrid Microfibers.

    PubMed

    Chaurasia, Ankur S; Sajjadi, Shahriar

    2016-08-01

    A new class of smart alginate microfibers with asymmetric oil encapsulates is introduced. These fibers are produced by injecting an aqueous alginate solution into an outer aqueous calcium chloride solution to form alginate fibers, which are asymmetrically loaded with oil entities through eccentrically aligned inner capillaries. The fiber morphology and its degree of asymmetry can be tuned via altering the size, location, and frequency of the oil encapsulates. These asymmetric fibers reveal significant potential for applications where conventional symmetric fibers fail to perform. It is shown how asymmetric oil-encapsulated fibers can become dehydration-sensitive, and trigger the release of encapsulates if their hydration level drops below a critical value. It is also shown how the triggered response could be switched off on demand by stabilizing the oil encapsulates. The capability of asymmetric fibers to carry and release multiple cargos in parallel is demonstrated. The fibers loaded with equal-sized spheres are more asymmetric than those containing unequal drops, have a higher tensile strength, and show better potential for a triggered response. PMID:27352241

  12. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  13. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  14. Encapsulation of Aroma

    NASA Astrophysics Data System (ADS)

    Zuidam, Nicolaas Jan; Heinrich, Emmanuel

    Flavor is one of the most important characteristics of a food product, since people prefer to eat only food products with an attractive flavor (Voilley and Etiévant 2006). Flavor can be defined as a combination of taste, smell and/or trigeminal stimuli. Taste is divided into five basic ones, i.e. sour, salty, sweet, bitter and umami. Components that trigger the so-called gustatory receptors for these tastes are in general not volatile, in contrast to aroma. Aroma molecules are those that interact with the olfactory receptors in the nose cavity (Firestein 2001). Confusingly, aroma is often referred to as flavor. Trigeminal stimuli cause sensations like cold, touch, and prickling. The current chapter only focuses on the encapsulation of the aroma molecules.

  15. Method for producing hydrophobic aerogels

    SciTech Connect

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  16. Drag Reduction for Flow Past a Perfectly Hydrophobic Surface

    NASA Astrophysics Data System (ADS)

    McHale, Glen; Newton, Michael I.; Flynn, Morris R.; Gruncell, Brian R. K.; Sandham, Neil D.; Busse, Angela

    2014-11-01

    We consider drag reduction for flow past a perfectly hydrophobic sphere (i.e. a vanishing Cassie solid surface fraction or with a Leidenfrost layer). At small Re number an exact analytical model for drag can be constructed for a sphere encapsulated in a layer of a gas (a ``plastron''). This predicts an optimum thickness for the gas layer for maximum drag reduction due to a competition between increased lubrication of the flow and increased cross-section for drag by the compound object (the solid plus its surface-retained layer of gas). Using numerical simulations for a perfectly hydrophobic solid sphere in water we show that the maximum drag reduction increases from 19% to 50% as the Re number increases to 100; this is due to suppression of flow separation and a narrower wake. Introducing roughness into the simulations to model a superhydrophobic surface with a finite Cassie fraction results in less drag reduction because the vortex regime is no longer fully suppressed. Finally, we describe an analytical model of flow resistance through tubes or channels using similar boundary conditions to the flow past a gas-encapsulated sphere. We acknowledge funding from the UK EPSRC (EP/G058318/1, EP/G069581/1 and EP/L026899/1) and the Canadian NSERC.

  17. Catalytic activity and thermal stability of horseradish peroxidase encapsulated in self-assembled organic nanotubes.

    PubMed

    Lu, Qin; Kim, Youngchan; Bassim, Nabil; Raman, Nisha; Collins, Greg E

    2016-03-21

    Horseradish peroxidase (HRP) was encapsulated in self-assembled lithocholic acid (LCA) based organic nanotubes and its catalytic activity before and after thermal treatment was measured for comparison with free HRP. The apparent kcat (kcat/Km) for nanotube encapsulated HRP remained almost the same before and after thermal treatment, reporting an average value of 3.7 ± 0.4 μM(-1) s(-1). The apparent kcat value for free HRP decreased from 14.8 ± 1.3 μM(-1) s(-1) for samples stored at 4 °C to 2.4 ± 0.1 μM(-1) s(-1) after thermal treatment for 8 h at 55 °C. The Michaelis-Menten constants, Km, determined for encapsulated HRP and free HRP were relatively unperturbed by storage conditions at 4 °C or thermally treated at 55 °C for varying time periods from 2-8 h, with encapsulated HRP having a slightly higher Km than free HRP (13.4 ± 0.9 μM versus 11.7 ± 0.4 μM). The amount of HRP encapsulated in LCA nanotubes increased dramatically when the mixture of HRP and LCA nanotubes was brought to an elevated temperature. Within 4 h of thermal treatment at 55 °C, the amount of HRP encapsulated by the LCA nanotubes was more than 4 times the amount of HRP encapsulated when equilibrated at 4 °C for 7 days. Molecular dynamics (MD) simulations show that the higher degree of exposure of hydrophobic residues in HRP at elevated temperatures enhances the hydrophobic interaction between HRP and the nanotube wall, resulting in the increased amount of HRP surface adsorption and, hence, the overall amount of encapsulation inside the nanotubes. PMID:26953357

  18. siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core.

    PubMed

    Kim, Hyun Jin; Miyata, Kanjiro; Nomoto, Takahiro; Zheng, Meng; Kim, Ahram; Liu, Xueying; Cabral, Horacio; Christie, R James; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-05-01

    Hydrophobized block copolymers have widely been developed for construction of polymeric micelles for stable delivery of nucleic acids as well as anticancer drugs. Herein, we elaborated an A-B-C type of triblock copolymer featuring shell-forming A-segment, nucleic acid-loading B-segment, and stable core-forming C-segment, directed toward construction of a three-layered polymeric micelle as a small interfering RNA (siRNA) vehicle. The triblock copolymer was prepared with nonionic and hydrophilic poly(ethylene glycol) (PEG), cationic poly(l-lysine) (PLys), and poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)] bearing a hydrophobic dimethoxy nitrobenzyl ester (DN) moiety in the side chain [PEG-PLys-PAsp(DET-DN)]. The resulting triblock copolymers spontaneously formed sub-100 nm-sized polymeric micelles with a hydrophobic PAsp(DET-DN) core as well as PEG shell in an aqueous solution. This micelle was able to incorporate siRNA into the intermediate PLys layer, associated with slightly reduced size and a narrow size distribution. The triblock copolymer micelles (TCMs) stably encapsulated siRNA in serum-containing medium, whereas randomly hydrophobized triblock copolymer [PEG-PLys(DN)-PAsp(DET-DN)] control micelles (RCMs) gradually released siRNA with time and non-PEGylated diblock copolymer [PLys-PAsp(DET-DN)] control micelles (DCMs) immediately formed large aggregates. The TCMs thus induced appreciably stronger sequence-specific gene silencing in cultured cancer cells, compared to those control micelles. The siRNA delivery with TCMs was further examined in terms of cellular uptake and intracellular trafficking. The flow cytometric analysis revealed that the cellular uptake of TCMs was more efficient than that of RCMs, but less efficient than that of DCMs. The intracellular trafficking study using confocal laser scanning microscopy combined with fluorescence resonance energy transfer (FRET) revealed that the TCMs could readily release the siRNA payload

  19. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors.

    PubMed

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  20. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  1. Capreomycin oleate microparticles for intramuscular administration: Preparation, in vitro release and preliminary in vivo evaluation.

    PubMed

    Cambronero-Rojas, Adrián; Torres-Vergara, Pablo; Godoy, Ricardo; von Plessing, Carlos; Sepúlveda, Jacqueline; Gómez-Gaete, Carolina

    2015-07-10

    Capreomycin sulfate (CS) is a second-line drug used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The adverse effects profile and uncomfortable administration scheme of CS has led to the development of formulations based on liposomes and polymeric microparticles. However, as CS is a water-soluble peptide that does not encapsulate properly into hydrophobic particulate matrices, it was necessary to reduce its aqueous solubility by forming the pharmacologically active capreomycin oleate (CO) ion pair. The aim of this research was to develop a new formulation of CO for intramuscular injection, based on biodegradable microparticles that encapsulate CO in order to provide a controlled release of the drug with reduced local and systemic adverse effects. The CO-loaded microparticles prepared by spray drying or solvent emulsion-evaporation were characterized in their morphology, encapsulation efficiency, in vitro/in vivo kinetics and tissue tolerance. Through scanning electron microscopy it was confirmed that the microparticles were monodisperse and spherical, with an optimal size for intramuscular administration. The interaction between CO and the components of the microparticle matrix was confirmed on both formulations by X-ray powder diffraction and differential scanning calorimetry analyses. The encapsulation efficiencies for the spray-dried and emulsion-evaporation microparticles were 92% and 56%, respectively. The in vitro kinetics performed on both formulations demonstrated a controlled and continuous release of CO from the microparticles, which was successfully reproduced on an in vivo rodent model. The results of the histological analysis demonstrated that none of the formulations produced significant tissue damage on the site of injection. Therefore, the results suggest that injectable CO microparticles obtained by spray drying and solvent emulsion-evaporation could represent an interesting therapeutic alternative for the treatment of MDR

  2. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  3. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  4. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  5. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No....

  6. Liposomal encapsulated rhodomyrtone: a novel antiacne drug.

    PubMed

    Chorachoo, Julalak; Amnuaikit, Thanaporn; Voravuthikunchai, Supayang P

    2013-01-01

    Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100  μ mol/mL were used. Formulation with 60  μ mol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4 : 1, w/w) exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%), average particle size (209.56 ± 4.8 nm), and ζ -potential (-41.19 ± 1.3 mV). All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64  μ g/mL, respectively, while those of rhodomyrtone were 0.25-1 and 0.5-2  μ g/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis. PMID:23762104

  7. Liposomal Encapsulated Rhodomyrtone: A Novel Antiacne Drug

    PubMed Central

    Chorachoo, Julalak; Amnuaikit, Thanaporn; Voravuthikunchai, Supayang P.

    2013-01-01

    Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100 μmol/mL were used. Formulation with 60 μmol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4 : 1, w/w) exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%), average particle size (209.56 ± 4.8 nm), and ζ-potential (–41.19 ± 1.3 mV). All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64 μg/mL, respectively, while those of rhodomyrtone were 0.25–1 and 0.5–2 μg/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis. PMID:23762104

  8. A novel approach for antibody nanocarriers development through hydrophobic ion-pairing complexation

    PubMed Central

    Patel, Ashaben; Gaudana, Ripal; Mitra, Ashim K.

    2015-01-01

    IgG-Fab fragment, a model antibody protein was hydrophobically modified by a novel approach of ion-pairing complexation. Three different sulphated ion-pairing agents were utilised including sodium dodecyl sulphate, taurocholic acid and dextran sulphate (DS). The formations of hydrophobic ion-pairing (HIP) complexes were dependant on pH and molar ratio of ion-pairing agent to Fab. Aqueous solubilities of HIP complexes were very low compared to Fab alone. In particular, when dextran sulphate was added as ion-pairing agent, formed Fab:DS HIP complexes were least soluble in water. Further, nanoparticles (NPs) loaded with drug and Fab:DS HIP complex were prepared and characterised with respect to encapsulation efficiency and size. We observed significant improvement in encapsulation efficiency for Fab:DS HIP complex-loaded nanoparticles. This study demonstrates a novel approach of formulating antibody-loaded nanoparticles which can also be employed for delivery of large antibodies. PMID:24697179

  9. Disulfide cross-linked phosphorylcholine micelles for triggered release of camptothecin

    PubMed Central

    McRae Page, Samantha; Martorella, Molly; Parelkar, Sangram; Kosif, Irem

    2013-01-01

    A series of block copolymers based on 2-methacryloyloxyethyl phosphorylcholine (MPC) were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Incorporation of dihydrolipoic acid (DHLA) into the hydrophobic block led to formation of block copolymer micelles in water. The micelles were between 15 and 30 nm in diameter, as characterized by dynamic light scattering (DLS), with some size control achieved by adjusting the hydrophobic/hydrophilic balance. Cross-linked micelles were prepared by disulfide formation, and observed to be stable in solution for weeks. The micelles proved amenable to disassembly when treated with a reducing agent, such as dithiothreitol (DTT), and represent a potential delivery platform for chemotherapeutic agents. As a proof-of-concept, camptothecin (CPT) was conjugated to the polymer scaffold through a disulfide linkage, and release of the drug from the micelle was monitored by fluorescence spectroscopy. These CPT-loaded prodrug micelles showed a reduction in release rate compared to physically encapsulated CPT. The use of disulfide conjugation facilitated drug release under reducing conditions, with a half-life (t1/2) of 5.5 hours in the presence of 3 mM DTT, compared to 28 hours in PBS. The toxicity of the micellar prodrugs was evaluated in cell culture against human breast (MCF7) and colorectal (COLO205) cancer cell lines. PMID:23742055

  10. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    , the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours

  11. Sclerosing Encapsulating Peritonitis

    PubMed Central

    Machado, Norman O.

    2016-01-01

    Sclerosing encapsulating peritonitis (SEP) is a rare chronic inflammatory condition of the peritoneum with an unknown aetiology. Also known as abdominal cocoon, the condition occurs when loops of the bowel are encased within the peritoneal cavity by a membrane, leading to intestinal obstruction. Due to its rarity and non-specific clinical features, it is often misdiagnosed. The condition presents with recurrent episodes of small bowel obstruction and can be idiopathic or secondary; the latter is associated with predisposing factors such as peritoneal dialysis or abdominal tuberculosis. In the early stages, patients can be managed conservatively; however, surgical intervention is necessary for those with advanced stage intestinal obstruction. A literature review revealed 118 cases of SEP; the mean age of these patients was 39 years and 68.0% were male. The predominant presentation was abdominal pain (72.0%), distension (44.9%) or a mass (30.5%). Almost all of the patients underwent surgical excision (99.2%) without postoperative complications (88.1%). PMID:27226904

  12. Gravity Probe B Encapsulated

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  13. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  14. Encapsulation materials for photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Coulbert, C.

    1979-01-01

    As a part of the Low Cost Solar Array Project an encapsulation task has been established to identify, develop, and evaluate new low-cost, long-life encapsulation systems capable of meeting the project cost and performance goals. Low-cost material system candidates have been identified and are being characterized in laboratory and field tests with detailed evaluation of their environmental stability when subjected to temperature cycling, humidity, ultraviolet radiation, dirt, and various other environmental hazards.

  15. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  16. In vitro controlled release of clove essential oil in self-assembly of amphiphilic polyethylene glycol-block-polycaprolactone.

