Science.gov

Sample records for remediate groundwaters contaminated

  1. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  2. In situ remediation of uranium contaminated groundwater

    SciTech Connect

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  3. In situ remediation of uranium contaminated groundwater

    SciTech Connect

    Dwyer, B.P.; Marozas, D.C.

    1997-12-31

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  4. Remediation Technology for Contaminated Groundwater

    EPA Science Inventory

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  5. Remediation of Groundwater Contaminated by Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Parker, Jack; Palumbo, Anthony

    2008-07-01

    A Workshop on Accelerating Development of Practical Field-Scale Bioremediation Models; An Online Meeting, 23 January to 20 February 2008; A Web-based workshop sponsored by the U.S. Department of Energy Environmental Remediation Sciences Program (DOE/ERSP) was organized in early 2008 to assess the state of the science and knowledge gaps associated with the use of computer models to facilitate remediation of groundwater contaminated by wastes from Cold War era nuclear weapons development and production. Microbially mediated biological reactions offer a potentially efficient means to treat these sites, but considerable uncertainty exists in the coupled biological, chemical, and physical processes and their mathematical representation.

  6. Remediation of groundwater contaminated with radioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both naturally radioactive isotopes and isotopes from man-made sources may appear in groundwater. Depending on the physical and chemical characteristics of the contaminant, different types of treatment methods must be applied to reduce the concentration. The following chapter discusses treatment opt...

  7. Remediation alternatives for low-level herbicide contaminated groundwater

    SciTech Connect

    Conger, R.M.

    1995-10-01

    In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

  8. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIR; ET AL

    2000-12-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  9. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    SciTech Connect

    B. STRIETELMEIER; M. ESPINOSA

    2001-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), extremely inexpensive, and easy to replace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels was discharged from this plant for many years. Recently, the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated in 1999 to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mM nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 {micro}M perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system.

  10. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  11. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  12. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  13. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER: ABSTRACT

    EPA Science Inventory

    NRMRL-ADA-01152 Wilkin*, R.T., and Paul*, C.J. "Permeable Reactive Barrier Strategies for Remediation of Arsenic- Contaminated Groundwater." In: Geological Society of America, Abstracts with programs., Geological Society of America Annua...

  14. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  15. Ground-water contamination control: Detection and remedial planning

    SciTech Connect

    Woldt, W.E.

    1990-01-01

    The dissertation is divided into three main sections that correspond to a typical sequence of actions resulting in a final remedial action plan for handling contamination at a particular site. The first section develops a methodology for detecting and mapping suspected contamination using multiple sources of data. Different data types are combined by using a modified form of kriging with uncertain data, termed compound kriging. In addition, the use of fuzzy set theory merged with geostatistics is explored as a possible mapping technique when variogram parameters are difficult to quantify. A decision support system for observation network design is presented in the second section. Network design is approached from a multiple objective decision making perspective. The objective is to identify the most cost-effective network design while considering the trade-off between performance and cost. Geostatistical variance reduction analysis and prior knowledge related to the site are used as performance measures in the decision support system. A remedial action design support system is described in the third section. Three dimensional geostatistical simulation and analytical ground water modeling are used to assess the need for further remedial action planning. In addition, a methodology for measuring the performance of candidate remediation systems under conditions of uncertainty in aquifer parameters and plume location is presented. These performance measures, combined with cost factors, are used in a multiple-criteria decision making system to determine the preferred clean up system for a site being investigated.

  16. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    EPA Science Inventory

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  17. Optimization of remedial pumping schemes for a ground-water site with multiple contaminants

    SciTech Connect

    Xiang, Y.; Sykes, J.F.; Thomson, N.R.

    1996-01-01

    This paper presents an optimization analysis of the remedial pumping design for a contaminated aquifer located in Elmira, Ontario, Canada. The remediation task presented in the paper is to remove two ground-water contaminant species, NDMA (N-nitrosodimethylamine) and chlorobenzene, to such extent that the specified ground-water quality standards are met. The contaminants, NDMA and chlorobenzene, have different initial plume configurations and retardation characteristics. The required quality standard for NDMA is five orders of magnitude smaller than the initial peak concentration. The objective is to minimize total pumping, and the constraints incorporate ground-water quality requirements on the maximum and the spatially averaged residual concentrations, with contaminant source control being considered. On the combination of simulation and optimization, the results of this study indicate that the performance of an optimization algorithm based on gradient search is controlled by the specified cleanup levels, and that contaminant concentrations can be nonconvex and nonsmooth for some pumping schemes.

  18. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater at Complex Sites

    NASA Astrophysics Data System (ADS)

    Deeb, R. A.; Hawley, E.

    2011-12-01

    This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses

  19. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    NASA Astrophysics Data System (ADS)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  20. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.

    PubMed

    Piscopo, Amy N; Neupauer, Roseanna M; Kasprzyk, Joseph R

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume. PMID:27153361

  1. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  2. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron

    SciTech Connect

    Agrawal, A.; Tratnyek, P.G.

    1994-03-18

    Recent laboratory and field experiments have shown that some halogenated hydrocarbons undergo rapid reductive dehalogenation with zero-valent iron and the application of this process is being developed for in-situ remediation of contaminated groundwater. However, from can also reduce other organic substances and is commonly used to synthesize reduction products nitro compounds.

  3. Grand challenge problems in environmental modeling and remediation: groundwater contaminant transport

    SciTech Connect

    Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler

    1998-08-31

    This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.

  4. In-situ groundwater aeration as an effective technique for remediation of petroleum-contaminated aquifers

    SciTech Connect

    Baker, B.W.; Hoffman, G.D. ); Gan, D.R. )

    1994-08-01

    Petroleum contamination of groundwater is a widespread occurrence and is traditionally remediated using groundwater extraction with surface treatment. This remediation scheme is ineffective due to irregular groundwater flow paths, and the low solubility and high soil sorption tendencies of petroleum products in the subsurface. In-situ groundwater aeration, sometimes referred to as air sparging, provides a more effective approach. In-situ groundwater aeration technology takes advantage of the high volatility and biodegradability of many health concerned petroleum constituents. By injecting air into the subsurface, volatile organic compounds readily partition into the vapor phase and are subsequently transported to the vadose zone for collection by a soil vapor extraction system. The system also provides sufficient amounts of oxygen to the groundwater to promote biodegradation of petroleum contaminants. Development of an in-situ groundwater aeration system for petroleum releases within a regulatory framework includes several steps. First, site specific fate and transport mechanisms relevant to petroleum releases must be evaluated. Next, key design parameters, such as injection well construction, well locations, and air injection rates are discussed. Approximate capital, operation, and maintenance costs are given along with typical system remedial time frames. A case history involving a gasoline release from an underground storage tank is presented to illustrate the development and success of an in-situ aeration system.

  5. USING TREES TO REMEDIATE GROUNDWATERS CONTAMINATED WITH CHLORINATED HYDROCARBONS

    EPA Science Inventory

    Phytoremediation has emerged as a treatment alternative that combines the low cost of intrinsic remediation with the more active and adaptable characteristics of conventional remediation. Our lab has shown that fast-growing and deep-rooted hybrid poplar take up and transpire tric...

  6. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, J.C.; Looney, B.B.; Kaback, D.S.

    1989-05-23

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

  7. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, John C.; Looney, Brian B.; Kaback, Dawn S.

    1989-01-01

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.

  8. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Turner, Brett D.; Binning, Philip J.; Sloan, Scott W.

    2008-01-01

    The use of calcite (CaCO 3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO 2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO 2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO 2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO 2 before contact with calcite.

  9. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.

    PubMed

    Turner, Brett D; Binning, Philip J; Sloan, Scott W

    2008-01-28

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite. PMID:17913284

  10. Using trees to remediate groundwaters contaminated with chlorinated hydrocarbons. 1998 annual progress report

    SciTech Connect

    Strand, S.E.; Gordon, M.P.

    1998-06-01

    'Industrial practices in the past have resulted in contamination of groundwater with chlorinated hydrocarbons (CHCs) at many DOE sites, such as Hanford and Savannah River. Such contamination is a major problem because existing groundwater remediation technologies are expensive and difficult. An inexpensive method for groundwater remediation is greatly needed. Trees could be used to remediate CHC polluted groundwater at minimal cost (phytoremediation). Before phytoremediation can be extensively applied, the authors must determine the range of compounds that are attacked, the effects of metabolic products on the plants and the environment, and the effect of transpiration and concentration of CHC on uptake and metabolism. They will test the ability of hybrid poplar to take up and transform the chlorinated methanes, ethanes and ethylenes. The rate of uptake and transformation by poplar of TCE as a function of concentration in the soil, transpiration rate and illumination level will be determined. Methods will be developed to permit rapid testing of plants from contaminated sites for species able to oxidize and sequester chlorinated compounds. They will identify the nature of the bound residues of TCE metabolism in poplar. They will identify the mechanisms involved in CHC oxidation in poplar and use genetic manipulations to enhance that activity. They will introduce the genes for mammalian cytochrome P-450-IIE1, known to oxidize light CHCs such as TCE to attempt to increase the CHC metabolism capacity of poplar. The results of this research will place phytoremediation of CHCs on a firm scientific footing, allowing a rational assessment of its application to groundwater contamination. This report summarizes the results of the first 1.5 years of work on a three-year project.'

  11. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    SciTech Connect

    Deeb, Rula A.; Hawley, Elisabeth L.

    2013-07-01

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-term management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate

  12. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.

    PubMed

    Jun, Dong; Yongsheng, Zhao; Weihong, Zhang; Mei, Hong

    2009-01-15

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD5/COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH4+, and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate. PMID:18479811

  13. A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation.

    PubMed

    Erto, A; Lancia, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2011-01-01

    A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical-physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality. PMID:20846781

  14. Optimization-based multicriteria decision analysis for identification of desired petroleum-contaminated groundwater remediation strategies.

    PubMed

    Lu, Hongwei; Feng, Mao; He, Li; Ren, Lixia

    2015-06-01

    The conventional multicriteria decision analysis (MCDA) methods used for pollution control generally depend on the data currently available. This could limit their real-world applications, especially where the input data (e.g., the most cost-effective remediation cost and eventual contaminant concentration) might vary by scenario. This study proposes an optimization-based MCDA (OMCDA) framework to address such a challenge. It is capable of (1) capturing various preferences of decision-makers, (2) screening and analyzing the performance of various optimized remediation strategies under changeable scenarios, and (3) compromising incongruous decision analysis results. A real-world case study is employed for demonstration, where four scenarios are considered with each one corresponding to a set of weights representative of the preference of the decision-makers. Four criteria are selected, i.e., optimal total pumping rate, remediation cost, contaminant concentration, and fitting error. Their values are determined through running optimization and optimization-based simulation procedures. Four sets of the most desired groundwater remediation strategies are identified, implying specific pumping rates under varied scenarios. Results indicate that the best action lies in groups 32 and 16 for the 5-year, groups 49 and 36 for the 10-year, groups 26 and 13 for the 15-year, and groups 47 and 13 for the 20-year remediation. PMID:25613797

  15. Natural Attenuation Software (NAS): A computer program for estimating remediation times of contaminated groundwater

    USGS Publications Warehouse

    Mendez, E.; Widdowson, M.; Brauner, S.; Chapelle, F.; Casey, C.

    2004-01-01

    This paper describes the development and application of a modeling system called Natural Attenuation Software (NAS). NAS was designed as a screening tool to estimate times of remediation (TORs), associated with monitored natural attenuation (MNA), to lower groundwater contaminant concentrations to regulatory limits. Natural attenuation processes that NAS models include advection, dispersion, sorption, biodegradation, and non-aqueous phase liquid (NAPL) dissolution. This paper discusses the three main interactive components of NAS: 1) estimation of the target source concentration required for a plume extent to contract to regulatory limits, 2) estimation of the time required for NAFL contaminants in the source area to attenuate to a predetermined target source concentration, and 3) estimation of the time required for a plume extent to contract to regulatory limits after source reduction. The model's capability is illustrated by results from a case study at a MNA site, where NAS time of remediation estimates compared well with observed monitoring data over multiple years.

  16. Modelling the remediation of contaminated groundwater using zero-valent iron barrier

    SciTech Connect

    Kwong, S.; Small, J.; Tahar, B.

    2007-07-01

    This paper presents results of modelling studies on remediation of groundwater contaminated with uranium using a zero-valent iron permeable reactive barrier (ZVI PRB) at the U.S. Oak Ridge Y-12 site that are used to establish modelling techniques that are of value to other sites such as in the UK. A systematic modelling methodology has been developed to study the problem by using a suite of modelling tools. Firstly a conceptual basis of the main chemical processes representing the remediation of uranium by the ZVI PRB is developed. Two main effects involving reduction and corrosion have been identified as being relevant for the remediation processes. These are then formulated and implemented using the reactive chemical model PHREEQC to provide underpinning chemical input parameters for subsequent reactive solute transport modelling using the TRAFFIC and PHAST codes. Initial results shows that modelling can be a very cost-effective means to study the hydrogeological and geochemical processes involved and to aid understanding of the remediation concept. The modelling approaches presented and lessons learnt are thought to be relevant to other cases of contaminated land study and are likely to be of value to site management concepts which consider on-site disposal of contaminated soils and materials. (authors)

  17. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    An, Da; Jiang, Yonghai; Xi, Beidou; Ma, Zhifei; Yang, Yu; Yang, Queping; Li, Mingxiao; Zhang, Jinbao; Bai, Shunguo; Jiang, Lei

    2013-09-01

    A groundwater flow and solute transport model was developed using Visual Modflow for forecasting contaminant transport and assessing effects of remedial alternatives based on a case study of an unregulated landfill leachate-contaminated groundwater in eastern China. The results showed that arsenic plume was to reach the pumping well in the downstream farmland after eight years, and the longest lateral and longitudinal distance of arsenic plume was to reach 200 m and 260 m, respectively. But the area of high concentration region of arsenic plume was not to obviously increase from eight years to ten years and the plume was to spread to the downstream river and the farmland region after 20 years; while the landfill's ground was hardened, the plume was not to reach the downstream farmland region after eight years; when the pumping well was installed in the plume downstream and discharge rate was 200m3/d, the plume was to be effectively restrained; for leakage-proof barriers, it might effectively protect the groundwater of sensitive objects within an extent time range. But for the continuous point source, the plume was still to circle the leakage-proof barrier; when discharge rate of drainage ditches was 170.26 m3/d, the plume was effectively controlled; the comprehensive method combining ground-harden with drainage ditches could get the best effect in controlling contaminant diffusion, and the discharge rate was to be reduced to 111.43 m3/d. Therefore, the comprehensive remedial alternative combining ground-harden with drainage ditch will be recommended for preventing groundwater contamination when leachate leakage has happened in unregulated landfills.

  18. Effects of heterogeneity on active spreading strategies to remediate contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Kasprzyk, J. R.; Piscopo, A. N.; Neupauer, R.

    2015-12-01

    The effectiveness of in situ chemical oxidation (ISCO) to remediate contaminated aquifers is constrained by the amount of contact between the groundwater contaminant and the injected oxidant. Contaminant degradation during ISCO can be enhanced using innovative active spreading strategies, which involve injecting and extracting water at wells in the vicinity of the plume to generate flow fields that spread the contaminant and oxidant plumes in a manner that increases their contact. Because aquifer heterogeneity affects the transport of the contaminant and oxidant during injection and extraction, aquifer heterogeneity also affects the amount of contact and the degree of contaminant degradation achieved using active spreading strategies during ISCO. Consequently, we can improve the effectiveness of active spreading strategies by generating sequences of injection and extraction that take the aquifer heterogeneity into account. In this study, we optimize sequences of injections and extractions to maximize contaminant degradation in aquifers with zonal and spatially-correlated heterogeneity for three contaminant-oxidant pairings with different reaction kinetics. Analysis of the transport and degradation corresponding to the optimal sequences of injection and extraction demonstrates that the underlying aquifer and contaminant properties are reflected by the optimal sequences.

  19. Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site

    NASA Astrophysics Data System (ADS)

    Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.

    2011-12-01

    There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.

  20. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    SciTech Connect

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  1. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.

    PubMed

    Erto, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2014-07-01

    In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality. PMID:24747934

  2. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2006-12-01

    Arsenic (As) contamination presents a hazard in many countries. Natural attenuation (NA) of As-contaminated soils and groundwater may be a cost-effective in situ remedial option. It relies on the site intrinsic assimilative capacity and allows in-place cleanup. Sorption to solid phases is the principal mechanism immobilizing As in soils and removing it from groundwater. Hydroxides of iron, aluminum and manganese, clay and sulfide minerals, and natural organic matter are commonly associated with soils and aquifer sediments, and have been shown to be significant As adsorbents. The extent of sorption is influenced by As speciation and the site geochemical conditions such as pH, redox potential, and the co-occurring ions. Microbial activity may catalyze the transformation of As species, or mediate redox reactions thus influencing As mobility. Plants that are capable of hyperaccumulating As may translocate As from contaminated soils and groundwater to their tissues, providing the basis for phytoremediation. However, NA is subject to hydrological changes and may take substantial periods of time, thus requiring long-term monitoring. The current understanding of As NA processes remains limited. Sufficient site characterization is critical to the success of NA. Further research is required to develop conceptual and mathematical models to predict the fate and transport of As and to evaluate the site NA capacity. Engineering enhanced NA using environmentally benign products may be an effective alternative. PMID:17049728

  3. In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Miller, D.N.; Brooks, M.H.; Widdowson, M.A.; Killingstad, M.W.

    2001-01-01

    In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn

  4. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    PubMed

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies. PMID:19192817

  5. [Experimental study on the remediation of chromium contaminated groundwater with PRB media].

    PubMed

    Zhu, Wen-Hui; Dong, Liang-Fei; Wang, Xing-Run; Zhai, Ya-Li

    2013-07-01

    Due to the surface reaction between zero-valent iron and Cr(VI), iron cannot be fully utilized in the Fe(0)-Permeable Reactive Barrier(PRB), and the PRB is prone to compaction and blockage. In order to resolve these problems, iron powder coated with different polymer was tested in the treatment of chromium-polluted groundwater. Experimental results demonstrated that sodium alginate (SA) was the best package materials. According to analysis with FEI and EDX, pore structures were created by cross-linking of SA with Ca2+, in which a lot of attaching points exist, and through which Cr(VI) could react with interior iron powder. SA coating cast iron (SAC) and reduced iron (SAR) were tested in the treatment of chromium-polluted groundwater individually; the results showed that the removal efficiency of Cr( VI) by SAC was double that by SAR. After optimization of technology parameters of SAC, the Cr(VI) removal process follows the pseudo first-order kinetics. Based on dynamic experiments with SAC, Cr(VI)/Fe(0) was up to 32.25 mg x g(-1) and the PRB maintained high permeability coefficient (2.38 cm x s(-1)) after complete reaction. Compared with cast iron media is feasible in the remediation of chromium contaminated groundwater. PMID:24028003

  6. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments

    SciTech Connect

    Boparai, Hardiljeet K.; Comfort, Steve; Shea, Phyllis J.; Szecsody, James E.

    2008-03-01

    In situ chemical reduction of clays and iron oxides in subsurface environments is an emerging technology for treatment of contaminated groundwater. Our objective was to determine the efficacy of dithionite-reduced sediments from the perched Pantex Aquifer (Amarillo, TX) to abiotically degrade the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene). The effects of dithionite/buffer concentrations, sediments-solution ratios, and the contribution of Fe(II) were evaluated in batch experiments. Results showed that reduced Pantex sediments were highly effective in degrading all three high explosives. Degradation rates increased with increasing dithionite/buffer concentrations and soil to solution ratios (1:80–1:10 w/v). When Fe(II) was partially removed from the reduced sediments by washing (citrate-bicarbonate buffer), RDX degradation slowed, but degradation efficiency could be restored by adding Fe(II) back to the treated sediments and maintaining an alkaline pH. These data support in situ redox manipulation as a remedial option for treating explosive-contaminated groundwater at the Pantex site.

