Science.gov

Sample records for relevant animal model

  1. Clinical relevance of animal models of schizophrenia.

    PubMed

    Koch, Michael

    2013-01-01

    Animal models and endophenotypes of mental disorders are regarded as preclinical heuristic approaches aiming at understanding the etiopathogenesis of these diseases, and at developing drug treatment strategies. A frequently used translational model of sensorimotor gating and its deficits in some neuropsychiatric disorders is prepulse inhibition (PPI) of startle. PPI is reduced in schizophrenia patients, but the exact relationship between symptoms and reduced PPI is still unclear. Recent findings suggest that the levels of PPI in humans and animals may be predictive of certain cognitive functions. Hence, this simple measure of reflex suppression may be of use for clinical research. PPI is the reduction of the acoustic startle response that occurs when a weak prestimulus is presented shortly prior to a startling noise pulse. It is considered a measure of sensorimotor gating and is regulated by a cortico-limbic striato-pallidal circuit. However, PPI does not only occur in the domain of startle. PPI of alpha, gamma, and theta oscillations at frontal and central locations has been found, suggesting a relationship between PPI and cognitive processes. In fact, levels of PPI in healthy subjects and in animals predict their performance in cognitive tasks mainly mediated by the frontal cortex. Taken together, PPI might reflect a more general filtering performance leading to gating of intrusive sensory, motor, and cognitive input, thereby improving cognitive function. Hence, PPI might be used in clinical settings to predict the impact of drugs or psychotherapy on cognitive performance in neuropsychiatric patients. PMID:24053035

  2. Animal models of neurological deficits: how relevant is the rat?

    PubMed

    Cenci, M Angela; Whishaw, Ian Q; Schallert, Timothy

    2002-07-01

    Animal models of neurological deficits are essential for the assessment of new therapeutic options. It has been suggested that rats are not as appropriate as primates for the symptomatic modelling of disease, but a large body of data argues against this view. Comparative analyses of movements in rats and primates show homology of many motor patterns across species. Advances have been made in identifying rat equivalents of akinesia, tremor, postural deficits and dyskinesia, which are relevant to Parkinson's disease. Rat models of hemiplegia, neglect and tactile extinction are useful in assessing the outcome of ischaemic or traumatic brain injury, and in monitoring the effects of therapeutic interventions. Studies in rodents that emphasize careful behavioural analysis should continue to be developed as effective and inexpensive models that complement studies in primates. PMID:12094213

  3. What Constitutes a Relevant Animal Model of the Ketogenic Diet?

    PubMed Central

    Holmes, Gregory L.

    2009-01-01

    Summary Animal models of human disease have been enormously important in improving our understanding of the pathophysiological basis and the development of novel therapies. In epilepsy, modeling using both in vivo and in vitro preparations has provided insight into fundamental neuronal mechanisms. Indeed, much of our understanding of seizure mechanisms comes from animal studies. The conceptual advances in understanding basic mechanisms of epilepsies have been largely validated in humans, attesting to the validity of the rationale and providing a basis for bridging the gaps between experimental and human data. While the ketogenic diet is clearly efficacious in a wide variety of seizure types and syndromes, the mechanism of action of the diet has not been established. Animal models will continue to be enormously important in furthering our understanding of how dietary therapy can help individuals with epilepsy. PMID:19049589

  4. Relevance of animal models to human tardive dyskinesia.

    PubMed

    Blanchet, Pierre J; Parent, Marie-Thérèse; Rompré, Pierre H; Lévesque, Daniel

    2012-01-01

    Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia. PMID:22404856

  5. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    PubMed

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-01-01

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review. PMID:26329332

  6. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges

    PubMed Central

    Ney, Denise M.; Sigalet, David L.; Vegge, Andreas; Burrin, Douglas

    2014-01-01

    Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the

  7. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges.

    PubMed

    Sangild, Per T; Ney, Denise M; Sigalet, David L; Vegge, Andreas; Burrin, Douglas

    2014-12-15

    Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the

  8. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders.

    PubMed

    Kim, Ki Chan; Gonzales, Edson Luck; Lázaro, María T; Choi, Chang Soon; Bahn, Geon Ho; Yoo, Hee Jeong; Shin, Chan Young

    2016-05-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance. PMID:27133257

  9. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

    PubMed Central

    Kim, Ki Chan; Gonzales, Edson Luck; Lázaro, María T.; Choi, Chang Soon; Bahn, Geon Ho; Yoo, Hee Jeong; Shin, Chan Young

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance. PMID:27133257

  10. Opportunities and challenges in developing relevant animal models for Alzheimer's disease.

    PubMed

    De Felice, Fernanda G; Munoz, Douglas P

    2016-03-01

    A major impediment to the development of safe and effective therapeutics in Alzheimer's disease (AD) lies in difficulties in translating research findings across species: therapies that work in rodents often do not translate to humans. A route to bridge the gap between promising rodent research and the human clinical condition consists in using non-human primates (NHPs), which are phylogenetically much closer to humans. In this article, we discuss the importance of investigating disease mechanisms from cell culture, through different animal models of disease. We highlight that developing a viable, validated NHP AD model will likely be a key step toward understanding AD-relevant pathogenic mechanisms and for developing therapies that will effectively translate to the human disease condition. PMID:26829469

  11. Micro-RNAs in abdominal aortic aneurysms: insights from animal models and relevance to human disease.

    PubMed

    Raffort, Juliette; Lareyre, Fabien; Clement, Marc; Mallat, Ziad

    2016-05-15

    Abdominal aortic aneurysm (AAA) is a major health concern and may be associated with high rates of mortality linked to acute complications. Diagnosis and treatment are, respectively, based on imaging and surgical techniques. Drug-based therapies are still mostly ineffective, which highlight a real unmet need. Major pathophysiological mechanisms leading to aneurysm formation involve inflammatory processes, degradation of the extracellular matrix, and loss of smooth muscle cells. However, the precise cellular and molecular pathways are still poorly understood. Recently, microRNAs have emerged as major intracellular players in a wide range of biological processes, and their stability in extracellular medium within microvesicles has led to propose them as mediators of intercellular crosstalk and as potential biomarkers and therapeutic targets in a variety of disease settings. To date, several studies have been performed to address the involvement of micro-RNAs (miRs) in aneurysm formation and complications. Here, we discuss the roles and implications of miRs in animal models and their relevance to human AAA. PMID:26965051

  12. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition.

    PubMed

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  13. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition

    PubMed Central

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  14. [Relevance of animal models in the development of compounds targeting multidrug resistant cancer].

    PubMed

    Füredi, András; Tóth, Szilárd; Hámori, Lilla; Nagy, Veronika; Tóvári, József; Szakács, Gergely

    2015-12-01

    Anticancer compounds are typically identified in in vitro screens. Unfortunately, the in vitro drug sensitivity of cell lines does not reflect treatment efficiency in animal models, and neither show acceptable correlation to clinical results. While cell lines and laboratory animals can be readily "cured", the treatment of malignancies remains hampered by the multidrug resistance (MDR) of tumors. Genetically engineered mouse models (GEMMs) giving rise to spontaneous tumors offer a new possibility to characterize the evolution of drug resistance mechanisms and to target multidrug resistant cancer. PMID:26665195

  15. ASD-relevant Animal Models of the Foxp Family of Transcription Factors

    PubMed Central

    Bowers, J. Michael; Konopka, Genevieve

    2013-01-01

    Autism is a neurodevelopmental disorder with a multifaceted association between genes and the environment. Currently, in the majority of patients, the etiology of autism is not known and coupled with increasing prevalence rates, along with the high degree of heritability of autism, the development of animal models is crucial for studying and developing therapies for autism. A key characteristic of autism is marked abnormalities in the acquisition and use of language. Thus, to understand and ultimately treat autism is an especially difficult task because no animal produces language, as it is defined in humans. In this review, we will discuss the FOXP family of genes, which are a group of transcription factors that have been linked to both autism, as well as language in humans. Due to the association of language/communication and the Foxp family of transcription factors, animal models with targeted disruptions of Foxp functioning are powerful tools for understanding the developmental signaling pathways that may be vulnerable in autism. PMID:24358452

  16. New insight into oseophageal injury and protection in physiologically relevant animal models.

    PubMed

    Zayachkivska, O; Pshyk-Titko, I; Hrycevych, N; Savytska, M

    2014-04-01

    Chronic diseases of lifestyle (CDL), the most common chronic group of non-infectious and non-transmissible diseases worldwide, which share the similar risk factors of unhealthy lifestyle, have become most recognized as a serious trigger in the genesis of oesophageal injury. Non-erosive oesophageal lesions (NEOL) are found more frequently than erosive or ulcer lesions in patients with reflux oesophagitis (RO) related to CDL. They also have restricted healing options, which often leads to carcinogenesis. Therefore, developing a physiologically relevant animal model of NEOL remains an urgent priority. One of triggers of CDL, postprandial hyperglycemia (PHG), which is characterized by hyperglycemic spikes, and overloading nitro-compounds leading to oxidative stress that may predispose to NEOL. The present study was designed to set up a model of RO related to CDL in rodents to understand mechanisms of oesophageal preulcerogenic injury under such conditions as food-associated long-term PHG, restrained water-immersion stress (WIS), and imbalance of entero-salivary nitrites recirculation (ESNR). Beneficial effects of L-tryptophan (L-Try) have already been described by many activities in kynurenine and melatonin (Mel) synthesis, redox reactions, which play a key role for cytoprotection and proliferation. Nevertheless, the effect of L-Try and Mel on NEOL under PHG is still unknown. An extract of Cucurbita maxim sweet seed (eCMS), which contains a high amount of antioxidants, also appear to play an important role in foregut cytoprotection. Thus, the second aim was to observe the effects of eCSE on oesophageal mucosa (OEM) in modification of ESNR (mESNR). Rats were used with without/with pre-treatment L-Try, Mel during WIS and PHG. In the second series of experiments rats were used with without/with CSE pre-treatment in mESNR; oral and OEM lesions were determined by histology; inflammation of OEM by lectin histochemistry; esophageal NO2(-), cNOS and iNOS via bioassays

  17. Laboratory Animal Medicine: Teaching for Relevance

    ERIC Educational Resources Information Center

    Harkness, J. E.

    1977-01-01

    A mechanism for augmenting the relevance of instruction in laboratory animal medicine is suggested: the identification of practice-relevant content. This identification helps foster a positive attitude toward the subject and facilitates the retention of information. (LBH)

  18. Establishing a Clinically Relevant Large Animal Model Platform for TBI Therapy Development: Using Cyclosporin A as a Case Study

    PubMed Central

    Margulies, Susan S.; Kilbaugh, Todd; Sullivan, Sarah; Smith, Colin; Propert, Kathleen; Byro, Melissa; Saliga, Kristen; Costine, Beth A.; Duhaime, Ann-Christine

    2015-01-01

    We have developed the first immature large animal translational treatment trial of a pharmacologic intervention for traumatic brain injury (TBI) in children. The preclinical trial design includes multiple doses of the intervention in two different injury types (focal and diffuse) to bracket the range seen in clinical injury and uses two post-TBI delays to drug administration. Cyclosporin A (CsA) was used as a case study in our first implementation of the platform because of its success in multiple preclinical adult rodent TBI models and its current use in children for other indications. Tier 1 of the therapy development platform assessed the short-term treatment efficacy after 24 h of agent administration. Positive responses to treatment were compared with injured controls using an objective effect threshold established prior to the study. Effective CsA doses were identified to study in Tier 2. In the Tier 2 paradigm, agent is administered in a porcine intensive care unit utilizing neurological monitoring and clinically relevant management strategies, and intervention efficacy is defined as improvement in longer term behavioral endpoints above untreated injured animals. In summary, this innovative large animal preclinical study design can be applied to future evaluations of other agents that promote recovery or repair after TBI. PMID:25904045

  19. Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse.

    PubMed

    Grimm, J W; See, R E

    2000-05-01

    The neural substrates underlying relapse to drug-seeking behavior after chronic drug abuse may differ from those underlying immediate drug-taking behavior. In a model of relapse to drug-seeking behavior following chronic cocaine self-administration and prolonged extinction, we have previously shown that rats will significantly reinstate lever responding for either primary reward (cocaine) or secondary reward (tone + light stimulus previously paired with cocaine). In the present study, we utilized reversible inactivation of discrete brain nuclei with tetrodotoxin (TTX) in order to examine the neural substrates mediating primary and secondary cocaine reward in rats allowed two weeks of cocaine self-administration. After one week of daily extinction sessions, bilateral inactivation of the basolateral amygdala resulted in significant attenuation of lever pressing for a cocaine-conditioned reward (tone + light). Following three more days of extinction, bilateral TTX inactivation of the basolateral amygdala had no effect on the reinstatement of cocaine self-administration. In contrast, TTX inactivation of the nucleus accumbens produced the exact opposite effects, with significant blockade of primary reward (cocaine alone), but not secondary reward (tone + light). Thus, cocaine-conditioned reward is neuroanatomically dissociated from primary cocaine reward. PMID:10731622

  20. Liver allograft rejection in sensitized recipients. Observations in a clinically relevant small animal model.

    PubMed Central

    Nakamura, K.; Murase, N.; Becich, M. J.; Furuya, T.; Todo, S.; Fung, J. J.; Starzl, T. E.; Demetris, A. J.

    1993-01-01

    A sequential analysis of liver allograft rejection in sensitized rats using immunopathological and ultrastructural microscopy is described. Lewis rats were primed with four ACI skin grafts and challenged with an arterialized ACI orthotopic liver allograft 14 to 17 weeks later. The sensitization resulted in a mix of IgG and IgM lymphocytotoxic antibodies at a titer of 1:512 at the time of transplantation. Specificity analysis of pretransplant immune sera revealed a predominance of IgG anti-class I major histocompatibility complex (RT1) antibodies with a minor IgG fraction showing apparent endothelial cell specificity (non-RT1). This level of sensitization was associated with accelerated graft failure in 3 to 5 days from mixed humoral and cellular rejection. Sequential analysis of serial posttransplant graft biopsies revealed diffuse vascular IgG deposition and platelet thrombi in portal veins and periportal sinusoids within 3 minutes after reperfusion. This was followed by endothelial cell hypertrophy and vacuolization, periportal hepatocyte necrosis, arterial spasm, focal large bile duct necrosis, and hilar mast cell infiltration and degranulation. However, the liver allografts did not fail precipitously and hyperacute rejection was not seen. Kupffer cell phagocytosis of the sinusoidal platelets began as early as 30 minutes posttransplant and by 24 hours, the platelet thrombi had decreased. Cholangioles appeared focally at the edge of the limiting plates by 2 to 3 days, apparently in response to earlier periportal hepatocyte damage. A mononuclear portal and perivenular infiltrate became evident at 3 days, and graft failure was attributed to both antibody and cell-mediated rejection (Furuya et al: Preformed lymphocytotoxic antibodies: Hepatology 1992, 16: 1415-1422). The model described resembles observations in crossmatch positive human liver allograft recipients. The mechanisms of hepatic graft resistance to antibody mediated rejection and the possible long term

  1. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches

    PubMed Central

    Balmus, Ioana Miruna; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context. PMID:27563374

  2. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches.

    PubMed

    Balmus, Ioana Miruna; Ciobica, Alin; Antioch, Iulia; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context. PMID:27563374

  3. Animal models of Central Diabetes Insipidus: Human relevance of acquired beyond hereditary syndromes and the role of oxytocin.

    PubMed

    Bernal, Antonio; Mahía, Javier; Puerto, Amadeo

    2016-07-01

    The aim of this study was to review different animal models of Central Diabetes Insipidus, a neurobiological syndrome characterized by the excretion of copious amounts of diluted urine (polyuria), a consequent water intake (polydipsia), and a rise in the serum sodium concentration (hypernatremia). In rodents, Central Diabetes Insipidus can be caused by genetic disorders (Brattleboro rats) but also by various traumatic/surgical interventions, including neurohypophysectomy, pituitary stalk compression, hypophysectomy, and median eminence lesions. Regardless of its etiology, Central Diabetes Insipidus affects the neuroendocrine system that secretes arginine vasopressin, a neurohormone responsible for antidiuretic functions that acts trough the renal system. However, most Central Diabetes Insipidus models also show disorders in other neurobiological systems, specifically in the secretion of oxytocin, a neurohormone involved in body sodium excretion. Although the hydromineral behaviors shown by the different Central Diabetes Insipidus models have usually been considered as very similar, the present review highlights relevant differences with respect to these behaviors as a function of the individual neurobiological systems affected. Increased understanding of the relationship between the neuroendocrine systems involved and the associated hydromineral behaviors may allow appropriate action to be taken to correct these behavioral neuroendocrine deficits. PMID:27118135

  4. Relevance of various animal models of human infections to establish therapeutic equivalence of a generic product of piperacillin/tazobactam.

    PubMed

    Agudelo, Maria; Rodriguez, Carlos A; Zuluaga, Andres F; Vesga, Omar

    2015-02-01

    After demonstrating with diverse intravenous antibacterials that pharmaceutical equivalence (PE) does not predict therapeutic equivalence, we tested a single generic product of piperacillin/tazobactam (TZP) in terms of PE, pharmacokinetics and in vitro/vivo pharmacodynamics against several pathogens in neutropenic mouse thigh, lung and brain infection models. A generic product was compared head-to-head against the innovator. PE was evaluated by microbiological assay. Single-dose serum pharmacokinetics were determined in infected mice, and the MIC/MBC were determined by broth microdilution. In vivo experiments were done in a blind fashion. Reproducibility was tested on different days using different infecting organisms and animal models. Neutropenic MPF mice were infected in the thighs with Staphylococcus aureus GRP-0057 or Pseudomonas aeruginosa PA01 and in the lungs or brain with Klebsiella pneumoniae ATCC 10031. Treatment started 2h (thigh and brain) or 14 h (lung) after infection and was administered every 3h over 24h (thigh and lung) or 48 h (brain). Both products exhibited the same MIC/MBC against each strain, yielded overlaid curves in the microbiological assay (P>0.21) and were bioequivalent (IC90 83-117% for AUC test/reference ratio). In vivo, the generic product and innovator were again undistinguishable in all models and against the different bacterial pathogens involved. The relevance of these neutropenic murine models of infection was established by demonstrating their accuracy to predict the biological response following simultaneous treatment with a generic product or the innovator of TZP. Therapeutic equivalence of the generic product was proved in every model and against different pathogens. PMID:25481459

  5. Animal Models of Nicotine Exposure: Relevance to Second-Hand Smoking, Electronic Cigarette Use, and Compulsive Smoking

    PubMed Central

    Cohen, Ami; George, Olivier

    2013-01-01

    Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use, and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake. PMID:23761766

  6. Animal models of atherosclerosis

    PubMed Central

    Kapourchali, Fatemeh Ramezani; Surendiran, Gangadaran; Chen, Li; Uitz, Elisabeth; Bahadori, Babak; Moghadasian, Mohammed H

    2014-01-01

    In this mini-review several commonly used animal models of atherosclerosis have been discussed. Among them, emphasis has been made on mice, rabbits, pigs and non-human primates. Although these animal models have played a significant role in our understanding of induction of atherosclerotic lesions, we still lack a reliable animal model for regression of the disease. Researchers have reported several genetically modified and transgenic animal models that replicate human atherosclerosis, however each of current animal models have some limitations. Among these animal models, the apolipoprotein (apo) E-knockout (KO) mice have been used extensively because they develop spontaneous atherosclerosis. Furthermore, atherosclerotic lesions developed in this model depending on experimental design may resemble humans’ stable and unstable atherosclerotic lesions. This mouse model of hypercholesterolemia and atherosclerosis has been also used to investigate the impact of oxidative stress and inflammation on atherogenesis. Low density lipoprotein (LDL)-r-KO mice are a model of human familial hypercholesterolemia. However, unlike apo E-KO mice, the LDL-r-KO mice do not develop spontaneous atherosclerosis. Both apo E-KO and LDL-r-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. In addition to mice, rabbits have been used extensively particularly to understand the mechanisms of cholesterol-induced atherosclerosis. The present review paper details the characteristics of animal models that are used in atherosclerosis research. PMID:24868511

  7. Effects of lithium on oxidative stress and behavioral alterations induced by lisdexamfetamine dimesylate: relevance as an animal model of mania.

    PubMed

    Macêdo, Danielle S; de Lucena, David F; Queiroz, Ana Isabelle G; Cordeiro, Rafaela C; Araújo, Maíra M; Sousa, Francisca Cléa; Vasconcelos, Silvânia M; Hyphantis, Thomas N; Quevedo, João; McIntyre, Roger S; Carvalho, André F

    2013-06-01

    Lisdexamfetamine dimesylate (LDX) is a prodrug that requires conversion to d-amphetamine (d-AMPH) for bioactivity. Treatment with d-AMPH induces hyperlocomotion and is regarded as a putative animal model of bipolar mania. Therefore, we sought to determine the behavioral and oxidative stress alterations induced by sub-chronic LDX administration as well as their reversal and prevention by lithium in rats. A significant increment in locomotor behavior was induced by LDX (10 and 30 mg/kg). To determine Li effects against LDX-induced alterations, in the reversal protocol rats received LDX (10 or 30 mg/kg) or saline for 14 days. Between days 8 and 14 animals received Li (47.5 mg/kg, i.p.) or saline. In the prevention paradigm, rats were pretreated with Li or saline prior to LDX administration. Glutathione (GSH) levels and lipid peroxidation was determined in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) of rats. Lithium prevented LDX-induced hyperlocomotion at the doses of 10 and 30 mg/kg, but only reversed LDX-induced hyperlocomotion at dose of 10mg/kg. In addition, both doses of LDX decreased GSH content (in ST and PFC), while Li was able to reverse and prevent these alterations mainly in the PFC. LDX (10 and 30 mg/kg) increased lipid peroxidation which was reversed and prevented by Li. In conclusion, LDX-induced hyperlocomotion along with associated increments in oxidative stress show promise as an alternative animal model of mania. PMID:23333378

  8. Animal Models to Study Links between Cardiovascular Disease and Renal Failure and Their Relevance to Human Pathology

    PubMed Central

    Hewitson, Tim D.; Holt, Stephen G.; Smith, Edward R.

    2015-01-01

    The close association between cardiovascular pathology and renal dysfunction is well documented and significant. Patients with conventional risk factors for cardiovascular disease like diabetes and hypertension also suffer renal dysfunction. This is unsurprising if the kidney is simply regarded as a “modified blood vessel” and thus, traditional risk factors will affect both systems. Consistent with this, it is relatively easy to comprehend how patients with either sudden or gradual cardiac and or vascular compromise have changes in both renal hemodynamic and regulatory systems. However, patients with pure or primary renal dysfunction also have metabolic changes (e.g., oxidant stress, inflammation, nitric oxide, or endocrine changes) that affect the cardiovascular system. Thus, cardiovascular and renal systems are intimately, bidirectionally and inextricably linked. Whilst we understand several of these links, some of the mechanisms for these connections remain incompletely explained. Animal models of cardiovascular and renal disease allow us to explore such mechanisms, and more importantly, potential therapeutic strategies. In this article, we review various experimental models used, and examine critically how representative they are of the human condition. PMID:26441970

  9. Extinction of drug- and withdrawal-paired cues in animal models: relevance to the treatment of addiction.

    PubMed

    Myers, Karyn M; Carlezon, William A

    2010-11-01

    Conditioned drug craving and withdrawal elicited by cues paired with drug use or acute withdrawal are among the many factors contributing to compulsive drug taking. Understanding how to stop these cues from having these effects is a major goal of addiction research. Extinction is a form of learning in which associations between cues and the events they predict are weakened by exposure to the cues in the absence of those events. Evidence from animal models suggests that conditioned responses to drug cues can be extinguished, although the degree to which this occurs in humans is controversial. Investigations into the neurobiological substrates of extinction of conditioned drug craving and withdrawal may facilitate the successful use of drug cue extinction within clinical contexts. While this work is still in the early stages, there are indications that extinction of drug- and withdrawal-paired cues shares neural mechanisms with extinction of conditioned fear. Using the fear extinction literature as a template, it is possible to organize the observations on drug cue extinction into a cohesive framework. PMID:20109490

  10. Interleukin-1β and Interleukin-6 in Arthritis Animal Models: Roles in the Early Phase of Transition from Acute to Chronic Inflammation and Relevance for Human Rheumatoid Arthritis

    PubMed Central

    Ferraccioli, Gianfranco; Bracci-Laudiero, Luisa; Alivernini, Stefano; Gremese, Elisa; Tolusso, Barbara; De Benedetti, Fabrizio

    2010-01-01

    Tumor necrosis factor-α (TNF-α) is the major target of the therapeutic approach in rheumatoid arthritis. A key issue in the approach to chronic arthritis is the understanding of the crucial molecules driving the transition from the acute phase to the chronic irreversible phase of the disease. In this review we analyzed five experimental arthritis animal models (antigen-induced arthritis, adjuvant-induced arthritis, streptococcal cell wall arthritis, collagen-induced arthritis and SKG) considered as possible scenarios to facilitate interpretation of the biology of human rheumatoid arthritis. The SKG model is strictly dependent on interleukin (IL)-6. In the other models, IL-1β and IL-6, more than TNF-α, appear to be relevant in driving the transition, which suggests that these should be the targets of an early intervention to stop the course toward the chronic form of the disease. PMID:20683549

  11. Protective role of mouse IgG1 in cryoglobulinaemia; insights from an animal model and relevance to human pathology.

    PubMed

    Chemouny, Jonathan Maurice; Hurtado-Nedelec, Margarita; Flament, Héloïse; Ben Mkaddem, Sanae; Daugas, Eric; Vrtovsnik, François; Berthelot, Laureline; Monteiro, Renato C

    2016-08-01

    Strait et al. described a novel mouse model of cryoglobulinaemia by challenging mice deficient in the immunoglobulin (Ig)G1 subclass (γ1(-) mice) with goat anti-mouse IgD [5]. The phenotype of wild-type mice was not remarkable, whereas γ1(-) mice developed IgG3 anti-goat IgG cryoglobulins as well as severe and lethal glomerulonephritis. Renal phenotype could not be rescued in γ1(-) mice by the deletion of C3, fragment crystalline γ receptor (FcγR) or J chain. On the other hand, early injection of IgG1, IgG2a or IgG2b inhibited the pathogenic effects of IgG3 in an antigen-dependent manner even in the absence of the FcγRIIb, an anti-inflammatory receptor. The authors concluded that the pathogenic role of IgG3 and the protective characteristic of IgG1 in this model were not explained by their abilities to bind to FcRs or effector molecules but are rather due to structural discrepancies enhancing the precipitation properties/solubility of IgG3/IgG1-containing immune complexes. The present article aims to discuss the current knowledge on IgG biology and the properties of IgGs explaining their differential propensity to acquire cryoglobulin activity. PMID:26410885

  12. Intrapericardial Delivery of Cardiosphere-Derived Cells: An Immunological Study in a Clinically Relevant Large Animal Model

    PubMed Central

    Crisóstomo, Verónica; Báez, Claudia; Maestre, Juan; Álvarez, Verónica

    2016-01-01

    Introduction The intrapericardial delivery has been defined as an efficient method for pharmacological agent delivery. Here we hypothesize that intrapericardial administration of cardiosphere-derived cells (CDCs) may have an immunomodulatory effect providing an optimal microenvironment for promoting cardiac repair. To our knowledge, this is the first report studying the effects of CDCs for myocardial repair using the intrapericardial delivery route. Material and Methods CDCs lines were isolated, expanded and characterized by flow cytometry and PCR. Their differentiation ability was determined using specific culture media and differential staining. 300,000 CDCs/kg were injected into the pericardial space of a swine myocardial infarcted model. Magnetic resonance imaging, biochemical analysis of pericardial fluid and plasma, cytokine measurements and flow cytometry analysis were performed. Results Our results showed that, phenotype and differentiation behavior of porcine CDCs were equivalent to previously described CDCs. Moreover, the intrapericardial administration of CDCs fulfilled the safety aspects as non-adverse effects were reported. Finally, the phenotypes of resident lymphocytes and TH1 cytokines in the pericardial fluid were significantly altered after CDCs administration. Conclusions The pericardial fluid could be considered as a safe and optimal vehicle for CDCs administration. The observed changes in the studied immunological parameters could exert a modulation in the inflammatory environment of infarcted hearts, indirectly benefiting the endogenous cardiac repair. PMID:26866919

  13. Animal models of schizophrenia

    PubMed Central

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  14. Animal Model of Dermatophytosis

    PubMed Central

    Shimamura, Tsuyoshi; Kubota, Nobuo; Shibuya, Kazutoshi

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host's normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the present paper, we surveyed reports about the methodology of the dermatophytosis animal model for tinea corporis, tinea pedis, and tinea unguium and discussed future prospects. PMID:22619489

  15. Inositol-deficient food augments a behavioral effect of long-term lithium treatment mediated by inositol monophosphatase inhibition: an animal model with relevance for bipolar disorder.

    PubMed

    Shtein, Liza; Agam, Galila; Belmaker, R H; Bersudsky, Yuly

    2015-04-01

    Lithium treatment in rodents markedly enhances cholinergic agonists such as pilocarpine. This effect can be reversed in a stereospecific manner by administration of inositol, suggesting that the effect of lithium is caused by inositol monophosphatase inhibition and consequent inositol depletion. If so, inositol-deficient food would be expected to enhance lithium effects. Inositol-deficient food was prepared from inositol-free ingredients. Mice with a homozygote knockout of the inositol monophosphatase 1 gene unable to synthesize inositol endogenously and mimicking lithium-treated animals were fed this diet or a control diet. Lithium-treated wild-type animals were also treated with the inositol-deficient diet or control diet. Pilocarpine was administered after 1 week of treatment, and behavior including seizures was assessed using rating scale. Inositol-deficient food-treated animals, both lithium treated and with inositol monophosphatase 1 knockout, had significantly elevated cholinergic behavior rating and significantly increased or earlier seizures compared with the controls. The effect of inositol-deficient food supports the role of inositol depletion in the effects of lithium on pilocarpine-induced behavior. However, the relevance of this behavior to other more mood-related effects of lithium is not clear. PMID:25679134

  16. Animal models in burn research.

    PubMed

    Abdullahi, A; Amini-Nik, S; Jeschke, M G

    2014-09-01

    Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  17. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  18. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  19. Animal Models of Bone Metastasis.

    PubMed

    Simmons, J K; Hildreth, B E; Supsavhad, W; Elshafae, S M; Hassan, B B; Dirksen, W P; Toribio, R E; Rosol, T J

    2015-09-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  20. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  1. Animal models for osteoporosis.

    PubMed

    Turner, R T; Maran, A; Lotinun, S; Hefferan, T; Evans, G L; Zhang, M; Sibonga, J D

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge. PMID:11704974

  2. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  3. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  4. Animal Models of Ricin Toxicosis

    PubMed Central

    Song, Kejing; Sivasubramani, Satheesh K.; Gardner, Donald J.; Pincus, Seth H.

    2015-01-01

    Animal models of ricin toxicosis are necessary for testing the efficacy of therapeutic measures, as well studying the mechanisms by which ricin exerts its toxicity in intact animals. Because ricin can serve as a particularly well-characterized model of tissue damage, and the host response to that damage, studies of the mechanisms of ricin toxicity may have more general applicability. For example, our studies of the molecular mechanisms underlying the development of ricin-induced hypoglycemia may help elucidate the relationship of type II diabetes, insulin resistance, and inflammation. Studies in non-human primates are most relevant for testing and developing agents having clinical utility. But these animals are expensive and limited in quantity, and so rodents are used for most mechanistic studies. PMID:21956160

  5. Animal models of ADHD.

    PubMed

    Bari, A; Robbins, T W

    2011-01-01

    Studies employing animal models of attention-deficit/hyperactivity disorder (ADHD) present clear inherent advantages over human studies. Animal models are invaluable tools for the study of underlying neurochemical, neuropathological and genetic alterations that cause ADHD, because they allow relatively fast, rigorous hypothesis testing and invasive manipulations as well as selective breeding. Moreover, especially for ADHD, animal models with good predictive validity would allow the assessment of potential new therapeutics. In this chapter, we describe and comment on the most frequently used animal models of ADHD that have been created by genetic, neurochemical and physical alterations in rodents. We then discuss that an emerging and promising direction of the field is the analysis of individual behavioural differences among a normal population of animals. Subjects presenting extreme characteristics related to ADHD can be studied, thereby avoiding some of the problems that are found in other models, such as functional recovery and unnecessary assumptions about aetiology. This approach is justified by the theoretical need to consider human ADHD as the extreme part of a spectrum of characteristics that are distributed normally in the general population, as opposed to the predominant view of ADHD as a separate pathological category. PMID:21287324

  6. Animal models of fibromyalgia

    PubMed Central

    2013-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles. PMID:24314231

  7. Animal models of scoliosis.

    PubMed

    Bobyn, Justin D; Little, David G; Gray, Randolph; Schindeler, Aaron

    2015-04-01

    Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity. PMID:25492698

  8. Animal Models of Glaucoma

    PubMed Central

    A. Bouhenni, Rachida; Dunmire, Jeffrey; Sewell, Abby; Edward, Deepak P.

    2012-01-01

    Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model. PMID:22665989

  9. Animal Models of Sleep Disorders

    PubMed Central

    Toth, Linda A; Bhargava, Pavan

    2013-01-01

    Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders—insomnia, narcolepsy, restless legs syndrome, and sleep apnea—and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders. PMID:23582416

  10. Laboratory Animal Models for Brucellosis Research

    PubMed Central

    Silva, Teane M. A.; Costa, Erica A.; Paixão, Tatiane A.; Tsolis, Renée M.; Santos, Renato L.

    2011-01-01

    Brucellosis is a chronic infectious disease caused by Brucella spp., a Gram-negative facultative intracellular pathogen that affects humans and animals, leading to significant impact on public health and animal industry. Human brucellosis is considered the most prevalent bacterial zoonosis in the world and is characterized by fever, weight loss, depression, hepato/splenomegaly, osteoarticular, and genital infections. Relevant aspects of Brucella pathogenesis have been intensively investigated in culture cells and animal models. The mouse is the animal model more commonly used to study chronic infection caused by Brucella. This model is most frequently used to investigate specific pathogenic factors of Brucella spp., to characterize the host immune response, and to evaluate therapeutics and vaccines. Other animal species have been used as models for brucellosis including rats, guinea pigs, and monkeys. This paper discusses the murine and other laboratory animal models for human and animal brucellosis. PMID:21403904

  11. Animal Models of Hemophilia

    PubMed Central

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  12. Modeling animal landscapes.

    PubMed

    Porter, W P; Ostrowski, S; Williams, J B

    2010-01-01

    There is an increasing need to assess the effects of climate and land-use change on habitat quality, ideally from a mechanistic basis. The symposium "Molecules to Migration: Pressures of Life" at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry, Maasai Mara National Reserve, Kenya, 2008, illustrated how the principles of biophysical ecology can capture the mechanistic links between organisms, climate, and other habitat features. These principles provide spatially explicit assessments of habitat quality from a physiological perspective (i.e., "animal landscapes") that can be validated independently of the data used to derive and parameterize them. The contents of this symposium showcased how the modeling of animal landscapes can be used to assess key issues in applied and theoretical ecology. The presentations included applications to amphibians, reptiles, birds, and mammals. The rare Arabian oryx on the Arabian Peninsula is used as an example for energetic calculations and their implications for behavior on the landscape. PMID:20670170

  13. Animal Models of Narcolepsy

    PubMed Central

    Chen, Lichao; Brown, Ritchie E.; McKenna, James T.; McCarley, Robert W.

    2013-01-01

    Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic systems in canine narcolepsy. In 1999, two independent studies revealed that orexin neurotransmission deficiency was pivotal to the development of narcolepsy with cataplexy. This scientific leap fueled the generation of several genetically engineered mouse and rat models of narcolepsy. To facilitate further research, it is imperative that researchers reach a consensus concerning the evaluation of narcoleptic behavioral and EEG phenomenology in these models. PMID:19689311

  14. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  15. Relevance of experimental animal studies to the human experience

    SciTech Connect

    Fry, R.J.M.

    1982-01-01

    Animal experiments are being used to examine a number of physical and biological factors that influence risk estimations though not usually in coordination with epidemiologists. It is clear that the different mechanisms involved in different types of tumors are reflected in the diversity of dose-response relationships. The forms of the dose-response relationships are influenced by both the initial events and their expression. Evidence is accumulating that many initiated cells do not get expressed as overt cancers and host factors may play a major role in the expression of potential tumor cells. There is a need for information about the relationship of the natural incidence and susceptibility to radiation induction for more tumor types. Such experiments will help answer the question of which risk estimate models are appropriate for different tumor types and can be carried out on animals. Perhaps because of the importance of host factors risk estimates as a percentage of the natural incidence appear to be similar for human beings and mice for a small number of tumor types. The elucidation of the mechanisms involved in different tissues while a slow business remains an important role of animal experiments.

  16. Lessons from Animal Models of Arterial Aneurysm

    PubMed Central

    Gertz, S. David; Mintz, Yoav; Beeri, Ronen; Rubinstein, Chen; Gilon, Dan; Gavish, Leah; Berlatzky, Yacov; Appelbaum, Liat; Gavish, Lilach

    2013-01-01

    We review the results from the most common animal models of arterial aneurysm, including recent findings from our novel, laparoscopy-based pig model of abdominal aortic aneurysm, that contribute important insights into early pathogenesis. We emphasize the relevance of these findings for evaluation of treatment protocols and novel device prototypes for mechanism-based prevention of progression and rupture. PMID:26798701

  17. ANIMAL MODELS FOR IMMUNOTOXICITY

    EPA Science Inventory

    Greater susceptibility to infection is a hallmark of compromised immune function in humans and animals, and is often considered the benchmark against which the predictive value of immune function tests are compared. This focus of this paper is resistance to infection with the pa...

  18. Animal Models of Colorectal Cancer

    PubMed Central

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  19. Animal models in peritoneal dialysis

    PubMed Central

    Nikitidou, Olga; Peppa, Vasiliki I.; Leivaditis, Konstantinos; Eleftheriadis, Theodoros; Zarogiannis, Sotirios G.; Liakopoulos, Vassilios

    2015-01-01

    Peritoneal dialysis (PD) has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease (ESRD). In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use. PMID:26388781

  20. Animal Models for Therapeutic Embolization

    SciTech Connect

    Moreira, Patricia L.; An, Yuehuei H.

    2003-04-15

    Embolization techniques have been performed in different animals to accumulate basic data before a clinical trial.Choosing the right embolization model for a specific project is critical. However, there are several variables when defining the best model for embolization research such as the size of the animal to be used, the target organs, the route of introducing the embolization agent, and the feasible methods of evaluation. Commonly used research animals for endovascular embolization include rabbits, dogs, and rats. Frequently used target organs are the kidney and the liver. Most models use a transcatheter for introducing the embolus and occasionally open surgery and direct arterial injection are used. Basic methods of evaluation are straightforward, and commonly include macro observation of the embolized organs, angiogram, and histology. This article concisely reviews the available animal models and their evaluation for embolization research to help researchers to choose the appropriate model.

  1. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  2. Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species.

    PubMed

    Morrison, Liam J; Vezza, Laura; Rowan, Tim; Hope, Jayne C

    2016-08-01

    Animal African trypanosomiasis (AAT), caused by Trypanosoma congolense and Trypanosoma vivax, remains one of the most important livestock diseases in sub-Saharan Africa, particularly affecting cattle. Despite this, our detailed knowledge largely stems from the human pathogen Trypanosoma brucei and mouse experimental models. In the postgenomic era, the genotypic and phenotypic differences between the AAT-relevant species of parasite or host and their model organism counterparts are increasingly apparent. Here, we outline the timeliness and advantages of increasing the research focus on both the clinically relevant parasite and host species, given that improved tools and resources for both have been developed in recent years. We propose that this shift of emphasis will improve our ability to efficiently develop tools to combat AAT. PMID:27167665

  3. Animal Models of Bacterial Keratitis

    PubMed Central

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  4. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    NASA Astrophysics Data System (ADS)

    Halloran, Siobhan; Wexler, Anthony; Ristenpart, William

    2014-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in modulating the pathogen transmission, to date the infectious disease community has paid little attention to the effect of airspeed or turbulence intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of a standard axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We demonstrate that the fan speed counterintuitively has no effect on the downstream plume width, a result replicated with a variety of different fan types and configurations. The results point toward a useful simplification in modeling of airborne disease transmission via fan-generated flows.

  5. Animal models for human diseases.

    PubMed

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  6. Animal models in myopia research.

    PubMed

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. PMID:26769177

  7. Anhedonia, avolition, and anticipatory deficits: Assessments in animals with relevance to the negative symptoms of schizophrenia

    PubMed Central

    Barnes, Samuel A.; Der-Avakian, Andre; Markou, Athina

    2013-01-01

    Schizophrenia represents a complex, heterogeneous disorder characterized by several symptomatic domains that include positive and negative symptoms, and cognitive deficits. Negative symptoms reflect a cluster of symptoms that remains therapeutically unresponsive to currently available medications. Therefore, the development of animal models that may contribute to the discovery of novel and efficacious treatment strategies is essential. An animal model consists of both an inducing condition or manipulation (i.e., independent variable) and an observable measure(s) (i.e., dependent variables) that are used to assess the construct(s) under investigation. The objective of this review is to describe currently available experimental procedures that can be used to characterize constructs relevant to the negative symptoms of schizophrenia in experimental animals. While negative symptoms can encompass aspects of social withdrawal and emotional blunting, this review focuses on the assessment of reward deficits that result in anhedonia, avolition, and abnormal reward anticipation. The development and utilization of animal procedures that accurately assess reward-based constructs related to negative symptomatology in schizophrenia will provide an improved understanding of the neural substrates involved in these processes. PMID:24183826

  8. Animal and cellular models of Friedreich ataxia.

    PubMed

    Perdomini, Morgane; Hick, Aurore; Puccio, Hélène; Pook, Mark A

    2013-08-01

    The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA? PMID:23859342

  9. Animal Models of Head Trauma

    PubMed Central

    Cernak, Ibolja

    2005-01-01

    Summary: Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization. PMID:16389305

  10. Animal Models of Muscular Dystrophy

    PubMed Central

    Ng, Rainer; Banks, Glen B.; Hall, John K.; Muir, Lindsey A.; Ramos, Julian N.; Wicki, Jacqueline; Odom, Guy L.; Konieczny, Patryk; Seto, Jane; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 20021). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 20032). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 20093). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development. PMID:22137430

  11. Symptomatic animal models for dystonia

    PubMed Central

    Wilson, Bethany K.; Hess, Ellen J.