    PubMed

    Thonggoom, O; Punrattanasin, N; Srisawang, N; Promawan, N; Thonggoom, R

    2016-05-01

    In this study, a micellar delivery system with an amphiphilic diblock copolymer of poly (ethylene glycol) and poly (ɛ-caprolactone) was synthesised and used to incorporate hydrophobic clove essential oil (CEO). To determine an optimal delivery system, the effects of the copolymer's hydrophobic block length and the CEO-loading content on the encapsulation of CEO were investigated. Percentages of entrapment efficiency (%EE), CEO loading (%CEO), and in vitro release profiles were determined. The size, size distribution, zeta potential, and morphology of the obtained micelles were determined by DLS, FE-SEM, and TEM. The %EE, %CEO, and in vitro release profiles of CEO incorporated in micelles were analysed by HPLC. The study revealed a sustained release profile of CEO from CEO-loaded micelles. The results indicate the successful formulation of CEO-loaded PEG-b-PCL micelle nanoparticles. It is suggested that this micelle system has considerably potential applications in the sustained release of CEO in intravascular drug delivery. PMID:26988617

  17. Water-Mediated Hydrophobic Interactions.

    PubMed

    Ben-Amotz, Dor

    2016-05-27

    Hydrophobic interactions are driven by the combined influence of the direct attraction between oily solutes and an additional water-mediated interaction whose magnitude (and sign) depends sensitively on both solute size and attraction. The resulting delicate balance can lead to a slightly repulsive water-mediated interaction that drives oily molecules apart rather than pushing them together and thus opposes their direct (van der Waals) attraction for each other. As a consequence, competing solute size-dependent crossovers weaken hydrophobic interactions sufficiently that they are only expected to significantly exceed random thermal energy fluctuations for processes that bury more than ∼1 nm(2) of water-exposed area. PMID:27215821

  18. Water-Mediated Hydrophobic Interactions

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2016-05-01

    Hydrophobic interactions are driven by the combined influence of the direct attraction between oily solutes and an additional water-mediated interaction whose magnitude (and sign) depends sensitively on both solute size and attraction. The resulting delicate balance can lead to a slightly repulsive water-mediated interaction that drives oily molecules apart rather than pushing them together and thus opposes their direct (van der Waals) attraction for each other. As a consequence, competing solute size-dependent crossovers weaken hydrophobic interactions sufficiently that they are only expected to significantly exceed random thermal energy fluctuations for processes that bury more than ˜1 nm2 of water-exposed area.

  19. Subphthalocyanines: addressing water-solubility, nano-encapsulation, and activation for optical imaging of B16 melanoma cells.

    PubMed

    Bernhard, Yann; Winckler, Pascale; Chassagnon, Remi; Richard, Philippe; Gigot, Élodie; Perrier-Cornet, Jean-Marie; Decréau, Richard A

    2014-11-21

    Water-soluble disulfonato-subphthalocyanines (SubPcs) or hydrophobic nano-encapsulated SubPcs are efficient probes for the fluorescence imaging of cells. 20 nm large liposomes (TEM and DLS) incorporated about 13% SubPc. Moreover, some of these fluorophores were found to be pH activatable. PMID:25266256

  20. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food. PMID:25025594

  1. Cell encapsulation technology as a therapeutic strategy for CNS malignancies.

    PubMed Central

    Visted, T.; Bjerkvig, R.; Enger, P. O.

    2001-01-01

    Gene therapy using viral vectors has to date failed to reveal its definitive clinical usefulness. Cell encapsulation technology represents an alternative, nonviral approach for the delivery of biologically active compounds to tumors. This strategy involves the use of genetically engineered producer cells that secrete a protein with therapeutic potential. The cells are encapsulated in an immunoisolating material that makes them suitable for transplantation. The capsules, or bioreactors, permit the release of recombinant proteins that may assert their effects in the tumor microenvironment. During the last decades, there has been significant progress in the development of encapsulation technologies that comprise devices for both macro- and microencapsulation. The polysaccharide alginate is the most commonly used material for cell encapsulation and is well tolerated by various tissues. A wide spectrum of cells and tissues has been encapsulated and implanted, both in animals and humans, indicating the general applicability of this approach for both research and medical purposes, including CNS malignancies. Gliomas most frequently recur at the resection site. To provide local and sustained drug delivery, the bioreactors can be implanted in the brain parenchyma or in the ventricular system. The development of comprehensive analyses of geno- and phenotypic profiles of a tumor (genomics and proteomics) may provide new and important guidelines for choosing the optimal combination of bioreactors and recombinant proteins for therapeutic use. PMID:11465401

  2. Argan oil nanoemulsions as new hydrophobic drug-loaded delivery system for transdermal application.

    PubMed

    Lococo, D; Mora-Huertas, C E; Fessi, H; Zaanoun, I; Elaissari, A

    2012-10-01

    This research work deals with the development of argan oil-based nanoemulsions as vehicle of hydrophobic drugs such as diclofenac used as model. Nanoemulsions of oil in water were prepared using the ultrasonication method in order to obtain submicron size colloidal dispersion. The size, zeta potential and encapsulation efficiency of the dispersions obtained were investigated. In addition, the ability of sorbitan ester derivatives to form nanovesicles (niosomes), which in turn were used for encapsulating drug in oily solutions forming stable nanoemulsions, was particularly examined. Thus, additional stabilizing agents were not required in the recipe and formulations using only sorbitan monolaurate, argan oil and water lead to attractive results. Their submicronic size (<250 nm), high negative zeta potential (between -40 and -50 mV) and drug-encapsulation efficiency (higher than 85%) allow predicting both a good physical stability and a good performance as drug carriers. PMID:22888756

  3. Analysis of Double-encapsulated Fuel Rods

    SciTech Connect

    Hales, Jason Dean; Medvedev, Pavel G; Novascone, Stephen Rhead; Perez, Danielle Marie; Williamson, Richard L

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  4. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    , the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours

  5. NanoCipro Encapsulation in Monodisperse Large Porous PLGA Microparticles

    PubMed Central

    Arnold, Matthew M.; Gorman, Eric M.; Schieber, Loren J.; Munson, Eric J.; Berland, Cory

    2007-01-01

    Pulmonary drug delivery of controlled release formulations may provide an effective adjunct approach to orally delivered antibiotics for clearing persistent lung infections. Dry powder formulations for this indication should possess characteristics including; effective deposition to infected lung compartments, persistence at the infection site, and steady release of antibiotic. Large porous particles (∼10-15 μm) have demonstrated effective lung deposition and enhanced lung residence as a result of their large diameter and reduced clearance by macrophages in comparison to small microparticles (∼1-5 μm). In this report, Precision Particle Fabrication technology was used to create monodisperse large porous particles of poly(D,L-lactic-co-glycolic acid) (PLGA) utilizing oils as extractable porogens. After extraction, the resulting large porous PLGA particles exhibited a low density and a web-like or hollow interior depending on porogen concentration and type, respectively. Ciprofloxacin nanoparticles (nanoCipro) created by homogenization in dichloromethane, possessed a polymorph with a decreased melting temperature. Encapsulating nanoCipro in large porous PLGA particles resulted in a steady release of ciprofloxacin that was extended for larger particle diameters and for the solid particle morphology in comparison to large porous particles. The encapsulation efficiency of nanoCipro was quite low and factors impacting the entrapment of nanoparticles during particle formation were elucidated. A dry powder formulation with the potential to control particle deposition and sustain release to the lung was developed and insight to improve nanoparticle encapsulation is discussed. PMID:17604870

  6. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  7. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity.

    PubMed

    Popat, Amirali; Karmakar, Surajit; Jambhrunkar, Siddharth; Xu, Chun; Yu, Chengzhong

    2014-05-01

    Curcumin (CUR), a naturally derived anti-cancer cocktail is arguably the most widely studied neutraceutical. Despite a lot of promises, it is yet to reach the market as an active anti-cancer formulation. In the present study, we have prepared highly soluble (3 mg/ml) CUR-γ-hydroxypropyl cyclodextrin (CUR-CD) hollow spheres. CUR-CD hollow spheres were prepared by a novel and scalable spray drying method. CUR-CD was then encapsulated into positively charged biodegradable chitosan (CUR-CD-CS) nanoparticles. The CUR-CD-CS nanoparticles were characterised by TEM, SEM, DLS, drug loading and in vitro release. We tested the efficacy of these CUR-CD-CS nanoparticles in SCC25 cell lines using MTT assay and investigated its cellular uptake mechanism. We also studied Oligo DNA loading in CUR-CD-CS nanoparticles and its delivery via confocal imaging and FACS analysis. Our results demonstrated that CUR-CD-CS nanoparticles showed superior in vitro release performance and higher cytotoxicity in SCC25 cell line amongst all tested formulations. The cytotoxicity results were corroborated by cell cycle analysis and apoptosis test, showing nearly 100% apoptotic cell death in the case of CUR-CD-CS nanoparticles. Compared to CS nanoparticles, CS-CD nanoformulation showed higher cellular delivery of Cy3-Oligo DNA which was tested quantitatively using flowcytometry analysis, indicating that CD not only enhanced CUR solubility but also boosted the cellular uptake. Our study shows that rationally designed bio-degradable natural biomaterials have great potential as next generation nano-carriers for hydrophobic drug delivery such as CUR with potential of dual drug-gene delivery. PMID:24698148

  8. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy

    NASA Astrophysics Data System (ADS)

    Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L.; Taratula, Oleh

    2015-02-01

    Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm-2), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm-2 to 1.3 W cm-2 the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure.Multifunctional theranostic platforms capable of

  9. Insertion and confinement of hydrophobic metallic powder in water: the bubble-marble effect.

    PubMed

    Meir, Yehuda; Jerby, Eli

    2014-09-01

    Metallic powders such as thermite are known as efficient fuels also applicable in oxygen-free environments. However, due to their hydrophobicity, they hardly penetrate into water. This paper presents an effect that enables the insertion and confinement of hydrophobic metallic powders in water, based on encapsulating an air bubble surrounded by a hydrophobic metallic shell. This effect, regarded as an inverse of the known liquid-marble effect, is named here "bubble marble" (BM). The sole BM is demonstrated experimentally as a stable, maneuverable, and controllable soft-solid-like structure, in a slightly deformed hollow spherical shape of ∼1-cm diameter. In addition to experimental and theoretical BM aspects, this paper also demonstrates its potential for underwater applications, such as transportation of solid objects within BM and underwater combustion of thermite BM by localized microwaves. Hence, the BM phenomena may open new possibilities for heat and thrust generation, as well as material processing and mass transfer underwater. PMID:25314380

  10. Insertion and confinement of hydrophobic metallic powder in water: The bubble-marble effect

    NASA Astrophysics Data System (ADS)

    Meir, Yehuda; Jerby, Eli

    2014-09-01

    Metallic powders such as thermite are known as efficient fuels also applicable in oxygen-free environments. However, due to their hydrophobicity, they hardly penetrate into water. This paper presents an effect that enables the insertion and confinement of hydrophobic metallic powders in water, based on encapsulating an air bubble surrounded by a hydrophobic metallic shell. This effect, regarded as an inverse of the known liquid-marble effect, is named here "bubble marble" (BM). The sole BM is demonstrated experimentally as a stable, maneuverable, and controllable soft-solid-like structure, in a slightly deformed hollow spherical shape of ˜1-cm diameter. In addition to experimental and theoretical BM aspects, this paper also demonstrates its potential for underwater applications, such as transportation of solid objects within BM and underwater combustion of thermite BM by localized microwaves. Hence, the BM phenomena may open new possibilities for heat and thrust generation, as well as material processing and mass transfer underwater.

  11. Chloramphenicol encapsulated in poly-ε-caprolactone–pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds

    PubMed Central

    Kalita, Sanjeeb; Devi, Banasmita; Kandimalla, Raghuram; Sharma, Kaustav Kalyan; Sharma, Arup; Kalita, Kasturi; Kataki, Amal Chandra; Kotoky, Jibon

    2015-01-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infection has increased precipitously over the past several decades, with far-reaching health care and societal costs. MRSA infections in the context of burn wounds lead to invasive disease that could potentially cause mortality. Chloramphenicol is a well-known broad-spectrum bacteriostatic antibiotic that has been used since 1949, but due to its hydrophobicity, poor penetration in skin, fast degradation, and toxicity, its application has been hindered. Furthermore, it has been demonstrated that old antibiotics such as chloramphenicol remained active against a large number of currently prevalent resistant bacterial isolates due to their low-level use in the past. Recently, the novel nanoparticulate drug-delivery system has been used and reported to be exceptionally useful for topical therapeutics, due to its distinctive physical characteristics such as a high surface-to-volume ratio and minuscule size. It helps to achieve better hydrophilicity, bioavailability, and controlled delivery with enhanced therapeutic index, which has resulted in decreased toxicity levels compared to the crude drug. Here, we report a novel chloramphenicol loaded with poly(ε-caprolactone) (PCL)-pluronic composite nanoparticles (CAM-PCL-P NPs), physicochemical characterizations, and its bioactivity evaluation in a MRSA-infected burn-wound animal model. CAM-PCL-P NPs could encapsulate 98.3% of the drug in the nanoparticles and release 81% of the encapsulated drug over 36 days with a time to 50% drug release of 72 hours (51%). Nanoparticle suspensions maintained the initial properties with respect to size and encapsulation efficiency, even after 6 months of storage at 4°C and 25°C, respectively (P>0.05). Significant reduction in the level of toxicity was observed for CAM-PCL-P NPs compared with that of free drug as confirmed from hemolytic activity against human blood erythrocytes and cytotoxicity assay against an MCF-7

  12. Application of supercritical antisolvent method in drug encapsulation: a review

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2011-01-01

    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO2 flow rate, and the liquid phase flow rate on particle size and its distribution. PMID:21796245

  13. Encapsulation of astaxanthin-rich Xanthophyllomyces dendrorhous for antioxidant delivery.

    PubMed

    Lee, Ji-Soo; Park, Sun-Ah; Chung, Donghwa; Lee, Hyeon Gyu

    2011-10-01

    Calcium alginate gel (CAG) beads were used to entrap the antioxidant astaxanthin-rich Xanthophyllomyces dendrorhous (ASX) by ionic gelation. ASX-CAG bead entrapment efficiency and release behavior, as influenced by alginate and CaCl(2) concentration and hardening time, were investigated. The optimized bead preparation conditions that gave rise to an efficient ASX release pattern were 1.5% alginate, 50mM CaCl(2), and a 5min hardening time. The antioxidant activity of non-encapsulated ASX was maintained for 4 days and then sharply decreased, whereas encapsulated ASX was maintained for 6 days. These results revealed that physical entrapment of ASX within CAG beads could be an effective technique for protecting the antioxidant activity of ASX from lipid peroxidation. PMID:21575657

  14. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-01-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture. PMID:25652243

  15. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  16. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy.

    PubMed

    Taratula, Olena; Schumann, Canan; Duong, Tony; Taylor, Karmin L; Taratula, Oleh

    2015-03-01

    Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm(-2)), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm(-2) to 1.3 W cm(-2) the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure. PMID:25422147

  17. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (i) Amorphous fumed hydrophobic silica: Not less than 99.0 percent silicon dioxide after ignition... dichlorodimethylsilane. (ii) Precipated hydrophobic silica: Not less than 94.0 percent silicon dioxide after...