  7. Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments.

    PubMed

    Boparai, H K; Comfort, S D; Shea, P J; Szecsody, J E

    2008-03-01

    In situ chemical reduction of clays and iron oxides in subsurface environments is an emerging technology for treatment of contaminated groundwater. Our objective was to determine the efficacy of dithionite-reduced sediments from the perched Pantex Aquifer (Amarillo, TX) to abiotically degrade the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene). The effects of dithionite/buffer concentrations, sediments-solution ratios, and the contribution of Fe(II) were evaluated in batch experiments. Results showed that reduced Pantex sediments were highly effective in degrading all three high explosives. Degradation rates increased with increasing dithionite/buffer concentrations and soil to solution ratios (1:80-1:10 w/v). When Fe(II) was partially removed from the reduced sediments by washing (citrate-bicarbonate buffer), RDX degradation slowed, but degradation efficiency could be restored by adding Fe(II) back to the treated sediments and maintaining an alkaline pH. These data support in situ redox manipulation as a remedial option for treating explosive-contaminated groundwater at the Pantex site. PMID:18086486

  8. Optimal groundwater remediation design: Methodologies and software for contaminated aquifers. Final report

    SciTech Connect

    Dougherty, D.E.

    1994-10-31

    This document comprises the final report of work performed under sub-contract B-239648 between the Lawrence Livermore National Laboratory (LLNL) and the University of Vermont (UVM). This contract was subsidiary to one between LLNL and the U.S. Department of Energy (DOE). This project had the goal of developing tools and strategies regarding how and where and when to apply the environmental restoration (ER) technologies that are under development. The development of decision support software for advanced environmental remediation technologies is tentative; many of the ER technologies are poorly understood, the applicability of methods to new untested sites is questionable, the ability to predict the effects of alternative remediation designs is very limited, and there are a large number of uncertainties associated with processes and parameters (physical, chemical, and biological), contaminants (distribution and type), and sociopolitical environment. Nevertheless, the potential for significant savings by using optimal design methods and the need to make decisions regardless of uncertainties has made this project worthy. A stop-work order was received in September 1994. An additional upper limit of $15,000 was provided for project termination activities, including report preparation. One of four deliverables was completed and provided to LLNL. MODLP is a computational tool for use in groundwater remediation design. It is a FORTRAN program that incorporates the well known and widely used MODFLOW simulator to represent flow of water in a saturated natural porous medium. MODLP is designed to allow the user to create and solve optimization problems for hydraulic control in groundwater systems. Inasmuch as environmental restoration costs are very large, savings of on the order of ten percent represent significant amounts, and optimal design has been demonstrated to help produce savings larger than ten percent, these activities have an important role to play within DOE.

  9. Remediation of Nitrate-contaminated Groundwater by a Mixture of Iron and Activated Carbon

    NASA Astrophysics Data System (ADS)

    Huang, Guoxin; Liu, Fei; Jin, Aifang; Qin, Xiaopeng

    2010-11-01

    Nitrate contamination in groundwater has become a major environmental and health problem worldwide. The aim of the present study is to remediate groundwater contaminated by nitrate and develop potential reactive materials to be used in PRBs (Permeable Reactive Barriers). A new approach was proposed for abiotic groundwater remediation by reactive materials of iron chips and granular activated carbon particles. Batch tests were conducted and remediation mechanisms were discussed. The results show that nitrate decreases from 86.31 to 33.79 mgṡL-1 under the conditions of near neutral pH and reaction time of 1h. The combination of iron chips and activated carbon particles is cost-effective and suitable for further use as denitrification media in PRBs. Nitrogen species don't change significantly with the further increase in reaction time (>1 h). The iron-activated carbon-water-nitrate system tends to be steady-state. Small amounts of ammonium and nitrite (0.033-0.039 and 0.14-3.54 mgṡL-1, respectively) appear at reaction time from 0 h to 5 h. There is no substantial accumulation of nitrogen products in the system. The removal rate of nitrate only reaches 16.11% by sole iron chips at reaction time of 5 h, while 63.57% by the mixture of iron chips and activated carbon particles. There is significantly synergistic and promotive effect of mixing the two different types of materials on nitrate treatment. Fe/C ratio (1/1.5-1/2.5) doesn't cause dramatically different residual nitrate concentrations (24.09-26.70 mgṡL-1). Nitrate can't be limitlessly decreased with decreasing Fe/C ratio. The concomitant occurrences of chemical reduction, galvanic cell reaction, electrophoretic accumulation, chemical coagulation, and physical adsorption are all responsible for the overall nitrate removal by iron allied with activated carbon. To accurately quantify various nitrogen species, further studies on adsorption mechanisms of nitrite and nitrate are needed.

  10. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation

    SciTech Connect

    Tokunaga, T.K.; Kim, Y.; Wan, J.

    2009-06-01

    Methods for remediating groundwaters contaminated with uranium (U) through precipitation under oxidizing conditions are needed because bioreduction-based approaches require indefinite supply of electron donor. Although strategies based on precipitation of some phosphate minerals within the (meta)autunite group have been considered for this purpose, thermodynamic calculations for K- and Ca-uranyl phopsphates, meta-ankoleite and autunite, predict that U concentrations will exceed the Maximum Contaminant Level (MCL = 0.13 {micro}M for U) at any pH and pCO{sub 2}, unless phosphate is maintained at much higher concentrations than the sub-{micro}M levels typically found in groundwaters. We hypothesized that potassium uranyl vanadate will control U(VI) concentrations below regulatory levels in slightly acidic to neutral solutions based on thermodynamic data available for carnotite, K{sub 2}(UO{sub 2}){sub 2}V{sub 2}O8. The calculations indicate that maintaining U concentrations below the MCL through precipitation of carnotite will be sustainable in some oxidizing waters having pH in the range of 5.5 to 7, even when dissolution of this solid phase becomes the sole supply of sub-{micro}M levels of V. Batch experiments were conducted in solutions at pH 6.0 and 7.8, chosen because of their very different predicted extents of U(VI) removal. Conditions were identified where U concentrations dropped below its MCL within 1 to 5 days of contact with oxidizing solutions containing 0.2 to 10 mM K, and 0.1 to 20 {micro}M V(V). This method may also have application in extracting (mining) U and V from groundwaters where they both occur at elevated concentrations.

  11. REACTIVE BARRIER TREATMENT WALL TECHNOLOGY FOR REMEDIATION OF INORGANIC CONTAMINATED GROUNDWATER

    SciTech Connect

    T. TAYLOR; ET AL

    2001-03-01

    The potential for subsurface reactive barrier wall technology to aid in remediation of contaminated groundwater in situ has prompted testing of novel porous media. Treatability testing of contaminants contacted with various media has been conducted using equilibrium batch techniques, one-dimensional (1-D) columns and 2-D boxes. Continuous mode column and box experiments are useful for assessing critical design parameters under dynamic flow conditions. Experiments have been conducted using a multi-layer barrier treatment approach to immobilize a suite of contaminants. For example, basalt coated with a cationic polymer (poly diallyl dimethyl ammonium chloride [Catfloc{reg_sign}]) was used to agglomerate colloids, Apatite II{reg_sign} sorbed aqueous phase metals and radionuclides including {sup 85,87}Sr and {sup 235}U and facilitated reduction of nitrate and perchlorate, crushed pecan shells sorbed aqueous phase metals and served as a secondary medium for reduction of nitrate and perchlorate concentrations, and finally limestone raised the pH of exiting pore waters close to natural levels.

  12. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (<0.45mm) resulted in a favorable nitrate removal. The nitrate removal rate increased from 0.26 to 0.34 mg L-1h-1 and then to 0.86 mg L-1h-1, approaching that of the sulfur oxidizing denitrification (SOD) rate of 1.19 mg L-1h-1. Based on Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  13. Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron.

    PubMed

    Han, Jun; Xin, Jia; Zheng, Xilai; Kolditz, Olaf; Shao, Haibing

    2016-07-01

    Building a microscale zero-valent iron (mZVI) reaction zone is a promising in situ remediation technology for restoring groundwater contaminated by trichloroethylene (TCE). In order to determine a suitable modifier that could not only overcome gravity sedimentation of mZVI but also improve its remediation efficiency for TCE, the three biopolymers xanthan gum (XG), guargum (GG), and carboxymethyl cellulose (CMC) were employed to coat mZVI for surface modification. The suspension stability of the modified mZVI and its TCE removal efficiency were systematically investigated. The result indicated that XG as a shear-thinning fluid showed the most remarkable efficiency of preventing mZVI from gravity sedimentation and enhancing the TCE removal efficiency by mZVI. In a 480-h experiment, the presence of XG (3 g L(-1)) increased the TCE removal efficiency by 31.85 %, whereas GG (3 g L(-1)) and CMC (3 g L(-1)) merely increased by 15.61 and 9.69 % respectively. The pH value, Eh value, and concentration of ferrous ion as functions of the reaction time were recorded in all the reaction systems, which indicated that XG worked best in buffering the pH value of the solution and inhibiting surface passivation of mZVI. PMID:27068901

  14. PERMEABLE REACTIVE BARRIER STRATEGIES FOR REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Results are presented from laboratory batch tests using zero-valent iron to treat arsenic-contaminated groundwater. The laboratory tests were conducted using near- neutral pH groundwater from a contaminated aquifer located adjacent to a custom smelting facility. Experiments we...

  15. Evaluation of ultraviolet oxidation methods for the remediation of explosives-contaminated groundwater

    SciTech Connect

    Wujcik, W.J.; Young, C.T.; Hammell, J.O.

    1995-12-31

    An evaluation of commercially available ultraviolet oxidation (UV/Ox) processes for remediation of explosives-contaminated groundwater was performed by conducting a pilot-scale demonstration at Savanna Army Depot Activity (SADA) of four vendo processes. This demonstration was performed to assess whether UV/Ox methods offer a technically feasible and cost-effective alternative to granular activated carbon (GAC) for the treatment of explosives compounds including trinitrotoluene (2,4,6-TNT), trinitrobenzene (1,3,5-TNB), and other nitroaromatics found in groundwaters at Army installations nationwide. The adequacy of bench-scale testing data for predicting full-scale equipment requirements was also evaluated. Daily average effluent concentrations of nitroaromatic compounds were calculated and compared with daily average treatment criteria. There was considerable variation in the consistency with which the processes met the criteria; only the Ultrox process achieved the criteria for all 14 days of the demonstration. Initial and revised cost estimates were prepared by each vendor. The full-scale system configurations and cost estimated made after bench-scale testing and after pilot-scale testing were significantly different, indicating that pilot-scale testing provides data necessary for the accurate sizing of full-scale systems. Based on this demonstration, routine bench-scale testing is inadequate for providing sufficient data for full-scale UV/Ox systems.

  16. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater

    PubMed Central

    Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

    2014-01-01

    Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. PMID:24119162

  17. Bioremediation of contaminated groundwater

    SciTech Connect

    Hazen, T.C.; Fliermans, C.B.

    1992-12-31

    The present invention relates to a method for in situ bioremediation of contaminated soil and groundwater. In particular, the invention relates to remediation of contaminated soil and groundwater by the injection of nutrients to stimulate growth of pollutant-degrading microorganisms. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  18. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  19. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource. (authors)

  20. Remediation technologies for contaminated sediments

    SciTech Connect

    Swanson, L.M.

    1995-09-01

    Although soil and groundwater remediation has been conducted for many years, sediment remediation is still in its infancy. Regulatory agencies are now beginning to identify areas where contaminated sediments exist and evaluate their environmental impact. As these evaluations are completed, the projects must shift focus to how these sediments can be remediated. Also as the criteria for aquatic disposal of dredged sediments become more stringent, remediation technologies must be developed to address contaminated sediments generated by maintenance dredging.This report describes the various issues and possible technologies for sediment remediation.

  1. Site Characterization To Support Use Of Monitored Natural Attentuation For Remediation Of Inorganic Contaminants In Groundwater

    EPA Science Inventory

    Technical recommendations have recently been published by the U.S. Environmental Protection Agency to address site characterization needed to support selection of Monitored Natural Attenuation (MNA) for cleanup of inorganic contaminant plumes in groundwater. Immobilization onto ...

  2. RELIABILITY-BASED UNCERTAINTY ANALYSIS OF GROUNDWATER CONTAMINANT TRANSPORT AND REMEDIATION

    EPA Science Inventory

    This report presents a discussion of the application of the first- and second-order reliability methods (FORM and SORM, respectively) to ground-water transport and remediation, and to public health risk assessment. Using FORM and SORM allows the formal incorporation of parameter...

  3. Implications of Fe/Pd Bimetallic Nanoparticles Immobilized on Adsorptive Activated Carbon for the Remediation of Groundwater and Sediment Contaminated with PCBs

    EPA Science Inventory

    In order to respond to the current limitations and challenges in remediating groundwater and sediment contaminated with polychlorinated biphenyls (PCBs), we have recently developed a new strategy, integration of the physical adsorption of PCBs with their electrochemical dechlori...

  4. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    SciTech Connect

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  5. The effect of ionic strength and hardness of trichloroethylene contaminated groundwater in remediation using granular activated carbon

    NASA Astrophysics Data System (ADS)

    Heo, J.; Chang, H.

    2005-12-01

    The objective of this study is to evaluate the trichloroethylene (TCE) removal by granular activated carbon (GAC) based on influential factors (ionic strength, hardness) of various groundwaters. The experimental method used in this study was batch experiments. Synthetic groundwater for test was made according to ionic strength, hardness and then it was artificially contaminated by TCE 5ppm. The variation of ions in synthetic groundwater was measured by I.C. and I.C.P. Surface area of GAC was determined by the Brunauer, Emmett and Teller (BET) adsorption data. The results of tests showed that TCE removal using GAC is affected by the hardness of synthetic groundwaters. It was founded that surface area of GAC was decreased by increasing of ions. Due to pore blocking of ions by functional group, the surface area of GAC decreased and the difference of the remediation appeared. This result was affected by the ionic strength and hardness of water. Therefore, the ionic strength and hardness of contaminated groundwater must be considered in remediation using GAC.

  6. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  7. Natural Oxidant Demand Variability, Potential Controls, and Implications for in Situ, Oxidation-Based Remediation of Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Dettmer, A.; Cruz, S.; Dungan, B.; Holguin, F. O.; Ulery, A. L.; Hunter, B.; Carroll, K. C.

    2014-12-01

    Naturally occurring reduced species associated with subsurface materials can impose a significant natural oxidant demand (NOD), which is the bulk consumption of oxidants by soil water, minerals, and organic matter. Although injection of oxidants has been used for chemical transformation of organic contaminants, NOD represents a challenge for the in-situ delivery of oxidants as a remediation alternative. Co-injection of complexation agents with oxidants has been proposed to facilitate the delivery of oxidants for in situ chemical oxidation remediation of contaminated groundwater. This study investigates variability of NOD for different oxidants and sediments. The effect of the addition of various complexation agents, including EDTA, tween 80, hydroxypropyl-beta-cyclodextrin (HPCD), humic acid, and four generations of poly(amidoamine) (PAMAM) dendrimers, on the NOD was also examined. NOD was measured for a clay loam (collected from Air Force Plant 44 in Tucson, AZ). Varying amounts of biosolids were mixed with subsamples of the clay loam to create three additional reference soils in order to study the effect of organic matter and other soil characteristics on the NOD. Bench-scale laboratory experiments were conducted to determine the NOD for various oxidants, using the four soils, and replicated with and without various delivery agents. Measured NOD showed variability for each soil and oxidant composition. Additionally, significant differences were observed in NOD with the addition of delivery agents. The results support the elucidation of potential controls over NOD and have implications for in situ, oxidation-based remediation of contaminated groundwater.

  8. Remediation of contaminated soils

    SciTech Connect

    Radhakrishnan, R.; Ariza, C.H.

    1997-07-01

    At least three types of zones of contamination exist whenever there is a chemical release. The impact of Non-Aqueous-Phase Liquids (NAPL) on soils and groundwater, together with the ultimate transport and migration of constituent chemicals in their dissolved or sorbed states, had led environmentalists to develop several techniques for cleaning a contaminated soil. Zone 1 represents the unsaturated zone which could be contaminated to retention capacity by both Dense Non-Aqueous-Phase Liquids (DNAPL) and Light Non-Aqueous-Phase Liquids (LNAPL). Zone 2 represents residual DNAPL or LNAPL contamination found below the groundwater table in the saturated zone. Zone 3 is represented by either the presence of NAPL dissolved in the aqueous phase, volatilized in the unsaturated zone or sorbed to either saturated or unsaturated soils. Cleanup of petroleum contaminated soils is presented in this paper. Among several techniques developed for this purpose, in-situ biological remediation is discussed in detail as a technique that does not involve excavation, thus, the costs and disruption of excavating soil are eliminated.

  9. {In Situ} Remediation of Contaminated Groundwater via Enhanced Reductive Dehalogenation and Dual-Screened Wells

    NASA Astrophysics Data System (ADS)

    Cunningham, J. A.; Hoelen, T. P.; Hopkins, G. D.; Reinhard, M.; Lebrón, C. A.

    2003-12-01

    Groundwater contaminated by chlorinated solvents, principally cis-dichloroethene (cis-DCE), was cleaned {in situ} by a technology that combines enhanced reductive dechlorination with dual-screened treatment wells. The prolonged historic presence of cis-DCE at the contaminated site suggested that natural attenuation rates were limited by the supply of electron donors. Therefore, propionate was added to the contaminated groundwater to serve as an electron donor and to accelerate the reductive dechlorination process. Propionate was added from the ground surface via a pair of dual-screened wells emplaced in the contaminated portion of the aquifer. The wells were screened at two depths, from 3.0--7.6 m below ground surface (bgs) and from 9.1--12.2 m bgs. These wells functioned to intercept the contaminant plume, augment the contaminated water with propionate, recirculate a portion of the contaminated water, and release treated water for continued downgradient migration. Treatment occurred wholly {in situ}. Within the recirculation zone of the well pair, cis-DCE was effectively removed during a two-month period of operation. In the lower aquifer zone, 800 μ g/L cis-DCE was converted stoichiometrically to ethene. In the upper aquifer zone, the concentration of cis-DCE was reduced from over 400 μ g/L to less than 40 μ g/L. Dechlorination was accompanied by significant sulfate reduction, but not by methanogenesis. The hydraulics of the groundwater flow are described with a relatively simple analytical mathematical model. Measured concentrations of a bromide tracer agree very well with model predictions, suggesting that the model is valid for this contaminated site. At this site, it appears sufficient to model the aquifer as consisting of two homogeneous layers separated by an impermeable aquitard; smaller-scale heterogeneity in the hydraulic conductivity can apparently be ignored.

  10. Viscosity-Modification to Improve Remediation Efficiencies within Heterogeneous Contaminated Groundwater Aquifers: Laboratory and Field-Scale Evaluation

    NASA Astrophysics Data System (ADS)

    Silva, J. A.; Crimi, M.

    2013-12-01

    A key challenge in in situ groundwater remediation practice is achieving efficient contact between the injected remedial fluid and the target contamination in the presence of subsurface permeability heterogeneities. Even apparently small permeability contrasts can affect the delivery and subsurface distribution of injected remedial fluids, as a result of preferential flows, and reduce treatment effectiveness as a result of bypassing of contaminated media of lower permeability. Viscosity-modification is a technique that can be used to mitigate the effects of permeability heterogeneity and improve the delivery and distribution of remediation fluids during subsurface injection. Viscosity-modification involves increasing the viscosity of the injected fluid, and modifying the fluids rheological character in some cases. The increased viscosity provides a reduced fluid mobility condition within higher permeability media that, in turn, enhances the penetration of fluids into adjacent lower permeability media, improving the overall sweep efficiency within heterogeneous geomedia. Herein, we present the results of laboratory (two-dimensional flow tank) and numerical experiments that were designed to critically evaluate the utility of viscosity-modification for groundwater remediation application. Specifically, we will address the benefits and limitations of the approach and highlight the effect of system variables on the degree sweep efficiency improvement achievable. We also present the results of a recently completed Environmental Security Technology Certification Program (ESTCP) technology validation project in which viscosity-modification was applied to permanganate in situ chemical oxidation. Site selection criteria, implementation design considerations, and the long-term effects of viscosity-modified fluid treatments will be discussed.