    2013-01-01

    Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic and dopaminergic transmission. Symptomatic animal models have also established the critical role of the cerebellum in dystonia, particularly abnormal glutamate signaling and aberrant Purkinje cell activity. Further, experiments suggest that the basal ganglia and cerebellum are nodes in an integrated network that is dysfunctional in dystonia. The knowledge gained from experiments in symptomatic animal models may serve as the foundation for the development of novel therapeutic interventions to treat dystonia. PMID:23893454

  12. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  13. Animal models in virus research: their utility and limitations.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2013-11-01

    Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models. PMID:22978742

  14. ANIMAL MODELS FOR FOOD ALLERGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal models have been used to provide insight into the complex immunological and pathophysioligical mechanisms of human Type 1 allergic diseases. Research efforts that include mechanistic studies in search of new therapies and screening models for hazard identification of potential allergens in a...

  15. Animal models for meniscus repair and regeneration.

    PubMed

    Deponti, Daniela; Di Giancamillo, Alessia; Scotti, Celeste; Peretti, Giuseppe M; Martin, Ivan

    2015-05-01

    The meniscus plays an important role in knee function and mechanics. Meniscal lesions, however, are common phenomena and this tissue is not able to achieve spontaneous successful repair, particularly in the inner avascular zone. Several animal models have been studied and proposed for testing different reparative approaches, as well as for studying regenerative methods aiming to restore the original shape and function of this structure. This review summarizes the gross anatomy, function, ultrastructure and biochemical composition of the knee meniscus in several animal models in comparison with the human meniscus. The relevance of the models is discussed from the point of view of basic research as well as of clinical translation for meniscal repair, substitution and regeneration. Finally, the advantages and disadvantages of each model for various research directions are critically discussed. PMID:23712959

  16. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  17. Differential Paradigms in Animal Models of Sepsis.

    PubMed

    Kingsley, S Manoj Kumar; Bhat, B Vishnu

    2016-09-01

    Sepsis is a serious clinical problem involving complex mechanisms which requires better understanding and insight. Animal models of sepsis have played a major role in providing insight into the complex pathophysiology of sepsis. There have been various animal models of sepsis with different paradigms. Endotoxin, bacterial infusion, cecal ligation and puncture, and colon ascendens stent peritonitis models are the commonly practiced methods at present. Each of these models has their own advantages and also confounding factors. We have discussed the underlying mechanisms regulating each of these models along with possible reasons why each model failed to translate into the clinic. In animal models, the timing of development of the hemodynamic phases and the varied cytokine patterns could not accurately resemble the progression of clinical sepsis. More often, the exuberant and transient pro-inflammatory cytokine response is only focused in most models. Immunosuppression and apoptosis in the later phase of sepsis have been found to cause more damage than the initial acute phase of sepsis. Likewise, better understanding of the existing models of sepsis could help us create a more relevant model which could provide solution to the currently failed clinical trials in sepsis. PMID:27432263

  18. Morally relevant differences between animals and human beings justifying the use of animals in biomedical research.

    PubMed

    Dennis, J U

    1997-03-01

    I have attempted to show that the differential qualities of animals and human beings indeed to have bearing on moral rules and the derivation of rights, including rights established on the basis of reason and utilitarianism. Special rights for members of our species are not simply a consequence of human domination and self-interest. I also have tried to show that rights arise from values and that the qualities we value most highly often are the ones that distinguish human beings from other species. I maintain that giving more value to human lives over animal lives achieves reflective balance with the commonsense notions that most of us have developed. Because utilitarianism, contractualism, and the classical philosophical methods of Kant and Aristotle all may allow favoring human interests over animal interests, it seems reasonable to suspect that animal rights activists embrace narrow, extremist views. There are many uniquely human experiences to which we ascribe high value-deep interpersonal relationships, achieving a life's goal, enjoying a complex cultural event such as a play or an opera, or authoring a manuscript. Therefore, it would seem improper that social and ethical considerations regarding animals be centered entirely on the notion of a biological continuum, because there are many kinds of human experience-moral, religious, aesthetic, and otherwise-that appear to be outside the realm of biology. Knowledge about the biology of animals is helpful for making moral decisions about our obligations to them. Why, then, is there a substantial population of animal rights activists in Europe, the United States, and throughout the world, who would not agree with my conclusions? Certain habitual ways of thinking may encourage anthropomorphism and equating animal interests with human interests. Certain metaphysical beliefs, such as a belief in reincarnation, also might favor animal rights. It also is possible that a number of people are being deceived and misled by

  19. Overcrowding and Population Growth: The Nature and Relevance of Animal Behavior.

    ERIC Educational Resources Information Center

    Stettner, Laurence J.

    This paper provides a descriptive overview of research on the consequences of overcrowding and the development of high population densities in animals, and speculates on the relevance of these studies for similar human phenomena. Three major foci are distinguished: (1) the effect of high population densities on animal behavior; (2) the nature of…

  20. Passage relevance models for genomics search

    PubMed Central

    Urbain, Jay; Frieder, Ophir; Goharian, Nazli

    2009-01-01

    We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential functions within a Markov Random Field. The probability of a passage being relevant to a biologist's information need is represented as the joint distribution across all potential functions. Relevance model feedback of top ranked passages is used to improve distributional estimates of query concepts and topics in context, and a dimensional indexing strategy is used for efficient aggregation of concept and term statistics. By integrating multiple sources of evidence including dependencies between topics, concepts, and terms, we seek to improve genomics literature passage retrieval precision. Using this model, we are able to demonstrate statistically significant improvements in retrieval precision using a large genomics literature corpus. PMID:19344479

  1. Animal models of drug craving.

    PubMed

    Markou, A; Weiss, F; Gold, L H; Caine, S B; Schulteis, G; Koob, G F

    1993-01-01

    Drug craving, the desire to experience the effect(s) of a previously experienced psychoactive substance, has been hypothesized to contribute significantly to continued drug use and relapse after a period of abstinence in humans. In more theoretical terms, drug craving can be conceptualized within the framework of incentive motivational theories of behavior and be defined as the incentive motivation to self-administer a psychoactive substance. The incentive-motivational value of drugs is hypothesized to be determined by a continuous interaction between the hedonic rewarding properties of drugs (incentive) and the motivational state of the organism (organismic state). In drug-dependent individuals, the incentive-motivational value of drugs (i.e., drug craving) is greater compared to non-drug-dependent individuals due to the motivational state (i.e., withdrawal) developed with repeated drug administration. In this conceptual framework, animal models of drug craving would reflect two aspects of the incentive motivation to self-administer a psychoactive substance. One aspect would be the unconditioned incentive (reinforcing) value of the drug itself. The other aspect would be relatively independent of the direct (unconditioned) incentive value of the drug itself and could be reflected in the ability of previously neutral stimuli to acquire conditioned incentive properties that could elicit drug-seeking and drug-taking behavior. Animal models of drug craving that permit the investigation of the behavioral and neurobiological components of these two aspects of drug craving are reviewed and evaluated. The models reviewed are the progressive ratio, choice, extinction, conditioned reinforcement and second-order schedule paradigms. These animal models are evaluated according to two criteria that are established herein as necessary and sufficient criteria for the evaluation of animal models of human psychopathology: reliability and predictive validity. The development of

  2. Animal models of CNS disorders.

    PubMed

    McGonigle, Paul

    2014-01-01

    There is intense interest in the development and application of animal models of CNS disorders to explore pathology and molecular mechanisms, identify potential biomarkers, and to assess the therapeutic utility, estimate safety margins and establish pharmacodynamic and pharmacokinetic parameters of new chemical entities (NCEs). This is a daunting undertaking, due to the complex and heterogeneous nature of these disorders, the subjective and sometimes contradictory nature of the clinical endpoints and the paucity of information regarding underlying molecular mechanisms. Historically, these models have been invaluable in the discovery of therapeutics for a range of disorders including anxiety, depression, schizophrenia, and Parkinson's disease. Recently, however, they have been increasingly criticized in the wake of numerous clinical trial failures of NCEs with promising preclinical profiles. These failures have resulted from a number of factors including inherent limitations of the models, over-interpretation of preclinical results and the complex nature of clinical trials for CNS disorders. This review discusses the rationale, strengths, weaknesses and predictive validity of the most commonly used models for psychiatric, neurodegenerative and neurological disorders as well as critical factors that affect the variability and reproducibility of these models. It also addresses how progress in molecular genetics and the development of transgenic animals has fundamentally changed the approach to neurodegenerative disorder research. To date, transgenic animal models\\have not been the panacea for drug discovery that many had hoped for. However continual refinement of these models is leading to steady progress with the promise of eventual therapeutic breakthroughs. PMID:23811310

  3. Animal models of polymicrobial pneumonia

    PubMed Central

    Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne

    2015-01-01

    Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617

  4. Animal Models of Subjective Tinnitus

    PubMed Central

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805

  5. Extrapyramidal system neurotoxicity: animal models.

    PubMed

    Dorman, David

    2015-01-01

    The central nervous system's extrapyramidal system provides involuntary motor control to the muscles of the head, neck, and limbs. Toxicants that affect the extrapyramidal system are generally clinically characterized by impaired motor control, which is usually the result of basal ganglionic dysfunction. A variety of extrapyramidal syndromes are recognized in humans and include Parkinson's disease, secondary parkinsonism, other degenerative diseases of the basal ganglia, and clinical syndromes that result in dystonia, dyskinesia, essential tremor, and other forms of tremor and chorea. This chapter briefly reviews the anatomy of the extrapyramidal system and discusses several naturally occurring and experimental models that target the mammalian (nonhuman) extrapyramidal system. Topics discussed include extrapyramidal syndromes associated with antipsychotic drugs, carbon monoxide, reserpine, cyanide, rotenone, paraquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and manganese. In most cases, animals are used as experimental models to improve our understanding of the toxicity and pathogenesis of these agents. Another agent discussed in this chapter, yellowstar thistle poisoning in horses, however, represents an important spontaneous cause of parkinsonism that naturally occurs in animals. The central focus of the chapter is on animal models, especially the concordance between clinical signs, neurochemical changes, and neuropathology between animals and people. PMID:26563791

  6. Henipavirus infections: lessons from animal models.

    PubMed

    Dhondt, Kévin P; Horvat, Branka

    2013-01-01

    The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed. PMID:25437037

  7. Biliary atresia: the animal models.

    PubMed

    Petersen, Claus

    2012-08-01

    Biliary atresia (BA) is a progressive fibrosing process of the neonatal biliary tree and liver, of unknown origin, and an as-yet unexplained pathologic mechanism. The crucial point is to elucidate the origin of this rare disease to change palliative surgery to etiology-related procedures. Patient-based research can only begin at the time of the Kasai procedure and does not allow retracing of the pathology back to its origin. Basic research has focused on similar diseases in the veterinary literature and started to simulate BA in animal models. Unfortunately, even after 50 years of research, no knowledge has been gained from such models, which has led to a single clinical application. This article reviews BA in the context of the animal models available and discusses whether future studies are promising or futile. PMID:22800971

  8. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory. PMID:26609644

  9. Evaluation of Surrogate Animal Models of Melioidosis

    PubMed Central

    Warawa, Jonathan Mark

    2010-01-01

    Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant models including mammalian and invertebrate hosts. This review seeks to summarize published findings related to established animal models of melioidosis, with an aim to compare and contrast the virulence of B. pseudomallei in these models. The effect of the route of delivery on disease is also discussed for intravenous, intraperitoneal, subcutaneous, intranasal, aerosol, oral, and intratracheal infection methodologies, with a particular focus on how they relate to modeling clinical melioidosis. The importance of the translational validity of the animal models used in B. pseudomallei research is highlighted as these studies have become increasingly therapeutic in nature. PMID:21772830

  10. Phenotypic variation in metabolism and morphology correlating with animal swimming activity in the wild: relevance for the OCLTT (oxygen- and capacity-limitation of thermal tolerance), allocation and performance models

    PubMed Central

    Baktoft, Henrik; Jacobsen, Lene; Skov, Christian; Koed, Anders; Jepsen, Niels; Berg, Søren; Boel, Mikkel; Aarestrup, Kim; Svendsen, Jon C.

    2016-01-01

    Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in several studies. A positive relationship between aerobic metabolic scope and animal activity would be consistent with the OCLTT but has rarely been tested. Moreover, the performance model and the allocation model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify individual in situ activity levels. Metabolic rates were measured using intermittent flow respirometry, whereas the activity assay involved high-resolution telemetry providing positions every 30 s over 12 days. We found no correlation between individual metabolic traits and activity, whereas individual fineness ratio correlated with activity. Independent of body length, and consistent with physics theory, slender fish maintained faster mean and maximal swimming speeds, but this variation did not result in a larger area (in square metres) explored per 24 h. Testing assumptions and predictions of recent conceptual models, our study indicates that individual metabolism is not a strong determinant of animal activity, in contrast to individual morphology, which is

  11. Animal models for human sexuality.

    PubMed

    Beach, F A

    The value of animal models in biomedical research is firmly established, and many basic principles of human psychology have been explicated as the result of comparative studies. There is pressing need for non-human models in the behavioural sciences as represented by psychiatry, psychology and ethology; and such models should be constructed, provided their validity can be assured. Valid models cannot be based exclusively on similarity in the formal properties of behaviour. Commonality of descriptive terms as applied to different species does not guarantee identity of the concepts to which the terms apply. Model builders must evaluate interspecific similarities and differences in the causes, mediating mechanisms and functional outcomes of behaviour. The validity of interspecific generalization can never exceed the reliability of intraspecific analysis; and the latter is an indispensable antecedent of the former. Existing and potential models for homosexuality and other psychosexual characteristics of human beings are evaluated within the perspective provided by the foregoing generalizations. PMID:256826

  12. Animal models for microbicide studies

    PubMed Central

    Veazey, Ronald S.; Shattock, Robin J; Klasse, Per Johan; Moore, John P.

    2013-01-01

    There have been encouraging recent successes in the development of safe and effective topical microbicides to prevent vaginal or rectal HIV-1 transmission, based on the use of anti-retroviral drugs. However, much work remains to be accomplished before a microbicide becomes a standard element of prevention science strategies. Animal models should continue to play an important role in pre-clinical testing, with emphasis on safety, pharmacokinetic and efficacy testing. PMID:22264049

  13. Macrophages and Uveitis in Experimental Animal Models

    PubMed Central

    Mérida, Salvador; Palacios, Elena; Bosch-Morell, Francisco

    2015-01-01

    Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution. PMID:26078494

  14. Animal Models in Pressure Ulcer Research

    PubMed Central

    Salcido, Richard; Popescu, Adrian; Ahn, Chulhyun

    2007-01-01

    Background/Objective: Research targeting the pathophysiology, prevention, and treatment of pressure ulcers (PrUs) continue to be a significant priority for clinical and basic science research. Spinal cord injury patients particularly benefit from PrU research, because the prevalence of chronic wounds in this category is increasing despite standardized medical care. Because of practical, ethical, and safety considerations, PrUs in the human environment are limited to studies involving patients with pre-existing ulcers. Therefore, we are limited in our basic knowledge pertaining to the development, progression, and healing environment in this devastating disease. Methods: This review provides a synopsis of literature and a discussion of techniques used to induce PrUs in animal models. The question of what animal model best mimics the human PrU environment has been a subject of debate by investigators, peer review panels, and editors. The similarities in wound development and healing in mammalian tissue make murine models a relevant model for understanding the causal factors as well as the wound healing elements. Although we are beginning to understand some of the mechanisms of PrU development, a key dilemma of what makes an apparently healthy tissue develop a PrU waits to be solved. Results and Conclusions: No single method of induction and exploring PrUs in animals can address all the aspects of the pathology of chronic wounds. Each model has its particular strengths and weaknesses. Certain types of models can selectively identify specific aspects of wound development, quantify the extent of lesions, and assess outcomes from interventions. The appropriate interpretation of these methods is significant for proper study design, an understanding of the results, and extrapolation to clinical relevance. PMID:17591222

  15. Animal models of rheumatoid arthritis: How informative are they?

    PubMed

    McNamee, Kay; Williams, Richard; Seed, Michael

    2015-07-15

    Animal models of arthritis are widely used to de-convolute disease pathways and to identify novel drug targets and therapeutic approaches. However, the high attrition rates of drugs in Phase II/III rates means that a relatively small number of drugs reach the market, despite showing efficacy in pre-clinical models. There is also increasing awareness of the ethical issues surrounding the use of animal models of disease and it is timely, therefore, to review the relevance and translatability of animal models of arthritis. In this paper we review the most commonly used animal models in terms of their pathological similarities to human rheumatoid arthritis as well as their response to drug therapy. In general, the ability of animal models to predict efficacy of biologics in man has been good. However, the predictive power of animal models for small molecules has been variable, probably because of differences in the levels of target knockdown achievable in vivo. PMID:25824900

  16. Animal models of serotonergic psychedelics.

    PubMed

    Hanks, James B; González-Maeso, Javier

    2013-01-16

    The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects. PMID:23336043

  17. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  18. A step-by-step guide to systematically identify all relevant animal studies

    PubMed Central

    Leenaars, Marlies; Hooijmans, Carlijn R; van Veggel, Nieky; ter Riet, Gerben; Leeflang, Mariska; Hooft, Lotty; van der Wilt, Gert Jan; Tillema, Alice; Ritskes-Hoitinga, Merel

    2012-01-01

    Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential first step in an SR is to search and find all potentially relevant studies. It is important to include all available evidence in an SR to minimize bias and reduce hampered interpretation of experimental outcomes. Despite the recent development of search filters to find animal studies in PubMed and EMBASE, searching for all available animal studies remains a challenge. Available guidelines from the clinical field cannot be copied directly to the situation within animal research, and although there are plenty of books and courses on searching the literature, there is no compact guide available to search and find relevant animal studies. Therefore, in order to facilitate a structured, thorough and transparent search for animal studies (in both preclinical and fundamental science), an easy-to-use, step-by-step guide was prepared and optimized using feedback from scientists in the field of animal experimentation. The step-by-step guide will assist scientists in performing a comprehensive literature search and, consequently, improve the scientific quality of the resulting review and prevent unnecessary animal use in the future. PMID:22037056

  19. Animal models of erectile dysfunction

    PubMed Central

    Gajbhiye, Snehlata V.; Jadhav, Kshitij S.; Marathe, Padmaja A.; Pawar, Dattatray B.

    2015-01-01

    Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED) encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were “ED and experimental models,” “ED and nervous stimulation,” “ED and cavernous nerve stimulation,” “ED and central stimulation,” “ED and diabetes mellitus,” “ED and ageing,” “ED and hypercholesteremia,” “ED and Peyronie's disease,” “radiation induced ED,” “telemetric recording,” “ED and mating test” and “ED and non-contact erection test.” PMID:25624570

  20. Towards increased policy relevance in energy modeling

    SciTech Connect

    Worrell, Ernst; Ramesohl, Stephan; Boyd, Gale

    2003-07-29

    Historically, most energy models were reasonably equipped to assess the impact of a subsidy or change in taxation, but are often insufficient to assess the impact of more innovative policy instruments. We evaluate the models used to assess future energy use, focusing on industrial energy use. We explore approaches to engineering-economic analysis that could help improve the realism and policy relevance of engineering-economic modeling frameworks. We also explore solutions to strengthen the policy usefulness of engineering-economic analysis that can be built from a framework of multi-disciplinary cooperation. We focus on the so-called ''engineering-economic'' (or ''bottom-up'') models, as they include the amount of detail that is commonly needed to model policy scenarios. We identify research priorities for the modeling framework, technology representation in models, policy evaluation and modeling of decision-making behavior.

  1. Neurologic autoimmunity: mechanisms revealed by animal models.

    PubMed

    Bradl, Monika; Lassmann, Hans

    2016-01-01

    Over the last decade, neurologic autoimmunity has become a major consideration in the diagnosis and management of patients with many neurologic presentations. The nature of the associated antibodies and their targets has led to appreciation of the importance of the accessibility of the target antigen to antibodies, and a partial understanding of the different mechanisms that can follow antibody binding. This chapter will first describe the basic principles of autoimmune inflammation and tissue damage in the central and peripheral nervous system, and will then demonstrate what has been learnt about neurologic autoimmunity from circumstantial clinical evidence and from passive, active, and occasionally spontaneous or genetic animal models. It will cover neurologic autoimmune diseases ranging from disorders of neuromuscular transmission, peripheral and ganglionic neuropathy, to diseases of the central nervous system, where autoantibodies are either pathogenic and cause destruction or changes in function of their targets, where they are harmless bystanders of T-cell-mediated tissue damage, or are not involved at all. Finally, this chapter will summarize the relevance of current animal models for studying the different neurologic autoimmune diseases, and it will identify aspects where future animal models need to be improved to better reflect the disease reality experienced by affected patients, e.g., the chronicity or the relapsing/remitting nature of their disease. PMID:27112675

  2. Systematic Review of Traumatic Brain Injury Animal Models.

    PubMed

    Phipps, Helen W

    2016-01-01

    The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope). PMID:27604713

  3. An animal model of fetishism.

    PubMed

    Köksal, Falih; Domjan, Michael; Kurt, Adnan; Sertel, Ozlem; Orüng, Sabiha; Bowers, Rob; Kumru, Gulsen

    2004-12-01

    An animal model of sexual fetishism was developed with male Japanese quail based on persistence of conditioned sexual responding during extinction to an inanimate object made of terrycloth (Experiments 1 and 3). This persistent responding occurred only in subjects that came to copulate with the terrycloth object, suggesting that the copulatory behavior served to maintain the fetishistic behavior. Sexual conditioning was carried out by pairing a conditioned stimulus (CS) with the opportunity to copulate with a female (the unconditioned stimulus or US). Copulation with the CS object and persistent responding did not develop if the CS was a light (Experiment 1) or if conditioning was carried out with a food US (Experiment 2). In addition, subjects that showed persistence in responding to the terrycloth CS did not persist in their responding to a light CS (Experiment 3). The results are consistent with the hypothesis that conditioned copulatory behavior creates a form of self-maintenance that leads to persistent responding to an inanimate object. The development of an animal model of such fetishistic behavior should facilitate experimental analysis of the phenomenon. PMID:15500813

  4. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  5. Animal Models of Autoimmune Neuropathy

    PubMed Central

    Soliven, Betty

    2014-01-01

    The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy have been provided by ex vivo immunologic studies, biopsy materials, electrophysiologic studies, and experimental models. This review article summarizes earlier seminal observations and highlights the recent progress in our understanding of immunopathogenesis of autoimmune neuropathies based on data from animal models. PMID:24615441

  6. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  7. Ethological concepts enhance the translational value of animal models.

    PubMed

    Peters, Suzanne M; Pothuizen, Helen H J; Spruijt, Berry M

    2015-07-15

    The translational value of animal models is an issue of ongoing discussion. We argue that 'Refinement' of animal experiments is needed and this can be achieved by exploiting an ethological approach when setting up and conducting experiments. Ethology aims to assess the functional meaning of behavioral changes, due to experimental manipulation or treatment, in animal models. Although the use of ethological concepts is particularly important for studies involving the measurement of animal behavior (as is the case for most studies on neuro-psychiatric conditions), it will also substantially benefit other disciplines, such as those investigating the immune system or inflammatory response. Using an ethological approach also involves using more optimal testing conditions are employed that have a biological relevance to the animal. Moreover, using a more biological relevant analysis of the data will help to clarify the functional meaning of the modeled readout (e.g. whether it is psychopathological or adaptive in nature). We advocate for instance that more behavioral studies should use animals in group-housed conditions, including the recording of their ultrasonic vocalizations, because (1) social behavior is an essential feature of animal models for human 'social' psychopathologies, such as autism and schizophrenia, and (2) social conditions are indispensable conditions for appropriate behavioral studies in social species, such as the rat. Only when taking these elements into account, the validity of animal experiments and, thus, the translation value of animal models can be enhanced. PMID:25823814

  8. Animal models of recurrent or bipolar depression.

    PubMed

    Kato, T; Kasahara, T; Kubota-Sakashita, M; Kato, T M; Nakajima, K

    2016-05-01

    Animal models of mental disorders should ideally have construct, face, and predictive validity, but current animal models do not always satisfy these validity criteria. Additionally, animal models of depression rely mainly on stress-induced behavioral changes. These stress-induced models have limited validity, because stress is not a risk factor specific to depression, and the models do not recapitulate the recurrent and spontaneous nature of depressive episodes. Although animal models exhibiting recurrent depressive episodes or bipolar depression have not yet been established, several researchers are trying to generate such animals by modeling clinical risk factors as well as by manipulating a specific neural circuit using emerging techniques. PMID:26265551

  9. Animal model of neuropathic tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  10. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies. PMID:22754549

  11. Animal Models of Williams Syndrome

    PubMed Central

    OSBORNE, LUCY R.

    2010-01-01

    In recent years, researchers have generated a variety of mouse models in an attempt to dissect the contribution of individual genes to the complex phenotype associated with Williams syndrome (WS). The mouse genome is easily manipulated to produce animals that are copies of humans with genetic conditions, be it with null mutations, hypomorphic mutations, point mutations, or even large deletions encompassing many genes. The existing mouse models certainly seem to implicate hemizygosity for ELN, BAZ1B, CLIP2, and GTF2IRD1 in WS, and new mice with large deletions of the WS region are helping us to understand both the additive and potential combinatorial effects of hemizygosity for specific genes. However, not all genes that are haploinsufficient in humans prove to be so in mice and the effect of genetic background can also have a significant effect on the penetrance of many phenotypes. Thus although mouse models are powerful tools, the information garnered from their study must be carefully interpreted. Nevertheless, mouse models look set to provide a wealth of information about the neuroanatomy, neurophysiology and molecular pathways that underlie WS and in the future will act as essential tools for the development and testing of therapeutics. PMID:20425782

  12. Serotonergic hallucinogens as translational models relevant to schizophrenia.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2013-11-01

    One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT(2A) receptor. These compounds produce a 'model psychosis' in normal individuals that resembles at least some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients, animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we review the behavioural effects of hallucinogens in four of those models, the receptor and neurochemical mechanisms for the effects and their translational relevance. Despite the difficulty of modelling hallucinogen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor targets and interactions that could be exploited in the development of new therapeutic agents. PMID:23942028

  13. Mathematical modeling relevant to closed artificial ecosystems

    USGS Publications Warehouse

    DeAngelis, D.L.

    2003-01-01

    The mathematical modeling of ecosystems has contributed much to the understanding of the dynamics of such systems. Ecosystems can include not only the natural variety, but also artificial systems designed and controlled by humans. These can range from agricultural systems and activated sludge plants, down to mesocosms, microcosms, and aquaria, which may have practical or research applications. Some purposes may require the design of systems that are completely closed, as far as material cycling is concerned. In all cases, mathematical modeling can help not only to understand the dynamics of the system, but also to design methods of control to keep the system operating in desired ranges. This paper reviews mathematical modeling relevant to the simulation and control of closed or semi-closed artificial ecosystems designed for biological production and recycling in applications in space. Published by Elsevier Science Ltd on behalf of COSPAR.

  14. Developing better and more valid animal models of brain disorders.

    PubMed

    Stewart, Adam Michael; Kalueff, Allan V

    2015-01-01

    Valid sensitive animal models are crucial for understanding the pathobiology of complex human disorders, such as anxiety, autism, depression and schizophrenia, which all have the 'spectrum' nature. Discussing new important strategic directions of research in this field, here we focus i) on cross-species validation of animal models, ii) ensuring their population (external) validity, and iii) the need to target the interplay between multiple disordered domains. We note that optimal animal models of brain disorders should target evolutionary conserved 'core' traits/domains and specifically mimic the clinically relevant inter-relationships between these domains. PMID:24384129

  15. Animal Models of Stress Urinary Incontinence

    PubMed Central

    Jiang, Hai-Hong

    2011-01-01

    Stress urinary incontinence (SUI) is a common health problem significantly affecting the quality of life of women worldwide. Animal models that simulate SUI enable the assessment of the mechanism of risk factors for SUI in a controlled fashion, including childbirth injuries, and enable preclinical testing of new treatments and therapies for SUI. Animal models that simulate childbirth are presently being utilized to determine the mechanisms of the maternal injuries of childbirth that lead to SUI with the goal of developing prophylactic treatments. Methods of assessing SUI in animals that mimic diagnostic methods used clinically have been developed to evaluate the animal models. Use of these animal models to test innovative treatment strategies has the potential to improve clinical management of SUI. This chapter provides a review of the available animal models of SUI, as well as a review of the methods of assessing SUI in animal models, and potential treatments that have been tested on these models. PMID:21290221

  16. Animal models to evaluate bacterial biofilm development.

    PubMed

    Thomsen, Kim; Trøstrup, Hannah; Moser, Claus

    2014-01-01

    Medical biofilms have attracted substantial attention especially in the past decade. Animal models are contributing significantly to understand the pathogenesis of medical biofilms. In addition, animal models are an essential tool in testing the hypothesis generated from clinical observations in patients and preclinical testing of agents showing in vitro antibiofilm effect. Here, we describe three animal models - two non-foreign body Pseudomonas aeruginosa biofilm models and a foreign body Staphylococcus aureus model. PMID:24664830

  17. Potency of Animal Models in KANSEI Engineering

    NASA Astrophysics Data System (ADS)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  18. A Review of Translational Animal Models for Knee Osteoarthritis

    PubMed Central

    Gregory, Martin H.; Capito, Nicholas; Kuroki, Keiichi; Stoker, Aaron M.; Cook, James L.; Sherman, Seth L.

    2012-01-01

    Knee osteoarthritis remains a tremendous public health concern, both in terms of health-related quality of life and financial burden of disease. Translational research is a critical step towards understanding and mitigating the long-term effects of this disease process. Animal models provide practical and clinically relevant ways to study both the natural history and response to treatment of knee osteoarthritis. Many factors including size, cost, and method of inducing osteoarthritis are important considerations for choosing an appropriate animal model. Smaller animals are useful because of their ease of use and cost, while larger animals are advantageous because of their anatomical similarity to humans. This evidence-based review will compare and contrast several different animal models for knee osteoarthritis. Our goal is to inform the clinician about current research models, in order to facilitate the transfer of knowledge from the “bench” to the “bedside.” PMID:23326663

  19. Animal Models and Integrated Nested Laplace Approximations

    PubMed Central

    Holand, Anna Marie; Steinsland, Ingelin; Martino, Sara; Jensen, Henrik

    2013-01-01

    Animal models are generalized linear mixed models used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov models. In this article, we demonstrate that the INLA methodology can be used for many versions of Bayesian animal models. We analyze animal models for both synthetic case studies and house sparrow (Passer domesticus) population case studies with Gaussian, binomial, and Poisson likelihoods using INLA. Inference results are compared with results using Markov Chain Monte Carlo methods. For model choice we use difference in deviance information criteria (DIC). We suggest and show how to evaluate differences in DIC by comparing them with sampling results from simulation studies. We also introduce an R package, AnimalINLA, for easy and fast inference for Bayesian Animal models using INLA. PMID:23708299

  20. Animal models for protein respiratory sensitizers.

    PubMed

    Ward, Marsha D W; Selgrade, Maryjane K

    2007-01-01

    Protein induced respiratory hypersensitivity, particularly atopic disease in general, and allergic asthma in particular, has increased dramatically over the last several decades in the US and other industrialized nations as a result of ill-defined changes in living conditions in modern western society. In addition, work-related asthma has become the most frequently diagnosed occupational respiratory illness. Animal models have demonstrated great utility in developing an understanding of the etiology and mechanisms of many diseases. A few models been developed as predictive models to identify a protein as an allergen or to characterize its potency. Here we describe animal models that have been used to investigate and identify protein respiratory sensitizers. In addition to prototypical experimental design, methods for exposure route, sample collection, and endpoint assessment are described. Some of the most relevant endpoints in assessing the potential for a given protein to induce atopic or allergic asthma respiratory hypersensitivity are the development of cytotropic antibodies (IgE, IgG1), eosinophil influx into the lung, and airway hyperresponsiveness to the sensitizing protein and/or to non-antigenic stimuli (Mch). The utility of technologies such as PCR and multiplexing assay systems is also described. These models and methods have been used to elucidate the potential for protein sources to induce allergy, identify environmental conditions (pollutants) to impact allergy responsiveness, and establish safe exposure limits. As an example, data are presented from an experiment designed to compare the allergenicity of a fungal biopesticide Metarhizium anisopliae (MACA) crude extract with the one of its components, conidia (CON) extract. PMID:17161304

  1. Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations

    PubMed Central

    Stei, Marta M.; Loeffler, Karin U.; Holz, Frank G.; Herwig, Martina C.

    2016-01-01

    Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocular injection of cutaneous melanoma cells may suit best for investigating immunologic/tumor biology aspects. However, differences between cutaneous and uveal melanoma regarding genetics and metastasis remain problematic. Human xenograft models are widely used for evaluating novel therapeutics but require immunosuppression to allow tumor growth. New approaches aim to establish transgenic mouse models of spontaneous uveal melanoma which recently provided preliminary promising results. Each model provides certain benefits and may render them suitable for answering a respective scientific question. However, all existing models also exhibit relevant limitations which may have led to delayed research progress. Despite refined therapeutic options for the primary ocular tumor, patients' prognosis has not improved since the 1970s. Basic research needs to further focus on a refinement of a potent animal model which mimics uveal melanoma specific mechanisms of progression and metastasis. This review will summarise and interpret existing animal models of uveal melanoma including recent advances in the field. PMID:27366747

  2. The new EU chemicals policy--Discussions on details relevant for animal welfare.

    PubMed

    Sauer, Ursula

    2002-01-01

    The European Commission is planning to put forward drafts for a new chemicals legislation by June 2002. In fulfillment of an Environmental Council Conclusion, Working Groups have been set up for consultation during the ongoing preparatory stage. There, members of the General Directorates Environment and Enterprise discuss relevant topics with representatives from authorities, industry, environmental and animal protection organisations. There is agreement that animal tests shall be reduced to a minimum. However it is still unclear how this goal can best be achieved. In this context, the designing of testing strategies will play a major role. It is explained, why fixed test catalogues should be replaced by flexible tiered testing strategies and how concrete waiving strategies can contribute to avoiding animal tests. Another important aspect is the EU-wide implementation of a clause on the avoidance of duplicate testing, which is already enforced in Germany and Austria. In these Member States, first parties have to provide data from previously performed animal tests to second parties. Finally, it is discussed that the application of new non-animal tests can be promoted, if the revised EU chemicals policy once again contains the legal framework for an EU-specific acceptance of new test methods. PMID:12096327

  3. Animal Models of Psychosis: Current State and Future Directions

    PubMed Central

    Forrest, Alexandra D.; Coto, Carlos A.; Siegel, Steven J.

    2014-01-01

    Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability. PMID:25215267

  4. Animal models of tuberculosis for vaccine development.

    PubMed

    Gupta, U D; Katoch, V M

    2009-01-01

    Animal models for testing different vaccine candidates have been developed since a long time for studying tuberculosis. Mice, guinea pigs and rabbits are animals most frequently used. Each model has its own merits for studying human tuberculosis, and none completely mimics the human disease. Different animal models are being used depending upon the availability of the space, trained manpower as well as other resources. Efforts should continue to develop a vaccine which can replace/outperform the presently available vaccine BCG. PMID:19287053

  5. Pain assessment in animal models of osteoarthritis.

    PubMed

    Piel, Margaret J; Kroin, Jeffrey S; van Wijnen, Andre J; Kc, Ranjan; Im, Hee-Jeong

    2014-03-10

    Assessment of pain in animal models of osteoarthritis is integral to interpretation of a model's utility in representing the clinical condition, and enabling accurate translational medicine. Here we describe behavioral pain assessments available for small and large experimental osteoarthritic pain animal models. PMID:24333346

  6. Exploring the Validity of Valproic Acid Animal Model of Autism

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Ji-woon; Kim, Ki Chan

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  7. Exploring the Validity of Valproic Acid Animal Model of Autism.

    PubMed

    Mabunga, Darine Froy N; Gonzales, Edson Luck T; Kim, Ji-Woon; Kim, Ki Chan; Shin, Chan Young

    2015-12-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  8. Small Animal In Vivo X-Ray Tomosynthesis: Anatomical Relevance of the Reconstructed Images.

    PubMed

    Barquero, H; Brasse, D

    2016-02-01

    Whole body X-ray micro-Digital Tomosynthesis (micro-DT) for small animal imaging is introduced in this work. Such a system allows to deal with geometrical constraints that do not allow to use a micro-CT system as well as to reduce the radiological dose compared to a micro-CT scan. Data was simulated using the Digimouse anatomical model of the mouse with the designed system. An algebraic reconstruction algorithm regularized by Total Variation norm (TV) minimization was used to reconstruct images. Parameters for the reconstruction were optimized and the algorithm performance was evaluated quantitatively. High contrast tissues were subsequently segmented by thresholding the image. Quantitative analysis of the segmented domains indicates that a relevant anatomical information can possibly be extracted from micro-DT images. Indeed the Dice's coefficient values are greater than 0.8 for the segmented High Contrast Tissues compared to the phantom, which indicates an important overlap between the domains. The volume of the segmented tissues is over-estimated for the bones and skin-with 1.313 and 1.113 ratios of the estimated over reference volumes, respectively-and under-estimated in the case of the lungs with a 0.762 ratio. The mean point to surface distance is inferior to the voxel size of 400 μm, for the three segmented tissues. These results are very encouraging and let us consider micro-DT as an alternative to micro-CT to deal with geometrical constraints. PMID:26302512

  9. The National Research Initiative Competitive Grants Program in animal reproduction: changes in priorities and scope relevant to United States animal agriculture.

    PubMed

    Mirando, M A

    2007-03-01

    The National Research Initiative (NRI) Competitive Grants Program is the USDA's major competitive grants program and is administered by the Cooperative State Research, Education, and Extension Service. The NRI was authorized by the US Congress in the 1990 Farm Bill at a funding level of $500 million; however, the maximal NRI appropriation was $181.17 million in fiscal year (FY) 2006. Across all programs, the NRI is mandated to use 40% of its funding to support mission-linked research. Since its inception in 1991, the NRI has funded competitive grants in the discipline of animal reproduction. Before 2004, the Animal Reproduction Program funded a broad range of projects encompassing almost every subdiscipline in reproductive biology of farm animals, including aquatic species important to the aquaculture industry and laboratory animals. During FY 2004, the NRI Animal Reproduction Program narrowed the focus of its funding priorities to 5 issue-based topics in an effort to make greater measurable improvements in a few high-impact areas over the next 10 years. Funding priorities were narrowed further in FY 2006 to 3 subdisciplines based, in part, on recommendations that emerged from a stakeholder workshop conducted by Cooperative State Research, Education, and Extension Service in August 2004. In FY 2003, Congress authorized expenditure of up to 20% of the funds appropriated to the NRI to support projects that integrate at least 2 of the 3 functions of research, education, and extension. In FY 2004, the Animal Reproduction Program included a funding priority for integrated projects focused primarily on infertility in dairy cattle. The program funded its first integrated project in FY 2005. During FY 2002, increased emphasis on justification for the use of model systems (e.g., laboratory animals and in vitro systems) was included in the NRI request for applications. In FY 2006, applications proposing to primarily utilize nonagricultural animal models were excluded from

  10. Animal models and brain circuits in drug addiction.

    PubMed

    Kalivas, Peter W; Peters, Jamie; Knackstedt, Lori

    2006-12-01

    Animal models in the field of addiction are considered to be among the best available models of neuropsychiatric disease. These models have undergone a number of refinements that allow deeper understanding of the circuitry involved in initiating drug seeking and relapse. Notably, the demonstrable involvement of classic corticostriatal habit circuitry and the engagement of prefrontal cortical circuits in extinction training may have relevance to the therapeutic modulation of habit circuitry and drug addiction in humans. PMID:17200461

  11. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  12. Experimental Animal Models in Periodontology: A Review

    PubMed Central

    Struillou, Xavier; Boutigny, Hervé; Soueidan, Assem; Layrolle, Pierre

    2010-01-01

    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and primates have been used for modeling human periodontal diseases and treatments. However, both the anatomy and physiopathology of animals are different from those of humans, making difficult the evaluation of new therapies. Experimental models have been developed in order to reproduce major periodontal diseases (gingivitis, periodontitis), their pathogenesis and to investigate new surgical techniques. The aim of this review is to define the most pertinent animal models for periodontal research depending on the hypothesis and expected results. PMID:20556202

  13. A systematic review of animal models for Staphylococcus aureus osteomyelitis

    PubMed Central

    Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L.

    2015-01-01

    Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed & Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorized by animal species and are further classified by the setting of the infection. Study methods are summarized and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting. PMID:24668594

  14. Animal models for the study of tendinopathy

    PubMed Central

    Warden, S J

    2007-01-01

    Tendinopathy is a common and significant clinical problem characterised by activity‐related pain, focal tendon tenderness and intratendinous imaging changes. Recent histopathological studies have indicated the underlying pathology to be one of tendinosis (degeneration) as opposed to tendinitis (inflammation). Relatively little is known about tendinosis and its pathogenesis. Contributing to this is an absence of validated animal models of the pathology. Animal models of tendinosis represent potential efficient and effective means of furthering our understanding of human tendinopathy and its underlying pathology. By selecting an appropriate species and introducing known risk factors for tendinopathy in humans, it is possible to develop tendon changes in animal models that are consistent with the human condition. This paper overviews the role of animal models in tendinopathy research by discussing the benefits and development of animal models of tendinosis, highlighting potential outcome measures that may be used in animal tendon research, and reviewing current animal models of tendinosis. It is hoped that with further development of animal models of tendinosis, new strategies for the prevention and treatment of tendinopathy in humans will be generated. PMID:17127722

  15. Animal Models in Studying Cerebral Arteriovenous Malformation

    PubMed Central

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong

    2015-01-01

    Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected. PMID:26649296

  16. Engineering large animal models of human disease.

    PubMed

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. PMID:26414877

  17. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  18. Sex differences in animal models of psychiatric disorders.