  18. Intrinsic Hydrophobicity of Rammed Earth

    NASA Astrophysics Data System (ADS)

    Holub, M.; Stone, C.; Balintova, M.; Grul, R.

    2015-11-01

    Rammed earth is well known for its vapour diffusion properties, its ability to regulate humidity within the built environment. Rammed earth is also an aesthetically iconic material such as marble or granite and therefore is preferably left exposed. However exposed rammed earth is often coated with silane/siloxane water repellents or the structure is modified architecturally (large roof overhangs) to accommodate for the hydrophilic nature of the material. This paper sets out to find out optimal hydrophobicity for rammed earth based on natural composite fibres and surface coating without adversely affecting the vapour diffusivity of the material. The material is not required to be waterproof, but should resist at least driving rain. In order to evaluate different approaches to increase hydrophobicity of rammed earth surface, peat fibres and four types of repellents were used.

  19. Dissecting hydrophobic hydration and association.

    PubMed

    Remsing, Richard C; Weeks, John D

    2013-12-12

    We use appropriately defined short-ranged reference models of liquid water to clarify the different roles local hydrogen bonding, van der Waals attractions, and long-ranged electrostatic interactions play in the solvation and association of apolar solutes in water. While local hydrogen bonding interactions dominate hydrophobic effects involving small solutes, longer-ranged electrostatic and dispersion interactions are found to be increasingly important in the description of interfacial structure around large solutes. The hydrogen bond network sets the solute length scale at which a crossover in solvation behavior between these small and large length scale regimes is observed. Unbalanced long-ranged forces acting on interfacial water molecules are also important in hydrophobic association, illustrated here by analysis of the association of model methane and buckminsterfullerene solutes. PMID:23944226

  20. Hydrophobicity of curved microstructured surfaces

    NASA Astrophysics Data System (ADS)

    Cannon, A. H.; King, W. P.

    2010-02-01

    This paper presents measurements and models for how the macroscopic curvature of microstructured polymers affects hydrophobicity. Flexible polymer substrates were fabricated with arrays of regular microstructures. The interaction of liquid drops with these surfaces was analyzed for flat substrates and substrates flexed into either positive or negative cylindrical shapes. Liquid droplet static contact angle and dynamic slide angle were measured for a range of surfaces. An increase in substrate curvature corresponded with decreased slide angle for liquid droplets suspended on the surface asperities. This phenomenon is investigated in terms of solid-liquid contact line and the periodicity of surface microstructures. We present a model that can be used to understand the observed phenomena and to design microstructure geometries for hydrophobicity.

  1. Characterization of Encapsulated Berberine in Yeast Cells of Saccharomyces cerevisiae

    PubMed Central

    Salari, Roshanak; Rajabi, Omid; Khashyarmanesh, Zahra; Fathi Najafi, Mohsen; Fazly Bazzaz, BiBi Sedigheh

    2015-01-01

    Berberine was loaded in yeast cells of Saccharomyces cerevisiaeas a novel pharmaceutical carrier to improve the treatment ofmany diseases. The yeast-encapsulated active materialsshowedhigh stability and bioavailability due to the enhanced solubility and sustained releasing. In this study, different characteristics of prepared berberine loaded yeast cells (loading capacity, release kinetic order, MIC and stability) were evaluatedby different analytical methods (fluorescence spectroscopy, HPLC and SEM).The loading capacity was about 78% ± 0.6%.Berberine release patterns of microcapsules happened in two different stages and followed by zero and first-order kinetic,respectively. About 99% of all active material released during 34 h. MIC was improved by berberine loaded microcapsules in comparison withberberine powder. The microcapsules were completely stable. Berberine loaded Sac. Cerevisiae could be considered as a favorite sustained release drug delivery system. The yeast would be applied as an efficient carrier to improve various properties of different active materials. PMID:26664393

  2. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds.

    PubMed

    Gaharwar, Akhilesh K; Mihaila, Silvia M; Kulkarni, Ashish A; Patel, Alpesh; Di Luca, Andrea; Reis, Rui L; Gomes, Manuela E; van Blitterswijk, Clemens; Moroni, Lorenzo; Khademhosseini, Ali

    2014-08-10

    Native extracellular matrix (ECM) is a complex fibrous structure loaded with bioactive cues that affects the surrounding cells. A promising strategy to mimicking native tissue architecture for tissue engineering applications is to engineer fibrous scaffolds using electrospinning. By loading appropriate bioactive cues within these fibrous scaffolds, various cellular functions such as cell adhesion, proliferation and differentiation can be regulated. Here, we report on the encapsulation and sustained release of a model hydrophobic drug (dexamethasone (Dex)) within beaded fibrillar scaffold of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT), a polyether-ester multiblock copolymer to direct differentiation of human mesenchymal stem cells (hMSCs). The amphiphilic beads act as depots for sustained drug release that is integrated into the fibrillar scaffolds. The entrapment of Dex within the beaded structure results in sustained release of the drug over the period of 28days. This is mainly attributed to the diffusion driven release of Dex from the amphiphilic electrospun scaffolds. In vitro results indicate that hMSCs cultured on Dex containing beaded fibrillar scaffolds exhibit an increase in osteogenic differentiation potential, as evidenced by increased alkaline phosphatase (ALP) activity, compared to the direct infusion of Dex in the culture medium. The formation of a mineralized matrix is also significantly enhanced due to the controlled Dex release from the fibrous scaffolds. This approach can be used to engineer scaffolds with appropriate chemical cues to direct tissue regeneration. PMID:24794894

  3. Novel Methods of Enhanced Retention in and Rapid, Targeted Release from Liposomes

    PubMed Central

    Zasadzinski, Joseph A.; Wong, Benjamin; Forbes, Natalie; Braun, Gary; Wu, Guohui

    2011-01-01

    Liposomes are single bilayer capsules with distinct interior compartments in which hydrophilic drugs, imaging agents, diagnostics, etc. can be sequestered from the exterior environment. The polar parts of the individual lipids face the water compartments, while the hydrophobic parts of the lipid provide a barrier in which hydrophilic or charged molecules are poorly soluble. Hydrophobic molecules can be dissolved within the bilayer. The bilayers are typically from 3 – 6 nm thick and the liposome can range from about 50 nm - 50 microns in diameter. The question asked in this review is if any one bilayer, regardless of its composition, can provide the extended drug retention, long lifetime in the circulation, active targeting to specific tissues and rapid and controllable drug release at the site of interest. As an alternative, we review methods of self-assembling multicompartment lipid structures that provide enhanced drug retention in physiological environments. We also review methods of externally targeting and triggering drug release via the near infrared heating of gold nanoshells attached to or encapsulated within bilayer vesicles. PMID:21603081

  4. Hydrophobic effect at aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  5. Microbes encapsulated within crosslinkable polymers

    SciTech Connect

    Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H

    2013-02-05

    The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.

  6. Asbestos: The Case for Encapsulation.

    ERIC Educational Resources Information Center

    Russek, William F.

    1980-01-01

    Encapsulation has proven to be the safest, surest, and most permanent method of treating sprayed asbestos on ceilings and walls. Federal aid is available to help pay for inspection of school buildings for asbestos and for asbestos removal. (Author/MLF)

  7. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-01

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting. PMID:26389817

  8. Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Závišová, Vlasta; Koneracká, Martina; Štrbák, Oliver; Tomašovičová, Natália; Kopčanský, Peter; Timko, Milan; Vavra, Ivo

    2007-04-01

    In this study, indomethacin (IND), which is a poorly water-soluble anti-inflammatory drug, was encapsulated in magnetic biodegradable poly( D, L-lactide) polymer (PLA) by the nanoprecipitation method. The influence of aqueous phase pH on drug loading and maximum concentration of magnetic particles inside the polymer was investigated. Morphology and particle size of the prepared nanospheres were determined by atomic force microscopy and transmission electron microscopy. Drug release from the nanospheres was studied by external sink method. The diffusion and dissolution models were applied to the description of IND release from nanospheres.

  9. Preparation of a novel composite nanofiber gel-encapsulated human placental extract through layer-by-layer self-assembly

    PubMed Central

    LIU, GUOHUI; CHEN, XI; ZHOU, WU; YANG, SHUHUA; YE, SHUNAN; CAO, FAQI; LIU, YI; XIONG, YUAN

    2016-01-01

    Aqueous human placenta extract (HPE) has been previously used to treat chronic soft tissue ulcer; however, the optimal dosage of HPE has yet to be elucidated. The present study investigated a novel nanofiber gel composed through layer-by-layer (LbL) self-assembly, in which HPE was encapsulated. IKVAV, RGD, RAD16 and FGL-PA were screened and combined to produce an optimal vehicle nanofiber gel through LbL assembly. Subsequently, the aqueous HPE was encapsulated into this nanofiber at the appropriate concentration, and the morphology, particle size, drug loading efficacy, encapsulation rate, release efficiency and structure validation were detected. The encapsulation efficiency of all three HPE samples was >90%, the nanofiber gel exhibited a slow releasing profile, and the structure of HPE encapsulated in the nanofiber gel was unvaried. In conclusion, this type of novel composite nanocapsules may offer a promising delivery system for HPE. PMID:27073463

  10. Recommended practices for encapsulating high voltage assemblies

    NASA Technical Reports Server (NTRS)

    Tankisley, E. W.

    1974-01-01

    Preparation and encapsulation of high voltage assemblies are considered. Related problems in encapsulating are brought out in these instructions. A test sampling of four frequently used encapsulating compounds is shown in table form. The purpose of this table is to give a general idea of the working time available and the size of the container required for mixing and de-aerating.

  11. Efficiencies in alginate encapsulation of vegetative explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to improve a non-mechanized bulk encapsulation technique to standardize encapsulation procedures and reduce the labor time compared to encapsulating individual nodes. Four mm-long nodal segments from Stage II cultures of Hibiscus moscheutos L. ‘Lord Baltimore’ were encapsu...

  12. Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles.

    PubMed

    Srinivasan, C; Katare, Y K; Muthukumaran, T; Panda, A K

    2005-03-01

    Low encapsulation efficiency, incomplete and erratic release profiles are the most common features of controlled released protein delivery systems employing biodegradable polymers. In the present study, lysozyme as a model protein was encapsulated in biodegradable microspheres using solvent evaporation method and the effect of amphiphilic stabilizer, a basic salt and a lyoprotectant on microparticle formulation was evaluated. Incorporation rat serum albumin (RSA) in the internal aqueous phase during emulsion increased the encapsulation efficiency of lysozyme and maintained the bioactivity. Use of NaHCO3 improved the encapsulation efficiency of lysozyme from 15-94%, but at the cost of reduced in vitro release characteristics. Incorporation of both RSA and NaHCO3 improved the bioactivity of lysozyme and decreased burst release of the protein from the polymer particle, but reduced the encapsulation efficiency from 90-70%. Addition of sucrose in the internal aqueous phase lowered the encapsulation efficiency which was restored by its addition in the external aqueous phase. Maintenance of internal aqueous phase pH close to the iso-electric point of the protein and osmotic balance between the internal aqueous phase and the external aqueous phase during solvent evaporation method helped in better encapsulation of the protein drug. In vitro release of the lysozyme correlated with the effect of different excipients on entrapment in polymer matrix. Entrapment efficiency as high as 76%, low burst effect and high bioactivity of the entrapped lysozyme was observed from the polymer particles. Use of RSA, sucrose and NaHCO3 helped in a co-operative way towards the formulation of particles entrapping bioactive lysozyme. PMID:16019899

  13. Release of quercetin from micellar nanoparticles with saturated and unsaturated core forming polyesters--a combined computational and experimental study.

    PubMed

    Hassanzadeh, Salman; Khoee, Sepideh; Beheshti, Abolghasem; Hakkarainen, Minna

    2015-01-01

    Computational and experimental studies were combined to obtain new insight into the widely reported anomalous release mechanism of hydrophobic drug (quercetin) from polymeric micellar nanoparticles. Saturated and unsaturated amphiphilic triblock copolymers from monomethoxy polyethylene glycol (mPEG), poly(butylene adipate) (PBA) and poly(cis-2-butene adipate) (PCBA) (mPEG-PBA-mPEG and mPEG-PCBA-mPEG) were utilized as model polymers to specify the contribution of polymer-micelle degradation and polymer-drug interactions on the observed differences in the release rates by applicable computational investigation and experimental evaluations. Monitoring the size of the micelles through the releasing process together with hydrolytic degradation studies of the core forming polymers proved that the contribution of polymer hydrolysis and micelle degradation on the observed differences in the release rates during the release time window was minimal. The compatibility between quercetin and the core forming polymer is another factor influencing the drug encapsulation and the relative release rate and it was therefore investigated theoretically (using density functional theory (DFT) at B3LYP/6-311(++)G level of theory) and experimentally (FT-IR imaging). The drug-polymer interactions in the core were shown to be much more important than the polymer and/or micelle swelling-dissociation-degradation processes under the studied conditions. PMID:25492006

  14. The Origin of Long-Range Attraction between Hydrophobes in Water

    PubMed Central

    Despa, Florin; Berry, R. Stephen

    2007-01-01

    When water-coated hydrophobic surfaces meet, direct contacts form between the surfaces, driving water out. However, long-range attractive forces first bring those surfaces close. This analysis reveals the source and strength of the long-range attraction between water-coated hydrophobic surfaces. The origin is in the polarization field produced by the strong correlation and coupling of the dipoles of the water molecules at the surfaces. We show that this polarization field gives rise to dipoles on the surface of the hydrophobic solutes that generate long-range hydrophobic attractions. Thus, hydrophobic aggregation begins with a step in which water-coated nonpolar solutes approach one another due to long-range electrostatic forces. This precursor regime occurs before the entropy increase of releasing the water layers and the short-range van der Waals attraction provide the driving force to “dry out” the contact surface. The effective force of attraction is derived from basic molecular principles, without assumptions of the structure of the hydrophobe-water interaction. The strength of this force can be measured directly from atomic force microscopy images of a hydrophobic molecule tethered to a surface but extending into water, and another hydrophobe attached to an atomic force probe. The phenomenon can be observed in the transverse relaxation rates in water proton magnetic resonance as well. The results shed light on the way water mediates chemical and biological self-assembly, a long outstanding problem. PMID:16997876

  15. Organically modified titania nanoparticles for sustained drug release applications.

    PubMed

    Sethi, Komal; Roy, Indrajit

    2015-10-15

    In this paper, we report the synthesis, characterization of drug-doped organically modified titania nanoparticles, and their applications in sustained drug release. The drug-doped nanoparticles were synthesized in the hydrophobic core of oil-in-water microemulsion medium. Structural aspects obtained through TEM and FESEM depicted that organically modified titania nanoparticles are monodispersed with spherical morphology, with an average size of around 200 nm. Their polymorphic forms and porosity were determined using powder XRD and BET, respectively, which showed that they are present in the anatase form, with a surface area of 136.5 m(2)/g and pore-diameter of 5.23 nm. After synthesis and basic structural characterizations, optical properties were studied for both fluorophore and drug encapsulated nanoparticles. The results showed that though the optical properties of the fluorophore are partially diminished upon nanoencapsulation, it became more stable against chemical quenching. The nanoparticles showed pH-dependent drug release pattern. In vitro studies showed that the nanoparticles were efficiently uptaken by cells. Cell viability assay results showed that though the placebo nanoparticles are non-cytotoxic, the drug-doped nanoparticles show drug-induced toxicity. Therefore, such porous nanoparticles can be used in non-toxic drug delivery applications. PMID:26093234

  16. Photodegradable Polyesters for Triggered Release

    PubMed Central

    Lv, Cong; Wang, Zhen; Wang, Peng; Tang, Xinjing

    2012-01-01

    Photodegradable polyesters were synthesized with a photolabile monomer 2-nitrophenylethylene glycol and dioyl chlorides with different lengths. These polymers can be assembled to form polymeric particles with encapsulation of target substances. Light activation can degrade these particles and release payloads in both aqueous solutions and RAW 264.7 cells. PMID:23208376

  17. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    PubMed

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  18. Polydiacetylene Liposomal Aequorin Bioluminescent Device for Detection of Hydrophobic Compounds.