  11. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    SciTech Connect

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  12. The Relationship Between Partial Contaminant Source Zone Remediation and Groundwater Plume Attenuation

    NASA Astrophysics Data System (ADS)

    Falta, R. W.

    2004-05-01

    Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J

  13. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  14. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  15. Setting information priorities for remediation decisions at a contaminated-groundwater site.

    PubMed

    Ma, Hwong-wen; Wu, Kuen-Yuh; Ton, Chung-Da

    2002-01-01

    Many sites of contamination due to inappropriate disposal of hazardous materials or wastes have been found. These sites have the potential of damaging the environment and human health and thus need to be evaluated as to whether and what actions should be initiated. In the decision on whether a contaminated site should be subject to management, the knowledge concerning important parameters that would influence the decision will be beneficial to planning of data collection to support the decision. This paper presents a case study of contaminated site located in northern Taiwan, where the groundwater is contaminated by chlorinated hydrocarbons including trichloroethylene (TCE) and tetrachloroethylene (PCE). A site-specific multimedia risk assessment is performed to estimate the total risk resulting from the contamination. In addition, Monte Carlo simulation, rank correlation coefficients, and decision criteria are combined to develop a methodology for assessing the important of parameters in terms of their influence on the decision. It is found that TCE concentration, vegetable yield, deposition interception fraction of vegetables, and plant surface loss constant, are the four parameters important to the decision-making of the case problem. PMID:11806535

  16. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  17. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0 mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  18. Costs of groundwater contamination

    SciTech Connect

    O'Neil, W.B.; Raucher, R.S. )

    1990-01-01

    Two factors determine the cost of groundwater contamination: (1) the ways in which water was being used or was expected to be used in the future and (2) the physical characteristics of the setting that constrain the responses available to regain lost uses or to prevent related damages to human health and the environment. Most contamination incidents can be managed at a low enough cost that uses will not be foreclosed. It is important to take into account the following when considering costs: (1) natural cleansing through recharge and dilution can take many years; (2) it is difficult and costly to identify the exact area and expected path of a contamination plume; and (3) treatment or replacement of contaminated water often may represent the cost-effective strategy for managing the event. The costs of contamination include adverse health effects, containment and remediation, treatment and replacement costs. In comparing the costs and benefits of prevention programs with those of remediation, replacement or treatment, it is essential to adjust the cost/benefit numbers by the probability of their actual occurrence. Better forecasts of water demand are needed to predict more accurately the scarcity of new supply and the associated cost of replacement. This research should include estimates of the price elasticity of water demand and the possible effect on demand of more rational cost-based pricing structures. Research and development of techniques for in situ remediation should be encouraged.

  19. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 2. Groundwater contaminant mass discharge reduction.

    PubMed

    Fjordbøge, Annika S; Lange, Ida V; Bjerg, Poul L; Binning, Philip J; Riis, Charlotte; Kjeldsen, Peter

    2012-10-01

    The impact of source mass depletion on the down-gradient contaminant mass discharge was monitored for a 19-month period as a part of a field demonstration of the ZVI-Clay soil mixing remediation technology. Groundwater samples were collected from conventional monitoring wells (120 samples) and a dense network of multilevel samplers (640 samples). The hydraulic gradient and conductivity were determined. Depletion of the contaminant source is described in the companion paper (Fjordbøge et al., 2012). Field data showed four distinct phases for PCE mass discharge: (1) baseline conditions, (2) initial rapid reduction, (3) temporary increase, and (4) slow long-term reduction. Numerical modeling was utilized to develop a conceptual understanding of the four phases and to identify the governing processes. The initial rapid reduction of mass discharge was a result of the changed hydraulic properties in the source zone after soil mixing. The subsequent phases depended on the changed accessibility of the contaminant mass after mixing, the rate of source depletion, and the concentration gradient at the boundaries of the mixed source zone. Overall, ZVI-Clay soil mixing resulted in a significant down-gradient contaminant mass discharge reduction (76%) for the parent compound (PCE), while the overall reduction of chlorinated ethenes was smaller (21%). PMID:23010547

  20. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lhotský, Ondřej; Knytl, Vladislav; Najmanová, Petra; Steinová, Jana; Černík, Miroslav; Filipová, Alena; Filip, Jan; Cajthaml, Tomáš

    2016-09-01

    The present report describes a 13month pilot remediation study that consists of a combination of Cr(VI) (4.4 to 57mg/l) geofixation and dechlorination of chlorinated ethenes (400 to 6526μg/l), achieved by the sequential use of nanoscale zerovalent iron (nZVI) particles and in situ biotic reduction supported by whey injection. The remediation process was monitored using numerous techniques, including physical-chemical analyses and molecular biology approaches which enabled both the characterization of the mechanisms involved in pollutant transformation and the description of the overall background processes of the treatment. The results revealed that nZVI was efficient toward Cr(VI) by itself and completely removed it from the groundwater (LOQ 0.05mg/l) and the subsequent application of whey resulted in a high removal of chlorinated ethenes (97 to 99%). The persistence of the reducing conditions, even after the depletion of the organic substrates, indicated a complementarity between nZVI and the whey phases in the combined technology as the subsequent application of whey phase partially assisted the microbial regeneration of the spent nZVI by promoting its reduction into Fe(II), which further supported remediation conditions at the site. Illumina sequencing and the detection of functional vcrA and bvcA genes documented a development in the reducing microbes (iron-reducing, sulfate-reducing and chlororespiring bacteria) that benefited under the conditions of the site and that was probably responsible for the high dechlorination and/or Cr(VI) reduction. The results of this study demonstrate the feasibility and high efficiency of the combined nano-biotechnological approach of nZVI and whey application in-situ for the removal of Cr(VI) and chlorinated ethenes from the groundwater of the contaminated site. PMID:26850861

  1. THE APPLICATION OF IN SITU PERMEABLE REACTIVE (ZERO-VALENT IRON) BARRIER TECHNOLOGY FOR THE REMEDIATION OF CHROMATE-CONTAMINATED GROUNDWATER: A FIELD TEST

    EPA Science Inventory

    A small-scale field test was initiated in September 1994 to evaluate the in situ remediation of groundwater contaminated with chromate using a permeable reactive barrier composed of a mixture of zero-valent Fe, sand and aquifer sediment. The site used was an old chrome-plating f...

  2. In situ remediation of chromium contaminated groundwater using zero valent iron

    SciTech Connect

    Blowes, D.W.; Ptacek, C.J.; Hanton-Fong, C.J.; Jambor, J.L.

    1995-12-01

    In situ porous reactive walls, using zero-valent iron as a reductant, are an alternative technology for the treatment of groundwater contaminated with electroactive elements, such as Cr(VI). Laboratory column and batch experiments were conducted to assess the treatment of Cr(VI) using zero-valent iron in the form of iron filings. Batch tests were conducted with and without calcite addition. Batch test results indicate that removal using iron filings is rapid, with initial Cr(VI) concentrations reduced from approximately 20 mg/L to < 0.05 mg/L within 3 hours. Iron filings retained from the batch tests were examined mineralogically. The results indicate that the most abundant secondary minerals are goethite, lepidocrocite, maghemite and hematite. Of these minerals, the most abundant was goethite. No discrete chromium-bearing phases were detected, but chromium-rich zones, containing up to 27.3 wt.% Cr as Cr(OH){sub 3}, were detected within the iron oxyhydroxides, most notably within the goethite. A flow-through column experiment, conducted at a flow rate of 10 m/a indicated continuing treatment of Cr(VI) at concentrations of approximately 20 mg/L to <0.05 mg/L for more than 130 pore volumes.

  3. Laboratory column study for evaluating a multimedia permeable reactive barrier for the remediation of ammonium contaminated groundwater.

    PubMed

    Kong, Xiangke; Bi, Erping; Liu, Fei; Huang, Guoxin; Ma, Jianfei

    2015-01-01

    In order to remediate ammonium contaminated groundwater, an innovative multimedia permeable reactive barrier (M-PRB) was proposed, which consisted of sequential columns combining oxygen releasing compound (ORC), zeolite, spongy iron and pine bark in the laboratory scale. Results showed that both ammonium and nitrate could be reduced to levels below the regulatory discharge limits through ion exchange and microbial degradation (nitrification and denitrification) in different compartments of the M-PRB system. The concentration of dissolved oxygen (DO) increased from 2 to above 20 mg/L after the simulated groundwater flowed through the oxygen releasing column packed with ORC, demonstrating that ORC could supply sufficient oxygen for subsequent microbial nitrification. Ammonium was efficiently removed from about 10 to below 0.5 mg N/L in the aerobic reaction column which was filled with biological zeolite. After 54 operating days, more than 70% ammonium could be removed by microbial nitrification in the aerobic reaction column, indicating that the combined use of ion exchange and nitrification by biological zeolite could ensure high and sustainable ammonium removal efficiency. To avoid the second pollution of nitrate produced by the former nitrification, spongy iron and pine bark were used to remove oxygen and supply organic carbon for heterotrophic denitrification in the oxygen removal column and anaerobic reaction column separately. The concentration of nitrate decreased from 14 to below 5 mg N/L through spongy iron-based chemical reduction and microbial denitrification. PMID:25428576

  4. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    SciTech Connect

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  5. Phosphate-Based Mineralization of Arsenic in Contaminated Soil: A Potential Remediation Method for Soil and Groundwater

    NASA Astrophysics Data System (ADS)

    Neupane, G.; Donahoe, R. J.

    2009-12-01

    Soil arsenic contamination resulting from the use of arsenical compounds is a widespread environmental problem. A phosphate-based remediation method which has the potential to immobilize arsenic in both oxidizing and reducing subsurface systems is under laboratory investigation. Although phosphate treatments have been reported to be effective in removal of arsenic from contaminated water, its use in contaminated soils has not been tested. This study aims to (1) determine the competitive adsorption/desorption of arsenate and phosphate at surfaces of ferric hydroxide coated sand in the absence or presence of calcium ions, and (2) develop a method of arsenic fixation which involves phosphoric acid flushing of arsenic from contaminated soil and precipitation of arsenic as apatite-like phases. Ferric hydroxide is a significant arsenic sequestering constituent in soil. Phosphate competes with arsenate for adsorption sites on the ferric hydroxide surface. Batch adsorption experiments conducted using ferric hydroxide coated sand have indicated similar pH-controlled adsorption mechanisms for both arsenate and phosphate. The data obtained from the adsorption experiments is being used to guide the development of a phosphate-based method for soil and groundwater arsenic remediation. Batch experiments were performed using 3g of contaminated soil in contact with 45 ml of treatment fluid (a dilute phosphoric acid and calcium hydroxide solution). Solution samples were collected at 24, 72, 144, 312, and 384 hours, with continuous agitation at 200 rpm. Solution concentrations of phosphorus and calcium generally decreased with time and were primarily controlled by pH. It has been experimentally demonstrated that solution arsenic concentrations can be lowered by maintaining high pH with adequate calcium supply. A batch experiment conducted at pH > 11, using 1 kg of soil in contact with 1 liter of 0.25% H3PO4, precipitated a white material giving an XRD signature indicative of brushite

  6. Environmental- and health-risk-induced remediation design for benzene-contaminated groundwater under parameter uncertainty: a case study in Western Canada.

    PubMed

    Fan, X; He, L; Lu, H W; Li, J

    2014-09-01

    This study proposes an environmental- and health-risk-induced remediation design approach for benzene-contaminated groundwater. It involves exposure frequency and intake rates that are important but difficult to be exactly quantified as breakthrough point. Flexible health-risk control is considered in the simulation and optimization work. The proposed approach is then applied to a petroleum-contaminated site in western Canada. Different situations about remediation durations, public concerns, and satisfactory degrees are addressed by the approach. The relationship between environmental standards and health-risk limits is analyzed, in association with their effect on remediation costs. Insights of three uncertain factors (i.e. exposure frequency, intake rate and health-risk threshold) for the remediation system are also explored, on a basis of understanding their impacts on health risk as well as their importance order. The case study results show that (1) nature attenuation plays a more important role in long-term remediation scheme than the pump-and-treat system; (2) carcinogenic risks have greater impact on total pumping rates than environmental standards for long-term remediation; (3) intake rates are the second important factor affecting the remediation system's performance, followed by exposure frequency; (4) the 10-year remediation scheme is the most robust choice when environmental and health-risk concerns are not well quantified. PMID:24997972

  7. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.

    PubMed

    Ji, Yuefei; Ferronato, Corinne; Salvador, Arnaud; Yang, Xi; Chovelon, Jean-Marc

    2014-02-15

    The wide occurrence of antibiotics in groundwater raised great scientific interest as well as public awareness in recent years due to their potential ability to spread antibiotic resistant gene and pose risk to humans. The present study investigated the ferrous ion (Fe(II)) activated decomposition of persulfate (S2O8(2-)), as a potential in situ chemical oxidation (ISCO) approach, for remediation of groundwater contaminated by antibiotics. Fe(II)-persulfate mediated ciprofloxacin (CIP) degradation was found to be more efficient than sulfamethoxazole (SMX) at near neutral pH (pH6.0), probably due to the higher electric density in CIP molecule and its ability to form complex with Fe(II) as a ligand. Hydroxyl (HO) and sulfate radical (SO4(-)) were determined to be responsible for the degradation of CIP and SMX in Fe(II)-persulfate system by molecular probes. No enhancement in the degradation of CIP was observed when citrate (CA), ethylenediaminetetraacetate (EDTA) and (S,S)-ethylenediamine-N,N'-disuccinate (EDDS) were used as Fe(II) chelating agents in Fe(II)-persulfate system. For SMX, CA and EDTA accelerated the degradation by Fe(II)-persulfate. Degradation of antibiotics in river water matrix was nearly the same as that in Milli-Q water, implying the possibility of using Fe(II)-persulfate for antibiotics depletion under environmentally relevant condition. A comparison of the degradation efficiency of SMX with other sulfonamides and sulfanilic acid indicated that the heterocyclic ring has a large impact on the degradation of sulfonamides. Transformation products of CIP and SMX by Fe(II)-persulfate were analyzed by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) technique. Based on the intermediate products, Fe(II)-persulfate mediated CIP degradation pathways were tentatively proposed. PMID:24342085

  8. Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport (Partnerships in Computational Science)

    SciTech Connect

    Sharpley, Robert C.

    1997-12-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the University of South Carolina component of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997. Seven institutions were primarily involved in this project: Brookhaven National Laboratory, Oak Ridge National Laboratory, Princeton University, SUNY at Stony Brook, Texas A&M University, The University of South Carolina, and the University of Texas at Austin, with contributing efforts from the Westinghouse Savannah River Technology Center. Each institution had primary responsibility for specific research components, but strong collaboration among all institutions was essential for the success of the project and in producing the final deliverables. PICS deliverables include source code for the suite of research simulators and auxiliary HPC tools, associated documentation, and test problems. These materials will be available as indicated from each institution's web page or from the Center for Computational Sciences Oak Ridge National Laboratory in January 1998.

  9. PILOT-SCALE EVALUATION OF THE IRON-ENHANCED DECHLORINATION TECHNOLOGY FOR REMEDIATION OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    An iron-enhanced dechlorination technology was evaluated, under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program, at a contaminated printed circuit board manufacturing site in New Jersey. This paper describes the feasibility...

  10. Development of water quality criteria for diesel fuel No. 2 for remediating contaminated groundwater

    SciTech Connect

    Kangas, M.J.; Proctor, D.M.; Trowbridge, K.R.

    1994-12-31

    Site-specific ambient water quality criteria (AWQC) were developed as benchmarks for back-calculating safe levels of diesel fuel No. 2 as a petroleum mixture in groundwater that could migrate to Fish Creek north of Butler, Indiana. Three types of AWQC were considered relevant according to State-modified US Environmental Protection Agency procedures: An Acute Aquatic Criterion (AAC); A Chronic Aquatic Criterion (CAC); and A Terrestrial Life Cycle Safe Concentration (TLSC). The AAC is the maximum concentration considered protective for aquatic life exposed in the zone of discharge-induced mixing and outside the zone of initial dilution. The remaining criteria applies to all areas of a stream outside the mixing zone. The CAC is intended to protect aquatic life from chronic toxic effects under a four-day average exposure. The TLSC is developed to protect terrestrial organisms that may experience a four-day average exposure to surface water as a result of consumption of aquatic organisms and water from the creek. Scientifically valid toxicological data on the water soluble fraction of diesel fuel and site-specific resident and surrogate species information were used for criterion development. An AAC of 11.4 mg/L was derived as the benchmark for back-calculating a safe level of diesel fuel in groundwater based on modeled groundwater and surface water flow from the spill area to the creek. Uncertainties and limitations of developing benchmark concentrations for mixtures are presented.

  11. NATO/CCMS SECOND INTERNATIONAL CONFERENCE ON THE DEMONSTRATION OF REMEDIAL ACTION TECHNOLOGIES FOR CONTAMINATED LAND AND GROUNDWATER

    EPA Science Inventory

    The problem of contamination to land and groundwater from improper handling of hazardous materials/waste is faced by all countries. Also the need for reliable, cost-effective technologies to address this problem at contaminated sites exists throughout the world. ny countries have...

  12. Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

    SciTech Connect

    Sorenson, K.S.; Peterson, L.N.; Green, T.S.

    1998-10-01

    Test Area North (TAN) at the Idaho National Engineering and Environmental Laboratory (INEEL) is the site of a large trichloroethene (TCE) plume resulting from the historical injection of wastewater into the Snake River Plain Aquifer. The TAN Record of Decision (ROD) selected pump and treat as the final remedy and included a contingency for post-ROD treatability studies of alternative technologies. The technologies still under consideration are in situ bioremediation, in situ chemical oxidation, and natural attenuation. Both anaerobic and aerobic laboratory microcosm studies indicate the presence of microorganisms capable of chloroethene degradation. Field data indicate that TCE concentrations decrease relative to tritium and tetrachloroethene indicating an as yet unknown process is contributing to natural attenuation of TCE. Several methods for analyzing the field data have been evaluated and important limitations identified. Early results from the continued evaluation of the three alternative technologies suggest the combined approach of active remediation of the source area (in situ bioremediation and/or chemical oxidation replacing or augmenting pump and treat) and natural attenuation within the dissolved phase plume may be more cost and schedule effective than the base case pump and treat.

  13. Evaluation of Natural Attenuation as One Component of Chloroethene-Contaminated Groundwater Remediation

    SciTech Connect

    K.S. Sorenson; L.N. Peterson; T.S. Green

    1998-10-01

    Test Area North (TAN) at the Idaho National Engineering and Environmental Laboratory (INEEL) is the site of a large trichloroethene (TCE) plume resulting from the historical injection of wastewater into the Snake River Plain Aquifer. The TAN Record of Decision (ROD) selected pump and treat as the final remedy and included a contingency for post-ROD treatability studies of alternative technologies. The technologies still under consideration are in-situ bioremediation, in-situ chemical oxidation, and natural attenuation. Both anaerobic and aerobic laboratory microcosm studies indicate the presence of microorganisms capable of chloroethene degradation. Field data indicate that TCE concentrations decrease relative to tritium and tetrachloroethene indicating an as yet unknown process is contributing to natural attenuation of TCE. Several methods for analyzing the field data have been evaluated and important limitations identified. Early results from the continued evaluation of the three alternative technologies suggest the combined approach of active remediation of the source area (in situ bioremediation and/or chemical oxidation replacing or augmenting pump and treat) and natural attenuation within the dissolved phase plume may be more cost and schedule effective than the base case pump and treat.