    PubMed

    Kokras, N; Dalla, C

    2014-10-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive-compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. PMID:24697577

  19. Crazy like a fox. Validity and ethics of animal models of human psychiatric disease.

    PubMed

    Rollin, Michael D H; Rollin, Bernard E

    2014-04-01

    Animal models of human disease play a central role in modern biomedical science. Developing animal models for human mental illness presents unique practical and philosophical challenges. In this article we argue that (1) existing animal models of psychiatric disease are not valid, (2) attempts to model syndromes are undermined by current nosology, (3) models of symptoms are rife with circular logic and anthropomorphism, (4) any model must make unjustified assumptions about subjective experience, and (5) any model deemed valid would be inherently unethical, for if an animal adequately models human subjective experience, then there is no morally relevant difference between that animal and a human. PMID:24534739

  20. Animal Models of Human Granulocyte Diseases

    PubMed Central

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  1. [Recent developments relevant to animal welfare for the optimization of distance immobilization].

    PubMed

    Wiesner, H

    1998-07-01

    Developments in the field of distance immobilization with regard to animal welfare are reported. In order to prevent trauma, the impact energy of the darts has to be adjusted species specifically to the quality of the epidermis, the subcutaneous tissue and the thickness of the coat. A momentum of 10 joule in Equidae, or 20 joule in Bovidae and Cervidae should not be exceeded in any case. The impact energy can be reduced to 50% by using rubber caps with the darts; it is therefore recommended to use them regularly. The use of a laser range finder allows the most precise and careful application. Dosage recommendations for the "Hellabrunner Mixture" (mortality rate 0.35%) and for Long Acting Neuroleptic (LAN) are given. It is referred to the relevant legal regulations. PMID:9710926

  2. OVERVIEW: USING MODE OF ACTION AND LIFE STAGE INFORMATION TO EVALUATE THE HUMAN RELEVANCE OF ANIMAL TOXICITY DATA.

    EPA Science Inventory

    A manuscript summarizes a workshop aimed at developing a framework to determine the relevancy of animal modes-of-action for extrapolation to humans. A complete mode of action human relevance analysis - as distinct from mode of action (MOA) analysis alone - depends on robust info...

  3. Implementing Relevance Feedback in the Bayesian Network Retrieval Model.

    ERIC Educational Resources Information Center

    de Campos, Luis M.; Fernandez-Luna, Juan M.; Huete, Juan F.

    2003-01-01

    Discussion of relevance feedback in information retrieval focuses on a proposal for the Bayesian Network Retrieval Model. Bases the proposal on the propagation of partial evidences in the Bayesian network, representing new information obtained from the user's relevance judgments to compute the posterior relevance probabilities of the documents…

  4. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  5. How animals move along? Exactly solvable model of superdiffusive spread resulting from animal's decision making.

    PubMed

    Tilles, Paulo F C; Petrovskii, Sergei V

    2016-07-01

    Patterns of individual animal movement have been a focus of considerable attention recently. Of particular interest is a question how different macroscopic properties of animal dispersal result from the stochastic processes occurring on the microscale of the individual behavior. In this paper, we perform a comprehensive analytical study of a model where the animal changes the movement velocity as a result of its behavioral response to environmental stochasticity. The stochasticity is assumed to manifest itself through certain signals, and the animal modifies its velocity as a response to the signals. We consider two different cases, i.e. where the change in the velocity is or is not correlated to its current value. We show that in both cases the early, transient stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also calculate analytically the dispersal kernel of the movement and show that, whilst it converge to a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage, i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology, our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in the movement data may be a feature of the transitional dynamics rather than an inherent property of the animal movement. PMID:26650504

  6. Progress With Nonhuman Animal Models of Addiction.

    PubMed

    Crabbe, John C

    2016-09-01

    Nonhuman animals have been major contributors to the science of the genetics of addiction. Given the explosion of interest in genetics, it is fair to ask, are we making reasonable progress toward our goals with animal models? I will argue that our goals are changing and that overall progress has been steady and seems likely to continue apace. Genetics tools have developed almost incredibly rapidly, enabling both more reductionist and more synthetic or integrative approaches. I believe that these approaches to making progress have been unbalanced in biomedical science, favoring reductionism, particularly in animal genetics. I argue that substantial, novel progress is also likely to come in the other direction, toward synthesis and abstraction. Another area in which future progress with genetic animal models seems poised to contribute more is the reconciliation of human and animal phenotypes, or consilience. The inherent power of the genetic animal models could be more profitably exploited. In the end, animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences. The rules of the genetics game are changing so fast that it is hard to remember how comparatively little we knew even a generation ago. Rather than worry about whether we have been wasting time and resources asking the questions we have been, we should look to the future and see if we can come up with some new ones. The valuable findings from the past will endure, and the sidetracks will be forgotten. PMID:27588527

  7. Animal models of neuropsychiatry revisited: a personal tribute to Teitelbaum.

    PubMed

    Robbins, T W

    2012-06-01

    Several themes and principles of behavioural neuroscience are evident in the work of Phillip Teitelbaum. He has emphasised the importance of studying behaviour in simple preparations, of re-synthesising complex behavioural patterns from these elemental 'building-blocks' and understanding their often hierarchical organisation. He also more recently has become interested in the possible power of behavioural endophenotypes. His work has resulted in a new emphasis on animal neuropsychology which is highly relevant to human psychopathology. This article illustrates these themes from examples taken from animal models of sensory neglect, drug addiction and cognitive syndromes associated with schizophrenia and other neuropsychiatric disorders. PMID:22440232

  8. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  9. Animal models of monogenic migraine.

    PubMed

    Chen, Shih-Pin; Tolner, Else A; Eikermann-Haerter, Katharina

    2016-06-01

    Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine. PMID:27154999

  10. Animal models of acute lung injury

    PubMed Central

    Matute-Bello, Gustavo; Frevert, Charles W.; Martin, Thomas R.

    2008-01-01

    Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury. PMID:18621912

  11. Sex differences in animal models of psychiatric disorders

    PubMed Central

    Kokras, N; Dalla, C

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive–compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24697577

  12. Current animal models of bladder cancer: Awareness of translatability (Review)

    PubMed Central

    DING, JIE; XU, DING; PAN, CHUNWU; YE, MIN; KANG, JIAN; BAI, QIANG; QI, JUN

    2014-01-01

    Experimental animal models are crucial in the study of biological behavior and pathological development of cancer, and evaluation of the efficacy of novel therapeutic or preventive agents. A variety of animal models that recapitulate human urothelial cell carcinoma have thus far been established and described, while models generated by novel techniques are emerging. At present a number of reviews on animal models of bladder cancer comprise the introduction of one type of method, as opposed to commenting on and comparing all classifications, with the merits of a certain method being explicit but the shortcomings not fully clarified. Thus the aim of the present study was to provide a summary of the currently available animal models of bladder cancer including transplantable (which could be divided into xenogeneic or syngeneic, heterotopic or orthotopic), carcinogen-induced and genetically engineered models in order to introduce their materials and methods and compare their merits as well as focus on the weaknesses, difficulties in operation, associated problems and translational potential of the respective models. Findings of these models would provide information for authors and clinicians to select an appropriate model or to judge relevant preclinical study findings. Pertinent detection methods are therefore briefly introduced and compared. PMID:25120584

  13. Animal Eye Models for Uveal Melanoma

    PubMed Central

    Cao, Jinfeng; Jager, Martine J.

    2015-01-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  14. Animal Eye Models for Uveal Melanoma.

    PubMed

    Cao, Jinfeng; Jager, Martine J

    2015-04-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  15. Animal models of human response to dioxins.

    PubMed Central

    Grassman, J A; Masten, S A; Walker, N J; Lucier, G W

    1998-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent member of a class of chlorinated hydrocarbons that interact with the aryl hydrocarbon receptor (AhR). TCDD and dioxinlike compounds are environmentally and biologically stable and as a result, human exposure is chronic and widespread. Studies of highly exposed human populations show that dioxins produce developmental effects, chloracne, and an increase in all cancers and suggest that they may also alter immune and endocrine function. In contrast, the health effects of low-level environmental exposure have not been established. Experimental animal models can enhance the understanding of the effects of low-level dioxin exposure, particularly when there is evidence that humans respond similarly to the animal models. Although there are species differences in pharmacokinetics, experimental animal models demonstrate AhR-dependent health effects that are similar to those found in exposed human populations. Comparisons of biochemical changes show that humans and animal models have similar degrees of sensitivity to dioxin-induced effects. The information gained from animal models is important for developing mechanistic models of dioxin toxicity and critical for assessing the risks to human populations under different circumstances of exposure. PMID:9599728

  16. Engel's biopsychosocial model is still relevant today.

    PubMed

    Adler, Rolf H

    2009-12-01

    In 1977, Engel published the seminal paper, "The Need for a New Medical Model: A Challenge for Biomedicine" [Science 196 (1977) 129-136]. He featured a biopsychosocial (BPS) model based on systems theory and on the hierarchical organization of organisms. In this essay, the model is extended by the introduction of semiotics and constructivism. Semiotics provides the language which allows to describe the relationships between the individual and his environment. Constructivism explains how an organism perceives his environment. The impact of the BPS model on research, medical education, and application in the practice of medicine is discussed. PMID:19913665

  17. Animal Models for Adipose Tissue Engineering

    PubMed Central

    Uthamanthil, Rajesh; Beahm, Elisabeth; Frye, Cindy

    2008-01-01

    Abstract There is a critical need for adequate reconstruction of soft tissue defects resulting from tumor resection, trauma, and congenital abnormalities. To be sure, adipose tissue engineering strategies offer promising solutions. However, before clinical translation can occur, efficacy must be proven in animal studies. The aim of this review is to provide an overview of animal models currently employed for adipose tissue engineering. PMID:18544014

  18. Animal models of bronchopulmonary dysplasia. The preterm baboon models

    PubMed Central

    Coalson, Jacqueline J.

    2014-01-01

    Much of the progress in improved neonatal care, particularly management of underdeveloped preterm lungs, has been aided by investigations of multiple animal models, including the neonatal baboon (Papio species). In this article we highlight how the preterm baboon model at both 140 and 125 days gestation (term equivalent 185 days) has advanced our understanding and management of the immature human infant with neonatal lung disease. Not only is the 125-day baboon model extremely relevant to the condition of bronchopulmonary dysplasia but there are also critical neurodevelopmental and other end-organ pathological features associated with this model not fully discussed in this limited forum. We also describe efforts to incorporate perinatal infection into these preterm models, both fetal and neonatal, and particularly associated with Ureaplasma/Mycoplasma organisms. Efforts to rekindle the preterm primate model for future evaluations of therapies such as stem cell replacement, early lung recruitment interventions coupled with noninvasive surfactant and high-frequency nasal ventilation, and surfactant therapy coupled with antioxidant or anti-inflammatory medications, to name a few, should be undertaken. PMID:25281639

  19. Animal models of bronchopulmonary dysplasia. The preterm baboon models.

    PubMed

    Yoder, Bradley A; Coalson, Jacqueline J

    2014-12-15

    Much of the progress in improved neonatal care, particularly management of underdeveloped preterm lungs, has been aided by investigations of multiple animal models, including the neonatal baboon (Papio species). In this article we highlight how the preterm baboon model at both 140 and 125 days gestation (term equivalent 185 days) has advanced our understanding and management of the immature human infant with neonatal lung disease. Not only is the 125-day baboon model extremely relevant to the condition of bronchopulmonary dysplasia but there are also critical neurodevelopmental and other end-organ pathological features associated with this model not fully discussed in this limited forum. We also describe efforts to incorporate perinatal infection into these preterm models, both fetal and neonatal, and particularly associated with Ureaplasma/Mycoplasma organisms. Efforts to rekindle the preterm primate model for future evaluations of therapies such as stem cell replacement, early lung recruitment interventions coupled with noninvasive surfactant and high-frequency nasal ventilation, and surfactant therapy coupled with antioxidant or anti-inflammatory medications, to name a few, should be undertaken. PMID:25281639

  20. Current status: Animal models of nausea

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The advantages, and possible benefits of a valid, reliable animal model for nausea are discussed, and difficulties inherent to the development of a model are considered. A principle problem for developing models arises because nausea is a subjective sensation that can be identified only in humans. Several putative measures of nausea in animals are considered, with more detailed consideration directed to variation in cardiac rate, levels of vasopressin, and conditioned taste aversion. Demonstration that putative measures are associated with reported nausea in humans is proposed as a requirement for validating measures to be used in animal models. The necessity for a 'real-time' measure of nausea is proposed as an important factor for future research; and the need for improved understanding of the neuroanatomy underlying the emetic syndrome is discussed.

  1. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  2. Optogenetics in animal model of alcohol addiction

    NASA Astrophysics Data System (ADS)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  3. Animal models of human granulocyte diseases.

    PubMed

    Schäffer, Alejandro A; Klein, Christoph

    2013-02-01

    In vivo animal models have proven very useful to the understanding of basic biologic pathways of the immune system, a prerequisite for the development of innovate therapies. This article addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish, and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  4. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia

    PubMed Central

    Markou, Athina; Salamone, John D.; Bussey, Timothy; Mar, Adam; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-01-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu). A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. PMID:23994273

  5. Review of Nonprimate, Large Animal Models for Osteoporosis Research

    PubMed Central

    Reinwald, Susan; Burr, David

    2008-01-01

    Large animal models are required for preclinical prevention and intervention studies related to osteoporosis research. The challenging aspect of this requirement is that no single animal model exactly mimics the progression of this human-specific chronic condition. There are pros and cons associated with the skeletal, hormonal, and metabolic conditions of each species that influence their relevance and applicability to human physiology. Of all larger mammalian species, nonhuman primates (NHPs) are preeminent in terms of replicating important aspects of human physiology. However, NHPs are very expensive, putting them out of reach of the vast majority of researchers. Practical, cost-effective alternatives to NHPs are sought after among ungulate (porcine, caprine, and ovine) and canine species that are the focus of this review. The overriding caveat to using large lower-order species is to take the time in advance to understand and appreciate the limitations and strengths of each animal model. Under these circumstances, experiments can be strategically designed to optimize the potential of an animal to develop the cardinal features of postmenopausal bone loss and/or yield information of relevance to treatment. PMID:18505374

  6. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  7. Animal models of gastrointestinal inflammation and cancer.

    PubMed

    Lu, L; Chan, Ruby L Y; Luo, X M; Wu, William K K; Shin, Vivian Y; Cho, C H

    2014-07-11

    Inflammation and cancer are the two major disorders in the gastrointestinal tract. They are causally related in their pathogenesis. It is important to study animal models' causal relationship and, in particular, to discover new therapeutic agents for such diseases. There are several criteria for these models in order to make them useful in better understanding the etiology and treatment of the said diseases in humans. In this regard, animal models should be similar as possible to human diseases and also be easy to produce and reproducible and also economic to allow a continuous replication in different laboratories. In this review, we summarize the various animal models for inflammatory and cancerous disorders in the upper and lower gastrointestinal tract. Experimental approaches are as simple as by giving a single oral dose of alcohol or other noxious agents or by injections of multiple dosages of ulcer inducing agents or by parenteral administration or in drinking water of carcinogens or by modifying the genetic makeups of animals to produce relatively long-term pathological changes in particular organs. With these methods they could induce consistent inflammatory responses or tumorigenesis in the gastrointestinal mucosa. These animal models are widely used in laboratories in understanding the pathogenesis as well as the mechanisms of action for therapeutic agents in the treatment of gastrointestinal inflammation and cancer. PMID:24825611

  8. Animal Models for HIV Cure Research

    PubMed Central

    Policicchio, Benjamin B.; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  9. Animal Models for HIV Cure Research.

    PubMed

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  10. Large animal models for stem cell therapy

    PubMed Central

    2013-01-01

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  11. Animal models for motor neuron disease.

    PubMed

    Green, S L; Tolwani, R J

    1999-10-01

    Motor neuron disease is a general term applied to a broad class of neurodegenerative diseases that are characterized by fatally progressive muscular weakness, atrophy, and paralysis attributable to loss of motor neurons. At present, there is no cure for most motor neuron diseases, including amyotrophic lateral sclerosis (ALS), the most common human motor neuron disease--the cause of which remains largely unknown. Animal models of motor neuron disease (MND) have significantly contributed to the remarkable recent progress in understanding the cause, genetic factors, and pathologic mechanisms proposed for this class of human neurodegenerative disorders. Largely driven by ALS research, animal models of MND have proven their usefulness in elucidating potential causes and specific pathogenic mechanisms, and have helped to advance promising new treatments from "benchside to bedside." This review summarizes important features of selected established animal models of MND: genetically engineered mice and inherited or spontaneously occurring MND in the murine, canine, and equine species. PMID:10551448

  12. Diabetic cardiac autonomic neuropathy: insights from animal models.

    PubMed

    Stables, Catherine L; Glasser, Rebecca L; Feldman, Eva L

    2013-10-01

    Cardiac autonomic neuropathy (CAN) is a relatively common and often devastating complication of diabetes. The major clinical signs are tachycardia, exercise intolerance, and orthostatic hypotension, but the most severe aspects of this complication are high rates of cardiac events and mortality. One of the earliest manifestations of CAN is reduced heart rate variability, and detection of this, along with abnormal results in postural blood pressure testing and/or the Valsalva maneuver, are central to diagnosis of the disease. The treatment options for CAN, beyond glycemic control, are extremely limited and lack evidence of efficacy. The underlying molecular mechanisms are also poorly understood. Thus, CAN is associated with a poor prognosis and there is a compelling need for research to understand, prevent, and reverse CAN. In this review of the literature we examine the use and usefulness of animal models of CAN in diabetes. Compared to other diabetic complications, the number of animal studies of CAN is very low. The published studies range across a variety of species, methods of inducing diabetes, and timescales examined, leading to high variability in study outcomes. The lack of well-characterized animal models makes it difficult to judge the relevance of these models to the human disease. One major advantage of animal studies is the ability to probe underlying molecular mechanisms, and the limited numbers of mechanistic studies conducted to date are outlined. Thus, while animal models of CAN in diabetes are crucial to better understanding and development of therapies, they are currently under-used. PMID:23562143

  13. CORPUS LUTEUM: ANIMAL MODELS OF POSSIBLE RELEVANCE TO REPRODUCTIVE TOXICOLOGY

    EPA Science Inventory

    The presence of a normally functioning corpus luteum is an essential requirement for the maintenance of gestation in mammals. he chief function of the corpus luteum in all species is to synthesize the steroid hormone progesterone that is necessary for implantation and for the sub...

  14. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  15. Animal models of cavitation in pulmonary tuberculosis.

    PubMed

    Helke, Kris L; Mankowski, Joseph L; Manabe, Yukari C

    2006-09-01

    Transmission of tuberculosis occurs with the highest frequency from patients with extensive, cavitary, pulmonary disease and positive sputum smear microscopy. In animal models of tuberculosis, the development of caseous necrosis is an important prerequisite for the formation of cavities although the immunological triggers for liquefaction are unknown. We review the relative merits and the information gleaned from the available animal models of pulmonary cavitation. Understanding the host-pathogen interaction important to the formation of cavities may lead to new strategies to prevent cavitation and thereby, block transmission. PMID:16359922

  16. Animal models of gene-nutrient interactions.

    PubMed

    Reed, Danielle R

    2008-12-01

    Food intake of humans is governed by the food's nutritional value and pleasing taste, but also by other factors such as food cost and availability, cultural imperatives, and social status. The biological determinants of human food intake are not easily parsed from these other factors, making them hard to study against the whirligig aspects of human life in a modern age. The study of animals provides a useful alternative. Humans have a history of studying animal food intake, for agricultural reasons (e.g., pigs and cows), and for personal reasons (e.g., dogs and cats), and these practical concerns have been joined with the appreciation that other models can teach us the principles of behavior, genetics, and nutrition. Thus there is a steady use of the traditional animal models in this type of research, as well as growth in the use of other systems such as worms and flies. Rats and mice occupy a special niche as animal models for two reasons; first, they share with humans a love of the same types of food, and second, they are the target of a number of well-developed genetic tools. The available genetic tools that make mice a popular model include a well-annotated genome (Mouse Build 37), profiles of RNA expression from many tissues, a diverse panel of inbred strains, and the ability to manipulate genes in the whole animal, including removing a gene only in specific tissues (e.g., Cre-lox system). Mice have been harnessed to find genotypes that contribute to sweet-liking, and other studies are underway to understand how genetic variation might at least partially explain other puzzles of human appetites. Animal models provide a way to study the genetic determinants of food selection with experimental rigor and therefore complement human genetics studies. PMID:19037208

  17. Are animal models predictive for humans?

    PubMed Central

    2009-01-01

    It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically analyzes animal models using scientific tools they fall far short of being able to predict human responses. This is not surprising considering what we have learned from fields such evolutionary and developmental biology, gene regulation and expression, epigenetics, complexity theory, and comparative genomics. PMID:19146696

  18. [Diabetes mellitus and its animal models].

    PubMed

    Duhault, J; Koenig-Berard, E

    1997-01-01

    This review presents the major animal models usually used for the study of the pathological processes related to insulin-dependent diabetes mellitus (IDDM), non-insulin-dependent diabetes mellitus (NIDDM) and to the main diabetic complications. These models can be observed spontaneously or can be obtained by selective cross-breeding or toxic exposure (chemical or viral), as well as genetically induced. They reproduce some aspects of the human pathology without combining them all in a single model. Consequently, a pertinent pharmacological approach may compare the results obtained with several models. The examination of the recent results obtained with transgenesis does not allow these animal models to replace more classical ones but they may constitute a future challenge for gene therapy despite the multifactorial aspect of diabetic disease. PMID:9501560

  19. Animal models for photodynamic therapy (PDT)

    PubMed Central

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  20. An animated model of reticulorumen motility.

    PubMed

    Gookin, Jody L; Foster, Derek M; Harvey, Alice M; McWhorter, Dan

    2009-01-01

    Understanding reticulorumen motility is important to the assessment of ruminant health and optimal production, and in the recognition, diagnosis, and treatment of disease. Accordingly, the teaching of reticulorumen motility is a staple of all veterinary curricula. This teaching has historically been based on written descriptions, line drawings, or pressure tracings obtained during contraction sequences. We developed an animated model of reticulorumen motility and hypothesized that veterinary students would prefer use of the model over traditional instructional methods. First-year veterinary students were randomly allocated to one of two online learning exercises: with the animated model (Group A) or with text and line drawings (Group B) depicting reticulorumen motility. Learning was assessed with a multiple-choice quiz and feedback on the learning alternatives was obtained by survey. Seventy-four students participated in the study, including 38/42 in Group A and 36/36 in Group B. Sixty-four out of 72 students (89%) responded that they would prefer use of the animated model if only one of the two learning methods was available. A majority of students agreed or strongly agreed that the animated model was easy to understand and improved their knowledge and appreciation of the importance of reticulorumen motility, and would recommend the model to other veterinary students. Interestingly, students in Group B achieved higher scores on examination than students in Group A. This could be speculatively attributed to the inclusion of an itemized list of contraction sequences in the text provided to Group B and failure of Group A students to read the text associated with the animations. PMID:20054084

  1. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  2. A clinically relevant canine lung cancer model

    SciTech Connect

    Benfield, J.R.; Shors, E.C.; Hammond, W.G.; Paladugu, R.R.; Cohen, A.H.; Jensen, T.; Fu, P.C.; Pak, H.Y.; Teplitz, R.L.

    1981-12-01

    Research on early human lung cancer is difficult; we have sought a canine correlate. Regimens included endobronchial submucosal injections and topical focal applications of benzo(a)pyrene, nitrosomethylurea, dimethylbenzanthracene, and methylcholanthrene, singly or in combinations. Sustained-release discs were placed into lung parenchyma or sutured into major bronchi. Tracheal segments were isolated as cervical pedicle grafts. Gross and histological evolution was reproducible. Columnar and basal hyperplasia and squamous metaplasia were early changes. Atypia occurred within 6 weeks and was found in all dogs within 16 to 18 weeks. Invasive cancers occurred within 8 to 65 months. No tracheal graft developed cancer. Of 15 dogs with parenchymal sustained-release implants, 1 to date has developed cancer in 8 months. Four endobronchial regimens have produced 16 cancers in 56 lungs at risk for 18 to 65 months. No cancers developed in 23 lungs at risk from eight other regimens. Of 10 dogs at risk for unilateral endobronchial cancer, 5 have had cancer. Of 23 dogs with both lungs at risk, 9 developed cancer. We have shown focal carcinogenesis with well-defined pathogenesis and an extended preneoplastic period at predictable sites in a lung cancer model.

  3. Animal models for genetic neuromuscular diseases.

    PubMed

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  4. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. PMID:25201221

  5. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  6. Traumatic Brain Injury Models in Animals.

    PubMed

    Rostami, Elham

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of death in young adults in industrialized nations and in the developing world the WHO considers TBI a silent epidemic caused by an increasing number of traffic accidents. Despite the major improvement of TBI outcome in the acute setting in the past 20 years, the assessment, therapeutic interventions, and prevention of long-term complications remain a challenge. In order to get a deeper insight into the pathology of TBI and advancement of medical understanding and clinical progress experimental animal models are an essential requirement. This chapter provides an overview of most commonly used experimental animal TBI models and the pathobiological findings based on current data. In addition, limitations and advantages of each TBI model are mentioned. This will hopefully give an insight into the possibilities of each model and be of value in choosing one when designing a study. PMID:27604712

  7. Nonmurine animal models of food allergy.

    PubMed Central

    Helm, Ricki M; Ermel, Richard W; Frick, Oscar L

    2003-01-01

    Food allergy can present as immediate hypersensitivity [manifestations mediated by immunoglobulin (Ig)E], delayed-type hypersensitivity (reactions associated with specific T lymphocytes), and inflammatory reactions caused by immune complexes. For reasons of ethics and efficacy, investigations in humans to determine sensitization and allergic responses of IgE production to innocuous food proteins are not feasible. Therefore, animal models are used a) to bypass the innate tendency to develop tolerance to food proteins and induce specific IgE antibody of sufficient avidity/affinity to cause sensitization and upon reexposure to induce an allergic response, b) to predict allergenicity of novel proteins using characteristics of known food allergens, and c) to treat food allergy by using immunotherapeutic strategies to alleviate life-threatening reactions. The predominant hypothesis for IgE-mediated food allergy is that there is an adverse reaction to exogenous food proteins or food protein fragments, which escape lumen hydrolysis, and in a polarized helper T cell subset 2 (Th2) environment, immunoglobulin class switching to allergen-specific IgE is generated in the immune system of the gastrointestinal-associated lymphoid tissues. Traditionally, the immunologic characterization and toxicologic studies of small laboratory animals have provided the basis for development of animal models of food allergy; however, the natural allergic response in large animals, which closely mimic allergic diseases in humans, can also be useful as models for investigations involving food allergy. PMID:12573913

  8. Cardiovascular imaging: what have we learned from animal models?

    PubMed Central

    Santos, Arnoldo; Fernández-Friera, Leticia; Villalba, María; López-Melgar, Beatriz; España, Samuel; Mateo, Jesús; Mota, Ruben A.; Jiménez-Borreguero, Jesús; Ruiz-Cabello, Jesús

    2015-01-01

    Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models. PMID:26539113

  9. Risk of parasite transmission influences perceived vulnerability to disease and perceived danger of disease-relevant animals.

    PubMed

    Prokop, Pavol; Usak, Muhammet; Fancovicová, Jana

    2010-09-01

    Adaptationist view proposes that emotions were shaped by natural selection and their primary function is to protect humans against predators and/or disease threat. This study examined cross-cultural and inter-personal differences in behavioural immune system measured by disgust, fear and perceived danger in participants from high (Turkey) and low (Slovakia) pathogen prevalence areas. We found that behavioural immune system in Turkish participants was activated more than those of Slovakian participants when exposed to photographs depicting disease-relevant cues, but not when exposed to disease-irrelevant cues. However, participants from Slovakia, where human to human disease transmission is expected to be more prevalent than in Turkey, showed lower aversion in Germ Aversion subscale supporting hypersensitiveness of the behavioural immune system. Having animals at home was less frequent both in Turkey and in participants who perceived higher danger about disease relevant animals. Participants more vulnerable to diseases reported higher incidence of illness last year and considered perceived disease-relevant animals more dangerous than others. Females showed greater fear, disgust and danger about disease-relevant animals than males. Our results further support the finding that cultural and inter-personal differences in human personality are influenced by parasite threat. PMID:20558257

  10. Animal Stroke Model: Ischemia-Reperfusion and Intracerebral Hemorrhage.

    PubMed

    Ren, Changhong; Sy, Christopher; Gao, Jinhuan; Ding, Yuchuan; Ji, Xunming

    2016-01-01

    Stroke is a major health issue worldwide-one with serious financial and public health implications. As a result, ongoing clinical research on novel and improved stroke therapies is not only pertinent but also paramount. Due to the complexity of a stroke-like event and its many sequelae, devising usable methods and experimental models are necessary to study and better understand the pathophysiological processes that ensue. As it stands, animal models that simulate stroke-like events have proven to be the most logical and effective options in regards to experimental studies. A number of animal stroke models exist and have been demonstrated in previous studies on ischemic as well as hemorrhagic stroke. Considering the efficiency and reproducibility of animal models, here, we introduce an ischemic stroke model induced by middle cerebral artery occlusion (MCAO) and an intracerebral hemorrhagic stroke model induced by collagenase injection. The models outlined here have been proven to demonstrate the clinical relevance desired for use in continued research on stroke pathophysiology and the study of future therapeutic options. PMID:27604729

  11. Fantastic animals as an experimental model to teach animal adaptation

    PubMed Central

    Guidetti, Roberto; Baraldi, Laura; Calzolai, Caterina; Pini, Lorenza; Veronesi, Paola; Pederzoli, Aurora

    2007-01-01

    Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy). Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities. PMID:17767729

  12. Animal models of HIV peripheral neuropathy

    PubMed Central

    Burdo, Tricia H; Miller, Andrew D

    2014-01-01

    The use of animal models in the study of HIV and AIDS has advanced our understanding of the underlying pathophysiologic mechanisms of infection. Of the multitude of HIV disease manifestations, peripheral neuropathy remains one of the most common long-term side effects. Several of the most important causes of peripheral neuropathy in AIDS patients include direct association with HIV infection with or without antiretroviral medication and infection with opportunistic agents. Because the pathogeneses of these diseases are difficult to study in human patients, animal models have allowed for significant advancement in the understanding of the role of viral infection and the immune system in disease genesis. This review focuses on rodent, rabbit, feline and rhesus models used to study HIV-associated peripheral neuropathies, focusing specifically on sensory neuropathy and antiretroviral-associated neuropathies. PMID:25214880

  13. Pathogenesis of Epilepsy: Challenges in Animal Models

    PubMed Central

    Hui Yin, Yow; Ahmad, Nurulumi; Makmor-Bakry, Mohd

    2013-01-01

    Epilepsy is one of the most common chronic disorders affecting individuals of all ages. A greater understanding of pathogenesis in epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Therefore, several investigations have embarked on advancing knowledge of the mechanism underlying epileptogenesis, understanding in mechanism of pharmacoresistance and discovering antiepileptogenic or disease-modifying therapy. Animal models play a crucial and significant role in providing additional insight into mechanism of epileptogenesis. With the help of these models, epileptogenesis process has been demonstrated to be involved in various molecular and biological pathways or processes. Hence, this article will discuss the known and postulated mechanisms of epileptogenesis and challenges in using the animal models. PMID:24494063

  14. Animal models of antimuscle specific kinase myasthenia

    PubMed Central

    Richman, David P.; Nishi, Kayoko; Ferns, Michael J.; Schnier, Joachim; Pytel, Peter; Maselli, Ricardo A.; Agius, Mark A.

    2014-01-01

    Antimuscle specific kinase (anti-MuSK) myasthenia (AMM) differs from antiacetylcholine receptor myasthenia gravis in exhibiting more focal muscle involvement (neck, shoulder, facial, and bulbar muscles) with wasting of the involved, primarily axial, muscles. AMM is not associated with thymic hyperplasia and responds poorly to anticholinesterase treatment. Animal models of AMM have been induced in rabbits, mice, and rats by immunization with purified xenogeneic MuSK ectodomain, and by passive transfer of large quantities of purified serum IgG from AMM patients into mice. The models have confirmed the pathogenic role of the MuSK antibodies in AMM and have demonstrated the involvement of both the presynaptic and postsynaptic components of the neuromuscular junction. The observations in this human disease and its animal models demonstrate the role of MuSK not only in the formation of this synapse but also in its maintenance. PMID:23252909

  15. Towards an animal model of food addiction.

    PubMed

    de Jong, Johannes W; Vanderschuren, Louk J M J; Adan, Roger A H

    2012-01-01

    The dramatically increasing prevalence of obesity, associated with potentially life-threatening health problems, including cardiovascular diseases and type II diabetes, poses an enormous public health problem. It has been proposed that the obesity epidemic can be explained by the concept of 'food addiction'. In this review we focus on possible similarities between binge eating disorder (BED), which is highly prevalent in the obese population, and drug addiction. Indeed, both behavioral and neural similarities between addiction and BED have been demonstrated. Behavioral similarities are reflected in the overlap in DSM-IV criteria for drug addiction with the (suggested) criteria for BED and by food addiction-like behavior in animals after prolonged intermittent access to palatable food. Neural similarities include the overlap in brain regions involved in food and drug craving. Decreased dopamine D2 receptor availability in the striatum has been found in animal models of binge eating, after cocaine self-administration in animals as well as in drug addiction and obesity in humans. To further explore the neurobiological basis of food addiction, it is essential to have an animal model to test the addictive potential of palatable food. A recently developed animal model for drug addiction involves three behavioral characteristics that are based on the DSM-IV criteria: i) extremely high motivation to obtain the drug, ii) difficulty in limiting drug seeking even in periods of explicit non-availability, iii) continuation of drug-seeking despite negative consequences. Indeed, it has been shown that a subgroup of rats, after prolonged cocaine self-administration, scores positive on these three criteria. If food possesses addictive properties, then food-addicted rats should also meet these criteria while searching for and consuming food. In this review we discuss evidence from literature regarding food addiction-like behavior. We also suggest future experiments that could

  16. Principles for developing animal models of military PTSD

    PubMed Central

    Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics) in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely) in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies. PMID:25206946

  17. Animal Models of Depression: Molecular Perspectives

    PubMed Central

    Krishnan, Vaishnav; Nestler, Eric J.

    2012-01-01

    Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression. PMID:21225412

  18. A Compositional Relevance Model for Adaptive Information Retrieval

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.

  19. Animal models of epilepsy: use and limitations

    PubMed Central

    Kandratavicius, Ludmyla; Balista, Priscila Alves; Lopes-Aguiar, Cleiton; Ruggiero, Rafael Naime; Umeoka, Eduardo Henrique; Garcia-Cairasco, Norberto; Bueno-Junior, Lezio Soares; Leite, Joao Pereira

    2014-01-01

    Epilepsy is a chronic neurological condition characterized by recurrent seizures that affects millions of people worldwide. Comprehension of the complex mechanisms underlying epileptogenesis and seizure generation in temporal lobe epilepsy and other forms of epilepsy cannot be fully acquired in clinical studies with humans. As a result, the use of appropriate animal models is essential. Some of these models replicate the natural history of symptomatic focal epilepsy with an initial epileptogenic insult, which is followed by an apparent latent period and by a subsequent period of chronic spontaneous seizures. Seizures are a combination of electrical and behavioral events that are able to induce chemical, molecular, and anatomic alterations. In this review, we summarize the most frequently used models of chronic epilepsy and models of acute seizures induced by chemoconvulsants, traumatic brain injury, and electrical or sound stimuli. Genetic models of absence seizures and models of seizures and status epilepticus in the immature brain were also examined. Major uses and limitations were highlighted, and neuropathological, behavioral, and neurophysiological similarities and differences between the model and the human equivalent were considered. The quest for seizure mechanisms can provide insights into overall brain functions and consciousness, and animal models of epilepsy will continue to promote the progress of both epilepsy and neurophysiology research. PMID:25228809

  20. Animal Models for Medical Countermeasures to Radiation Exposure

    PubMed Central

    Williams, Jacqueline P.; Brown, Stephen L.; Georges, George E.; Hauer-Jensen, Martin; Hill, Richard P.; Huser, Amy K.; Kirsch, David G.; MacVittie, Thomas J.; Mason, Kathy A.; Medhora, Meetha M.; Moulder, John E.; Okunieff, Paul; Otterson, Mary F.; Robbins, Michael E.; Smathers, James B.; McBride, William H.

    2011-01-01

    Since September 11, 2001, there has been the recognition of a plausible threat from acts of terrorism, including radiological or nuclear attacks. A network of Centers for Medical Countermeasures against Radiation (CMCRs) has been established across the U.S.; one of the missions of this network is to identify and develop mitigating agents that can be used to treat the civilian population after a radiological event. The development of such agents requires comparison of data from many sources and accumulation of information consistent with the “Animal Rule” from the Food and Drug Administration (FDA). Given the necessity for a consensus on appropriate animal model use across the network to allow for comparative studies to be performed across institutions, and to identify pivotal studies and facilitate FDA approval, in early 2008, investigators from each of the CMCRs organized and met for an Animal Models Workshop. Working groups deliberated and discussed the wide range of animal models available for assessing agent efficacy in a number of relevant tissues and organs, including the immune and hematopoietic systems, gastrointestinal tract, lung, kidney and skin. Discussions covered the most appropriate species and strains available as well as other factors that may affect differential findings between groups and institutions. This report provides the workshop findings. PMID:20334528

  1. Methicillin-Resistant Staphylococcus aureus Associated with Animals and Its Relevance to Human Health

    PubMed Central

    Pantosti, Annalisa

    2012-01-01

    Staphylococcus aureus is a typical human pathogen. Some animal S. aureus lineages have derived from human strains following profound genetic adaptation determining a change in host specificity. Due to the close relationship of animals with the environmental microbiome and resistome, animal staphylococcal strains also represent a source of resistance determinants. Methicillin-resistant S. aureus (MRSA) emerged 50 years ago as a nosocomial pathogen but in the last decade it has also become a frequent cause of infections in the community. The recent finding that MRSA frequently colonizes animals, especially livestock, has been a reason for concern, as it has revealed an expanded reservoir of MRSA. While MRSA strains recovered from companion animals are generally similar to human nosocomial MRSA, MRSA strains recovered from food animals appear to be specific animal-adapted clones. Since 2005, MRSA belonging to ST398 was recognized as a colonizer of pigs and human subjects professionally exposed to pig farming. The “pig” MRSA was also found to colonize other species of farmed animals, including horses, cattle, and poultry and was therefore designated livestock-associated (LA)-MRSA. LA-MRSA ST398 can cause infections in humans in contact with animals, and can infect hospitalized people, although at the moment this occurrence is relatively rare. Other animal-adapted MRSA clones have been detected in livestock, such as ST1 and ST9. Recently, ST130 MRSA isolated from bovine mastitis has been found to carry a novel mecA gene that eludes detection by conventional PCR tests. Similar ST130 strains have been isolated from human infections in UK, Denmark, and Germany at low frequency. It is plausible that the increased attention to animal MRSA will reveal other strains with peculiar characteristics that can pose a risk to human health. PMID:22509176

  2. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    PubMed

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models. PMID:26660708

  3. Modeling interdependent animal movement in continuous time.

    PubMed

    Niu, Mu; Blackwell, Paul G; Skarin, Anna

    2016-06-01

    This article presents a new approach to modeling group animal movement in continuous time. The movement of a group of animals is modeled as a multivariate Ornstein Uhlenbeck diffusion process in a high-dimensional space. Each individual of the group is attracted to a leading point which is generally unobserved, and the movement of the leading point is also an Ornstein Uhlenbeck process attracted to an unknown attractor. The Ornstein Uhlenbeck bridge is applied to reconstruct the location of the leading point. All movement parameters are estimated using Markov chain Monte Carlo sampling, specifically a Metropolis Hastings algorithm. We apply the method to a small group of simultaneously tracked reindeer, Rangifer tarandus tarandus, showing that the method detects dependency in movement between individuals. PMID:26812666

  4. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models.

    PubMed

    Shao, Li-Rong; Stafstrom, Carl E

    2016-05-01

    Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy. PMID:27544466

  5. Standardised animal models of host microbial mutualism

    PubMed Central

    Macpherson, A J; McCoy, K D

    2015-01-01

    An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions. PMID:25492472

  6. Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain

    PubMed Central

    Percie du Sert, N; Rice, A S C

    2014-01-01

    Neuropathic pain remains an area of considerable unmet clinical need. Research based on preclinical animal models has failed to deliver truly novel treatment options, questioning the predictive value of these models. This review addresses the shortcomings of rodent in vivo models commonly used in the field and highlights approaches which could increase their predictivity, including more clinically relevant assays, outcome measures and animal characteristics. The methodological quality of animal studies also needs to be improved. Low internal validity and incomplete reporting lead to a waste of valuable research resources and animal lives, and ultimately prevent an objective assessment of the true predictivity of in vivo models. PMID:24527763

  7. Experimental Diabetes Mellitus in Different Animal Models.

    PubMed

    Al-Awar, Amin; Kupai, Krisztina; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  8. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  9. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  10. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives

    PubMed Central

    Cai, Xue; McGinnis, James F.