    PubMed

    Yamamoto, Ryoko; Takegami, Shigehiko; Konishi, Atsuko; Horikawa, Hikari; Yonezawa, Sayumi; Kitade, Tatsuya

    2016-06-01

    In this study, a polydiacetylene liposomal aequorin bioluminescent device (PLABD) that functioned through control of the membrane transport of Ca(2+) ions was developed for detecting hydrophobic compounds. In the PLABD, aequorin was encapsulated in an internal water phase and a calcium ionophore (CI) was contained in a hydrophobic region. Membrane transport of Ca(2+) ions across the CI was suppressed by polymerization between diacetylene molecules. On addition of an analyte, the membrane transport of Ca(2+) ions across the CI increased, and Ca(2+) ions from the external water phase could diffuse into the internal water phase via the CI, which resulted in bioluminescence of the aequorin. Lidocaine, procaine, and procainamide were used as model compounds to test the validity of the detection mechanism of the PLABD. When each analyte was added to a suspension of the PLABD, bioluminescence from the aequorin in the PLABD was observed, and the level of this bioluminescence increased with increasing analyte concentration. There was a linear relationship between the logarithm of the analyte concentration and the bioluminescence for all analytes as follows: R = 0.89 from 10 nmol L(-1) to 10 mmol L(-1) for lidocaine, R = 0.66 from 10 nmol L(-1) to 100 μmol L(-1) for procaine, and R = 0.74 from 100 nmol L(-1) to 100 μmol L(-1) for procainamide. Compared to the traditional colorimetric method using polydiacetylene liposome, the PLABD was superior for both the sensitivity and dynamic range. Thus, PLABD is a valid, simple, and sensitive signal generator for detection of hydrophobic compounds that interact with PLABD membranes. PMID:27146598

  19. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    PubMed

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells. PMID:26004902

  20. A Transient Cell-Shielding Method for Viable MSC Delivery within Hydrophobic Scaffolds Polymerized In Situ

    PubMed Central

    Guo, Ruijing; Ward, Catherine L.; Davidson, Jeffrey M.; Duvall, Craig L.; Wenke, Joseph C.

    2015-01-01

    Cell-based therapies have emerged as promising approaches for regenerative medicine. Hydrophobic poly(ester urethane)s offer the advantages of robust mechanical properties, cell attachment without the use of peptides, and controlled degradation by oxidative and hydrolytic mechanisms. However, the application of injectable hydrophobic polymers to cell delivery is limited by the challenges of protecting cells from reaction products and creating a macroporous architecture post-cure. We designed injectable carriers for cell delivery derived from reactive, hydrophobic polyisocyanate and polyester triol precursors. To overcome cell death caused by reaction products from in situ polymerization, we encapsulated bone marrow-derived stem cells (BMSCs) in fast-degrading, oxidized alginate beads prior to mixing with the hydrophobic precursors. Cells survived the polymerization at >70% viability, and rapid dissolution of oxidized alginate beads after the scaffold cured created interconnected macropores that facilitated cellular adhesion to the scaffold in vitro. Applying this injectable system to deliver BMSCs to rat excisional skin wounds showed that the scaffolds supported survival of transplanted cells and infiltration of host cells, which improved new tissue formation compared to both implanted, pre-formed scaffolds seeded with cells and acellular controls. Our design is the first to enable injectable delivery of settable, hydrophobic scaffolds where cell encapsulation provides a mechanism for both temporary cytoprotection during polymerization and rapid formation of macropores post-polymerization. This simple approach provides potential advantages for cell delivery relative to hydrogel technologies, which have weaker mechanical properties and require incorporation of peptides to achieve cell adhesion and degradability. PMID:25907036

  1. Morphological and Chemical Characterization of Bonding Hydrophobic Adhesive to Dentin Using Ethanol Wet Bonding Technique

    PubMed Central

    Shin, T. Phillip; Yao, Xiaomei; Huenergardt, Robin; Walker, Mary P; Wang, Yong

    2009-01-01

    Objective BisGMA, a widely used component in dentin adhesive has very good mechanical properties after curing, but is relatively hydrophobic and thus, does not adequately infiltrate the water wet demineralized dentin collagen. Developing techniques that would lead to optimum infiltration of the hydrophobic component into the demineralized dentin matrix is very important. The purpose of this study was to evaluate interfacial morphological and chemical characteristics of the resultant adhesive-dentin interface when the ethanol wet bonding technique is used with hydrophobic adhesives. Materials and methods The occlusal one-third of the crown was removed from six unerupted human third molars; a uniform smear layer was created with 600 grit SiC. The dentin surface was etched with 35% phosphoric acid for 15 seconds before applying BisGMA/HEMA model adhesive using either water wet or ethanol wet bonding technique. Five-micro-thick sections of adhesive/dentin interface specimens were cut and stained with Goldner’s trichrome for light microscopy. Companion slabs were analyzed with SEM and micro-Raman spectroscopy. Results The presence of ethanol in the demineralized dentin increased adhesive collagen encapsulation as indicated by trichrome staining. The SEM results confirmed that the ethanol wet bonding improved the quality of the interface. Micro-Raman spectral analysis of the dentin/adhesive interface indicated there was a gradual decrease in penetration of BisGMA component for specimens using water wet bonding, while relatively homogeneous distribution of the hydrophobic BisGMA component was noted in the interface with ethanol wet bonding. Significance Wet bonding with ethanol instead of water permits better BisGMA infiltration improving the quality of interface. We speculate that the higher infiltration of hydrophobic BisGMA and better collagen encapsulation observed from the specimens using ethanol wet bonding would lead to more durable bonds because of improved

  2. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ.

    PubMed

    Guo, Ruijing; Ward, Catherine L; Davidson, Jeffrey M; Duvall, Craig L; Wenke, Joseph C; Guelcher, Scott A

    2015-06-01

    Cell-based therapies have emerged as promising approaches for regenerative medicine. Hydrophobic poly(ester urethane)s offer the advantages of robust mechanical properties, cell attachment without the use of peptides, and controlled degradation by oxidative and hydrolytic mechanisms. However, the application of injectable hydrophobic polymers to cell delivery is limited by the challenges of protecting cells from reaction products and creating a macroporous architecture post-cure. We designed injectable carriers for cell delivery derived from reactive, hydrophobic polyisocyanate and polyester triol precursors. To overcome cell death caused by reaction products from in situ polymerization, we encapsulated bone marrow-derived stem cells (BMSCs) in fastdegrading, oxidized alginate beads prior to mixing with the hydrophobic precursors. Cells survived the polymerization at >70% viability, and rapid dissolution of oxidized alginate beads after the scaffold cured created interconnected macropores that facilitated cellular adhesion to the scaffold in vitro. Applying this injectable system to deliver BMSCs to rat excisional skin wounds showed that the scaffolds supported survival of transplanted cells and infiltration of host cells, which improved new tissue formation compared to both implanted, pre-formed scaffolds seeded with cells and acellular controls. Our design is the first to enable injectable delivery of settable, hydrophobic scaffolds where cell encapsulation provides a mechanism for both temporary cytoprotection during polymerization and rapid formation of macropores post-polymerization. This simple approach provides potential advantages for cell delivery relative to hydrogel technologies, which have weaker mechanical properties and require incorporation of peptides to achieve cell adhesion and degradability. PMID:25907036

  3. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  4. Cyclodextrin-polyhydrazine degradable gels for hydrophobic drug delivery.

    PubMed

    Jalalvandi, Esmat; Cabral, Jaydee; Hanton, Lyall R; Moratti, Stephen C

    2016-12-01

    An injectable and biocompatible hydrogel system was designed for hydrophobic drug delivery. This hydrogel consisted of degradable polymers with cyclodextrin (CD) moieties. CD groups were used to increase the solubility of a hydrophobic molecule (nicardipine) in an aqueous solution through the formation of the inclusion complex. Two sets of gels were prepared by mixing oxidized dextran (DA) and CD functionalized polyhydrazine (PH) at physiological conditions and different level of crosslinking via hydrazone bonds. Cytotoxicity studies on the gels and their components confirmed the biocompatibility of these materials. Gel-30 with higher crosslinking density showed a two week degradation period whereas this period was 10days for gel-10, with lower crosslinking density, to complete degradation. The results from swelling tests and rheological measurements were also found to be dependent on crosslinking density of the hydrogels. Release profile of the hydrogel displayed a sustained release of nicardipin up to 6days for gel-30 and a 4day release with initial burst release for gel-10. PMID:27612699

  5. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules.

    PubMed

    Pan, Kang; Zhong, Qixin; Baek, Seung Joon

    2013-06-26

    In this work, a novel encapsulation method was studied by spray-drying a warm aqueous ethanol solution with codissolved sodium caseinate (NaCas) and lipophilic food components, using curcumin as a model compound. The encapsulation caused the loss of crystallinity of curcumin. After hydration of spray-dried powder and centrifugation, 137 μg/mL curcumin was dispersed in the transparent dispersion, which was 4 decades higher than its water solubility. Dynamic light scattering and atomic force microscopy results showed that curcumin-loaded casein nanoparticles were bigger than those of NaCas processed at encapsulation conditions but were smaller than those of the native NaCas. The increased nanoparticle dimension, together with fluorescence and FTIR spectroscopy results, suggested that curcumin was entrapped in the nanoparticle core through hydrophobic interactions. The curcumin encapsulated in casein nanoparticles had higher biological activity, as assessed by antioxidant and cell proliferation assays, than pristine curcumin, likely due to the improved dispersibility. This simple approach may be applied to encapsulate various lipophilic bioactive compounds. PMID:23734864

  6. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  7. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  8. Micelle Structure and Hydrophobic Hydration.

    PubMed

    Long, Joshua A; Rankin, Blake M; Ben-Amotz, Dor

    2015-08-26

    Despite the ubiquity and utility of micelles self-assembled from aqueous surfactants, longstanding questions remain regarding their surface structure and interior hydration. Here we combine Raman spectroscopy with multivariate curve resolution (Raman-MCR) to probe the hydrophobic hydration of surfactants with various aliphatic chain lengths, and either anionic (carboxylate) or cationic (trimethylammonium) head groups, both below and above the critical micelle concentration. Our results reveal significant penetration of water into micelle interiors, well beyond the first few carbons adjacent to the headgroup. Moreover, the vibrational C-D frequency shifts of solubilized deuterated n-hexane confirm that it resides in a dry, oil-like environment (while the localization of solubilized benzene is sensitive to headgroup charge). Our findings imply that the hydrophobic core of a micelle is surrounded by a highly corrugated surface containing hydrated non-polar cavities whose depth increases with increasing surfactant chain length, thus bearing a greater resemblance to soluble proteins than previously recognized. PMID:26222042

  9. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  10. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 2. Modulation of release rate.

    PubMed

    Bezemer, J M; Radersma, R; Grijpma, D W; Dijkstra, P J; van Blitterswijk, C A; Feijen, J

    2000-07-01

    Amphiphilic multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks were used as matrix material for protein-loaded microspheres. The efficiency of lysozyme entrapment by a double emulsion method was found to depend on the swelling behavior of the polymers in water and decreased from 100% for polymers with a degree of swelling of less than 1.8 to 11% for PEG-PBT copolymers with a degree of swelling of 3.6. The particle size could be controlled by varying the concentration of the polymer solution used in the microsphere preparation. An increase in the polymer concentration resulted in a proportional increase in the particle size. The in vitro release profiles of the encapsulated model protein lysozyme could be precisely tailored by variation of the copolymer composition and the size of the microspheres. Both a slow continuous release of lysozyme, and a fast release which was completed within a few days could be obtained. The release behavior, attributed to a combination of diffusion and polymer degradation, could be described by a previously developed model. PMID:10825558

  11. Poly(ortho ester) nanoparticle-based targeted intraocular therapy for controlled release of hydrophilic molecules.

    PubMed

    Palamoor, Mallika; Jablonski, Monica M

    2013-02-01

    Development of an efficient intraocular drug delivery nanosystem remains the most difficult challenge to attain a prolonged therapeutic effect at the site of drug action. The purpose of this work was to develop a biodegradable, long-term sustained release, and biocompatible nanoparticulate system to treat various intraocular diseases. To attain the objectives, poly(ortho ester) (POE), a hydrophobic, surface erodible, and nontoxic polymer, was selected for fabrication of nanoparticles for the first time using a double emulsion solvent evaporation method. The influence of POE molecular weight on particle size, polydispersity index, zeta potential, drug content, in vitro release, degradation, in vitro cytotoxicity, and cell uptake studies was investigated. Drug-loaded nanoparticles had a spherical shape with an average particle diameter from 241 to 298 nm and zeta potential values from -8 to -11 mV. Encapsulation efficiency ranged between 21 and 63%, depending on the type of the water-soluble molecule used. Approximately 20-30% of the loaded drug was released over a period of 14 weeks. The drug release and degradation profiles of nanoparticles followed perfect zero-order kinetics confirming the POE-surface erosion mechanism. In vitro cytotoxicity and cell uptake studies revealed the cyto-compatible nature and nonendocytic behavior of POE nanoparticles. Collectively, POE nanoparticles are a very promising vehicle for sustained delivery of therapeutics to the back of the eye. PMID:23256649

  12. Pharmacokinetics and antitumor efficacy of micelles assembled from multiarmed amphiphilic copolymers with drug conjugates in comparison with drug-encapsulated micelles.