  14. REMEDIATION OF TCE-CONTAMINATED GROUNDWATER BY A PERMEABLE REACTIVE BARRIER FILLED WITH PLANT MULCH (BIOWALL)

    EPA Science Inventory

    A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base (in Oklahoma, USA) to treat trichloroethylene (TCE) contamination in ground water emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 ...

  15. Contaminated Groundwater Remediation by Catalyzed Hydrogen Peroxide and Persulfate Oxidants System

    NASA Astrophysics Data System (ADS)

    Yan, N.; Wang, Y.; Brusseau, M. L.

    2014-12-01

    A binary oxidant system, catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82-), was investigated for use in in-situ chemical oxidation (ISCO) applications. Trichloroethene (TCE) and 1,4-dioxane were used as target contaminants. Batch experiments were conducted to investigate the catalytic efficiency between ferrous ion (Fe2+) and base (NaOH), oxidant decomposition rates, and contaminant degradation efficiency. For the base-catalyzed H2O2-S2O82- system, oxidant release was moderate and sustained over the entire test period of 96 hours. Conversely, the oxidants were depleted within 24 hours for the Fe2+-catalyzed system. Solution pH decreased slightly for the Fe2+-catalyzed system, whereas the pH increased for the base-catalyzed system. The rates of degradation for TCE and 1,4-dioxane are compared as a function of system conditions. The results of this study indicate that the binary H2O2-S2O82- oxidant system is effective for oxidation of the tested contaminants.

  16. Remediating munitions contaminated soils

    SciTech Connect

    Shea, P.J.; Comfort, S.D.

    1995-10-01

    The former Nebraska Ordnance Plant (NOP) at Mead, NE was a military loading, assembling, and packing facility that produced bombs, boosters and shells during World War II and the Korean War (1942-1945, 1950-1956). Ordnances were loaded with 2,4,6-trinitrotoluene (TNT), amatol (TNT and NH{sub 4}NO{sub 3}), tritonal (TNT and Al) and Composition B (hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX] and TNT). Process waste waters were discharged into wash pits and drainage ditches. Soils within and surrounding these areas are contaminated with TNT, RDX and related compounds. A continuous core to 300 cm depth obtained from an NOP drainage ditch revealed high concentrations of TNT in the soil profile and substantial amounts of monoamino reduction products, 4-amino-2,6-dinitrotoluene (4ADNT) and 2-amino-4,6-dinitrotoluene (2ADNT). Surface soil contained TNT in excess of 5000 mg kg{sup -1} and is believed to contain solid phase TNT. This is supported by measuring soil solution concentrations at various soil to solution ratios (1:2 to 1:9) and obtaining similar TNT concentrations (43 and 80 mg L{sup -1}). Remediating munitions-contaminated soil at the NOP and elsewhere is of vital interest since many of the contaminants are carcinogenic, mutagenic or otherwise toxic to humans and the environment. Incineration, the most demonstrated remediation technology for munitions-containing soils, is costly and often unacceptable to the public. Chemical and biological remediation offer potentially cost-effective and more environmentally acceptable alternatives. Our research objectives are to: (a) characterize the processes affecting the transport and fate of munitions in highly contaminated soil; (b) identify effective chemical and biological treatments to degrade and detoxify residues; and (c) integrate these approaches for effective and practical remediation of soil contaminated with TNT, RDX, and other munitions residues.

  17. Remedial action selection using groundwater modeling

    SciTech Connect

    Haddad, B.I.; Parish, G.B.; Hauge, L.

    1996-12-31

    An environmental investigation uncovered petroleum contamination at a gasoline station in southern Wisconsin. The site was located in part of the ancestral Rock River valley in Rock County, Wisconsin where the valley is filled with sands and gravels. Groundwater pump tests were conducted for determination of aquifer properties needed to plan a remediation system; the results were indicative of a very high hydraulic conductivity. The site hydrogeology was modeled using the U.S. Geological Survey`s groundwater model, Modflow. The calibrated model was used to determine the number, pumping rate, and configuration of recovery wells to remediate the site. The most effective configuration was three wells pumping at 303 liters per minute (1/m) (80 gallons per minute (gpm)), producing a total pumping rate of 908 l/m (240 gpm). Treating 908 l/min (240 gpm) or 1,308,240 liters per day (345,600 gallons per day) constituted a significant volume to be treated and discharged. It was estimated that pumping for the two year remediation would cost $375,000 while the air sparging would cost $200,000. The recommended remedial system consisted of eight air sparging wells and four vapor recovery laterals. The Wisconsin Department of Natural Resources (WDNR) approved the remedial action plan in March, 1993. After 11 months of effective operation the concentrations of removed VOCs had decreased by 94 percent and groundwater sampling indicated no detectable concentrations of gasoline contaminants. Groundwater modeling was an effective technique to determine the economic feasibility of a groundwater remedial alternative.

  18. Groundwater recharge and agricultural contamination

    USGS Publications Warehouse

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  19. Potential of aerobic bacteria use for remediation of groundwater of Pavlodar outskirt contaminated with soluble mercury compounds

    EPA Science Inventory

    In the Republic of Kazakhstan there are some regions contaminated with mercury as a result of technogenic releases from industrial enterprises. The mercury ingress into the environment has resulted in significant pollution of groundwater and surface water with soluble mercury com...

  20. Synchrotron X-ray characterization of mackinawite and uraninite relevant to bio-remediation of groundwater contaminated with uranium

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Hyun, S.; Hayes, K. F.

    2010-12-01

    Uranium (U) originating from mining operations for weapon manufacturing and nuclear energy production is a significant radionuclide contaminant in groundwater local to uranium mining, uranium milling, and uranium mill tailing (UMT) storage sites. In the USA, the Department of Energy (DOE) is currently overseeing approximately 24 Uranium Mill Tailing Remediation Action (UMTRA) sites which have collectively processed over 27 million tons of uranium ore1,2. In-Situ microbial bio-reduction of the highly mobile U6+ ion into the dramatically less mobile U4+ ion has been demonstrated as an effective remedial process to inhibit uranium migration in the aqueous phase3. The resistance of this process to oxidization and possible remobilization of U when bioremediation stops (and oxidants such as oxygen from the air or nitrate in water diffuse into the formation) in the long term is not known. UMTRA site studies3 have shown that iron sulfide solids are produced by sulfate reducing bacteria (SRB) during U bioremediation, and some forms of these iron sulfide solids are known to be effective oxidant scavengers, potentially protecting against re-oxidation and thus remobilization of U. This work is investigating the role of iron sulfide solids in the long-term immobilization of reduced U compounds after bioremediation is completed in groundwater local to UMTRA sites. Re-oxidation tests are being performed in packed media columns loaded with both FeS and U solids. High quality mackinawite (FeS), and uraninite (UO2) have been synthesized in our laboratory via a wet chemistry approach. These synthetic materials are expected to mimic the naturally occurring and biogenic materials present in biologically stimulated UMTRA sites. In order to establish the initial conditions of the prepared experimental columns and to compare synthetic and biogenic FeS and UO2, these synthesized materials have been characterized with synchrotron radiation at the Stanford Synchrotron Radiation Lightsource

  1. Groundwater contamination field methods

    NASA Astrophysics Data System (ADS)

    Johnson, Ivan

    Half of the drinking water in the United States comes from groundwater; 75% of the nation's cities obtain all or part of their supplies from groundwater; and the rural areas are 95% dependent upon groundwater. Therefore it is imperative that every possible precaution be taken to protect the purity of the groundwater.Because of the increasing interest in prevention of groundwater contamination and the need for nationally recognized methods for investigation of contamination, a symposium entitled “Field Methods for Groundwater Contamination Studies and Their Standardization” was held February 2-7, 1986, in Cocoa Beach, Fla. The symposium was sponsored and organized by the American Society for Testing and Materials (ASTM) Committee D18 on Soil and Rock and Committee D19 on Water. Gene Collins of the National Institute for Petroleum and Energy Research (Bartlesville, Okla.) was symposium chair, and Ivan Johnson (A. Ivan Johnson, Inc., Consulting, Arvada, Colo.) was vice chair.

  2. A pilot study for the selection of a bioreactor for remediation of groundwater from a coal tar contaminated site.

    PubMed

    Guerin, Turlough F

    2002-01-28

    Coal tars in soil at a gasworks site in South Eastern Australia led to groundwater contamination with polycyclic aromatic hydrocarbons (PAHs), mono-aromatic compounds (BTEX) and phenols. The scope of the study included testwork in laboratory scale bioreactors and evaluation of available commercial groundwater treatment units. Two bioreactor configurations, a submerged fixed film reactor (SFFR) and a fluidized bed bioreactor (FBR) were effective, with high efficiencies of contaminant removal (typically >90%) over a range of hydraulic retention times (HRT) (3-29 h). Specifically, concentrations of total PAH, naphthalene, pyrene and total phenols in the feedstock and effluent of the SFFR were 123, 60, 51, 1.38 and 0.004, 0.001, 0.004, 0.1mg/l, respectively. The FBR was only marginally less effective than the SFFR for the same groundwater contaminants. Discharge to sewer was the most appropriate end use for the effluent. SFFRs are regarded as being simpler in design and operation, and a commercially available unit has been identified which would be suitable for treating small volumes (<10 m(3) per day) of contaminated water collected at an interception trench at the site. PMID:11744208

  3. Remediation Technologies Eliminate Contaminants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  4. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  5. Groundwater contamination in Japan

    NASA Astrophysics Data System (ADS)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  6. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.

    PubMed

    Liu, Yuanyuan; Mou, Haiyan; Chen, Liqun; Mirza, Zakaria A; Liu, Li

    2015-11-15

    Permeable reactive barriers (PRBs) are efficient technologies for in situ remediation of contaminated groundwater, the effectiveness of which greatly depends on the reactive media filled. Natural pyrite is an iron sulfide material with a very low content of iron and sulfur, and a mining waste which is a potential material for Cr(VI) immobilization. In this study, we conducted a series of batch tests to research the effects of typical environmental factors on Cr(VI) removal and also simulated PRB filled with natural pyrite to investigate its effectiveness, in order to find a both environmentally and economically fine method for groundwater remediation. Batch tests showed that pH had the significant impact on Cr(VI) removal with an apparently higher efficiency under acidic conditions, and dissolved oxygen (DO) would inhibit Cr(VI) reduction; a relatively high initial Cr(VI) concentration would decrease the rate of Cr(VI) sorption; ionic strength and natural organic matter resulted in no significant effects on Cr(VI) removal. Column tests demonstrated that the simulated PRB with natural pyrite as the reactive media was considerably effective for removing Cr(VI) from groundwater, with a sorption capability of 0.6222 mg Cr per gram of natural pyrite at an initial Cr(VI) concentration of 10mg/L at pH 5.5 in an anoxic environment. PMID:26026959

  7. Remediation of Organic and Inorganic Arsenic Contaminated Groundwater using a Nonocrystalline TiO2 Based Adsorbent

    SciTech Connect

    Jing, C.; Meng, X; Calvache, E; Jiang, G

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 ?g L-1 As(III), 246 ?g L-1 As(V), 151 ?g L-1 MMA, and 202 ?g L-1 DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11 000, 14 000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 ?g L-1. However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). A nanocrystalline TiO2-based adsorbent could be used for the simultaneous removal of As(V), As(III), MMA, and DMA in contaminated groundwater.

  8. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    PubMed

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  9. Optimized remedial groundwater extraction using linear programming

    SciTech Connect

    Quinn, J.J.

    1995-12-31

    Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.

  10. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  11. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    PubMed

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels. PMID:26347414

  12. REMEDIATION AND PROTECTION OF GROUND WATER FROM CONTAMINATION BY ARSENIC

    EPA Science Inventory

    Successful prevention of public exposure to arsenic in ground-water resources impacted by natural sources or contaminated sites is dependent on scientifically-based strategies for site remediation and water resource management. Research within the National Risk Management Resear...

  13. PERFORMANCE MONITORING OF PERMEABLE REACTIVE BARRIERS TO REMEDIATE CONTAMINATED GROUND WATER

    EPA Science Inventory

    Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. Removal of contaminants from the groundwater plume is achieved by alt...

  14. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    NASA Astrophysics Data System (ADS)

    Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.

    2015-11-01

    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity

  15. Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent.

    PubMed

    Jing, Chuanyong; Meng, Xiaoguang; Calvache, Edwin; Jiang, Guibin

    2009-01-01

    A nanocrystalline TiO2-based adsorbent was evaluated for the simultaneous removal of As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in contaminated groundwater. Batch experimental results show that As adsorption followed pseudo-second order rate kinetics. The competitive adsorption was described with the charge distribution multi-site surface complexation model (CD-MUSIC). The groundwater containing an average of 329 microg L(-1) As(III), 246 microg L(-1) As(V), 151 microg L(-1) MMA, and 202 microg L(-1) DMA was continuously passed through a TiO2 filter at an empty bed contact time of 6 min for 4 months. Approximately 11,000, 14,000, and 9900 bed volumes of water had been treated before the As(III), As(V), and MMA concentration in the effluent increased to 10 microg L(-1). However, very little DMA was removed. The EXAFS results demonstrate the existence of a bidentate binuclear As(V) surface complex on spent adsorbent, indicating the oxidation of adsorbed As(III). PMID:19339086

  16. Application of polycolloid-releasing substrate to remediate trichloroethylene-contaminated groundwater: a pilot-scale study.

    PubMed

    Tsai, T T; Liu, J K; Chang, Y M; Chen, K F; Kao, C M

    2014-03-15

    The objectives of this pilot-scale study were to (1) evaluate the effectiveness of bioremediation of trichloroethylene (TCE)-contaminated groundwater with the supplement of slow polycolloid-releasing substrate (SPRS) (contained vegetable oil, cane molasses, surfactants) under reductive dechlorinating conditions, (2) apply gene analyses to confirm the existence of TCE-dechlorinating genes, and (3) apply the real-time polymerase chain reaction (PCR) to evaluate the variations in TCE-dechlorinating bacteria (Dehalococcoides spp.). Approximately 350L of SPRS solution was supplied into an injection well (IW) and groundwater samples were collected and analyzed from IW and monitor wells periodically. Results show that the SPRS caused a rapid increase of the total organic carbon concentration (up to 5794mg/L), and reductive dechlorination of TCE was significantly enhanced. TCE dechlorination byproducts were observed and up to 99% of TCE removal (initial TCE concentration=1872μg/L) was observed after 50 days of operation. The population of Dehalococcoides spp. increased from 4.6×10(1) to 3.41×10(7)cells/L after 20 days of operation. DNA sequencing results show that there were 31 bacterial species verified, which might be related to TCE biodegradation. Results demonstrate that the microbial analysis and real-time PCR are useful tools to evaluate the effectiveness of TCE reductive dechlorination. PMID:24468531

  17. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  18. Investigating Remediation Reagents Injection and Rainfall Effect by using Self-Potential Method in a Soil and Groundwater Contamination Site located in Yung Kang, Taiwan

    NASA Astrophysics Data System (ADS)

    Chuang, Yung-Chieh; Chen, Chien-Chih; Wang, Tzu-Pin; Dong, Tien-Hsing; Chen, Yao-Tsung; Lin, Su-Tien; Ho, Ching-Jen

    2016-04-01

    In this study, we have proposed the use of time-lapse SP (self-potential) monitoring system to investigate a remediation reagents injection and rainfall effect in the soil and groundwater contamination site which was located in Yung Kang, Taiwan. We set up two mutually perpendicular survey lines to continuously record the SP data at a sampling rate of 25 Hz. One extended in N-S direction for a total length of 85 m with 17 potential electrodes and 1 common reference electrode. Another extended in E-W direction for a total length of 35 m with 7 potential electrodes and 1 common reference electrode. By averaging 1 day hourly SP median data, we calculated the time-lapse SPT (self-potential tomography) with a published code SP2DINV, and got the following results. First and foremost, from the daily SPTs, we found some artificial structures at a depth of circa 5 m. Then, by observing the positive and negative electric potential distributions in both N-S and E-W SPTs, we determined that the regional groundwater flow direction was in NE. Besides, making use of interpolation scheme, we filtered the rainfall effect out of the raw SP data. Then from the SPTs within the rainy days, we successfully demonstrated the SP response to the precipitation. And this phenomenon was interpreted as streaming potential which was caused from the enhancement of groundwater pressure. In addition, we correlated the charge density variation above 5m from SPTs with daily rainfall from August to September, to evaluate the Streaming Potential Coupling Coefficient. Last but not the least, by analyzing the SPTs variation from 13th to 18th October 2015 and from 23th to 25th November 2015, we compared the SPTs difference between two remediation reagents injection periods. And we also computed the passing time of the equal-potential lines between two fixed points, to evaluate the apparent hydraulic conductivities in this study area.

  19. Contain contaminated groundwater

    SciTech Connect

    Mutch, R.D. Jr.; Caputi, J.R.; Ash, R.E. IV

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  20. Integrated technologies for expedited soil and groundwater remediation

    SciTech Connect

    Lewis, R.; Wellman, D.

    1996-12-01

    A fast-track and economic approach was necessary to meet the needs of a property transfer agreement and to minimize impact to future usage of a site in the Los Angeles Basin. Woodward-Clyde responded by implementing site investigation, remedial action plan preparation for soil and groundwater, and selection and installation of remedial alternatives in an aggressive schedule of overlapped tasks. Assessment of soil and groundwater was conducted at the site, followed by design and construction of remediation systems. This phase of activity was completed within 2 years. Soil and groundwater were found to be impacted by chlorinated solvents and petroleum hydrocarbons. A vapor extraction system (2,000 scfm capacity) was installed for soil remediation, and an innovative air sparging system was installed for cost effective groundwater cleanup. A bioventing system was also applied in selected areas. The vapor extraction wellfield consists of 26 extraction and monitoring well points, with multiple screened casings. The air sparging wellfield consists of 32 sparging wells with a designed maximum flow of 400 scfm. The systems began operation in 1993, and have resulted in the estimated removal of approximately 30,000 pounds of contaminants, or about 90% of the estimated mass in place. The combined vapor extraction/air sparging system is expected to reduce the time for on-site groundwater remediation from 1/3 to 1/6 the time when compared to the conventional pump and treat method for groundwater remediation.

  1. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects. PMID:23573940

  2. Remediation of TCE-contaminated groundwater using zero valent iron and direct current: experimental results and electron competition model

    NASA Astrophysics Data System (ADS)

    Moon, Ji-Won; Moon, Hi-Soo; Kim, Heonki; Roh, Yul

    2005-09-01

    The objectives of this study are to design an optimal electro-enhanced permeable reactive barrier (E2PRB) system for the remediation of trichloroethylene (TCE)-contaminated water using zero valent iron (ZVI) and direct current (DC) and to investigate the mechanisms responsible for TCE degradation in different ZVI-DC configurations. A series of column experiments was conducted to evaluate the effect of different arrangements of electrodes and ZVI barriers in the column on the TCE removal capacity (RC). In twelve different combinations of ZVI and/or DC application in the test columns, the rate of reductive dechlorination of TCE was improved up to six times with simultaneous application of ZVI and DC compared to that using ZVI only. The most effective arrangement of electrode and ZVI for TCE removal was the column set with ZVI and a cathode installed at the down gradient. Based on the electrokinetic study for the column systems with only DC input, single acid front movement could explain different RCs. An enhanced dechlorination rate of TCE using E2PRB systems, compared to a conventional PRB system, was observed, and is considered to be attributed to more electron sources: (1) external DC, (2) electrolysis of water, (3) oxidation of ZVI, (4) oxidation of dissolved Fe2+, (5) oxidation of molecular hydrogen at the cathode, and (6) oxidation of Fe2+ in mineral precipitates. Each of these electron sources was evaluated for their potential influencing the TCE RC through the electron competition model and energy consumption. A strong correlation between the quantity of electrons generated, RC, and the energy-effectiveness was found.