    2016-01-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes. Although great efforts have been made to uncover the mechanisms underlying the pathology of DR, the exact causes of DR remain largely unknown. Because of multifactor involvement in DR etiology, currently no effective therapeutic treatments for DR are available. In this paper, we review the pathology of DR, commonly used animal models, and novel therapeutic approaches. Perspectives and future directions for DR treatment are discussed. PMID:26881246

  11. Animal models of smoke inhalation induced injuries.

    PubMed

    David, Poon; Dunsford, Denny; Lu, Jia; Moochhala, Shabbir

    2009-01-01

    Smoke inhalation injury is the leading cause of mortality from structural fires, as a result of complications such as systemic inflammatory response syndrome and chronic obstructive pulmonary disease, which can be caused by a localized or systemic response. In this review, the pathophysiology of smoke inhalation injury, along with the characteristics found in clinical settings, common animal models, current treatment methods and future potential therapeutics are discussed. PMID:19273376

  12. Animal models of human microsporidial infections.

    PubMed

    Snowden, K F; Didier, E S; Orenstein, J M; Shadduck, J A

    1998-12-01

    Two new models have been described for Enterocytozoon bieneusi, non-human primates and immuno-suppressed gnotobiotic pigs, but there still is no successful cell culture system. The intestinal xenograft system holds promise as an animal model for Encephalitozoon intestinalis. Encephalitozoon hellem is easily propagated in mice, and also may be an important cause of spontaneous disease of psittacine birds. Encephalitozoon cuniculi occurs spontaneously in a wide variety of animals and can be induced experimentally in athymic mice. This is a useful experimental system and animal model, but the infection is relatively rare in man. Mammalian microsporidioses first were recognized as spontaneous diseases of animals that later confounded studies intended to elucidate the nature of diseases of humans. Much was learned about both experimental and spontaneous animal microsporidial infections that subsequently has been applied to the human diseases. In addition, new diseases have appeared, in both animals and humans, for which models are being developed. Since there are now animal models for almost all the known human microsporidioses, information on pathogenesis, host defenses, and effective treatments may become available soon. The microsporidioses provide a good example of the value of comparative pathology. Dr. Payne: Joe Payne. How much accidental infection has occurred with adjacent laboratory animals? Dr. Shadduck: A hard question. The organisms are thought to spread horizontally, and there is some pretty good evidence for that in rabbits. One assumes that this also is the explanation for the occurrence in infected kennels. Horizontal transmission probably occurs via contaminated urine, at least in the case of rabbits and dogs. Experimentally, horizontal transmission has been difficult to demonstrate in mice. Relative to the danger in people, I don't know how to answer that. I have always treated this as one of those things where you should be careful, but you shouldn

  13. Animal model for anaerobic lung abscess.

    PubMed Central

    Kannangara, D W; Thadepalli, H; Bach, V T; Webb, D

    1981-01-01

    There are no satisfactory animal models for the study of anaerobic lung abscess. Aspiration of food, gastric mucin, or hydrochloric acid, or any combination of these, along with oropharyngeal bacteria, is commonly believed to cause aspiration pneumonia and lung abscess. In the animal model described, none of the adjuvants was effective in producing anaerobic lung abscesses. Anaerobic bacteria derived from dental scrapings of a healthy adult (Peptococcus morbillorum, Fusobacterium nucleatum, Eubacterium lentum, and Bacteroides fragilis), when inoculated transtracheally without any adjuvants into New Zealand male white rabbits, consistently produced lung abscesses. Neither B fragilis by itself nor a mixture of P. morbillorum, F. nucleatum, and E. lentum without the addition of B. fragilis produced lung abscesses. The bacterial isolates used in this study were stored in prereduced chopped-meat-glucose medium and subcultured several times and were found effective in reproducing anaerobic lung abscesses repeatedly. This animal model is suitable for the study of pathogenesis, diagnosis, and treatment of B. fragilis-associated anaerobic lung abscess. Images PMID:7216463

  14. Colon Preneoplastic Lesions in Animal Models

    PubMed Central

    Suzui, Masumi; Morioka, Takamitsu; Yoshimi, Naoki

    2013-01-01

    The animal model is a powerful and fundamental tool in the field of biochemical research including toxicology, carcinogenesis, cancer therapeutics and prevention. In the carcinogenesis animal model system, numerous examples of preneoplastic lesions have been isolated and investigated from various perspectives. This may indicate that several options of endpoints to evaluate carcinogenesis effect or therapeutic outcome are presently available; however, classification of preneoplastic lesions has become complicated. For instance, these lesions include aberrant crypt foci (ACF), dysplastic ACF, flat ACF, β-catenin accumulated crypts, and mucin-depleted foci. These lesions have been induced by commonly used chemical carcinogens such as azoxymethane (AOM), 1,2-dimethylhydrazine (DMH), methylnitrosourea (MUN), or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Investigators can choose any procedures or methods to examine colonic preneoplastic lesions according to their interests and the objectives of their experiments. Based on topographical, histopathological, and biological features of colon cancer preneoplastic lesions in the animal model, we summarize and discuss the character and implications of these lesions. PMID:24526805

  15. Animal Models of Compulsive Eating Behavior

    PubMed Central

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-01-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, “food addiction” has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies. PMID:25340369

  16. Neuroteratology and Animal Modeling of Brain Disorders.

    PubMed

    Archer, Trevor; Kostrzewa, Richard M

    2016-01-01

    Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents. PMID:26857462

  17. Animal models of compulsive eating behavior.

    PubMed

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-10-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating "comfort foods" in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, "food addiction" has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies. PMID:25340369

  18. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology

    PubMed Central

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S.

    2015-01-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment “at will” through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  19. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  20. Exploiting ovine immunology to improve the relevance of biomedical models

    PubMed Central

    Entrican, Gary; Wattegedera, Sean R.; Griffiths, David J.

    2015-01-01

    Animal models of human disease are important tools in many areas of biomedicine; for example, in infectious disease research and in the development of novel drugs and medical devices. Most studies involving animals use rodents, in particular congenic mice, due to the availability of a wide number of strains and the ease with which they can be genetically manipulated. The use of mouse models has led to major advances in many fields of research, in particular in immunology but despite these advances, no animal model can exactly reproduce all the features of human disease. It is increasingly becoming recognised that in many circumstances mice do not provide the best model and that alternative species may be more appropriate. Here, we describe the relative merits of sheep as biomedical models for human physiology and disease in comparison to mice, with a particular focus on reproductive and respiratory pathogens. PMID:25263932

  1. Overview: Using Mode of Action and Life Stage Information to Evaluate the Human Relevance of Animal Toxicity Data

    SciTech Connect

    Seed, Jennifer; Carney, E W.; Corley, Rick A.; Crofton, Kevin M.; DeSesso, John M.; Foster, Paul M.; Kavlock, Robert; Kimmel, Gary; Klaunig, James E.; Meek, M E.; Preston, R J.; Slikker, William; Tabacova, Sonia; Williams, Gary M.; Wiltse, J; Zoeller, R T.; Fenner-Crisp, P; Patton, D E.

    2005-10-01

    A complete mode of action human relevance analysis--as distinct from mode of action (MOA) analysis alone--depends on robust information on the animal MOA, as well as systematic comparison of the animal data with corresponding information from humans. In November 2003, the International Life Sciences Institute's Risk Science Institute (ILSI RSI) published a 2-year study using animal and human MOA information to generate a four-part Human Relevance Framework (HRF) for systematic and transparent analysis of MOA data and information. Based mainly on non-DNA-reactive carcinogens, the HRF features a ''concordance'' analysis of MOA information from both animal and human sources, with a focus on determining the appropriate role for each MOA data set in human risk assessment. With MOA information increasingly available for risk assessment purposes, this article illustrates the further applicability of the HRF for reproductive, developmental, neurologic, and renal endpoints, as well as cancer. Based on qualitative and quantitative MOA considerations, the MOA/human relevance analysis also contributes to identifying data needs and issues essential for the dose-response and exposure assessment steps in the overall risk assessment.

  2. Contribution of animal models to contemporary understanding of Attention Deficit Hyperactivity Disorder.

    PubMed

    Carvalho, Constança; Vieira Crespo, Mariana; Ferreira Bastos, Luisa; Knight, Andrew; Vicente, Luís

    2016-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a poorly understood neurodevelopmental disorder of multifactorial origin. Animal-based research has been used to investigate ADHD aetiology, pathogenesis and treatment, but the efficacy of this research for patients has not yet been systematically evaluated. However, such evaluation is important, given the resource consumption and ethical concerns incurred by animal use. Accordingly, we used the citation tracking facility within Web of Science to locate original research performed on animal models related to ADHD, prior to 2010. Human medical papers citing those animal studies were carefully analyzed by two independent raters to evaluate the contribution of the animal to the human studies. 211 publications describing relevant animal studies were located. Approximately half (3,342) of their 6,406 citations were by other animal studies. 446 human medical papers cited 121 of these 211 animal studies, a total of 500 times. 254 of these 446 papers were human studies of ADHD. However, only eight animal papers (cited 10 times) were relevant to the hypothesis of the human medical study in question. Three of these eight papers described results from both human and animal studies, but their citations solely referred to the human data. Five animal research papers were relevant to the hypotheses of the applicable human medical papers. Citation analysis indicates that animal research has contributed very little to contemporary understanding of ADHD. To ensure optimal allocation of Research & Development funds targeting this disease the contribution of other research methods should be similarly evaluated. PMID:26963673

  3. Proliferative retinopathies: animal models and therapeutic opportunities.

    PubMed

    Villacampa, Pilar; Haurigot, Virginia; Bosch, Fatima

    2015-01-01

    Proliferative retinopathies are the leading causes of blindness in Western societies. The development of new, more efficacious treatments that take advantage of recent advances in the fields of gene and cell therapy requires further investigations on the mechanisms underlying disease onset and progression, and adequate animal models that recapitulate the pathogenesis of human proliferative retinopathy and allow evaluation of the long-term therapeutic benefits that these therapies can offer. Unfortunately, most models of retinal neovascularization have short-term evolution and diabetic rodents show a very mild retinal phenotype, limited to non-proliferative changes, and do not develop proliferative retinopathy at all. Transgenic mice overexpressing Insulin-like Growth Factor-I (IGF-I) in the retina (TgIGF-I) constitute the only rodent model currently available that develops most of the retinal alterations observed in diabetic eyes, with a temporal evolution that resembles that of the human disease. TgIGF-I have retinal vascular alterations that progress as animals age from non-proliferative to proliferative disease, making these mice an excellent model of proliferative retinopathy that, due to its slow progression, allows long-term evaluation of novel antiangiogenic therapies. At the molecular level, transgenic retinas recapitulate a variety of changes that are also observed in diabetic retinas, which reinforces the validity of this model. In addition to vascular and glial alterations, Tg-IGF-I mice show progressive neurodegeneration that leads to blindness in old animals. Thus, TgIGF-I are a useful model for testing the long-term efficacy and safety of innovative antiangiogenic, glial-modulating and neuroprotective therapies for the treatment of diabetic retinopathy and other retinal proliferative disorders. PMID:25760215

  4. Small animals models for drug discovery.

    PubMed

    Martin, James G; Novali, Mauro

    2011-10-01

    There has been an explosion of studies of animal models of asthma in the past 20 years. The elucidation of fundamental immunological mechanisms underlying the development of allergy and the complex cytokine and chemokines networks underlying the responses have been substantially unraveled. Translation of findings to human asthma have been slow and hindered by the varied phenotypes that human asthma represents. New areas for expansion of modeling include virally mediated airway inflammation, oxidant stress, and the interactions of stimuli triggering innate immune and adaptive immune responses. PMID:21601000

  5. [Biological agents in animal breeding: an ancient but still relevant risk].

    PubMed

    Vellere, F; Cucchi, I; Somaruga, C; Brambilla, G; Colosio, C

    2012-01-01

    Agricultural activities expose workers to biological risk, due to the close contact that could occur with pathogens' reservoirs, such as soil, animals, manure and animal products. The paper describes factors that have contributed on the reduction or eradication of zoonoses, such as brucellosis, salmonellosis and bovine tuberculosis (monitoring and prevention of animal infectious diseases, industrialization and mechanization of agricultural activities), and on the other hand the emergence of new risks and new diseases (adaptability of microorganisms, generation of new strains, antibiotic resistance, dissemination of vectors). The role of Occupational Medicine in the prevention of zoonoses is discussed. PMID:23405674

  6. Respirable industrial fibres: deposition, clearance and dissolution in animal models.

    PubMed

    Jones, A D

    1993-04-01

    This paper examines the available experimental and theoretical results describing deposition and clearance of mineral fibres inhaled by animals and humans in order to define the limits which these mechanisms impose on the relevance of animal experiments in the assessment of potential human health risks. Direct experimental data for deposition of spherical particles are extended by examination of the physical processes and by some limited experimental data for fibres. This shows that alveolar deposition efficiency (in rat and in man) is sufficiently similar for particles and fibres with aerodynamic diameters less that 5 microns for rats to be a relevant model for airborne dusts in this size range. Inter-species differences in mechanical clearance are substantial, with clearance being faster in the rat than in man, and this is a factor which should be considered in interpreting animal toxicity studies. The durability of fibres in the biochemical conditions of the lung may be more important over the longer lifespan of humans. PMID:8317856

  7. Animal models of addiction: fat and sugar.

    PubMed

    Morgan, Drake; Sizemore, Glen M

    2011-01-01

    The concept of "food addiction" is gaining acceptance among the scientific community, and much is known about the influence of various components of food (e.g. high-fat, sugar, carbohydrate, salt) on behavior and physiology. Most of the studies to date have studied these consequences following relatively long-term diet manipulations and/or relatively free access to the food of interest. It is suggested that these types of studies are primarily tapping into the energy regulation and homeostatic processes that govern food intake and consumption. More recently, the overlap between the neurobiology of "reward-related" or hedonic effects of food ingestion and other reinforcers such as drugs of abuse has been highlighted, contributing to the notion that "food addiction" exists and that various components of food may be the substance of abuse. Based on preclinical animal models of drug addiction, a new direction for this field is using self-administration procedures and identifying an addiction-like behavioral phenotype in animals following various environmental, genetic, pharmacological, and neurobiological manipulations. Here we provide examples from this research area, with a focus on fat and sugar self-administration, and how the sophisticated animal models of drug addiction can be used to study the determinants and consequences of food addiction. PMID:21492084

  8. Animal models of chronic liver diseases.

    PubMed

    Liu, Yan; Meyer, Christoph; Xu, Chengfu; Weng, Honglei; Hellerbrand, Claus; ten Dijke, Peter; Dooley, Steven

    2013-03-01

    Chronic liver diseases are frequent and potentially life threatening for humans. The underlying etiologies are diverse, ranging from viral infections, autoimmune disorders, and intoxications (including alcohol abuse) to imbalanced diets. Although at early stages of disease the liver regenerates in the absence of the insult, advanced stages cannot be healed and may require organ transplantation. A better understanding of underlying mechanisms is mandatory for the design of new drugs to be used in clinic. Therefore, rodent models are being developed to mimic human liver disease. However, no model to date can completely recapitulate the "corresponding" human disorder. Limiting factors are the time frame required in humans to establish a certain liver disease and the fact that rodents possess a distinct immune system compared with humans and have different metabolic rates affecting liver homeostasis. These features account for the difficulties in developing adequate rodent models for studying disease progression and for testing new pharmaceuticals to be translated into the clinic. Nevertheless, traditional and new promising animal models that mimic certain attributes of chronic liver diseases are established and being used to deepen our understanding in the underlying mechanisms of distinct liver diseases. This review aims at providing a comprehensive overview of recent advances in animal models recapitulating different features and etiologies of human liver diseases. PMID:23275613

  9. Animal models of depression: are there any?

    PubMed

    O'Neil, Michael F; Moore, Nicholas A

    2003-06-01

    Simple tests for antidepressant-like activity, such as 5-HTP-induced syndrome or reserpine-induced hypomotility, are often mechanism-based tests, pharmacologically specific for certain known classes of therapeutically successful antidepressant agents. Many of these behavioural assays have been superseded by neurochemical techniques such as in vivo microdialysis. In contrast to these mechanistic-based models, investigators have also endeavoured to reproduce in the laboratory, factors that are believed to precipitate depression in people. It is a strong assumption in this approach that depression is a response to stress. This strategy profiles the consequences of chronic stress particularly psychosocial stress or early life events, in order to reproduce in animals the behavioural signs and pathologies associated with depression. The advances in the social psychological, clinical pathological and new areas such as neuroimaging research offer the possibility of establishing more sophisticated models for depression in animals with a broader range of biomarkers from the immunological and endocrinological to neurochemical and behavioural. Combining these novel insights with more traditional tests of depression may not only increase our understanding of the neurobiology of depression but also afford more precise and predictive preclinical models of depression. The responsiveness of different strains or genetically modified animals to stress is likely to be a key area of study. Furthermore we must look to individual differences in subjects, even within the same strain, to more fully understand why some individuals show pathological responses to stress whereas others appear unaffected. Conversely in validating our models using currently available treatments we must include the concept of non-responders so as not to disregard models that may extend therapeutic possibilities in these patients. PMID:12766928

  10. Barrett’s esophagus and animal models

    PubMed Central

    Macke, Ryan A.; Nason, Katie S.; Mukaisho, Ken-ichi; Hattori, Takanori; Fujimura, Takashi; Sasaki, Shozo; Oyama, Katsunobu; Miyashita, Tomoharu; Ohta, Tetsuo; Miwa, Koichi; Zaidi, Ali; Malhotra, Usha; Atasoy, Ajlan; Foxwell, Tyler; Jobe, Blair

    2014-01-01

    Concise summaries Significant progress has been made in the last few decades using animal models to recreate the esophagitis–metaplasia–carcinoma sequence similar to that seen in human Barrett’s esophagus (BE) and EAC. More recent works focus on molecular pathways associated with intestinal metaplasia and carcinogenesis, as well as similarities between genetic mutations occurring in humans and animal models, mouse, rat, pig, rabbit, guinea pig, dog, cat, ferret, and possum. Despite the lack of a perfect model, there is still significant potential in using these models to clarify the contribution of different types of reflux (gastric, biliary, and pancreatic) to esophageal adenocarcinoma and to determine how the different types of refluxate interact. Refluxed duodenal contents cause gastric and esophageal carcinoma in rats without exposure to carcinogens, and several rat duodenal contents reflux models have been developed. BE in the animal models has well-developed goblet cells positive forMUC2, gastric pyloric-type mucins positive for MUC6, and sometimes intermingled with gastric foveolar-type mucins positive for MUC5AC. A gut regenerative cell lineage, characterized by pyloric–foveolar metaplasia followed by the appearance of goblet cells, occurs in the regenerative process in response to chronic inflammation. High animal-fat dietary intake causes severe obesity, resulting in the development of increased abdominal pressure and increased refluxate, particularly of the duodenal contents. The N-nitroso bile acid conjugates, which have mutagenecity, play an important role in Barrett’s carcinogenesis, and are stabilized by gastric acid. Experiments have been made in a rodent duodeno-esophageal reflux model using thioproline or cyclooxygenase-2 inhibitor to prevent the inflammation–metaplasia– adenocarcinoma sequence. Thioproline is one of the nitrite scavengers, which reduce the production of carcinogenic nitroso-compounds. Celecoxib could postpone the

  11. Animal Ownership and Touching Enrich the Context of Social Contacts Relevant to the Spread of Human Infectious Diseases

    PubMed Central

    Kifle, Yimer Wasihun; Goeyvaerts, Nele; Van Kerckhove, Kim; Willem, Lander; Faes, Christel; Leirs, Herwig; Hens, Niel; Beutels, Philippe

    2015-01-01

    Many human infectious diseases originate from animals or are transmitted through animal vectors. We aimed to identify factors that are predictive of ownership and touching of animals, assess whether animal ownership influences social contact behavior, and estimate the probability of a major zoonotic outbreak should a transmissible influenza-like pathogen be present in animals, all in the setting of a densely populated European country. A diary-based social contact survey (n = 1768) was conducted in Flanders, Belgium, from September 2010 until February 2011. Many participants touched pets (46%), poultry (2%) or livestock (2%) on a randomly assigned day, and a large proportion of participants owned such animals (51%, 15% and 5%, respectively). Logistic regression models indicated that larger households are more likely to own an animal and, unsurprisingly, that animal owners are more likely to touch animals. We observed a significant effect of age on animal ownership and touching. The total number of social contacts during a randomly assigned day was modeled using weighted-negative binomial regression. Apart from age, household size and day type (weekend versus weekday and regular versus holiday period), animal ownership was positively associated with the total number of social contacts during the weekend. Assuming that animal ownership and/or touching are at-risk events, we demonstrate a method to estimate the outbreak potential of zoonoses. We show that in Belgium animal-human interactions involving young children (0–9 years) and adults (25–54 years) have the highest potential to cause a major zoonotic outbreak. PMID:26193480

  12. Modeling Protein Folding and Applying It to a Relevant Activity

    ERIC Educational Resources Information Center

    Nelson, Allan; Goetze, Jim

    2004-01-01

    The different levels of protein structure that can be easily understood by creating a model that simulates protein folding, which can then be evaluated by applying it to a relevant activity, is presented. The materials required and the procedure for constructing a protein folding model are mentioned.

  13. Animal models of craving for ethanol.

    PubMed

    Koob, G F

    2000-08-01

    Craving has various meanings but can be defined generally in terms of a desire for the previously experienced effects of ethanol. Animal models provide a means by which to study the underlying mechanisms associated with craving and are most useful when they fulfill the requirements for predictive validity and reliability. Craving is a key part of the process of addiction that can lead to relapse and is conceptualized as having at least three components: preoccupation/anticipation, binge/intoxication and withdrawal/negative affect. Animal models of craving are hypothesized at this time to involve three domains of motivation to take drugs: excessive drinking, negative affective states and conditioned reinforcement. Excessive drinking includes the alcohol deprivation effect, drinking during withdrawal and drinking after a history of dependence. Models of the negative affective state include increases in brain reward thresholds, and conditioned reinforcement models include cue-induced resistance to extinction or cue-induced reinstatement. Experimental psychology is a rich resource of sensitive behavioral techniques by which to measure hypothetical constructs associated with the motivation to drink ethanol. Rigorous tests of predictive validity and reliability will be necessary to make them useful for understanding the neurobiology of craving and for the development of new medications for treating craving. PMID:11002904

  14. Animal models for HIV/AIDS research

    PubMed Central

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  15. Large animal models of cardiovascular disease.

    PubMed

    Tsang, H G; Rashdan, N A; Whitelaw, C B A; Corcoran, B M; Summers, K M; MacRae, V E

    2016-04-01

    The human cardiovascular system is a complex arrangement of specialized structures with distinct functions. The molecular landscape, including the genome, transcriptome and proteome, is pivotal to the biological complexity of both normal and abnormal mammalian processes. Despite our advancing knowledge and understanding of cardiovascular disease (CVD) through the principal use of rodent models, this continues to be an increasing issue in today's world. For instance, as the ageing population increases, so does the incidence of heart valve dysfunction. This may be because of changes in molecular composition and structure of the extracellular matrix, or from the pathological process of vascular calcification in which bone-formation related factors cause ectopic mineralization. However, significant differences between mice and men exist in terms of cardiovascular anatomy, physiology and pathology. In contrast, large animal models can show considerably greater similarity to humans. Furthermore, precise and efficient genome editing techniques enable the generation of tailored models for translational research. These novel systems provide a huge potential for large animal models to investigate the regulatory factors and molecular pathways that contribute to CVD in vivo. In turn, this will help bridge the gap between basic science and clinical applications by facilitating the refinement of therapies for cardiovascular disease. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26914991

  16. Animal models of restricted repetitive behavior in autism

    PubMed Central

    Lewis, Mark H.; Tanimura, Yoko; Lee, Linda W.; Bodfish, James W.

    2013-01-01

    Restricted, repetitive behavior, along with deficits in social reciprocity and communication, is diagnostic of autism. Animal models relevant to this domain generally fall into three classes: repetitive behavior associated with targeted insults to the CNS; repetitive behavior induced by pharmacological agents; and repetitive behavior associated with restricted environments and experience. The extant literature provides potential models of the repetitive behavioral phenotype in autism rather than attempts to model the etiology or pathophysiology of restricted, repetitive behavior, as these are poorly understood. This review focuses on our work with deer mice which exhibit repetitive behaviors associated with environmental restriction. Repetitive behaviors are the most common category of abnormal behavior observed in confined animals and larger, more complex environments substantially reduce the development and expression of such behavior. Studies with this model, including environmental enrichment effects, suggest alterations in cortical-basal ganglia circuitry in the development and expression of repetitive behavior. Considerably more work needs to be done in this area, particularly in modeling the development of aberrant repetitive behavior. As mutant mouse models continue to proliferate, there should be a number of promising genetic models to pursue. PMID:16997392

  17. Domestic animals as models for biomedical research

    PubMed Central

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene. PMID:26479863

  18. Lattice animal model of chromosome organization

    NASA Astrophysics Data System (ADS)

    Iyer, Balaji V. S.; Arya, Gaurav

    2012-07-01

    Polymer models tied together by constraints of looping and confinement have been used to explain many of the observed organizational characteristics of interphase chromosomes. Here we introduce a simple lattice animal representation of interphase chromosomes that combines the features of looping and confinement constraints into a single framework. We show through Monte Carlo simulations that this model qualitatively captures both the leveling off in the spatial distance between genomic markers observed in fluorescent in situ hybridization experiments and the inverse decay in the looping probability as a function of genomic separation observed in chromosome conformation capture experiments. The model also suggests that the collapsed state of chromosomes and their segregation into territories with distinct looping activities might be a natural consequence of confinement.

  19. Vestibular animal models: contributions to understanding physiology and disease.

    PubMed

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E

    2016-04-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies. PMID:27083880

  20. Marijuana withdrawal syndrome in the animal model.

    PubMed

    Lichtman, Aron H; Martin, Billy R

    2002-11-01

    Although the proposition that repeated marijuana use can lead to marijuana dependence has long been accepted, only recently has evidence emerged suggesting that abstinence leads to clinically significant withdrawal symptoms. Converging evidence from human and animal studies has increased our understanding of cannabinoid dependence. One of the most powerful tools to advance this area of research is the CB1 cannabinoid receptor antagonist SR 141716A, which reliably precipitates withdrawal syndromes in mice, rats, and dogs that have been treated repeatedly with cannabinoids. In addition, the use of CB1 receptor knockout mice has revealed that not only cannabinoid dependence is mediated through a CB1 receptor mechanism of action, but CB1 receptors also modulate opioid dependence. Moreover, the results of other genetically altered mouse models suggest the existence of a reciprocal relationship between cannabinoid and opioid systems in drug dependence. Undoubtedly, these animal models will play pivotal roles in further characterizing cannabinoid dependence and elucidating the mechanisms of action, as well as developing potential pharmacotherapies for cannabinoid dependence. PMID:12412832

  1. Animal Models of Colitis-Associated Carcinogenesis

    PubMed Central

    Kanneganti, Manasa; Mino-Kenudson, Mari; Mizoguchi, Emiko

    2011-01-01

    Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that affect individuals throughout life. Although the etiology and pathogenesis of IBD are largely unknown, studies with animal models of colitis indicate that dysregulation of host/microbial interactions are requisite for the development of IBD. Patients with long-standing IBD have an increased risk for developing colitis-associated cancer (CAC), especially 10 years after the initial diagnosis of colitis, although the absolute number of CAC cases is relatively small. The cancer risk seems to be not directly related to disease activity, but is related to disease duration/extent, complication of primary sclerosing cholangitis, and family history of colon cancer. In particular, high levels and continuous production of inflammatory mediators, including cytokines and chemokines, by colonic epithelial cells (CECs) and immune cells in lamina propria may be strongly associated with the pathogenesis of CAC. In this article, we have summarized animal models of CAC and have reviewed the cellular and molecular mechanisms underlining the development of carcinogenic changes in CECs secondary to the chronic inflammatory conditions in the intestine. It may provide us some clues in developing a new class of therapeutic agents for the treatment of IBD and CAC in the near future. PMID:21274454

  2. Using animal models in osteoarthritis biomarker research.

    PubMed

    Garner, Bridget C; Stoker, Aaron M; Kuroki, Keiichi; Evans, Richard; Cook, Cristi Reeves; Cook, James L

    2011-12-01

    Osteoarthritis (OA) is a disease that commonly affects human and veterinary patients. Animal models are routinely used for OA research, and the dog is a nearly ideal species for translational investigation of human OA biomarkers. The cytokine, chemokine, and matrix metalloprotease (MMP) profiles of synovial fluid, serum, and urine from dogs with surgically induced and naturally occurring OA were compared with dogs without OA using xMAP technology (Qiagen Inc., Valencia, CA). Markers that exhibited significant differences between groups were identified (monocyte chemoattractant protein 1 [MCP1], interleukin 8 [IL8], keratinocyte-derived chemoattractant [KC], and MMP2 and MMP3), and their sensitivities and specificities were calculated to determine their diagnostic usefulness in a future biomarker panel. Synovial fluid IL8 was the most sensitive, but MCP1 was also highly sensitive and specific. The alterations in KC suggested that it may differentiate between cruciate disease and other types of OA, and the MMPs were most sensitive and specific in the serum. This study provided additional insight to the participation of cytokines, chemokines, and MMPs in OA, and potential diagnostic biomarker candidates were identified. A brief literature review of other biomarker candidates previously examined using animal models is discussed. PMID:22303754

  3. Emerging and Evolving Ovarian Cancer Animal Models

    PubMed Central

    Bobbs, Alexander S; Cole, Jennifer M; Cowden Dahl, Karen D

    2015-01-01

    Ovarian cancer (OC) is the leading cause of death from a gynecological malignancy in the United States. By the time a woman is diagnosed with OC, the tumor has usually metastasized. Mouse models that are used to recapitulate different aspects of human OC have been evolving for nearly 40 years. Xenograft studies in immunocompromised and immunocompetent mice have enhanced our knowledge of metastasis and immune cell involvement in cancer. Patient-derived xenografts (PDXs) can accurately reflect metastasis, response to therapy, and diverse genetics found in patients. Additionally, multiple genetically engineered mouse models have increased our understanding of possible tissues of origin for OC and what role individual mutations play in establishing ovarian tumors. Many of these models are used to test novel therapeutics. As no single model perfectly copies the human disease, we can use a variety of OC animal models in hypothesis testing that will lead to novel treatment options. The goal of this review is to provide an overview of the utility of different mouse models in the study of OC and their suitability for cancer research. PMID:26380555

  4. Animal Models of Parkinson's Disease: Vertebrate Genetics

    PubMed Central

    Lee, Yunjong; Dawson, Valina L.; Dawson, Ted M.

    2012-01-01

    Parkinson's disease (PD) is a complex genetic disorder that is associated with environmental risk factors and aging. Vertebrate genetic models, especially mice, have aided the study of autosomal-dominant and autosomal-recessive PD. Mice are capable of showing a broad range of phenotypes and, coupled with their conserved genetic and anatomical structures, provide unparalleled molecular and pathological tools to model human disease. These models used in combination with aging and PD-associated toxins have expanded our understanding of PD pathogenesis. Attempts to refine PD animal models using conditional approaches have yielded in vivo nigrostriatal degeneration that is instructive in ordering pathogenic signaling and in developing therapeutic strategies to cure or halt the disease. Here, we provide an overview of the generation and characterization of transgenic and knockout mice used to study PD followed by a review of the molecular insights that have been gleaned from current PD mouse models. Finally, potential approaches to refine and improve current models are discussed. PMID:22960626

  5. Relevance Data for Language Models Using Maximum Likelihood.

    ERIC Educational Resources Information Center

    Bodoff, David; Wu, Bin; Wong, K. Y. Michael

    2003-01-01

    Presents a preliminary empirical test of a maximum likelihood approach to using relevance data for training information retrieval parameters. Discusses similarities to language models; the unification of document-oriented and query-oriented views; tests on data sets; algorithms and scalability; and the effectiveness of maximum likelihood…

  6. Models of Relevant Cue Integration in Name Retrieval

    ERIC Educational Resources Information Center

    Lombardi, Luigi; Sartori, Giuseppe

    2007-01-01

    Semantic features have different levels of importance in indexing a target concept. The article proposes that semantic relevance, an algorithmically derived measure based on concept descriptions, may efficiently capture the relative importance of different semantic features. Three models of how semantic features are integrated in terms of…

  7. Animal Models for Microbicide Safety and Efficacy Testing

    PubMed Central

    Veazey, Ronald S.

    2013-01-01

    Purpose of review The first several human clinical trials for HIV prevention resulted in failure, sometimes with disastrous results, as both vaccines and microbicides have occasionally demonstrated the potential to increase rates of HIV infections in some recipients. Recently however, both vaccines and microbicides have finally achieved some level of success in phase 3 human trials, demonstrating that protection from HIV-1 infection is at least possible. Recent findings Recent studies have shown that topically applied vaginal gels, and oral pre-exposure prophylaxis (PrEP) using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans. Both the PrEP and topical efficacy results were predicted by nonhuman primate models, and several ongoing studies demonstrate both humanized mouse and NHP models of microbicide efficacy may reliably predict the success or failure of microbicide candidates in humans. Summary Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and hopefully use these models to better predict microbicide safety and efficacy in the future. Here we discuss the utility and relevance of animal models for safely and efficacy screening of microbicide candidates for advancing only the safest and most effective products to future human trials. PMID:23698560

  8. Animal models for investigating chronic pancreatitis

    PubMed Central

    2011-01-01

    Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed. PMID:22133269

  9. Animal models for investigating chronic pancreatitis.

    PubMed

    Aghdassi, Alexander A; Mayerle, Julia; Christochowitz, Sandra; Weiss, Frank U; Sendler, Matthias; Lerch, Markus M

    2011-01-01

    Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed. PMID:22133269

  10. Alpha-1 Antitrypsin Investigations Using Animal Models of Emphysema.

    PubMed

    Ni, Kevin; Serban, Karina A; Batra, Chanan; Petrache, Irina

    2016-08-01

    Animal models of disease help accelerate the translation of basic science discoveries to the bedside, because they permit experimental interrogation of mechanisms at relatively high throughput, while accounting for the complexity of an intact organism. From the groundbreaking observation of emphysema-like alveolar destruction after direct instillation of elastase in the lungs to the more clinically relevant model of airspace enlargement induced by chronic exposure to cigarette smoke, animal models have advanced our understanding of alpha-1 antitrypsin (AAT) function. Experimental in vivo models that, at least in part, replicate clinical human phenotypes facilitate the translation of mechanistic findings into individuals with chronic obstructive pulmonary disease and with AAT deficiency. In addition, unexpected findings of alveolar enlargement in various transgenic mice have led to novel hypotheses of emphysema development. Previous challenges in manipulating the AAT genes in mice can now be overcome with new transgenic approaches that will likely advance our understanding of functions of this essential, lung-protective serine protease inhibitor (serpin). PMID:27564666

  11. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance

    PubMed Central

    Salin, Karine; Auer, Sonya K.; Rey, Benjamin; Selman, Colin; Metcalfe, Neil B.

    2015-01-01

    It is often assumed that an animal's metabolic rate can be estimated through measuring the whole-organism oxygen consumption rate. However, oxygen consumption alone is unlikely to be a sufficient marker of energy metabolism in many situations. This is due to the inherent variability in the link between oxidation and phosphorylation; that is, the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by mitochondria (P/O ratio). In this article, we describe how the P/O ratio can vary within and among individuals, and in response to a number of environmental parameters, including diet and temperature. As the P/O ratio affects the efficiency of cellular energy production, its variability may have significant consequences for animal performance, such as growth rate and reproductive output. We explore the adaptive significance of such variability and hypothesize that while a reduction in the P/O ratio is energetically costly, it may be associated with advantages in terms of somatic maintenance through reduced production of reactive oxygen species. Finally, we discuss how considering variation in mitochondrial efficiency, together with whole-organism oxygen consumption, can permit a better understanding of the relationship between energy metabolism and life history for studies in evolutionary ecology. PMID:26203001

  12. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance.

    PubMed

    Salin, Karine; Auer, Sonya K; Rey, Benjamin; Selman, Colin; Metcalfe, Neil B

    2015-08-01

    It is often assumed that an animal's metabolic rate can be estimated through measuring the whole-organism oxygen consumption rate. However, oxygen consumption alone is unlikely to be a sufficient marker of energy metabolism in many situations. This is due to the inherent variability in the link between oxidation and phosphorylation; that is, the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by mitochondria (P/O ratio). In this article, we describe how the P/O ratio can vary within and among individuals, and in response to a number of environmental parameters, including diet and temperature. As the P/O ratio affects the efficiency of cellular energy production, its variability may have significant consequences for animal performance, such as growth rate and reproductive output. We explore the adaptive significance of such variability and hypothesize that while a reduction in the P/O ratio is energetically costly, it may be associated with advantages in terms of somatic maintenance through reduced production of reactive oxygen species. Finally, we discuss how considering variation in mitochondrial efficiency, together with whole-organism oxygen consumption, can permit a better understanding of the relationship between energy metabolism and life history for studies in evolutionary ecology. PMID:26203001

  13. Components of plastic: experimental studies in animals and relevance for human health

    PubMed Central

    Talsness, Chris E.; Andrade, Anderson J. M.; Kuriyama, Sergio N.; Taylor, Julia A.; vom Saal, Frederick S.

    2009-01-01

    Components used in plastics, such as phthalates, bisphenol A (BPA), polybrominated diphenyl ethers (PBDE) and tetrabromobisphenol A (TBBPA), are detected in humans. In addition to their utility in plastics, an inadvertent characteristic of these chemicals is the ability to alter the endocrine system. Phthalates function as anti-androgens while the main action attributed to BPA is oestrogen-like activity. PBDE and TBBPA have been shown to disrupt thyroid hormone homeostasis while PBDEs also exhibit anti-androgen action. Experimental investigations in animals indicate a wide variety of effects associated with exposure to these compounds, causing concern regarding potential risk to human health. For example, the spectrum of effects following perinatal exposure of male rats to phthalates has remarkable similarities to the testicular dysgenesis syndrome in humans. Concentrations of BPA in the foetal mouse within the range of unconjugated BPA levels observed in human foetal blood have produced effects in animal experiments. Finally, thyroid hormones are essential for normal neurological development and reproductive function. Human body burdens of these chemicals are detected with high prevalence, and concentrations in young children, a group particularly sensitive to exogenous insults, are typically higher, indicating the need to decrease exposure to these compounds. PMID:19528057

  14. Assessing The Policy Relevance of Regional Air Quality Models

    NASA Astrophysics Data System (ADS)

    Holloway, T.

    This work presents a framework for discussing the policy relevance of models, and regional air quality models in particular. We define four criteria: 1) The scientific status of the model; 2) Its ability to address primary environmental concerns; 3) The position of modeled environmental issues on the political agenda; and 4) The role of scientific input into the policy process. This framework is applied to current work simulating the transport of nitric acid in Asia with the ATMOS-N model, to past studies on air pollution transport in Europe with the EMEP model, and to future applications of the United States Environmental Protection Agency (US EPA) Models-3. The Lagrangian EMEP model provided critical input to the development of the 1994 Oslo and 1999 Gothenburg Protocols to the Convention on Long-Range Transbound- ary Air Pollution, as well as to the development of EU directives, via its role as a component of the RAINS integrated assessment model. Our work simulating reactive nitrogen in Asia follows the European example in part, with the choice of ATMOS-N, a regional Lagrangian model to calculate source-receptor relationships for the RAINS- Asia integrated assessment model. However, given differences between ATMOS-N and the EMEP model, as well as differences between the scientific and political cli- mates facing Europe ten years ago and Asia today, the role of these two models in the policy process is very different. We characterize the different aspects of policy relevance between these models using our framework, and consider how the current generation US EPA air quality model compares, in light of its Eulerian structure, dif- ferent objectives, and the policy context of the US.

  15. An animal model of human cytomegalovirus infection.

    PubMed

    Gao, L; Qian, S; Zeng, L; Wang, R; Wei, G; Fan, J; Zheng, S

    2007-12-01

    To develop a rat model that allowed in vivo progressive human cytomegalovirus (HCMV) infection, allogeneic liver transplantation was performed across a rat combination of Dark Agouti (DA) to Brown Norway (BN). AD169, a well-characterized laboratory strain of HCMV, was used to establish a rat model of HCMV infection by injection of 0.4 mL (30.0 logTCID50) supernate into the rat peritoneum. Histological and blood specimens were obtained from animals sacrificed at predetermined timepoints. We performed immunohistochemical staining in liver, heart, kidney, spleen, and lung for HCMV immediate-early antigen (IE), lower matrix protein (pp65) detection in peripheral blood leukocytes, and HCMV early antigen (EA) and late antigen (LA). We compared survival rates. Our results showed positive HCMV IE and pp65 antigenemia detected in peripheral blood leukocytes in transplanted recipients from day 1 to day 30. Positive HCMV EA and LA staining cells were only detected in sections 10 days after liver transplantation, namely, in hepatocytes, mononuclear cells, bile duct epithelial cells, and endothelial cells. Successful HCMV replication was due to the combination of liver transplantation and cyclosporine (CsA) immunosuppression. Survival analysis showed no significant differences between the HCMV-infected group and HCMV-uninfected group. This new rat model of HCMV infection may be helpful to understand immune system modulation of HCMV infection. PMID:18089401

  16. Peroxisome deficient invertebrate and vertebrate animal models

    PubMed Central

    Van Veldhoven, Paul P.; Baes, Myriam

    2013-01-01

    Although peroxisomes are ubiquitous organelles in all animal species, their importance for the functioning of tissues and organs remains largely unresolved. Because peroxins are essential for the biogenesis of peroxisomes, an obvious approach to investigate their physiological role is to inactivate a Pex gene or to suppress its translation. This has been performed in mice but also in more primitive organisms including D. melanogaster, C. elegans, and D. rerio, and the major findings and abnormalities in these models will be highlighted. Although peroxisomes are generally not essential for embryonic development and organogenesis, a generalized inactivity of peroxisomes affects lifespan and posthatching/postnatal growth, proving that peroxisomal metabolism is necessary for the normal maturation of these organisms. Strikingly, despite the wide variety of model organisms, corresponding tissues are affected including the central nervous system and the testis. By inactivating peroxisomes in a cell type selective way in the brain of mice, it was also demonstrated that peroxisomes are necessary to prevent neurodegeneration. As these peroxisome deficient model organisms recapitulate pathologies of patients affected with peroxisomal diseases, their further analysis will contribute to the elucidation of still elusive pathogenic mechanisms. PMID:24319432

  17. Animal models of tumorigenic herpesviruses--an update.

    PubMed

    Dittmer, Dirk P; Damania, Blossom; Sin, Sang-Hoon

    2015-10-01

    Any one model system, be it culture or animal, only recapitulates one aspect of the viral life cycle in the human host. By providing recent examples of animal models for Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, we would argue that multiple animal models are needed to gain a comprehensive understanding of the pathogenesis associated with human oncogenic herpesviruses. Transgenic mice, homologous animal herpesviruses, and tumorgraft and humanized mouse models all complement each other in the study of viral pathogenesis. The use of animal model systems facilitates the exploration of novel anti-viral and anti-cancer treatment modalities for diseases associated with oncogenic herpesviruses. PMID:26476352

  18. Bioluminescence Imaging of an Immunocompetent Animal Model for Glioblastoma

    PubMed Central

    Clark, Aaron J.; Fakurnejad, Shayan; Ma, Quanhong; Hashizume, Rintaro

    2016-01-01

    In contrast to commonly reported human glioma xenograft animal models, GL261 murine glioma xenografts recapitulate nearly all relevant clinical and histopathologic features of the human disease. When GL261 cells are implanted intracranially in syngeneic C57BL/6 mice, the model has the added advantage of maintaining an intact immune microenvironment. Stable expression of luciferase in GL261 cells allows non-invasive cost effective bioluminescence monitoring of intracranial tumor growth. We have recently demonstrated that luciferase expression in GL261 cells does not affect the tumor growth properties, tumor cell immunomodulatory cytokine expression, infiltration of immune cells into the tumor, or overall survival of animals bearing the intracranial tumor. Therefore, it appears that the GL261 luciferase glioma model can be useful in the study of novel chemotherapeutic and immunotherapeutic modalities. Here we report the technique for generating stable luciferase expression in GL261 cells and how to study the in vitro and in vivo growth of the tumor cells by bioluminescence imaging. PMID:26863490

  19. Animal Model of Acute Deep Vein Thrombosis

    SciTech Connect

    Roy, Sumit; Laerum, Frode; Brosstad, Frank; Kvernebo, Knut; Sakariassen, Kjell S.