    PubMed

    Luo, Xiaoming; Chen, Maohua; Zhang, Yun; Chen, Zhoujiang; Li, Xiaohong

    2016-01-01

    The premature drug release and structural dissociation before reaching pathological sites have posed major challenges for self-assembled micelles. To address these challenges, star-shaped amphiphilic copolymers derived from 4-armed poly(ethylene glycol) (PEG) were proposed for chemical conjugation of chemotherapeutic drugs and assembly into drug-conjugated micelles (DCM) with reductive sensitivity. The current study aimed to elucidate the in vitro and in vivo performance of DCM and a comparison with conventional drug-encapsulated micelles (DEM) was initially launched. DEM carriers were constructed with a similar structure to DCM from 4-armed PEG, and disulfide linkages were located between the hydrophilic and hydrophobic segments. Both DCM and DEM had an average size of around 130 nm, camptothecin (CPT) loadings of around 7.7% and critical micelle concentrations of around 0.95 μg/ml. Compared with DEM, DCM showed a lower initial drug release, a lower sensitivity of drug release to glutathione, and a higher structural stability after incubation with human serum albumin (HSA). The CPT derivatives (CPT-SH) released from DCM indicated cytotoxicities similar to CPT and remained a higher lactone stability than CPT in the presence of HSA. DCM showed slightly higher cytotoxicities to 4T1 cells and significantly lower cytotoxicities to normal cells than DEM. Pharmacokinetic analyses after intravenous administration of DCM indicated around 2.65 folds higher AUC0-∞, 2.66 folds lower clearance, and 1.87 folds higher tumor accumulation than those of DEM. In addition to a less disturbance to hematological and biochemical parameters and a lower acute toxicity to small intestines, DCM showed more significant tumor suppression efficacy and less tumor metastasis to lungs than DEM. It is suggested that DCM could overcome the limitation of conventional micelles by alleviating the premature drug release during blood circulation, relieving the systemic toxicity and promoting the

  13. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D; Thapa, Prem

    2012-05-22

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  14. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D; Thapa, Prem

    2011-03-08

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  15. Novel nanotubes and encapsulated nanowires

    NASA Astrophysics Data System (ADS)

    Terrones, M.; Hsu, W. K.; Schilder, A.; Terrones, H.; Grobert, N.; Hare, J. P.; Zhu, Y. Q.; Schwoerer, M.; Prassides, K.; Kroto, H. W.; Walton, D. R. M.

    Carbon nanotubes, with or without encapsulated material, generated by arc discharge and electrolytic techniques have been studied. Microcrystals of refractory carbides (i.e. NbC, TaC, MoC), contained in nanotubes and polyhedral particles, produced by arcing electrodes of graphite/metal mixtures, were analysed by high hesolution transmission electron microscopy (HRTEM) and X-ray powder diffraction. Encapsulation of MoC was found to give rise to an unusual stable form, namely face-centered-cubic MoC. SQUID measurements indicate that the encapsulated carbides exhibit superconducting transitions at about 10-12 K, thus they differ from carbon nanotubes/nanoparticles which do not superconduct. Four-probe and microwave (contactless) conductivity measurements indicate that most of the analysed samples behave as semiconductors. However, metallic transport was observed in specimens containing single conglomerated carbon nanotube bundles and boron-doped carbon nanotubes. Novel metallic βSn nanowires were produced by electrolysis of graphite electrodes immersed in molten LiCl/SnCl2 mixtures. Prolonged electron irradiation of these nanowires leads to axial growth and to dynamic transformations. These observations suggest ways in which materials may be modified by microencapsulation and irradiation.

  16. Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction

    PubMed Central

    Janicki, Joseph J.; Chancellor, Michael B.; Kaufman, Jonathan; Gruber, Michele A.; Chancellor, David D.

    2016-01-01

    Bladder drug delivery via catheter instillation is a widely used treatment for recurrence of superficial bladder cancer. Intravesical instillation of liposomal botulinum toxin has recently shown promise in the treatment of overactive bladder and interstitial cystitis/bladder pain syndrome, and studies of liposomal tacrolimus instillations show promise in the treatment of hemorrhagic cystitis. Liposomes are lipid vesicles composed of phospholipid bilayers surrounding an aqueous core that can encapsulate hydrophilic and hydrophobic drug molecules to be delivered to cells via endocytosis. This review will present new developments on instillations of liposomes and liposome-encapsulated drugs into the urinary bladder for treating lower urinary tract dysfunction. PMID:26999210

  17. Stability of proteins inside a hydrophobic cavity

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sharma, Sumit; Kumar, Sanat K.

    2011-03-01

    Previous studies have shown that enclosing a protein in an athermal cavity stabilizes the protein against reversible unfolding by virtue of eliminating many open chain conformations. Examples of such confined spaces include pores in chromatographic columns, Anfinsen's cage in Chaperonins, interiors of Ribosomes or regions of steric occlusion inside cells. However, the situation is more complex inside a hydrophobic cavity. The protein has a tendency to adsorb on the surface of the hydrophobic cavity, but at the same time it loses conformational entropy because of confinement. We study this system using a simple Hydrophobic Polar (HP) lattice protein model. Canonical Monte Carlo (MC) simulations at different temperatures and surface hydrophobicity show that proteins are stabilized at low and moderate hydrophobicity upon adsorption. The range of surface hydrophobicity over which a protein is stable increases with a decrease in radius of the cavity.

  18. Cell-selective encapsulation in hydrogel sheaths via biospecific identification and biochemical cross-linking.

    PubMed

    Sakai, Shinji; Liu, Yang; Sengoku, Mikako; Taya, Masahito

    2015-01-01

    Selective encapsulation of a particular cell population from heterogeneous cell populations has potential applications such as studies in cell-to-cell communication, regenerative medicine, and cell therapies. However, there are no versatile methods for realizing this. Here we report a method based on biospecific identification of the target cells through antigen-antibody reaction and subsequent enzymatic hydrogel sheath formation on the cell surfaces by horseradish peroxidase (HRP). Human hepatoma cell line HepG2 cells were selectively encapsulated in alginate-based hydrogel sheath from the mixture with mouse embryo fibroblast-like cell line 10T1/2 fibroblasts using anti-human CD326 antibody conjugated with HRP. The viability of the encapsulated cells was 93%. The cells released at 6 days of the encapsulation by degrading the sheath using alginate lyase grew almost the same as those free from encapsulation. The versatility of the method was confirmed using another antibody, cells, and hydrogel sheath material: Only human vein endothelial cells were encapsulated in gelatin-based hydrogel sheath from the mixture with 10T1/2 fibroblasts using anti-human CD31 antibody conjugated with HRP. The cell-selective encapsulation was also achieved by a system using a primary antibody with a secondary antibody conjugated with HRP. PMID:25890746

  19. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy.

    PubMed

    Le, Uyen M; Cui, Zhengrong

    2006-04-01

    Gadolinium neutron capture therapy (Gd-NCT) is a promising cancer therapy modality. One of the key factors for a successful Gd-NCT is to deliver and maintain a sufficient amount of Gd in tumor tissues during neutron irradiation. We proposed to prepare a Gd delivery system by complexing a Gd-containing compound, diethylenetriaminepentaacetic acid (Gd-DTPA), with a polycationic peptide, poly-L-lysine (pLL), and then encapsulate the complexed Gd-DTPA into PEGylated liposomes. Complexation of Gd-DTPA with pLL not only enhanced the encapsulation efficiency of Gd-DTPA in liposomes, but also significantly limited the release of Gd-DTPA from the liposomes. A Gd-DTPA-encapsulated liposome formulation that contained 6.8+/-0.3 mg/mL of pure encapsulated Gd was prepared. The blood half-life of the Gd encapsulated into the liposome formulation was estimated to be about 24 h in healthy tumor-free mice. About 12 h after the Gd-encapsulated liposomes were intravenously injected into mice with pre-established model tumors, the Gd content in the tumors reached an average of 159 microg/g of wet tumor tissue. This Gd-DTPA encapsulated liposome may be used to deliver Gd into solid tumors for NCT and tumor imaging. PMID:16457973

  20. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-01

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces. PMID:26753786

  1. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  2. Encapsulated scintillators monitor /sup 3/H-solute concentrations

    SciTech Connect

    Kirk, G.; Gruner, S.

    1982-02-01

    The short range of the /sup 3/H beta allows shielding of microbeds of scintillator by a several um thick coating of a water based gel. Gels may be used which are permeable to a wide variety of tritiated molecules. Thus, the light output of a mixture of the coated beads and a solution of the tritiated compound is proportional to the solution concentration of the tritiated substance. The mixture may also contain particles to which the gel is impermeable, such as cells, vesicles, large proteins, etc., but which can alter the concentration of the tritiated compound by uptake or release. In this case, the light output monitors the fractional uptake of the tritiated material. The design criteria for encapsulating the scintillators and dynamically monitoring the scintillation output are discussed. A simple method for encapsulating plastic scintillator microbeads, suitable for monitoring slow concentration changes, is described and tested.

  3. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    NASA Astrophysics Data System (ADS)

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-06-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale.

  4. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    PubMed Central

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-01-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale. PMID:26083864

  5. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation.

    PubMed

    Ji, Tianjiao; Zhao, Ying; Ding, Yanping; Wang, Jing; Zhao, Ruifang; Lang, Jiayan; Qin, Hao; Liu, Xiaoman; Shi, Jian; Tao, Ning; Qin, Zhihai; Nie, Guangjun; Zhao, Yuliang

    2016-01-18

    A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy. PMID:26283097

  6. Targeting of the hydrophobic metabolome by pathogens.

    PubMed

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. PMID:25754025

  7. Process for Encapsulating Protein Crystals

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin

    2003-01-01

    A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise

  8. Site-directed analysis on protein hydrophobicity.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2014-07-01

    Hydrophobicity of a protein is considered to be one of the major intrinsic factors dictating the protein aggregation propensity. Understanding how protein hydrophobicity is determined is, therefore, of central importance in preventing protein aggregation diseases and in the biotechnological production of human therapeutics. Traditionally, protein hydrophobicity is estimated based on hydrophobicity scales determined for individual free amino acids, assuming that those scales are unaltered when amino acids are embedded in a protein. Here, we investigate how the hydrophobicity of constituent amino acid residues depends on the protein context. To this end, we analyze the hydration free energy-free energy change on hydration quantifying the hydrophobicity-of the wild-type and 21 mutants of amyloid-beta protein associated with Alzheimer's disease by performing molecular dynamics simulations and integral-equation calculations. From detailed analysis of mutation effects on the protein hydrophobicity, we elucidate how the protein global factor such as the total charge as well as underlying protein conformations influence the hydrophobicity of amino acid residues. Our results provide a unique insight into the protein hydrophobicity for rationalizing and predicting the protein aggregation propensity on mutation, and open a new avenue to design aggregation-resistant proteins as biotherapeutics. PMID:24817476

  9. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  10. Thermal modeling of an epoxy encapsulation process

    SciTech Connect

    Baca, R.G.; Schutt, J.A.

    1991-01-01

    The encapsulation of components is a widely used process at Sandia National Laboratories for packaging components to withstand structural loads. Epoxy encapsulants are also used for their outstanding dielectric strength characteristics. The production of high voltage assemblies requires the encapsulation of ceramic and electrical components (such as transformers). Separation of the encapsulant from internal contact surfaces or voids within the encapsulant itself in regions near the mold base have caused high voltage breakdown failures during production testing. In order to understand the failure mechanisms, a methodology was developed to predict both the thermal response and gel front progression of the epoxy the encapsulation process. A thermal model constructed with PATRAN Plus (1) and solved with the P/THERMAL (2) analysis system was used to predict the thermal response of the encapsulant. This paper discusses the incorporation of an Arrhenius kinetics model into Q/TRAN (2) to model the complex volumetric heat generation of the epoxy during the encapsulation process. As the epoxy begins to cure, it generates heat and shrinks. The total cure time of the encapsulant (transformation from a viscous liquid to solid) is dependent on both the initial temperature and the entire temperature history. Because the rate of cure is temperature dependent, the cure rate accelerates with a temperature increase and, likewise, the cure rate is quenched if the temperature is reduced. The temperature and conversion predictions compared well against experimental data. The thermal simulation results were used to modify the temperature cure process of the encapsulant and improve production yields.

  11. Encapsulation and Permeability Characteristics of Plasma Polymerized Hollow Particles

    PubMed Central

    Shahravan, Anaram; Matsoukas, Themis

    2012-01-01

    In this protocol, core-shell nanostructures are synthesized by plasma enhanced chemical vapor deposition. We produce an amorphous barrier by plasma polymerization of isopropanol on various solid substrates, including silica and potassium chloride. This versatile technique is used to treat nanoparticles and nanopowders with sizes ranging from 37 nm to 1 micron, by depositing films whose thickness can be anywhere from 1 nm to upwards of 100 nm. Dissolution of the core allows us to study the rate of permeation through the film. In these experiments, we determine the diffusion coefficient of KCl through the barrier film by coating KCL nanocrystals and subsequently monitoring the ionic conductivity of the coated particles suspended in water. The primary interest in this process is the encapsulation and delayed release of solutes. The thickness of the shell is one of the independent variables by which we control the rate of release. It has a strong effect on the rate of release, which increases from a six-hour release (shell thickness is 20 nm) to a long-term release over 30 days (shell thickness is 95 nm). The release profile shows a characteristic behavior: a fast release (35% of the final materials) during the first five minutes after the beginning of the dissolution, and a slower release till all of the core materials come out. PMID:22929119

  12. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement

    PubMed Central

    Shadrack, Daniel M.; Mubofu, Egid B.; Nyandoro, Stephen S.

    2015-01-01

    The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer–TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity. PMID:26556337

  13. Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system

    PubMed Central

    Zhang, Shanshan; Anderson, Mark A.; Ao, Yan; Khakh, Baljit S.; Fan, Jessica; Deming, Timothy J.; Sofroniew, Michael V.

    2014-01-01

    Many hydrophobic small molecules are available to regulate gene expression and other cellular functions. Locally restricted application of such molecules in the central nervous system (CNS) would be desirable in many experimental and therapeutic settings, but is limited by a lack of innocuous vehicles able to load and easily deliver hydrophobic cargo. Here, we tested the potential for diblock copolypeptide hydrogels (DCH) to serve as such vehicles. In vitro tests on loading and release were conducted with cholesterol and the anti-cancer agent, temozolomide (TMZ). Loading of hydrophobic cargo modified DCH physical properties such as stiffness and viscosity, but these could readily be tuned to desired ranges by modifying DCH concentration, amino acid composition or chain lengths. Different DCH formulations exhibited different loading capacities and different rates of release. For example, comparison of different DCH with increasing alanine contents showed corresponding increases in both cargo loading capacity and time for cargo release. In vivo tests were conducted with tamoxifen, a small synthetic hydrophobic molecule widely used to regulate transgene expression. Tamoxifen released from DCH depots injected into healthy or injured CNS efficiently activated reporter gene expression in a locally restricted manner in transgenic mice. These findings demonstrate the facile and predictable tunability of DCH to achieve a wide range of loading capacities and release profiles of hydrophobic cargos while retaining CNS compatible physical properties. In addition, the findings show that DCH depots injected into the CNS can efficiently deliver small hydrophobic molecules that regulate gene expression in local cells. PMID:24314556

  14. Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters

    PubMed Central

    Mamvura, Chiedza Isabel; Cho, Sangbuem; Mbiriri, David Tinotenda; Lee, Hong-gu; Choi, Nag-Jin

    2014-01-01

    Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity. PMID:25358317

  15. Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters.