  3. ENGINEERING BULLETIN: SEPARATION/CONCENTRATION TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination includes a wide variety of compounds and may result from manufacturing improper storage, handling, disposal; or agricultural processes. It can occur in soil and can lead to secondary contamination of groundwater. Remediation of pesticide-contaminated soils...

  4. Control of Groundwater Remediation Process as Distributed Parameter System

    NASA Astrophysics Data System (ADS)

    Mendel, M.; Kovács, T.; Hulkó, G.

    2014-12-01

    Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  5. TREATMENT OF HIGHLY CONTAMINATED GROUNDWATER: A SITE DEMONSTRATION PROJECT

    EPA Science Inventory

    From 9-11/1994, the USEPA conducted a field demonstration of the remediation of highly contaminated groundwater at the Mascolite Superfund site located in Millville, NJ. Besides high concentrations of the major contaminant, methyl methacrylate (MMA), the groundwater also containe...

  6. Computer-model analysis of ground-water flow and simulated effects of contaminant remediation at Naval Weapons Industrial Reserve Plant, Dallas, Texas

    USGS Publications Warehouse

    Barker, Rene A.; Braun, Christopher L.

    2000-01-01

    In June 1993, the Department of the Navy, Southern Division Naval Facilities Engineering Command (SOUTHDIV), began a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Naval Weapons Industrial Reserve Plant (NWIRP) in north-central Texas. The RFI has found trichloroethene, dichloroethene, vinyl chloride, as well as chromium, lead, and other metallic residuum in the shallow alluvial aquifer underlying NWIRP. These findings and the possibility of on-site or off-site migration of contaminants prompted the need for a ground-water-flow model of the NWIRP area. The resulting U.S. Geological Survey (USGS) model: (1) defines aquifer properties, (2) computes water budgets, (3) delineates major flowpaths, and (4) simulates hydrologic effects of remediation activity. In addition to assisting with particle-tracking analyses, the calibrated model could support solute-transport modeling as well as help evaluate the effects of potential corrective action. The USGS model simulates steady-state and transient conditions of ground-water flow within a single model layer. The alluvial aquifer is within fluvial terrace deposits of Pleistocene age, which unconformably overlie the relatively impermeable Eagle Ford Shale of Late Cretaceous age. Over small distances and short periods, finer grained parts of the aquifer are separated hydraulically; however, most of the aquifer is connected circuitously through randomly distributed coarser grained sediments. The top of the underlying Eagle Ford Shale, a regional confining unit, is assumed to be the effective lower limit of ground-water circulation and chemical contamination. The calibrated steady-state model reproduces long-term average water levels within +5.1 or ?3.5 feet of those observed; the standard error of the estimate is 1.07 feet with a mean residual of 0.02 foot. Hydraulic conductivity values range from 0.75 to 7.5 feet per day, and average about 4 feet per day. Specific yield values range from 0

  7. Phyto remediation groundwater trends at the DOE portsmouth gaseous

    SciTech Connect

    Lewis, A.C.; Baird, D.R.

    2007-07-01

    This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large

  8. Biological Remediation of Petroleum Contaminants

    NASA Astrophysics Data System (ADS)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  9. Task 21 - Evaluation of Artificial Freeze Crystallization and Natural Freeze-Thaw Processes for the Treatment of Contaminated Groundwater at the Strachan Gas Plant in Alberta, Canada - Sour Gas Remediation Technology R{ampersand}D

    SciTech Connect

    1997-03-01

    During the period from 1993 to 1996, a long-term program was initiated to conduct remediation research at the Strachan Gas Plant in Alberta, Canada. As part of this research program, optimization of the existing pump-and-treat (P{ampersand}T) facility was of interest. The cost-effective treatment of contaminated groundwater produced from the P{ampersand}T system was complicated by several factors, including: (1) increased cost and reduced effectiveness of most water treatment processes because of the cold temperatures and severe winter conditions prevalent in Alberta, (2) interference caused by the mixture of inorganic and organic contaminants found in the groundwater that can reduce the effectiveness of many water treatment processes, and (3) pretreatment to prevent scaling in existing treatment process unit operations caused by the iron, manganese, and hardness of the contaminated groundwater.

  10. Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene.

    PubMed

    Jha, Kshitij C; Liu, Zhuonan; Vijwani, Hema; Nadagouda, Mallikarjuna; Mukhopadhyay, Sharmila M; Tsige, Mesfin

    2016-01-01

    Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants. PMID:27455218

  11. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    SciTech Connect

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  12. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    PubMed

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. PMID:25747301

  13. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites

  14. Summary of the NATO/CCMS Conference The Demonstration of Remedial Action Technologies for Contaminated Land and GroundWater

    EPA Science Inventory

    The problem of contamination to land and groundwa- ter from improper handling of hazardous materials/ waste is faced by all countries. Also, the need for reliable, cost-effective technologies to address this problem at contaminated sites exists throughout the world. Many countrie...

  15. EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME III

    EPA Science Inventory

    This volume is the third of a three-volume report documenting the results of an evaluation of ground-water extraction remedies at hazardous waste sites. It consists of a collection of 112 data base reports presenting general information on sites where ground-water extraction sys...

  16. EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME II

    EPA Science Inventory

    This volume was prepared as part of an evaluation of groundwater extraction remedies completed under EPA Contract No. 68-W8-0098. It presents 19 case studies of individual sites where ground-water extraction systems have been implemented. These case studies present site characte...

  17. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at the Hanford Site, Washington - An Update

    SciTech Connect

    Thompson, K. M.; Rowley, R. B.; Petersen, Scott W.; Fruchter, Jonathan S.

    2008-06-02

    This paper provides an update on supplemental groundwater remediation technologies to protect the Columbia River at the Hanford Site in Washington State. Major groundwater contaminants at the Hanford Site are described, along with the technologies and remedial activities that will address these environmental challenges.

  18. Remediation of chromate-contaminated groundwater using zero-valent iron: Field test at USCG Support Center, Elizabeth City, North Carolina

    SciTech Connect

    Puls, R.W.; Paul, C.J.; Powell, R.M.

    1996-12-31

    A field test was conducted near an old hard-chrome plating facility on the USCG Support Center near Elizabeth City, North Carolina to evaluate the in situ remediation of ground water contaminated by hexavalent chromium using a passive permeable reactive barrier composed of a zero-valent iron-sand-aquifer material mixture. The remedial effectiveness of this innovative in situ technology was in situ technology was monitored over a one year period.

  19. Ammonium-nitrogen-contaminated groundwater remediation by a sequential three-zone permeable reactive barrier (multibarrier) with oxygen-releasing compound (ORC)/clinoptilolite/spongy iron: column studies.

    PubMed

    Huang, Guoxin; Liu, Fei; Yang, Yingzhao; Kong, Xiangke; Li, Shengpin; Zhang, Ying; Cao, Dejun

    2015-03-01

    A novel sequential permeable reactive barrier (multibarrier), composed of oxygen-releasing compound (ORC)/clinoptilolite/spongy iron zones in series, was proposed for ammonium-nitrogen-contaminated groundwater remediation. Column experiments were performed to: (1) evaluate the overall NH4(+)-N removal performance of the proposed multibarrier, (2) investigate nitrogen transformation in the three zones, (3) determine the reaction front progress, and (4) explore cleanup mechanisms for inorganic nitrogens. The results showed that NH4 (+)-N percent removal by the multibarrier increased up to 90.43 % after 21 pore volumes (PVs) at the influent dissolved oxygen of 0.68∼2.45 mg/L and pH of 6.76∼7.42. NH4(+)-N of 4.06∼10.49 mg/L was depleted and NOx(-)-N (i.e., NO3 (-)-N + NO2(-)-N) of 4.26∼9.63 mg/L was formed before 98 PVs in the ORC zone. NH4(+)-N of ≤4.76 mg/L was eliminated in the clinoptilolite zone. NOx(-)-N of 10.44∼12.80 mg/L was lost before 21 PVs in the spongy iron zone. The clinoptilolite zone length should be reduced to 30 cm. Microbial nitrification played a dominant role in NH4(+)-N removal in the ORC zone. Ion exchange was majorly responsible for NH4(+)-N elimination in the clinoptilolite zone. Chemical reduction and hydrogenotrophic denitrification both contributed to NOx(-)-N transformation, but the chemical reduction capacity decreased after 21 PVs in the spongy iron. PMID:25256584

  20. Hydrogeological modeling of prb for remediation of a contaminated site

    NASA Astrophysics Data System (ADS)

    Yang, Y. S.; McGeogh, K. L.; Kalin, R. M.

    2003-04-01

    In recent decades great effort has been spent on restoration of contaminated environment and considerable progress has been made in improving environmental quality. However, challenges still exist in some areas, such as remediation of contaminated land and groundwater. To provide sufficient remediation and protection for land and groundwater underneath, minimize environmental risk in infrastructure maintenance and urban re-development in terms of contamination remediation, it is necessary to incorporate understanding of the sub-surface conditions in the decision-making process. Characterization of regional and site-specific hydrogeological systems plays an important role in remediation of contaminated sites. Advanced modeling techniques can realize and improve characterization of complex hydrogeological systems. Numerical models can provide straightforward approaches for remediation designs. In this paper, a case study on hydrogeologic modeling of Permeable Reactive Barriers (PRB) for remediation of a contaminated site in the dockland area of Dublin, Ireland, is presented. The groundwater modeling maneuvers were carried out in three strands: regional characterization, zoom-in model in a smaller area; and detailed site-specific study. The regional hydrogeology and groundwater systems were characterized to form a regional conceptual model; a more detailed zoom-in 3-D model was further constructed in the quayside area to simulate the impact of adjacent remedial action and diurnally tidal fluctuation; finally, a site-specific model was built to study the detailed flow field and design the best remediation option. This site model was calibrated with field-monitored data under natural condition; hydraulic parameter, time varying river boundary and head-dependant boundary conditions were calibrated to achieve best fits between modeled and observed groundwater heads. The calibrated model then was used to carry out a remediation plan design using Permeable Reactive Barriers

  1. Pilot Study on Demonstration of Remedial Action Technologies for Contaminated Land and Groundwater Volumes 1 and 2 EPA/600/SR-93/012

    EPA Science Inventory

    This two-volume report presents information on a 5-yr pilot study (1986- 1991) sponsored by the North Atlantic Treaty Organization's (NATO) Committee on the Challenges of Modern Society (CCMS) entitled "Demonstration of Remedial Action Technologies for Contaminated Land and Gr...

  2. SULFATE REDUCTION IN GROUNDWATER: CHARACTERIZATION AND APPLICATIONS FOR REMEDIATION

    PubMed Central

    Miao, Z.; Brusseau, M. L.; Carroll, K. C.; Carreón-Diazconti, C.; Johnson, B.

    2013-01-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in-situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron (ZVI) and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications. PMID:21947714

  3. Progress in remediation of groundwater at petroleum sites in California.

    PubMed

    McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J; Connor, John A; Garg, Sanjay

    2014-01-01

    Quantifying the overall progress in remediation of contaminated groundwater has been a significant challenge. We utilized the GeoTracker database to evaluate the progress in groundwater remediation from 2001 to 2011 at over 12,000 sites in California with contaminated groundwater. This paper presents an analysis of analytical results from over 2.1 million groundwater samples representing at least $100 million in laboratory analytical costs. Overall, the evaluation of monitoring data shows a large decrease in groundwater concentrations of gasoline constituents. For benzene, half of the sites showed a decrease in concentration of 85% or more. For methyl tert-butyl ether (MTBE), this decrease was 96% and for TBE, 87%. At remediation sites in California, the median source attenuation rate was 0.18/year for benzene and 0.36/year for MTBE, corresponding to half-lives of 3.9 and 1.9 years, respectively. Attenuation rates were positive (i.e., decreasing concentration) for benzene at 76% of sites and for MTBE at 85% of sites. An evaluation of sites with active remediation technologies suggests differences in technology effectiveness. The median attenuation rates for benzene and MTBE are higher at sites with soil vapor extraction or air sparging compared with sites without these technologies. In contrast, there was little difference in attenuation rates at sites with or without soil excavation, dual phase extraction, or in situ enhanced biodegradation. The evaluation of remediation technologies, however, did not evaluate whether specific systems were well designed or implemented and did not control for potential differences in other site factors, such as soil type. PMID:24224563

  4. COMBINATION OF A SOURCE REMOVAL REMEDY AND BIOREMEDIATION FOR THE TREATMENT OF A TCE CONTAMINATED AQUIFER

    EPA Science Inventory

    Historical disposal practices of chlorinated solvents have resulted in the widespread contamination of ground-water resources. These ground-water contaminants exist in the subsurface as free products, residual and vapor phases, and in solution. The remediation of these contamin...

  5. Fiscal Year 2010 Program of the U.S. DOE Office of Groundwater and Soil Remediation

    SciTech Connect

    Chamberlain, G. M.; Skubal, Karen L.; Wellman, Dawn M.

    2011-03-07

    The mission of the Office of Groundwater and Soil Remediation (EM-32) is to perform assessments, establish technical criteria and promote cross-site integration. The Office provides guidance for the development and implementation of plans for remediation of groundwater and is responsible for development of technologies needed to reduce risk from groundwater contamination. It is also responsible for providing technical direction and/or assistance to sites in resolving difficult technical groundwater and soil remediation problems. This paper discusses the activities funded by EM-32 for FY-2010.

  6. Distribution of Groundwater Contaminants at the RCA Taoyuan Plant

    NASA Astrophysics Data System (ADS)

    Yao, I.; Wang, Y.; Chia, Y.

    2013-12-01

    The RCA Taoyuan plant is the first announced remediation site due to groundwater contamination in Taiwan in 2004. From 1970 through 1992, Radio Corporation of America (RCA) Taoyuan Plant in Taiwan operated as a television assembly plant producing related electronic equipment. In 1987, the soil and the groundwater of the site area were discovered with contamination of chlorinated Volatile Organic Compounds (VOCs). The primary contaminants are tetrachloroethene (PCE), trichloroethene (TCE), and 1, 1, 1- trichloroethane (1, 1, 1-TCA). The source of the contamination may be caused by improper dumping or leakage of the chemical solvents. The remediation of soil were finished in 1998 and qualified with Republic of China Environmental Protection Administration (ROCEPA) soil pollution control standards. On the other hand, after more detailed site investigations and many pilot tests, the remediation of groundwater has been started since 2005 and is still in progress. Because the chlorinated VOCs are Dense Non-Aqueous Phase Liquids (DNAPLs), they are hardly dissolved in groundwater and couldn't be cleaned up by extraction and treatment. In addition, the densities of DNAPLs are higher than water, so they would keep moving downward till aquitards or interval mud layers between aquifers. The movement was controlled by many complex factors, including the gravity, hydraulic gradient, capillary pressure, etc. Then DNAPLs would move along the surface of layers horizontally leaving slight remains on the paths. The remains would keep slowly dissolving in groundwater to become long-term contamination sources. The Enhanced Reductive Dechlorination (ERD) method has been conducted to remediate the groundwater in site area with successful effects, but some of the monitoring wells in off-site area are still detected with high concentrations of VOCs, exceeding the pollution standards. Furthermore, the concentration of primary contaminants was lowered by the remediation, but some secondary

  7. Engineered Injection and Extraction for Enhanced In-situ Remediation of Sorbing Solutes in Groundwater

    NASA Astrophysics Data System (ADS)

    Webber, B. D.; Neupauer, R. M.; Piscopo, A. N.; Mays, D. C.

    2012-12-01

    Groundwater remediation is becoming increasingly more important as the world's population grows and the necessity of access to clean drinking water persists. The majority of current groundwater treatment methods involve pumping the contaminated groundwater out of the soil and treating it above ground. Sorbed contaminants are difficult to remediate using this conventional pump-and-treat method, and often produce poor treatment results because sorbed contaminants are difficult to extract from the aquifer; therefore in-situ remediation research is of particular importance. One type of in-situ groundwater remediation involves a treatment solution of varying composition being injected into the polluted aquifer to react with the contaminant and degrade it to an acceptable byproduct. Increasing the amount of spreading between the contaminant and the treatment solution promotes an increase in contact area and more desired reactions. It has been previously determined that sequential injection and extraction using four wells for in-situ remediation can enhance the spreading of an aqueous contaminant and treatment solution and increase degradation through more reactions. In this work, we focus on sorbing contaminants and investigate the effectiveness of the injection and extraction methods on varying degrees of contaminant sorption. Tests were conducted in homogeneous and heterogeneous soil media, and with instantaneous and kinetic reaction. It was determined that engineered injection and extraction methods previously developed for aqueous contaminants also enhance in-situ remediation of sorbing solutes.

  8. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α). PMID:23307052

  9. Glycol Ethers As Groundwater Contaminants

    NASA Astrophysics Data System (ADS)

    Ross, Benjamin; Johannson, Gunnar; Foster, Gregory D.; Eckel, William P.

    1992-01-01

    Ether derivatives of dihydroxy alcohols, which are formed from ethylene or propylene, comprise an important group of groundwater contaminants known as glycol ethers. Compounds in this group are used as solvents, cleaning agents, and emulsifiers in many chemical products and manufacturing operations. Glycol ethers have been associated with a variety of toxic effects, and some compounds in the group are relatively potent teratogens. The limited information available suggests that glycol ethers are contaminants in groundwater, especially in anaerobic plumes emanating from disposal of mixed industrial and household waste. Most methods used to analyze groundwater samples cannot adequately detect μg/? (ppb) concentrations of glycol ethers, and the existing methods perform worst for the most widely used and toxic species. A new method capable of analyzing μg/? concentrations of glycol ethers was recently developed, and its use is recommended for groundwater samples where glycol ethers are likely to be present.

  10. Remediation of mercury contaminated sites - A review.

    PubMed

    Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Xing, Ying; Shang, Lihai

    2012-06-30

    Environmental contamination caused by mercury is a serious problem worldwide. Coal combustion, mercury and gold mining activities and industrial activities have led to an increase in the mercury concentration in soil. The objective of this paper is to present an up-to-date understanding of the available techniques for the remediation of soil contaminated with mercury through considering: mercury contamination in soil, mercury speciation in soil; mercury toxicity to humans, plants and microorganisms, and remediation options. This paper describes the commonly employed and emerging techniques for mercury remediation, namely: stabilization/solidification (S/S), immobilization, vitrification, thermal desorption, nanotechnology, soil washing, electro-remediation, phytostabilization, phytoextraction and phytovolatilization. PMID:22579459

  11. Groundwater contamination from stormwater infiltration

    SciTech Connect

    Pitt, R.; Clark, S.; Parmer, K.

    1995-10-01

    The research summarized here was conducted during the first year of a 3-yr cooperative agreement (CR819573) to identify and control stormwater toxicants, especially those adversely affecting groundwater. The purpose of this research effort was to review the groundwater contamination literature as it relates to stormwater. Prior to urbanization groundwater is recharged by rainfall-runoff and snowmelt infiltrating through pervious surfaces including grasslands and woods. This infiltrating water is relatively uncontaminated. Urbanization, however, reduces the permeable soil surface area through which recharge by infiltration occurs. This results in much less groundwater recharge and greatly increased surface runoff. In addition the waters available for recharge carry increased quantities of pollutants. With urbanization, waters having elevated contaminant concentrations also recharge groundwater including effluent from domestic septic tanks, wastewater from percolation basins and industrial waste injection wells, infiltrating stormwater, and infiltrating water from agricultural irrigation. The areas of main concern that are covered by this paper are: the source of the pollutants, stormwater constituents having a high potential to contaminate groundwater, and the treatment necessary for stormwater.