    1998-07-15

    Purpose: To develop an animal model of acute deep vein thrombosis (DVT). Methods: In part I of the study nine juvenile domestic pigs were used. Each external iliac vein was transluminally occluded with a balloon catheter. Thrombin was infused through a microcatheter in one leg according to one of the following protocols: (1) intraarterial (IA): 1250 U at 25 U/min in the common femoral artery (n= 3); (2) intravenous (IV): 5000 U in the popliteal vein at 500 U/min (n= 3), or at 100 U/min (n= 3). Saline was administered in the opposite leg. After the animals were killed, the mass of thrombus in the iliofemoral veins was measured. The pudendoepiploic (PEV), profunda femoris (PF), and popliteal veins (PV) were examined. Thrombosis in the tributaries of the superficial femoral vein (SFVt) was graded according to a three-point scale (0, +, ++). In part II of the study IV administration was further investigated in nine pigs using the following three regimens with 1000 U at 25 U/min serving as the control: (1) 1000 U at 100 U/min, (2) 250 U at 25 U/min, (3) 250 U at 6.25 U/min. Results: All animals survived. In part I median thrombus mass in the test limbs was 1.40 g as compared with 0.25 g in the controls (p= 0.01). PEV, PFV and PV were thrombosed in all limbs infused with thrombin. IV infusion was more effective in inducing thrombosis in both the parent veins (mass 1.32-1.78 g) and SVFt (++ in 4 of 6 legs), as compared with IA infusion (mass 0.0-1.16 g; SFVt ++ in 1 of 3 legs). In part II thrombus mass in axial veins ranged from 1.23 to 2.86 g, and showed no relationship with the dose of thrombin or the rate of infusion. Tributary thrombosis was less extensive with 250 U at 25 U/min than with the other regimens. Conclusion: Slow distal intravenous thrombin infusion in the hind legs of pigs combined with proximal venous occlusion induces thrombosis in the leg veins that closely resembles clinical DVT in distribution.

  20. RASopathies: unraveling mechanisms with animal models

    PubMed Central

    Jindal, Granton A.; Goyal, Yogesh; Burdine, Rebecca D.; Rauen, Katherine A.; Shvartsman, Stanislav Y.

    2015-01-01

    ABSTRACT RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. PMID:26203125

  1. Animal Models of Q Fever (Coxiella burnetii)

    PubMed Central

    Bewley, Kevin R

    2013-01-01

    Q fever, caused by the pathogen Coxiella burnetii, is an acute disease that can progress to become a serious chronic illness. The organism leads an obligate, intracellular lifecycle, during which it multiplies in the phagolytic compartments of the phagocytic cells of the immune system of its hosts. This characteristic makes study of the organism particularly difficult and is perhaps one of the reasons why, more than 70 y after its discovery, much remains unknown about the organism and its pathogenesis. A variety of animal species have been used to study both the acute and chronic forms of the disease. Although none of the models perfectly mimics the disease process in humans, each opens a window onto an important aspect of the pathology of the disease. We have learned that immunosuppression, overexpression of IL10, or physical damage to the heart muscle in mice and guinea pigs can induce disease that is similar to the chronic disease seen in humans, suggesting that this aspect of disease may eventually be fully understood. Models using species from mice to nonhuman primates have been used to evaluate and characterize vaccines to protect against the disease and may ultimately yield safer, less expensive vaccines. PMID:24326221

  2. RASopathies: unraveling mechanisms with animal models.

    PubMed

    Jindal, Granton A; Goyal, Yogesh; Burdine, Rebecca D; Rauen, Katherine A; Shvartsman, Stanislav Y

    2015-08-01

    RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. PMID:26203125

  3. Development and Validation of an Animal Susceptibility Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An individual animal’s stress level is the summation of stresses from three areas: the environment, animal, and management. A model was developed to predict the susceptibility of an individual animal to heat stress. The model utilizes a hierarchal knowledge-based fuzzy inference system with 11 anim...

  4. Animal models for information processing during sleep.

    PubMed

    Coenen, A M L; Drinkenburg, W H I M

    2002-12-01

    Information provided by external stimuli does reach the brain during sleep, although the amount of information is reduced during sleep compared to wakefulness. The process controlling this reduction is called 'sensory' gating and evidence exists that the underlying neurophysiological processes take place in the thalamus. Furthermore, it is clear that stimuli given during sleep can alter the functional state of the brain. Two factors have been shown to play a crucial role in causing changes in the sleeping brain: the intensity and the relevance of the stimulus. Intensive stimuli arouse the brain, as well as stimuli having a high informational impact on the sleeping person. The arousal threshold for important stimuli is quite low compared to neutral stimuli. A central question in sleep research is whether associative learning, or in other words the formation of new associations between stimuli, can take place in a sleeping brain. It has been shown that simple forms of learning are still possible during sleep. In sleeping rats, it is proven that habituation, an active, simple form of learning not to respond to irrelevant stimuli, can occur. Moreover, there is evidence for the view that more complex associations can be modulated and newly formed during sleep. This is shown by two experimental approaches: an extinction paradigm and a latent inhibition (pre-exposure) paradigm. The presentation of non-reinforced stimuli during sleep causes slower extinction compared to the same presentation of these stimuli during wakefulness. Consistently, the suppressive capacity of a stimulus in the latent inhibition paradigm is less when previously pre-exposed during sleep, as compared to pre-exposure during wakefulness. Thus, while associative learning is not completely blocked during sleep, aspects of association formation are clearly altered. However, animal studies also clearly indicate that complex forms of learning are not possible during sleep. It is hypothesised that this

  5. Minireview: Translational Animal Models of Human Menopause: Challenges and Emerging Opportunities

    PubMed Central

    2012-01-01

    Increasing importance is placed on the translational validity of animal models of human menopause to discern risk vs. benefit for prediction of outcomes after therapeutic interventions and to develop new therapeutic strategies to promote health. Basic discovery research conducted over many decades has built an extensive body of knowledge regarding reproductive senescence across mammalian species upon which to advance animal models of human menopause. Modifications to existing animal models could rapidly address translational gaps relevant to clinical issues in human menopausal health, which include the impact of 1) chronic ovarian hormone deprivation and hormone therapy, 2) clinically relevant hormone therapy regimens (cyclic vs. continuous combined), 3) clinically relevant hormone therapy formulations, and 4) windows of opportunity and optimal duration of interventions. Modifications in existing animal models to more accurately represent human menopause and clinical interventions could rapidly provide preclinical translational data to predict outcomes regarding unresolved clinical issues relevant to women's menopausal health. Development of the next generation of animal models of human menopause could leverage advances in identifying genotypic variations in estrogen and progesterone receptors to develop personalized menopausal care and to predict outcomes of interventions for protection against or vulnerability to disease. Key to the success of these models is the close coupling between the translational target and the range of predictive validity. Preclinical translational animal models of human menopause need to keep pace with changes in clinical practice. With focus on predictive validity and strategic use of advances in genetic and epigenetic science, new animal models of human menopause have the opportunity to set new directions for menopausal clinical care for women worldwide. PMID:22778227

  6. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches.

    PubMed

    Zernii, Evgeni Y; Baksheeva, Viktoriia E; Iomdina, Elena N; Averina, Olga A; Permyakov, Sergei E; Philippov, Pavel P; Zamyatnin, Andrey A; Senin, Ivan I

    2016-01-01

    Over 100 million individuals are affected by irreversible visual impairments and blindness worldwide, while ocular diseases remain a challenging problem despite significant advances in modern ophthalmology. Development of novel drugs and drug delivery mechanisms, as well as advanced ophthalmological techniques requires experimental models including animals, capable of developing ocular diseases with similar etiology and pathology, suitable for future trials of new therapeutic approaches. Although experimental ophthalmology and visual research are traditionally performed on rodent models, these animals are often unsuitable for pre-clinical drug efficacy and safety studies, as well as for testing novel drug delivery approaches, e.g. controlled release of pharmaceuticals using intra-ocular implants. Therefore, rabbit models of ocular diseases are particularly useful in this context, since rabbits can be easily handled, while sharing more common anatomical and biochemical features with humans compared to rodents, including longer life span and larger eye size. This review provides a brief description of clinical, morphological and mechanistic aspects of the most common ocular diseases (dry eye syndrome, glaucoma, age-related macular degeneration, light-induced retinopathies, cataract and uveitis) and summarizes the diversity of current strategies for their experimental modeling in rabbits. Several applications of some of these models in ocular pharmacology and eye care strategies are also discussed. PMID:26553163

  7. Animal model of Mycoplasma fermentans respiratory infection

    PubMed Central

    2013-01-01

    Background Mycoplasma fermentans has been associated with respiratory, genitourinary tract infections and rheumatoid diseases but its role as pathogen is controversial. The purpose of this study was to probe that Mycoplasma fermentans is able to produce respiratory tract infection and migrate to several organs on an experimental infection model in hamsters. One hundred and twenty six hamsters were divided in six groups (A-F) of 21 hamsters each. Animals of groups A, B, C were intratracheally injected with one of the mycoplasma strains: Mycoplasma fermentans P 140 (wild strain), Mycoplasma fermentans PG 18 (type strain) or Mycoplasma pneumoniae Eaton strain. Groups D, E, F were the negative, media, and sham controls. Fragments of trachea, lungs, kidney, heart, brain and spleen were cultured and used for the histopathological study. U frequency test was used to compare recovery of mycoplasmas from organs. Results Mycoplasmas were detected by culture and PCR. The three mycoplasma strains induced an interstitial pneumonia; they also migrated to several organs and persisted there for at least 50 days. Mycoplasma fermentans P 140 induced a more severe damage in lungs than Mycoplasma fermentans PG 18. Mycoplasma pneumoniae produced severe damage in lungs and renal damage. Conclusions Mycoplasma fermentans induced a respiratory tract infection and persisted in different organs for several weeks in hamsters. This finding may help to explain the ability of Mycoplasma fermentans to induce pneumonia and chronic infectious diseases in humans. PMID:23298636

  8. The maternal deprivation animal model revisited.

    PubMed

    Marco, Eva M; Llorente, Ricardo; López-Gallardo, Meritxell; Mela, Virginia; Llorente-Berzal, Álvaro; Prada, Carmen; Viveros, María-Paz

    2015-04-01

    Early life stress, in the form of MD (24h at pnd 9), interferes with brain developmental trajectories modifying both behavioral and neurobiochemical parameters. MD has been reported to enhance neuroendocrine responses to stress, to affect emotional behavior and to impair cognitive function. More recently, changes in body weight gain, metabolic parameters and immunological responding have also been described. Present data give support to the fact that neuronal degeneration and/or astrocyte proliferation are present in specific brain regions, mainly hippocampus, prefrontal cortex and hypothalamus, which are particularly vulnerable to the effects of neonatal stress. The MD animal model arises as a valuable tool for the investigation of the brain processes occurring at the narrow time window comprised between pnd 9 and 10 that are critical for the establishment of brain circuitries critical for the regulation of behavior, metabolism and energy homeostasis. In the present review we will discuss three possible mechanisms that might be crucial for the effects of MD, namely, the rapid increase in glucocorticoids, the lack of the neonatal leptin surge, and the enhanced endocannabinoid signaling during the specific critical period of MD. A better understanding of the mechanisms underlying the detrimental consequences of MD is a concern for public health and may provide new insights into mental health prevention strategies and into novel therapeutic approaches in neuropsychiatry. PMID:25616179

  9. Clinical Forms and Animal Models of Hypophosphatasia.

    PubMed

    Salles, Jean Pierre

    2015-01-01

    Hypophosphatasia (HPP) is due to mutations of the tissue non-specific alkaline phosphatase (TNAP) gene expressed in the liver, kidney, and bone. TNAP substrates include inorganic pyrophosphate cleaved into inorganic phosphate (Pi) in bone, pyridoxal-5'-phosphate (PLP), the circulating form of vitamin B6, and phosphoethanolamine (PEA). As an autosomal recessive or dominant disease, HPP results in a range of clinical forms. Its hallmarks are low alkaline phosphatase (AP) and elevated PLP and PEA levels. Perinatal HPP may cause early death with respiratory insufficiency and hypomineralization resulting in deformed limbs and sometimes near-absence of bones and skull. Infantile HPP is diagnosed before 6 months of life. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency in the brain indicate poor prognosis. Craniosynostosis is frequent. Unlike in other forms of rickets, calcium and phosphorus are not decreased, resulting in hypercalciuria and nephrocalcinosis. Hypercalcemic crisis may occur. Failure to thrive and growth retardation are concerns. In infantile and adult forms of HPP, non-traumatic fractures may be the prominent manifestation, with otherwise unexplained chronic pain. Progressive myopathy has been described. Dental manifestations with early loss of teeth are usual in HPP and in a specific form, odontohypophosphatasia. HPP has been studied in knock-out mice models which mimic its severe form. Animal models have made a major contribution to the development of an original enzyme therapy for human infantile HPP, which is however essentially targeted at mineralized tissues. Better knowledge of its extraskeletal manifestations, including pain and neurological symptoms, is therefore required. PMID:26219704

  10. Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals.

    PubMed

    Kawai, Nobuyuki; Koda, Hiroki

    2016-08-01

    Humans quickly detect the presence of evolutionary threats through visual perception. Many theorists have considered humans to be predisposed to respond to both snakes and spiders as evolutionarily fear-relevant stimuli. Evidence supports that human adults, children, and snake-naive monkeys all detect pictures of snakes among pictures of flowers more quickly than vice versa, but recent neurophysiological and behavioral studies suggest that spiders may, in fact, be processed similarly to nonthreat animals. The evidence of quick detection and rapid fear learning by primates is limited to snakes, and no such evidence exists for spiders, suggesting qualitative differences between fear of snakes and fear of spiders. Here, we show that snake-naive Japanese monkeys detect a single snake picture among 8 nonthreat animal pictures (koala) more quickly than vice versa; however, no such difference in detection was observed between spiders and pleasant animals. These robust differences between snakes and spiders are the most convincing evidence that the primate visual system is predisposed to pay attention to snakes but not spiders. These findings suggest that attentional bias toward snakes has an evolutionary basis but that bias toward spiders is more due to top-down, conceptually driven effects of emotion on attention capture. (PsycINFO Database Record PMID:27078076

  11. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    PubMed

    Wancket, L M

    2015-09-01

    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. PMID:26163303

  12. Transgenic animals modelling polyamine metabolism-related diseases.

    PubMed

    Alhonen, Leena; Uimari, Anne; Pietilä, Marko; Hyvönen, Mervi T; Pirinen, Eija; Keinänen, Tuomo A

    2009-01-01

    Cloning of genes related to polyamine metabolism has enabled the generation of genetically modified mice and rats overproducing or devoid of proteins encoded by these genes. Our first transgenic mice overexpressing ODC (ornithine decarboxylase) were generated in 1991 and, thereafter, most genes involved in polyamine metabolism have been used for overproduction of the respective proteins, either ubiquitously or in a tissue-specific fashion in transgenic animals. Phenotypic characterization of these animals has revealed a multitude of changes, many of which could not have been predicted based on the previous knowledge of the polyamine requirements and functions. Animals that overexpress the genes encoding the inducible key enzymes of biosynthesis and catabolism, ODC and SSAT (spermidine/spermine N1-acetyltransferase) respectively, appear to possess the most pleiotropic phenotypes. Mice overexpressing ODC have particularly been used as cancer research models. Transgenic mice and rats with enhanced polyamine catabolism have revealed an association of rapidly depleted polyamine pools and accelerated metabolic cycle with development of acute pancreatitis and a fatless phenotype respectively. The latter phenotype with improved glucose tolerance and insulin sensitivity is useful in uncovering the mechanisms that lead to the opposite phenotype in humans, Type 2 diabetes. Disruption of the ODC or AdoMetDC [AdoMet (S-adenosylmethionine) decarboxylase] gene is not compatible with mouse embryogenesis, whereas mice with a disrupted SSAT gene are viable and show no harmful phenotypic changes, except insulin resistance at a late age. Ultimately, the mice with genetically altered polyamine metabolism can be used to develop targeted means to treat human disease conditions that they relevantly model. PMID:20095974

  13. RADAR Realistic Animal Model Series for Dose Assessment

    PubMed Central

    Keenan, Mary A.; Stabin, Michael G.; Segars, William P.; Fernald, Michael J.

    2010-01-01

    Rodent species are widely used in the testing and approval of new radiopharmaceuticals, necessitating murine phantom models. As more therapy applications are being tested in animal models, calculating accurate dose estimates for the animals themselves becomes important to explain and control potential radiation toxicity or treatment efficacy. Historically, stylized and mathematically based models have been used for establishing doses to small animals. Recently, a series of anatomically realistic human phantoms was developed using body models based on nonuniform rational B-spline. Realistic digital mouse whole-body (MOBY) and rat whole-body (ROBY) phantoms were developed on the basis of the same NURBS technology and were used in this study to facilitate dose calculations in various species of rodents. Methods Voxel-based versions of scaled MOBY and ROBY models were used with the Vanderbilt multinode computing network (Advanced Computing Center for Research and Education), using geometry and tracking radiation transport codes to calculate specific absorbed fractions (SAFs) with internal photon and electron sources. Photon and electron SAFs were then calculated for relevant organs in all models. Results The SAF results were compared with values from similar studies found in reference literature. Also, the SAFs were used with standardized decay data to develop dose factors to be used in radiation dose calculations. Representative plots were made of photon electron SAFs, evaluating the traditional assumption that all electron energy is absorbed in the source organs. Conclusion The organ masses in the MOBY and ROBY models are in reasonable agreement with models presented by other investigators noting that considerable variation can occur between reported masses. Results consistent with those found by other investigators show that absorbed fractions for electrons for organ self-irradiation were significantly less than 1.0 at energies above 0.5 MeV, as expected for many of

  14. The safety, efficacy and regulatory triangle in drug development: Impact for animal models and the use of animals.

    PubMed

    van Meer, Peter J K; Graham, Melanie L; Schuurman, Henk-Jan

    2015-07-15

    Nonclinical studies in animals are conducted to demonstrate proof-of-concept, mechanism of action and safety of new drugs. For a large part, in particular safety assessment, studies are done in compliance with international regulatory guidance. However, animal models supporting the initiation of clinical trials have their limitations, related to uncertainty regarding the predictive value for a clinical condition. The 3Rs principles (refinement, reduction and replacement) are better applied nowadays, with a more comprehensive application with respect to the original definition. This regards also regulatory guidance, so that opportunities exist to revise or reduce regulatory guidance with the perspective that the optimal balance between scientifically relevant data and animal wellbeing or a reduction in animal use can be achieved. In this manuscript we review the connections in the triangle between nonclinical efficacy/safety studies and regulatory aspects, with focus on in vivo testing of drugs. These connections differ for different drugs (chemistry-based low molecular weight compounds, recombinant proteins, cell therapy or gene therapy products). Regarding animal models and their translational value we focus on regulatory aspects and indications where scientific outcomes warrant changes, reduction or replacement, like for, e.g., biosimilar evaluation and safety testing of monoclonal antibodies. On the other hand, we present applications where translational value has been clearly demonstrated, e.g., immunosuppressives in transplantation. Especially for drugs of more recent date like recombinant proteins, cell therapy products and gene therapy products, a regulatory approach that allows the possibility to conduct combined efficacy/safety testing in validated animal models should strengthen scientific outcomes and improve translational value, while reducing the numbers of animals necessary. PMID:25818943

  15. Animal models of human amino acid responses.

    PubMed

    Baker, David H

    2004-06-01

    The principal differences between experimental animals and humans with regard to amino acid responses are 1) growing animals partition most of their amino acid intake to protein accretion, whereas growing children partition most of their intake to maintenance; 2) invasive assessment procedures are common in animals but very limited in humans; and 3) humans can describe how they feel in response to amino acid levels or balances, whereas animals cannot. New (pharmacologic) uses of amino acids have been and are being discovered (e.g., cysteine, arginine, leucine, glutamine), and this makes it imperative that tolerance limits be established. Work with pigs suggests that excessive intake of methionine and tryptophan present the biggest problems, whereas excessive intake of threonine, glutamate, and the branched-chain amino acids seems to be well tolerated. PMID:15173445

  16. Animal models to evaluate anti-atherosclerotic drugs.

    PubMed

    Priyadharsini, Raman P

    2015-08-01

    Atherosclerosis is a multifactorial condition characterized by endothelial injury, fatty streak deposition, and stiffening of the blood vessels. The pathogenesis is complex and mediated by adhesion molecules, inflammatory cells, and smooth muscle cells. Statins have been the major drugs in treating hypercholesterolemia for the past two decades despite little efficacy. There is an urgent need for new drugs that can replace statins or combined with statins. The preclinical studies evaluating atherosclerosis require an ideal animal model which resembles the disease condition, but there is no single animal model which mimics the disease. The animal models used are rabbits, rats, mice, hamsters, mini pigs, etc. Each animal model has its own advantages and disadvantages. The method of induction of atherosclerosis includes diet, chemical induction, mechanically induced injuries, and genetically manipulated animal models. This review mainly focuses on the various animal models, method of induction, the advantages, disadvantages, and the current perspectives with regard to preclinical studies on atherosclerosis. PMID:26095240

  17. Imaging of Small-Animal Models of Infectious Diseases

    PubMed Central

    Jelicks, Linda A.; Lisanti, Michael P.; Machado, Fabiana S.; Weiss, Louis M.; Tanowitz, Herbert B.; Desruisseaux, Mahalia S.

    2014-01-01

    Infectious diseases are the second leading cause of death worldwide. Noninvasive small-animal imaging has become an important research tool for preclinical studies of infectious diseases. Imaging studies permit enhanced information through longitudinal studies of the same animal during the infection. Herein, we briefly review recent studies of animal models of infectious disease that have used imaging modalities. PMID:23201133

  18. An animal model for chorioamnionitis at term

    PubMed Central

    Dell'Ovo, Valeria; Rosenzweig, Jason; Burd, Irina; Merabova, Nana; Darbinian, Nune; Goetzl, Laura

    2016-01-01

    OBJECTIVE The purpose of this study was to develop an animal model for intrapartum inflammation at term to investigate the interactions between maternal and fetal inflammatory responses and adverse neurologic outcome. STUDY DESIGN Lipopolysaccharide (160, 320, or 640 μg/kg) was administered intraperitoneally to day 20 term-pregnant Sprague Dawley rat dams 2, 4, and 6 hours before sample collection. Maternal outcomes included dam core temperature and plasma interleukin 6 (IL-6). Fetal outcomes included plasma IL-6, brain IL-6 messenger RNA expression, and brain IL-6 protein expression. Primary cortical cell cultures were prepared to examine neuronal morphologic condition. Neurite counts were obtained with the use of automated Sholl analysis. RESULTS Maternal plasma IL-6 levels peaked 2 hours after lipopolysaccharide stimulus and rapidly resolved, except for an observed low level persistence at 6 hours with 640 μg/kg. Fetal plasma and placental IL-6 expression also peaked rapidly but only persisted in placental samples. Fetal brain IL-6 RNA and protein expression was significantly higher than control litters at 6 hours after the exposure to both 320 μg/kg (P ≤ .05) and 640 μg/kg (P ≤ .01). Cortical cells from fetuses that were exposed for 6 hours to maternal systemic inflammation showed reduced neurite number and neurite length (P < .001) with increasing lipopolysaccharide dose. CONCLUSION Our results demonstrate that fetal brain injury follows isolated systemic maternal inflammation and that fetal brain inflammation lags after maternal stimulus, which creates a potential 4-hour clinical window for therapeutic intervention. PMID:25979619

  19. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the

  20. Animal Modeling of Early Programming and Disruption of Pubertal Maturation.

    PubMed

    Castellano, Juan M; Tena-Sempere, Manuel

    2016-01-01

    Puberty is a fascinating developmental transition that gates the attainment of reproductive capacity and culminates the somatic and sexual maturation of the organism. Rather than a circumscribed phenomenon, puberty is the endpoint of a long-lasting developmental continuum, which initiates in utero. Besides important genetic determinants, the tempo of puberty is influenced by numerous endogenous and exogenous factors that, acting at different levels of the developing hypothalamic-pituitary-gonadal (HPG) axis along the maturational continuum indicated above, can influence puberty onset. Among the different modifiers of puberty, in this chapter we will focus our attention on two major groups of signals, sex steroids and nutritional cues, and how these interplay mostly with the central elements of the HPG axis, and especially with gonadotropin-releasing hormone neurons and their key upstream afferents, Kiss1 neurons, to influence the timing of puberty. Special emphasis will be given to summarize information emerging from relevant preclinical (mostly rodent) animal models, and how this information might be relevant in terms of translational medicine, as it may help for a better understanding and eventually management of pubertal disorders of escalating prevalence worldwide. PMID:26680574

  1. ANIMAL BEHAVIOR AND WELL-BEING SYMPOSIUM: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals.

    PubMed

    Koolhaas, J M; Van Reenen, C G

    2016-06-01

    This paper will argue that understanding animal welfare and the individual vulnerability to stress-related disease requires a fundamental understanding of functional individual variation as it occurs in nature as well as the underlying neurobiology and neuroendocrinology. Ecological studies in feral populations of mice, fish, and birds start to recognize the functional significance of phenotypes that individually differ in their behavioral and neuroendocrine response to environmental challenge. Recent studies indicate that the individual variation within a species may buffer the species for strong fluctuations in the natural habitat. Similarly, evolutionary ancient behavioral trait characteristics have now been identified in a range of domestic farm animals including cattle, pigs, and horses. Individual variation in behavior can be summarized in a 3-dimensional model with coping style, emotionality, and sociality as independent dimensions. These dimensions can be considered trait characteristics that are stable over time and across situations within the individual. This conceptual model has several consequences. First, the coping style dimension is strongly associated with differential stress vulnerability. Social stress studies show that proactive individuals are resilient under stable environmental conditions but vulnerable when outcome expectancies are violated. Reactive individuals are, in fact, rather flexible and seem to adapt more easily to a changing environment. A second consequence relates to genetics and breeding. Genetic selection for one trait usually implies selection for other traits as well. It is discussed that a more balanced breeding program that takes into account biologically functional temperamental traits will lead to more robust domestic farm animals. Finally, the relationship between temperamental traits, animal production, fitness, and welfare is discussed. PMID:27285906

  2. On the relevance of alternative low degree archeomagnetic field models

    NASA Astrophysics Data System (ADS)

    Licht, A.; Hulot, G.; Gallet, Y.; Thebault, E.

    2011-12-01

    Much effort has been spent over the past decade to collect quality archeomagnetic, lava and sediment data and enrich the now substantial database of ancient indirect geomagnetic field data. These efforts have been a strong incentive for field modelers and have led to an impressive series of archeomagnetic field models, in particular the extensively used CALSxk series. These now extend over more than three millennia back in time and aim at reaching temporal and spatial resolution closer to that of historical field models. Not all authors however agree that such a resolution can be achieved and some have argued that despite its size, and because of its still limited geographical coverage, the current database does not make it possible to recover much more than the past dipole field behavior. To investigate the relevance of such claims we decided to rely on a different strategy to that used in the CALSxk series of models. We searched for alternative low degree spherical harmonic and low temporal resolution spline representations of the field over the past three millennia. These models were optimized so as to recover as much spatio-temporal resolution as allowed by the data without resorting to highly damped, and therefore essentially unresolved, high degree spherical harmonics and temporal frequencies. As we will show, such alternative models, and the various tests we carried out in the process of building them, provide an interesting different insight to that provided by the CALSxk series of models.

  3. Fate of dietary perchlorate in lactating dairy cows: Relevance to animal health and levels in the milk supply

    PubMed Central

    Capuco, A. V.; Rice, C. P.; Baldwin, R. L.; Bannerman, D. D.; Paape, M. J.; Hare, W. R.; Kauf, A. C. W.; McCarty, G. W.; Hapeman, C. J.; Sadeghi, A. M.; Starr, J. L.; McConnell, L. L.; Van Tassell, C. P.

    2005-01-01

    Perchlorate is a goitrogenic anion that competitively inhibits the sodium iodide transporter and has been detected in forages and in commercial milk throughout the U.S. The fate of perchlorate and its effect on animal health were studied in lactating cows, ruminally infused with perchlorate for 5 weeks. Milk perchlorate levels were highly correlated with perchlorate intake, but milk iodine was unaffected, and there were no demonstrable health effects. We provide evidence that up to 80% of dietary perchlorate was metabolized, most likely in the rumen, which would provide cattle with a degree of refractoriness to perchlorate. Data presented are important for assessing the environmental impact on perchlorate concentrations in milk and potential for relevance to human health. PMID:16260728

  4. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  5. Thrombotic microangiopathies: from animal models to human disease and cure.

    PubMed

    Caprioli, Jessica; Remuzzi, Giuseppe; Noris, Marina

    2011-01-01

    Thrombotic microangiopathies are a group of microvascular disorders, with reduced organ perfusion and hemolytic anemia. The two most relevant conditions characterized by thrombotic microangiopathic anemia (TMA) are thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). In TTP, systemic microvascular aggregation of platelets causes ischemia in the brain and other organs. In HUS, platelet-fibrin thrombi predominantly occlude the renal circulation. TTP can be inherited due to deficiencies in the activity of von Willebrand factor cleaving protease (ADAMTS13) or acquired due to the presence of autoantibodies directed against ADAMTS13. The majority of HUS cases are secondary to infections by strains of Escherichia coli that produce Shiga-like toxins (Stx-HUS), while about 5- 10% of all cases are classified as atypical HUS (aHUS). Genetically derived impaired regulation of the complement system is associated with aHUS. Infusion or the exchange of fresh frozen plasma have ameliorated the prognosis of TMA; however, no specific therapies aimed at preventing or limiting the microangiopathic process have been proven to affect the course of TMA. Large mammals, small animal models, knockout and transgenic mouse models of TTP and both Stx-HUS and aHUS have been developed and have provided outstanding contributions to nearly all areas of TMA research. A better understanding of the key clinical features of the diseases and of the importance of genetic and/or environmental factors involved in the pathogenesis of the diseases have been obtained. These animal models have also allowed the set up of protocols aimed at ameliorating the clinical approach to patients and for the development of new drugs and vaccines. PMID:21252531

  6. Institutional Animal Care and Use Committee Considerations for Animal Models of Peripheral Neuropathy

    PubMed Central

    Brabb, Thea; Carbone, Larry; Snyder, Jessica; Phillips, Nona

    2014-01-01

    Peripheral neuropathy and neuropathic pain are debilitating, life-altering conditions that affect a significant proportion of the human population. Animal models, used to study basic disease mechanisms and treatment modalities, are diverse and provide many challenges for institutional animal care and use committee (IACUC) review and postapproval monitoring. Items to consider include regulatory and ethical imperatives in animal models that may be designed to study pain, the basic mechanism of neurodegeneration, and different disease processes for which neuropathic pain is a side effect. Neuropathic pain can be difficult to detect or quantify in many models, and pain management is often unsuccessful in both humans and animals, inspiring the need for more research. Design of humane endpoints requires clear communication of potential adverse outcomes and solutions. Communication with the IACUC, researchers, and veterinary staff is also key for successful postapproval monitoring of these challenging models. PMID:24615447

  7. Animal models to study aetiopathology of epilepsy: what are the features to model?

    PubMed

    Guillemain, Isabelle; Kahane, Philippe; Depaulis, Antoine

    2012-09-01

    In order to understand the physiopathology of epilepsies and develop antiepileptic drugs, animal models have been developed. These models appear to be valuable predictors of treatment efficacy; however, several of the currently used models remain questionable and probably inappropriate for the search for new treatments, in particular for epilepsies that cannot be treated by current antiepileptic drugs. In the present review, we report the results of a recent survey conducted by neurologists in charge of an epilepsy programme based at different hospitals in France. The 36 experts were questioned, via the internet, on the most critical features of four prototypic forms of epilepsy (idiopathic generalised epilepsies with convulsive seizures, absence epilepsy, focal epilepsy associated with dysplasia, and focal epilepsy associated with hippocampal sclerosis) that should be taken into account with regards to the relevance of animal models of epilepsy. Their answers suggest that most current models for focal epilepsies associated with either dysplasia or hippocampal sclerosis do not address the most relevant features. The models currently used in mice and rats are discussed in light of the data obtained in our survey. PMID:22947423

  8. ANIMAL MODELS OF CHRONIC PESTICIDE NEUROTOXICITY.

    EPA Science Inventory

    There is a wealth of literature on neurotoxicological outcomes of acute and short-term exposure to pesticides in laboratory animals, but there are relatively few studies of- long-term exposure. Many reports in the literature describing ;chronic' exposures to pesticides are, in fa...

  9. ANIMAL MODELS OF CHRONIC PESTICIDE NEUROTOXICITY.

    EPA Science Inventory

    There is a wealth of literature on neurotoxicological outcomes of acute and short-term exposure to pesticides in laboratory animals, but there are relatively few reports of long-term exposure. Reports in the literature describing "chronic" exposures to pesticides are, in fact, a...

  10. Culturally relevant model program to prevent and reduce agricultural injuries.

    PubMed

    Helitzer, D L; Hathorn, G; Benally, J; Ortega, C

    2014-07-01

    Limited research has explored pesticide injury prevention among American Indian farmers. In a five-year agricultural intervention, a university-community partnership, including the University of New Mexico School of Medicine, New Mexico State University, Shiprock Area Cooperative Extension Service, and Navajo Nation communities, used a culturally relevant model to introduce and maintain safe use of integrated pest management techniques. We applied the Diffusion of Innovations theory and community-based approaches to tailor health promotion strategies for our intervention. In a longitudinal study with repeated measures, we trained six "model farmers" to be crop management experts in pesticide safety, application, and control. Subsequently, these model farmers worked with 120 farm families randomized into two groups: intervention (Group 1) and delayed intervention (Group 2). Measurements included a walk-through analysis, test of knowledge and attitudes, and yield analysis. Both groups demonstrated improvements in pesticide storage behaviors after training. Test scores regarding safety practices improved significantly: from 57.3 to 72.4 for Group 1 and from 52.6 to 76.3 for Group 2. Group 1 maintained their knowledge and safety practices after the intervention. Attitudes about pesticides and communication of viewpoints changed across the study years. With pesticides and fertilizer, the number of corn ears increased by 56.3% and yield (kg m(-2)) of alfalfa increased by 41.2%. The study combined traditional farming practices with culturally relevant approaches and behavior change theory to affect knowledge, safety practices, attitudes, communication channels, and crop yield. Storage behaviors, use of pesticides and safety and application equipment, and safety practice knowledge changed significantly, as did attitudes about social networking, social support, and the compatibility and relative advantage of pesticides for farms. PMID:25174150

  11. Modeling autism-relevant behavioral phenotypes in rats and mice: Do 'autistic' rodents exist?

    PubMed

    Servadio, Michela; Vanderschuren, Louk J M J; Trezza, Viviana

    2015-09-01

    Autism spectrum disorders (ASD) are among the most severe developmental psychiatric disorders known today, characterized by impairments in communication and social interaction and stereotyped behaviors. However, no specific treatments for ASD are as yet available. By enabling selective genetic, neural, and pharmacological manipulations, animal studies are essential in ASD research. They make it possible to dissect the role of genetic and environmental factors in the pathogenesis of the disease, circumventing the many confounding variables present in human studies. Furthermore, they make it possible to unravel the relationships between altered brain function in ASD and behavior, and are essential to test new pharmacological options and their side-effects. Here, we first discuss the concepts of construct, face, and predictive validity in rodent models of ASD. Then, we discuss how ASD-relevant behavioral phenotypes can be mimicked in rodents. Finally, we provide examples of environmental and genetic rodent models widely used and validated in ASD research. We conclude that, although no animal model can capture, at once, all the molecular, cellular, and behavioral features of ASD, a useful approach is to focus on specific autism-relevant behavioral features to study their neural underpinnings. This approach has greatly contributed to our understanding of this disease, and is useful in identifying new therapeutic targets. PMID:26226143

  12. The Various Roles of Animal Models in Understanding Human Development

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert; Lickliter, Robert

    2004-01-01

    In this article, the authors take a very conservative view of the contribution of animal models to an understanding of human development. We do not think that homologies can be readily documented with even our most closely related relatives' behavior and psychological functioning. The major contribution of animal models is their provision of food…

  13. Overview of Vertebrate Animal Models of Fungal Infection

    PubMed Central

    Hohl, Tobias M.

    2014-01-01

    Fungi represent emerging infectious threats to human populations worldwide. Mice and other laboratory animals have proved invaluable in modeling clinical syndromes associated with superficial and life-threatening invasive mycoses. This review outlines salient features of common vertebrate animal model systems to study fungal pathogenesis, host antifungal immune responses, and antifungal compounds. PMID:24709390

  14. Animal Models of Cardiac Disease and Stem Cell Therapy

    PubMed Central

    Ou, Lailiang; Li, Wenzhong; Liu, Yi; Zhang, Yue; Jie, Shen; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2010-01-01

    Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases. PMID:21258568

  15. Are animal models as good as we think?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models have been a tool of science at least since the 18th century and serve a variety of purposes from focusing abstract thoughts to representing scaled down version of things for study. Generally, animal models are needed when it is impractical or unethical to study the target animal. Biologists...

  16. Animal models of human respiratory syncytial virus disease

    PubMed Central

    Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research. PMID:21571908

  17. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models.

    PubMed

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE(-/-) and ApoE(-/-)Fbn1C1039G(+/-) mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  18. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity.

    PubMed

    Chakraborty, Chiranjib; Sharma, Ashish Ranjan; Sharma, Garima; Lee, Sang-Soo

    2016-01-01

    Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world's total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued. PMID:27544212

  19. Comparative and alternative approaches and novel animal models for aging research

    PubMed Central

    Kristan, D. M.

    2008-01-01

    This special issue of AGE showcases powerful alternative or unconventional approaches to basic aging research, including the use of exceptionally long-lived animal model species and comparative methods from evolutionary biology. In this opening paper, we introduce several of these alternative aging research themes, including the comparative phylogenetic approach. This approach applies modern inferential methods for dissecting basic physiological and biochemical mechanisms correlated with phenotypic traits including longevity, slow aging, sustained somatic maintenance, and repair of molecular damage. Comparative methods can be used to assess the general relevance of specific aging mechanisms—including oxidative processes—to diverse animal species, as well as to assess their potential clinical relevance to humans and other mammals. We also introduce several other novel, underexploited approaches with particular relevance to biogerontology, including the use of model animal species or strains that retain natural genetic heterogeneity, studies of effects of infectious disease and parasites on aging and responses to caloric restriction, studies of reproductive aging, and naturally occurring sex differences in aging. We emphasize the importance of drawing inferences from aging phenomena in laboratory studies that can be applied to clinically relevant aging syndromes in long-lived, outbred animals, including humans. PMID:19424857

  20. The use of animal as models: ethical considerations.

    PubMed

    Levy, Neil

    2012-07-01

    The use of animals in scientific research is highly controversial. Older justifications, which referred to an immense gulf between human beings and other animals, can no longer be sustained in the face of a large body of scientific evidence concerning the similarities between human beings and other animals. The probability is very high that they are like us in many important ways, including in having a capacity to suffer. Because animals may suffer during research, their use must be justified. An appropriate justification will require that researchers can demonstrate that the expected benefits of the research, in terms of pure knowledge and medical applications, outweigh the suffering imposed. However, while the infliction of suffering on animal models must meet stringent conditions, research which involves the (painless) death of animals is often easier to justify, since few animals other than human beings possess the psychological capacities required to care about their future. PMID:22712743

  1. Stems to GEMs: impact of stem cell technology on engineered animal models.

    PubMed

    Halpern, Wendy; McArthur, Mark; Galbreath, Elizabeth; Uhl, Elizabeth; Buck, Wayne; Whitley, Elizabeth

    2011-09-01

    Collectively, these presentations introduced the audience to the roles of ES cells in generating phenotypes of transgenic animals,and they provided examples where the GEMs were used to define molecular mechanisms of disease or where ES cells were used as a therapeutic modality. Points of discussion among audience members reinforced the importance of strain-associated background lesions in animal models, technological advances in imaging functional biology, opportunities for stem cell therapies, and ubiquitination in regulation of cell proliferation. The 2012 American College of Veterinary Pathologists symposium ‘‘Evolutionary Aspects of Animal Models’’ will focus on the proper selection of a relevant animal model in biomedical research as critical to investigative success. Recent work characterizing rapid evolutionary changes and differences in physiology between species questions the validity of some comparative models. Dr. Robert Hamlin will be speaking on cardiovascular disease in ‘‘Animals as Models of Human Cardiovascular Disease: Or the Search to Overcome Outdated Evolutionary Homeostatic Mechanisms.’’ Dr. Stefan Niewiesk will discuss evolutionary factors that affect modeling the human immune system in ‘‘Of Mice and Men: Evolutionarily, What Are the Best Rodent Models of the Human Immune System for Infectious Disease Research?’’ Dr. Steven Austad will consider evolution in ‘‘Evolutionary Aspects of Animal Models of Aging.’’Finally, Dr. Elizabeth Uhl will conclude the session with ‘‘Modeling Disease Phenotypes: How an Evolutionary Perspective Enhances the Questions.’’ PMID:21865606

  2. Animal Models of Tourette Syndrome-From Proliferation to Standardization.

    PubMed

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  3. Animal Models of Tourette Syndrome—From Proliferation to Standardization

    PubMed Central

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  4. Systematic Reviews of Animal Models: Methodology versus Epistemology

    PubMed Central

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions. PMID:23372426

  5. Improving the predictive value of interventional animal models data.

    PubMed

    Zeiss, Caroline J

    2015-04-01

    For many chronic diseases, translational success using the animal model paradigm has reached an impasse. Using Alzheimer's disease as an example, this review employs a networks-based method to assess repeatability of outcomes across species, by intervention and mechanism. Over 75% of animal studies reported an improved outcome. Strain background was a significant potential confounder. Five percent of interventions had been tested across animals and humans, or examined across three or more animal models. Positive outcomes across species emerged for donepezil, memantine and exercise. Repeatable positive outcomes in animals were identified for the amyloid hypothesis and three additional mechanisms. This approach supports in silico reduction of positive outcomes bias in animal studies. PMID:25448761

  6. The rational use of animal models in the evaluation of novel bone regenerative therapies.

    PubMed

    Peric, Mihaela; Dumic-Cule, Ivo; Grcevic, Danka; Matijasic, Mario; Verbanac, Donatella; Paul, Ruth; Grgurevic, Lovorka; Trkulja, Vladimir; Bagi, Cedo M; Vukicevic, Slobodan

    2015-01-01

    Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poorly designed animal studies with inappropriate endpoints and inaccurate conclusions are being conducted. In this review, we discuss animal models, procedures, methods and technologies used in bone repair studies with the aim to assist investigators in planning and performing scientifically sound experiments that respect the wellbeing of animals. In the process of designing an animal study for bone repair investigators should consider: skeletal characteristics of the selected animal species; a suitable animal model that mimics the intended clinical indication; an appropriate assessment plan with validated methods, markers, timing, endpoints and scoring systems; relevant dosing and statistically pre-justified sample sizes and evaluation methods; synchronization of the study with regulatory requirements and additional evaluations specific to cell-based approaches. This article is part of a Special Issue entitled "Stem Cells and Bone". PMID:25029375

  7. Animator

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  8. ANIMAL MODELS OF COGNITIVE DEVELOPMENT IN NEUROTOXICITY

    EPA Science Inventory

    The thesis of this chapter has been that spatial delayed alternation versus position discrimination learning can serve as a valuable rodent model of cognitive development in neurotoxicology. his model captures dual process conceptualizations of memory in human neuropsychology and...