    PubMed

    Mamvura, Chiedza Isabel; Cho, Sangbuem; Mbiriri, David Tinotenda; Lee, Hong-Gu; Choi, Nag-Jin

    2014-11-01

    Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity. PMID:25358317

  16. Encapsulation methods for organic electrical devices

    DOEpatents

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  17. Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.

    2011-06-01

    Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.

  18. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  19. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.

    PubMed

    Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can

    2012-05-01

    A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. PMID:22374682

  20. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage.

    PubMed

    Baranauskiene, Renata; Bylaite, Egle; Zukauskaite, Jurate; Venskutonis, Rimantas P

    2007-04-18

    The effect of different commercial modified food starch carrier materials on the flavor retention of the essential oil (EO) of peppermint (Mentha piperita L.) during spray drying and storage was evaluated. The obtained results revealed that the emulsification and encapsulation efficiencies of peppermint EO were higher for all n-octenyl succinic anhydride (OSAN)-modified starches as compared to those of hydrolyzed starches (dextrins). The compositions of pure, emulsified, and encapsulated peppermint EOs in different matrices were quite similar; however, some changes in the percentages of some individual compounds were observed. Larger differences in the compositions of surface oils from various encapsulation products were obtained. Flavor components were released at different rates by each of the encapsulated products. The aroma binding capacity of different modified starch matrices to lock EO droplets depends on the water activity, and the leakage of aromas from encapsulated powder products during storage increased with increasing water activity. PMID:17381102

  1. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity.

    PubMed

    Zhang, Zipei; Zhang, Ruojie; Chen, Long; McClements, David Julian

    2016-06-01

    Encapsulation of enzymes in hydrogel beads may improve their utilization and activity in foods. In this study, the potential of carrageenan hydrogel beads for encapsulating β-galactosidase was investigated. Hydrogel beads were fabricated by injecting an aqueous solution, containing β-galactosidase (26 U) and carrageenan (1 wt%), into a hardening solution (5% potassium chloride). Around 63% of the β-galactosidase was initially encapsulated in the hydrogel beads. Encapsulated β-galactosidase had a higher activity than that of the free enzyme over a range of pH and thermal conditions, which was attributed to the stabilization of the enzyme structure by K(+) ions within the carrageenan beads. Release of the enzyme from the beads was observed during storage in aqueous solutions, which was attributed to the relatively large pore size of the hydrogel matrix. Our results suggest that carrageenan hydrogel beads may be useful encapsulation systems, but further work is needed to inhibit enzyme leakage. PMID:26830562

  2. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  3. Modulation of the carotenoid bioaccessibility through liposomal encapsulation.

    PubMed

    Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Xia, Shuqin

    2014-11-01

    The low bioaccessibility of carotenoids is currently a challenge to their incorporation in pharmaceutics, nutraceuticals and functional foods. The aim of this study was to evaluate the modulating effects of liposome encapsulation on the bioaccessibility, and its relationship with carotenoid structure and incorporated concentration. The physical stability of liposomes, lipid digestibility, carotenoids release and bioaccessibility were investigated during incubation in a simulated gastrointestinal tract. Analysis on the liposome size and morphology showed that after digestion, the majority of particles maintained spherical shape with only an increase of size in liposomes loading β-carotene or lutein. However, a large proportion of heterogeneous particles were visible in the micelle phase of liposomes loading lycopene or canthaxanthin. It was also found that the release of lutein and β-carotene from liposomes was inhibited in a simulated gastric fluid, while was slow and sustained in a simulated intestinal fluid. By contrast, lycopene and canthaxanthin exhibited fast and considerable release in the gastrointestinal media. Both carotenoid bioaccessibility and micellization content decreased with the increase of incorporated concentration. Anyway, the bioaccessibility of carotenoids after encapsulated in liposomes was in the following order: lutein>β-carotene>lycopene>canthaxanthin. Bivariate correlation analysis revealed that carotenoid bioaccessibility depended strongly on the incorporating ability of carotenoids into a lipid bilayer, loading content, and nature of the system. PMID:25456993

  4. Silica-F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity

    NASA Astrophysics Data System (ADS)

    Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John

    2013-12-01

    To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile

  5. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release

    PubMed Central

    Qian, Wen-Yu; Sun, Dong-Mei; Zhu, Rong-Rong; Du, Xi-Ling; Liu, Hui; Wang, Shi-Long

    2012-01-01

    Strontium carbonate nanoparticles (SCNs), a novel biodegradable nanosystem for the pH-sensitive release of anticancer drugs, were developed via a facile mixed solvent method aimed at creating smart drug delivery in acidic conditions, particularly in tumor environments. Structural characterization of SCNs revealed that the engineered nanocarriers were uniform in size and presented a dumbbell-shaped morphology with a dense mass of a scale-like spine coating, which could serve as the storage structure for hydrophobic drugs. Chosen as a model anticancer agent, etoposide was effectively loaded into SCNs based on a simultaneous process that allowed for the formation of the nanocarriers and for drug storage to be accomplished in a single step. The etoposide-loaded SCNs (ESCNs) possess both a high loading capacity and efficient encapsulation. It was found that the cumulative release of etoposide from ESCNs is acid-dependent, and that the release rate is slow at a pH of 7.4; this rate increases significantly at low pH levels (5.8, 3.0). Meanwhile, it was also found that the blank SCNs were almost nontoxic to normal cells, and ESCN systems were evidently more potent in antitumor activity compared with free etoposide, as confirmed by a cytotoxicity test using an MTT assay and an apoptosis test with fluorescence-activated cell sorter (FACS) analysis. These findings suggest that SCNs hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy. PMID:23185118

  6. Treatment of lymphomatous and leukemic meningitis with liposomal encapsulated cytarabine

    PubMed Central

    Kripp, Melanie; Hofheinz, Ralf-Dieter

    2008-01-01

    Liposomal encapsulated cytarabine (DepoCyte®, Mundipharma GmbH, Limburg/Lahn, Germany) is a slow-release formulation of conventional cytarabine. It is licensed for intrathecal use in patients with lymphomatous and leukemic meningitis. DepoCyte® obtained superior response rates, improved patient quality of life and improved the time to neurological progression in a randomized albeit small clinical trial. In this review we briefly summarize the clinical data and discuss them in light of clinical problems and possible treatment scenarios. PMID:19337408

  7. Treatment of lymphomatous and leukemic meningitis with liposomal encapsulated cytarabine.

    PubMed

    Kripp, Melanie; Hofheinz, Ralf-Dieter

    2008-01-01

    Liposomal encapsulated cytarabine (DepoCyte, Mundipharma GmbH, Limburg/Lahn, Germany) is a slow-release formulation of conventional cytarabine. It is licensed for intrathecal use in patients with lymphomatous and leukemic meningitis. DepoCyte obtained superior response rates, improved patient quality of life and improved the time to neurological progression in a randomized albeit small clinical trial. In this review we briefly summarize the clinical data and discuss them in light of clinical problems and possible treatment scenarios. PMID:19337408

  8. Metal-Organic-Framework-Templated Polyelectrolyte Nanocapsules for the Encapsulation and Delivery of Small-Molecule-Polymer Conjugates.

    PubMed

    Liu, Shuo; Chen, Jianbin; Bao, Xiaojia; Li, Tao; Ling, Yunyang; Li, Chunxiang; Wu, Chuanliu; Zhao, Yibing

    2016-06-21

    Herein, we report a strategy for exploiting nanoscale metal-organic frameworks (nano-MOFs) as templates for the layer-by-layer (LbL) assembly of polyelectrolytes. Because small-molecule drugs or imaging agents cannot be efficiently encapsulated by polyelectrolyte nanocapsules, we investigated two promising and biocompatible polymers (comb-shaped polyethylene glycol (PEG) and hyperbranched polyglycerol-based PEG) for the conjugation of model drugs and imaging agents, which were then encapsulated inside the nano-MOF-templated nanocapsules. Furthermore, we also systemically explored the release kinetics of the encapsulated conjugates, and examined how the encapsulation and/or release processes could be controlled by varying the composition and architecture of the polymers. We envision that our nano-MOFs-templated nanocapsules, through combining with small-molecule-polymer conjugates, will represent a new type of delivery system that could open up new opportunities for biomedical applications. PMID:27123998

  9. Hydrophobic ion pairing of isoniazid using a prodrug approach.

    PubMed

    Zhou, Huiyu; Lengsfeld, Corinne; Claffey, David J; Ruth, James A; Hybertson, Brooks; Randolph, Theodore W; Ng, Ka-Yun; Manning, Mark C

    2002-06-01

    Inhalation therapy for infectious lung diseases, such as tuberculosis, is currently being explored, with microspheres being used to target alveolar macrophages. One method of drug encapsulation into polymeric microspheres to form hydrophobic ion-paired (HIP) complexes, and then coprecipitate the complex and polymer using supercritical fluid methodology. For the potent antituberculosis drug, isoniazid (isonicotinic acid hydrazide, INH), to be used in this fashion, it was modified into an ionizable form suitable for HIP. The charged prodrug, sodium isoniazid methanesulfonate (Na-INHMS), was then ion paired with hydrophobic cations, such as alkyltrimethylammonium or tetraalkylammonium. The logarithms of the apparent partition coefficients (log P') of various HIP complexes of INHMS display a roughly linear relationship with the numbers of carbon atoms in the organic counterions. The water solubility of the tetraheptylammonium-INHMS complex is about 220-fold lower than that of Na-INHMS, while the solubility in dichloromethane exceeds 10 mg/mL, which is sufficient for microencapsulation of the drug into poly(lactide) microspheres. The actual logarithm of the dichloromethane/water partition coefficient (log P) for tetraheptylammonium-INHMS is 1.55, compared to a value of - 1.8 for the sodium salt of INHMS. The dissolution kinetics of the tetraheptylammonium-INHMS complex in 0.9% aqueous solutions of NaCl was also investigated. Dissolution of tetraheptylammonium-INHMS exhibited a first-order time constant of about 0.28 min(-1), followed by a slower reverse ion exchange process to form Na-INHMS. The half-life of this HIP complex is on the order of 30 min, making the enhanced transport of the drug across biological barriers possible. This work represents the first use of a prodrug approach to introduce functionality that would allow HIP complex formation for a neutral molecule. PMID:12115849

  10. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  11. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  12. Lipid encapsulated docosahexaenoic acid methyl ester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of structurally sensitive compounds within a solid lipid matrix provides a barrier to prooxidant compounds and effectively limits the extent of oxidative degradation. Encapsulated docosahexaenoic acid (DHA) methyl ester was examined as a model compound for functional foods and feeds. S...

  13. Development of thermosensitive poly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticles for controlled drug release

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Liang; Tsai, Han-Min; Yang, Shu-Jyuan; Luo, Tsai-Yueh; Lin, Chia-Fu; Lin, Wuu-Jyh; Shieh, Ming-Jium

    2011-07-01

    Thermosensitive nanoparticles based on poly(N-isopropylacrylamide-co-((2-dimethylamino)ethylmethacrylate)) (poly(NIPA-co-DMAEMA)) copolymers were successfully fabricated by free radical polymerization. The lower critical solution temperature (LCST) of the synthesized nanoparticles was 41 °C and a temperature above which would cause the nanoparticles to undergo a volume phase transition from 140 to 100 nm, which could result in the expulsion of encapsulated drugs. Therefore, we used the poly(NIPA-co-DMAEMA) nanoparticles as a carrier for the controlled release of a hydrophobic anticancer agent, 7-ethyl-10-hydroxy-camptothecin (SN-38). The encapsulation efficiency and loading content of SN-38-loaded nanoparticles at an SN-38/poly(NIPA-co-DMAEMA) ratio of 1/10 (D/P = 1/10) were about 80% and 6.293%, respectively. Moreover, the release profile of SN-38-loaded nanoparticles revealed that the release rate at 42 °C (above LCST) was higher than that at 37 °C (below LCST), which demonstrated that the release of SN-38 could be controlled by increasing the temperature. The cytotoxicity of the SN-38-loaded poly(NIPA-co-DMAEMA) nanoparticles was investigated in human colon cancer cells (HT-29) to compare with the treatment of an anticancer drug, Irinotecan® (CPT-11). The antitumor efficacy evaluated in a C26 murine colon tumor model showed that the SN-38-loaded nanoparticles in combination with hyperthermia therapy efficiently suppressed tumor growth. The results indicate that these thermo-responsive nanoparticles are potential carriers for controlled drug delivery.

  14. Encapsulation of functional organic compounds in nanoglass for optically anisotropic coatings.

    PubMed

    Stöter, Matthias; Biersack, Bernhard; Rosenfeldt, Sabine; Leitl, Markus J; Kalo, Hussein; Schobert, Rainer; Yersin, Hartmut; Ozin, Geoffrey A; Förster, Stephan; Breu, Josef

    2015-04-13

    A novel approach is presented for the encapsulation of organic functional molecules between two sheets of 1 nm thin silicate layers, which like glass are transparent and chemically stable. An ordered heterostructure with organic interlayers strictly alternating with osmotically swelling sodium interlayers can be spontaneously delaminated into double stacks with the organic interlayers sandwiched between two silicate layers. The double stacks show high aspect ratios of >1000 (typical lateral extension 5000 nm, thickness 4.5 nm). This newly developed technique can be used to mask hydrophobic functional molecules and render them completely dispersible in water. The combination of the structural anisotropy of the silicate layers and a preferred orientation of molecules confined in the interlayer space allows polymer nanocomposite films to be cast with a well-defined orientation of the encapsulated molecules, thus rendering the optical properties of the nanocoatings anisotropic. PMID:25703020

  15. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    PubMed

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. PMID:26415668

  16. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%–60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  17. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity. PMID:27454207

  18. Molecular Shape and the Hydrophobic Effect

    NASA Astrophysics Data System (ADS)

    Hillyer, Matthew B.; Gibb, Bruce C.

    2016-05-01

    This review focuses on papers published since 2000 on the topic of the properties of solutes in water. More specifically, it evaluates the state of the art of our understanding of the complex relationship between the shape of a hydrophobe and the hydrophobic effect. To highlight this, we present a selection of references covering both empirical and molecular dynamics studies of small (molecular-scale) solutes. These include empirical studies of small molecules, synthetic hosts, crystalline monolayers, and proteins, as well as in silico investigations of entities such as idealized hard and soft spheres, small solutes, hydrophobic plates, artificial concavity, molecular hosts, carbon nanotubes and spheres, and proteins.

  19. Super-hydrophobic fluorine containing aerogels

    SciTech Connect

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  20. Molecular Shape and the Hydrophobic Effect.