  12. Audit of groundwater remediation plans at the Savannah River Site

    SciTech Connect

    1996-06-11

    The Department of Energy was required to reduce groundwater contamination that represented a risk to human health or the environment. To achieve this goal, the Savannah River Operations Office (Savannah River) entered into several formal agreements with Federal and State regulators. The agreements described how Savannah River would reduce the level of contamination until the risks to human health and the environment were lowered to an acceptable level. The agreements called for decreasing groundwater contamination to levels that would comply with South Carolina groundwater regulations, which would allow a hypothetical future resident to someday live above the F and H Areas and drink the groundwater. We believe basing the agreements on drinking water standards was unreasonable because no one will likely live above these areas or drink the groundwater. The more stringent drinking water standards were included in the planning process because Savannah River had not developed a Land Use Plan that would permit rational decision making for the entire site. Lacking a Land Use Plan, the environmental regulators assumed, and Savannah River acceded to, the most stringent usage scenario, that the groundwater under the F and H Areas might one day be used as a source of drinking water. It will take more than one hundred years for the subterranean groundwater to become safe enough for drinking water purposes. Consequently, Savannah River may continue to pursue expensive remediation projects for longer than would be necessary to protect human health and the environment. However, the cost impact of unnecessary clean-up activities is indeterminable because acceptable contamination limits would still have to be negotiated with the South Carolina Department of Health and Environmental Control.

  13. LONG-TERM PERFORMANCE ASSESSMENT OF PERMEABLE REACTIVE BARRIERS TO REMEDIATE CONTAMINATED GROUND WATER

    EPA Science Inventory

    Permeable reactive barriers (PRBs) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented ...

  14. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, J.C.; Bertch, P.M.

    1998-12-08

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  15. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, John C.; Bertch, Paul M.

    1998-01-01

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  16. Groundwater contaminant plume ranking. [UMTRA Project

    SciTech Connect

    Not Available

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs.

  17. A technical approach to groundwater contamination problems

    SciTech Connect

    Burton, J.C.; Leser, C.; Rose, C.M.

    1993-06-01

    Argonne National Laboratory has been performing technical investigations at sites in Nebraska and Kansas that have identified groundwater contamination by carbon tetrachloride. This comprehensive program will ultimately provide the affected communities with safe drinking water. The first step in the program is to evaluate the available data and identify sites that will require an Alternate Water Supply Study (AWSS). The objective of the AWSS is to identify options for providing a safe drinking water supply to all users, in compliance with the Safe Drinking Water Act. The AWSS consists of an engineering and cost evaluation followed by implementation of the selected alternative. For sites with contamination less than a specific concentration, the AWSS is regarded as a satisfactory long term solution, and no further action is taken. For those sites with concentrations above that specific limit, the AWSS implementation is regarded as only a stopgap measure, and the site is selected for additional remedial action. The first step of the remedial action is an Expedited Site Characterization (ESC). The ESC was developed at Argonne to decrease the cost and time of the remedial investigation and feasibility study while producing a high-quality technical investigation. The ESC is designed to characterize the contaminant plume configuration and movement, which requires an understanding of the geological and hydrogeologic controls on groundwater movement as well as the nature and extent of any remaining carbon tetrachloride source in the soils. The ESC program uses a multidisciplinary technical approach that incorporates geology, geochemistry, geohydrology, and geophysics. Field activities include sampling, chemical analysis, and borehole and surface geophysical surveys.

  18. Can Homeopathic Arsenic Remedy Combat Arsenic Poisoning in Humans Exposed to Groundwater Arsenic Contamination?: A Preliminary Report on First Human Trial

    PubMed Central

    2005-01-01

    Groundwater arsenic (As) has affected millions of people globally distributed over 20 countries. In parts of West Bengal (India) and Bangladesh alone, over 100 million people are at risk, but supply of As-free water is grossly inadequate. Attempts to remove As by using orthodox medicines have mostly been unsuccessful. A potentized homeopathic remedy, Arsenicum Album-30, was administered to a group of As affected people and thereafter the As contents in their urine and blood were periodically determined. The activities of various toxicity marker enzymes and compounds in the blood, namely aspartate amino transferase, alanine amino transferase, acid phosphatase, alkaline phosphatase, lipid peroxidation and reduced glutathione, were also periodically monitored up to 3 months. The results are highly encouraging and suggest that the drug can alleviate As poisoning in humans. PMID:16322812

  19. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  20. Spatial Analysis of Contaminants in 200 West Area Groundwater in Support of the 200-ZP-1 Operable Unit Pre-Conceptual Remedy Design

    SciTech Connect

    Murray, Christopher J.; Bott, Yi-Ju

    2008-12-30

    This report documents a preliminary spatial and geostatistical analysis of the distribution of several contaminants of interest (COIs) in groundwater within the unconfined aquifer beneath the 200 West Area of the Hanford Site. The contaminant plumes of interest extend within the 200-ZP-1 and 200-UP-1 groundwater operable units. The COIs included in the PNNL study were carbon tetrachloride (CTET), technetium-99 (Tc-99), iodine-129 (I-129), chloroform, plutonium, uranium, trichloroethylene (TCE), and nitrate. The project included three tasks. Task 1 involved the development of a database that includes all relevant depth-discrete data on the distribution of COIs in the study area. The second task involved a spatial analysis of the three-dimensional (3D) distribution of data for the COIs in the study area. The main focus of the task was to determine if sufficient data are available for geostatistical mapping of the COIs in 3D. Task 3 involved the generation of numerical grids of the concentration of CTET, chloroform, and Tc-99.

  1. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  2. Groundwater remediation optimization using artificial neural networks

    SciTech Connect

    Rogers, L. L., LLNL

    1998-05-01

    One continuing point of research in optimizing groundwater quality management is reduction of computational burden which is particularly limiting in field-scale applications. Often evaluation of a single pumping strategy, i.e. one call to the groundwater flow and transport model (GFTM) may take several hours on a reasonably fast workstation. For computational flexibility and efficiency, optimal groundwater remediation design at Lawrence Livermore National Laboratory (LLNL) has relied on artificial neural networks (ANNS) trained to approximate the outcome of 2-D field-scale, finite difference/finite element GFTMs. The search itself has been directed primarily by the genetic algorithm (GA) or the simulated annealing (SA) algorithm. This approach has advantages of (1) up to a million fold increase in speed of remediation pattern assessment during the searches and sensitivity analyses for the 2-D LLNL work, (2) freedom from sequential runs of the GFTM (enables workstation farming), and (3) recycling of the knowledge base (i.e. runs of the GFTM necessary to train the ANNS). Reviewed here are the background and motivation for such work, recent applications, and continuing issues of research.

  3. Biological remediation of groundwater containing both nitrate and atrazine.

    PubMed

    Hunter, William J; Shaner, Dale L

    2010-01-01

    Due to its high usage, mobility, and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in situ biological methods to remediate atrazine contaminated groundwater. To solve this problem we used two reactors in sequence as models of in situ biobarriers; the first was a vegetable-oil-based denitrifying biobarrier and the second an aerobic reactor that oxygenated the denitrifying reactor's effluent. The reactors were inoculated with an atrazine-degrading microbial consortium and supplied with water containing 5 mg l(-1) nitrate-N and 3 mg l(-1) atrazine. Our hypothesis was that the denitrifying barrier would remove nitrate from the flowing water and that the downstream reaction would remove atrazine. Our hypothesis proved correct; the two reactor system removed 99.9% of the atrazine during the final 30 weeks of the study. The denitrifying barrier removed approximately 98% of the nitrate and approximately 30% of the atrazine while the aerobic reactor removed approximately 70% of the initial atrazine. The system continued to work when the amount of nitrate-N in the influent water was increased to 50 mg l(-1). A mercury poisoning study blocked the degradation of atrazine indicating that biological processes were involved. An in situ denitrifying barrier coupled with an air injection system or other oxygenation process might be used to remove both nitrate and atrazine from contaminated groundwater or to protect groundwater from an atrazine spill. PMID:19756863

  4. An innovative funnel and gate approach to groundwater remediation

    SciTech Connect

    Johnson, D.O.; Wilkey, M.L.; Willis, J.M.; Breaux, L.; McKinsey, T.

    1996-12-01

    The US Department of Energy, office of Science and Technology (EM-50) sponsored a demonstration project of the Barrier Member Containment Corporation`s patented EnviroWall{trademark} system at the Savannah River site. With this system, contaminated groundwater can be funneled into a treatment system without pumping the contaminated water to the surface. The EnviroWall{trademark} barrier and pass-through system, an innovative product of sic years of research and development, provides a means to enhance groundwater flow on the upgradient side of an impermeable wall and direct it to an in situ treatment system. The EnviroWall{trademark} system is adaptable to most site conditions. Remedial applications range form plume containment to more robust designs that incorporate groundwater manipulation coupled with in situ treatment. Several key innovations of the EnviroWall{trademark} system include the following: a method for guide box installation; a means for using interlocking seals at vertical seams; a down-hole video camera for inspecting seams and panels, installation of horizontal- and vertical-collection systems; installation of vertical monitoring wells and instrumentation on each side of the barrier; site-specific backfill design; and a pass-through system for funneling groundwater into a treatment system.

  5. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  6. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  7. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.

    PubMed

    Calabrò, P S; Moraci, N; Suraci, P

    2012-03-15

    This paper presents the results of laboratory column tests aimed at defining the optimum weight ratio of zero-valent iron (ZVI)/pumice granular mixtures to be used in permeable reactive barriers (PRBs) for the removal of nickel from contaminated groundwater. The tests were carried out feeding the columns with aqueous solutions of nickel nitrate at concentrations of 5 and 50 mg/l using three ZVI/pumice granular mixtures at various weight ratios (10/90, 30/70 and 50/50), for a total of six column tests; two additional tests were carried out using ZVI alone. The most successful compromise between reactivity (higher ZVI content) and long-term hydraulic performance (higher Pumice content) seems to be given by the ZVI/pumice granular mixture with a 30/70 weight ratio. PMID:21885195

  8. The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program

    SciTech Connect

    Gerdes, Kurt D.; Chamberlain, Grover S.; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

    2011-12-02

    The U.S. Department of Energy’s (DOE) Office of Groundwater and Soil Remediation supports applied research and technology development (AR&TD) for remediation of environments contaminated by legacy nuclear waste. The program centers on delivering advanced scientific approaches and technologies from highly-leveraged, strategic investments that maximize impact to reduce risk and life-cycle cleanup costs. The current groundwater and soil remediation program consists of four applied programmatic areas: • Deep Vadose Zone – Applied Field Research Initiative • Attenuation Based Remedies – Applied Field Research Initiative • Remediation of Mercury and Industrial Contaminants – Applied Field Research Initiative • Advanced Simulation Capability for Environmental Management. This paper provides an overview of the applied programmatic areas, fiscal year 11 accomplishments, and their near-term technical direction.

  9. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  10. COSTS TO REMEDIATE MTBE-CONTAMINATED SITES

    EPA Science Inventory

    The extensive contamination of methyl tert-butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 sites wa...

  11. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  12. Modeling Fe0 permeable reactive barriers for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Carniato, Luca; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen

    2010-05-01

    Remediation of groundwater pollution has traditionally been achieved by energy-intensive and drastic methods such as pump and treat (P&T) systems. Recently, more economically viable and less invasive methods such as permeable reactive barriers have been used to clean up a wide variety of groundwater pollutants (volatile organic compounds, VOCl). Permeable reactive barriers are installed in the subsurface and the naturally present hydraulic gradient makes the groundwater flow through the barrier where the contaminants are removed by different removal processes (biodegradation, sorption, precipitation, chemical destruction). Effective application of these techniques requires a solid understanding of the site-specific hydrogeological and biochemical conditions, as well as a predictive assessment of long-term remediation efficiency. For example, secondary mineral precipitation has been shown to reduce reactivity and efficiency of permeable reactive barriers and the interactions between biological and chemical processes may also influence the long-term efficiency of such systems. In this study a multi-component transport model based on PHAST USGS has been developed to simulate the removal processes in the barrier and to make quantitative predictions about the long-term efficiency of the system. In particular the modelling approach will be presented together with the model application in lab-scale experiments and in field.

  13. Analysis of the remediation systems on the contaminant plume at the Plainville landfill

    SciTech Connect

    Woodworth, R.L.

    1999-06-01

    The Plainville landfill, located in Plainville, Massachusetts, has been the subject of study by several groups in recent years. A contaminant plume, exiting from the southwest corner of the landfill, is contaminating the groundwater downgradient and may affect drinking water wells located there. A two-phase remediation scheme, consisting of an interim overburden air sparging system and a final proposed pump and treat and air sparging system, has been proposed to mitigate the groundwater contaminant plume. This thesis assesses these remediation systems to determine their ability to remediate the contaminants in the groundwater plume. The interim and final proposed air sparging systems were analyzed using existing quarterly reports and a literature review. A MODFLOW groundwater flow model was used to analyze the pump and treat system. These analyses were then compared to the model utilized to design the remediation scheme. Several discrepancies in the design of the remediation scheme were noted as a result of this analysis. First, the presence of till lenses throughout the remediation zone was not addressed. Also, the extraction of water from the competent bedrock layer appears counterproductive. In addition, the air sparging system was not field tested to ascertain the flow pattern in the subsurface. Finally, the installation of the bedrock air sparging wells appears redundant. These discrepancies, however, will only decrease the projected efficiency of the proposed remediation schemes and increase clean up time. Consequently, the results of this study seem to indicate that the proposed remediation scheme is adequately designed.

  14. Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Vadose Zone

    SciTech Connect

    Truex, Michael J.; Carroll, Kenneth C.

    2013-05-01

    Contaminants in the vadose zone may act as a potential long-term source of groundwater contamination and need to be considered in remedy evaluations. In many cases, remediation decisions for the vadose zone will need to be made all or in part based on projected impacts to groundwater. Because there are significant natural attenuation processes inherent in vadose zone contaminant transport, remediation in the vadose zone to protect groundwater is functionally a combination of natural attenuation and use of other remediation techniques, as needed, to mitigate contaminant flux to groundwater. Attenuation processes include both hydrobiogeochemical processes that serve to retain contaminants within porous media and physical processes that mitigate the rate of water flux. In particular, the physical processes controlling fluid flow in the vadose zone are quite different and generally have a more significant attenuation impact on contaminant transport relative to those within the groundwater system. A remedy evaluation framework is presented herein that uses an adaptation of the established EPA Monitored Natural Attenuation (MNA) evaluation approach and a conceptual model based approach focused on identifying and quantifying features and processes that control contaminant flux through the vadose zone. A key concept for this framework is to recognize that MNA will comprise some portion of all remedies in the vadose zone. Thus, structuring evaluation of vadose zone waste sites to use an MNA-based approach provides information necessary to either select MNA as the remedy, if appropriate, or to quantify how much additional attenuation would need to be induced by a remedial action (e.g., technologies considered in a feasibility study) to augment the natural attenuation processes and meet groundwater protection goals.

  15. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives.

    PubMed

    Lemming, Gitte; Hauschild, Michael Z; Chambon, Julie; Binning, Philip J; Bulle, Cécile; Margni, Manuele; Bjerg, Poul L

    2010-12-01

    The environmental impacts of remediation of a chloroethene-contaminated site were evaluated using life cycle assessment (LCA). The compared remediation options are (i) in situ bioremediation by enhanced reductive dechlorination (ERD), (ii) in situ thermal desorption (ISTD), and (iii) excavation of the contaminated soil followed by off-site treatment and disposal. The results showed that choosing the ERD option will reduce the life-cycle impacts of remediation remarkably compared to choosing either ISTD or excavation, which are more energy-demanding. In addition to the secondary impacts of remediation, this study includes assessment of local toxic impacts (the primary impact) related to the on-site contaminant leaching to groundwater and subsequent human exposure via drinking water. The primary human toxic impacts were high for ERD due to the formation and leaching of chlorinated degradation products, especially vinyl chloride during remediation. However, the secondary human toxic impacts of ISTD and excavation are likely to be even higher, particularly due to upstream impacts from steel production. The newly launched model, USEtox, was applied for characterization of primary and secondary toxic impacts and combined with a site-dependent fate model of the leaching of chlorinated ethenes from the fractured clay till site. PMID:21053954

  16. Field-Scale Evaluation of Biostimulation for Remediation of Uranium-Contaminated Groundwater at a Proposed NABIR Field Research Center in Oak Ridge, TN

    SciTech Connect

    Criddle, Craig S.

    2003-06-01

    A hydrologic, geochemical and microbial characterization of the Area 3 field site has been completed. The formation is fairly impermeable, but there is a region of adequate flow approximately 50 feet bgs. The experiment will be undertaken within that depth interval. Groundwater from that depth is highly acidic (pH 3.2), and has high levels of nitrate, aluminum, uranium, and other heavy metals, as well as volatile chlorinated solvents (VOCs). Accordingly, an aboveground treatment train has been designed to remove these contaminants. The train consists of a vacuum stripper to remove VOCs, two chemical precipitation steps to adjust pH and remove metals, and a fluidized bed bioreactor to remove nitrate. The aboveground system will be coupled to a belowground recirculation system. The belowground system will contain an outer recirculation cell and a nested inner recirculation cell: the outer cells will be continuously flushed with nitrate-free treated groundwater. The inner cell will receive periodic inputs of uranium, tracer, and electron donor. Removal of uranium will be determined by comparing loss rates of conservative tracer and uranium within the inner recirculation cell. Over the past year, a detailed workplan was developed and submitted for regulatory approval. The workplan was presented to the Field Research Advisory Panel (FRAP), and after some extensive revision, the FRAP authorized implementation. Detailed design drawings and numerical simulations of proposed experiments have been prepared. System components are being prefabricated as skid-mounted units in Michigan and will be shipped to Oak Ridge for assembly. One manuscript has been submitted to a peer reviewed journal. This paper describes a novel technique for inferring subsurface hydraulic conductivity values. Two posters on this project were presented at the March 2002 NABIR PI meeting. One poster was presented at the Annual conference of the American Society for Microbiology in Salt Lake City, UT in

  17. [Construction of groundwater contamination prevention mapping system].

    PubMed

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping. PMID:23243867

  18. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings

  19. Consensus implementation of a groundwater remediation project at the Idaho National Engineering Laboratory

    SciTech Connect

    Hastings, K.R.; Carlson, D.S.

    1996-12-31

    Because of significant characterization uncertainties existing when the Record of Decision was signed and the unfavorable national reputation of groundwater pump and treat remediation projects, the Test Area North (TAN) groundwater ROD includes the evaluation of five emerging technologies that show potential for treating the organic contamination in situ or reducing the toxicity of contaminants above ground. Treatability studies will be conducted to ascertain whether any may be suitable for implementation at TAN to yield more timely or cost effective restoration of the aquifer. The implementation approach established for the TAN groundwater project is a consensus approach, maximizing a partnership relation with stakeholders in constant, iterative implementation decision making.