  9. The hamster flank organ model: Is it relevant to man

    SciTech Connect

    Franz, T.J.; Lehman, P.A.; Pochi, P.; Odland, G.F.; Olerud, J. )

    1989-10-01

    The critical role that androgens play in the etiology of acne has led to a search for topically active antiandrogens and the frequent use of the flank organ of the golden Syrian hamster as an animal model. 17-alpha-propyltestosterone (17-PT) has been identified as having potent antiandrogenic activity in the hamster model, and this report describes its clinical evaluation. Two double-blind placebo controlled studies comparing 4% 17-PT in 80% alcohol versus vehicle alone were conducted. One study examined 17-PT sebosuppressive activity in 20 subjects. The second study examined its efficacy in 44 subjects having mild to moderate acne. A third study measured in vitro percutaneous absorption of 17-PT through hamster flank and monkey skin, and human face skin in-vivo, using radioactive drug. 17-PT was found to be ineffective in reducing either the sebum excretion rate or the number of inflammatory acne lesions. Failure of 17-PT to show clinical activity was not a result of poor percutaneous absorption. Total absorption in man was 7.7% of the dose and only 1.0% in the hamster. The sebaceous gland of hamster flank organ is apparently more sensitive to antiandrogens than the human sebaceous gland.

  10. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. PMID:25991698

  11. Animal Models of Diabetic Neuropathy: Progress Since 1960s

    PubMed Central

    Islam, Md. Shahidul

    2013-01-01

    Diabetic or peripheral diabetic neuropathy (PDN) is one of the major complications among some other diabetic complications such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. The use of animal models in the research of diabetes and diabetic complications is very common when rats and mice are most commonly used for many reasons. A numbers of animal models of diabetic and PDN have been developed in the last several decades such as streptozotocin-induced diabetic rat models, conventional or genetically modified or high-fat diet-fed C57BL/Ks (db/db) mice models, streptozotocin-induced C57BL6/J and ddY mice models, Chinese hamster neuropathic model, rhesus monkey PDN model, spontaneously diabetic WBN/Kob rat model, L-fucose-induced neropathic rat model, partial sciatic nerve ligated rat model, nonobese diabetic (NOD) mice model, spontaneously induced Ins2 Akita mice model, leptin-deficient (ob/ob) mice model, Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, surgically-induced neuropathic model, and genetically modified Spontaneously Diabetic Torii (SDT) rat model, none of which are without limitations. An animal model of diabetic or PDN should mimic the all major pathogeneses of human diabetic neuropathy. Hence, this review comparatively evaluates the animal models of diabetic and PDN which are developed since 1960s with their advantages and disadvantages to help diabetic research groups in order to more accurately choose an appropriate model to meet their specific research objectives. PMID:23984428

  12. Animal models of henipavirus infection: a review.

    PubMed

    Weingartl, Hana M; Berhane, Yohannes; Czub, Markus

    2009-09-01

    Hendra virus (HeV) and Nipah virus (NiV) form a separate genus Henipavirus within the family Paramyxoviridae, and are classified as biosafety level four pathogens due to their high case fatality rate following human infection and because of the lack of effective vaccines or therapy. Both viruses emerged from their natural reservoir during the last decade of the 20th century, causing severe disease in humans, horses and swine, and infecting a number of other mammalian species. The current review summarises current published data relating to experimental infection of small and large animals, including the natural reservoir species, the Pteropus bat, with HeV or NiV. Susceptibility to infection and virus distribution in the individual species is discussed, along with the pathogenesis, pathological changes, and potential routes of transmission. PMID:19084436

  13. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies.

    PubMed

    Talac, R; Friedman, J A; Moore, M J; Lu, L; Jabbari, E; Windebank, A J; Currier, B L; Yaszemski, M J

    2004-04-01

    Tissue engineering approaches to spinal cord injury (SCI) treatment are attractive because they allow for manipulation of native regeneration processes involved in restoration of the integrity and function of damaged tissue. A clinically relevant spinal cord regeneration animal model requires that the model mimics specific pathologic processes that occur in human SCI. This manuscript discusses issues related to preclinical testing of tissue engineering spinal cord regeneration strategies from a number of perspectives. This discussion includes diverse causes, pathology and functional consequences of human SCI, general and species related considerations, technical and animal care considerations, and data analysis methods. PMID:14697853

  14. From psychiatric disorders to animal models: a bidirectional and dimensional approach

    PubMed Central

    Donaldson, Zoe. R.; Hen, René

    2014-01-01

    Psychiatric genetics research is bidirectional in nature, with human and animal studies becoming more closely integrated as techniques for genetic manipulations allow for more subtle exploration of disease phenotypes. This synergy, however, highlights the importance of considering the way in which we approach the genotype-phenotype relationship. In particular, the nosological divide of psychiatric illness, while clinically relevant, is not directly translatable in animal models. For instance, mice will never fully re-capitulate the broad criteria for many psychiatric disorders; nor will they have guilty ruminations, suicidal thoughts, or rapid speech. Instead, animal models have been and continue to provide a means to explore dimensions of psychiatric disorders in order to identify neural circuits and mechanisms underlying disease-relevant phenotypes. Thus, the genetic investigation of psychiatric illness will yield the greatest insights if efforts continue to identify and utilize biologically valid phenotypes across species. In this review we discuss the progress to date and the future efforts that will enhance translation between human and animal studies, including the identification of intermediate phenotypes that can be studied across species, as well as the importance of refined modeling of human disease-associated genetic variation in mice and other animal models. PMID:24650688

  15. An updated overview of animal models in neuropsychiatry.

    PubMed

    Razafsha, M; Behforuzi, H; Harati, H; Wafai, R Al; Khaku, A; Mondello, S; Gold, M S; Kobeissy, F H

    2013-06-14

    Animal models are vital tools to study the genetic, molecular, cellular, and environmental parameters involved in several neuropsychiatric disorders. Over the years, these models have expanded our understanding of the pathogenesis of many neuropsychiatric disorders and neurodegenerative diseases. Although animal models have been widely used in psychiatry, and despite several years of extensive research with these models, their validity is still being investigated and presents a challenge to both investigators and clinicians as well. In this concise review, we will describe the most common animal models utilized in neuropsychiatry, including animal models of depression, anxiety, and psychosis. In addition, we will also discuss the validity and reliability of these models and current challenges in this domain. Furthermore, this work will discuss the role of gene-environment interaction as an additional contributing factor that modulates neuropsychological outcome and its implication on animal models. This overview will give a succinct summary of animal models in psychiatry which will be useful both to the seasoned researcher, as well as novices in the field. PMID:23473749

  16. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology

    PubMed Central

    Olivier, Alicia K.; Gibson-Corley, Katherine N.

    2015-01-01

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF. PMID:25591863

  17. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology.

    PubMed

    Olivier, Alicia K; Gibson-Corley, Katherine N; Meyerholz, David K

    2015-03-15

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF. PMID:25591863

  18. Atherosclerosis and Thrombosis: Insights from Large Animal Models

    PubMed Central

    Vilahur, Gemma; Padro, Teresa; Badimon, Lina

    2011-01-01

    Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination of in vitro, ex vivo, and in vivo experimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the available atherothrombotic-like animal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans. PMID:21274431

  19. Exploring a Professional Development Model for Teaching Culturally Relevant Mathematics

    ERIC Educational Resources Information Center

    Campeau, Rebecca K.

    2013-01-01

    An area of concern for school district administrators is the lack of training that teachers have using culturally relevant pedagogy (CRP). A lack of training may reduce a teacher's effectiveness in meeting the needs of non-White students. Obstacles to attending trainings include the beliefs and attitudes of teachers and the relevance of training…

  20. From antipsychotic to anti-schizophrenia drugs: role of animal models

    PubMed Central

    Geyer, Mark A.; Olivier, Berend; Joëls, Marian; Kahn, René S.

    2012-01-01

    Current drugs treating schizophrenia are mostly variations on a theme that was started over 50 years ago. Sadly, clinical efficacy has not improved substantially over the years. We argue that both clinical and preclinical researchers have focused too much on psychosis, which is only one of the hallmarks of schizophrenia. This narrow focus has hampered the development of relevant animal models and human experimental medicine paradigms. Other fields in psychiatry, most notably in the realms of addiction and anxiety, did prosper from results obtained in parallel studies using animal models and experimental human studies. Lessons to be learned from those models and recent genetic and cognitive insights in schizophrenia can be utilized to develop better animal and human models and, potentially, novel treatment strategies. PMID:22810174

  1. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    NASA Astrophysics Data System (ADS)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false

  2. Animal Models of Substance Abuse and Addiction: Implications for Science, Animal Welfare, and Society

    PubMed Central

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-01-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models. PMID:20579432

  3. Why test animals to treat humans? On the validity of animal models.

    PubMed

    Shelley, Cameron

    2010-09-01

    Critics of animal modeling have advanced a variety of arguments against the validity of the practice. The point of one such form of argument is to establish that animal modeling is pointless and therefore immoral. In this article, critical arguments of this form are divided into three types, the pseudoscience argument, the disanalogy argument, and the predictive validity argument. I contend that none of these criticisms currently succeed, nor are they likely to. However, the connection between validity and morality is important, suggesting that critical efforts would be instructive if they addressed it in a more nuanced way. PMID:20934650

  4. Emerging preclinical animal models for FSHD

    PubMed Central

    Lek, Angela; Rahimov, Fedik; Jones, Peter L.; Kunkel, Louis M.

    2015-01-01

    Facioscapulohumeral dystrophy (FSHD) is a unique and complex genetic disease that is not entirely solved. Recent advances in the field have led to a consensus genetic premise for the disorder, enabling researchers to now pursue the design of preclinical models. In this review, we explore all available FSHD models (DUX4-dependent and -independent) for their utility in therapeutic discovery and potential to yield novel disease insights. Due to the complex nature of FSHD, there is currently no single model that accurately recapitulates the genetic and pathophysiological spectrum of the disorder. Existing models are limited to emphasize only specific aspects of the disease, thus highlighting the need for more collaborative research and novel paradigms to advance the translational research space of FSHD. PMID:25801126

  5. Emerging preclinical animal models for FSHD.

    PubMed

    Lek, Angela; Rahimov, Fedik; Jones, Peter L; Kunkel, Louis M

    2015-05-01

    Facioscapulohumeral dystrophy (FSHD) is a unique and complex genetic disease that is not entirely solved. Recent advances in the field have led to a consensus genetic premise for the disorder, enabling researchers to now pursue the design of preclinical models. In this review we explore all available FSHD models (DUX4-dependent and -independent) for their utility in therapeutic discovery and potential to yield novel disease insights. Owing to the complex nature of FSHD, there is currently no single model that accurately recapitulates the genetic and pathophysiological spectrum of the disorder. Existing models emphasize only specific aspects of the disease, highlighting the need for more collaborative research and novel paradigms to advance the translational research space of FSHD. PMID:25801126

  6. Animal Models of Posttraumatic Seizures and Epilepsy.

    PubMed

    Glushakov, Alexander V; Glushakova, Olena Y; Doré, Sylvain; Carney, Paul R; Hayes, Ronald L

    2016-01-01

    Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. Different strategies of PTE prophylaxis have been showing promise in preclinical models, but their translation to the clinic still remains elusive due in part to the variability of these models and the fact they do not recapitulate all complex pathologies associated with human TBI. TBI is a multifaceted disorder reflected in several potentially epileptogenic alterations in the brain, including mechanical neuronal and vascular damage, parenchymal and subarachnoid hemorrhage, subsequent toxicity caused by iron-rich hemoglobin breakdown products, and energy disruption resulting in secondary injuries, including excitotoxicity, gliosis, and neuroinflammation, often coexisting to a different degree. Several in vivo models have been developed to reproduce the acute TBI cascade of events, to reflect its anatomical pathologies, and to replicate neurological deficits. Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties

  7. HEMATOPOIETIC STEM CELL GENE THERAPY: ASSESSING THE RELEVANCE OF PRE-CLINICAL MODELS

    PubMed Central

    Larochelle, Andre; Dunbar, Cynthia E.

    2013-01-01

    The modern laboratory mouse has become a central tool for biomedical research with a notable influence in the field of hematopoiesis. Application of retroviral-based gene transfer approaches to mouse hematopoietic stem cells (HSCs) has led to a sophisticated understanding of the hematopoietic hierarchy in this model. However, the assumption that gene transfer methodologies developed in the mouse could be similarly applied to human HSCs for the treatment of human diseases left the field of gene therapy in a decade-long quandary. It is not until more relevant humanized xenograft mouse models and phylogenetically related large animal species were used to optimize gene transfer methodologies that unequivocal clinical successes were achieved. However, the subsequent reporting of severe adverse events in these clinical trials casted doubts on the predictive value of conventional pre-clinical testing, and encouraged the development of new assays for assessing the relative genotoxicity of various vector designs. PMID:24014892

  8. Animal models for screening anxiolytic-like drugs: a perspective

    PubMed Central

    Bourin, Michel

    2015-01-01

    Contemporary biological psychiatry uses experimental animal models to increase our understanding of affective disorder pathogenesis. Modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the mechanisms of action is possible through animal models. Primarily developed with rats, animal models in anxiety have been adapted with mixed success for mice, easy-to-use mammals with better genetic possibilities than rats. In this review, we focus on the three most common animal models of anxiety in mice used in the screening of anxiolytics. Both conditioned and unconditioned models are described, in order to represent all types of animal models of anxiety. Behavioral studies require careful attention to variable parameters linked to environment, handling, or paradigms; this is also discussed. Finally, we focus on the consequences of re-exposure to the apparatus. Test-retest procedures can provide new answers, but should be intensively studied in order to revalidate the entire paradigm as an animal model of anxiety. PMID:26487810

  9. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis

    PubMed Central

    Ng, Chun-Yi; Jaarin, Kamsiah

    2015-01-01

    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies. PMID:26064920

  10. Leading compounds for the validation of animal models of psychopathology.

    PubMed

    Micale, Vincenzo; Kucerova, Jana; Sulcova, Alexandra

    2013-10-01

    Modelling of complex psychiatric disorders, e.g., depression and schizophrenia, in animals is a major challenge, since they are characterized by certain disturbances in functions that are absolutely unique to humans. Furthermore, we still have not identified the genetic and neurobiological mechanisms, nor do we know precisely the circuits in the brain that function abnormally in mood and psychotic disorders. Consequently, the pharmacological treatments used are mostly variations on a theme that was started more than 50 years ago. Thus, progress in novel drug development with improved therapeutic efficacy would benefit greatly from improved animal models. Here, we review the available animal models of depression and schizophrenia and focus on the way that they respond to various types of potential candidate molecules, such as novel antidepressant or antipsychotic drugs, as an index of predictive validity. We conclude that the generation of convincing and useful animal models of mental illnesses could be a bridge to success in drug discovery. PMID:23942897

  11. GHRH treatment: studies in an animal model.

    PubMed

    Shakutsui, S; Abe, H; Chihara, K

    1989-01-01

    This study examined the effects of chronic deletion of circulating growth hormone-releasing (GHRH) and/or somatostatin (SRIF) on normal growing male rats, as well as the effects of exogenous GHRH (1-29)NH2 and/or SMS 201-995 administration on the growth of rats with hypothalamic ablation. Passive immunization with anti-rat GHRH goat gamma-globulin (GHRH-Ab) for 3 weeks caused a marked decrease in the levels of pituitary GH mRNA and severe growth failure. Treatment with anti-SRIF goat gamma-globulin (SRIF-Ab) for 3 weeks produced a more modest decrease in GH mRNA levels in the pituitary and a slight but significant inhibition of normal somatic growth. Hypothalamic ablation produced a marked decrease in the level of mRNA in the pituitary. Chronic continuous administration of GHRH (1-29)NH2 stimulated pituitary GH synthesis, elevated serum levels of insulin-like growth factor I and increased body weight gain in rats with hypothalamic ablation treated with replacement doses of cortisone, testosterone and L-thyroxine. Combined treatment with GHRH (1-29)NH2 and SMS 201-995 appeared to promote the effect of GHRH on pituitary GH release and somatic growth in these animals. The results suggest that continuous administration of GHRH will be useful in the treatment of children with growth retardation resulting from hypothalamic disorders. In children with combined GHRH and somatostatin deficiencies, the addition of somatostatin to a GHRH treatment regimen may produce better results. PMID:2568726

  12. Animal models of tumour-associated epilepsy.

    PubMed

    Kirschstein, Timo; Köhling, Rüdiger

    2016-02-15

    Brain tumours cause a sizeable proportion of epilepsies in adulthood, and actually can be etiologically responsible also for childhood epilepsies. Conversely, seizures are often first clinical signs of a brain tumour. Nevertheless, several issues of brain-tumour associated seizures and epilepsies are far from understood, or clarified regarding clinical consensus. These include both the specific mechanisms of epileptogenesis related to different tumour types, the possible relationship between malignancy and seizure emergence, the interaction between tumour mass and surrounding neuronal networks, and - not least - the best treatment options depending on different tumour types. To investigate these issues, experimental models of tumour-induced epilepsies are necessary. This review concentrates on the description of currently used models, focusing on methodological aspects. It highlights advantages and shortcomings of these models, and identifies future experimental challenges. PMID:26092434

  13. Animal models of tuberculosis: Guinea pigs.

    PubMed

    Clark, Simon; Hall, Yper; Williams, Ann

    2015-05-01

    The progression of the disease that follows infection of guinea pigs with Mycobacterium tuberculosis displays many features of human tuberculosis (TB), and the guinea pig model of TB has been used for more than 100 years as a research tool to understand and describe disease mechanisms. Changes in the bacterial burden and pathology following infection can be readily monitored and used to evaluate the impact of TB interventions. Demonstration of the protective efficacy of vaccines in the low-dose aerosol guinea pig model is an important component of the preclinical data package for novel vaccines in development, and there is a continual need to improve the model to facilitate progression of vaccines to the clinic. Development of better tools with which to dissect the immune responses of guinea pigs is a focus of current research. PMID:25524720

  14. ASSESSMENT OF VENOUS THROMBOSIS IN ANIMAL MODELS

    PubMed Central

    SP, Grover; CE, Evans; AS, Patel; B, Modarai; P, Saha; A, Smith

    2016-01-01

    Deep vein thrombosis and common complications, including pulmonary embolism and post thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro computed tomography and high frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition. PMID:26681755

  15. Retinal degeneration in animal models with a defective visual cycle.

    PubMed

    Maeda, Akiko; Palczewski, Krzysztof

    2013-01-01

    Continuous generation of visual chromophore through the visual (retinoid) cycle is essential to maintain eyesight and retinal heath. Impairments in this cycle and related pathways adversely affect vision. In this review, we summarize the chemical reactions of vitamin A metabolites involved in the retinoid cycle and describe animal models of associated human diseases. Development of potential therapies for retinal disorders in these animal models is also introduced. PMID:25210527

  16. Retinal degeneration in animal models with a defective visual cycle

    PubMed Central

    Maeda, Akiko; Palczewski, Krzysztof

    2014-01-01

    Continuous generation of visual chromophore through the visual (retinoid) cycle is essential to maintain eyesight and retinal heath. Impairments in this cycle and related pathways adversely affect vision. In this review, we summarize the chemical reactions of vitamin A metabolites involved in the retinoid cycle and describe animal models of associated human diseases. Development of potential therapies for retinal disorders in these animal models is also introduced. PMID:25210527

  17. Mathematical modelling of animate and intentional motion.

    PubMed Central

    Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees

    2003-01-01

    Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374

  18. Animal models and their results in gastrointestinal alcohol research.

    PubMed

    Siegmund, Soren V; Haas, Stephan; Singer, Manfred V

    2005-01-01

    Alcohol-induced diseases of the gastrointestinal tract play an important role in clinical gastroenterology. However, the precise pathophysiological mechanisms are still largely unknown. Alcohol research depends essentially on animal models due to the fact that controlled experimental studies of ethanol-induced diseases in humans are unethical. Animal models have already been successfully applied to disclose and analyze molecular mechanisms in alcohol-induced diseases, partially by using knockout technology. Because of a lack of transferability of some animal models to the human condition, results have to be interpreted cautiously. For some alcohol-related diseases like chronic alcoholic pancreatitis, the ideal animal model does not yet exist. Here we provide an overview of the most commonly used animal models in gastrointestinal alcohol research. We will also briefly discuss the findings based on animal models as well as the current concepts of pathophysiological mechanisms involved in acute and chronic alcoholic damage of the esophagus, stomach, small and large intestine, pancreas and liver. PMID:16508282

  19. Animal Models of Interferon Signature Positive Lupus.

    PubMed

    Zhuang, Haoyang; Szeto, Christopher; Han, Shuhong; Yang, Lijun; Reeves, Westley H

    2015-01-01

    Human lupus is strongly associated with a gene expression signature characterized by over-expression of Type I interferon-regulated genes. A strong interferon signature generally is not seen in the standard mouse models of lupus, despite considerable evidence for the involvement of toll-like receptor-driven interferon production. In contrast, pristane-induced lupus exhibits a prominent TLR7-dependent interferon signature. Importantly, genetic disorders with dysregulated interferon production in both human beings and mice cause severe autoinflammatory diseases but not the typical manifestations of lupus, suggesting that interferon over-production is insufficient to cause systemic lupus erythematosus itself. Single-gene models in mice suggest that lupus-like disease may result from abnormalities in B-cell activation and the clearance of dead cells. Pristane may mimic human systemic lupus erythematosus by causing synergistic abnormalities in interferon production along with defective clearance of apoptotic cells and over-active B-cell signaling. PMID:26097482

  20. Animal Models of Interferon Signature Positive Lupus

    PubMed Central

    Zhuang, Haoyang; Szeto, Christopher; Han, Shuhong; Yang, Lijun; Reeves, Westley H.

    2015-01-01

    Human lupus is strongly associated with a gene expression signature characterized by over-expression of Type I interferon-regulated genes. A strong interferon signature generally is not seen in the standard mouse models of lupus, despite considerable evidence for the involvement of toll-like receptor-driven interferon production. In contrast, pristane-induced lupus exhibits a prominent TLR7-dependent interferon signature. Importantly, genetic disorders with dysregulated interferon production in both human beings and mice cause severe autoinflammatory diseases but not the typical manifestations of lupus, suggesting that interferon over-production is insufficient to cause systemic lupus erythematosus itself. Single-gene models in mice suggest that lupus-like disease may result from abnormalities in B-cell activation and the clearance of dead cells. Pristane may mimic human systemic lupus erythematosus by causing synergistic abnormalities in interferon production along with defective clearance of apoptotic cells and over-active B-cell signaling. PMID:26097482

  1. [Use of animal models of clinical pain].

    PubMed

    Guilbaud, G

    1990-11-01

    For a better understanding of clinical pain, several groups involved in the study of basic pain mechanisms have proposed the use of various experimental models close to clinical situations. They are based either on neurogenic or inflammatory processes. Data obtained with three of these models will be developed in the paper: rats rendered arthritic by Freund's adjuvant injection into the tail, rats with an intraplantar injection of carrageenin in one hind-paw, rats with a moderate ligature of one common sciatic nerve. The various pharmacological approaches revealed dramatic changes of the analgesic effects of morphine and other opioid substances, and a spectacular modification of the endogenous opioid reactivity. A further enhancement of the initial hyperalgesia was observed with high doses (1-3 mg/kg iv) of naloxone (known as an antagonist of morphine), contrasting with the paradoxical analgesia induced with the low dose (peaking up for 3 micrograms/kg iv). Electrophysiological studies emphasized dramatic changes of neuronal responsiveness in structures involved in the transmission of the nociceptive messages. In each of these models, electrophysiological data provide new insights on the physiopathological mechanisms of the related clinical pain. PMID:2092200

  2. The Use of Animal Models for Stroke Research: A Review

    PubMed Central

    Casals, Juliana B; Pieri, Naira CG; Feitosa, Matheus LT; Ercolin, Anna CM; Roballo, Kelly CS; Barreto, Rodrigo SN; Bressan, Fabiana F; Martins, Daniele S; Miglino, Maria A; Ambrósio, Carlos E

    2011-01-01

    Stroke has been identified as the second leading cause of death worldwide. Stroke is a focal neurologic deficit caused by a change in cerebral circulation. The use of animal models in recent years has improved our understanding of the physiopathology of this disease. Rats and mice are the most commonly used stroke models, but the demand for larger models, such as rabbits and even nonhuman primates, is increasing so as to better understand the disease and its treatment. Although the basic mechanisms of stroke are nearly identical among mammals, we here discuss the differences between the human encephalon and various animals. In addition, we compare common surgical techniques used to induce animal models of stroke. A more complete anatomic knowledge of the cerebral vessels of various model species is needed to develop more reliable models for objective results that improve knowledge of the pathology of stroke in both human and veterinary medicine. PMID:22330245

  3. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences.

    PubMed

    Lavelle, Gillian M; White, Michelle M; Browne, Niall; McElvaney, Noel G; Reeves, Emer P

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF. PMID:27340661

  4. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    PubMed Central

    McElvaney, Noel G.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF. PMID:27340661

  5. The Fuzzy Model for Diagnosis of Animal Disease

    NASA Astrophysics Data System (ADS)

    Jianhua, Xiao; Luyi, Shi; Yu, Zhang; Li, Gao; Honggang, Fan; Haikun, Ma; Hongbin, Wang

    The knowledge of animal disease diagnosis was fuzzy; the fuzzy model can imitate the character of clinical diagnosis for veterinary. The fuzzy model of disease, the methods for class the disease group of differential diagnosis and the fuzzy diagnosis model were discussed in this paper.

  6. Simple animal model of Helicobacter pylori infection

    PubMed Central

    Werawatganon, Duangporn

    2014-01-01

    Helicobacter pylori (H. pylori) has become accepted as a human pathogen for the development of gastritis and gastroduodenal ulcer. To develop a simple rat model of chronic H. pylori infection, male Sprague-Dawley rats were pretreated with streptomycin suspended in tap water (5 mg/mL) for 3 d. The rats were inoculated by gavage at 1 mL/rat with H. pylori suspension (5 × 108-5 × 1010 CFU/mL) twice daily at an interval of 4 h for three consecutive days. Two weeks after inoculation, rats were sacrificed and the stomachs were removed. Antral biopsies were performed for urease test and the stomachs were taken for histopathology. Successful H. pylori inoculation was defined as a positive urease test and histopathology. We reported a 69.8%-83.0% success rate for H. pylori infection using the urease test, and hematoxylin and eosin staining confirmed the results. Histopathological analysis detected bacteria along the mucous lining of the surface epithelium and crypt lumen and demonstrated mild to moderate gastric inflammation in successfully inoculated rats. We developed a simple rat model of chronic H. pylori infection for research into gastric microcirculatory changes and therapy with plant products. PMID:24914363

  7. Animal models for prion-like diseases.

    PubMed

    Fernández-Borges, Natalia; Eraña, Hasier; Venegas, Vanesa; Elezgarai, Saioa R; Harrathi, Chafik; Castilla, Joaquín

    2015-09-01

    Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease. PMID:25907990

  8. Impairments of Synaptic Plasticity in Aged Animals and in Animal Models of Alzheimer's Disease

    PubMed Central

    Balietti, Marta; Tamagnini, Francesco; Fattoretti, Patrizia; Burattini, Costanza; Casoli, Tiziana; Platano, Daniela; Lattanzio, Fabrizia

    2012-01-01

    Abstract Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimer's disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here. PMID:22533439

  9. Neuroimaging in Animal Seizure Models with 18FDG-PET

    PubMed Central

    Mirrione, Martine M.; Tsirka, Stella E.

    2011-01-01

    Small animal neuroimaging has become increasingly available to researchers, expanding the breadth of questions studied with these methods. Applying these noninvasive techniques to the open questions underlying epileptogenesis is no exception. A major advantage of small animal neuroimaging is its translational appeal. Studies can be well controlled and manipulated, examining the living brain in the animal before, during, and after the disease onset or disease treatment. The results can also be compared to data collected on human patients. Over the past decade, we and others have explored metabolic patterns in animal models of epilepsy to gain insight into the circuitry underlying development of the disease. In this paper, we provide technical details on how metabolic imaging that uses 2-deoxy-2[18F]fluoro-D-glucose (18FDG) and positron emission tomography (PET) is performed and explain the strengths and limitations of these studies. We will also highlight recent advances toward understanding epileptogenesis through small animal imaging. PMID:22937232

  10. Population distribution models: species distributions are better modeled using biologically relevant data partitions

    PubMed Central

    2011-01-01

    Background Predicting the geographic distribution of widespread species through modeling is problematic for several reasons including high rates of omission errors. One potential source of error for modeling widespread species is that subspecies and/or races of species are frequently pooled for analyses, which may mask biologically relevant spatial variation within the distribution of a single widespread species. We contrast a presence-only maximum entropy model for the widely distributed oldfield mouse (Peromyscus polionotus) that includes all available presence locations for this species, with two composite maximum entropy models. The composite models either subdivided the total species distribution into four geographic quadrants or by fifteen subspecies to capture spatially relevant variation in P. polionotus distributions. Results Despite high Area Under the ROC Curve (AUC) values for all models, the composite species distribution model of P. polionotus generated from individual subspecies models represented the known distribution of the species much better than did the models produced by partitioning data into geographic quadrants or modeling the whole species as a single unit. Conclusions Because the AUC values failed to describe the differences in the predictability of the three modeling strategies, we suggest using omission curves in addition to AUC values to assess model performance. Dividing the data of a widespread species into biologically relevant partitions greatly increased the performance of our distribution model; therefore, this approach may prove to be quite practical and informative for a wide range of modeling applications. PMID:21929792

  11. Animal models of obsessive-compulsive disorder: utility and limitations.

    PubMed

    Alonso, Pino; López-Solà, Clara; Real, Eva; Segalàs, Cinto; Menchón, José Manuel

    2015-01-01

    Obsessive-compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled "animal models of OCD" should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder. PMID:26346234

  12. Animal models of obsessive–compulsive disorder: utility and limitations

    PubMed Central

    Alonso, Pino; López-Solà, Clara; Real, Eva; Segalàs, Cinto; Menchón, José Manuel

    2015-01-01

    Obsessive–compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled “animal models of OCD” should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder. PMID:26346234

  13. Animal Models of Speech and Vocal Communication Deficits Associated With Psychiatric Disorders.

    PubMed

    Konopka, Genevieve; Roberts, Todd F

    2016-01-01

    Disruptions in speech, language, and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language compared with vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. We review animal models of vocal learning and vocal communication and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language, and vocal communication. PMID:26232298

  14. [Efficient and rapid liquid reduction animal model].

    PubMed

    Han, Bing; Kou, Shu-ming; Chen, Biao; Peng, Yao-zong; Wang, Yue; Han, Yu-long; Ye, Xiao-li; Li, Xue-gang

    2015-11-01

    To investigate the practicability of establishing zebrafish lipid-lowering drug screening model and the effect of berberine (BBR) on hyperlipidemic zebrafish. Three-month-old zebrafishes were fed with 4% cholesterol for 0, 2, 4, 8, 14, 20, 25, 30 days, and the level of total cholesterol in serum was measured. Zebrafish were randomly divided into four groups: the control group, the high cholesterol diet group, the 0.01% simvastatin-treated group, the 0.1% berberine-treated group and the 0.2% berberine-treated group. The levels of total cholesterol (TC), triglyceride (TC), low density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) in serum were measured; the expression of hepatic HMGCR, LDLR and CYP7A1a mRNA expressions were detected by real time PCR. Oil red O staining was performed to observe the changes in fat content in the liver. According to the result, the level of serum TC in the 4% cholesterol diet group significantly was higher than that of the normal control group in a time-dependent manner and reached a stable level at the 20th day. The BBR group showed significant decreases in the levels of TC, TG and LDL-c, HMGCR mRNA expression and fat content and increases in LDLR and CYP7A1a mRNA. The hyperlipidemia zebrafish model was successfully established by feeding with 4% cholesterol for 20 days. The findings lay a foundation for further screenings on lipid-lowering drugs. PMID:27097422

  15. Animal models for inherited peripheral neuropathies

    PubMed Central

    MARTINI, RUDOLF

    1997-01-01

    Recent progress in human genetics and neurobiology has led to the identification of various mutations in particular myelin genes as the cause for many of the known inherited demyelinating peripheral neuropathies. Mutations in 3 distinct myelin genes, PMP22, P0, and connexin 32 cause the 3 major demyelinating subtypes of Charcot-Marie-Tooth (CMT) disease, CMT1A, CMT1B and CMTX, respectively. In addition, a reduction in the gene dosage of PMP22 causes hereditary neuropathy with liability to pressure palsies (HNPP), while particular point mutations in PMP22 and P0 cause the severe Dejerine-Sottas (DS) neuropathy. A series of spontaneous and genetically engineered rodent mutants for genes for the above-mentioned myelin constituents are now available and their suitability to serve as models for these still untreatable diseases is an issue of particular interest. The spontaneous mutants Trembler-J and Trembler, with point mutations in PMP22, reflect some of the pathological alterations seen in CMT1A and DS patients, respectively. Furthermore, engineered mutants that either over or underexpress particular myelin genes are suitable models for patients who are similarly compromised in the gene dosage of the corresponding genes. In addition, engineered mutants heterozygously or homozygously deficient in the myelin component P0 show the pathology of distinct CMT1B and DS patients, respectively, while Cx32 deficient mice develop pathological abnormalities similar to those of CMTX patients. Mutants that mimic human peripheral neuropathies might allow the development of strategies to alleviate the symptoms of the diseases, and help to define environmental risk factors for aggravation of the disease. In addition, such mutants might be instrumental in the development of strategies to cure the diseases by gene therapy. PMID:9418989

  16. Animal models for inherited peripheral neuropathies.

    PubMed

    Martini, R

    1997-10-01

    Recent progress in human genetics and neurobiology has led to the identification of various mutations in particular myelin genes as the cause for many of the known inherited demyelinating peripheral neuropathies. Mutations in 3 distinct myelin genes, PMP22, P0, and connexin 32 cause the 3 major demyelinating subtypes of Charcot-Marie-Tooth (CMT) disease, CMT1A, CMT1B and CMTX, respectively. In addition, a reduction in the gene dosage of PMP22 causes hereditary neuropathy with liability to pressure palsies (HNPP), while particular point mutations in PMP22 and P0 cause the severe Dejerine-Sottas (DS) neuropathy. A series of spontaneous and genetically engineered rodent mutants for genes for the above-mentioned myelin constituents are now available and their suitability to serve as models for these still untreatable diseases is an issue of particular interest. The spontaneous mutants Trembler-J and Trembler, with point mutations in PMP22, reflect some of the pathological alterations seen in CMT1A and DS patients, respectively. Furthermore, engineered mutants that either over or underexpress particular myelin genes are suitable models for patients who are similarly compromised in the gene dosage of the corresponding genes. In addition, engineered mutants heterozygously or homozygously deficient in the myelin component P0 show the pathology of distinct CMT1B and DS patients, respectively, while Cx32 deficient mice develop pathological abnormalities similar to those of CMTX patients. Mutants that mimic human peripheral neuropathies might allow the development of strategies to alleviate the symptoms of the diseases, and help to define environmental risk factors for aggravation of the disease. In addition, such mutants might be instrumental in the development of strategies to cure the diseases by gene therapy. PMID:9418989

  17. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy

    PubMed Central

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms

  18. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy.

    PubMed

    Goldstein, Lee E; McKee, Ann C; Stanton, Patric K

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms

  19. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  20. Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction.

    PubMed

    Meyer, Jerrold S; Hamel, Amanda F

    2014-01-01

    Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction. PMID:25225311

  1. Models of Stress in Nonhuman Primates and Their Relevance for Human Psychopathology and Endocrine Dysfunction

    PubMed Central

    Meyer, Jerrold S.; Hamel, Amanda F.

    2014-01-01

    Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction. PMID:25225311

  2. Use of Animal Models to Develop Antiaddiction Medications

    PubMed Central

    Gardner, Eliot L.

    2008-01-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric “high” produced by acute administration of addictive drugs; the dysphoric “crash” produced by acute withdrawal, drug-seeking, and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines. PMID:18803910

  3. Animal models of post-traumatic stress disorder: face validity

    PubMed Central

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  4. Animal models of post-traumatic stress disorder: face validity.

    PubMed

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  5. Recent developments in experimental animal models of Henipavirus infection.

    PubMed

    Rockx, Barry

    2014-07-01

    Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans. PMID:24488776

  6. Behavioral Models of Tinnitus and Hyperacusis in Animals

    PubMed Central

    Hayes, Sarah H.; Radziwon, Kelly E.; Stolzberg, Daniel J.; Salvi, Richard J.

    2014-01-01

    The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis. PMID:25278931

  7. Progress of clinical practice on the management of burn-associated pain: Lessons from animal models.

    PubMed

    McIntyre, Matthew K; Clifford, John L; Maani, Christopher V; Burmeister, David M

    2016-09-01

    Opioid-based analgesics provide the mainstay for attenuating burn pain, but they have a myriad of side effects including respiratory depression, nausea, impaired gastrointestinal motility, sedation, dependence, physiologic tolerance, and opioid-induced hyperalgesia. To test and develop novel analgesics, validated burn-relevant animal models of pain are indispensable. Herein we review such animal models, which are mostly limited to rodent models of burn-induced, inflammatory, and neuropathic pain. The latter two are pain syndromes that provide insight into the pain caused by systemic pro-inflammatory cytokines and direct injury to nerves (e.g., after severe burn), respectively. To date, no single animal model optimally mimics the complex pathophysiology and pain that a human burn patient experiences. No currently available burn-pain model examines effects of pharmacological intervention on wound healing. As cornerstones of pain and wound healing, pro-inflammatory mediators may be utilized for insight into both processes. Moreover, common clinical concerns such as systemic inflammatory response syndrome and multiple organ dysfunction remain unaddressed. For development of analgesics, these aberrations can significantly alter the potential efficacy and/or adverse effects of a prescribed analgesic following burn trauma. We therefore suggest that a multi-model strategy would be the most clinically relevant when evaluating novel analgesics for use in burn patients. PMID:26906668

  8. Animal models of GM2 gangliosidosis: utility and limitations

    PubMed Central

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  9. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  10. How Animal Models Inform Child and Adolescent Psychiatry

    PubMed Central

    Stevens, Hanna E.; Vaccarino, Flora M.

    2015-01-01

    Objective Every available approach should be utilized to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of non-human animals and the biology and behavior they share with humans is an approach that must be used to advance the clinical work of child psychiatry. Method We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. Results We present examples of how animal systems are utilized to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Conclusion Animal models have clear advantages and disadvantages that must both be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. PMID:25901771

  11. ANIMAL MODEL OF NIPPOSTRONGYLUS BRASILIENSIS AND HELIGMOSOMOIDES POLYGYRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal models of Nippostrongylus brasiliensis and Heligmosomoides polygyrus infection are powerful tools for the investigation of the basic biology of immune responses and protective immunity. In particular they model the induction and maintenance of Th2 type immune responses and exhibiting all the ...

  12. Enhanced sensitization to animal, interpersonal, and intergroup fear-relevant stimuli (but no evidence for selective one-trial fear learning).

    PubMed

    Lipp, Ottmar V; Cronin, Sophie L; Alhadad, Sakinah S J; Luck, Camilla C

    2015-11-01

    Selective sensitization has been proposed as an alternative explanation for enhanced responding to animal fear-relevant stimuli--snakes and spiders--during extinction of Pavlovian fear conditioning. The current study sought to replicate the phenomenon using a shock workup procedure as the sensitizing manipulation and to extend it to interpersonal and intergroup fear-relevant stimuli--angry faces and other-race faces. Assessment of selective sensitization was followed by a one-trial fear learning procedure. Selective sensitization, larger electrodermal responses to fear-relevant than to control stimuli after sensitization, or a larger increase in electrodermal responding to fear-relevant than to control stimuli after sensitization was observed across stimulus domains. However, the one-trial fear learning procedure failed to provide evidence for enhanced fear conditioning to fear-relevant stimuli. One-trial fear learning was either absent or present for fear-relevant and nonfear-relevant stimuli. The current study confirms that electrodermal responses to fear-relevant stimuli across stimulus domains are subject to selective sensitization. PMID:26283264

  13. Animal Models in HIV-1 Protection and Therapy

    PubMed Central

    Hessell, Ann J.; Haigwood, Nancy L.