    PubMed

    Hillyer, Matthew B; Gibb, Bruce C

    2016-05-27

    This review focuses on papers published since 2000 on the topic of the properties of solutes in water. More specifically, it evaluates the state of the art of our understanding of the complex relationship between the shape of a hydrophobe and the hydrophobic effect. To highlight this, we present a selection of references covering both empirical and molecular dynamics studies of small (molecular-scale) solutes. These include empirical studies of small molecules, synthetic hosts, crystalline monolayers, and proteins, as well as in silico investigations of entities such as idealized hard and soft spheres, small solutes, hydrophobic plates, artificial concavity, molecular hosts, carbon nanotubes and spheres, and proteins. PMID:27215816

  1. Encapsulation of cosmetic active ingredients for topical application--a review.

    PubMed

    Casanova, Francisca; Santos, Lúcia

    2016-02-01

    Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs. PMID:26612271

  2. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    PubMed Central

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y.

    2016-01-01

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953

  3. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity.

    PubMed

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y

    2016-01-01

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953

  4. Point contacts in encapsulated graphene

    SciTech Connect

    Handschin, Clevin; Fülöp, Bálint; Csonka, Szabolcs; Makk, Péter; Blanter, Sofya; Weiss, Markus; Schönenberger, Christian; Watanabe, Kenji; Taniguchi, Takashi

    2015-11-02

    We present a method to establish inner point contacts with dimensions as small as 100 nm on hexagonal boron nitride (hBN) encapsulated graphene heterostructures by pre-patterning the top-hBN in a separate step prior to dry-stacking. 2- and 4-terminal field effect measurements between different lead combinations are in qualitative agreement with an electrostatic model assuming point-like contacts. The measured contact resistances are 0.5–1.5 kΩ per contact, which is quite low for such small contacts. By applying a perpendicular magnetic field, an insulating behaviour in the quantum Hall regime was observed, as expected for inner contacts. The fabricated contacts are compatible with high mobility graphene structures and open up the field for the realization of several electron optical proposals.

  5. Plasmon excitations for encapsulated graphene

    NASA Astrophysics Data System (ADS)

    Gumbs, Godfrey; Horing, N. J. M.; Iurov, Andrii; Dahal, Dipendra

    2016-06-01

    We have developed an analytical formulation to calculate the plasmon dispersion relation for a two-dimensional layer which is encapsulated within a narrow spatial gap between two bulk half-space plasmas. This is based on a solution of the inverse dielectric function integral equation within the random-phase approximation (RPA). We take into account the nonlocality of the plasmon dispersion relation for both gapped and gapless graphene as the sandwiched two-dimensional (2D) semiconductor plasma. The associated nonlocal graphene plasmon spectrum coupled to the ‘sandwich’ system is exhibited in density plots, which show a linear mode and a pair of depolarization modes shifted from the bulk plasma frequency.

  6. Nonlinear Echoes from Encapsulated Antibubbles

    NASA Astrophysics Data System (ADS)

    Johansen, Kristoffer; Kotopoulis, Spiros; Poortinga, Albert T.; Postema, Michiel

    An antibubble consists of a liquid droplet, surrounded by a gas, often with an encapsulating shell. Antibubbles of microscopic sizes suspended in fluids are acoustically active in the ultrasonic range. Antibubbles have applications in food processing and guided drug delivery. We study the sound generated from antibubbles, with droplet core sizes in the range of 0-90% of the equilibrium antibubble inner radius. The antibubble resonance frequency, the phase difference of the echo with respect to the incident acoustic pulse, and the presence of higher harmonics are strongly dependent of the core droplet size. Antibubbles oscillate highly nonlinearly around resonance size. This may allow for using antibubbles in clinical diagnostic imaging and targeted drug delivery.

  7. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 1: Encapsulation capacity and stability of inclusion complexes.

    PubMed

    Ho, Thao M; Howes, Tony; Bhandari, Bhesh R

    2016-07-15

    This study investigated the effects of water-induced crystallization of amorphous alpha-cyclodextrin (α-CD) powder on CO2 encapsulation at 0.4-1.6 MPa pressure for 1-72 h through the addition of water (to reach to 13, 15 and 17% wet basis, w.b.) into amorphous α-CD powder prior to the encapsulation. The results showed that the α-CD encapsulation capacity was over 1 mol CO2/mol α-CD after pressurizing for longer than 48 h. The encapsulated CO2 concentration by the addition of water was considerably higher (p<0.05) than that of amorphous α-CD powder (5.51% MC, w.b.) without an addition of water and that of crystalline α-CD powders under the same MC and encapsulation conditions. A comparison of CO2 release properties (75% relative humidity, 25 °C) from complexed powders prepared from amorphous and crystalline α-CD powders under the same conditions is also presented. PMID:26948624

  8. Boar sperm changes after sorting and encapsulation in barium alginate membranes.

    PubMed

    Spinaci, M; Bucci, D; Chlapanidas, T; Vallorani, C; Perteghella, S; Communod, R; Vigo, D; Tamanini, C; Galeati, G; Faustini, M; Torre, M L

    2013-09-15

    A routine use of boar-sexed semen is limited by the long sorting time necessary to obtain an adequate number of sexed spermatozoa for artificial insemination and by the high susceptibility of spermatozoa of this species to damages induced by sorting procedure and subsequent cryopreservation. The aim of this work was to study the impact of encapsulation in barium alginate membrane on sorted boar spermatozoa by evaluating membrane integrity, chlortetracycline staining patterns, protein tyrosine phosphorylation, and Hsp70 immunolocalization during storage over 72 hours in liquid or encapsulated form. The encapsulation procedure significantly (P < 0.05) decreased the overall membrane integrity of control unsorted semen (81.8 vs. 57.4, CTR vs. CPS), but did not negatively affect the overall viability and the chlortetracycline staining patterns of sorted encapsulated cells. Moreover, encapsulation significantly decreased (P < 0.05) the overall phosphotyrosin A pattern cell percentage in unsorted (98.4 vs. 92.6, CTR vs. CPS) but not in sorted semen (64.0 vs. 74.2; SORT CTR vs. SORT CPS). As for Hsp70, the overall percentage of cells displaying the different patterns was significantly influenced (P < 0.05) by treatment but not by storage time. The sorting procedure seems to induce the major changes, whereas encapsulation tends to exert a protective effect on sorted semen by increasing the percentage of spermatozoa displaying the T pattern (2.8 vs. 24.3; SORT CTR vs. SORT CPS). In conclusion, our data confirm that the damaging impact of the encapsulation in barium alginate capsules seems to be limited when compared with that of the sorting procedure and, moreover, the association of the two procedures does not result in an algebraic sum of the negative effects. These results suggest the possibility of a future utilization of the encapsulation technology in order to store sorted spermatozoa and permit their controlled release in the female genital tract. PMID:23791425

  9. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed Central

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar

    2015-01-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  10. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat

    2015-07-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  11. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery.

    PubMed

    Chen, Menglin; Gao, Shan; Dong, Mingdong; Song, Jie; Yang, Chuanxu; Howard, Kenneth Alan; Kjems, Jørgen; Besenbacher, Flemming

    2012-06-26

    Composite nanofibers of biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) encapsulating chitosan/siRNA nanoparticles (NPs) were prepared by electrospinning. Acidic/alkaline hydrolysis and a bulk/surface degradation mechanism were investigated in order to achieve an optimized release profile for prolonged and efficient gene silencing. Thermo-controlled AFM in situ imaging not only revealed the integrity of the encapsulated chitosan/siRNA polyplex but also shed light on the decreasing T(g) of PLGA on the fiber surfaces during release. A triphasic release profile based on bulk erosion was obtained at pH 7.4, while a triphasic release profile involving both surface erosion and bulk erosion was obtained at pH 5.5. A short alkaline pretreatment provided a homogeneous hydrolysis and consequently a nearly zero-order release profile. The interesting release profile was further investigated for siRNA transfection, where the encapsulated chitosan/siRNA NPs exhibited up to 50% EGFP gene silencing activity after 48 h post-transfection on H1299 cells. PMID:22621383

  12. Development of chitosan/montmorillonite nanocomposites with encapsulated α-tocopherol.

    PubMed

    Dias, Marali Vilela; Machado Azevedo, Viviane; Borges, Soraia Vilela; Soares, Nilda de Fátima Ferreira; de Barros Fernandes, Regiane Victória; Marques, João José; Medeiros, Eber Antonio Alves

    2014-12-15

    Nanocomposites of chitosan (CS) were developed and characterized in a full factorial design with varying levels of montmorillonite (MMTNa) and encapsulated tocopherol (toc-encap). The structural properties (XRD, FTIR), morphology (TEM), hygroscopic properties (water vapour permeability, hydrophobicity, sorption isotherms) and optical properties (haze, CIELab parameters) of the resulting materials were evaluated. Toc-encap contents up to 10% influenced the intercalation of MMTNa in the CS matrix, resulting in films with reduced water vapour permeability (3.48×10(-11)(g/msPa)), increased hydrophobicity (ΔGHydroph |7.93-59.54|mJm(-2)) and lower equilibrium moisture content (EMC), thus showing potential for active food packaging materials. At levels above 10%, toc-encap agglomerates occurred, which deteriorated the properties of the resulting films, as shown with the TEM. As the toc-encap content increased, the films became slightly more yellow, more irregular and less transparent, with a higher haze index. PMID:25038682

  13. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III; Kallis, J. M.; Trucker, D. C.

    1983-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.

  14. SORPTION OF HYDROPHOBIC POLLUTANTS ON NATURAL SEDIMENTS

    EPA Science Inventory

    The sorption of hydrophobic compounds (aromatic hydrocarbons and chlorinated hydrocarbons) spanning a concentration range in water solubility from 500 parts per trillion (ppt) to 1800 parts per million (ppm) on local (North Georgia) pond and river sediments was investigated. The ...

  15. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  16. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  17. Surface analysis of selected hydrophobic materials

    NASA Astrophysics Data System (ADS)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  18. Enhanced Permeation of a Hydrophobic Fluid through Particles with Hydrophobic and Hydrophilic Patterned Surfaces

    PubMed Central

    Zhang, Renliang; Xu, Yousheng; Wen, Binghai; Sheng, Nan; Fang, Haiping

    2014-01-01

    The wetting properties of solid surfaces are significant in oil/gas and liquid displacement processes. It is difficult for hydrophobic fluids to permeate channels filled with hydrophilic particles and an aqueous phase, and this is thought to be the primary cause of low yields in low permeability reservoir operations. Using three-dimensional lattice Boltzmann simulations, we show that particles with hydrophobic and hydrophilic patterned surfaces can greatly improve hydrophobic fluid permeation. Specifically, a hydrophobic fluid can easily access micro-channels in the hydrophobic regions, which extend rapidly even to the hydrophilic regions and accelerate hydrophobic fluid escape. This work enriches understanding of multiphase flow in porous media at the pore scale and fracture conductivity and is expected to have great significance in the exploitation of low permeability reservoirs and shale gas. PMID:25033709

  19. Enhanced permeation of a hydrophobic fluid through particles with hydrophobic and hydrophilic patterned surfaces.

    PubMed

    Zhang, Renliang; Xu, Yousheng; Wen, Binghai; Sheng, Nan; Fang, Haiping

    2014-01-01

    The wetting properties of solid surfaces are significant in oil/gas and liquid displacement processes. It is difficult for hydrophobic fluids to permeate channels filled with hydrophilic particles and an aqueous phase, and this is thought to be the primary cause of low yields in low permeability reservoir operations. Using three-dimensional lattice Boltzmann simulations, we show that particles with hydrophobic and hydrophilic patterned surfaces can greatly improve hydrophobic fluid permeation. Specifically, a hydrophobic fluid can easily access micro-channels in the hydrophobic regions, which extend rapidly even to the hydrophilic regions and accelerate hydrophobic fluid escape. This work enriches understanding of multiphase flow in porous media at the pore scale and fracture conductivity and is expected to have great significance in the exploitation of low permeability reservoirs and shale gas. PMID:25033709

  20. Interactions of a hydrophobically modified polycation with zwitterionic lipid membranes.

    PubMed

    Kepczynski, Mariusz; Jamróz, Dorota; Wytrwal, Magdalena; Bednar, Jan; Rzad, Ewa; Nowakowska, Maria

    2012-01-10

    The interactions between synthetic polycations and phospholipid bilayers play an important role in some biophysical applications such as gene delivery or antibacterial usage. Despite extensive investigation into the nature of these interactions, their physical and molecular bases remain poorly understood. In this Article, we present the results of our studies on the impact of a hydrophobically modified strong polycation on the properties of a zwitterionic bilayer used as a model of the mammalian cellular membrane. The study was carried out using a set of complementary experimental methods and molecular dynamic (MD) simulations. A new polycation, poly(allyl-N,N-dimethyl-N-hexylammonium chloride) (polymer 3), was synthesized, and its interactions with liposomes composed of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) were examined using dynamic light scattering (DLS), zeta potential measurements, and cryo-transmission electron microscopy (cryo-TEM). Our results have shown that polymer 3 can efficiently associate with and insert into the POPC membrane. However, it does not change its lamellar structure, as was demonstrated by cryo-TEM. The influence of polymer 3 on the membrane functionality was studied by leakage experiments applying a fluorescence dye (calcein) encapsulated in the phospholipid vesicles. The MD simulations of model systems reveal that polymer 3 promotes formation of hydrophilic pores in the membrane, thus increasing considerably its permeability. PMID:22085465

  1. Encapsulation of caesium-loaded Ionsiv in cement

    SciTech Connect

    Jenni, A.; Hyatt, N.C.

    2010-08-15

    The microporous material Ionsiv is used for {sup 137}Cs removal from aqueous nuclear waste streams. In the UK, Cs-loaded Ionsiv is classed as an intermediate-level waste; no sentencing and disposal route is yet defined for this material and it is currently held in safe interim storage on several nuclear sites. In this study, the suitability of fly ash and blast furnace slag blended cements for encapsulation of Cs-Ionsiv in a monolithic wasteform was investigated. No evidence of reaction or dissolution of the Cs-Ionsiv in the cementitious environment was found by scanning electron microscopy and X-ray diffraction. However, a small fraction ({<=} 1.6 wt.%) of the Cs inventory was released from the encapsulated Ionsiv during leaching experiments carried out on hydrated samples. Furthermore, it was evident that K and Na present in the cementitious pore water exchanged with Cs and H in the Ionsiv. Therefore, cement systems lower in K and Na, such as slag based cements, showed lower Cs release than the fly ash based cements.

  2. Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact.