  20. Soil contamination with radionuclides and potential remediation.

    PubMed

    Zhu, Y G; Shaw, G

    2000-07-01

    Soils contaminated with radionuclides, particularly 137Cs and 90Sr, pose a long-term radiation hazard to human health through exposure via the foodchain and other pathways. Remediation of radionuclide-contaminated soils has become increasingly important. Removal of the contaminated surface soil (often up to 40 cm) or immobilization of radionuclides in soils by applying mineral and chemical amendments are physically difficult and not likely cost-effective in practicality. Reducing plant uptake of radionuclides, especially 137CS and 90Sr by competitive cations contained in chemical fertilizers has the general advantage in large scale, low-level contamination incidents on arable land, and has been widely practiced in central and Western Europe after the Chernobyl accident. Phytoextraction of radionuclides by specific plant species from contaminated sites has rapidly stimulated interest among industrialists as well as academics, and is considered to be a promising bio-remediation method. This paper examines the existing remediation approaches and discusses phytoextraction of radionuclides from contaminated soils in detail. PMID:10819188

  1. A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Wu, Jianfeng; Sun, Xiaomin; Wu, Jichun; Zheng, Chunmiao

    2013-05-01

    This study presents a new multi-objective optimization method, the niched Pareto tabu search (NPTS), for optimal design of groundwater remediation systems. The proposed NPTS is then coupled with the commonly used flow and transport code, MODFLOW and MT3DMS, to search for the near Pareto-optimal tradeoffs of groundwater remediation strategies. The difference between the proposed NPTS and the existing multiple objective tabu search (MOTS) lies in the use of the niche selection strategy and fitness archiving to maintain the diversity of the optimal solutions along the Pareto front and avoid repetitive calculations of the objective functions associated with the flow and transport model. Sensitivity analysis of the NPTS parameters is evaluated through a synthetic pump-and-treat remediation application involving two conflicting objectives, minimizations of both remediation cost and contaminant mass remaining in the aquifer. Moreover, the proposed NPTS is applied to a large-scale pump-and-treat groundwater remediation system of the field site at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts, involving minimizations of both total pumping rates and contaminant mass remaining in the aquifer. Additional comparison of the results based on the NPTS with those obtained from other two methods, namely the single objective tabu search (SOTS) and the nondominated sorting genetic algorithm II (NSGA-II), further indicates that the proposed NPTS has desirable computation efficiency, stability, and robustness and is a promising tool for optimizing the multi-objective design of groundwater remediation systems.

  2. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    D. Vandel

    2003-09-01

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  3. Sulfate Reduction in Groundwater: Characterization and Applications for Remediation

    SciTech Connect

    Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

    2012-06-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

  4. HANDBOOK: REMEDIATION OF CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Contaminated sediments may pose risks to both human and environmental health. Such sediments may be found in

    large sites, such as the harbors of industrialized ports. However, they are also frequently found in smaller sites, such as streams, lakes, bayous, and rivers. In r...

  5. A review of centrifugal testing of gasoline contamination and remediation.

    PubMed

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced. PMID:21909320

  6. A Review of Centrifugal Testing of Gasoline Contamination and Remediation

    PubMed Central

    Meegoda, Jay N.; Hu, Liming

    2011-01-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced. PMID:21909320

  7. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  8. Remediation technologies for oil-contaminated sediments.

    PubMed

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable. PMID:26414316

  9. Armored Enzyme Nanoparticles for Remediation of Subsurface Contaminants

    SciTech Connect

    Jonathan S. Dordick; Jay Grate; Jungbae Kim

    2007-02-19

    The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation. Research at Rensselaer focused on the development of haloalkane dehalogenase as a critical enzyme in the dehalogenation of contaminated materials (ultimately trichloroethylene and related pollutants). A combination of bioinformatic investigation and experimental work was performed. The bioinformatics was focused on identifying a range of dehalogenase enzymes that could be obtained from the known proteomes of major microorganisms. This work identified several candidate enzymes that could be obtained through relatively straightforward gene cloning and expression approaches. The experimental work focused on the isolation of haloalkane dehalogenase from a Xanthobacter species followed by incorporating the enzyme into silicates to form biocatalytic silicates. These are the precursors of SENs. At the conclusion of the study, dehalogenase was incorporated into SENs, although the loading was low. This work supported a single Ph.D. student (Ms. Philippa Reeder) for two years. The project ended prior to her being able to perform substantive bioinformatics

  10. Remediation of NAPL-contaminated aquifers: is the cure worth the cost?

    PubMed

    Kent, B; Bianchi Mosquera, G C

    2001-09-01

    Millions of dollars are spent in the United States each year to design, construct, and operate systems intended to remediate groundwater impacted by dense non-aqueous phase liquids (DNAPLs), such as trichloroethlene (TCE) and tetrachloroethene (PCE), or light non-aqueous phase liquids (LNAPLs), such as gasoline, diesel, and jet fuel. However, several recent studies suggest that many of these groundwater remediation systems may operate for decades without restoring groundwater to background conditions. This paper examines the potential economic impacts of continuing the current regulatory approach to remediation of NAPL-contaminated aquifers versus considering regionally contaminated aquifers as large storage basins instead of pristine resources. Treating water at the point of extraction when needed, provides an equivalent benefit and may be more practical and cost effective than attempting to restore aquifers to background conditions at the point of contamination. PMID:11597114

  11. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  12. Some aspects of remediation of contaminated soils

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  13. Biodegradation of thiocyanate in mining-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Spurr, L. P.; Watts, M. P.; Moreau, J. W.

    2015-12-01

    In-situ SCN- biodegradation as a strategy for remediating contaminated groundwater remains largely unproven. This study aimed to culture and characterise a community of SCN--degrading microbes from mining-contaminated groundwater, and to optimize the efficiency of this process under varied geochemical conditions. A gold ore processing plant in Victoria, Australia, has generated high amounts of thiocyanate (SCN-)-contaminated waste effluent. This effluent collects in a tailings storage facility (TSF) on site and seepage has contaminated local groundwater. This SCN- plume recently escaped the mine lease in a plume flowing partly through a confined aquifer and partly along buried paleochannel gravels. Groundwater samples were collected using a low-flow pump from two bores near the TSF. The pH of the SCN- contaminated groundwater typically varies between 4 and 6, and dissolved O2 varies between 1 and 40 ppm. SCN- concentrations in off-lease groundwater have increased from 10 ppm in 2010 to over 150 ppm in 2015. Cultures were inoculated directly from the groundwater, and filtered groundwater was used with amendments as the basal growth medium Cultures were subjected to geochemical amendments including changes in dissolved O2, pH, SCN- concentration and additions of organic carbon, phosphate or both. The enriched microbial consortia could not degrade thiocyanate under anoxic conditions, but some could completely degrade high concentrations of SCN- (>800mg L-1) under oxic conditions. Biodegradation accelerated with the addition of phosphate, while the addition of organic carbon actually limited the rate. SCN- degrading cultures are undergoing DNA sequencing for species identification and comparison to SCN--degrading cultures inoculated from surface waters in the TSF.

  14. The remediation of heavy metals contaminated sediment.

    PubMed

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research. PMID:18547718

  15. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  16. Characterization and remediation of highly radioactive contaminated soil at Hanford

    SciTech Connect

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion.

  17. THE TREATMENT OF CONTAMINATED WATER AT REMEDIAL WOOD PRESERVING SITES

    EPA Science Inventory

    Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain,...

  18. Advanced fuel hydrocarbon remediation national test location - groundwater circulation well environmental cleanup systems

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    When a contaminant is treated in place on the original site it is termed in situ remediation. Bioremediation refers to cleanup effected by living organisms such as bacteria and fungi. Certain species of bacteria are able to consume pollutants as a food source, thus detoxifying these compounds. In situ bioremediation is being considered as a viable and practical solution for reducing petroleum contamination levels in groundwater.

  19. Groundwater nitrate contamination: Factors and indicators

    PubMed Central

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-01-01

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation. PMID:22906701

  20. Reclamation and groundwater remediation at a hydrocarbon site in Alaska

    SciTech Connect

    Ririe, G.T.; Drake, L.D.; Olson, S.S.

    1997-12-31

    As part of a joint hydrocarbon cleanup project between Unocal and Marathon, we have initiated the use of constructed wetlands for restoration of the 40-acre Poppy Lane gravel pit located near Kenai, Alaska. Gravel excavated from this site was used to construct roads and drilling pads in the 1960`-70`s. During this period it was also used as a refuse dump for waste from the Kenai gas field and from local residents. The bulk wastes were removed and pockets of oily sand were removed, treated and returned to a stockpile on the site. This left the site with residual pockets of hydrocarbon-impacted sand (<1000 TPH) plus traces of hydrocarbon contamination in the uppermost shallow groundwater flowing through the outwash gravels. The final part of the cleanup will be land restoration and bioremediation of the final traces of hydrocarbons, which are predominantly diesel-range. High resolution gas chromatography analysis indicated that common plants already growing on the site (willow, cottonwood, and alder) did not concentrate diesel-range petroleum hydrocarbons in their foliage when growing in soils containing these contaminants. As part of the planned restoration and shallow groundwater remediation, two 1/3 acre test plots were constructed to promote in-situ biodegradation processes. In spring 1995, the first test, a tree root-barrier plot, was planted with dormant cuttings of four native wetland tree and shrub species, which were planted to depths up to five feet. Alder and elderberry did not succeed under any conditions, nor did any species planted in standing water. For cottonwood and willow species, approximately one half of each rooted and survived. When the water table dropped the second year, the willow cuttings rooted deeper in the vadose zone, while cottonwood did not. As a result of these findings, a tree root-barrier wetland is not considered to be a viable option for groundwater treatment at Poppy Lane.

  1. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  2. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  3. Development of a Groundwater Transport Simulation Tool for Remedial Process Optimization

    SciTech Connect

    Ivarson, Kristine A.; Hanson, James P.; Tonkin, M.; Miller, Charles W.; Baker, S.

    2015-01-14

    The groundwater remedy for hexavalent chromium at the Hanford Site includes operation of five large pump-and-treat systems along the Columbia River. The systems at the 100-HR-3 and 100-KR-4 groundwater operable units treat a total of about 9,840 liters per minute (2,600 gallons per minute) of groundwater to remove hexavalent chromium, and cover an area of nearly 26 square kilometers (10 square miles). The pump-and-treat systems result in large scale manipulation of groundwater flow direction, velocities, and most importantly, the contaminant plumes. Tracking of the plumes and predicting needed system modifications is part of the remedial process optimization, and is a continual process with the goal of reducing costs and shortening the timeframe to achieve the cleanup goals. While most of the initial system evaluations are conducted by assessing performance (e.g., reduction in contaminant concentration in groundwater and changes in inferred plume size), changes to the well field are often recommended. To determine the placement for new wells, well realignments, and modifications to pumping rates, it is important to be able to predict resultant plume changes. In smaller systems, it may be effective to make small scale changes periodically and adjust modifications based on groundwater monitoring results. Due to the expansive nature of the remediation systems at Hanford, however, additional tools were needed to predict the plume reactions to system changes. A computer simulation tool was developed to support pumping rate recommendations for optimization of large pump-and-treat groundwater remedy systems. This tool, called the Pumping Optimization Model, or POM, is based on a 1-layer derivation of a multi-layer contaminant transport model using MODFLOW and MT3D.

  4. Biological Remediation of Groundwater Containing both Nitrate and Atrazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to its high usage, mobility and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in-sit...

  5. Grand Challenge problems in environmental modeling and remediation: Groundwater contaminant transport (Partnership in Computational Science). Final report, July 15, 1995--August 31, 1997

    SciTech Connect

    Glimm, J.; Lindquist, W.B.

    1997-12-31

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. Seven institutions were primarily involved in this project: Brookhaven National Laboratory, Oak Ridge National Laboratory, Princeton University, SUNY at Stony Brook, Texas A and M University, The University of South Carolina, and the University of Texas at Austin, with contributing efforts from the Westinghouse Savannah River Technology Center. Each institution had primary responsibility for specific research components, but strong collaboration among all institutions was essential for the success of the project and in producing the final deliverables. PICS deliverables include source code for the suite of research simulators and auxiliary HPC tools, associated documentation, and test problems. These materials will be available as indicated from each institution`s web page or from the Center for Computational Sciences Oak Ridge National Laboratory in January 1998.

  6. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  7. Phytoremediation of contaminated soils and groundwater: lessons from the field

    SciTech Connect

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  8. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  9. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been

  10. Identification and Tracing Groundwater Contamination by Livestock Burial Sites

    NASA Astrophysics Data System (ADS)

    Ko, K.; Ha, K.; Park, S.; Kim, Y.; Lee, K.

    2011-12-01

    forthcoming issues for livestock burial are the treatment of leachate, protection of groundwater contamination by leachate, prevention of land slide, and prevention of rainfall percolation into burial site. It is also needed to develop the remediation, prospecting, and management technologies of groundwater contamination by carcass burial.

  11. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  12. Design, installation and operational methods of implementing horizontal wells for in situ groundwater and soil remediation

    SciTech Connect

    Larson, R.B.

    1996-12-31

    The design and installation of horizontal wells is the primary factor in the efficiency of the remedial actions. Often, inadequacies in the design and installation of remediation systems are not identified until remedial actions have commenced, at which time, required modifications of operational methods can be costly. The parameters required for designing a horizontal well remediation system include spatial variations in contaminant concentrations and lithology, achievable injection and/or extraction rates, area of influence from injection and/or extraction processes, and limitations of installation methods. As with vertical wells, there are several different methods for the installation of horizontal wells. This paper will summarize four installation methods for horizontal wells, including four sites where horizontal wells have been utilized for in-situ groundwater and soil remediation.

  13. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    PubMed

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  14. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    SciTech Connect

    Not Available

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  15. A Cyclic Approach for the Qunatification and Remediation of Subsurface Contamination

    NASA Astrophysics Data System (ADS)

    Ptak, T.; Teutsch, G.

    2004-12-01

    A new approach to contaminated land assessment and revitalisation, focusing on groundwater quality and complex contamination patterns at urban industrial megasites was developed. The new approach comprises three cycles: (a) the assessment of groundwater contamination using an integral mass flux based investigation method at the scale of entire industrial sites, (b) the delimiting of potential contamination source zones using backtracking and contaminant fingerprinting techniques, and (c) the development of emission oriented remediation strategies. The major advantage of the new approach is that the number of areas to be considered for further investigation and remediation is reduced from one cycle to the next. Consequently, a large potentially contaminated area is screened initially, but only a small area may be finally remediated, yielding a significant reduction of costs. The results from the integral investigation at the scale of entire megasites can be used for risk assessment purposes, for the quantification of the natural attenuation potential, as well as for the development of priorities for clean-up and / or further investigations and for the design of remediation measures. In addition, a consistent quantification of uncertainties in the results from the application of the integral groundwater investigation method is possible. Finally, the delimiting of the source zone extent and its uncertainty allows to define priorities for further investigation measures at a smaller scale, and to develop cost-optimized clean-up strategies. In this contribution, the focus will be on the three cycles of the new approach. Also, examples of application will be presented.

  16. Groundwater: Contamination from Nitrogen Fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High nitrate-nitrogen concentrations in water pose problems for human health and the environment. Groundwater is a major source for human water supplies and for contributing to surface water bodies. Leaching of N fertilizers is a major factor for high NO3-N concentrations in groundwater. Current ...

  17. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  18. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation.

    PubMed

    Smith, Megan M; Silva, Jeff A K; Munakata-Marr, Junko; McCray, John E

    2008-12-15

    Polymer floods provide a promising method to more effectively deliver conventional groundwater treatment agents to organic contaminants distributed within heterogeneous aquifer systems. Combinations of nontoxic polymers (xanthan and hydrolyzed polyacrylamide) and common chemical oxidants (potassium permanganate and sodium persulfate) were investigated to determine the suitability of these mixtures for polymer-enhanced in situ chemical oxidation applications. Oxidant demand and solution viscosity were utilized as initial measures of chemical compatibility. After 72 h of reaction with both test oxidants, solution viscosities in mixtures containing hydrolyzed polyacrylamide were decreased by more than 90% (final viscosities approximately 2 cP), similar to the 95% viscosity loss (final viscosities approximately 1 cP, near that of water) observed in xanthan/persulfate experiments. In contrast, xanthan solutions exposed to potassium permanganate preserved 60-95% of initial viscosity after 72 h. Permanganate depletion in xanthan-containing experiments ranged from 2% to 24% over the same test period. Although oxidant consumption in xanthan/permanganate solutions appeared to be correlated with increasing xanthan concentrations, solutions of up to 2000 mg/L xanthan did not inhibit permanganate from oxidizing a dissolved-phase test contaminant (tetrachloroethene, PCE) in xanthan solution. These advantageous characteristics (high viscosity retention, moderate oxidant demand, and lack of competitive effects on PCE oxidation rate) render xanthan/permanganate the most compatible polymer/oxidant combination of those tested for remediation by polymer-enhanced chemical oxidation. PMID:19174907

  19. GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  20. Incineration of explosive contaminated soil as a means of site remediation. Technical report

    SciTech Connect

    Major, M.A.; Amos, J.C.

    1992-11-24

    Large scale releases of explosive contaminated water have occurred in connection with manufacture of explosives, with load assembly and pack operations and at centers for the disassembly and recycle of munitions. The most serious contamination is at sites where explosive contaminated pink water was discarded in unlined evaporation lagoons. Sediments in pink water lagoons normally contain a high concentration of explosive and contamination of ground-water is usually the result. In an effort to remediate this hazard, the U.S. Army has chosen incineration of the contaminated soil as the best means of remediation. Although there is general agreement as to the superiority of incineration for this purpose, the process is complex and environmental, legal and financial questions remain.... Incineration, TNT, RDX, Lead, Mercury, Cadmium, RCRA, Remediation.

  1. Contamination and restoration of groundwater aquifers.

    PubMed Central

    Piver, W T

    1993-01-01

    Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172

  2. THE USE OF CONSTRUCTED WETLANDS TO PHYTOREMEDIATE EXPLOSIVES-CONTAMINATED GROUNDWATER AT THE MILAN ARMY AMMUNITION PLANT, MILAN, TENNESSEE

    EPA Science Inventory

    The groundwaters beneath many Army ammunition plants in the United States are contaminated with explosives. To help address this problem, the USAEC and TVA initiated a field demonstration program to evaluate the technical feasibility of using constructed wetlands for remediating ...

  3. A new risk and stochastic analysis of monitoring and remediation in subsurface contamination

    NASA Astrophysics Data System (ADS)

    Papapetridis, K.; Paleologos, E.

    2012-04-01

    Sanitary landfills constitute the most widely used management approach for the disposal of solid wastes because of their simplicity and cost effectiveness. However, historical records indicate that landfills exhibit a high failure rate of groundwater contamination. Successful detection of aquifer contamination via monitoring wells is a complicated problem with many factors, such as the heterogeneity of the geologic environment, the dispersion of contamination into the geologic medium, the quantity and nature of the contaminants, the number and location of the monitoring wells, and the frequency of sampling, all contributing to the uncertainty of early detection. Detection of contaminants, of course, is of value if remedial actions follow as soon as possible, so that the volume of contaminated groundwater to be treated is minimized. Practically, there is always a time lag between contaminant detection and remedial action response. Administrative decisions and arrangements with local contractors initiate remedial procedures introduces a time lag between detection and remediation time. During this time lag a plume continues to move into an aquifer contaminating larger groundwater volumes. In the present study these issues are addressed by investigating the case of instantaneous leakage from a landfill facility into a heterogeneous aquifer. The stochastic Monte Carlo framework was used to address, in two dimensions, the problem of evaluating the effectiveness of contaminant detection in heterogeneous aquifers by linear networks of monitoring wells. Numerical experiments based on the random-walk tracking-particle method were conducted to determine the detection probabilities and to calculate contaminated areas at different time steps. Several cases were studied assuming different levels of geologic heterogeneity, contamination dispersion, detectable contamination limits and monitoring wells' sampling frequencies. A new perspective is introduced for the correction of

  4. CALCITE PRECIPITATION AND TRACE METAL PARTITIONING IN GROUNDWATER AND THE VADOSE ZONE: REMEDIATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES IN ARID WESTERN ENVIRONMENTS

    EPA Science Inventory

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. Demonstrating in situ immobilization of these contaminants in vadose zones or groundwater plumes is a cost-effective remediation str...

  5. Characterization and Remediation of Chlorinated Volatile Organic Contaminants in the Vadose Zone

    SciTech Connect

    Brusseau, Mark L.; Carroll, Kenneth C.; Truex, Michael J.; Becker, Dave

    2013-02-15

    Contamination of vadose-zone systems by chlorinated solvents is widespread, and poses significant potential risk to human health through impacts on groundwater quality and vapor intrusion. Soil vapor extraction (SVE) is the presumptive remedy for such contamination, and has been used successfully for innumerable sites. However, SVE operations typically exhibit reduced mass-removal effectiveness at some point due to the impact of poorly accessible contaminant mass and associated mass-transfer limitations. Assessment of SVE performance and closure is currently based on characterizing contaminant mass discharge associated with the vadose-zone source, and its impact on groundwater or vapor intrusion. These issues are addressed in this overview, with a focus on summarizing recent advances in our understanding of the transport, characterization, and remediation of chlorinated solvents in the vadose zone. The evolution of contaminant distribution over time and the associated impacts on remediation efficiency will be discussed, as will the potential impact of persistent sources on groundwater quality and vapor intrusion. In addition, alternative methods for site characterization and remediation will be addressed.

  6. Chaotic Advection, Fluid Spreading, and Groundwater Contaminant Plumes

    NASA Astrophysics Data System (ADS)

    Neupauer, R. M.; Mays, D. C.

    2011-12-01

    In situ remediation of contaminated groundwater requires degradation reactions at the interface between the contaminant plume and an injected treatment solution containing chemical or biological amendments. Therefore a promising approach to accelerate in situ remediation is to elongate the interface between the contaminant plume and treatment solution through fluid spreading. The literature on chaotic advection describes how to accomplish spreading in laminar flows, which lack the turbulent eddies that provide spreading in streams or engineered reactors. A key result from the literature on chaotic advection is that spreading is inherent in the vicinity of certain periodic points, which are points to which fluid particles return in successive iterations of chaotic flows. Specifically, spreading is enhanced near the stable and unstable manifolds associated with hyperbolic periodic points. We investigate the transient flow created with a four-well system in which wells are operated sequentially as either injection wells or extraction wells. In particular, we identify the periodic points and demonstrate that fluid spreading occurs nearby. For appropriately designed injection and extraction sequences, the periodic points are located near the interface between the contaminant plume and treatment solution, leading to elongation of the interface, with expected benefits of enhanced reaction and accelerated remediation.

  7. Public perceptions of a radioactively contaminated site: concerns, remediation preferences, and desired involvement.

    PubMed Central

    Feldman, D L; Hanahan, R A

    1996-01-01

    A public attitudes survey was conducted in neighborhoods adjacent to a radioactively contaminated site whose remediation is now under the auspices of the U.S. Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP). The survey's purpose was to ascertain levels of actual and desired public involvement in the remediation process; to identify health, environmental, economic, and future land-use concerns associated with the site; and to solicit remediation strategy preferences. Surface water and groundwater contamination, desire for public involvement, and potential health risks were found to be the most highly ranked site concerns. Preferred remediation strategies included treatment of contaminated soil and excavation with off-site disposal. Among on-site remediation strategies, only institutional controls that leave the site undisturbed and do not require additional excavation of materials were viewed favorably. Cost of remediation appeared to influence remediation strategy preference; however, no strategy was viewed as a panacea. Respondents were also concerned with protecting future generations, better assessment of risks to health and the environment, and avoiding generation of additional contaminated materials. PMID:9118878

  8. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    SciTech Connect

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs{sup 137}). The Tank 16 bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.

  9. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    SciTech Connect

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs[sup 137]). The Tank 16 bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.

  10. An integrated contaminant source and groundwater catchment model for assessemt of sustainable landuse and groundwater utilization

    NASA Astrophysics Data System (ADS)

    Jorgensen, P. R.; Loer-Hansen, H. C.; Hoffmann, M.; Brunn-Nielsen, J.

    2003-04-01

    The pesticide metabolite BAM (2,6-dichlorbenzamide) was used as a worst-case solute in order to assess the cause-effect relationship between contaminant source type/strength and response in the groundwater for other contaminant types BAM is the most frequently found pesticide contaminant in Danish groundwater. In 1999 BAM was found in 26% of Danish water supply wells and the drinking water standard (0.1 μg/L) was exceeded in 11% of the wells. BAM is a metabolite from the active ingredient dichlobenil (DCB), which was used for non-agricultural total weed protection during 1966 - 1997. By using the numerical codes FRAC3Dvs and MODFLOW/MT3D it is the aim of the study to evaluate the extent and durability of the BAM pollution in the Jægerspris/Landerslev groundwater catchment and to recommend planning strategies to avoid or minimize BAM in future water supply. The model combines all type of area-distributed data ranging from land use, estimated contaminant source strength, water balance, geology, hydro-chemistry in a dynamic prediction of the water quality in water extraction wells and in the groundwater. The model is considered as a tool for objective processing and integration of multiple-type of data collected from field mapping and laboratory works in consistent and reproducible predictive modeling. Combining these data of the pesticides with area-distributed data for the water balance, aquifer type and overriding fractured clay aquitards, the modeling indicates that the BAM pollution will appear in the groundwater with a high frequency in the following 20 years to more than 100 years. The modeling show that the extent and future evolution of the BAM pollution is a strong function of local geological and hydrological conditions, which in some cases can be utilized for minimizing problems for the water supply through planning and management. The model is a valuable tool for test-runs and evaluation of elaborate remediation plans and other types of groundwater

  11. Groundwater contamination in Ibadan, South-West Nigeria.

    PubMed

    Egbinola, Christiana Ndidi; Amanambu, Amobichukwu Chukwudi

    2014-01-01

    Groundwater is the main source of water for domestic use in Nigeria because it is perceived to be clean. The presence of geogenic contaminants (arsenic and fluoride), and the level of awareness of their presence in groundwater in Ibadan, Nigeria was examined in this study. A total of one hundred and twenty groundwater samples were collected from hand dug wells which tap into shallow aquifers and their location taken with the aid of a GPS. The concentration of arsenic was determined by Atomic Absorption Spectrophotometry (AAS) while concentration of fluoride was determined by single beam spectrophotometer. Three hundred and fifty semi structured questionnaires were also administered within the study area to determine the level of awareness of contamination problem. Simple summary statistics including mean (m) standard deviation (s) and minimum-maximum values of the hydro-chemical data was used in the data analyses, while spatial concentrations were mapped using ArcGIS. The results showed arsenic concentration exceeding the WHO (2011) recommended concentration for drinking water in 98% and 100% of the dry and wet season samples. Concentration of Fluoride exceeded the recommended limits in 13% and 100% of the dry and wet season samples. Questionnaire analyses revealed that 85% of respondents have never tested their wells, 55% have no knowledge of geogenic contamination, while 92% never heard of arsenic or fluoride (52%). The study recommends enlightenment on geogenic contamination and testing of wells for remediation purposes. PMID:26034666

  12. Evaluation of surfactant flushing for remediating EDC-tar contamination.

    PubMed

    Liang, Chenju; Hsieh, Cheng-Lin

    2015-01-01

    Ethylene dichloride tar (EDC-tar) is a dense non-aqueous phase liquid (DNAPL) waste originated from the process of vinyl chloride production, with major constituents including chlorinated aliphatic and aromatic hydrocarbons. This study investigated the feasibility of Surfactant Enhanced Aquifer Remediation (SEAR) for treating EDC-tar contaminated aquifers. Initial experiments explored the potential to enhance the apparent solubility of EDC-tar using single or mixed surfactants. The results showed that an aqueous solution mixed anionic and non-ionic surfactants (i.e., SDS/Tween 80) exhibited higher EDC-tar apparent solubility and lower surface tension than other surfactant systems tested. Additionally, alkaline pH aids in increasing the EDC-tar apparent solubility. In column flushing experiments, it was seen that the alkaline mixed SDS/Tween 80 solution showed better removal of pure EDC-tar from silica sand porous media. Furthermore, separation of EDC-tar in the surfactant solution was conducted employing a salting-out effect. Significant separation of DNAPL was observed when 13 wt.% or more NaCl was added to the solution. Overall, this study evaluates the feasibility of using SEAR for remediating EDC-tar contaminated subsurface soil and groundwater. PMID:25941757

  13. Evaluation of surfactant flushing for remediating EDC-tar contamination

    NASA Astrophysics Data System (ADS)

    Liang, Chenju; Hsieh, Cheng-Lin

    2015-06-01

    Ethylene dichloride tar (EDC-tar) is a dense non-aqueous phase liquid (DNAPL) waste originated from the process of vinyl chloride production, with major constituents including chlorinated aliphatic and aromatic hydrocarbons. This study investigated the feasibility of Surfactant Enhanced Aquifer Remediation (SEAR) for treating EDC-tar contaminated aquifers. Initial experiments explored the potential to enhance the apparent solubility of EDC-tar using single or mixed surfactants. The results showed that an aqueous solution mixed anionic and non-ionic surfactants (i.e., SDS/Tween 80) exhibited higher EDC-tar apparent solubility and lower surface tension than other surfactant systems tested. Additionally, alkaline pH aids in increasing the EDC-tar apparent solubility. In column flushing experiments, it was seen that the alkaline mixed SDS/Tween 80 solution showed better removal of pure EDC-tar from silica sand porous media. Furthermore, separation of EDC-tar in the surfactant solution was conducted employing a salting-out effect. Significant separation of DNAPL was observed when 13 wt.% or more NaCl was added to the solution. Overall, this study evaluates the feasibility of using SEAR for remediating EDC-tar contaminated subsurface soil and groundwater.

  14. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  15. Hydraulic gradient control for groundwater contaminant removal

    USGS Publications Warehouse

    Fisher, Atwood D.; Gorelick, S.M.

    1985-01-01

    The Rocky Mountain Arsenal near Denver, Colarado, U.S.A., is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. The simulation-management model eliminates wells far from the plume perimeter and activates wells near the perimeter as the plume decreases in size. This successfully stablizes the hydraulic gradient during aquifer cleanup.The Rocky Mountain Arsenal near Denver, Colorado, USA, is used as a realistic setting for a hypothetical test of a procedure that plans the hydraulic stabilization and removal of a groundwater contaminant plume. A two-stage planning procedure successfully selects the best wells and their optimal pumping/recharge schedules to contain the plume while a well or system of wells within the plume removes the contaminated water. In stage I, a combined groundwater flow and solute transport model is used to simulate contaminant removal under an assumed velocity field. The result is the approximated plume boundary location as a function of time. In stage II, a linear program, which includes a groundwater flow model as part of the set of constraints, determines the optimal well selection and their optimal pumping/recharge schedules by minimizing total pumping and recharge. Refs.

  16. Groundwater model recalibration and remediation well network design at the F-Area Seepage Basins

    SciTech Connect

    Sadler, W.R.

    1995-04-01

    On September 30, 1992, the South Carolina Department of Health and Environmental Control (SCDHEC) issued a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Part B Permit prescribing remediation of contaminated groundwater beneath and downgradient of the F- and H-Area Seepage Basins at the Savannah River Site. The remediation outlined in the Part B Permit calls for a three phase approach. For the F-Area Seepage Basins, the first phase requires the ``installation of an adequate number of pumping and injection wells or trenches, as appropriate, to capture and remediate those portions of-the contaminant plume delineated by the 10,000 pCi/ml tritium isoconcentration contour.`` Geochemical results from 1992 groundwater monitoring were used to delineate this isoconcentration contour in the Corrective Action Program (CAP) (WSRC, 1992a). The 1992 results were used based on SCDHEC written requirement to use the most recent data available at the time the CAP was formulated. The rationale used by SCDHEC in selecting the 10,000 pCi/ml tritium isoconcentration contour was that it also encompassed most of the other contaminants listed in the Groundwater Protection Standards. After extraction and treatment, the water is required to be reinjected into the aquifer due to the high levels of tritium still present in the treated water. The conceptual plan is to have recirculation of the tritium (as much as can practically be accomplished) to allow more time for radioactive decay before natural discharge to surface water.

  17. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  18. Regionally contaminated aquifers--toxicological relevance and remediation options (Bitterfeld case study).

    PubMed

    Heidrich, Susanne; Schirmer, Mario; Weiss, Holger; Wycisk, Peter; Grossmann, Jochen; Kaschl, Arno

    2004-12-15

    Large-scale contaminated megasites like Bitterfeld in eastern Germany are characterized by a regional contamination of soil, surface water and groundwater as a result of a long and varied history of chemical production. While the contaminants in soils and sediments mostly represent a localized problem, pollutants in groundwater may spread to uncontaminated areas and endanger receptors like surface water and drinking water wells according to the site-specific hydrologic regime. From the toxicological point of view, the contaminants at the Bitterfeld megasite represent a dangerous cocktail of various harmful substances coming from a multitude of sources. Appropriate remediation techniques must be able to remedy the specific problems arising from hot spot areas within the megasite in addition to preventing a further extension of the contaminated zone towards uncontaminated compartments. Therefore, a combination of specifically designed remediation technologies based on the pump and treat-principle with in situ technologies, such as reactive walls and monitored/enhanced natural attenuation, is necessary to efficiently address the miscellaneous challenges at this megasite. In this paper, the currently known contaminant distribution, the associated problems for human health and the environment and possible remediation strategies are presented for the Bitterfeld megasite. PMID:15464625

  19. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  20. Groundwater modeling and remedial optimization design using graphical user interfaces

    SciTech Connect

    Deschaine, L.M.

    1997-05-01

    The ability to accurately predict the behavior of chemicals in groundwater systems under natural flow circumstances or remedial screening and design conditions is the cornerstone to the environmental industry. The ability to do this efficiently and effectively communicate the information to the client and regulators is what differentiates effective consultants from ineffective consultants. Recent advances in groundwater modeling graphical user interfaces (GUIs) are doing for numerical modeling what Windows{trademark} did for DOS{trademark}. GUI facilitates both the modeling process and the information exchange. This Test Drive evaluates the performance of two GUIs--Groundwater Vistas and ModIME--on an actual groundwater model calibration and remedial design optimization project. In the early days of numerical modeling, data input consisted of large arrays of numbers that required intensive labor to input and troubleshoot. Model calibration was also manual, as was interpreting the reams of computer output for each of the tens or hundreds of simulations required to calibrate and perform optimal groundwater remedial design. During this period, the majority of the modelers effort (and budget) was spent just getting the model running, as opposed to solving the environmental challenge at hand. GUIs take the majority of the grunt work out of the modeling process, thereby allowing the modeler to focus on designing optimal solutions.

  1. Leaching of Contamination from Stabilization/Solidification Remediated Soils of Different Texture

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Kasparinskis, Raimonds; Klavins, Maris

    2012-09-01

    Development of soil and groundwater remediation technologies is a matter of great importance to eliminate historically and currently contaminated sites. Stabilization/solidification (S/S) refers to binding of waste contaminants to a more chemically stable form and thus diminishing leaching of contamination. It can be performed using cement with or without additives in order to stabilize and solidify soil with the contamination in matrix. A series of experiments were done to determine leaching properties of spiked soils of different texture bound with cement. Results of experiments showed, that soil texture (content of sand, silt and clay particles) affects the leaching of heavy metals from stabilized soils.

  2. Overview of innovative remediation of emerging contaminants

    NASA Astrophysics Data System (ADS)

    Keller, A. A.; Adeleye, A. S.; Huang, Y.; Garner, K.

    2015-12-01

    The application of nanotechnology in drinking water treatment and pollution cleanup is promising, as demonstrated by a number of field-based (pilot and full scale) and bench scale studies. A number of reviews exist for these nanotechnology-based applications; but to better illustrate its importance and guide its development, a direct comparison between traditional treatment technologies and emerging approaches using nanotechnology is needed. In this review, the performances of traditional technologies and nanotechnology for water treatment and environmental remediation were compared with the goal of providing an up-to-date reference on the state of treatment techniques for researchers, industry, and policy makers. Pollutants were categorized into broad classes, and the most cost-effective techniques (traditional and nanotechnology-based) in each category reported in the literature were compared. Where information was available, cost and environmental implications of both technologies were also compared. Traditional treatment technologies were found to currently offer the most cost-effective choices for removal of several common pollutants from drinking water and polluted sites. Nano-based techniques may however become important in complicated remediation conditions and meeting increasingly stringent water quality standards, especially in removal of emerging pollutants and low levels of contaminants. We also discuss challenges facing environmental application of nanotechnology were also discussed and potential solutions.

  3. Method to Remove Uranium/Vanadium Contamination from Groundwater

    SciTech Connect

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  4. Method to remove uranium/vanadium contamination from groundwater

    DOEpatents

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  5. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    SciTech Connect

    Audibert, J.M.E.; Lew, L.R.

    1994-12-31

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public.

  6. Identification of Groundwater Contaminant Location and Release History using Simulation-Optimization Method

    NASA Astrophysics Data System (ADS)

    Park, Y. C.

    2015-12-01

    Identification of location and release history of contaminant in groundwater is necessary to improve the remediation accuracy and to decrease the remediation cost. Especially in an industrial complex, groundwater is contaminated by various sources during unknown periods and groundwater remediation turns out complicated problems. A simulation-optimization method is preferred to solve the complicated problems of contaminant source identification because a simulation-optimization method has flexible applicability. For simulations of groundwater flow and contaminant transport, MODFLOW, MT3DMS and RT3D are used. These models are integrated with a genetic algorithm to obtain the optimization of contaminant location and release history. Because computing time and costs are enormous for a simulation-optimization method, a distributed computing technique is used to reduce computing time and costs. The performance of developed computer programs is evaluated with hypothetical examples with combinations of aquifers and contaminants from simple to complicated levels. The results shows the possibility of developed computer program to solve the problem of contaminant location and release history problems. This subject is supported by Korea Ministry of Environment as "The GAIA project".

  7. The cooling pond of the Chernobyl Nuclear Power Plant: A groundwater remediation case history

    NASA Astrophysics Data System (ADS)

    Bugai, Dmitri A.; Waters, Robert D.; Dzhepo, Sergei P.; Skalsk'ij, Alexander S.

    1997-04-01

    The cooling pond of the Chernobyl nuclear power plant was heavily contaminated as a result of the reactor accident in April 1986. From 1989 to 1993 the cooling pond represented one of the major sources of 90Sr migration from the Chernobyl site to the Dnieper River. Several attempts have been made to contain radioactive contamination within the pond. Overestimation of releases via groundwater pathway and design mistakes led to unsuccessful remedial actions in 1986 and in later periods. In addition, remediation criteria based solely on comparison of contaminant concentrations in groundwater with drinking water standards were not effective from the health risk perspective, because the public was not directly exposed to contaminated groundwater; the exclusion zone surrounding the site acted as an institutional control to prevent public access. In light of recent estimates of low risks due to radionuclide transport outside the exclusion zone, a "no action" approach may represent the most reasonable strategy for the near-term management of the cooling pond.

  8. Comparing Groundwater Contamination Vulnerability in Large, Urbanized Basins of California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Hudson, G. B.; Leif, R.; Eaton, G. F.

    2002-12-01

    We have sampled over 700 public drinking water wells as part of a study to assess relative contamination susceptibility of the major groundwater basins in California. The parameters used to rank wells according to vulnerability are groundwater age dates (using the tritium-3helium method), stable isotopes of the water molecule (for water source determination), and occurrence of low level Volatile Organic Compounds (VOCs). Long-screened production wells supply clean, high quality samples, and sample the resource that is being used. However, the groundwater age distribution from production wells may be quite broad, and comparisons to the predicted initial tritium value for the measured mean age, along with analysis of radiogenic 4Helium are used to de-convolute the mixed age. Results from the Los Angeles and Orange County Basins, and Santa Clara Valley, will be presented. A large volume of both imported and locally captured water is artificially recharged in these intensively managed basins. An effective confining unit in the Santa Clara Valley basin prevents widespread vertical transport of contaminants down to drinking water wells. In the southern California basins, groundwater age and the frequency of occurrence of low-level VOCs are spatially correlated, with more recently recharged water likely to have VOC detections. 'Pre-modern' water is nearly always free of VOCs, except when a suspected 'short circuit', (e.g., loss of integrity in well casing) allows near surface contamination to reach 'old' water. Methyl-tertiary-Butyl Ether (MTBE) can be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Water resource managers can use these vulnerability assessments to focus monitoring efforts, site new wells, plan land use, and evaluate remediation activities. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under

  9. Development and applications of groundwater remediation technologies in the USA

    NASA Astrophysics Data System (ADS)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  10. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...