    2015-01-01

    Purpose of the review The purpose of this review is to highlight major advances in the development and use of animal models for HIV-1 research during the last year. Recent findings Animal model research during the last year has focused on the: (i) development and refinement of models; (ii) use of these models to explore key questions about HIV entry, immune control, and persistence; and (iii) key discoveries with these models testing therapeutic and vaccine concepts. Some of the greatest breakthroughs have been in understanding early events surrounding transmission, the effectiveness of broadly neutralizing human monoclonal antibodies as passive prophylaxis, and some new ideas in the area of eliminating the viral reservoir in established infection. Summary Despite the lack of a flawless HIV-1 infection and pathogenesis model, the field has several models that have already made important contributions to our understanding of early events, immune control, and the potential for novel therapies. PMID:25730345

  14. The pain of pain: challenges of animal behavior models.

    PubMed

    Barrett, James E

    2015-04-15

    Berend Olivier has had a long-standing interest in the utility of animal models for a wide variety of therapeutic indications. His work has spanned multiple types of models, blending ethological, or species typical and naturalistic behaviors, along with methodologies based on learned behavior. He has consistently done so, from an analytical as well as predictive perspective, and has made multiple contributions while working in both the pharmaceutical industry and within an academic institution. Although focused primarily on psychiatric disorders, Berend has conducted research in the area of pain in humans and in animals, demonstrating an expansive appreciation for the breadth, scope and significance of the science and applications of the discipline of pharmacology to these diverse areas. This review focuses on the use of animal models in pain research from the perspective of the long-standing deficiencies in the development of therapeutics in this area and from a preclinical perspective where the translational weaknesses have been quite problematic. The challenges confronting animal models of pain, however, are not unique to this area of research, as they cut across several therapeutic areas. Despite the deficiencies, failures and concerns, existing animal models of pain continue to be of widespread use and are essential to progress in pain research as well as in other areas. Although not focusing on specific animal models of pain, this paper seeks to examine general issues facing the use of these models. It does so by exploring alternative approaches which capture recent developments, which build upon principles and concepts we have learned from Berend's contributions, and which provide the prospect of helping to address the absence of novel therapeutics in this area. PMID:25583180

  15. Computer simulation models are implementable as replacements for animal experiments.

    PubMed

    Badyal, Dinesh K; Modgill, Vikas; Kaur, Jasleen

    2009-04-01

    It has become increasingly difficult to perform animal experiments, because of issues related to the procurement of animals, and strict regulations and ethical issues related to their use. As a result, it is felt that the teaching of pharmacology should be more clinically oriented and that unnecessary animal experimentation should be avoided. Although a number of computer simulation models (CSMs) are available, they are not being widely used. Interactive demonstrations were conducted to encourage the departmental faculty to use CSMs. Four different animal experiments were selected, that dealt with actions of autonomic drugs. The students observed demonstrations of animal experiments involving conventional methods and the use of CSMs. This was followed by hands-on experience of the same experiment, but using CSMs in small groups, instead of hands-on experience with the animal procedures. Test scores and feedback showed that there was better understanding of the mechanisms of action of the drugs, gained in a shorter time. The majority of the students found the teaching programme used to be good to excellent. CSMs can be used repeatedly and independently by students, and this avoids unnecessary experimentation and also causing pain and trauma to animals. The CSM programme can be implemented in existing teaching schedules for pharmacology undergraduate teaching with basic infrastructure support, and is readily adaptable for use by other institutes. PMID:19453215

  16. A content relevance model for social media health information.

    PubMed

    Prybutok, Gayle Linda; Koh, Chang; Prybutok, Victor R

    2014-04-01

    Consumer health informatics includes the development and implementation of Internet-based systems to deliver health risk management information and health intervention applications to the public. The application of consumer health informatics to educational and interventional efforts such as smoking reduction and cessation has garnered attention from both consumers and health researchers in recent years. Scientists believe that smoking avoidance or cessation before the age of 30 years can prevent more than 90% of smoking-related cancers and that individuals who stop smoking fare as well in preventing cancer as those who never start. The goal of this study was to determine factors that were most highly correlated with content relevance for health information provided on the Internet for a study group of 18- to 30-year-old college students. Data analysis showed that the opportunity for convenient entertainment, social interaction, health information-seeking behavior, time spent surfing on the Internet, the importance of available activities on the Internet (particularly e-mail), and perceived site relevance for Internet-based sources of health information were significantly correlated with content relevance for 18- to 30-year-old college students, an educated subset of this population segment. PMID:24429836

  17. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms.

    PubMed

    Tuovinen, Tiina S; Kasurinen, Anne; Häikiö, Elina; Tervahauta, Arja; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. PMID:26363398

  18. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia.

    PubMed

    Burrows, Emma L; Hannan, Anthony J

    2016-04-01

    Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations. PMID:26687973

  19. Pain assessment in animal models: do we need further studies?

    PubMed Central

    Gigliuto, Carmelo; De Gregori, Manuela; Malafoglia, Valentina; Raffaeli, William; Compagnone, Christian; Visai, Livia; Petrini, Paola; Avanzini, Maria Antonietta; Muscoli, Carolina; Viganò, Jacopo; Calabrese, Francesco; Dominioni, Tommaso; Allegri, Massimo; Cobianchi, Lorenzo

    2014-01-01

    In the last two decades, animal models have become important tools in understanding and treating pain, and in predicting analgesic efficacy. Although rodent models retain a dominant role in the study of pain mechanisms, large animal models may predict human biology and pharmacology in certain pain conditions more accurately. Taking into consideration the anatomical and physiological characteristics common to man and pigs (median body size, digestive apparatus, number, size, distribution and communication of vessels in dermal skin, epidermal–dermal junctions, the immunoreactivity of peptide nerve fibers, distribution of nociceptive and non-nociceptive fiber classes, and changes in axonal excitability), swines seem to provide the most suitable animal model for pain assessment. Locomotor function, clinical signs, and measurements (respiratory rate, heart rate, blood pressure, temperature, electromyography), behavior (bright/quiet, alert, responsive, depressed, unresponsive), plasma concentration of substance P and cortisol, vocalization, lameness, and axon reflex vasodilatation by laser Doppler imaging have been used to assess pain, but none of these evaluations have proved entirely satisfactory. It is necessary to identify new methods for evaluating pain in large animals (particularly pigs), because of their similarities to humans. This could lead to improved assessment of pain and improved analgesic treatment for both humans and laboratory animals. PMID:24855386

  20. Pain assessment in animal models: do we need further studies?

    PubMed

    Gigliuto, Carmelo; De Gregori, Manuela; Malafoglia, Valentina; Raffaeli, William; Compagnone, Christian; Visai, Livia; Petrini, Paola; Avanzini, Maria Antonietta; Muscoli, Carolina; Viganò, Jacopo; Calabrese, Francesco; Dominioni, Tommaso; Allegri, Massimo; Cobianchi, Lorenzo

    2014-01-01

    In the last two decades, animal models have become important tools in understanding and treating pain, and in predicting analgesic efficacy. Although rodent models retain a dominant role in the study of pain mechanisms, large animal models may predict human biology and pharmacology in certain pain conditions more accurately. Taking into consideration the anatomical and physiological characteristics common to man and pigs (median body size, digestive apparatus, number, size, distribution and communication of vessels in dermal skin, epidermal-dermal junctions, the immunoreactivity of peptide nerve fibers, distribution of nociceptive and non-nociceptive fiber classes, and changes in axonal excitability), swines seem to provide the most suitable animal model for pain assessment. Locomotor function, clinical signs, and measurements (respiratory rate, heart rate, blood pressure, temperature, electromyography), behavior (bright/quiet, alert, responsive, depressed, unresponsive), plasma concentration of substance P and cortisol, vocalization, lameness, and axon reflex vasodilatation by laser Doppler imaging have been used to assess pain, but none of these evaluations have proved entirely satisfactory. It is necessary to identify new methods for evaluating pain in large animals (particularly pigs), because of their similarities to humans. This could lead to improved assessment of pain and improved analgesic treatment for both humans and laboratory animals. PMID:24855386

  1. Animal Models of Tick-Borne Hemorrhagic Fever Viruses

    PubMed Central

    Zivcec, Marko; Safronetz, David; Feldmann, Heinz

    2013-01-01

    Tick-borne hemorrhagic fever viruses (TBHFV) are detected throughout the African and Eurasian continents and are an emerging or re-emerging threat to many nations. Due to the largely sporadic incidences of these severe diseases, information on human cases and research activities in general have been limited. In the past decade, however, novel TBHFVs have emerged and areas of endemicity have expanded. Therefore, the development of countermeasures is of utmost importance in combating TBHFV as elimination of vectors and interrupting enzootic cycles is all but impossible and ecologically questionable. As in vivo models are the only way to test efficacy and safety of countermeasures, understanding of the available animal models and the development and refinement of animal models is critical in negating the detrimental impact of TBHFVs on public and animal health. PMID:25437041

  2. Engineering Large Animal Species to Model Human Diseases.

    PubMed

    Rogers, Christopher S

    2016-01-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. PMID:27367161

  3. Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury.

    PubMed

    Rajan, Thangavelu Soundara; Cuzzocrea, Salvatore; Bruschetta, Daniele; Quartarone, Angelo

    2016-01-01

    Traumatic brain injury (TBI) in humans causes a broad range of structural damage and functional deficits due to both primary and secondary injury mechanisms. Over the past three decades, animal models have been established to replicate the diverse changes of human TBI, to study the underlying pathophysiology and to develop new therapeutic strategies. However, drugs that were identified as neuroprotective in animal brain injury models were not successful in clinical trials phase II or phase III. Repetitive transcranial magnetic stimulation (rTMS) is a powerful noninvasive approach to excite cortical neurons in humans and animals, widely applied for therapeutic purpose in patients with brain diseases. In addition, recent animal studies showed rTMS as a strong neuroprotective tool. In this chapter, we discuss the rationale and mechanisms related to rTMS as well as therapeutic applications and putative molecular mechanisms. Furthermore, relevant biochemical studies and neuroprotective effect in animal models and possible application of rTMS as a novel treatment for rodent brain injury models are discussed. PMID:27604732

  4. Differential optical imaging in animal models using infrared transillumination

    NASA Astrophysics Data System (ADS)

    Dixit, Sanhita; Le, Theresamai; Amin, Khalid; Faris, Gregory W.

    2007-02-01

    We demonstrate the use of diffuse optical imaging via transillumination to detect cancerous tissue in a rat animal model. In this imaging modality infrared radiation is transmitted through whole animal tissue. The radiation is nonionizing and uses endogenous contrast: namely deoxyhemoglobin (Hb) and oxyhemoglobin (HbO). Differential image analysis is performed to visualize the presence of cancerous tissue. Varying levels of inspired air and carbogen gases ensure a differential response in absorption by blood due to changing levels of Hb and HbO. We believe that this response may be sufficient to provide contrast in differential image analysis. The present method also sheds light on physiological challenges in whole animal imaging especially with respect to significant optical signals from healthy tissue. Specifically, we have seen strong signals from abdominal regions in normal rats indicative of diet related anomalous transmission. We have also been able to track the changes in optical signal during animal death.

  5. The translational role of diffusion tensor image analysis in animal models of developmental pathologies.

    PubMed

    Oguz, Ipek; McMurray, Matthew S; Styner, Martin; Johns, Josephine M

    2012-01-01

    Diffusion tensor magnetic resonance imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in-depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers. PMID:22627095

  6. Minireview: Epigenetic programming of diabetes and obesity: animal models.

    PubMed

    Seki, Yoshinori; Williams, Lyda; Vuguin, Patricia M; Charron, Maureen J

    2012-03-01

    A growing body of evidence suggests that the intrauterine (IU) environment has a significant and lasting effect on the long-term health of the growing fetus and the development of metabolic disease in later life as put forth in the fetal origins of disease hypothesis. Metabolic diseases have been associated with alterations in the epigenome that occur without changes in the DNA sequence, such as cytosine methylation of DNA, histone posttranslational modifications, and micro-RNA. Animal models of epigenetic modifications secondary to an altered IU milieu are an invaluable tool to study the mechanisms that determine the development of metabolic diseases, such as diabetes and obesity. Rodent and nonlitter bearing animals are good models for the study of disease, because they have similar embryology, anatomy, and physiology to humans. Thus, it is feasible to monitor and modify the IU environment of animal models in order to gain insight into the molecular basis of human metabolic disease pathogenesis. In this review, the database of PubMed was searched for articles published between 1999 and 2011. Key words included epigenetic modifications, IU growth retardation, small for gestational age, animal models, metabolic disease, and obesity. The inclusion criteria used to select studies included animal models of epigenetic modifications during fetal and neonatal development associated with adult metabolic syndrome. Experimental manipulations included: changes in the nutritional status of the pregnant female (calorie-restricted, high-fat, or low-protein diets during pregnancy), as well as the father; interference with placenta function, or uterine blood flow, environmental toxin exposure during pregnancy, as well as dietary modifications during the neonatal (lactation) as well as pubertal period. This review article is focused solely on studies in animal models that demonstrate epigenetic changes that are correlated with manifestation of metabolic disease, including diabetes

  7. Animal models to study acute and chronic intestinal inflammation in mammals.

    PubMed

    Jiminez, Janelle A; Uwiera, Trina C; Douglas Inglis, G; Uwiera, Richard R E

    2015-01-01

    Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is

  8. Animal Models to Study the Role of Long-Term Hypergastrinemia in Gastric Carcinogenesis

    PubMed Central

    Fossmark, Reidar; Qvigstad, Gunnar; Martinsen, Tom Chr.; Hauso, Øyvind; Waldum, Helge L.

    2011-01-01

    Patients with chronic hypergastrinemia due to chronic atrophic gastritis or gastrinomas have an increased risk of developing gastric malignancy, and it has been questioned whether also patients with hypergastrinemia caused by long-term use of acid inhibiting drugs are at risk. Gastric carcinogenesis in humans is affected by numerous factors and progresses slowly over years. When using animal models with the possibility of intervention, a complex process can be dissected by studying the role of hypergastrinemia in carcinogenesis within a relatively short period of time. We have reviewed findings from relevant models where gastric changes in animal models of long-term hypergastrinemia have been investigated. In all species where long-term hypergastrinemia has been induced, there is an increased risk of gastric malignancy. There is evidence that hypergastrinemia is a common causative factor in carcinogenesis in the oxyntic mucosa, while other cofactors may vary in the different models. PMID:21127707

  9. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications.

    PubMed

    Pohl, Calvin S; Medland, Julia E; Moeser, Adam J

    2015-12-15

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. PMID:26451004

  10. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: Translational relevance and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis,...

  11. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  12. Animal models of skin disease for drug discovery

    PubMed Central

    Avci, Pinar; Sadasivam, Magesh; Gupta, Asheesh; De Melo, Wanessa CMA; Huang, Ying-Ying; Yin, Rui; Rakkiyappan, Chandran; Kumar, Raj; Otufowora, Ayodeji; Nyame, Theodore; Hamblin, Michael R

    2013-01-01

    Introduction Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. Areas covered In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. Expert opinion Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia. PMID:23293893

  13. The role of animal models in tendon research

    PubMed Central

    Hast, M. W.; Zuskov, A.; Soslowsky, L. J.

    2014-01-01

    Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202. PMID:24958818

  14. HCV animal models: a journey of more than 30 years.

    PubMed

    Meuleman, Philip; Leroux-Roels, Geert

    2009-09-01

    In the 1970s and 1980s it became increasingly clear that blood transfusions could induce a form of chronic hepatitis that could not be ascribed to any of the viruses known to cause liver inflammation. In 1989, the hepatitis C virus (HCV) was discovered and found to be the major causative agent of these infections. Because of its narrow tropism, the in vivo study of this virus was, especially in the early days, limited to the chimpanzee. In the past decade, several alternative animal models have been created. In this review we review these novel animal models and their contribution to our current understanding of the biology of HCV. PMID:21994547

  15. Translational value of animal models of kidney failure.

    PubMed

    Ortiz, Alberto; Sanchez-Niño, Maria D; Izquierdo, Maria C; Martin-Cleary, Catalina; Garcia-Bermejo, Laura; Moreno, Juan A; Ruiz-Ortega, Marta; Draibe, Juliana; Cruzado, Josep M; Garcia-Gonzalez, Miguel A; Lopez-Novoa, Jose M; Soler, Maria J; Sanz, Ana B

    2015-07-15

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future. PMID:25814248

  16. [Using spectra and visual modeling to study animal coloration].

    PubMed

    Yang, Can-Chao; Liang, Wei

    2013-12-01

    Animal coloration has many adaptive functions and plays an important role in signal communication both among intra- and interspecies. For example, it has been widely used in mate choice, intrasexual competition, and as aposematic or cryptic coloration in predator avoidance. Many colors and pigments also function in microbial resistance, structural support, photoprotection, and thermoregulation. Differing from human vision, based on RGB system, many other animals have tetrachromatic vision system, which includes the ultraviolet (UV) range that is undetectable by human eyes. Previous studies showed that ultraviolet is important in some species' social signaling and communication. Moreover, cone inner segments of most classes of vertebrate contain an oil droplet, which acts as a cut-off filter absorbing wavelengths below a critical value, and transmitting longer wavelengths. Animal and human vision is significantly different in that the classification of color by human standards may be a misleading for measuring animal coloration. Here, we illuminate how to use fiber spectrophotometer to quantify animal coloration, and analyze it by spectra analysis and visual modeling. As an example, we obtained plumage reflectance spectra from male and female scarlet minivets (Pericrocotus flammeus). This bird species is sexually dimorphic that the males have plumage color in black and red, while the females have grey and yellow accordingly. These plumage colors are typically generated from melanin and carotenoid pigments, which have an effect on antioxidant activity. Analysis of spectra segments provides hue, chroma, brightness and relative brightness of each wave range. Visual modeling maps color patches on tetrahedral color space and Robinson projection, meanwhile, calculates color span and color space volume which describe the color contrast and color diversity, respectively. In visual modeling, ambient light irradiance and spectral sensitivity of animal retinas are included

  17. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Remington Nelson, Everette Jacob

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial. PMID:26415576

  18. Different animal welfare orientations towards some key research areas of current relevance to pastoral dairy farming in New Zealand.

    PubMed

    Webster, J R; Schütz, K E; Sutherland, M A; Stewart, M; Mellor, D J

    2015-01-01

    The New Zealand dairy industry needs to meet public expectations regarding animal welfare in order to retain the freedom to operate and achieve market success. Three key orientations towards animal welfare assessment have been identified, namely biological functioning, affective state and natural living, the last two of which are more recent foci for societal concern. Biological functioning was the first and most-studied aspect of animal welfare and continues to be important, but now the contribution of affective state to animal well-being is emphasised much more. Natural living, or naturalness, has received relatively less attention from animal welfare science. It is proposed that increasing the use of naturalness as a contextual reference point for considering species-specific behavioural expressions of affective state will enhance its inclusion in animal welfare assessment. Nevertheless, all three orientations need to be considered in order to evaluate the significance of welfare research findings. On this basis, five key aspects of the New Zealand dairy industry that have been the subject of recent research, due to the risk of them not meeting public expectations, are highlighted and discussed. The aspects are provision of shade and shelter, meeting targets for body condition, provision of comfortable surfaces for rearing calves, and for adult cows while off pasture, and pain relief for disbudding of calves. Research evidence indicates that the industry guidelines on body condition score, if met, would satisfy public expectations across the three orientations to animal welfare, whereas further work is needed on the other aspects. It is concluded that considering these three orientations to animal welfare when planning research and then evaluating the outcomes will help to promote the market success of the dairy industry in New Zealand. PMID:25157557

  19. Animal models in the drug discovery pipeline for Alzheimer's disease

    PubMed Central

    Van Dam, Debby; De Deyn, Peter Paul

    2011-01-01

    With increasing feasibility of predicting conversion of mild cognitive impairment to dementia based on biomarker profiling, the urgent need for efficacious disease-modifying compounds has become even more critical. Despite intensive research, underlying pathophysiological mechanisms remain insufficiently documented for purposeful target discovery. Translational research based on valid animal models may aid in alleviating some of the unmet needs in the current Alzheimer's disease pharmaceutical market, which includes disease-modification, increased efficacy and safety, reduction of the number of treatment unresponsive patients and patient compliance. The development and phenotyping of animal models is indeed essential in Alzheimer's disease-related research as valid models enable the appraisal of early pathological processes – which are often not accessible in patients, and subsequent target discovery and evaluation. This review paper summarizes and critically evaluates currently available animal models, and discusses their value to the Alzheimer drug discovery pipeline. Models dealt with include spontaneous models in various species, including senescence-accelerated mice, chemical and lesion-induced rodent models, and genetically modified models developed in Drosophila melanogaster, Caenorhabditis elegans, Danio rerio and rodents. Although highly valid animal models exist, none of the currently available models recapitulates all aspects of human Alzheimer's disease, and one should always be aware of the potential dangers of uncritical extrapolating from model organisms to a human condition that takes decades to develop and mainly involves higher cognitive functions. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21371009

  20. Large Animal Models of Neurological Disorders for Gene Therapy

    PubMed Central

    Gagliardi, Christine; Bunnell, Bruce A.

    2009-01-01

    The development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinson’s disease, Huntington’s disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research. PMID:19293458

  1. The ototoxicity of trichloroethylene: extrapolation and relevance of high-concentration, short-duration animal exposure data.

    PubMed

    Crofton, K M; Zhao, X

    1997-07-01

    Inhalation exposure to high concentrations of 1,1, 2-trichloroethylene (TCE) has been shown to damage hearing in the mid-frequency range in the rat. The present study directly evaluated the adequacy of high-concentration, short-term exposures to TCE for predicting the neurotoxicity produced by longer duration exposures. Adult male Long-Evans rats (n = 10-12 per group) were exposed to TCE via inhalation (whole body) in 1-m3 stainless steel flow-through chambers for 6 hr/day, 5 days/week. The following exposures were used: 1 day (4000-8000 ppm), 1 week (1000-4000 ppm), 4 weeks (800-3200 ppm), and 13 weeks (800-3200 ppm). Air-only exposed animals served as controls. Auditory thresholds were determined for a 16-kHz tone 3-5 weeks after exposure using reflex modification audiometry. Results replicated previous findings of a hearing loss at 16 kHz for all exposure durations. The dB15 concentrations (concentration that increases thresholds by 15 dB) for 16-kHz thresholds were 6218, 2992, 2592, and 2160 ppm for the 1-day, 1-week, 4-week and 13-week exposures, respectively. These data demonstrate that the ototoxicity of TCE was less than that predicted by a strict concentration x time relationship. These data also demonstrate that simple models of extrapolation (i.e., C x t = k, Haber's Law) overestimate the potency of TCE when extrapolating from short-duration to longer-duration exposures. Furthermore, these data suggest that, relative to ambient or occupational exposures, the ototoxicity of TCE in the rat is a high-concentration effect. PMID:9268609

  2. Animal models of human colorectal cancer: Current status, uses and limitations

    PubMed Central

    Mittal, Vijay K; Bhullar, Jasneet Singh; Jayant, Kumar

    2015-01-01

    AIM: To make orthotopic colon cancer murine models a more clearly understood subject. The orthotopic tumor models have been found to be more relevant in replicating the human disease process as compared to heterotopic models, many techniques for making orthotopic colorectal murine models have been reported. METHODS: We evaluated the current literature for various reported orthotopic colon cancer models to understand their techniques, advantages and limitations. An extensive literature review was performed by searching the National Library of Medicine Database (PubMed) using MeSH terms animal model; colon cancer; orthotopic model; murine model. Twenty studies related to colon cancer orthotopic xenograft model were evaluated in detail and discussed here. RESULTS: The detailed analysis of all relevant reports on orthotopic model showed tumor take rate between 42%-100%. While models using the enema technique and minimally invasive technique have reported development of tumor from mucosa with tumor take rate between 87%-100% with metastasis in 76%-90%. CONCLUSION: Over the years, the increased understanding of the murine models of human colon cancer has resulted in the development of various models. Each reported model has some limitations. These latest models have opened up new doors for continuing cancer research for not only understanding the colon cancer pathogenesis but also aid in the development of newer chemotherapeutic drugs as they mimic the human disease closely. PMID:26557009

  3. Animal models of major depression and their clinical implications.

    PubMed

    Czéh, Boldizsár; Fuchs, Eberhard; Wiborg, Ove; Simon, Mária

    2016-01-01

    Major depressive disorder is a common, complex, and potentially life-threatening mental disorder that imposes a severe social and economic burden worldwide. Over the years, numerous animal models have been established to elucidate pathophysiology that underlies depression and to test novel antidepressant treatment strategies. Despite these substantial efforts, the animal models available currently are of limited utility for these purposes, probably because none of the models mimics this complex disorder fully. It is presumable that psychiatric illnesses, such as affective disorders, are related to the complexity of the human brain. Here, we summarize the animal models that are used most commonly for depression, and discuss their advantages and limitations. We discuss genetic models, including the recently developed optogenetic tools and the stress models, such as the social stress, chronic mild stress, learned helplessness, and early-life stress paradigms. Moreover, we summarize briefly the olfactory bulbectomy model, as well as models that are based on pharmacological manipulations and disruption of the circadian rhythm. Finally, we highlight common misinterpretations and often-neglected important issues in this field. PMID:25891248

  4. A partial hearing animal model for chronic electro-acoustic stimulation

    NASA Astrophysics Data System (ADS)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  5. A partial hearing animal model for chronic electro-acoustic stimulation

    PubMed Central

    Irving, S.; Wise, A.K.; Millard, R.E.; Shepherd, R.K.; Fallon, J.B.

    2014-01-01

    Objective Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This manuscript outlines such a model that has been successfully used in our laboratory. Approach This manuscript outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main Result Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain

  6. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    PubMed

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. PMID:27066769

  7. Uniportal video-assisted thoracoscopic lobectomy in the animal model

    PubMed Central

    Gonzalez-Rivas, Diego; Fernández-Prado, Ricardo; Delgado, María; Fieira, Eva M.; Centeno, Alberto

    2014-01-01

    We introduce the training on uniportal video-assisted thoracoscopic (VATS) lobectomy in sheep. This animal model is helpful to learn the different view, the importance of lung exposure and the key points of the instrumentation. In this article we present three videos with the left upper lobectomy, the left lower lobectomy and the right upper lobectomy in the sheep. PMID:25379206

  8. An Aerosolized Brucella spp. Challenge Model for Laboratory Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To characterize the optimal aerosol dosage of Brucella abortus strain 2308 (S2308) and B. melitensis (S16M) in a laboratory animal model of brucellosis, dosages of 10**3 to 10**10 CFU were nebulized to mice. Although tissue weights were minimally influenced, total colony-forming units (CFU) per tis...

  9. Animal models and high field imaging and spectroscopy

    PubMed Central

    Öz, Gülin; Tkáč, Ivan; Uğurbil, Kamil

    2013-01-01

    A plethora of magnetic resonance (MR) techniques developed in the last two decades provide unique and noninvasive measurement capabilities for studies of basic brain function and brain diseases in humans. Animal model experiments have been an indispensible part of this development. MR imaging and spectroscopy measurements have been employed in animal models, either by themselves or in combination with complementary and often invasive techniques, to enlighten us about the information content of such MR methods and/or verify observations made in the human brain. They have also been employed, with or independently of human efforts, to examine mechanisms underlying pathological developments in the brain, exploiting the wealth of animal models available for such studies. In this endeavor, the desire to push for ever-higher spatial and/or spectral resolution, better signal-to-noise ratio, and unique image contrast has inevitably led to the introduction of increasingly higher magnetic fields. As a result, today, animal model studies are starting to be conducted at magnetic fields ranging from ~ 11 to 17 Tesla, significantly enhancing the armamentarium of tools available for the probing brain function and brain pathologies. PMID:24174899

  10. Animal models of cerebral ischemia for evaluation of drugs.

    PubMed

    Gupta, Y K; Briyal, Seema

    2004-10-01

    Stroke is a major cause of death and disability worldwide. The resulting burden on the society continues to grow, with increase in the incidence of stroke. Brain attack is a term introduced to describe the acute presentation of stroke, which emphasizes the need for urgent action to remedy the situation. Though a large number of therapeutic agents like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or being evaluated, there remains a large gap between the benefits by these agents and properties an ideal drug for stroke should offer. In recent years much attention is being paid towards the exploration of herbal preparation, antioxidant agents and combination therapies including COX-2 inhibitors in experimental model of stroke. For better evaluation of the drugs and enhancement of their predictability from animal experimentation to clinical settings, it has been realized that the selection of animal models, the parameters to be evaluated should be critically assessed. Focal and global cerebral ischemia represents diseases that are common in the human population. Understanding the mechanisms of injury and neuroprotection in these diseases is important to learn new target sites to treat ischemia. There are many animal models available to investigate injury mechanisms and neuroprotective strategies. In this article we attempted to summarize commonly explored animal models of focal and global cerebral ischemia and evaluate their advantages and limitations. PMID:15907047

  11. Strategies for improving animal models for regenerative medicine.

    PubMed

    Cibelli, Jose; Emborg, Marina E; Prockop, Darwin J; Roberts, Michael; Schatten, Gerald; Rao, Mahendra; Harding, John; Mirochnitchenko, Oleg

    2013-03-01

    The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic. PMID:23472868

  12. Strategies for Improving Animal Models for Regenerative Medicine

    PubMed Central

    Cibelli, Jose; Emborg, Marina E.; Prockop, Darwin J.; Roberts, Michael; Schatten, Gerald; Rao, Mahendra; Harding, John; Mirochnitchenko, Oleg

    2015-01-01

    The field of regenerative medicine is moving toward translation to clinical practice. However, there are still knowledge gaps and safety concerns regarding stem cell-based therapies. Improving large animal models and methods for transplantation, engraftment, and imaging should help address these issues, facilitating eventual use of stem cells in the clinic. PMID:23472868

  13. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    ERIC Educational Resources Information Center

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  14. Animal models for viral infection and cell exhaustion

    PubMed Central

    McGary, Colleen S.; Silvestri, Guido; Paiardini, Mirko

    2014-01-01

    Purpose of review Despite eliciting an early antiviral T cell response, HIV-specific T cells are unable to prevent disease progression, partly due to their loss of effector functions, known as T cell exhaustion. Restoring this T cell functionality represents a critical step for regaining immunological control of HIV-1 replication, and may be fundamental for the development of a functional cure for HIV. In this context, the use of animal models is invaluable for evaluating the efficacy and mechanisms of novel therapeutics aimed at reinvigorating T cell functions. Recent findings While non-human primates continue to be a mainstay for studying HIV pathogenesis and therapies, recent advances in humanized mouse models have improved their ability to recapitulate the features of cell exhaustion during HIV infection. Targeting coinhibitory receptors in HIV- and SIV-infected animals has resulted in viral load reductions, presumably by reinvigorating the effector functions of T cells. Additionally, studies combining PD-1 blockade with suppressive ART provide further support of the use of coinhibitory receptor blockades in restoring T cell function by delaying viral load rebound upon ART interruption. Future in vivo studies should build on recent in vitro data supporting the simultaneous targeting of multiple regulators of cell exhaustion. Summary In this review, we describe the most recent advances in the use of animal models for the study of cell exhaustion following HIV/SIV infection. These findings suggest that the use of animal models is increasingly critical in translating immunotherapeutics into clinical practice. PMID:25023622

  15. An Animal Oral Exposure Model – Sensitization vs. Tolerance

    EPA Science Inventory

    Animal models are needed to assess novel proteins produced through biotechnology for potential dietary allergenicity. The exact characteristics that give certain foods allergenic potential are unclear, but must include both the potential to sensitize (induce IgE) as well as the c...

  16. Animal models to study neonatal nutrition in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of neonatal nutrition on the health status of the newborn and incidence of disease in later life is a topic of intense interest. Animal models are an invaluable tool to identify mechanisms that mediate the effect of nutrition on neonatal development and metabolic function. This review hig...

  17. Aquatic Animal Models – Not Just for Ecotox Anymore

    EPA Science Inventory

    A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...

  18. Neonatal chest drain insertion--an animal model.

    PubMed Central

    Hourihane, J. O.; Crawshaw, P. A.; Hall, M. A.

    1995-01-01

    Trainees rarely see a neonatal pneumothorax because of the combination of decreased doctors' hours, the use of surfactant, and modern ventilator techniques. An animal model, using a dead rabbit, is described that could be used to train doctors and others in the management of this serious complication of neonatal care. PMID:7712271

  19. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia.

    PubMed

    Beaudoin-Gobert, Maude; Sgambato-Faure, Véronique

    2014-06-01

    Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders. PMID:24486710

  20. The use of animal models in multiple myeloma.

    PubMed

    Libouban, H

    2015-06-01

    In myeloma, the understanding of the tissular, cellular and molecular mechanisms of the interactions between tumor plasma cells and bone cells have progressed from in vitro and in vivo studies. However none of the known animal models of myeloma reproduce exactly the human form of the disease. There are currently three types of animal models: (1) injection of pristane oil in BALB/c mice leads to intraperitoneal plasmacytomas but without bone marrow colonization and osteolysis; (2) injection of malignant plasma cell lines in immunodeficient mice SCID or NOD/SCID; the use of the SCID-hu or SCID-rab model allows the use of fresh plasma cells obtained from MM patients; (3) injection of allogeneic malignant plasma cells (5T2MM, 5T33) in the C57BL/KalwRij mouse induces bone marrow proliferation and osteolytic lesions. These cells did not grow in vitro and can be propagated by injection of plasma cells isolated from bone marrow of a mouse at end stage of the disease into young recipient mice. The 5TGM1 is a subclone of 5T33MM cells and can grow in vitro. Among the different models, the 5TMM models and SCID-hu/SCID-rab models were extensively used to test pathophysiological hypotheses and to assess anti-osteoclastic, anti-osteoblastic or anti-tumor therapies in myeloma. In the present review, we report the different types of animal models of MM and describe their interests and limitations. PMID:25898798

  1. Transgenic animal models of neurodegeneration based on human genetic studies

    PubMed Central

    Richie, Christopher T.; Hoffer, Barry J.; Airavaara, Mikko

    2011-01-01

    The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease. PMID:20931247

  2. Clinical Strategies and Animal Models for Developing Senolytic Agents

    PubMed Central

    Kirkland, James L.; Tchkonia, Tamara

    2014-01-01

    Aging is associated with increasing predisposition to multiple chronic diseases. One fundamental aging process that is often operative at sites of the pathology underlying chronic age-related diseases is cellular senescence. Small molecule senolytic agents are being developed. For successful drug development: 1) appropriate animal models of human age-related diseases need to be devised. 2) Models have to be made in which it can be proven that beneficial phenotypic effects are actually caused through clearing senescent cells by putative senolytic agents, as opposed to “off-target” effects of these agents on non-senescent cells. 3) Models are needed to test efficacy of drugs and to uncover potential side effects of senolytic agents. Development of the optimal animal models and clinical trial paradigms for senolytic agents warrants an intensive effort, since senolytic agents, if successful in delaying, preventing, alleviating, or reversing age-related diseases as a group would be transformative. PMID:25446976

  3. Animal models of head and neck squamous cell carcinoma.

    PubMed

    Supsavhad, Wachiraphan; Dirksen, Wessel P; Martin, Chelsea K; Rosol, Thomas J

    2016-04-01

    Head and neck squamous cell carcinoma (HNSCC) is the most common oral cancer worldwide. Local bone invasion into the maxilla or mandible and metastasis to regional lymph nodes often result in a poor prognosis, decreased quality of life and shortened survival time for HNSCC patients. Poor response to treatment and clinical outcomes are the major concerns in this aggressive cancer. Multiple animal models have been developed to replicate spontaneous HNSCC and investigate genetic alterations and novel therapeutic targets. This review provides an overview of HNSCC as well as the traditional animal models used in HNSCC preclinical research. The value and challenges of each in vivo model are discussed. Similarity between HNSCC in humans and cats and the possibility of using spontaneous feline oral squamous cell carcinoma (FOSCC) as a model for HNSCC in translational research are highlighted. PMID:26965084

  4. Testing a model of aging in animal experiments.

    PubMed

    Tyurin YuN; Yakovlev AYu; Shi, J; Bass, L

    1995-03-01

    A stochastic model of aging is developed in terms of accumulation and expression of intracellular lesions caused by environment or intrinsic genetic program. In contrast to the commonly used Gompertz-Makeham approach to the parametric analysis of mortality data, the model yields a hazard function that is bounded from above. For testing the model in experiments aimed at studying animal longevity, a Kolmogorov-type statistical test is presented with regard to the hypothesis involving unknown parameters. Examples concerning longevity of intact animals of two different species, as well as the effect of a prolonged irradiation at a low dose rate, are given to illustrate the model application and goodness-of-fit testing. The results of the analysis of published data show that the rate of lesion formation is not sustained at a constant level throughout life, though in some cases its variations with age can be considered negligible. PMID:7766791

  5. A systematic review of animal models for experimental neuroma.

    PubMed

    Toia, Francesca; Giesen, Thomas; Giovanoli, Pietro; Calcagni, Maurizio

    2015-10-01

    Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols

  6. Effects of exercise on brain functions in diabetic animal models

    PubMed Central

    Yi, Sun Shin

    2015-01-01

    Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM. PMID:25987956

  7. A review of models relevant to road safety.

    PubMed

    Hughes, B P; Newstead, S; Anund, A; Shu, C C; Falkmer, T

    2015-01-01

    It is estimated that more than 1.2 million people die worldwide as a result of road traffic crashes and some 50 million are injured per annum. At present some Western countries' road safety strategies and countermeasures claim to have developed into 'Safe Systems' models to address the effects of road related crashes. Well-constructed models encourage effective strategies to improve road safety. This review aimed to identify and summarise concise descriptions, or 'models' of safety. The review covers information from a wide variety of fields and contexts including transport, occupational safety, food industry, education, construction and health. The information from 2620 candidate references were selected and summarised in 121 examples of different types of model and contents. The language of safety models and systems was found to be inconsistent. Each model provided additional information regarding style, purpose, complexity and diversity. In total, seven types of models were identified. The categorisation of models was done on a high level with a variation of details in each group and without a complete, simple and rational description. The models identified in this review are likely to be adaptable to road safety and some of them have previously been used. None of systems theory, safety management systems, the risk management approach, or safety culture was commonly or thoroughly applied to road safety. It is concluded that these approaches have the potential to reduce road trauma. PMID:24997016

  8. War on Carcinogens: industry disputes human relevance of chemicals causing cancer in laboratory animals based on unproven hypotheses, using kidney tumors as an example.

    PubMed

    Melnick, Ronald L; Ward, Jerrold M; Huff, James

    2013-01-01

    Evidence from studies in animals is essential for identifying chemicals likely to cause or contribute to many diseases in humans, including cancers. Yet, to avoid or delay the implementation of protective public health standards, the chemical industry typically denies cancer causation by agents they produce. The spurious arguments put forward to discount human relevance are often based on inadequately tested hypotheses or modes of action that fail to meet Bradford Hill criteria for causation. We term the industry attacks on the relevance of animal cancer findings as the "War on Carcinogens." Unfortunately, this tactic has been effective in preventing timely and appropriate health protective actions on many economically important yet carcinogenic chemicals, including: arsenic, asbestos, benzene, 1,3-butadiene, formaldehyde, methylene chloride, phthalates, tobacco usage, trichloroethylene [TCE], and others. Recent examples of the "War on Carcinogens" are chemicals causing kidney cancer in animals. Industry consultants argue that kidney tumor findings in rats with exacerbated chronic progressive nephropathy (CPN) are not relevant to humans exposed to these chemicals. We dispute and dismiss this unsubstantiated claim with data and facts, and divulge unprofessional actions from a leading toxicology journal. PMID:24588032

  9. Alcohol-triggered signs of migraine: An animal model.

    PubMed

    Alabwah, Yaqoub; Ji, Yadong; Seminowicz, David A; Quiton, Raimi L; Masri, Radi

    2016-03-01

    We describe an animal model where characteristics of migraine can be triggered by alcohol administration. In rats chronically implanted with a cannula overlying the transverse sinus, we applied potassium chloride (KCl) (or saline) to the meninges to sensitize trigeminovascular afferents. We assessed effects of repeated KCl application on animal behavior using conditioned place avoidance paradigm. In KCl-treated rats we discovered that alcohol injections (0.2 mg/kg), but not saline, resulted in the development of extracephalic allodynia and signs of ongoing pain. PMID:27021138

  10. The Cambridge MRI database for animal models of Huntington disease.

    PubMed

    Sawiak, Stephen J; Morton, A Jennifer

    2016-01-01

    We describe the Cambridge animal brain magnetic resonance imaging repository comprising 400 datasets to date from mouse models of Huntington disease. The data include raw images as well as segmented grey and white matter images with maps of cortical thickness. All images and phenotypic data for each subject are freely-available without restriction from (http://www.dspace.cam.ac.uk/handle/1810/243361/). Software and anatomical population templates optimised for animal brain analysis with MRI are also available from this site. PMID:25941090

  11. Pre-clinical in vivo models for the screening of bone biomaterials for oral/craniofacial indications: focus on small-animal models.

    PubMed

    Stavropoulos, Andreas; Sculean, Anton; Bosshardt, Dieter D; Buser, Daniel; Klinge, Björn

    2015-06-01

    Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice. PMID:25867979

  12. Relevance of a Managerial Decision-Model to Educational Administration.

    ERIC Educational Resources Information Center

    Lundin, Edward.; Welty, Gordon

    The rational model of classical economic theory assumes that the decision maker has complete information on alternatives and consequences, and that he chooses the alternative that maximizes expected utility. This model does not allow for constraints placed on the decision maker resulting from lack of information, organizational pressures,…

  13. On the empirical relevance of the transient in opinion models

    NASA Astrophysics Data System (ADS)

    Banisch, Sven; Araújo, Tanya

    2010-07-01

    While the number and variety of models to explain opinion exchange dynamics is huge, attempts to justify the model results using empirical data are relatively rare. As linking to real data is essential for establishing model credibility, this Letter develops an empirical confirmation experiment by which an opinion model is related to real election data. The model is based on a representation of opinions as a vector of k bits. Individuals interact according to the principle that similarity leads to interaction and interaction leads to still more similarity. In the comparison to real data we concentrate on the transient opinion profiles that form during the dynamic process. An artificial election procedure is introduced which allows to relate transient opinion configurations to the electoral performance of candidates for which data are available. The election procedure based on the well-established principle of proximity voting is repeatedly performed during the transient period and remarkable statistical agreement with the empirical data is observed.