    PubMed

    Szczepanowicz, Krzysztof; Bazylińska, Urszula; Pietkiewicz, Jadwiga; Szyk-Warszyńska, Lilianna; Wilk, Kazimiera A; Warszyński, Piotr

    2015-08-01

    It has been generally expected that the most applicable drug delivery system (DDS) should be biodegradable, biocompatible and with incidental adverse effects. Among many micellar aggregates and their mediated polymeric systems, polyelectrolyte oil-core nanocarriers have been found to successfully encapsulate hydrophobic drugs in order to target cells and avoid drug degradation and toxicity as well as to improve drug efficacy, its stability, and better intracellular penetration. This paper reviews recent developments in the formation of polyelectrolyte oil-core nanocarriers by subsequent multilayer adsorption at micellar structures, their imaging, physical state and stability, drug encapsulation and applications, in vitro release profiles and in vitro biological evaluation (cellular uptake and internalization, biocompatibility). We summarize the recent results concerning polyelectrolyte/surfactant interactions at interfaces, fundamental to understand the mechanisms of formation of stable polyelectrolyte layered structures on liquid cores. The fabrication of emulsion droplets stabilized by synergetic surfactant/polyelectrolyte complexes, properties, and potential applications of each type of polyelectrolyte oil-core nanocarriers, including stealth nanocapsules with pegylated shell, are discussed and evaluated. PMID:25453660

  3. Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation.

    PubMed

    Can Karaca, Asli; Low, Nicholas; Nickerson, Michael

    2013-05-29

    Flaxseed oil was microencapsulated employing a wall material matrix of either chickpea (CPI) or lentil protein isolate (LPI) and maltodextrin using a benchtop spray dryer. Effects of emulsion formulation (oil, protein and maltodextrin levels) and protein source (CPI vs LPI) on the physicochemical characteristics, oxidative stability, and release properties of the resulting capsules were investigated. Microcapsule formulations containing higher oil levels (20% oil, 20% protein, 60% maltodextrin) were found to have higher surface oil and lower encapsulation efficiencies. Overall, LPI-maltodextrin capsules gave higher flaxseed oil encapsulation efficiencies (∼88.0%) relative to CPI-maltodextrin matrices (∼86.3%). However, both designs were found to provide encapsulated flaxseed oil protection against oxidation over a 25 d room temperature storage study relative to free oil. Overall, ∼37.6% of encapsulated flaxseed oil was released after 2 h under simulated gastric fluid, followed by the release of an additional ∼46.6% over a 3 h period under simulated intestinal fluid conditions. PMID:23663097

  4. Hermetic encapsulation technique for solar arrays

    NASA Technical Reports Server (NTRS)

    Deminet, C.; Horne, W. E.

    1980-01-01

    A concept is presented for encapsulating solar cells between two layers of glass either individually, in panels, or in a continuous process. The concept yields an integral unit that is hermetically sealed and that is tolerant to high temperature thermal cycling and to particulate radiation. Data are presented on both high temperature solar cells and special glasses that soften at low temperatures for use with the concept. The results of encapsulating experiments are presented which show the successful application of the concept to the special high temperature cells. The mechanical feasibility of encapsulating 2 mil cells between two layers of 2 mil glass is also demonstrated.

  5. Integral Glass Encapsulation for Solar Arrays

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Tobin, R. G.; Kreisman, W. S.

    1979-01-01

    Work reported was performed during the period from August 1977 to December 1978. The program objective was to continue the development of electrostatic bonding (ESB) as an encapsulation technique for terrestrial cells. Economic analyses shows that this process can be a cost-effective method of producing reliable, long lifetime solar modules. When considered in sufficient volume, both material and equipment costs are competitive with conventional encapsulation systems. In addition, the possibility of integrating cell fabrication into the encapsulation process, as in the case of the preformed cell contacts discussed in this report, offers the potential of significant overall systems cost reduction.

  6. Polymer Coated Echogenic Lipid Nanoparticles with Dual Release Triggers

    PubMed Central

    Nahire, Rahul; Haldar, Manas K.; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H.; Katti, Kalpana S.; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2013-01-01

    Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging. PMID:23394107

  7. INOR-037: Encapsulation of hazardous metals with organic modified minerals

    SciTech Connect

    Song, Kang; Wasserman, R.; Yuchs, S.E.

    1995-12-31

    The authors studies have focused on the development of new materials for the control, treatment, and long term storage of hazardous metals. The process involves the introduction of hazardous cations into the matrix of clays through aqueous ion-exchange methods. These cations are subsequently encapsulated within the clay by treating the material with a variety of organic silanes. This treatment results in the formation of organic coatings which are chemically bonded to the surface of the clay. The coatings are hydrophobic in nature, and may restrict the diffusion of water into and out of the pores contained within the clay. The goal of this process is to reduce the undesirable migration of hazardous metals from the ion-exchanged clays into the environment. A smectic type clay, bentonite, has been the primary inorganic matrix for this study. Bentonite, which is a form of montmorillonite, consists of two-dimensional sheets of aluminosilicates. Like other smectite clays, these sheets are separated by an interlayer which contains cations and water. The reactive groups within the alkyl silanes react with hydroxyl groups on the clay surface, as well as water contained on and within the clay. The authors results show that there is little difference in the metal content of the coated and noncoated clays. The cations are not removed from the clay by exposure to the silane. The clays also maintain their general structure and cystallinity upon surface modification. The organic coatings are stable to 500{degrees}C when heated under nitrogen. The ability of these systems to encapsulate the cations and prevent their migration into the environment is currently being evaluated.

  8. Hydrophobic surface patches on LolA of Pseudomonas aeruginosa are essential for lipoprotein binding.

    PubMed

    Remans, Kim; Pauwels, Kris; van Ulsen, Peter; Buts, Lieven; Cornelis, Pierre; Tommassen, Jan; Savvides, Savvas N; Decanniere, Klaas; Van Gelder, Patrick

    2010-09-01

    Many lipoproteins reside in the outer membrane (OM) of Gram-negative bacteria, and their biogenesis is dependent on the Lol (localization of lipoproteins) system. The periplasmic chaperone LolA accepts OM-destined lipoproteins that are released from the inner membrane by the LolCDE complex and transfers them to the OM receptor LolB. The exact nature of the LolA-lipoprotein complex is still unknown. The crystal structure of Escherichia coli LolA features an open beta-barrel covered by alpha helices that together constitute a hydrophobic cavity, which would allow the binding of one acyl chain. However, OM lipoproteins contain three acyl chains, and the stoichiometry of the LolA-lipoprotein complex is 1:1. Here we present the crystal structure of Pseudomonas aeruginosa LolA that projects clear hydrophobic surface patches. Since these patches are large enough to accommodate acyl chains, their role in lipoprotein binding was investigated. Several LolA mutant proteins were created, and their functionality was assessed by studying their capacity to release lipoproteins produced in sphaeroplasts. Interruption of the largest hydrophobic patch completely destroyed the lipoprotein-releasing capacity of LolA, while interruption of smaller patches apparently reduced efficiency. Thus, the results show a new lipoprotein transport model that places (some of) the acyl chains on the hydrophobic surface patches. PMID:20620146

  9. In vitro dissolution methods for hydrophilic and hydrophobic porous silicon microparticles.

    PubMed

    Mönkäre, Juha; Riikonen, Joakim; Rauma, Elina; Salonen, Jarno; Lehto, Vesa-Pekka; Järvinen, Kristiina

    2011-01-01

    Porous silicon (PSi) is an innovative inorganic material that has been recently developed for various drug delivery systems. For example, hydrophilic and hydrophobic PSi microparticles have been utilized to improve the dissolution rate of poorly soluble drugs and to sustain peptide delivery. Previously, the well-plate method has been demonstrated to be a suitable in vitro dissolution method for hydrophilic PSi particles but it was not applicable to poorly wetting hydrophobic thermally hydrocarbonized PSi (THCPSi) particles. In this work, three different in vitro dissolution techniques, namely centrifuge, USP Apparatus 1 (basket) and well-plate methods were compared by using hydrophilic thermally carbonized PSi (TCPSi) microparticles loaded with poorly soluble ibuprofen or freely soluble antipyrine. All the methods showed a fast and complete or nearly complete release of both model compounds from the TCPSi microparticles indicating that all methods described in vitro dissolution equally. Based on these results, the centrifuge method was chosen to study the release of a peptide (ghrelin antagonist) from the THCPSi microparticles since it requires small sample amounts and achieves good particle suspendability. Sustained peptide release from the THCPSi microparticles was observed, which is in agreement with an earlier in vivo study. In conclusion, the centrifuge method was demonstrated to be a suitable tool for the evaluation of drug release from hydrophobic THCPSi particles, and the sustained peptide release from THCPSi microparticles was detected. PMID:24310498

  10. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  11. Contribution of hydrophobic interactions to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Shirley, Bret A; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J Martin; Grimsley, Gerald R

    2011-05-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions. PMID:21377472

  12. Thiolated graphene oxide as promising mucoadhesive carrier for hydrophobic drugs.

    PubMed

    Pereira de Sousa, Irene; Buttenhauser, Katrin; Suchaoin, Wongsakorn; Partenhauser, Alexandra; Perrone, Mara; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-07-25

    The aim of this study was to improve the mucoadhesive properties of graphene by conjugating thiol ligands, in order to formulate an oral delivery system for hydrophobic drugs showing long mucus residence time. Graphene oxide was obtained by oxidation of graphite and then was thiolated following two synthetic paths. On the one hand, the hydroxyl groups were conjugated with thiourea passing through the formation of a brominated intermediate. On the other hand, the carboxylic acid groups were conjugated with cysteamine via carbodiimide chemistry. The mucoadhesive properties of thiolated graphene were evaluated by rheological measurements and by residence time assay. Then, valsartan was loaded on thiolated graphene and the release profile was evaluated in simulated intestinal fluid. Following both synthetic paths it was possible to obtain thiolated graphene bearing 215-302μmol SH/g product. Both products induced after 1h incubation an increase of mucus viscosity of about 22-33-fold compared to unmodified graphite. The residence time assay confirmed that 60% of thiolated graphene could be retained on intestinal mucosa after 4h incubation, whereas just 20% of unmodified graphite could be retained. Valsartan could be loaded with a drug loading of about 31±0.3% and a sustained release profile was observed for both formulations. According to the presented data, the thiolation of graphene could improve its mucoadhesive properties. Therefore, thiolated graphene represents a promising platform for oral delivery of hydrophobic drugs, possessing a long residence time on intestinal mucosa which allows the release of the loaded drug close to the adsorptive epithelium. PMID:27246816

  13. Encapsulation process sterilizes and preserves surgical instruments

    NASA Technical Reports Server (NTRS)

    Montgomery, L. C.; Morelli, F. A.

    1964-01-01

    Ethylene oxide is blended with an organic polymer to form a sterile material for encapsulating surgical instruments. The material does not bond to metal and can be easily removed when the instruments are needed.

  14. A hybrid encapsulation method for organic electronics

    SciTech Connect

    Kim, N.; Graham, S.; Potscavage, W. J. Jr.; Domercq, B.; Kippelen, B.

    2009-04-20

    We report a thin-film encapsulation method for organic electronics that combines the deposition of a layer of SiO{sub x} or SiN{sub x} (100 nm) by plasma enhanced chemical vapor deposition followed by a layer of Al{sub 2}O{sub 3} (10-50 nm) by atomic layer deposition and a 1-{mu}m-thick layer of parylene by chemical vapor deposition. The effective water vapor transmission rates of the encapsulation was (2{+-}1)x10{sup -5} g/m{sup 2} day at 20 deg. C and 50% relative humidity (RH). The encapsulation was integrated with pentacene/C{sub 60} solar cells, which showed no decrease in conversion efficiency after 5800 h of exposure to air demonstrating the effectiveness of the encapsulation methodology.

  15. Statistical Modeling of Single Target Cell Encapsulation

    PubMed Central

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548

  16. Palisaded Encapsulated Neuroma of the Trunk: A Case Report and Review of Palisaded Encapsulated Neuroma

    PubMed Central

    Cohen, Philip R

    2016-01-01

    Palisaded encapsulated neuroma is a rare, benign cutaneous tumor. It most commonly presents as a solitary, flesh-colored, dome-shaped nodule affecting the face. However, albeit rarely, palisaded encapsulated neuroma may also appear on the trunk, genitals, or extremities. We describe the clinical and pathologic findings of a male patient who presented with a palisaded encapsulated neuroma on his left flank. In addition, we review the characteristics of patients with truncal palisaded encapsulated neuromas and summarize the clinical and histologic differential diagnosis of this tumor.

  17. Encapsulated Thermoelectric Modules for Advanced Thermoelectric Systems

    NASA Astrophysics Data System (ADS)

    Kambe, Mitsuru; Jinushi, Takahiro; Ishijima, Zenzo

    2014-06-01

    An encapsulated thermoelectric (TE) module consists of a vacuum-tight stainless-steel container in which an SiGe or BiTe TE module is encapsulated. This construction enables maximum performance and durability because: the thermal expansion mismatch between the hot and cold sides of the container can be accommodated by a sliding sheet in the container; the TE module inside is always kept in a vacuum environment, therefore no oxidation can occur; and the pressure difference between the inside and outside of the container reduces thermal contact resistance inside the container. Our encapsulated SiGe module features higher operating temperature—up to 650°C for both hot and cold sides. Other high-temperature modules and conventional BiTe modules, including both-sides and one-side skeleton types, have been encapsulated. Several variants of the encapsulated module are available. Encapsulated thermoelectric modules with integrated coolers contain cooling panels through which water can pass. If the module hot side is heated by a radiating heat source (radiation coupling) or convection of a hot gas or fluid (convection coupling), no pressing force on the module is necessary. It therefore features minimum contact resistance with the cooling duct, because no pressure is applied, maximum TE power, and minimum installation cost. Another, larger, variant is a quadruple flexible container in which four modules (each of maximum size 40 mm × 40 mm) are encapsulated. These encapsulated modules were used in a powder metallurgy furnace and were in use for more than 3000 h. Application to cryogenic temperatures simulating the liquid nitrogen gas vaporizer has been also attempted.

  18. Thickness-Dependent Hydrophobicity of Epitaxial Graphene.

    PubMed

    Munz, Martin; Giusca, Cristina E; Myers-Ward, Rachael L; Gaskill, D Kurt; Kazakova, Olga

    2015-08-25

    This article addresses the much debated question whether the degree of hydrophobicity of single-layer graphene (1LG) is different from that of double-layer graphene (2LG). Knowledge of the water affinity of graphene and its spatial variations is critically important as it can affect the graphene properties as well as the performance of graphene devices exposed to humidity. By employing chemical force microscopy with a probe rendered hydrophobic by functionalization with octadecyltrichlorosilane (OTS), the adhesion force between the probe and epitaxial graphene on SiC has been measured in deionized water. Owing to the hydrophobic attraction, a larger adhesion force was measured on 2LG Bernal-stacked domains of graphene surfaces, thus showing that 2LG is more hydrophobic than 1LG. Identification of 1LG and 2LG domains was achieved through Kelvin probe force microscopy and Raman spectral mapping. Approximate values of the adhesion force per OTS molecule have been calculated through contact area analysis. Furthermore, the contrast of friction force images measured in contact m