  14. Animal Models of Osteoarthritis: Comparisons and Key Considerations.

    PubMed

    McCoy, A M

    2015-09-01

    Osteoarthritis (OA) is unquestionably one of the most important chronic health issues in humans, affecting millions of individuals and costing billions of dollars annually. Despite widespread awareness of this disease and its devastating impact, the pathogenesis of early OA is not completely understood, hampering the development of effective tools for early diagnosis and disease-modifying therapeutics. Most human tissue available for study is obtained at the time of joint replacement, when OA lesions are end stage and little can be concluded about the factors that played a role in disease development. To overcome this limitation, over the past 50 years, numerous induced and spontaneous animal models have been utilized to study disease onset and progression, as well as to test novel therapeutic interventions. Reflecting the heterogeneity of OA itself, no single "gold standard" animal model for OA exists; thus, a challenge for researchers lies in selecting the most appropriate model to answer a particular scientific question of interest. This review provides general considerations for model selection, as well as important features of species such as mouse, rat, guinea pig, sheep, goat, and horse, which researchers should be mindful of when choosing the "best" animal model for their intended purpose. Special consideration is given to key variations in pathology among species as well as recommended guidelines for reporting the histologic features of each model. PMID:26063173

  15. Peripheral biomarkers in animal models of major depressive disorder.

    PubMed

    Carboni, Lucia

    2013-01-01

    Investigations of preclinical biomarkers for major depressive disorder (MDD) encompass the quantification of proteins, peptides, mRNAs, or small molecules in blood or urine of animal models. Most studies aim at characterising the animal model by including the assessment of analytes or hormones affected in depressive patients. The ultimate objective is to validate the model to better understand the neurobiological basis of MDD. Stress hormones or inflammation-related analytes associated with MDD are frequently measured. In contrast, other investigators evaluate peripheral analytes in preclinical models to translate the results in clinical settings afterwards. Large-scale, hypothesis-free studies are performed in MDD models to identify candidate biomarkers. Other studies wish to propose new targets for drug discovery. Animal models endowed with predictive validity are investigated, and the assessment of peripheral analytes, such as stress hormones or immune molecules, is comprised to increase the confidence in the target. Finally, since the mechanism of action of antidepressants is incompletely understood, studies investigating molecular alterations associated with antidepressant treatment may include peripheral analyte levels. In conclusion, preclinical biomarker studies aid the identification of new candidate analytes to be tested in clinical trials. They also increase our understanding of MDD pathophysiology and help to identify new pharmacological targets. PMID:24167347

  16. Bayesian modeling of animal- and herd-level prevalences.

    PubMed

    Branscum, A J; Gardner, I A; Johnson, W O

    2004-12-15

    We reviewed Bayesian approaches for animal-level and herd-level prevalence estimation based on cross-sectional sampling designs and demonstrated fitting of these models using the WinBUGS software. We considered estimation of infection prevalence based on use of a single diagnostic test applied to a single herd with binomial and hypergeometric sampling. We then considered multiple herds under binomial sampling with the primary goal of estimating the prevalence distribution and the proportion of infected herds. A new model is presented that can be used to estimate the herd-level prevalence in a region, including the posterior probability that all herds are non-infected. Using this model, inferences for the distribution of prevalences, mean prevalence in the region, and predicted prevalence of herds in the region (including the predicted probability of zero prevalence) are also available. In the models presented, both animal- and herd-level prevalences are modeled as mixture distributions to allow for zero infection prevalences. (If mixture models for the prevalences were not used, prevalence estimates might be artificially inflated, especially in herds and regions with low or zero prevalence.) Finally, we considered estimation of animal-level prevalence based on pooled samples. PMID:15579338

  17. Functional GI disorders: from animal models to drug development

    PubMed Central

    Mayer, E A; Bradesi, S; Chang, L; Spiegel, B M R; Bueller, J A; Naliboff, B D

    2014-01-01

    Despite considerable efforts by academic researchers and by the pharmaceutical industry, the development of novel pharmacological treatments for irritable bowel syndrome (IBS) and other functional gastrointestinal (GI) disorders has been slow and disappointing. The traditional approach to identifying and evaluating novel drugs for these symptom-based syndromes has relied on a fairly standard algorithm using animal models, experimental medicine models and clinical trials. In the current article, the empirical basis for this process is reviewed, focusing on the utility of the assessment of visceral hypersensitivity and GI transit, in both animals and humans, as well as the predictive validity of preclinical and clinical models of IBS for identifying successful treatments for IBS symptoms and IBS-related quality of life impairment. A review of published evidence suggests that abdominal pain, defecation-related symptoms (urgency, straining) and psychological factors all contribute to overall symptom severity and to health-related quality of life. Correlations between readouts obtained in preclinical and clinical models and respective symptoms are small, and the ability to predict drug effectiveness for specific as well as for global IBS symptoms is limited. One possible drug development algorithm is proposed which focuses on pharmacological imaging approaches in both preclinical and clinical models, with decreased emphasis on evaluating compounds in symptom-related animal models, and more rapid screening of promising candidate compounds in man. PMID:17965064

  18. NNK-Induced Lung Tumors: A Review of Animal Model

    PubMed Central

    Zheng, Hua-Chuan; Takano, Yasuo

    2011-01-01

    The incidence of lung adenocarcinoma has been remarkably increasing in recent years due to the introduction of filter cigarettes and secondary-hand smoking because the people are more exposed to higher amounts of nitrogen oxides, especially 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK), which is widely applied in animal model of lung tumors. In NNK-induced lung tumors, genetic mutation, chromosome instability, gene methylation, and activation of oncogenes have been found so as to disrupt the expression profiles of some proteins or enzymes in various cellular signal pathways. Transgenic animal with specific alteration of lung cancer-related molecules have also been introduced to clarify the molecular mechanisms of NNK in the pathogenesis and development of lung tumors. Based on these animal models, many antioxidant ingredients and antitumor chemotherapeutic agents have been proved to suppress the NNK-induced lung carcinogenesis. In the future, it is necessary to delineate the most potent biomarkers of NNK-induced lung tumorigenesis, and to develop efficient methods to fight against NNK-associated lung cancer using animal models. PMID:21559252

  19. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    SciTech Connect

    May, Jennifer E. Morse, H. Ruth Xu, Jinsheng Donaldson, Craig

    2012-09-15

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  20. MAKING ANIMALS ALCOHOLIC: SHIFTING LABORATORY MODELS OF ADDICTION

    PubMed Central

    RAMSDEN, EDMUND

    2015-01-01

    The use of animals as experimental organisms has been critical to the development of addiction research from the nineteenth century. They have been used as a means of generating reliable data regarding the processes of addiction that was not available from the study of human subjects. Their use, however, has been far from straightforward. Through focusing on the study of alcoholism, where the nonhuman animal proved a most reluctant collaborator, this paper will analyze the ways in which scientists attempted to deal with its determined sobriety and account for their consistent failure to replicate the volitional consumption of ethanol to the point of physical dependency. In doing so, we will see how the animal model not only served as a means of interrogating a complex pathology, but also came to embody competing definitions of alcoholism as a disease process, and alternative visions for the very structure and purpose of a research field. PMID:25740698

  1. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis.

    PubMed

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José; Herrera-Esparza, Rafael

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  2. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    PubMed Central

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  3. Tupaia belangeri as an experimental animal model for viral infection.

    PubMed

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development. PMID:25048261

  4. Animal models for Ebola and Marburg virus infections.

    PubMed

    Nakayama, Eri; Saijo, Masayuki

    2013-01-01

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. PMID:24046765

  5. Are animal models useful for studying human disc disorders/degeneration?

    PubMed

    Alini, Mauro; Eisenstein, Stephen M; Ito, Keita; Little, Christopher; Kettler, A Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim

    2008-01-01

    Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738

  6. FATE OF DIETARY PERCHLORATE IN LACTATING DAIRY COWS: RELEVANCE TO ANIMAL HEALTH AND LEVELS IN THE MILK SUPPLY.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perchlorate is a goitrogenic anion that competitively inhibits the sodium iodide transporter and has been detected in forages and in commercial milk throughout the U.S. The fate of perchlorate and its effect on animal health were studied in lactating cows, ruminally infused with perchlorate for fiv...

  7. Animal models of enterovirus 71 infection: applications and limitations.

    PubMed

    Wang, Ya-Fang; Yu, Chun-Keung

    2014-01-01

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models. PMID:24742252

  8. Neuronal and brain morphological changes in animal models of schizophrenia.

    PubMed

    Flores, Gonzalo; Morales-Medina, Julio César; Diaz, Alfonso

    2016-03-15

    Schizophrenia, a severe and debilitating disorder with a high social burden, affects 1% of the adult world population. Available therapies are unable to treat all the symptoms, and result in strong side effects. For this reason, numerous animal models have been generated to elucidate the pathophysiology of this disorder. All these models present neuronal remodeling and abnormalities in spine stability. It is well known that the complexity in dendritic arborization determines the number of receptive synaptic contacts. Also the loss of dendritic spines and arbor stability are strongly associated with schizophrenia. This review evaluates changes in spine density and dendritic arborization in animal models of schizophrenia. By understanding these changes, pharmacological treatments can be designed to target specific neural systems to attenuate neuronal remodeling and associated behavioral deficits. PMID:26738967

  9. Coarse-grained dynamics of alignment in animal group models

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Levin, Simon; Kevrekidis, Yannis

    2006-03-01

    Coordinated motion in animal groups, such as bird flocks and fish schools, and their models gives rise to remarkable coherent structures. Using equation-free computational tools we explore the coarse-grained dynamics of a model for the orientational movement decision in animal groups, consisting of a small number of informed "leaders" and a large number of uninformed, nonidentical ``followers.'' The direction in which each group member is headed is characterized by a phase angle of a limit-cycle oscillator, whose dynamics are nonlinearly coupled with those of all the other group members. We identify a small number of proper coarse-grained variables (using uncertainty quantification methods) that describe the collective dynamics, and perform coarse projective integration and equation-free bifurcation analysis of the coarse-grained model behavior in these variables.

  10. Animal Models--Decoding the Molecular Biology of Oral Cancer.

    PubMed

    Patil, Shankargouda; Rao, Roopa; Raj, Thirumal

    2015-04-01

    Animal models have long been used to understand the initiation and progression of carcinogenesis, including that of oral mucosa.(1) One of the earliest models used was the chemical-induced oral cancer model, among which the Syrian Hamster check pouch was preferred for its ideal anatomical location and physiological features.(2) Salley et al(3) demonstrated that the cheek pouch mucosa underwent gradual changes from hyperplasia, carcinoma in situ to squamous cell carcinoma when exposed to polycyclic hydrocarbon 9, 10 dimethyl-1,2, benzanthracene (DMBA). Morris(4) standardized the dosage of carcinogen to 0.5% solution of DMBA in acetone and established that 5-week old animals were ideal to induce tumor with minimum time lag and maximum yield. Lin et al(5) demonstrated the synergistic effect of arecaidine with DMBA. PMID:26067740

  11. Characterization of animal models for primary sclerosing cholangitis (PSC)

    PubMed Central

    Fickert, Peter; Pollheimer, Marion J.; Beuers, Ulrich; Lackner, Carolin; Hirschfield, Gideon; Housset, Chantal; Keitel, Verena; Schramm, Christoph; Marschall, Hanns-Ulrich; Karlsen, Tom H.; Melum, Espen; Kaser, Arthur; Eksteen, Bertus; Strazzabosco, Mario; Manns, Michael; Trauner, Michael

    2015-01-01

    Summary Primary sclerosing cholangitis (PSC) is a chronic cholangiopathy characterized by biliary fibrosis, development of cholestasis and end stage liver disease, high risk of malignancy, and frequent need for liver transplantation. The poor understanding of its pathogenesis is also reflected in the lack of effective medical treatment. Well-characterized animal models are utterly needed to develop novel pathogenetic concepts and study new treatment strategies. Currently there is no consensus on how to evaluate and characterize potential PSC models, which makes direct comparison of experimental results and effective exchange of study material between research groups difficult. The International Primary Sclerosing Cholangitis Study Group (IPSCSG) has therefore summarized these key issues in a position paper proposing standard requirements for the study of animal models of PSC. PMID:24560657

  12. Genetic Animal Models of Parkinson’s Disease

    PubMed Central

    Dawson, Ted M.; Ko, Han Seok; Dawson, Valina L.

    2010-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized by the degeneration of dopamine (DA) and non-DA neurons, the almost uniform presence of Lewy bodies, and motor deficits. Although the majority of PD is sporadic, specific genetic defects in rare familial cases have provided unique insights into the pathogenesis of PD. Through the creation of animal and cellular models of mutations in LRRK2 and α-synuclein, which are linked to autosomal dominant PD, and mutations in parkin, DJ-1, and PINK1, which are responsible for autosomal recessive PD, insight into the molecular mechanisms of this disorder are leading to new ideas about the pathogenesis of PD. In this review, we discuss the animal models for these genetic causes of PD, their limitations and value. Moreover, we discuss future directions and potential strategies for optimization of the genetic models. PMID:20547124

  13. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame.

    PubMed

    Ibrahim, Samar H; Hirsova, Petra; Malhi, Harmeet; Gores, Gregory J

    2016-05-01

    With the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become a public health problem with increasing prevalence. The mechanism of disease progression remains obscure and effective therapy is lacking. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary, especially, since causative mechanistic studies of NAFLD are more difficult or unethical to perform in humans. A large number of studies regarding the pathophysiology and treatment of nonalcoholic steatohepatitis (NASH) have been undertaken in mice to model human NAFLD and NASH. This review discusses the known dietary, genetic, and inflammation-based animal models of NASH described in recent years, with a focus on the major advances made in this field. PMID:26626909

  14. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame

    PubMed Central

    Ibrahim, Samar H.; Hirsova, Petra; Malhi, Harmeet; Gores, Gregory J.

    2016-01-01

    With the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become a public health problem with increasing prevalence. The mechanism of disease progression remains obscure and effective therapy is lacking. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary, especially, since causative mechanistic studies of NAFLD are more difficult or unethical to perform in humans. A large number of studies regarding the pathophysiology and treatment of NASH have been undertaken in mice to model human NAFLD and nonalcoholic steatohepatitis (NASH). This review discusses the known dietary, genetic and inflammation based animal models of NASH described in recent years, with a focus on the major advances made in this field. PMID:26626909

  15. Immunology and Homeopathy. 3. Experimental Studies on Animal Models

    PubMed Central

    Bellavite, Paolo; Ortolani, Riccardo; Conforti, Anita

    2006-01-01

    A search of the literature and the experiments carried out by the authors of this review show that there are a number of animal models where the effect of homeopathic dilutions or the principles of homeopathic medicine have been tested. The results relate to the immunostimulation by ultralow doses of antigens, the immunological models of the ‘simile’, the regulation of acute or chronic inflammatory processes and the use of homeopathic medicines in farming. The models utilized by different research groups are extremely etherogeneous and differ as the test medicines, the dilutions and the outcomes are concerned. Some experimental lines, particularly those utilizing mice models of immunomodulation and anti-inflammatory effects of homeopathic complex formulations, give support to a real effect of homeopathic high dilutions in animals, but often these data are of preliminary nature and have not been independently replicated. The evidence emerging from animal models is supporting the traditional ‘simile’ rule, according to which ultralow doses of compounds, that in high doses are pathogenic, may have paradoxically a protective or curative effect. Despite a few encouraging observational studies, the effectiveness of the homeopathic prevention or therapy of infections in veterinary medicine is not sufficiently supported by randomized and controlled trials. PMID:16786046

  16. Translational value of animal models of asthma: Challenges and promises.

    PubMed

    Sagar, Seil; Akbarshahi, Hamid; Uller, Lena

    2015-07-15

    Asthma is a heterogeneous disease in which various environmental stimuli as well as different genes, cell types, cytokines and mediators are implicated. This chronic inflammatory disorder of the airways is estimated to affect as many as 300 million people worldwide. Animal models of asthma, despite their limitations, have contributed greatly to our understanding of disease pathology and the identification of key processes, cells and mediators in asthma. However, it is less likely to develop an animal model of asthma that takes into account all aspects of human disease. The focus in current asthma research is increasingly on severe asthma because this group of patients is not well treated today. Recent advances in studies of asthma exacerbation are thus considered. We therefore need to develop translational model systems for pharmacological evaluation and molecular target discovery of severe asthma and asthma exacerbations. In this review we attempted to discuss the different animal models of asthma, with special emphasis on ovalbumin and house dust mite models, their merits and their limitations. PMID:25823808

  17. Pain perception in neurodevelopmental animal models of schizophrenia.

    PubMed

    Franěk, M; Vaculín, S; Yamamotová, A; Stastný, F; Bubeníková-Valešová, V; Rokyta, R

    2010-01-01

    Animal models are important for the investigation of mechanisms and therapeutic approaches in various human diseases, including schizophrenia. Recently, two neurodevelopmental rat models of this psychosis were developed based upon the use of subunit selective N-methyl-D-aspartate receptor agonists--quinolinic acid (QUIN) and N-acetyl-aspartyl-glutamate (NAAG). The aim of this study was to evaluate pain perception in these models. QUIN or NAAG was infused into lateral cerebral ventricles neonatally. In the adulthood, the pain perception was examined. The rats with neonatal brain lesions did not show any significant differences in acute mechanical nociception and in formalin test compared to controls. However, the neonatally lesioned rats exhibited significantly higher pain thresholds in thermal nociception. Increased levels of mechanical hyperalgesia, accompanying the sciatic nerve constriction (neuropathic pain), were also observed in lesioned rats. Although hyperalgesia was more pronounced in QUIN-treated animals, the number of c-Fos-immunoreactive neurons of the lumbar spinal cord was similar in experimental and control rats. We conclude that neonatal brain lesions attenuated the thermal perception in both nociceptive and neuropathic pain whereas mechanical pain was increased in the model of neuropathic pain only. Thus, nociceptive and neuropathic pain belongs--in addition to behavioral changes--among the parameters which are affected in described animal models of schizophrenia. PMID:20406041

  18. Surgical animal models of neuropathic pain: Pros and Cons.

    PubMed

    Challa, Siva Reddy

    2015-03-01

    One of the biggest challenges for discovering more efficacious drugs for the control of neuropathic pain has been the diversity of chronic pain states in humans. It is now acceptable that different mechanisms contribute to normal physiologic pain, pain arising from tissue damage and pain arising from injury to the nervous system. To study pain transmission, spot novel pain targets and characterize the potential analgesic profile of new chemical entities, numerous experimental animal pain models have been developed that attempt to simulate the many human pain conditions. Among the neuropathic pain models, surgical models have paramount importance in the induction of pain states. Many surgical animal models exist, like the chronic constriction injury (CCI) to the sciatic nerve, partial sciatic nerve ligation (pSNL), spinal nerve ligation (SNL), spared nerve injury (SNI), brachial plexus avulsion (BPA), sciatic nerve transaction (SNT) and sciatic nerve trisection. Most of these models induce responses similar to those found in causalgia, a syndrome of sustained burning pain often seen in the distal extremity after partial peripheral nerve injury in humans. Researchers most commonly use these surgical models in both rats and mice during drug discovery to screen new chemical entities for efficacy in the area of neuropathic pain. However, there is scant literature that provides a comparative discussion of all these surgical models. Each surgical model has its own benefits and limitations. It is very difficult for a researcher to choose a suitable surgical animal model to suit their experimental set-up. Therefore, particular attention has been given in this review to comparatively provide the pros and cons of each model of surgically induced neuropathic pain. PMID:24831263

  19. Pathophysiologically relevant in vitro tumor models for drug screening.

    PubMed

    Das, Viswanath; Bruzzese, Francesca; Konečný, Petr; Iannelli, Federica; Budillon, Alfredo; Hajdúch, Marián

    2015-07-01

    The alarming rate of failure of clinical trials is a major hurdle in cancer therapy that partly results from the inadequate use of in vitro tumor models for the screening of promising hits and leads in preclinical studies. 2D cultures of cancer cell lines that are primarily used for drug screening do not adequately recapitulate tumor microenvironment (TME) complexities compared with 3D cancer cell cultures and tumor-derived primary cell cultures. In this review, we focus on the potential use of in vitro tumor models that reproduce in vivo tumor complexities for effective drug selection in the preclinical stages of drug development. PMID:25908576

  20. Congenital ureteropelvic junction obstruction: human disease and animal models

    PubMed Central

    Klein, Julie; Gonzalez, Julien; Miravete, Mathieu; Caubet, Cécile; Chaaya, Rana; Decramer, Stéphane; Bandin, Flavio; Bascands, Jean-Loup; Buffin-Meyer, Bénédicte; Schanstra, Joost P

    2011-01-01

    Ureteropelvic junction (UPJ) obstruction is the most frequently observed cause of obstructive nephropathy in children. Neonatal and foetal animal models have been developed that mimic closely what is observed in human disease. The purpose of this review is to discuss how obstructive nephropathy alters kidney histology and function and describe the molecular mechanisms involved in the progression of the lesions, including inflammation, proliferation/apoptosis, renin–angiotensin system activation and fibrosis, based on both human and animal data. Also we propose that during obstructive nephropathy, hydrodynamic modifications are early inducers of the tubular lesions, which are potentially at the origin of the pathology. Finally, an important observation in animal models is that relief of obstruction during kidney development has important effects on renal function later in adult life. A major short-coming is the absence of data on the impact of UPJ obstruction on long-term adult renal function to elucidate whether these animal data are also valid in humans. PMID:20681980

  1. Extending animal models of fear conditioning to humans.

    PubMed

    Delgado, M R; Olsson, A; Phelps, E A

    2006-07-01

    A goal of fear and anxiety research is to understand how to treat the potentially devastating effects of anxiety disorders in humans. Much of this research utilizes classical fear conditioning, a simple paradigm that has been extensively investigated in animals, helping outline a brain circuitry thought to be responsible for the acquisition, expression and extinction of fear. The findings from non-human animal research have more recently been substantiated and extended in humans, using neuropsychological and neuroimaging methodologies. Research across species concur that the neural correlates of fear conditioning include involvement of the amygdala during all stages of fear learning, and prefrontal areas during the extinction phase. This manuscript reviews how animal models of fear are translated to human behavior, and how some fears are more easily acquired in humans (i.e., social-cultural). Finally, using the knowledge provided by a rich animal literature, we attempt to extend these findings to human models targeted to helping facilitate extinction or abolishment of fears, a trademark of anxiety disorders, by discussing efficacy in modulating the brain circuitry involved in fear conditioning via pharmacological treatments or emotion regulation cognitive strategies. PMID:16472906

  2. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  3. Sex Differences in Animal Models: Focus on Addiction.

    PubMed

    Becker, Jill B; Koob, George F

    2016-04-01

    The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences. PMID:26772794

  4. Host homeostatic responses to alcohol-induced cellular stress in animal models of alcoholic liver disease.

    PubMed

    Wang, He Joe; Murray, Gary J; Jung, Mary Katherine

    2015-01-01

    Humans develop various clinical phenotypes of severe alcoholic liver disease, including alcoholic hepatitis and cirrhosis, generally after decades of heavy drinking. In such individuals, following each episode of drinking, their livers experience heightened intracellular and extracellular stresses that are closely associated with alcohol consumption and alcohol metabolism. This article focuses on the latest advances made in animal models on evolutionarily conserved homeostatic mechanisms for coping with and resolving these stress conditions. The mechanisms discussed include the stress-activated protein kinase JNK, energy regulator AMPK, autophagy and the inflammatory response. Over time, the host may respond variably to stress with protective mechanisms that are critical in determining an individual's vulnerability to developing severe alcoholic liver disease. A systematic review of these mechanisms and their temporal changes in animal models provides the basis for general conclusions, and raises questions for future studies. The relevance of these data to human conditions is also discussed. PMID:26293978

  5. A Refined Ionic Model for Clusters Relevant to Molten Chloroaluminates

    NASA Astrophysics Data System (ADS)

    Akdeniz, Z.; Tosi, M. P.

    1999-04-01

    A model of ionic interactions in neutral and ionized aluminium trichloride clusters, which accounts for ionic deformability through (i) effective valences and (ii) electrostatic and overlap polarizabilities, is evaluated for applications to classical simulation studies of the pure melt and of molten alkali chloroaluminates. The disposable parameters in the model are determined from the measured values of the bond length in the (AlCl4)- molecular ion and of an Al-Cl bond length and a vibrational frequency in the Al2Cl6 molecular dimer. The model is tested against the remaining available data from experiment and from quantum chemical calculations on molecular bond lengths, bond angles and vibrational frequencies for Al2Cl6 , (AlCl4)- and (Al 2Cl7)-clusters. Structural and dynamical properties are also evaluated for the (Al2Cl5)+ , AlCl3 and (AlCl2)+ clusters. The results for the energetics of dissociation, ion transfer and isomer excitation reactions are compared with as yet unpublished data obtained by P. Ballone in first-principles calculations by a density functional method. The overall quality of the tests supports the approximate validity and transferability of the model.

  6. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    PubMed Central

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992

  7. A clinically relevant model of perinatal global ischemic brain damage in rats.

    PubMed

    Yang, Ting; Zhuang, Lei; Terrando, Niccolò; Wu, Xinmin; Jonhson, Mark R; Maze, Mervyn; Ma, Daqing

    2011-04-01

    We have designed a clinically relevant model of perinatal asphyxia providing intrapartum hypoxia in rats. On gestation day 22 SD rats were anesthetized and the uterine horns were exteriorized and placed in a water bath at 37°C for up to 20min. After this, pups were delivered from the uterus and manually stimulated to initiate breathing in an incubator at 37°C for 1 h in air. Brains were harvested and stained with cresyl violet, caspase-3, and TUNEL to detect morphological and apoptotic changes on postnatal days (PND) 1, 3, and 7. Separate cohorts were maintained until PND 50 and tested for learning and memory using Morris water maze (WM). Survival rate was decreased with longer hypoxic time, and 100% mortality was noted when hypoxia time was beyond 18min. Apoptosis was increased with the duration of hypoxia with neuronal loss and cell shrinkage in the CA1 of hippocampus. The time taken for the juveniles to locate the hidden platform during WM was increased in animals subjected to hypoxia. These data demonstrate that perinatal ischemic injury leads to neuronal death in the hippocampus and long-lasting cognitive dysfunction. This model mimics hypoxic ischemic encephalopathy in humans and may be appropriate for investigating therapeutic interventions. PMID:21281606

  8. Large Animal Models for Foamy Virus Vector Gene Therapy

    PubMed Central

    Trobridge, Grant D.; Horn, Peter A.; Beard, Brian C.; Kiem, Hans-Peter

    2012-01-01

    Foamy virus (FV) vectors have shown great promise for hematopoietic stem cell (HSC) gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit. PMID:23223198

  9. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  10. Microscopic transport model animation visualisation on KML base

    NASA Astrophysics Data System (ADS)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  11. Animal Models of Social Contact and Drug Self-Administration

    PubMed Central

    Strickland, Justin C.; Smith, Mark A.

    2015-01-01

    Social learning theories of drug abuse propose that individuals imitate drug use behaviors modeled by social peers, and that these behaviors are selectively reinforced and/or punished depending on group norms. Historically, animal models of social influence have focused on distal factors (i.e., those factors outside the drug-taking context) in drug self-administration studies. Recently, several investigators have developed novel models, or significantly modified existing models, to examine the role of proximal factors (i.e., those factors that are immediately present at the time of drug taking) on measures of drug self-administration. Studies using these newer models have revealed several important conclusions regarding the effects of social learning on drug abuse: 1) the presence of a social partner influences drug self-administration, 2) the behavior of a social partner determines whether social contact will increase or decrease drug intake, and 3) social partners can model and imitate specific patterns of drug self-administration. These findings are congruent with those obtained in the human laboratory, providing support for the cross-species generality and validity of these preclinical models. This mini-review describes in detail some of the preclinical animal models used to study social contact and drug self-administration to guide future research on social learning and drug abuse. PMID:26159089

  12. Nonalcoholic Steatohepatitis: A Search for Factual Animal Models

    PubMed Central

    Sanches, Sheila Cristina L.; Ramalho, Leandra Naira Z.; Augusto, Marlei Josiele; da Silva, Deisy Mara; Ramalho, Fernando Silva

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, which occurs in the absence of alcohol abuse. NAFLD can evolve into progressive liver injury and fibrosis in the form of nonalcoholic steatohepatitis (NASH). Several animal models have been developed to attempt to represent the morphological, biochemical, and clinical features of human NASH. The actual review presents a critical analysis of the most commonly used experimental models of NAFLD/NASH development. These models can be classified into genetic, nutritional, and a combination of genetic and nutritional factors. The main genetic models are ob/ob and db/db mutant mice and Zucker rats. The principal nutritional models employ methionine- and choline-deficient, high-fat, high-cholesterol and high-cholate, cafeteria, and high-fructose diets. Currently, associations between high-fructose and various compositions of high-fat diets have been widely studied. Previous studies have encountered significant difficulties in developing animal models capable of reproducing human NASH. Some models produce consistent morphological findings, but the induction method differs significantly compared with the pathophysiology of human NASH. Other models precisely represent the clinical and etiological contexts of this disease but fail to provide accurate histopathological representations mainly in the progression from steatosis to liver fibrosis. PMID:26064924

  13. Porcine models of digestive disease: the future of large animal translational research.

    PubMed

    Gonzalez, Liara M; Moeser, Adam J; Blikslager, Anthony T

    2015-07-01

    There is increasing interest in nonrodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia-reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine and mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine. PMID:25655839

  14. Animated-simulation modeling facilitates clinical-process costing.

    PubMed

    Zelman, W N; Glick, N D; Blackmore, C C

    2001-09-01

    Traditionally, the finance department has assumed responsibility for assessing process costs in healthcare organizations. To enhance process-improvement efforts, however, many healthcare providers need to include clinical staff in process cost analysis. Although clinical staff often use electronic spreadsheets to model the cost of specific processes, PC-based animated-simulation tools offer two major advantages over spreadsheets: they allow clinicians to interact more easily with the costing model so that it more closely represents the process being modeled, and they represent cost output as a cost range rather than as a single cost estimate, thereby providing more useful information for decision making. PMID:11552586

  15. Neural models on temperature regulation for cold-stressed animals

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1975-01-01

    The present review evaluates several assumptions common to a variety of current models for thermoregulation in cold-stressed animals. Three areas covered by the models are discussed: signals to and from the central nervous system (CNS), portions of the CNS involved, and the arrangement of neurons within networks. Assumptions in each of these categories are considered. The evaluation of the models is based on the experimental foundations of the assumptions. Regions of the nervous system concerned here include the hypothalamus, the skin, the spinal cord, the hippocampus, and the septal area of the brain.

  16. The human subject: an integrative animal model for 21st century heart failure research

    PubMed Central

    Chandrasekera, P Charukeshi; Pippin, John J

    2015-01-01

    Heart failure remains a leading cause of death and it is a major cause of morbidity and mortality affecting tens of millions of people worldwide. Despite decades of extensive research conducted at enormous expense, only a handful of interventions have significantly impacted survival in heart failure. Even the most widely prescribed treatments act primarily to slow disease progression, do not provide sustained survival advantage, and have adverse side effects. Since mortality remains about 50% within five years of diagnosis, the need to increase our understanding of heart failure disease mechanisms and development of preventive and reparative therapies remains critical. Currently, the vast majority of basic science heart failure research is conducted using animal models ranging from fruit flies to primates; however, insights gleaned from decades of animal-based research efforts have not been proportional to research success in terms of deciphering human heart failure and developing effective therapeutics for human patients. Here we discuss the reasons for this translational discrepancy which can be equally attributed to the use of erroneous animal models and the lack of widespread use of human-based research methodologies and address why and how we must position our own species at center stage as the quintessential animal model for 21st century heart failure research. If the ultimate goal of the scientific community is to tackle the epidemic status of heart failure, the best way to achieve that goal is through prioritizing human-based, human-relevant research. PMID:26550463

  17. An ecologically relevant guinea pig model of fetal behavior

    PubMed Central

    Bellinger, S. A.; Lucas, D.; Kleven, G. A.

    2015-01-01

    The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multi-colored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To insure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism. PMID:25655512

  18. Genetic animal models of malformations of cortical development and epilepsy.

    PubMed

    Wong, Michael; Roper, Steven N

    2016-02-15

    Malformations of cortical development constitute a variety of pathological brain abnormalities that commonly cause severe, medically-refractory epilepsy, including focal lesions, such as focal cortical dysplasia, heterotopias, and tubers of tuberous sclerosis complex, and diffuse malformations, such as lissencephaly. Although some cortical malformations result from environmental insults during cortical development in utero, genetic factors are increasingly recognized as primary pathogenic factors across the entire spectrum of malformations. Genes implicated in causing different cortical malformations are involved in a variety of physiological functions, but many are focused on regulation of cell proliferation, differentiation, and neuronal migration. Advances in molecular genetic methods have allowed the engineering of increasingly sophisticated animal models of cortical malformations and associated epilepsy. These animal models have identified some common mechanistic themes shared by a number of different cortical malformations, but also revealed the diversity and complexity of cellular and molecular mechanisms that lead to the development of the pathological lesions and resulting epileptogenesis. PMID:25911067

  19. Exploring host–microbiota interactions in animal models and humans

    PubMed Central

    Kostic, Aleksandar D.; Howitt, Michael R.; Garrett, Wendy S.

    2013-01-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host–microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host–microbiota interactions and explore recent human microbiome studies. PMID:23592793

  20. Animal models of social anxiety disorder and their validity criteria.

    PubMed

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Quevedo, João

    2014-09-26

    Anxiety disorders pose one of the largest threats to global mental health, and they predominantly emerge early in life. Social anxiety disorder, also known as social phobia, is the most common of all anxiety disorders. Moreover, it has severe consequences and is a disabling disorder that can cause an individual to be unable to perform the tasks of daily life. Social anxiety disorder is associated with the subsequent development of major depression and other mental diseases, as well as increased substance abuse. Although some neurobiological alterations have been found to be associated with social anxiety disorder, little is known about this disorder. Animal models are useful tools for the investigation of this disorder, as well as for finding new pharmacological targets for treatment. Thus, this review will highlight the main animal models of anxiety associated with social phobia. PMID:25132362

  1. AN ANIMAL MODEL OF A BEHAVIORAL INTERVENTION FOR DEPRESSION

    PubMed Central

    Pollak, Daniela D.; Monje, Francisco J.; Zuckerman, Lee; Denny, Christine A.; Drew, Michael R.; Kandel, Eric R.

    2008-01-01

    Although conditioned inhibition of fear (or learned safety) is a learning process critical for preventing chronic stress, a predisposing factor for depression and other psychopathologies, little is known about its functional purposes or molecular mechanisms. To obtain better insight into learned safety, we investigated its behavioral and molecular characteristics and found that it acts as a behavioral antidepressant in two animal models. Learned safety promotes the survival of newborn cells in the dentate gyrus of the hippocampus, while its antidepressant effect is abolished in mice with ablated hippocampal neurogenesis. Learned safety also increases the expression of BDNF in the hippocampus and leads to down-regulation of genes involved in the dopaminergic and neuropeptidergic but not the serotonergic system, in the basolateral amygdala. These data suggest that learned safety is an animal model of a behavioral antidepressant that shares some neuronal hallmarks of pharmacological antidepressants, but is mediated by different molecular pathways. PMID:18940595

  2. A review of standardized metabolic phenotyping of animal models.

    PubMed

    Rozman, Jan; Klingenspor, Martin; Hrabě de Angelis, Martin

    2014-10-01

    Metabolic phenotyping of genetically modified animals aims to detect new candidate genes and related metabolic pathways that result in dysfunctional energy balance regulation and predispose for diseases such as obesity or type 2 diabetes mellitus. In this review, we provide a comprehensive overview on the technologies available to monitor energy flux (food uptake, bomb calorimetry of feces and food, and indirect calorimetry) and body composition (qNMR, DXA, and MRI) in animal models for human diseases with a special focus on phenotyping methods established in genetically engineered mice. We use an energy flux model to illustrate the principles of energy allocation, describe methodological aspects how to monitor energy balance, and introduce strategies for data analysis and presentation. PMID:25199945

  3. Human task animation from performance models and natural language input

    NASA Technical Reports Server (NTRS)

    Esakov, Jeffrey; Badler, Norman I.; Jung, Moon

    1989-01-01

    Graphical manipulation of human figures is essential for certain types of human factors analyses such as reach, clearance, fit, and view. In many situations, however, the animation of simulated people performing various tasks may be based on more complicated functions involving multiple simultaneous reaches, critical timing, resource availability, and human performance capabilities. One rather effective means for creating such a simulation is through a natural language description of the tasks to be carried out. Given an anthropometrically-sized figure and a geometric workplace environment, various simple actions such as reach, turn, and view can be effectively controlled from language commands or standard NASA checklist procedures. The commands may also be generated by external simulation tools. Task timing is determined from actual performance models, if available, such as strength models or Fitts' Law. The resulting action specification are animated on a Silicon Graphics Iris workstation in real-time.

  4. Animal models for influenza virus pathogenesis, transmission, and immunology

    PubMed Central

    Thangavel, Rajagowthamee R.; Bouvier, Nicole M.

    2014-01-01

    In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research -- mice, ferrets, and guinea pigs -- and discuss the advantages and disadvantages of each. PMID:24709389

  5. The search for animal models for Lassa fever vaccine development

    PubMed Central

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates. PMID:23256740

  6. The search for animal models for Lassa fever vaccine development.

    PubMed

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates. PMID:23256740

  7. Some atmospheric scattering considerations relevant to BATSE: A model calculation

    NASA Technical Reports Server (NTRS)

    Young, John H.

    1986-01-01

    The orbiting Burst and Transient Source Experiement (BATSE) will locate gamma ray burst sources by analysis of the relative numbers of photons coming directly from a source and entering its prescribed array of detectors. In order to accurately locate burst sources it is thus necessary to identify and correct for any counts contributed by events other than direct entry by a mainstream photon. An effort is described which estimates the photon numbers which might be scattered into the BATSE detectors from interactions with the Earth atmosphere. A model was developed which yielded analytical expressions for single-scatter photon contributions in terms of source and satellite locations.

  8. Current State of Animal (Mouse) Modeling in Melanoma Research

    PubMed Central

    Kuzu, Omer F.; Nguyen, Felix D.; Noory, Mohammad A.; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future. PMID:26483610

  9. Translational research in ADPKD: lessons from animal models.

    PubMed

    Happé, Hester; Peters, Dorien J M

    2014-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed. PMID:25137562

  10. Modelling gait transition in two-legged animals

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.; Santos, Alexandra P.

    2011-12-01

    The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.

  11. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia

    PubMed Central

    Yee, Benjamin K.; Singer, Philipp

    2013-01-01

    Schizophrenia is a chronic debilitating brain disorder characterized by a complex set of perceptual and behavioural symptoms that severely disrupt and undermine the patient’s psychological well-being and quality of life. Since the exact disease mechanisms remain essentially unknown, holistic animal models are indispensable tools for any serious investigation into the neurobiology of schizophrenia, including the search of remedies, prevention, and possible biological markers. This review provides some practical advice to those confronted with the task of evaluating their animal models for relevance to schizophrenia that inevitably involves behavioural tests with animals. To a novice, this challenge is not only a technical one, as it also entails attention to interpretative issues concerning validity and translational power. Here, we attempt to offer some guidance to help overcome these obstacles by drawing on our experience on diverse animal models of schizophrenia based on genetics, strain difference, brain lesions, pharmacological induction, and early life developmental manipulations. The review pays equal emphasis on the general (theoretical) considerations in experimental design and the illustration of the problematics related to test parameters and data analysis of selected exemplar behavioural tests. Finally, the individual difference of behavioural expression in relevant tests observed in wild type animals may offer an alternative approach to explore the mechanism of schizophrenia-related behavioural dysfunction at the molecular, cellular and structural levels that are of more immediate relevance to cell and tissue research. PMID:23579553

  12. The Pleurodele, an animal model for space biology studies

    NASA Astrophysics Data System (ADS)

    Gualandris, L.; Grinfeld, S.; Foulquier, F.; Kan, P.; Duprat, A. M.

    Pleurodeles waltl, an Urodele amphibian is proposed as a model for space biology studies. Our laboratory is developing three types of experiments in space using this animal: 1) in vivo fertilization and development (``FERTILE'' project); 2) influence of microgravity and space radiation on the organization and preservation of spacialized structures in the neurons and muscle cells (in vitro; ``CELIMENE'' PROJECT); 3) influence of microgravity on tissue regeneration (muscle, bone, epidermis and spinal cord).

  13. Animal models of tic disorders: A translational perspective

    PubMed Central

    Godar, Sean C.; Mosher, Laura J.; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-01-01

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. PMID:25244952

  14. Animal evolution during domestication: the domesticated fox as a model

    PubMed Central

    Trut, Lyudmila; Oskina, Irina; Kharlamova, Anastasiya

    2009-01-01

    Summary We review the evolution of domestic animals, emphasizing the effect of the earliest steps of domestication on its course. Using the first domesticated species, the dog (Canis familiaris) as an illustration, we describe the evolutionary specificities of the historical domestication, such as the high level and wide range of diversity. We suggest that the process of earliest domestication via unconscious and later conscious selection of human-defined behavioral traits may accelerate phenotypic variations. The review is based on the results of the long-term experiment designed to reproduce early mammalian domestication in the silver fox (Vulpes vulpes) selected for tameability, or amenability to domestication. We describe changes in behavior, morphology and physiology that appeared in the fox during its selection for tameability and that were similar to those observed in the domestic dog. Based on the experimental fox data and survey of relevant data, we discuss the developmental, genetic and possible molecular-genetic mechanisms of these changes. We assign the causative role in evolutionary transformation of domestic animals to selection for behavior and to the neurospecific regulatory genes it affects. PMID:19260016

  15. Modeling DNA structure and processes through animation and kinesthetic visualizations

    NASA Astrophysics Data System (ADS)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  16. Animal models of bipolar mania: The past, present and future.

    PubMed

    Logan, R W; McClung, C A

    2016-05-01

    Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential