Science.gov

Sample records for remodeled nucleosomes reveals

  1. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  2. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  3. Global remodeling of nucleosome positions in C. elegans

    PubMed Central

    2013-01-01

    Background Eukaryotic chromatin architecture is affected by intrinsic histone-DNA sequence preferences, steric exclusion between nucleosome particles, formation of higher-order structures, and in vivo activity of chromatin remodeling enzymes. Results To disentangle sequence-dependent nucleosome positioning from the other factors, we have created two high-throughput maps of nucleosomes assembled in vitro on genomic DNA from the nematode worm Caenorhabditis elegans. A comparison of in vitro nucleosome positions with those observed in a mixed-stage, mixed-tissue population of C. elegans cells reveals that in vivo sequence preferences are modified on the genomic scale. Indeed, G/C dinucleotides are predicted to be most favorable for nucleosome formation in vitro but not in vivo. Nucleosome sequence read coverage in vivo is distinctly lower in chromosome arms than in central regions; the observed changes in apparent nucleosome sequence specificity, likely due to genome-wide chromatin remodeler activity, contribute to the formation of these megabase-scale chromatin domains. We also observe that the majority of well-positioned in vivo nucleosomes do not occupy thermodynamically favorable sequences observed in vitro. Finally, we find that exons are intrinsically more amenable to nucleosome formation compared to introns. Nucleosome occupancy of introns and exons consistently increases with G/C content in vitro but not in vivo, in agreement with our observation that G/C dinucleotide enrichment does not strongly promote in vivo nucleosome formation. Conclusions Our findings highlight the importance of both sequence specificity and active nucleosome repositioning in creating large-scale chromatin domains, and the antagonistic roles of intrinsic sequence preferences and chromatin remodelers in C. elegans. Sequence read data has been deposited into Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra; accession number SRA050182). Additional data, software and computational

  4. Chromatin remodeling by nucleosome disassembly in vitro.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2006-02-28

    The RSC chromatin-remodeling complex completely disassembles a nucleosome in the presence of the histone chaperone Nap1 and ATP. Disassembly occurs in a stepwise manner, with the removal of H2A/H2B dimers, followed by the rest of the histones and the release of naked DNA. RSC and related chromatin-remodeling complexes may be responsible for the removal of promoter nucleosomes during transcriptional activation in vivo. PMID:16492771

  5. Probing Nucleosome Remodeling by Unzipping Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Michelle

    2006-03-01

    At the core of eukaryotic chromatin is the nucleosome, which consists of 147 bp of DNA wrapped 1.65 turns around an octamer of histone proteins. Even this lowest level of genomic compaction presents a strong barrier to DNA-binding cellular factors that are required for essential processes such as transcription, DNA replication, recombination and repair. Chromatin remodeling enzymes use the energy of ATP hydrolysis to regulate accessibility of the genetic code by altering chromatin structure. While remodeling enzymes have been the subject of extensive research in recent years, their precise mechanism remains unclear. In order to probe the structure of individual nucleosomes and their remodeling, we assembled a histone octamer onto a DNA segment containing a strong nucleosome positioning sequence. As the DNA double helix was unzipped through the nucleosome using a feedback-enhanced optical trap, the presence of the nucleosome was detected as a series of dramatic increases in the tension in the DNA, followed by sudden tension reductions. Analysis of the unzipping force throughout the disruption accurately revealed the spatial location and fine structure of the nucleosome to near base pair precision. Using this approach, we investigate how remodeling enzymes may alter the location and structure of a nucleosome.

  6. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators

    PubMed Central

    Kwon, So Yeon; Grisan, Valentina; Jang, Boyun; Herbert, John; Badenhorst, Paul

    2016-01-01

    NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx)) has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions. PMID:27046080

  7. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

    PubMed

    Kwon, So Yeon; Grisan, Valentina; Jang, Boyun; Herbert, John; Badenhorst, Paul

    2016-04-01

    NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx)) has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions. PMID:27046080

  8. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. PMID:26895087

  9. Stepwise nucleosome translocation by RSC remodeling complexes

    PubMed Central

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. DOI: http://dx.doi.org/10.7554/eLife.10051.001 PMID:26895087

  10. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  11. Nucleosome Spacing Generated by ISWI and CHD1 Remodelers Is Constant Regardless of Nucleosome Density

    PubMed Central

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik

    2015-01-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the HAND-SANT-SLIDE (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms. PMID:25733687

  12. Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures

    PubMed Central

    Xu, Fei; Colasanti, Andrew V.; Li, Yun; Olson, Wilma K.

    2010-01-01

    The packaging of DNA into nucleosomes impedes the binding and access of molecules involved in its processing. The SWI/SNF multi-protein assembly, found in yeast, is one of many regulatory factors that stimulate the remodeling of DNA required for its transcription. Amino-acid point mutations in histones H3 or H4 partially bypass the requirement of the SWI/SNF complex in this system. The mechanisms underlying the observed remodeling, however, are difficult to discern from the crystal structures of nucleosomes bearing these so-called SIN (SWI/SNF INdependent) mutations. Here, we report detailed analyses of the conformations and interactions of the histones and DNA in these assemblies. We find that the loss of direct protein–DNA contacts near point-mutation sites, reported previously, is coupled to unexpected additional long-range effects, i.e. loss of intermolecular contacts and accompanying DNA conformational changes at sequentially and spatially distant sites. The SIN mutations seemingly transmit information relevant to DNA binding across the nucleosome. The energetic cost of deforming the DNA to the states found in the SIN-mutant structures helps to distinguish the mutants that show phenotypes in yeast from those that do not. Models incorporating these deformed dimer steps suggest ways that nucleosomal DNA may be remodeled during its biological processing. PMID:20647418

  13. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders

    PubMed Central

    López, Alberto J.; Wood, Marcelo A.

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  14. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders.

    PubMed

    López, Alberto J; Wood, Marcelo A

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  15. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  16. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence

    PubMed Central

    Parmar, Jyotsana J.; Marko, John F.; Padinhateeri, Ranjith

    2014-01-01

    We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted ‘barriers’ co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that ‘statistical’ positioning of nucleosomes against ‘barriers’, hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy. PMID:24068556

  17. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions

    PubMed Central

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D.

    2014-01-01

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  18. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2014-11-15

    AT-rich DNA is concentrated in the nucleosome-free regions (NFRs) associated with transcription start sites of most genes. We tested the hypothesis that AT-rich DNA engenders NFR formation by virtue of its rigidity and consequent exclusion of nucleosomes. We found that the AT-rich sequences present in many NFRs have little effect on the stability of nucleosomes. Rather, these sequences facilitate the removal of nucleosomes by the RSC chromatin remodeling complex. RSC activity is stimulated by AT-rich sequences in nucleosomes and inhibited by competition with AT-rich DNA. RSC may remove NFR nucleosomes without effect on adjacent ORF nucleosomes. Our findings suggest that many NFRs are formed and maintained by an active mechanism involving the ATP-dependent removal of nucleosomes rather than a passive mechanism due to the intrinsic instability of nucleosomes on AT-rich DNA sequences. PMID:25403179

  19. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  20. A Compendium of Nucleosome and Transcript Profiles Reveals Determinants of Chromatin Architecture and Transcription

    PubMed Central

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R.; Nislow, Corey

    2013-01-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies. PMID:23658529

  1. Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex.

    PubMed

    Lorch, Yahli; Griesenbeck, Joachim; Boeger, Hinrich; Maier-Davis, Barbara; Kornberg, Roger D

    2011-08-01

    Purified chromatin rings, excised from the PHO5 locus of Saccharomyces cerevisiae in transcriptionally repressed and activated states, were remodeled with RSC and ATP. Nucleosomes were translocated, and those originating on the promoter of repressed rings were removed, whereas those originating on the open reading frame (ORF) were retained. Treatment of the repressed rings with histone deacetylase diminished the removal of promoter nucleosomes. These findings point to a principle of promoter chromatin remodeling for transcription, namely that promoter specificity resides primarily in the nucleosomes rather than in the remodeling complex that acts upon them. PMID:21725295

  2. Binding of NF-κB to Nucleosomes: Effect of Translational Positioning, Nucleosome Remodeling and Linker Histone H1

    PubMed Central

    Lone, Imtiaz Nisar; Shukla, Manu Shubhdarshan; Charles Richard, John Lalith; Peshev, Zahary Yordanov; Dimitrov, Stefan; Angelov, Dimitar

    2013-01-01

    NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. PMID:24086160

  3. Genome-Wide Chromatin Remodeling Identified at GC-Rich Long Nucleosome-Free Regions

    PubMed Central

    Hochreiter, Sepp

    2012-01-01

    To gain deeper insights into principles of cell biology, it is essential to understand how cells reorganize their genomes by chromatin remodeling. We analyzed chromatin remodeling on next generation sequencing data from resting and activated T cells to determine a whole-genome chromatin remodeling landscape. We consider chromatin remodeling in terms of nucleosome repositioning which can be observed most robustly in long nucleosome-free regions (LNFRs) that are occupied by nucleosomes in another cell state. We found that LNFR sequences are either AT-rich or GC-rich, where nucleosome repositioning was observed much more prominently in GC-rich LNFRs — a considerable proportion of them outside promoter regions. Using support vector machines with string kernels, we identified a GC-rich DNA sequence pattern indicating loci of nucleosome repositioning in resting T cells. This pattern appears to be also typical for CpG islands. We found out that nucleosome repositioning in GC-rich LNFRs is indeed associated with CpG islands and with binding sites of the CpG-island-binding ZF-CXXC proteins KDM2A and CFP1. That this association occurs prominently inside and also prominently outside of promoter regions hints at a mechanism governing nucleosome repositioning that acts on a whole-genome scale. PMID:23144837

  4. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility

    PubMed Central

    Mieczkowski, Jakub; Cook, April; Bowman, Sarah K.; Mueller, Britta; Alver, Burak H.; Kundu, Sharmistha; Deaton, Aimee M.; Urban, Jennifer A.; Larschan, Erica; Park, Peter J.; Kingston, Robert E.; Tolstorukov, Michael Y.

    2016-01-01

    Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation. PMID:27151365

  5. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility.

    PubMed

    Mieczkowski, Jakub; Cook, April; Bowman, Sarah K; Mueller, Britta; Alver, Burak H; Kundu, Sharmistha; Deaton, Aimee M; Urban, Jennifer A; Larschan, Erica; Park, Peter J; Kingston, Robert E; Tolstorukov, Michael Y

    2016-01-01

    Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation. PMID:27151365

  6. Atomic Force Microscopy Imaging of SWI/SNF Action: Mapping the Nucleosome Remodeling and Sliding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Fontaine, E.; Stjean, P.; Castelnovo, M.; Faivremoskalenko, C.

    2007-07-01

    We propose a combined experimental (Atomic Force Microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows to determine simultaneously the DNA complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleo-proteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the in the length distribution of DNA complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA complexed length, we extract the net wrapping energy of DNA onto the histone octamer, and compare it to previous studies.

  7. Nucleosome Retention and The Stochastic Nature of Promoter Chromatin Remodeling for Transcription

    PubMed Central

    Boeger, Hinrich; Griesenbeck, Joachim; Kornberg, Roger D.

    2008-01-01

    The rate-limiting step of transcriptional activation in eukaryotes, and thus the critical point for gene regulation, is unknown. Using the inducible PHO5 gene of yeast as a model, we show that essential features of the transcriptional activation process can be described by a small number of simple assumptions about the chemical nature of the process. Our analysis elucidates the functional link between the dynamics of chromatin structure and gene regulation. It suggests a model for the underlying mechanism of promoter chromatin remodeling, which stochastically removes nucleosomes but appears to conserve a single nucleosome at all times when the promoter is bounded with respect to nucleosome sliding. All current experimental data are consistent with the hypothesis that promoter nucleosome disassembly is rate limiting for PHO5 expression. PMID:18485878

  8. Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity

    PubMed Central

    Small, Eliza C.; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan; Licht, Jonathan D.

    2014-01-01

    Nucleosomes, the basic unit of chromatin, have a critical role in the control of gene expression. Nucleosome positions have generally been determined by examining bulk populations of cells and then correlated with overall gene expression. Here, we describe a technique to determine nucleosome positioning in single cells by virtue of the ability of the nucleosome to protect DNA from GpC methylation. In the acid phosphatase inducible PHO5 gene, we find that there is significant cell-to-cell variation in nucleosome positions and shifts in nucleosome positioning correlate with changes in gene expression. However, nucleosome positioning is not absolute, and even with major shifts in gene expression, some cells fail to change nucleosome configuration. Mutations of the PHO5 promoter that introduce a poly(dA:dT) tract-stimulated gene expression under nonpermissive conditions led to shifts of positioned nucleosomes similar to induction of PHO5. By contrast, mutations that altered AA/TT/AT periodicity reduced gene expression upon PHO5 induction and stabilized nucleosomes in most cells, suggesting that enhanced nucleosome affinity for DNA antagonizes chromatin remodelers. Finally, we determined nucleosome positioning in two regions described as “fuzzy” or nucleosome-free when examined in a bulk assay. These regions consisted of distinct nucleosomes with a larger footprint for potential location and an increase population of cells lacking a nucleosome altogether. These data indicate an underlying complexity of nucleosome positioning that may contribute to the flexibility and heterogeneity of gene expression. PMID:24889621

  9. CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex.

    PubMed

    Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Saathoff, Hinnerk; Ryan, Daniel P; Torrado, Mario; Brofelth, Mattias; Parker, Benjamin L; Shepherd, Nicholas E; Mackay, Joel P

    2016-07-22

    Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex. PMID:27235397

  10. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes

    PubMed Central

    Angelov, Dimitar; Bondarenko, Vladimir A; Almagro, Sébastien; Menoni, Hervé; Mongélard, Fabien; Hans, Fabienne; Mietton, Flore; Studitsky, Vasily M; Hamiche, Ali; Dimitrov, Stefan; Bouvet, Philippe

    2006-01-01

    Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A–H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A–H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription. PMID:16601700

  11. SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays

    PubMed Central

    Angelov, Dimitar; Verdel, André; An, Woojin; Bondarenko, Vladimir; Hans, Fabienne; Doyen, Cécile-Marie; Studitsky, Vassily M; Hamiche, Ali; Roeder, Robert G; Bouvet, Philippe; Dimitrov, Stefan

    2004-01-01

    A histone variant H2ABbd was recently identified, but its function is totally unknown. Here we have studied the structural and functional properties of nucleosome and nucleosomal arrays reconstituted with this histone variant. We show that H2ABbd can replace the conventional H2A in the nucleosome, but this replacement results in alterations of the nucleosomal structure. The remodeling complexes SWI/SNF and ACF are unable to mobilize the variant H2ABbd nucleosome. However, SWI/SNF was able to increase restriction enzyme access to the variant nucleosome and assist the transfer of variant H2ABbd–H2B dimer to a tetrameric histone H3–H4 particle. In addition, the p300- and Gal4-VP16-activated transcription appeared to be more efficient for H2ABbd nucleosomal arrays than for conventional H2A arrays. The intriguing mechanisms by which H2ABbd affects both nucleosome remodeling and transcription are discussed. PMID:15372075

  12. A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes

    PubMed Central

    2013-01-01

    Background RNA polymerase (pol) III transcribes a unique class of genes with intra-genic promoters and high transcriptional activity. The major contributors to the pol III transcriptome, tRNAs genes are found scattered on all chromosomes of yeast. A prototype tDNA of <150 bp length, is generally considered nucleosome-free while some pol III-transcribed genes have been shown to have nucleosome-positioning properties. Results Using high resolution ChIP-chip and ChIP-seq methods, we found several unique features associated with nucleosome profiles on all tRNA genes of budding yeast, not seen on nucleosome-dense counterparts in fission yeast and resting human CD4+ T cells. The nucleosome-free region (NFR) on all but three yeast tDNAs is found bordered by an upstream (US) nucleosome strongly positioned at −140 bp position and a downstream (DS) nucleosome at variable positions with respect to the gene terminator. Perturbation in this nucleosomal arrangement interferes with the tRNA production. Three different chromatin remodelers generate and maintain the NFR by targeting different gene regions. Isw1 localizes to the gene body and makes it nucleosome-depleted, Isw2 maintains periodicity in the upstream nucleosomal array, while RSC targets the downstream nucleosome. Direct communication of pol III with RSC serves as a stress-sensory mechanism for these genes. In its absence, the downstream nucleosome moves towards the gene terminator. Levels of tRNAs from different families are found to vary considerably as different pol III levels are seen even on isogenes within a family. Pol III levels show negative correlation with the nucleosome occupancies on different genes. Conclusions Budding yeast tRNA genes maintain an open chromatin structure, which is not due to sequence-directed nucleosome positioning or high transcription activity of genes. Unlike 5′ NFR on pol II-transcribed genes, the tDNA NFR, which facilitates tDNA transcription, results from action of chromatin

  13. Robustness of nucleosome patterns in the presence of DNA sequence-specific free energy landscapes and active remodeling

    NASA Astrophysics Data System (ADS)

    Nuebler, Johannes; Obermayer, Benedikt; Möbius, Wolfram; Wolff, Michael; Gerland, Ulrich

    Proper positioning of nucleosomes in eukaryotic cells is important for transcription regulation. When averaged over many genes, nucleosome positions in coding regions follow a simple oscillatory pattern, which is described to a surprising degree of accuracy by a simple one-dimensional gas model for particles interacting via a soft-core repulsion. The quantitative agreement is surprising given that nucleosome positions are known to be determined by a complex interplay of mechanisms including DNA sequence-specific nucleosome stability and active repositioning of nucleosomes by remodeling enzymes. We rationalize the observed robustness of the simple oscillatory pattern by showing that the main effect of several known nucleosome positioning mechanisms is a renormalization of the particle interaction. For example, ``disorder'' from sequence-specific affinities leads to an apparent softening, while active remodeling can result in apparent softening for directional sliding or apparent stiffening for clamping mechanisms. We suggest that such parameter renormalization can explain the apparent difference of nucleosome properties in two yeast species, S. cerevisiae and S. pombe.

  14. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors

    PubMed Central

    Wiechens, Nicola; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-01-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase’s most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements. PMID:27019336

  15. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains.

    PubMed

    Cairns, B R; Schlichter, A; Erdjument-Bromage, H; Tempst, P; Kornberg, R D; Winston, F

    1999-11-01

    RSC is an essential 15 protein nucleosome-remodeling complex from S. cerevisiae. We have identified two closely related RSC members, Rsc1 and Rsc2. Biochemical analysis revealed Rsc1 and Rsc2 in distinct complexes, defining two forms of RSC. Genetic analysis has shown that Rsc1 and Rsc2 possess shared and unique functions. Rsc1 and Rsc2 each contain two bromodomains, a bromo-adjacent homology (BAH) domain, and an AT hook. One of the bromodomains, the BAH domain, and the AT hook are each essential for Rsc1 and Rsc2 functions, although they are not required for assembly into RSC complexes. Therefore, these domains are required for RSC function. Additional genetic analysis provides further evidence that RSC function is related to transcriptional control. PMID:10619019

  16. Inhibition of chromatin remodeling by Polycomb Group protein Posterior Sex Combs is mechanistically distinct from nucleosome binding1

    PubMed Central

    Lo, Stanley M.; Francis, Nicole J.

    2010-01-01

    Polycomb Group (PcG) proteins are essential regulators of development that maintain gene silencing in Drosophila and mammals through alterations of chromatin structure. One key PcG protein, Posterior Sex Combs (PSC), is part of at least two complexes: Polycomb Repressive Complex 1 (PRC1) and dRING Associated Factors (dRAF). PRC1-class complexes compact chromatin and inhibit chromatin remodeling, while dRAF has E3 ligase activity for ubiquitylation of histone H2A; activities of both complexes can inhibit transcription. The noncovalent effects of PRC1-class complexes on chromatin can be recapitulated by PSC alone, and the region of PSC required for these activities is essential for PSC function in vivo. To understand how PSC interacts with chromatin to exert its repressive effects, we compared the ability of PSC to bind to and inhibit remodeling of various nucleosomal templates, and determined which regions of PSC are required for mononucleosome binding and inhibition of chromatin remodeling. We find that PSC binds mononucleosome templates but inhibits their remodeling poorly. Addition of linker DNA to mononucleosomes allows their remodeling to be inhibited, although higher concentrations of PSC are required than for inhibition of multi-nucleosome templates. The C-terminal region of PSC (aa 456-1603) is important for inhibition of chromatin remodeling, and we identified aa 456-909 as sufficient for stable nucleosome binding but not for inhibition of chromatin remodeling. Our data suggest distinct mechanistic steps between nucleosome binding and inhibition of chromatin remodeling. PMID:20873869

  17. Epigenetic Regulation of Stem Cell Maintenance in the Drosophila Testis via the Nucleosome Remodeling Factor NURF

    PubMed Central

    Cherry, Christopher M.; Matunis, Erika L.

    2010-01-01

    SUMMARY Regulation of stem cells depends on both tissue-specific transcriptional regulators and changes in chromatin organization, yet the coordination of these events in endogenous niches is poorly understood. In the Drosophila testis, local JAK-STAT signaling maintains germline and somatic stem cells (GSCs and cyst progenitor cells, or CPCs) in a single niche. Here we show that epigenetic regulation via the nucleosome remodeling factor (NURF) complex ensures GSC and CPC maintenance by positively regulating JAK-STAT signaling, thereby preventing premature differentiation. Conversely, NURF is not required in early differentiating daughter cells of either lineage. Since three additional ATP-dependent chromatin remodelers (ACF, CHRAC, and dMi-2/NuRD) are dispensable for stem cell maintenance in the testis, epigenetic regulation of stem cells within this niche may rely primarily on NURF. Thus, local signals cooperate with specific chromatin remodeling complexes in intact niches to coordinately regulate a common set of target genes to prevent premature stem cell differentiation. PMID:20569693

  18. Nucleosome Positioning

    PubMed Central

    Nishida, Hiromi

    2012-01-01

    Nucleosome positioning is not only related to genomic DNA compaction but also to other biological functions. After the chromatin is digested by micrococcal nuclease, nucleosomal (nucleosome-bound) DNA fragments can be sequenced and mapped on the genomic DNA sequence. Due to the development of modern DNA sequencing technology, genome-wide nucleosome mapping has been performed in a wide range of eukaryotic species. Comparative analyses of the nucleosome positions have revealed that the nucleosome is more frequently formed in exonic than intronic regions, and that most of transcription start and translation (or transcription) end sites are located in nucleosome linker DNA regions, indicating that nucleosome positioning influences transcription initiation, transcription termination, and gene splicing. In addition, nucleosomal DNA contains guanine and cytosine (G + C)-rich sequences and a high level of cytosine methylation. Thus, the nucleosome positioning system has been conserved during eukaryotic evolution.

  19. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo

    PubMed Central

    Ocampo, Josefina; Chereji, Răzvan V.; Eriksson, Peter R.; Clark, David J.

    2016-01-01

    Adenosine triphosphate-dependent chromatin remodeling machines play a central role in gene regulation by manipulating chromatin structure. Most genes have a nucleosome-depleted region at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. In vitro, the three known yeast nucleosome spacing enzymes (CHD1, ISW1 and ISW2) form arrays with different spacing. We used genome-wide nucleosome sequencing to determine whether these enzymes space nucleosomes differently in vivo. We find that CHD1 and ISW1 compete to set the spacing on most genes, such that CHD1 dominates genes with shorter spacing and ISW1 dominates genes with longer spacing. In contrast, ISW2 plays a minor role, limited to transcriptionally inactive genes. Heavily transcribed genes show weak phasing and extreme spacing, either very short or very long, and are depleted of linker histone (H1). Genes with longer spacing are enriched in H1, which directs chromatin folding. We propose that CHD1 directs short spacing, resulting in eviction of H1 and chromatin unfolding, whereas ISW1 directs longer spacing, allowing H1 to bind and condense the chromatin. Thus, competition between the two remodelers to set the spacing on each gene may result in a highly dynamic chromatin structure. PMID:26861626

  20. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo.

    PubMed

    Ocampo, Josefina; Chereji, Răzvan V; Eriksson, Peter R; Clark, David J

    2016-06-01

    Adenosine triphosphate-dependent chromatin remodeling machines play a central role in gene regulation by manipulating chromatin structure. Most genes have a nucleosome-depleted region at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. In vitro, the three known yeast nucleosome spacing enzymes (CHD1, ISW1 and ISW2) form arrays with different spacing. We used genome-wide nucleosome sequencing to determine whether these enzymes space nucleosomes differently in vivo We find that CHD1 and ISW1 compete to set the spacing on most genes, such that CHD1 dominates genes with shorter spacing and ISW1 dominates genes with longer spacing. In contrast, ISW2 plays a minor role, limited to transcriptionally inactive genes. Heavily transcribed genes show weak phasing and extreme spacing, either very short or very long, and are depleted of linker histone (H1). Genes with longer spacing are enriched in H1, which directs chromatin folding. We propose that CHD1 directs short spacing, resulting in eviction of H1 and chromatin unfolding, whereas ISW1 directs longer spacing, allowing H1 to bind and condense the chromatin. Thus, competition between the two remodelers to set the spacing on each gene may result in a highly dynamic chromatin structure. PMID:26861626

  1. High-Resolution Mapping of Changes in Histone-DNA Contacts of Nucleosomes Remodeled by ISW2

    PubMed Central

    Kassabov, Stefan R.; Henry, Nathalia M.; Zofall, Martin; Tsukiyama, Toshio; Bartholomew, Blaine

    2002-01-01

    The imitation switch (ISWI) complex from yeast containing the Isw2 and Itc1 proteins was shown to preferentially slide mononucleosomes with as little as 23 bp of linker DNA from the end to the center of DNA. The contacts of unique residues in the histone fold regions of H4, H2B, and H2A with DNA were determined with base pair resolution before and after chromatin remodeling by a site-specific photochemical cross-linking approach. The path of DNA and the conformation of the histone octamer in the nucleosome remodeled or slid by ISW2 were not altered, because after adjustment for the new translational position, the DNA contacts at specific sites in the histone octamer had not been changed. Maintenance of the canonical nucleosome structure after sliding was also demonstrated by DNA photoaffinity labeling of histone proteins at specific sites within the DNA template. In addition, nucleosomal DNA does not become more accessible during ISW2 remodeling, as assayed by restriction endonuclease cutting. ISW2 was also shown to have the novel capability of counteracting transcriptional activators by sliding nucleosomes through Gal4-VP16 bound initially to linker DNA and displacing the activator from DNA. PMID:12370299

  2. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  3. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences

    PubMed Central

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-01-01

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen. PMID:26578577

  4. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  5. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    PubMed Central

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-01-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended “beads-on-a-string” conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA–nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. PMID:15919827

  6. Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex.

    PubMed

    Raj, Ritu; Lercher, Lukas; Mohammed, Shabaz; Davis, Benjamin G

    2016-07-25

    Transcriptional regulation can be established by various post-translational modifications (PTMs) on histone proteins in the nucleosome and by nucleobase modifications on chromosomal DNA. Functional consequences of histone O-GlcNAcylation (O-GlcNAc=O-linked β-N-acetylglucosamine) are largely unexplored. Herein, we generate homogeneously GlcNAcylated histones and nucleosomes by chemical post-translational modification. Mass-spectrometry-based quantitative interaction proteomics reveals a direct interaction between GlcNAcylated nucleosomes and the "facilitates chromatin transcription" (FACT) complex. Preferential binding of FACT to GlcNAcylated nucleosomes may point towards O-GlcNAcylation as one of the triggers for FACT-driven transcriptional control. PMID:27272618

  7. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays

    PubMed Central

    Thalhammer, Verena; Längst, Gernot

    2015-01-01

    The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin. PMID:26496704

  8. Nucleosome competition reveals processive acetylation by the SAGA HAT module.

    PubMed

    Ringel, Alison E; Cieniewicz, Anne M; Taverna, Sean D; Wolberger, Cynthia

    2015-10-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  9. The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences

    PubMed Central

    Ren, Jianke; Briones, Victorino; Barbour, Samantha; Yu, Weishi; Han, Yixing; Terashima, Minoru; Muegge, Kathrin

    2015-01-01

    Lsh, a chromatin remodeling protein of the SNF2 family, is critical for normal heterochromatin structure. In particular, DNA methylation at repeat elements, a hallmark of heterochromatin, is greatly reduced in Lsh−/− (KO) cells. Here, we examined the presumed nucleosome remodeling activity of Lsh on chromatin in the context of DNA methylation. We found that dynamic CG methylation was dependent on Lsh in embryonic stem cells. Moreover, we demonstrate that ATP function is critical for de novo methylation at repeat sequences. The ATP binding site of Lsh is in part required to promote stable association of the DNA methyltransferase 3b with the repeat locus. By performing nucleosome occupancy assays, we found distinct nucleosome occupancy in KO ES cells compared to WT ES cells after differentiation. Nucleosome density was restored to wild-type level by re-expressing wild-type Lsh but not the ATP mutant in KO ES cells. Our results suggest that ATP-dependent nucleosome remodeling is the primary molecular function of Lsh, which may promote de novo methylation in differentiating ES cells. PMID:25578963

  10. A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome

    PubMed Central

    Wei, Sijie; Falk, Samantha J.; Black, Ben E.; Lee, Tae-Hee

    2015-01-01

    Structural dynamics of nucleic acid and protein is an important physical basis of their functions. These motions are often very difficult to synchronize and too fast to be clearly resolved with the currently available single molecule methods. Here we demonstrate a novel hybrid single molecule approach combining stochastic data analysis with fluorescence correlation that enables investigations of sub-ms unsynchronized structural dynamics of macromolecules. Based on the method, we report the first direct evidence of spontaneous DNA motions at the nucleosome termini. The nucleosome, comprising DNA and a histone core, is the fundamental packing unit of eukaryotic genes that must be accessed during various genome transactions. Spontaneous DNA opening at the nucleosome termini has long been hypothesized to enable gene access in the nucleosome, but has yet to be directly observed. Our approach reveals that DNA termini in the nucleosome open and close repeatedly at 0.1–1 ms−1. The kinetics depends on salt concentration and DNA–histone interactions but not much on DNA sequence, suggesting that this dynamics is universal and imposes the kinetic limit to gene access. These results clearly demonstrate that our method provides an efficient and robust means to investigate unsynchronized structural changes of DNA at a sub-ms time resolution. PMID:26013809

  11. Histone H3 Lysine 14 (H3K14) Acetylation Facilitates DNA Repair in a Positioned Nucleosome by Stabilizing the Binding of the Chromatin Remodeler RSC (Remodels Structure of Chromatin)*

    PubMed Central

    Duan, Ming-Rui; Smerdon, Michael J.

    2014-01-01

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage. PMID:24515106

  12. The Nucleosome Remodeling and Deacetylase Complex NuRD Is Built from Preformed Catalytically Active Sub-modules.

    PubMed

    Zhang, W; Aubert, A; Gomez de Segura, J M; Karuppasamy, M; Basu, S; Murthy, A S; Diamante, A; Drury, T A; Balmer, J; Cramard, J; Watson, A A; Lando, D; Lee, S F; Palayret, M; Kloet, S L; Smits, A H; Deery, M J; Vermeulen, M; Hendrich, B; Klenerman, D; Schaffitzel, C; Berger, I; Laue, E D

    2016-07-17

    The nucleosome remodeling deacetylase (NuRD) complex is a highly conserved regulator of chromatin structure and transcription. Structural studies have shed light on this and other chromatin modifying machines, but much less is known about how they assemble and whether stable and functional sub-modules exist that retain enzymatic activity. Purification of the endogenous Drosophila NuRD complex shows that it consists of a stable core of subunits, while others, in particular the chromatin remodeler CHD4, associate transiently. To dissect the assembly and activity of NuRD, we systematically produced all possible combinations of different components using the MultiBac system, and determined their activity and biophysical properties. We carried out single-molecule imaging of CHD4 in live mouse embryonic stem cells, in the presence and absence of one of core components (MBD3), to show how the core deacetylase and chromatin-remodeling sub-modules associate in vivo. Our experiments suggest a pathway for the assembly of NuRD via preformed and active sub-modules. These retain enzymatic activity and are present in both the nucleus and the cytosol, an outcome with important implications for understanding NuRD function. PMID:27117189

  13. The MTA1 subunit of the nucleosome remodeling and deacetylase complex can recruit two copies of RBBP4/7.

    PubMed

    Schmidberger, Jason W; Sharifi Tabar, Mehdi; Torrado, Mario; Silva, Ana P G; Landsberg, Michael J; Brillault, Lou; AlQarni, Saad; Zeng, Yi Cheng; Parker, Benjamin L; Low, Jason K K; Mackay, Joel P

    2016-08-01

    The nucleosome remodeling and deacetylase (NuRD) complex remodels the genome in the context of both gene transcription and DNA damage repair. It is essential for normal development and is distributed across multiple tissues in organisms ranging from mammals to nematode worms. In common with other chromatin-remodeling complexes, however, its molecular mechanism of action is not well understood and only limited structural information is available to show how the complex is assembled. As a step towards understanding the structure of the NuRD complex, we have characterized the interaction between two subunits: the metastasis associated protein MTA1 and the histone-binding protein RBBP4. We show that MTA1 can bind to two molecules of RBBP4 and present negative stain electron microscopy and chemical crosslinking data that allow us to build a low-resolution model of an MTA1-(RBBP4)2 subcomplex. These data build on our understanding of NuRD complex structure and move us closer towards an understanding of the biochemical basis for the activity of this complex. PMID:27144666

  14. Monitoring Conformational Dynamics with Single-Molecule Fluorescence Energy Transfer: Applications in Nucleosome Remodeling

    PubMed Central

    Deindl, Sebastian; Zhuang, Xiaowei

    2016-01-01

    Due to its ability to track distance changes within individual molecules or molecular complexes on the nanometer scale and in real time, single-molecule fluorescence resonance energy transfer (single-molecule FRET) is a powerful tool to tackle a wide range of important biological questions. Using our recently developed single-molecule FRET assay to monitor nucleosome translocation as an illustrative example, we describe here in detail how to set up, carry out, and analyze single-molecule FRET experiments that provide time-dependent information on biomolecular processes. PMID:22929765

  15. A role for tuned levels of nucleosome remodeler subunit ACF1 during Drosophila oogenesis

    PubMed Central

    Börner, Kenneth; Jain, Dhawal; Vazquez-Pianzola, Paula; Vengadasalam, Sandra; Steffen, Natascha; Fyodorov, Dmitry V.; Tomancak, Pavel; Konev, Alexander; Suter, Beat; Becker, Peter B.

    2016-01-01

    The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf17 allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf11 allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf11 deletion – despite disruption of the Acf1 reading frame – expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis. PMID:26851213

  16. The Roles of SNF2/SWI2 Nucleosome Remodeling Enzymes in Blood Cell Differentiation and Leukemia

    PubMed Central

    Prasad, Punit; Lennartsson, Andreas; Ekwall, Karl

    2015-01-01

    Here, we review the role of sucrose nonfermenting (SNF2) family enzymes in blood cell development. The SNF2 family comprises helicase-like ATPases, originally discovered in yeast, that can remodel chromatin by changing chromatin structure and composition. The human genome encodes 30 different SNF2 enzymes. SNF2 family enzymes are often part of multisubunit chromatin remodeling complexes (CRCs), which consist of noncatalytic/auxiliary subunit along with the ATPase subunit. However, blood cells express a limited set of SNF2 ATPases that are necessary to maintain the pool of hematopoietic stem cells (HSCs) and drive normal blood cell development and differentiation. The composition of CRCs can be altered by the association of specific auxiliary subunits. Several auxiliary CRC subunits have specific functions in hematopoiesis. Aberrant expressions of SNF2 ATPases and/or auxiliary CRC subunit(s) are often observed in hematological malignancies. Using large-scale data from the International Cancer Genome Consortium (ICGC) we observed frequent mutations in genes encoding SNF2 helicase-like enzymes and auxiliary CRC subunits in leukemia. Hence, orderly function of SNF2 family enzymes is crucial for the execution of normal blood cell developmental program, and defects in chromatin remodeling caused by mutations or aberrant expression of these proteins may contribute to leukemogenesis. PMID:25789315

  17. Splice variants of the SWR1-type nucleosome remodeling factor Domino have distinct functions during Drosophila melanogaster oogenesis.

    PubMed

    Börner, Kenneth; Becker, Peter B

    2016-09-01

    SWR1-type nucleosome remodeling factors replace histone H2A by variants to endow chromatin locally with specialized functionality. In Drosophila melanogaster a single H2A variant, H2A.V, combines functions of mammalian H2A.Z and H2A.X in transcription regulation and the DNA damage response. A major role in H2A.V incorporation for the only SWR1-like enzyme in flies, Domino, is assumed but not well documented in vivo. It is also unclear whether the two alternatively spliced isoforms, DOM-A and DOM-B, have redundant or specialized functions. Loss of both DOM isoforms compromises oogenesis, causing female sterility. We systematically explored roles of the two DOM isoforms during oogenesis using a cell type-specific knockdown approach. Despite their ubiquitous expression, DOM-A and DOM-B have non-redundant functions in germline and soma for egg formation. We show that chromatin incorporation of H2A.V in germline and somatic cells depends on DOM-B, whereas global incorporation in endoreplicating germline nurse cells appears to be independent of DOM. By contrast, DOM-A promotes the removal of H2A.V from stage 5 nurse cells. Remarkably, therefore, the two DOM isoforms have distinct functions in cell type-specific development and H2A.V exchange. PMID:27578180

  18. The Putzig-NURF nucleosome remodeling complex is required for ecdysone receptor signaling and innate immunity in Drosophila melanogaster.

    PubMed

    Kugler, Sabrina J; Gehring, Eva-Maria; Wallkamm, Veronika; Krüger, Victoria; Nagel, Anja C

    2011-05-01

    Putzig (Pzg) was originally identified as being an integral component of the TRF2/DREF complex in Drosophila melanogaster, thereby regulating the transcriptional activation of replication-related genes. In a DREF-independent manner, Pzg was shown to mediate Notch target gene activation. This function of Pzg entails an association with the nucleosome remodeling factor complex NURF, which directly binds the ecdysone receptor EcR and coregulates targets of the EcR via the NURF-specific subunit Nurf-301. In contrast, Nurf-301 acts as a negative regulator of JAK/STAT signaling. Here, we provide evidence to show that Pzg is fundamental for these functions of NURF, apart from the regulation of Notch signaling activity. A jump-out mutagenesis provided us with a pzg null mutant displaying early larval lethality, defects in growth, and molting accompanied by aberrant feeding behavior. We show that Pzg is associated with EcR in vivo and required for the transcriptional induction of EcR target genes, whereas reduced ecdysteroid levels imply a NURF-independent function of Pzg. Moreover, pzg interferes with JAK/STAT-signaling activity by acting as a corepressor of Ken. Lamellocyte differentiation was consistently affected in a JAK/STAT mutant background and the expression level of defense response genes was elevated in pzg mutants, leading to the formation of melanotic tumors. Our results suggest that Pzg acts as an important partner of NURF in the regulation of EcR and JAK/STAT signaling. PMID:21385730

  19. The NuRD nucleosome remodelling complex and NHK-1 kinase are required for chromosome condensation in oocytes

    PubMed Central

    Nikalayevich, Elvira; Ohkura, Hiroyuki

    2015-01-01

    ABSTRACT Chromosome condensation during cell division is one of the most dramatic events in the cell cycle. Condensin and topoisomerase II are the most studied factors in chromosome condensation. However, their inactivation leads to only mild defects and little is known about the roles of other factors. Here, we took advantage of Drosophila oocytes to elucidate the roles of potential condensation factors by performing RNA interference (RNAi). Consistent with previous studies, depletion of condensin I subunits or topoisomerase II in oocytes only mildly affected chromosome condensation. In contrast, we found severe undercondensation of chromosomes after depletion of the Mi-2-containing NuRD nucleosome remodelling complex or the protein kinase NHK-1 (also known as Ballchen in Drosophila). The further phenotypic analysis suggests that Mi-2 and NHK-1 are involved in different pathways of chromosome condensation. We show that the main role of NHK-1 in chromosome condensation is to phosphorylate Barrier-to-autointegration factor (BAF) and suppress its activity in linking chromosomes to nuclear envelope proteins. We further show that NHK-1 is important for chromosome condensation during mitosis as well as in oocytes. PMID:25501812

  20. Physical and functional interactions between the histone H3K4 demethylase KDM5A and the nucleosome remodeling and deacetylase (NuRD) complex.

    PubMed

    Nishibuchi, Gohei; Shibata, Yukimasa; Hayakawa, Tomohiro; Hayakawa, Noriyo; Ohtani, Yasuko; Sinmyozu, Kaori; Tagami, Hideaki; Nakayama, Jun-ichi

    2014-10-17

    Histone H3K4 methylation has been linked to transcriptional activation. KDM5A (also known as RBP2 or JARID1A), a member of the KDM5 protein family, is an H3K4 demethylase, previously implicated in the regulation of transcription and differentiation. Here, we show that KDM5A is physically and functionally associated with two histone deacetylase complexes. Immunoaffinity purification of KDM5A confirmed a previously described association with the SIN3B-containing histone deacetylase complex and revealed an association with the nucleosome remodeling and deacetylase (NuRD) complex. Sucrose density gradient and sequential immunoprecipitation analyses further confirmed the stable association of KDM5A with these two histone deacetylase complexes. KDM5A depletion led to changes in the expression of hundreds of genes, two-thirds of which were also controlled by CHD4, the NuRD catalytic subunit. Gene ontology analysis confirmed that the genes commonly regulated by both KDM5A and CHD4 were categorized as developmentally regulated genes. ChIP analyses suggested that CHD4 modulates H3K4 methylation levels at the promoter and coding regions of target genes. We further demonstrated that the Caenorhabditis elegans homologues of KDM5 and CHD4 function in the same pathway during vulva development. These results suggest that KDM5A and the NuRD complex cooperatively function to control developmentally regulated genes. PMID:25190814

  1. Physical and Functional Interactions between the Histone H3K4 Demethylase KDM5A and the Nucleosome Remodeling and Deacetylase (NuRD) Complex*

    PubMed Central

    Nishibuchi, Gohei; Shibata, Yukimasa; Hayakawa, Tomohiro; Hayakawa, Noriyo; Ohtani, Yasuko; Sinmyozu, Kaori; Tagami, Hideaki; Nakayama, Jun-ichi

    2014-01-01

    Histone H3K4 methylation has been linked to transcriptional activation. KDM5A (also known as RBP2 or JARID1A), a member of the KDM5 protein family, is an H3K4 demethylase, previously implicated in the regulation of transcription and differentiation. Here, we show that KDM5A is physically and functionally associated with two histone deacetylase complexes. Immunoaffinity purification of KDM5A confirmed a previously described association with the SIN3B-containing histone deacetylase complex and revealed an association with the nucleosome remodeling and deacetylase (NuRD) complex. Sucrose density gradient and sequential immunoprecipitation analyses further confirmed the stable association of KDM5A with these two histone deacetylase complexes. KDM5A depletion led to changes in the expression of hundreds of genes, two-thirds of which were also controlled by CHD4, the NuRD catalytic subunit. Gene ontology analysis confirmed that the genes commonly regulated by both KDM5A and CHD4 were categorized as developmentally regulated genes. ChIP analyses suggested that CHD4 modulates H3K4 methylation levels at the promoter and coding regions of target genes. We further demonstrated that the Caenorhabditis elegans homologues of KDM5 and CHD4 function in the same pathway during vulva development. These results suggest that KDM5A and the NuRD complex cooperatively function to control developmentally regulated genes. PMID:25190814

  2. Toward a unified physical model of nucleosome patterns flanking transcription start sites

    PubMed Central

    Möbius, Wolfram; Osberg, Brendan; Tsankov, Alexander M.; Rando, Oliver J.; Gerland, Ulrich

    2013-01-01

    Recent genome-wide maps of nucleosome positions in different eukaryotes revealed patterns around transcription start sites featuring a nucleosome-free region flanked by a periodic modulation of the nucleosome density. For Saccharomyces cerevisiae, the average in vivo pattern was previously shown to be quantitatively described by a “nucleosome gas” model based on the statistical positioning mechanism. However, this simple physical description is challenged by the fact that the pattern differs quantitatively between species and by recent experiments that appear incompatible with statistical positioning, indicating important roles for chromatin remodelers. We undertake a data-driven search for a unified physical model to describe the nucleosome patterns of 12 yeast species and also consider an extension of the model to capture remodeling effects. We are led to a nucleosome gas that takes into account nucleosome breathing, i.e., transient unwrapping of nucleosomal DNA segments. This known biophysical property of nucleosomes rationalizes a “pressure”-induced dependence of the effective nucleosome size that is suggested by the data. By fitting this model to the data, we find an average energy cost for DNA unwrapping consistent with previous biophysical experiments. Although the available data are not sufficient to reconstruct chromatin remodeling mechanisms, a minimal model extension by one mechanism yields an “active nucleosome gas” that can rationalize the behavior of systems with reduced histone–DNA ratio and remodeler knockouts. We therefore establish a basis for a physical description of nucleosome patterns that can serve as a null model for sequence-specific effects at individual genes and in models of transcription regulation. PMID:23509245

  3. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion.

    PubMed

    Zierhut, Christian; Jenness, Christopher; Kimura, Hiroshi; Funabiki, Hironori

    2014-07-01

    Nucleosomes are the fundamental unit of chromatin, but analysis of transcription-independent nucleosome functions has been complicated by the gene-expression changes resulting from histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation and by analyzing the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that although nucleosome-free DNA can recruit nuclear-envelope membranes, nucleosomes are required for spindle assembly and for formation of the lamina and of nuclear pore complexes (NPCs). We show that, in addition to the Ran G-nucleotide exchange factor RCC1, ELYS, the initiator of NPC formation, fails to associate with naked DNA but directly binds histone H2A-H2B dimers and nucleosomes. Tethering ELYS and RCC1 to DNA bypasses the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS. PMID:24952593

  4. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation.

    PubMed

    Qiu, Hongfang; Chereji, Răzvan V; Hu, Cuihua; Cole, Hope A; Rawal, Yashpal; Clark, David J; Hinnebusch, Alan G

    2016-02-01

    Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes. PMID:26602697

  5. Structural analysis of the RSC chromatin-remodeling complex.

    PubMed

    Asturias, Francisco J; Chung, Wen-Hsiang; Kornberg, Roger D; Lorch, Yahli

    2002-10-15

    Electron microscopy of the RSC chromatin-remodeling complex reveals a ring of protein densities around a central cavity. The size and shape of the cavity correspond closely to those of a nucleosome. Results of nuclease protection analysis are consistent with nucleosome binding in the cavity. Such binding could explain the ability of RSC to expose nucleosomal DNA in the presence of ATP without loss of associated histones. PMID:12368485

  6. Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography.

    PubMed Central

    Weisbrod, S T

    1982-01-01

    Nucleosomes from actively transcribed genes (active nucleosomes) contain nonhistone proteins HMG 14 and 17 and are preferentially sensitive to digestion by DNAse I. Active nucleosomes isolated by chromatography on an HMG 14 and 17 glass bead affinity column were analyzed with respect to overall structure, accessory nonhistone components and modifications to the DNA and histones. The experiments lead to the following conclusions: the DNA in the active nucleosome is undermethylated compared to bulk DNA; topoisomerase I is a non-stoichiometric component of the active nucleosome fraction; the level of histone acetylation is enriched in active nucleosomes, but the extent of enrichment cannot account for HMG binding; and the two histone H3 molecules in the active nucleosome can dimerize more readily and are, therefore, probably closer together than those in the bulk of the nucleosomes. Additionally it is shown that HMG 14 and 17 prefer to bind to single- vs. double-stranded nucleic acids. The role of HMG 14 and 17 in producing a highly DNAse I sensitive structure and correspondingly helping to facilitate transcription is discussed in terms of these properties. Images PMID:6210882

  7. RSC unravels the nucleosome.

    PubMed

    Lorch, Y; Zhang, M; Kornberg, R D

    2001-01-01

    RSC and SWI/SNF chromatin-remodeling complexes were previously reported to generate a stably altered nucleosome. We now describe the formation of hybrids between nucleosomes of different sizes, showing that the stably altered structure is a noncovalent dimer. A basis for dimer formation is suggested by an effect of RSC on the supercoiling of closed, circular arrays of nucleosomes. The effect may be explained by the interaction of RSC with DNA at the ends of the nucleosome, which could lead to the release 60--80 bp or more from the ends. DNA released in this way may be trapped in the stable dimer or lead to alternative fates such as histone octamer transfer to another DNA or sliding along the same DNA molecule. PMID:11172714

  8. High-Density Nucleosome Occupancy Map of Human Chromosome 9p21–22 Reveals Chromatin Organization of the Type I Interferon Gene Cluster

    PubMed Central

    Freaney, Jonathan E.; Zhang, Quanwei; Yigit, Erbay; Kim, Rebecca; Widom, Jonathan; Wang, Ji-Ping

    2014-01-01

    Genome-wide investigations have dramatically increased our understanding of nucleosome positioning and the role of chromatin in gene regulation, yet some genomic regions have been poorly represented in human nucleosome maps. One such region is represented by human chromosome 9p21–22, which contains the type I interferon gene cluster that includes 16 interferon alpha genes and the single interferon beta, interferon epsilon, and interferon omega genes. A high-density nucleosome mapping strategy was used to generate locus-wide maps of the nucleosome organization of this biomedically important locus at a steady state and during a time course of infection with Sendai virus, an inducer of interferon gene expression. Detailed statistical and computational analysis illustrates that nucleosomes in this locus exhibit preferences for particular dinucleotide and oligomer DNA sequence motifs in vivo, which are similar to those reported for lower eukaryotic nucleosome–DNA interactions. These data were used to visualize the region's chromatin architecture and reveal features that are common to the organization of all the type I interferon genes, indicating a common nucleosome-mediated gene regulatory paradigm. Additionally, this study clarifies aspects of the dynamic changes that occur with the nucleosome occupying the transcriptional start site of the interferon beta gene after virus infection. PMID:24673249

  9. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes

    PubMed Central

    Dechassa, Mekonnen Lemma; Sabri, Abdellah; Pondugula, Santhi; Kassabov, Stefan R.; Chatterjee, Nilanjana; Kladde, Michael P.; Bartholomew, Blaine

    2010-01-01

    SUMMARY The ATP-dependent chromatin remodeling complex SWI/SNF regulates transcription and has been implicated in promoter nucleosome eviction. Efficient nucleosome disassembly by SWI/SNF alone in biochemical assays has however not been directly observed. Employing a model system of dinucleosomes rather than mononucleosomes, we demonstrate that remodeling leads to ordered and efficient disassembly of one of the two nucleosomes. An H2A/H2B dimer is first rapidly displaced and then in a slower reaction an entire histone octamer is lost. Nucleosome disassembly by SWI/SNF did not require additional factors such as chaperones or acceptors of histones. Observations in single molecules as well as bulk measurement suggest that a key intermediate in this process is one in which a nucleosome is moved towards the adjacent nucleosome. SWI/SNF recruited by the transcriptional activator Gal4-VP16 preferentially mobilizes the proximal nucleosome and destabilizes the adjacent nucleosome. PMID:20513433

  10. Baculoviruses and nucleosome management

    SciTech Connect

    Volkman, Loy E.

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  11. Chromatin-remodeling and the initiation of transcription.

    PubMed

    Lorch, Yahli; Kornberg, Roger D

    2015-11-01

    The nucleosome serves as a general gene repressor by the occlusion of regulatory and promoter DNA sequences. Repression is relieved by the SWI/SNF-RSC family of chromatin-remodeling complexes. Research reviewed here has revealed the essential features of the remodeling process. PMID:26537406

  12. The Chromodomains of the Chd1 Chromatin Remodeler Regulate DNA Access to the ATPase Motor

    SciTech Connect

    Hauk, G.; McKnight, J; Nodelman, I; Bowman, G

    2010-01-01

    Chromatin remodelers are ATP-driven machines that assemble, slide, and remove nucleosomes from DNA, but how the ATPase motors of remodelers are regulated is poorly understood. Here we show that the double chromodomain unit of the Chd1 remodeler blocks DNA binding and activation of the ATPase motor in the absence of nucleosome substrates. The Chd1 crystal structure reveals that an acidic helix joining the chromodomains can pack against a DNA-binding surface of the ATPase motor. Disruption of the chromodomain-ATPase interface prevents discrimination between nucleosomes and naked DNA and reduces the reliance on the histone H4 tail for nucleosome sliding. We propose that the chromodomains allow Chd1 to distinguish between nucleosomes and naked DNA by physically gating access to the ATPase motor, and we hypothesize that related ATPase motors may employ a similar strategy to discriminate among DNA-containing substrates.

  13. A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes.

    PubMed

    Wang, Wesley Wei; Zeng, Yu; Wu, Bo; Deiters, Alexander; Liu, Wenshe R

    2016-07-15

    As a member of a highly conserved family of NAD(+)-dependent histone deacetylases, Sirt6 is a key regulator of mammalian genome stability, metabolism, and life span. Previous studies indicated that Sirt6 is hardwired to remove histone acetylation at H3K9 and H3K56. However, how Sirt6 recognizes its nucleosome substrates has been elusive due to the difficulty of accessing homogeneous acetyl-nucleosomes and the low activity of Sirt6 toward peptide substrates. Based on the fact that Sirt6 has an enhanced activity to remove long chain fatty acylation from lysine, we developed an approach to recombinantly synthesize histone H3 with a fatty acylated lysine, N(ε)-(7-octenoyl)-lysine (OcK), installed at a number of lysine sites and used these acyl-H3 proteins to assemble acyl-nucleosomes as active Sirt6 substrates. A chemical biology approach that visualizes OcK in nucleosomes and therefore allows direct sensitization of Sirt6 activities on its acyl-nucleosome substrates was also formulated. By combining these two approaches, we showed that Sirt6 actively removes acylation from H3K9, H3K18, and H3K27; has relatively low activities toward H3K4 and K3K23; but sluggishly removes acylation at H3K14, H3K36, H3K56, and H3K79. Overexpressing Sirt6 in 293T cells led to downregulated acetylation at H3K18 and K3K27, confirming these two novel Sirt6-targeted nucleosome lysine sites in cells. Given that downregulation of H3K18 acetylation is correlated with a poor prognosis of several cancer types and H3K27 acetylation antagonizes repressive gene regulation by di- and trimethylation at H3K27, our current study implies that Sirt6 may serve as a target for cancer intervention and regulatory pathway investigation in cells. PMID:27152839

  14. Genome-wide prediction of nucleosome occupancy in maize reveals plant chromatin structural features at genes and other elements at multiple scales.

    PubMed

    Fincher, Justin A; Vera, Daniel L; Hughes, Diana D; McGinnis, Karen M; Dennis, Jonathan H; Bass, Hank W

    2013-06-01

    The nucleosome is a fundamental structural and functional chromatin unit that affects nearly all DNA-templated events in eukaryotic genomes. It is also a biochemical substrate for higher order, cis-acting gene expression codes and the monomeric structural unit for chromatin packaging at multiple scales. To predict the nucleosome landscape of a model plant genome, we used a support vector machine computational algorithm trained on human chromatin to predict the nucleosome occupancy likelihood (NOL) across the maize (Zea mays) genome. Experimentally validated NOL plots provide a novel genomic annotation that highlights gene structures, repetitive elements, and chromosome-scale domains likely to reflect regional gene density. We established a new genome browser (http://www.genomaize.org) for viewing support vector machine-based NOL scores. This annotation provides sequence-based comprehensive coverage across the entire genome, including repetitive genomic regions typically excluded from experimental genomics data. We find that transposable elements often displayed family-specific NOL profiles that included distinct regions, especially near their termini, predicted to have strong affinities for nucleosomes. We examined transcription start site consensus NOL plots for maize gene sets and discovered that most maize genes display a typical +1 nucleosome positioning signal just downstream of the start site but not upstream. This overall lack of a -1 nucleosome positioning signal was also predicted by our method for Arabidopsis (Arabidopsis thaliana) genes and verified by additional analysis of previously published Arabidopsis MNase-Seq data, revealing a general feature of plant promoters. Our study advances plant chromatin research by defining the potential contribution of the DNA sequence to observed nucleosome positioning and provides an invariant baseline annotation against which other genomic data can be compared. PMID:23572549

  15. Friend of GATA (FOG) Interacts with the Nucleosome Remodeling and Deacetylase Complex (NuRD) to Support Primitive Erythropoiesis in Xenopus laevis

    PubMed Central

    Mimoto, Mizuho S.; Christian, Jan L.

    2012-01-01

    Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect. PMID:22235346

  16. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation

    PubMed Central

    Lercher, Lukas; Raj, Ritu; Patel, Nisha A.; Price, Joshua; Mohammed, Shabaz; Robinson, Carol V.; Schofield, Christopher J.; Davis, Benjamin G.

    2015-01-01

    O-GlcNAcylation is a newly discovered histone modification implicated in transcriptional regulation, but no structural information on the physical effect of GlcNAcylation on chromatin exists. Here, we generate synthetic, pure GlcNAcylated histones and nucleosomes and reveal that GlcNAcylation can modulate structure through direct destabilization of H2A/H2B dimers in the nucleosome, thus promoting an ‘open' chromatin state. The results suggest that a plausible molecular basis for one role of histone O-GlcNAcylation in epigenetic regulation is to lower the barrier for RNA polymerase passage and hence increase transcription. PMID:26305776

  17. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation

    NASA Astrophysics Data System (ADS)

    Lercher, Lukas; Raj, Ritu; Patel, Nisha A.; Price, Joshua; Mohammed, Shabaz; Robinson, Carol V.; Schofield, Christopher J.; Davis, Benjamin G.

    2015-08-01

    O-GlcNAcylation is a newly discovered histone modification implicated in transcriptional regulation, but no structural information on the physical effect of GlcNAcylation on chromatin exists. Here, we generate synthetic, pure GlcNAcylated histones and nucleosomes and reveal that GlcNAcylation can modulate structure through direct destabilization of H2A/H2B dimers in the nucleosome, thus promoting an `open' chromatin state. The results suggest that a plausible molecular basis for one role of histone O-GlcNAcylation in epigenetic regulation is to lower the barrier for RNA polymerase passage and hence increase transcription.

  18. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation.

    PubMed

    Lercher, Lukas; Raj, Ritu; Patel, Nisha A; Price, Joshua; Mohammed, Shabaz; Robinson, Carol V; Schofield, Christopher J; Davis, Benjamin G

    2015-01-01

    O-GlcNAcylation is a newly discovered histone modification implicated in transcriptional regulation, but no structural information on the physical effect of GlcNAcylation on chromatin exists. Here, we generate synthetic, pure GlcNAcylated histones and nucleosomes and reveal that GlcNAcylation can modulate structure through direct destabilization of H2A/H2B dimers in the nucleosome, thus promoting an 'open' chromatin state. The results suggest that a plausible molecular basis for one role of histone O-GlcNAcylation in epigenetic regulation is to lower the barrier for RNA polymerase passage and hence increase transcription. PMID:26305776

  19. Changing Chromatin Fiber Conformation by Nucleosome Repositioning

    PubMed Central

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-01-01

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell. PMID:25418099

  20. A high-resolution map of nucleosome positioning on a fission yeast centromere.

    PubMed

    Song, Jun S; Liu, Xingkun; Liu, X Shirley; He, Xiangwei

    2008-07-01

    A key element for defining the centromere identity is the incorporation of a specific histone H3, CENPA, known as Cnp1p in Schizosaccharomyces pombe. Previous studies have suggested that functional S. pombe centromeres lack regularly positioned nucleosomes and may involve chromatin remodeling as a key step of kinetochore assembly. We used tiling microarrays to show that nucleosomes are, in fact, positioned in regular intervals in the core of centromere 2, providing the first high-resolution map of regional centromere chromatin. Nucleosome locations are not disrupted by mutations in kinetochore protein genes cnp1, mis18, mis12, nuf2, mal2; overexpression of cnp1; or the deletion of ams2, which encodes a GATA-like factor participating in CENPA incorporation. Bioinformatics analysis of the centromere sequence indicates certain enriched motifs in linker regions between nucleosomes and reveals a sequence bias in nucleosome positioning. In addition, sequence analysis of nucleosome-free regions identifies novel binding sites of Ams2p. We conclude that centromeric nucleosome positions are stable and may be derived from the underlying DNA sequence. PMID:18411404

  1. Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo.

    PubMed

    Ichikawa, Yuichi; Morohashi, Nobuyuki; Tomita, Nobuyuki; Mitchell, Aaron P; Kurumizaka, Hitoshi; Shimizu, Mitsuhiro

    2016-07-22

    Nucleosome-depleted regions (NDRs) (also called nucleosome-free regions or NFRs) are often found in the promoter regions of many yeast genes, and are formed by multiple mechanisms, including the binding of activators and enhancers, the actions of chromatin remodeling complexes, and the specific DNA sequences themselves. However, it remains unclear whether NDR formation per se is essential for transcriptional activation. Here, we examined the relationship between nucleosome organization and gene expression using a defined yeast reporter system, consisting of the CYC1 minimal core promoter and the lacZ gene. We introduced simple repeated sequences that should be either incorporated in nucleosomes or excluded from nucleosomes in the site upstream of the TATA boxes. The (CTG)12, (GAA)12 and (TGTAGG)6 inserts were incorporated into a positioned nucleosome in the core promoter region, and did not affect the reporter gene expression. In contrast, the insertion of (CGG)12, (TTAGGG)6, (A)34 or (CG)8 induced lacZ expression by 10-20 fold. Nucleosome mapping analyses revealed that the inserts that induced the reporter gene expression prevented nucleosome formation, and created an NDR upstream of the TATA boxes. Thus, our results demonstrated that NDR formation dictated by DNA sequences is sufficient for transcriptional activation from the core promoter in vivo. PMID:27208777

  2. Solution scattering and FRET studies on nucleosomes reveal DNA unwrapping effects of H3 and H4 tail removal.

    PubMed

    Andresen, Kurt; Jimenez-Useche, Isabel; Howell, Steven C; Yuan, Chongli; Qiu, Xiangyun

    2013-01-01

    Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and fit all scattering data with predictions from PDB models and compared these experiments to complementary DNA-end FRET experiments. Based on these combined SAXS and FRET studies, we find that while all nucleosomes exhibited DNA unwrapping, the extent of this unwrapping is increased for nucleosomes with the H3 tails removed but, surprisingly, decreased in nucleosomes with the H4 tails removed. Studies of salt concentration effects show a minimum amount of DNA unwrapping for all complexes around 50-100mM of monovalent ions. These data exhibit opposite roles for the positively-charged nucleosome tails, with the ability to decrease access (in the case of the H3 histone) or increase access (in the case of the H4 histone) to the DNA surrounding the nucleosome. In the range of salt concentrations studied (0-200mM KCl), the data point to the H4 tail-removed mutant at physiological (50-100mM) monovalent salt concentration as the mononucleosome with the least amount of DNA unwrapping. PMID:24265699

  3. Solution Scattering and FRET Studies on Nucleosomes Reveal DNA Unwrapping Effects of H3 and H4 Tail Removal

    PubMed Central

    Andresen, Kurt; Jimenez-Useche, Isabel; Howell, Steven C.; Yuan, Chongli; Qiu, Xiangyun

    2013-01-01

    Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and fit all scattering data with predictions from PDB models and compared these experiments to complementary DNA-end FRET experiments. Based on these combined SAXS and FRET studies, we find that while all nucleosomes exhibited DNA unwrapping, the extent of this unwrapping is increased for nucleosomes with the H3 tails removed but, surprisingly, decreased in nucleosomes with the H4 tails removed. Studies of salt concentration effects show a minimum amount of DNA unwrapping for all complexes around 50-100mM of monovalent ions. These data exhibit opposite roles for the positively-charged nucleosome tails, with the ability to decrease access (in the case of the H3 histone) or increase access (in the case of the H4 histone) to the DNA surrounding the nucleosome. In the range of salt concentrations studied (0-200mM KCl), the data point to the H4 tail-removed mutant at physiological (50-100mM) monovalent salt concentration as the mononucleosome with the least amount of DNA unwrapping. PMID:24265699

  4. Nucleosome Organization in Human Embryonic Stem Cells

    PubMed Central

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a “ground state” of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this “ground state” by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of

  5. Chromatin Remodelers: From Function to Dysfunction

    PubMed Central

    Längst, Gernot; Manelyte, Laura

    2015-01-01

    Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development. PMID:26075616

  6. Pulmonary arterial remodeling revealed by microfocal x-ray tomography

    NASA Astrophysics Data System (ADS)

    Karau, Kelly L.; Molthen, Robert C.; Johnson, Roger H.; Dhyani, Anita H.; Haworth, Steven T.; Dawson, Christopher A.

    2001-05-01

    Animal models and micro-CT imaging are useful for understanding the functional consequences of, and identifying the genes involved in, the remodeling of vascular structures that accompanies pulmonary vascular disease. Using a micro-CT scanner to image contrast-enhanced arteries in excised lungs from fawn hooded rats (a strain genetically susceptible to hypoxia induced pulmonary hypertension), we found that portions of the pulmonary arterial tree downstream from a given diameter were morphometrically indistinguishable. This 'self-consistency' property provided a means for summarizing the pulmonary arterial tree architecture and mechanical properties using a parameter vector obtained from measurements of the contiguous set of vessel segments comprising the longest (principal) pathway and its branches over a range of vascular pressures. This parameter vector was used to characterize the pulmonary vascular remodeling that occurred in rats exposed to a hypoxic (11.5% oxygen) environment and provided the input to a hemodynamic model relating structure to function. The major effect of the remodeling was a longitudinally (pulmonary artery to arterioles) uniform decrease in vessel distensibility that resulted in a 90% increase in arterial resistance. Despite the almost uniform change in vessel distensibility, over 50% of the resistance increase was attributable to vessels with unstressed diameters less than 125 microns.

  7. Nucleosomes Shape DNA Polymorphism and Divergence

    PubMed Central

    Langley, Sasha A.; Karpen, Gary H.; Langley, Charles H.

    2014-01-01

    An estimated 80% of genomic DNA in eukaryotes is packaged as nucleosomes, which, together with the remaining interstitial linker regions, generate higher order chromatin structures [1]. Nucleosome sequences isolated from diverse organisms exhibit ∼10 bp periodic variations in AA, TT and GC dinucleotide frequencies. These sequence elements generate intrinsically curved DNA and help establish the histone-DNA interface. We investigated an important unanswered question concerning the interplay between chromatin organization and genome evolution: do the DNA sequence preferences inherent to the highly conserved histone core exert detectable natural selection on genomic divergence and polymorphism? To address this hypothesis, we isolated nucleosomal DNA sequences from Drosophila melanogaster embryos and examined the underlying genomic variation within and between species. We found that divergence along the D. melanogaster lineage is periodic across nucleosome regions with base changes following preferred nucleotides, providing new evidence for systematic evolutionary forces in the generation and maintenance of nucleosome-associated dinucleotide periodicities. Further, Single Nucleotide Polymorphism (SNP) frequency spectra show striking periodicities across nucleosomal regions, paralleling divergence patterns. Preferred alleles occur at higher frequencies in natural populations, consistent with a central role for natural selection. These patterns are stronger for nucleosomes in introns than in intergenic regions, suggesting selection is stronger in transcribed regions where nucleosomes undergo more displacement, remodeling and functional modification. In addition, we observe a large-scale (∼180 bp) periodic enrichment of AA/TT dinucleotides associated with nucleosome occupancy, while GC dinucleotide frequency peaks in linker regions. Divergence and polymorphism data also support a role for natural selection in the generation and maintenance of these super-nucleosomal

  8. A Genetic Screen and Transcript Profiling Reveal a Shared Regulatory Program for Drosophila Linker Histone H1 and Chromatin Remodeler CHD1

    PubMed Central

    Kavi, Harsh; Lu, Xingwu; Xu, Na; Bartholdy, Boris A.; Vershilova, Elena; Skoultchi, Arthur I.; Fyodorov, Dmitry V.

    2015-01-01

    Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression. PMID:25628309

  9. A Modular Enhancer Is Differentially Regulated by GATA and NFAT Elements That Direct Different Tissue-Specific Patterns of Nucleosome Positioning and Inducible Chromatin Remodeling▿

    PubMed Central

    Bert, Andrew G.; Johnson, Brett V.; Baxter, Euan W.; Cockerill, Peter N.

    2007-01-01

    We investigated alternate mechanisms employed by enhancers to position and remodel nucleosomes and activate tissue-specific genes in divergent cell types. We demonstrated that the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene enhancer is modular and recruits different sets of transcription factors in T cells and myeloid cells. The enhancer recruited distinct inducible tissue-specific enhanceosome-like complexes and directed nucleosomes to different positions in these cell types. In undifferentiated T cells, the enhancer was activated by inducible binding of two NFAT/AP-1 complexes which disrupted two specifically positioned nucleosomes (N1 and N2). In myeloid cells, the enhancer was remodeled by GATA factors which constitutively displaced an upstream nucleosome (N0) and cooperated with inducible AP-1 elements to activate transcription. In mast cells, which express both GATA-2 and NFAT, these two pathways combined to activate the enhancer and generate high-level gene expression. At least 5 kb of the GM-CSF locus was organized as an array of nucleosomes with fixed positions, but the enhancer adopted different nucleosome positions in T cells and mast cells. Furthermore, nucleosomes located between the enhancer and promoter were mobilized upon activation in an enhancer-dependent manner. These studies reveal that distinct tissue-specific mechanisms can be used either alternately or in combination to activate the same enhancer. PMID:17283044

  10. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays

    PubMed Central

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-01-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought. PMID:25428353

  11. Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer

    PubMed Central

    Tomschik, Miroslav; Zheng, Haocheng; van Holde, Ken; Zlatanova, Jordanka; Leuba, Sanford H.

    2005-01-01

    The nucleosome core particle, the basic repeated structure in chromatin fibers, consists of an octamer of eight core histone molecules, organized as dimers (H2A/H2B) and tetramers [(H3/H4)2] around which DNA wraps tightly in almost two left-handed turns. The nucleosome has to undergo certain conformational changes to allow processes that need access to the DNA template to occur. By single-pair fluorescence resonance energy transfer, we demonstrate fast, long-range, reversible conformational fluctuations in nucleosomes between two states: fully folded (closed), with the DNA wrapped around the histone core, or open, with the DNA significantly unraveled from the histone octamer. The brief excursions into an extended open state may create windows of opportunity for protein factors involved in DNA transactions to bind to or translocate along the DNA. PMID:15728351

  12. Structure of Actin-related protein 8 and its contribution to nucleosome binding

    PubMed Central

    Gerhold, Christian B.; Winkler, Duane D.; Lakomek, Kristina; Seifert, Florian U.; Fenn, Sebastian; Kessler, Brigitte; Witte, Gregor; Luger, Karolin; Hopfner, Karl-Peter

    2012-01-01

    Nuclear actin-related proteins (Arps) are subunits of several chromatin remodelers, but their molecular functions within these complexes are unclear. We report the crystal structure of the INO80 complex subunit Arp8 in its ATP-bound form. Human Arp8 has several insertions in the conserved actin fold that explain its inability to polymerize. Most remarkably, one insertion wraps over the active site cleft and appears to rigidify the domain architecture, while active site features shared with actin suggest an allosterically controlled ATPase activity. Quantitative binding studies with nucleosomes and histone complexes reveal that Arp8 and the Arp8–Arp4–actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3–H4 tetramers over H2A–H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. In contrast, Arp4 prefers free (H3–H4)2 over nucleosomes and may serve remodelers through binding to (dis)assembly intermediates in the remodeling reaction. PMID:22977180

  13. Histone-DNA contacts in structure/function relationships of nucleosomes as revealed by crosslinking

    SciTech Connect

    Usachenko, S.I.; Bradbury, E.M. |

    1998-12-31

    The magnitude of the problem of understanding the structure/function relationships of eukaryotic chromosomes can be appreciated from the fact that the human diploid genome contains more than 2 meters of DNA packaged into 46 chromosomes, each at metaphase being several microns in length. Each chromatid of a chromosome contains a single DNA molecule several centimeters in length. In addition to the DNA, chromosomes contain an equal weight of histones and an equal weight of non-histone chromosomal proteins. These histones are the major chromosomal structural proteins. The non-histone chromosomal proteins are involved in the DNA processes of transcription and replication, in chromosome organization and in nuclear architecture. Polytene chromosomes with their bands and interbands and puffs of active genetic loci provide visual evidence for long range order as do the bands and interbands of mammalian metaphase chromosomes. The gentle removal of histones and all but the most tightly bound 2--3% of non-histone proteins from metaphase chromosomes revealed by electron microscopy a residual protein scaffold constraining a halo of DNA loops extending out from the scaffold.

  14. A physical analysis of nucleosome positioning

    NASA Astrophysics Data System (ADS)

    Gerland, Ulrich

    2015-03-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.

  15. Mapping nucleosome positions using DNase-seq.

    PubMed

    Zhong, Jianling; Luo, Kaixuan; Winter, Peter S; Crawford, Gregory E; Iversen, Edwin S; Hartemink, Alexander J

    2016-03-01

    Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA--including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome--we develop a Bayes-factor-based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites. PMID:26772197

  16. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    PubMed

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1. PMID:27273866

  17. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response

    PubMed Central

    Sexton, Brittany S.; Druliner, Brooke R.; Vera, Daniel L.; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H.

    2016-01-01

    Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response. PMID:26771136

  18. Mediator-nucleosome interaction.

    PubMed

    Lorch, Y; Beve, J; Gustafsson, C M; Myers, L C; Kornberg, R D

    2000-07-01

    Mediator, a multiprotein complex involved in the regulation of RNA polymerase II transcription, binds to nucleosomes and acetylates histones. Three lines of evidence identify the Nut1 subunit of Mediator as responsible for the histone acetyltransferase (HAT) activity. An "in-gel" HAT assay reveals a single band of the appropriate size. Sequence alignment shows significant similarity of Nut1 to the GCN5-related N-acetyltransferase superfamily. Finally, recombinant Nut1 exhibits HAT activity in an in-gel assay. PMID:10949041

  19. Activated RSC-nucleosome complex and persistently altered form of the nucleosome.

    PubMed

    Lorch, Y; Cairns, B R; Zhang, M; Kornberg, R D

    1998-07-10

    RSC, an abundant, essential chromatin-remodeling complex, related to SWI/SNF complex, binds nucleosomes and naked DNA with comparable affinities, as shown by gel shift analysis. The RSC-nucleosome complex is converted in the presence of ATP to a slower migrating form. This activated complex exhibits greatly increased susceptibility to endo- and exonucleases but retains a full complement of histones. Activation persists in the absence of ATP, and on removal of RSC, the nucleosome is released in an altered form, with a diminished electrophoretic mobility, greater sedimentation rate, and marked instability at elevated ionic strength. The reaction is reversible in the presence of RSC and ATP, with conversion of the altered form back to the nucleosome. PMID:9674424

  20. Structural analysis of nucleosomal barrier to transcription

    PubMed Central

    Gaykalova, Daria A.; Kulaeva, Olga I.; Volokh, Olesya; Shaytan, Alexey K.; Hsieh, Fu-Kai; Kirpichnikov, Mikhail P.; Sokolova, Olga S.; Studitsky, Vasily M.

    2015-01-01

    Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA–histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone–histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA–protein and protein–protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed. PMID:26460019

  1. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data.

    PubMed

    Chen, Weizhong; Liu, Yi; Zhu, Shanshan; Green, Christopher D; Wei, Gang; Han, Jing-Dong Jackie

    2014-01-01

    Accurate determination of genome-wide nucleosome positioning can provide important insights into global gene regulation. Here, we describe the development of an improved nucleosome-positioning algorithm-iNPS-which achieves significantly better performance than the widely used NPS package. By determining nucleosome boundaries more precisely and merging or separating shoulder peaks based on local MNase-seq signals, iNPS can unambiguously detect 60% more nucleosomes. The detected nucleosomes display better nucleosome 'widths' and neighbouring centre-centre distance distributions, giving rise to sharper patterns and better phasing of average nucleosome profiles and higher consistency between independent data subsets. In addition to its unique advantage in classifying nucleosomes by shape to reveal their different biological properties, iNPS also achieves higher significance and lower false positive rates than previously published methods. The application of iNPS to T-cell activation data demonstrates a greater ability to facilitate detection of nucleosome repositioning, uncovering additional biological features underlying the activation process. PMID:25233085

  2. Nucleosome dynamics: Sequence matters.

    PubMed

    Eslami-Mossallam, Behrouz; Schiessel, Helmut; van Noort, John

    2016-06-01

    About three quarter of all eukaryotic DNA is wrapped around protein cylinders, forming nucleosomes. Even though the histone proteins that make up the core of nucleosomes are highly conserved in evolution, nucleosomes can be very different from each other due to posttranslational modifications of the histones. Another crucial factor in making nucleosomes unique has so far been underappreciated: the sequence of their DNA. This review provides an overview of the experimental and theoretical progress that increasingly points to the importance of the nucleosomal base pair sequence. Specifically, we discuss the role of the underlying base pair sequence in nucleosome positioning, sliding, breathing, force-induced unwrapping, dissociation and partial assembly and also how the sequence can influence higher-order structures. A new view emerges: the physical properties of nucleosomes, especially their dynamical properties, are determined to a large extent by the mechanical properties of their DNA, which in turn depends on DNA sequence. PMID:26896338

  3. A positioned +1 nucleosome enhances promoter-proximal pausing

    PubMed Central

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C.

    2015-01-01

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5′-3′ exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression. PMID:25735750

  4. Exploring the Free Energy Landscape of Nucleosomes.

    PubMed

    Zhang, Bin; Zheng, Weihua; Papoian, Garegin A; Wolynes, Peter G

    2016-07-01

    The nucleosome is the fundamental unit for packaging the genome. A detailed molecular picture for its conformational dynamics is crucial for understanding transcription and gene regulation. We investigate the disassembly of single nucleosomes using a predictive coarse-grained protein DNA model with transferable force fields. This model quantitatively describes the thermodynamic stability of both the histone core complex and the nucleosome and predicts rates of transient nucleosome opening that match experimental measurements. Quantitative characterization of the free-energy landscapes reveals the mechanism of nucleosome unfolding in which DNA unwinding and histone protein disassembly are coupled. The interfaces between H2A-H2B dimers and the (H3-H4)2 tetramer are first lost when the nucleosome opens releasing a large fraction but not all of its bound DNA. For the short strands studied in single molecule experiments, the DNA unwinds asymmetrically from the histone proteins, with only one of its two ends preferentially exposed. The detailed molecular mechanism revealed in this work provides a structural basis for interpreting experimental studies of nucleosome unfolding. PMID:27300314

  5. Genome-wide nucleosome positioning during embryonic stem cell development.

    PubMed

    Teif, Vladimir B; Vainshtein, Yevhen; Caudron-Herger, Maïwen; Mallm, Jan-Philipp; Marth, Caroline; Höfer, Thomas; Rippe, Karsten

    2012-11-01

    We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5-7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning. PMID:23085715

  6. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites.

    PubMed

    Möbius, Wolfram; Gerland, Ulrich

    2010-01-01

    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in Saccharomyces cerevisiae is qualitatively consistent with a "barrier nucleosome model," in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to approximately 1,000 bp to each side. PMID:20808881

  7. Mechanism of chromatin remodeling.

    PubMed

    Lorch, Yahli; Maier-Davis, Barbara; Kornberg, Roger D

    2010-02-23

    Results from biochemical and structural studies of the RSC chromatin-remodeling complex prompt a proposal for the remodeling mechanism: RSC binding to the nucleosome releases the DNA from the histone surface and initiates DNA translocation (through one or a small number of DNA base pairs); ATP binding completes translocation, and ATP hydrolysis resets the system. Binding energy thus plays a central role in the remodeling process. RSC may disrupt histone-DNA contacts by affecting histone octamer conformation and through extensive interaction with the DNA. Bulging of the DNA from the octamer surface is possible, and twisting is unavoidable, but neither is the basis of remodeling. PMID:20142505

  8. Comparative genomics for mycobacterial peptidoglycan remodelling enzymes reveals extensive genetic multiplicity

    PubMed Central

    2014-01-01

    Background Mycobacteria comprise diverse species including non-pathogenic, environmental organisms, animal disease agents and human pathogens, notably Mycobacterium tuberculosis. Considering that the mycobacterial cell wall constitutes a significant barrier to drug penetration, the aim of this study was to conduct a comparative genomics analysis of the repertoire of enzymes involved in peptidoglycan (PG) remodelling to determine the potential of exploiting this area of bacterial metabolism for the discovery of new drug targets. Results We conducted an in silico analysis of 19 mycobacterial species/clinical strains for the presence of genes encoding resuscitation promoting factors (Rpfs), penicillin binding proteins, endopeptidases, L,D-transpeptidases and N-acetylmuramoyl-L-alanine amidases. Our analysis reveals extensive genetic multiplicity, allowing for classification of mycobacterial species into three main categories, primarily based on their rpf gene complement. These include the M. tuberculosis Complex (MTBC), other pathogenic mycobacteria and environmental species. The complement of these genes within the MTBC and other mycobacterial pathogens is highly conserved. In contrast, environmental strains display significant genetic expansion in most of these gene families. Mycobacterium leprae retains more than one functional gene from each enzyme family, underscoring the importance of genetic multiplicity for PG remodelling. Notably, the highest degree of conservation is observed for N-acetylmuramoyl-L-alanine amidases suggesting that these enzymes are essential for growth and survival. Conclusion PG remodelling enzymes in a range of mycobacterial species are associated with extensive genetic multiplicity, suggesting functional diversification within these families of enzymes to allow organisms to adapt. PMID:24661741

  9. Structural basis for retroviral integration into nucleosomes

    PubMed Central

    Maskell, Daniel P.; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N.; Costa, Alessandro; Cherepanov, Peter

    2015-01-01

    Retroviral integration is catalyzed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome1,2. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy (EM) reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location (SHL) ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration. PMID:26061770

  10. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    PubMed

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  11. Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    PubMed Central

    Collings, Clayton K.; Fernandez, Alfonso G.; Pitschka, Chad G.; Hawkins, Troy B.; Anderson, John N.

    2010-01-01

    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of

  12. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin

    PubMed Central

    Svensson, J. Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C.; Allshire, Robin C.; Ekwall, Karl

    2015-01-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation–exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation. PMID:25778913

  13. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    PubMed

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes. PMID:26671796

  14. Chromatin-modifying and -remodeling complexes.

    PubMed

    Kornberg, R D; Lorch, Y

    1999-04-01

    Nucleosomes have long been known to inhibit DNA transactions on chromosomes and a remarkable abundance of multiprotein complexes that either enhance or relieve this inhibition have been described. Most is known about chromatin-remodeling complexes that perturb nucleosome structure. PMID:10322131

  15. Statistical mechanics of chromatin: Inferring free energies of nucleosome formation from high-throughput data sets

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2009-03-01

    Formation of nucleosome core particles is a first step towards packaging genomic DNA into chromosomes in living cells. Nucleosomes are formed by wrapping 147 base pairs of DNA around a spool of eight histone proteins. It is reasonable to assume that formation of single nucleosomes in vitro is determined by DNA sequence alone: it costs less elastic energy to wrap a flexible DNA polymer around the histone octamer, and more if the polymer is rigid. However, it is unclear to which extent this effect is important in living cells. Cells have evolved chromatin remodeling enzymes that expend ATP to actively reposition nucleosomes. In addition, nucleosome positioning on long DNA sequences is affected by steric exclusion - many nucleosomes have to form simultaneously without overlap. Currently available bioinformatics methods for predicting nucleosome positions are trained on in vivo data sets and are thus unable to distinguish between extrinsic and intrinsic nucleosome positioning signals. In order to see the relative importance of such signals for nucleosome positioning in vivo, we have developed a model based on a large collection of DNA sequences from nucleosomes reconstituted in vitro by salt dialysis. We have used these data to infer the free energy of nucleosome formation at each position along the genome. The method uses an exact result from the statistical mechanics of classical 1D fluids to infer the free energy landscape from nucleosome occupancy. We will discuss the degree to which in vitro nucleosome occupancy profiles are predictive of in vivo nucleosome positions, and will estimate how many nucleosomes are sequence-specific and how many are positioned purely by steric exclusion. Our approach to nucleosome energetics should be applicable across multiple organisms and genomic regions.

  16. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis

    PubMed Central

    Rege, Abhishek; Thakor, Nitish V.; Rhie, Kevin

    2015-01-01

    Laser speckle contrast imaging (LSCI) is a high-resolution and high contrast optical imaging technique often used to characterize hemodynamic changes in short-term physiological experiments. In this study, we demonstrate the utility of LSCI for characterizing microvascular remodeling and hemodynamic changes during wound healing angiogenesis in vivo. A 2 mm diameter hole was made in the mouse ear and the periphery of the wound imaged in vivo using LSCI over 12 days. We were able to visualize and quantify the vascular and perfusion changes that accompanied wound healing in the microenvironment proximal to the wound, and validated these changes with histology. We found that consistent with the stages of wound healing, microvessel density increased during the initial inflammatory phase (i.e., day 0–3), stayed elevated through the tissue formation phase (i.e., until day 7) and returned to baseline during the tissue remodeling phase (i.e., by day 12). Concomitant ‘‘wide area mapping’’ of blood flow revealed that tissue perfusion in the wound periphery initially decreased, gradually increased from day 3–7, and subsided as healing completed. Interestingly, some regions exhibited a reestablishment of tissue perfusion approximately 6 days earlier than the ∼ 18 days usually reported for the long term remodeling phase. The results from this study demonstrate that LSCI is an ideal platform for elucidating in vivo changes in microvascular hemodynamics and angiogenesis, and has the potential to offer invaluable insights in a range of disease models involving abnormal hemodynamics, such as diabetes and tumors. PMID:22198198

  17. Nucleosome positioning and composition modulate in silico chromatin flexibility

    NASA Astrophysics Data System (ADS)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  18. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing

    PubMed Central

    Fennessy, Ross T.; Owen-Hughes, Tom

    2016-01-01

    Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths. PMID:27106059

  19. Statistical mechanics of nucleosomes

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan V.

    Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.

  20. Nucleosome Positioning and Epigenetics

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  1. Nucleosome positioning by genomic excluding-energy barriers.

    PubMed

    Milani, Pascale; Chevereau, Guillaume; Vaillant, Cédric; Audit, Benjamin; Haftek-Terreau, Zofia; Marilley, Monique; Bouvet, Philippe; Argoul, Françoise; Arneodo, Alain

    2009-12-29

    Recent genome-wide nucleosome mappings along with bioinformatics studies have confirmed that the DNA sequence plays a more important role in the collective organization of nucleosomes in vivo than previously thought. Yet in living cells, this organization also results from the action of various external factors like DNA-binding proteins and chromatin remodelers. To decipher the code for intrinsic chromatin organization, there is thus a need for in vitro experiments to bridge the gap between computational models of nucleosome sequence preferences and in vivo nucleosome occupancy data. Here we combine atomic force microscopy in liquid and theoretical modeling to demonstrate that a major sequence signaling in vivo are high-energy barriers that locally inhibit nucleosome formation rather than favorable positioning motifs. We show that these genomic excluding-energy barriers condition the collective assembly of neighboring nucleosomes consistently with equilibrium statistical ordering principles. The analysis of two gene promoter regions in Saccharomyces cerevisiae and the human genome indicates that these genomic barriers direct the intrinsic nucleosome occupancy of regulatory sites, thereby contributing to gene expression regulation. PMID:20018700

  2. An rtt109-independent role for vps75 in transcription-associated nucleosome dynamics.

    PubMed

    Selth, Luke A; Lorch, Yahli; Ocampo-Hafalla, Maria T; Mitter, Richard; Shales, Michael; Krogan, Nevan J; Kornberg, Roger D; Svejstrup, Jesper Q

    2009-08-01

    The histone chaperone Vps75 forms a complex with, and stimulates the activity of, the histone acetyltransferase Rtt109. However, Vps75 can also be isolated on its own and might therefore possess Rtt109-independent functions. Analysis of epistatic miniarray profiles showed that VPS75 genetically interacts with factors involved in transcription regulation whereas RTT109 clusters with genes linked to DNA replication/repair. Additional genetic and biochemical experiments revealed a close relationship between Vps75 and RNA polymerase II. Furthermore, Vps75 is recruited to activated genes in an Rtt109-independent manner, and its genome-wide association with genes correlates with transcription rate. Expression microarray analysis identified a number of genes whose normal expression depends on VPS75. Interestingly, histone H2B dynamics at some of these genes are consistent with a role for Vps75 in histone H2A/H2B eviction/deposition during transcription. Indeed, reconstitution of nucleosome disassembly using the ATP-dependent chromatin remodeler Rsc and Vps75 revealed that these proteins can cooperate to remove H2A/H2B dimers from nucleosomes. These results indicate a role for Vps75 in nucleosome dynamics during transcription, and importantly, this function appears to be largely independent of Rtt109. PMID:19470761

  3. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  4. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  5. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates

    PubMed Central

    Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.

    2014-01-01

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709

  6. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates.

    PubMed

    Anné, Jennifer; Edwards, Nicholas P; Wogelius, Roy A; Tumarkin-Deratzian, Allison R; Sellers, William I; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M; Manning, Phillip L

    2014-07-01

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning-X-ray fluorescence (SRS-XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20-100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS-XRF combined with microfocus elemental mapping (2-20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709

  7. Proteome Dynamics Reveals Pro-Inflammatory Remodeling of Plasma Proteome in a Mouse Model of NAFLD.

    PubMed

    Li, Ling; Bebek, Gurkan; Previs, Stephen F; Smith, Jonathan D; Sadygov, Rovshan G; McCullough, Arthur J; Willard, Belinda; Kasumov, Takhar

    2016-09-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with an increased risk of cardiovascular disease. Because the liver is the major source of circulatory proteins, it is not surprising that hepatic disease could lead to alterations in the plasma proteome, which are therein implicated in atherosclerosis. The current study used low-density lipoprotein receptor-deficient (LDLR(-/-)) mice to examine the impact of Western diet (WD)-induced NAFLD on plasma proteome homeostasis. Using a (2)H2O-metabolic labeling method, we found that a WD led to a proinflammatory distribution of circulatory proteins analyzed in apoB-depleted plasma, which was attributed to an increased production. The fractional turnover rates of short-lived proteins that are implicated in stress-response, lipid metabolism, and transport functions were significantly increased with WD (P < 0.05). Pathway analyses revealed that alterations in plasma proteome dynamics were related to the suppression of hepatic PPARα, which was confirmed based on reduced gene and protein expression of PPARα in mice fed a WD. These changes were associated with ∼4-fold increase (P < 0.0001) in the proinflammatory property of apoB-depleted plasma. In conclusion, the proteome dynamics method reveals proinflammatory remodeling of the plasma proteome relevant to liver disease. The approach used herein may provide a useful metric of in vivo liver function and better enable studies of novel therapies surrounding NAFLD and other diseases. PMID:27439437

  8. Using DNA mechanics to predict intrinsic and extrinsic nucleosome positioning signals

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2008-03-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While nucleosome positions in vitro are determined by sequence alone, in vivo competition with other DNA-binding factors and action of chromatin remodeling enzymes play a role that needs to be quantified. We developed a biophysical, DNA mechanics-based model for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a nucleosome crystal structure; we also successfully designed both strong and poor histone binding sequences ab initio. For in vivo data from S.cerevisiae, the strongest positioning signal came from the competition with other factors rather than intrinsic nucleosome sequence preferences. Based on sequence alone, our model predicts that functional transcription factor binding sites tend to be covered by nucleosomes, yet are uncovered in vivo because functional sites cluster within a single nucleosome footprint and thus make transcription factors bind cooperatively. Similarly a weak enhancement of nucleosome binding in the TATA region becomes a strong depletion when the TATA-binding protein is included, in quantitative agreement with experiment. Our model distinguishes multiple ways in which genomic sequence influences nucleosome positions, and thus provides alternative explanations for several genome-wide experimental findings. In the future our approach will be used to rationally alter gene expression levels in model systems through redesign of nucleosome occupancy profiles.

  9. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions.

    PubMed

    Beshnova, Daria A; Cherstvy, Andrey G; Vainshtein, Yevhen; Teif, Vladimir B

    2014-07-01

    The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning. PMID:24992723

  10. Regulation of the Nucleosome Repeat Length In Vivo by the DNA Sequence, Protein Concentrations and Long-Range Interactions

    PubMed Central

    Beshnova, Daria A.; Cherstvy, Andrey G.; Vainshtein, Yevhen; Teif, Vladimir B.

    2014-01-01

    The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning. PMID:24992723

  11. Modeling the dynamics of the nucleosome at various levels.

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey; Fenley, Andrew; Zmuda-Ruscio, Jory; Adams, David

    2007-03-01

    The primary level of DNA compaction in eukaryotic organisms is the nucleosome, yet details of its dynamics are not fully understood. While the whole nucleosome must be highly stable, protective of its genetic material, at the same time its tightly wrapped DNA should be highly accessible, easily revealing its information content. A combination of atom-level classical molecular dynamics and a course-grained continuum description provide insights into the functioning of the system. In particular, the nucleosomal DNA appears to be considerably more flexible than what can be expected based on its canonical persistence length. A coarse-grained electrostatic model of the nucleosome explains how its stability can be modulated with small environmental changes as well as post-translational modifications. Implications for the nucleosome assembly process in vivo are discussed.

  12. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    PubMed Central

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  13. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.

    PubMed

    Dalal, Yamini; Wang, Hongda; Lindsay, Stuart; Henikoff, Steven

    2007-08-01

    Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical "beads-on-a-string" appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity. PMID:17676993

  14. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster

    PubMed Central

    Chereji, Răzvan V.; Kan, Tsung-Wai; Grudniewska, Magda K.; Romashchenko, Alexander V.; Berezikov, Eugene; Zhimulev, Igor F.; Guryev, Victor; Morozov, Alexandre V.; Moshkin, Yuri M.

    2016-01-01

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to ‘phasing’ off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models. PMID:26429969

  15. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  16. Nucleosome Core Particle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  17. Biochemical Assays for Analyzing Activities of ATP-dependent Chromatin Remodeling Enzymes

    PubMed Central

    Chen, Lu; Ooi, Soon-Keat; Conaway, Joan W.; Conaway, Ronald C.

    2014-01-01

    Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes. PMID:25407555

  18. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling.

    PubMed

    Oka, Toru; Xu, Jian; Kaiser, Robert A; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A; Lorts, Angela; Brunskill, Eric W; Dorn, Gerald W; Conway, Simon J; Aronow, Bruce J; Robbins, Jeffrey; Molkentin, Jeffery D

    2007-08-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  19. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics

    PubMed Central

    Pasi, Marco; Lavery, Richard

    2016-01-01

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA–core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA–core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  20. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics.

    PubMed

    Pasi, Marco; Lavery, Richard

    2016-06-20

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA-core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA-core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  1. Fitness landscape for nucleosome positioning

    PubMed Central

    Weghorn, Donate; Lässig, Michael

    2013-01-01

    Histone–DNA complexes, so-called nucleosomes, are the building blocks of DNA packaging in eukaryotic cells. The histone-binding affinity of a local DNA segment depends on its elastic properties and determines its accessibility within the nucleus, which plays an important role in the regulation of gene expression. Here, we derive a fitness landscape for intergenic DNA segments in yeast as a function of two molecular phenotypes: their elasticity-dependent histone affinity and their coverage with transcription factor binding sites. This landscape reveals substantial selection against nucleosome formation over a wide range of both phenotypes. We use it as the core component of a quantitative evolutionary model for intergenic DNA segments. This model consistently predicts the observed diversity of histone affinities within wild Saccharomyces paradoxus populations, as well as the affinity divergence between neighboring Saccharomyces species. Our analysis establishes histone binding and transcription factor binding as two separable modes of sequence evolution, each of which is a direct target of natural selection. PMID:23784778

  2. Histone octamer transfer by a chromatin-remodeling complex.

    PubMed

    Lorch, Y; Zhang, M; Kornberg, R D

    1999-02-01

    RSC, an abundant, essential chromatin-remodeling complex related to SWI/SNF complex, catalyzes the transfer of a histone octamer from a nucleosome core particle to naked DNA. The newly formed octamer-DNA complex is identical with a nucleosome in all respects. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. The mechanism may entail formation of a duplex displacement loop on the nucleosome, facilitating the entry of exogeneous DNA and the release of the endogenous molecule. PMID:10025404

  3. Nucleosome positioning changes during human embryonic stem cell differentiation.

    PubMed

    Zhang, Wenjuan; Li, Yaping; Kulik, Michael; Tiedemann, Rochelle L; Robertson, Keith D; Dalton, Stephen; Zhao, Shaying

    2016-06-01

    Nucleosomes are the basic unit of chromatin. Nucleosome positioning (NP) plays a key role in transcriptional regulation and other biological processes. To better understand NP we used MNase-seq to investigate changes that occur as human embryonic stem cells (hESCs) transition to nascent mesoderm and then to smooth muscle cells (SMCs). Compared to differentiated cell derivatives, nucleosome occupancy at promoters and other notable genic sites, such as exon/intron junctions and adjacent regions, in hESCs shows a stronger correlation with transcript abundance and is less influenced by sequence content. Upon hESC differentiation, genes being silenced, but not genes being activated, display a substantial change in nucleosome occupancy at their promoters. Genome-wide, we detected a shift of NP to regions of higher G+C content as hESCs differentiate to SMCs. Notably, genomic regions with higher nucleosome occupancy harbor twice as many G↔C changes but fewer than half A↔T changes, compared to regions with lower nucleosome occupancy. Finally, our analysis indicates that the hESC genome is not rearranged and has a sequence mutation rate resembling normal human genomes. Our study reveals another unique feature of hESC chromatin, and sheds light on the relationship between nucleosome occupancy and sequence G+C content. PMID:27088311

  4. Nucleosome-driven transcription factor binding and gene regulation.

    PubMed

    Ballaré, Cecilia; Castellano, Giancarlo; Gaveglia, Laura; Althammer, Sonja; González-Vallinas, Juan; Eyras, Eduardo; Le Dily, Francois; Zaurin, Roser; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel

    2013-01-10

    Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation. PMID:23177737

  5. Integrated molecular mechanism directing nucleosome reorganization by human FACT

    PubMed Central

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-01-01

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  6. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    PubMed

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  7. Structural and functional characterization of a cell cycle associated HDAC1/2 complex reveals the structural basis for complex assembly and nucleosome targeting

    PubMed Central

    Itoh, Toshimasa; Fairall, Louise; Muskett, Frederick W.; Milano, Charles P.; Watson, Peter J.; Arnaudo, Nadia; Saleh, Almutasem; Millard, Christopher J.; El-Mezgueldi, Mohammed; Martino, Fabrizio; Schwabe, John W.R.

    2015-01-01

    Recent proteomic studies have identified a novel histone deacetylase complex that is upregulated during mitosis and is associated with cyclin A. This complex is conserved from nematodes to man and contains histone deacetylases 1 and 2, the MIDEAS corepressor protein and a protein called DNTTIP1 whose function was hitherto poorly understood. Here, we report the structures of two domains from DNTTIP1. The amino-terminal region forms a tight dimerization domain with a novel structural fold that interacts with and mediates assembly of the HDAC1:MIDEAS complex. The carboxy-terminal domain of DNTTIP1 has a structure related to the SKI/SNO/DAC domain, despite lacking obvious sequence homology. We show that this domain in DNTTIP1 mediates interaction with both DNA and nucleosomes. Thus, DNTTIP1 acts as a dimeric chromatin binding module in the HDAC1:MIDEAS corepressor complex. PMID:25653165

  8. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins

    PubMed Central

    Foulk, Michael S.; Urban, John M.; Casella, Cinzia; Gerbi, Susan A.

    2015-01-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. PMID:25695952

  9. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment.

    PubMed

    Veneault-Fourrey, Claire; Commun, Carine; Kohler, Annegret; Morin, Emmanuelle; Balestrini, Raffaella; Plett, Jonathan; Danchin, Etienne; Coutinho, Pedro; Wiebenga, Ad; de Vries, Ronald P; Henrissat, Bernard; Martin, Francis

    2014-11-01

    Ectomycorrhizal fungi, living in soil forests, are required microorganisms to sustain tree growth and productivity. The establishment of mutualistic interaction with roots to form ectomycorrhiza (ECM) is not well known at the molecular level. In particular, how fungal and plant cell walls are rearranged to establish a fully functional ectomycorrhiza is poorly understood. Nevertheless, it is likely that Carbohydrate Active enZymes (CAZyme) produced by the fungus participate in this process. Genome-wide transcriptome profiling during ECM development was used to examine how the CAZome of Laccaria bicolor is regulated during symbiosis establishment. CAZymes active on fungal cell wall were upregulated during ECM development in particular after 4weeks of contact when the hyphae are surrounding the root cells and start to colonize the apoplast. We demonstrated that one expansin-like protein, whose expression is specific to symbiotic tissues, localizes within fungal cell wall. Whereas L. bicolor genome contained a constricted repertoire of CAZymes active on cellulose and hemicellulose, these CAZymes were expressed during the first steps of root cells colonization. L. bicolor retained the ability to use homogalacturonan, a pectin-derived substrate, as carbon source. CAZymes likely involved in pectin hydrolysis were mainly expressed at the stage of a fully mature ECM. All together, our data suggest an active remodelling of fungal cell wall with a possible involvement of expansin during ECM development. By contrast, a soft remodelling of the plant cell wall likely occurs through the loosening of the cellulose microfibrils by AA9 or GH12 CAZymes and middle lamella smooth remodelling through pectin (homogalacturonan) hydrolysis likely by GH28, GH12 CAZymes. PMID:25173823

  10. Large-scale profiling of archival lymph nodes reveals pervasive remodeling of the follicular lymphoma methylome.

    PubMed

    Killian, J Keith; Bilke, Sven; Davis, Sean; Walker, Robert L; Killian, M Scott; Jaeger, Erich B; Chen, Yidong; Hipp, Jason; Pittaluga, Stefania; Raffeld, Mark; Cornelison, Robert; Smith, William I; Bibikova, Marina; Fan, Jian-Bing; Emmert-Buck, Michael R; Jaffe, Elaine S; Meltzer, Paul S

    2009-02-01

    Emerging technologies allow broad profiling of the cancer genome for differential DNA methylation relative to benign cells. Herein, bisulfite-modified DNA from lymph nodes with either reactive hyperplasia or follicular lymphoma (FL) were analyzed using a commercial C/UpG genotyping assay. Two hundred fifty-nine differentially methylated targets (DMT) distributed among 183 unique genes were identified in FL. Comparison of matched formalin-fixed, paraffin-embedded and frozen surgical pathology replicates showed the complete preservation of the cancer methylome among differently archived tissue specimens. Analysis of the DMT profile is consistent with a pervasive epigenomic remodeling process in FL that affects predominantly nonlymphoid genes. PMID:19155300

  11. BAF250a Protein Regulates Nucleosome Occupancy and Histone Modifications in Priming Embryonic Stem Cell Differentiation.

    PubMed

    Lei, Ienglam; West, Jason; Yan, Zhijiang; Gao, Xiaolin; Fang, Peng; Dennis, Jonathan H; Gnatovskiy, Leonid; Wang, Weidong; Kingston, Robert E; Wang, Zhong

    2015-07-31

    The unique chromatin signature of ES cells is fundamental to the pluripotency and differentiation of ES cells. One key feature is the poised chromatin state of master developmental genes that are transcriptionally repressed in ES cells but ready to be activated in response to differentiation signals. Poised chromatin in ES cells contains both H3 Lys-4 trimethylation (H3K4me3) and H3 Lys-27 trimethylation (H3K27me3) methylation, indicating activating and repressing potential. However, the contribution of non-covalent chromatin structure to the poised state is not well understood. To address whether remodeling of nucleosomes is important to the poised state, we characterized the function of BAF250a, a key regulatory subunit of the ES cell ATP-dependent Brahma-associated factor (BAF) chromatin remodeling complex (esBAF). Acute deletion of BAF250a disrupted the differentiation potential of ES cells by altering the expression timing of key developmental genes and pluripotent genes. Our genome-wide nucleosome and histone modification analyses indicated that the disruption of gene expression timing was largely due to changes of chromatin structures at poised genes, particularly those key developmental genes mediated by BAF250a. Specifically, BAF250a deletion caused a nucleosome occupancy increase at H3K4me3- and/or H3K27me3-associated promoters. Moreover, H3K27me3 levels and the number of bivalent promoter genes were reduced in BAF250a KO ES cells. We revealed that BAF250a ablation led to elevated Brg1 but reduced Suz12 recruitment at nucleosome occupancy-increased regions, indicating an unexpected and complicated role of BAF250a in regulating esBAF and Polycomb repressive complex (PRC) activities. Together, our studies identified that BAF250a mediates esBAF and PRC functions to establish the poised chromatin configuration in ES cells, which is essential for the proper differentiation of ES cells. PMID:26070559

  12. F-actin remodeling defects as revealed in primary immunodeficiency disorders.

    PubMed

    Janssen, W J M; Geluk, H C A; Boes, M

    2016-03-01

    Primary immunodeficiencies (PIDs) are a heterogeneous group of immune-related diseases. PIDs develop due to defects in gene-products that have consequences to immune cell function. A number of PID-proteins is involved in the remodeling of filamentous actin (f-actin) to support the generation of a contact zone between the antigen-specific T cell and antigen presenting cell (APC): the immunological synapse (IS). IS formation is the first step towards T-cell activation and essential for clonal expansion and acquisition of effector function. We here evaluated PIDs in which aberrant f-actin-driven IS formation may contribute to the PID disease phenotypes as seen in patients. We review examples of such contributions to PID phenotypes from literature, and highlight cases in which PID-proteins were evaluated for a role in f-actin polymerization and IS formation. We conclude with the proposition that patient groups might benefit from stratifying them in distinct functional groups in regard to their f-actin remodeling phenotypes in lymphocytes. PMID:26802313

  13. Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Faivre-Moskalenko, C.; Castelnovo, M.

    2014-11-01

    Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.

  14. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation.

    PubMed

    Verdone, L; Camilloni, G; Di Mauro, E; Caserta, M

    1996-05-01

    We have analyzed at both low and high resolution the distribution of nucleosomes over the Saccharomyces cerevisiae ADH2 promoter region in its chromosomal location, both under repressing (high-glucose) conditions and during derepression. Enzymatic treatments (micrococcal nuclease and restriction endonucleases) were used to probe the in vivo chromatin structure during ADH2 gene activation. Under glucose-repressed conditions, the ADH2 promoter was bound by a precise array of nucleosomes, the principal ones positioned at the RNA initiation sites (nucleosome +1), at the TATA box (nucleosome -1), and upstream of the ADR1-binding site (UAS1) (nucleosome -2). The UAS1 sequence and the adjacent UAS2 sequence constituted a nucleosome-free region. Nucleosomes -1 and +1 were destabilized soon after depletion of glucose and had become so before the appearance of ADH2 mRNA. When the transcription rate was high, nucleosomes -2 and +2 also underwent rearrangement. When spheroplasts were prepared from cells grown in minimal medium, detection of this chromatin remodeling required the addition of a small amount of glucose. Cells lacking the ADR1 protein did not display any of these chromatin modifications upon glucose depletion. Since the UAS1 sequence to which Adr1p binds is located immediately upstream of nucleosome -1, Adr1p is presumably required for destabilization of this nucleosome and for aiding the TATA-box accessibility to the transcription machinery. PMID:8628264

  15. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    PubMed Central

    Scovell, William M

    2016-01-01

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  16. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression.

    PubMed

    Scovell, William M

    2016-05-26

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N' and N'') remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  17. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors

    PubMed Central

    Ioshikhes, Ilya; Makrigiannis, Andrew P.

    2016-01-01

    Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general. PMID:27124577

  18. More help than hindrance: nucleosomes aid transcriptional regulation.

    PubMed

    Ballaré, Cecilia; Zaurin, Roser; Vicent, Guillermo P; Beato, Miguel

    2013-01-01

    A major challenge of modern human biology is to understand how a differentiated somatic cell integrates the response to external signals in the complex context of basic metabolic and tissue-specific gene expression programs. This requires exploring two interconnected basic processes: the signaling network and the global function of the key transcription factors on which signaling acts to modulate gene expression. An apparently simple model to study these questions has been steroid hormones action, since their intracellular receptors both initiate signaling and are the key transcription factors orchestrating the cellular response. We have used progesterone action in breast cancer cells to elucidate the intricacies of progesterone receptor (PR) signaling crosstalk with protein kinases, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. ( 1) Recently we have described the cistrome of PR in these cells at different times after addition of hormone and its relationship to chromatin structure. ( 2) The role of chromatin in transcription factor binding to the genome is still debated, but the dominant view is that factors bind preferentially to nucleosome-depleted regions, usually identified as DNaseI-hypersensitive sites (DHS). In contrast with this vision, we have shown that PR requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins we identified 25,000 PR binding sites (PRbs), the majority encompassing several copies of the hexanucleotide TGTYCY, highly abundant in the genome. We found that strong functional PRbs accumulate around progesterone-induced genes mainly in enhancers, are enriched in DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes play crucial role in PR binding and hormonal gene regulation. PMID:23756349

  19. Diverse Roles and Interactions of the SWI/SNF Chromatin Remodeling Complex Revealed Using Global Approaches

    PubMed Central

    Davidov, Eugene; Gianoulis, Tara A.; Zhong, Guoneng; Rozowsky, Joel; Bhardwaj, Nitin; Gerstein, Mark B.; Snyder, Michael

    2011-01-01

    A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5′ ends, RNA Polymerases II and III, and enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins). Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of interactions

  20. SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation

    PubMed Central

    Doiguchi, Masamichi; Nakagawa, Takeya; Imamura, Yuko; Yoneda, Mitsuhiro; Higashi, Miki; Kubota, Kazuishi; Yamashita, Satoshi; Asahara, Hiroshi; Iida, Midori; Fujii, Satoshi; Ikura, Tsuyoshi; Liu, Ziying; Nandu, Tulip; Kraus, W. Lee; Ueda, Hitoshi; Ito, Takashi

    2016-01-01

    Histone acetylation plays a pivotal role in transcriptional regulation, and ATP-dependent nucleosome remodeling activity is required for optimal transcription from chromatin. While these two activities have been well characterized, how they are coordinated remains to be determined. We discovered ATP-dependent histone H2A acetylation activity in Drosophila nuclear extracts. This activity was column purified and demonstrated to be composed of the enzymatic activities of CREB-binding protein (CBP) and SMARCAD1, which belongs to the Etl1 subfamily of the Snf2 family of helicase-related proteins. SMARCAD1 enhanced acetylation by CBP of H2A K5 and K8 in nucleosomes in an ATP-dependent fashion. Expression array analysis of S2 cells having ectopically expressed SMARCAD1 revealed up-regulated genes. Using native genome templates of these up-regulated genes, we found that SMARCAD1 activates their transcription in vitro. Knockdown analysis of SMARCAD1 and CBP indicated overlapping gene control, and ChIP-seq analysis of these commonly controlled genes showed that CBP is recruited to the promoter prior to SMARCAD1. Moreover, Drosophila genetic experiments demonstrated interaction between SMARCAD1/Etl1 and CBP/nej during development. The interplay between the remodeling activity of SMARCAD1 and histone acetylation by CBP sheds light on the function of chromatin and the genome-integrity network. PMID:26888216

  1. The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties

    PubMed Central

    Bonnet, Jacques; Wang, Ying-Hui; Spedale, Gianpiero; Atkinson, R Andrew; Romier, Christophe; Hamiche, Ali; Pijnappel, W W M Pim; Timmers, H Th Marc; Tora, László; Devys, Didier; Kieffer, Bruno

    2010-01-01

    SAGA (Spt–Ada–Gcn5 acetyltransferase), a coactivator complex involved in chromatin remodelling, harbours both histone acetylation and deubiquitination activities. ATXN7/Sgf73 and ATXN7L3, two subunits of the SAGA deubiquitination module, contain an SCA7 domain characterized by an atypical zinc-finger. We show that the yeast Sgf73–SCA7 domain is not required to recruit Sgf73 into SAGA. Instead, it binds to nucleosomes, a property that is conserved in the human ATXN7–SCA7 domain but is lost in the ATXN7L3 domain. The solution structures of the SCA7 domain of both ATXN7 and ATXN7L3 reveal a new, common zinc-finger motif at the heart of two distinct folds, providing a molecular basis for the observed functional differences. PMID:20634802

  2. Why Do Nucleosomes Unwrap Asymmetrically?

    PubMed

    de Bruin, Lennart; Tompitak, Marco; Eslami-Mossallam, Behrouz; Schiessel, Helmut

    2016-07-01

    Nucleosomes, DNA spools with a protein core, engage about three-quarters of eukaryotic DNA and play a critical role in chromosomal processes, ranging from gene regulation, recombination, and replication to chromosome condensation. For more than a decade, micromanipulation experiments where nucleosomes are put under tension, as well as the theoretical interpretations of these experiments, have deepened our understanding of the stability and dynamics of nucleosomes. Here we give a theoretical explanation for a surprising new experimental finding: nucleosomes wrapped onto the 601 positioning sequence (the sequence used in most laboratories) respond highly asymmetrically to external forces by always unwrapping from the same end. Using a computational nucleosome model, we show that this asymmetry can be explained by differences in the DNA mechanics of two very short stretches on the wrapped DNA portion. Our finding suggests that the physical properties of nucleosomes, here the response to forces, can be tuned locally by the choice of the underlying base-pair sequence. This leads to a new view of nucleosomes: a physically highly varied set of DNA-protein complexes whose properties can be tuned on evolutionary time scales to their specific function in the genomic context. PMID:26991771

  3. Nucleosomes impede Cas9 access to DNA in vivo and in vitro.

    PubMed

    Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin; Replogle, Joseph M; Gilbert, Luke A; Villalta, Jacqueline E; Torigoe, Sharon E; Tjian, Robert; Weissman, Jonathan S

    2016-01-01

    The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. PMID:26987018

  4. Nucleosomes impede Cas9 access to DNA in vivo and in vitro

    PubMed Central

    Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin; Replogle, Joseph M; Gilbert, Luke A; Villalta, Jacqueline E; Torigoe, Sharon E; Tjian, Robert; Weissman, Jonathan S

    2016-01-01

    The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. DOI: http://dx.doi.org/10.7554/eLife.12677.001 PMID:26987018

  5. Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy

    PubMed Central

    Jacq, Maxime; Bourgeois, Dominique; Moriscot, Christine; Di Guilmi, Anne-Marie; Vernet, Thierry

    2015-01-01

    ABSTRACT Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-ring’s morphology during the division cycle at the nanoscale level. We show that changes in the ring’s axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci. PMID:26286692

  6. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus.

    PubMed

    Sen, Nandini; Mukherjee, Gourab; Arvin, Ann M

    2015-11-15

    The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis. PMID:26213183

  7. Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche.

    PubMed Central

    Kuo, Chay T.; Mirzadeh, Zaman; Soriano-Navarro, Mario; Rašin, Mladen; Wang, Denan; Shen, Jie; Šestan, Nenad; Garcia-Verdugo, Jose; Alvarez-Buylla, Arturo; Jan, Lily Y.; Jan, Yuh-Nung

    2007-01-01

    SUMMARY Neural stem cells are retained in the postnatal subventricular zone (SVZ), a specialized neurogenic niche with unique cytoarchitecture and cell-cell contacts. Although the SVZ stem cells continuously regenerate, how they and the niche respond to local changes is unclear. Here we generated nestin-creERtm transgenic mice with inducible Cre recombinase in the SVZ, and removed Numb/Numblike, key regulators of embryonic neurogenesis from postnatal SVZ progenitors and ependymal cells. This resulted in severe damage to brain lateral ventricle integrity, and identified previously unknown roles for Numb/Numblike in regulating ependymal wall integrity and SVZ neuroblast survival. Surprisingly, the ventricular damage was eventually repaired: SVZ reconstitution and ventricular wall remodeling were mediated by progenitors that escaped Numb deletion. Our results show a self-repair mechanism in the mammalian brain, and may have implications for niche plasticity in other areas of stem cell biology, and for the therapeutic use of neural stem cells in neurodegenerative diseases. PMID:17174898

  8. Routes to DNA Accessibility: Alternative Pathways for Nucleosome Unwinding

    PubMed Central

    Schlingman, Daniel J.; Mack, Andrew H.; Kamenetska, Masha; Mochrie, Simon G.J.; Regan, Lynne

    2014-01-01

    The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control. PMID:25028880

  9. Nucleosome eviction in mitosis assists condensin loading and chromosome condensation.

    PubMed

    Toselli-Mollereau, Esther; Robellet, Xavier; Fauque, Lydia; Lemaire, Sébastien; Schiklenk, Christoph; Klein, Carlo; Hocquet, Clémence; Legros, Pénélope; N'Guyen, Lia; Mouillard, Léo; Chautard, Emilie; Auboeuf, Didier; Haering, Christian H; Bernard, Pascal

    2016-07-15

    Condensins associate with DNA and shape mitotic chromosomes. Condensins are enriched nearby highly expressed genes during mitosis, but how this binding is achieved and what features associated with transcription attract condensins remain unclear. Here, we report that condensin accumulates at or in the immediate vicinity of nucleosome-depleted regions during fission yeast mitosis. Two transcriptional coactivators, the Gcn5 histone acetyltransferase and the RSC chromatin-remodelling complex, bind to promoters adjoining condensin-binding sites and locally evict nucleosomes to facilitate condensin binding and allow efficient mitotic chromosome condensation. The function of Gcn5 is closely linked to condensin positioning, since neither the localization of topoisomerase II nor that of the cohesin loader Mis4 is altered in gcn5 mutant cells. We propose that nucleosomes act as a barrier for the initial binding of condensin and that nucleosome-depleted regions formed at highly expressed genes by transcriptional coactivators constitute access points into chromosomes where condensin binds free genomic DNA. PMID:27266525

  10. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  11. The Role of Histone H4 Biotinylation in the Structure of Nucleosomes

    PubMed Central

    Filenko, Nina A.; Kolar, Carol; West, John T.; Smith, S. Abbie; Hassan, Yousef I.; Borgstahl, Gloria E. O.; Zempleni, Janos; Lyubchenko, Yuri L.

    2011-01-01

    Background Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. Methodology/Principal Findings To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p<0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. Conclusions/Significance The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation. PMID:21298003

  12. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    encephalomyelitis (EAE) represents a reliable model of the chronic-progressive variant of MS. fMRI studies in EAE have not been performed extensively up to now. This paper reports fMRI studies in a rat model of MS with somatosensory stimulation of the forepaw. We demonstrated modifications in the recruitment of cortical areas consistent with data from MS patients. To the best of our knowledge, this is the first report of cortical remodeling in a preclinical in vivo model of MS. PMID:26157006

  13. Genomic approaches for determining nucleosome occupancy in yeast.

    PubMed

    Tsui, Kyle; Durbic, Tanja; Gebbia, Marinella; Nislow, Corey

    2012-01-01

    The basic unit of chromatin is double-stranded DNA wrapped around nucleosome core particles, the -classic "beads-on-a-string" described by Kornberg and colleagues. The history of chromatin studies has experienced many peaks, from the earliest studies by Miescher to the biochemical studies of the 1960s and 1970s, the appreciation for the influence of histone modifications in controlling gene expression in the 1990s to the genome-wide studies that began in 2006 and show no signs of abating with the introduction of next generation sequencing technologies. Genome-wide studies not only have provided a base line to understand relationships between chromatin structure and gene function but also have begun to provide new insights into chromatin remodelling. Here, we describe the use of genome-wide approaches to determining nucleosome occupancy in yeast. PMID:22183606

  14. TRF2 Controls Telomeric Nucleosome Organization in a Cell Cycle Phase-Dependent Manner

    PubMed Central

    Galati, Alessandra; Magdinier, Frédérique; Colasanti, Valentina; Bauwens, Serge; Pinte, Sébastien; Ricordy, Ruggero; Giraud-Panis, Marie-Josèphe; Pusch, Miriam Caroline; Savino, Maria

    2012-01-01

    Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres. By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping. Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization. PMID:22536324

  15. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form

    PubMed Central

    Sandoz, Kelsi M.; Popham, David L.; Beare, Paul A.; Sturdevant, Daniel E.; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A.

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3–3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3–3 cross-links as opposed to 16% 3–3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella’s environmental resistance. PMID:26909555

  16. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    PubMed

    Sandoz, Kelsi M; Popham, David L; Beare, Paul A; Sturdevant, Daniel E; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance. PMID:26909555

  17. Characterization of Nucleosome Unwrapping within Chromatin Fibers Using Magnetic Tweezers

    PubMed Central

    Chien, Fan-Tso; van der Heijden, Thijn

    2014-01-01

    Nucleosomal arrays fold into chromatin fibers and the higher-order folding of chromatin plays a strong regulatory role in all processes involving DNA access, such as transcription and replication. A fundamental understanding of such regulation requires insight into the folding properties of the chromatin fiber in molecular detail. Despite this, the structure and the mechanics of chromatin fibers remain highly disputed. Single-molecule force spectroscopy experiments have the potential to provide such insight, but interpretation of the data has been hampered by the large variations in experimental force-extension traces. Here we explore the possibility that chromatin fibers are composed of both single-turn and fully wrapped histone octamers. By characterizing the force-dependent behavior of in vitro reconstituted chromatin fibers and reanalyzing existing data, we show the unwrapping of the outer turn of nucleosomal DNA at 3 pN. We present a model composed of two freely-jointed chains, which reveals that nucleosomes within the chromatin fiber show identical force-extension behavior to mononucleosomes, indicating that nucleosome-nucleosome interactions are orders-of-magnitude smaller than previously reported and therefore can be overcome by thermal fluctuations. We demonstrate that lowering the salt concentration externally increases the wrapping energy significantly, indicative of the electrostatic interaction between the wrapped DNA and the histone octamer surface. We propose that the weak interaction between nucleosomes could allow easy access to nucleosomal DNA, while DNA unwrapping from the histone core could provide a stable yet dynamic structure during DNA maintenance. PMID:25028879

  18. Folding of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Jimenez-Useche, Isabel; Andresen, Kurt; Yuan, Chongli; Qiu, Xiangyun

    2014-03-01

    Chromatin conformation and dynamics is central to gene functions including packaging, regulation, and repair. At the molecular level, the basic building block of chromatin is a nucleosome core particle (NCP) made of 147 base pairs (bp) of dsDNA wrapped around an octamer of histone proteins. These NCPs are connected by short 10-90 bps of linker DNA as beads on a string. Key factors determining the packaging of NCP arrays to form chromatin include ionic condition, linker DNA length, and epigenetic modifications, especially of the histone tails. We have investigated how the conformations of model tetra-NCP arrays are modulated by these factors using small angle x-ray scattering (SAXS). Here we present recent studies of the effects of ion (KCl and MgCl2), linker length, and histone modification (tail deletions) on NCP arrays. Our SAXS measurement makes it possible to learn about both the global compaction of NCP arrays and local inter-NCP spatial correlations within the same array.

  19. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1

    PubMed Central

    Butryn, Agata; Schuller, Jan M; Stoehr, Gabriele; Runge-Wollmann, Petra; Förster, Friedrich; Auble, David T; Hopfner, Karl-Peter

    2015-01-01

    Swi2/Snf2 ATPases remodel substrates such as nucleosomes and transcription complexes to control a wide range of DNA-associated processes, but detailed structural information on the ATP-dependent remodeling reactions is largely absent. The single subunit remodeler Mot1 (modifier of transcription 1) dissociates TATA box-binding protein (TBP):DNA complexes, offering a useful system to address the structural mechanisms of Swi2/Snf2 ATPases. Here, we report the crystal structure of the N-terminal domain of Mot1 in complex with TBP, DNA, and the transcription regulator negative cofactor 2 (NC2). Our data show that Mot1 reduces DNA:NC2 interactions and unbends DNA as compared to the TBP:DNA:NC2 state, suggesting that Mot1 primes TBP:NC2 displacement in an ATP-independent manner. Electron microscopy and cross-linking data suggest that the Swi2/Snf2 domain of Mot1 associates with the upstream DNA and the histone fold of NC2, thereby revealing parallels to some nucleosome remodelers. This study provides a structural framework for how a Swi2/Snf2 ATPase interacts with its substrate DNA:protein complex. DOI: http://dx.doi.org/10.7554/eLife.07432.001 PMID:26258880

  20. Conditions for positioning of nucleosomes on DNA

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  1. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis.

    PubMed

    Dieker, Jürgen; Schlumberger, Wolfgang; McHugh, Neil; Hamann, Philip; van der Vlag, Johan; Berden, Jo H

    2015-11-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. First, we analysed whether DNA loading on nucleosomes led to masking of epitopes by using defined monoclonal anti-DNA, anti-histone and nucleosome-specific autoantibodies to evaluate the accessibility of nucleosomal epitopes in the anti-dsDNA-NcX ELISA. Second, autoantibody levels were measured in these 3 ELISAs in 100 patients with proliferative lupus nephritis (LN) before immunosuppressive treatment and in 128 non-SLE disease controls. In patients with LN inter-assay comparisons and associations with clinical and serological parameters were analysed. The panel of monoclonal antibodies revealed that all epitopes were equally accessible in the anti-dsDNA-NcX ELISA as in the two other ELISAs. Patients with proliferative lupus nephritis were positive with dsDNA-loaded nucleosomes in 86%, with DNA in 66% and with nucleosomes in 85%. In the non-lupus disease control group these frequencies were 1.6% (2 out of 128) for both the anti-dsDNA-NcX and the anti-dsDNA ELISA and 0% in the anti-nucleosome ELISA. The levels in the anti-dsDNA-NcX ELISA were high in a group of patients with LN that showed absent reactivity in the anti-DNA or low levels in the anti-nucleosome ELISA. Anti-dsDNA-NcX positivity was associated with higher SLEDAI scores within this group. Within nucleosome-based ELISAs, we propose the anti-dsDNA-NcX ELISA as the preferred test system. PMID:26597199

  2. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size

    PubMed Central

    Sirinakis, George; Clapier, Cedric R; Gao, Ying; Viswanathan, Ramya; Cairns, Bradley R; Zhang, Yongli

    2011-01-01

    ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to reposition and reconfigure nucleosomes. Despite their diverse functions, all remodellers share highly conserved ATPase domains, many shown to translocate DNA. Understanding remodelling requires biophysical knowledge of the DNA translocation process: how the ATPase moves DNA and generates force, and how translocation and force generation are coupled on nucleosomes. Here, we characterize the real-time activity of a minimal RSC translocase ‘motor' on bare DNA, using high-resolution optical tweezers and a ‘tethered' translocase system. We observe on dsDNA a processivity of ∼35 bp, a speed of ∼25 bp/s, and a step size of 2.0 (±0.4, s.e.m.) bp. Surprisingly, the motor is capable of moving against high force, up to 30 pN, making it one of the most force-resistant motors known. We also provide evidence for DNA ‘buckling' at initiation. These observations reveal the ATPase as a powerful DNA translocating motor capable of disrupting DNA–histone interactions by mechanical force. PMID:21552204

  3. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo

    PubMed Central

    Nagy, Gergely; Ünnep, Renáta; Zsiros, Ottó; Tokutsu, Ryutaro; Takizawa, Kenji; Porcar, Lionel; Moyet, Lucas; Petroutsos, Dimitris; Garab, Győző; Finazzi, Giovanni; Minagawa, Jun

    2014-01-01

    Plants respond to changes in light quality by regulating the absorption capacity of their photosystems. These short-term adaptations use redox-controlled, reversible phosphorylation of the light-harvesting complexes (LHCIIs) to regulate the relative absorption cross-section of the two photosystems (PSs), commonly referred to as state transitions. It is acknowledged that state transitions induce substantial reorganizations of the PSs. However, their consequences on the chloroplast structure are more controversial. Here, we investigate how state transitions affect the chloroplast structure and function using complementary approaches for the living cells of Chlamydomonas reinhardtii. Using small-angle neutron scattering, we found a strong periodicity of the thylakoids in state 1, with characteristic repeat distances of ∼200 Å, which was almost completely lost in state 2. As revealed by circular dichroism, changes in the thylakoid periodicity were paralleled by modifications in the long-range order arrangement of the photosynthetic complexes, which was reduced by ∼20% in state 2 compared with state 1, but was not abolished. Furthermore, absorption spectroscopy reveals that the enhancement of PSI antenna size during state 1 to state 2 transition (∼20%) is not commensurate to the decrease in PSII antenna size (∼70%), leading to the possibility that a large part of the phosphorylated LHCIIs do not bind to PSI, but instead form energetically quenched complexes, which were shown to be either associated with PSII supercomplexes or in a free form. Altogether these noninvasive in vivo approaches allow us to present a more likely scenario for state transitions that explains their molecular mechanism and physiological consequences. PMID:24639515

  4. Histone H1 null vertebrate cells exhibit altered nucleosome architecture

    PubMed Central

    Hashimoto, Hideharu; Takami, Yasunari; Sonoda, Eiichiro; Iwasaki, Tomohito; Iwano, Hidetomo; Tachibana, Makoto; Takeda, Shunichi; Nakayama, Tatsuo; Kimura, Hiroshi; Shinkai, Yoichi

    2010-01-01

    In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes, and chromatin fibers are thought to be stabilized by linker histones of the H1 type. Higher eukaryotes express multiple variants of histone H1; chickens possess six H1 variants. Here, we generated and analyzed the phenotype of a complete deletion of histone H1 genes in chicken cells. The H1-null cells showed decreased global nucleosome spacing, expanded nuclear volumes, and increased chromosome aberration rates, although proper mitotic chromatin structure appeared to be maintained. Expression array analysis revealed that the transcription of multiple genes was affected and was mostly downregulated in histone H1-deficient cells. This report describes the first histone H1 complete knockout cells in vertebrates and suggests that linker histone H1, while not required for mitotic chromatin condensation, plays important roles in nucleosome spacing and interphase chromatin compaction and acts as a global transcription regulator. PMID:20156997

  5. Chromatin Remodeling Inactivates Activity Genes and Regulates Neural Coding

    PubMed Central

    Hill, Kelly K.; Hemberg, Martin; Reddy, Naveen C.; Cho, Ha Y.; Guthrie, Arden N.; Oldenborg, Anna; Heiney, Shane A.; Ohmae, Shogo; Medina, Javier F.; Holy, Timothy E.; Bonni, Azad

    2016-01-01

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating mRNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. PMID:27418512

  6. Global transcriptional analysis reveals surface remodeling of Anaplasma marginale in the tick vector

    PubMed Central

    2014-01-01

    Background Pathogens dependent upon vectors for transmission to new hosts undergo environment specific changes in gene transcription dependent on whether they are replicating in the vector or the mammalian host. Differential gene transcription, especially of potential vaccine candidates, is of interest in Anaplasma marginale, the tick-borne causative agent of bovine anaplasmosis. Methods RNA-seq technology allowed a comprehensive analysis of the transcriptional status of A. marginale genes in two conditions: bovine host blood and tick derived cell culture, a model for the tick vector. Quantitative PCR was used to assess transcription of a set of genes in A. marginale infected tick midguts and salivary glands at two time points during the transmission cycle. Results Genes belonging to fourteen pathways or component groups were found to be differentially transcribed in A. marginale in the bovine host versus the tick vector. One of the most significantly altered groups was composed of surface proteins. Of the 56 genes included in the surface protein group, eight were up regulated and 26 were down regulated. The down regulated surface protein encoding genes include several that are well studied due to their immunogenicity and function. Quantitative PCR of a set of genes demonstrated that transcription in tick cell culture most closely approximates transcription in salivary glands of recently infected ticks. Conclusions The ISE6 tick cell culture line is an acceptable model for early infection in tick salivary glands, and reveals disproportionate down regulation of surface protein genes in the tick. Transcriptional profiling in other cell lines may help us simulate additional microenvironments. Understanding vector-specific alteration of gene transcription, especially of surface protein encoding genes, may aid in the development of vaccines or transmission blocking therapies. PMID:24751137

  7. CILAIR-Based Secretome Analysis of Obese Visceral and Subcutaneous Adipose Tissues Reveals Distinctive ECM Remodeling and Inflammation Mediators.

    PubMed

    Roca-Rivada, Arturo; Bravo, Susana Belen; Pérez-Sotelo, Diego; Alonso, Jana; Castro, Ana Isabel; Baamonde, Iván; Baltar, Javier; Casanueva, Felipe F; Pardo, María

    2015-01-01

    In the context of obesity, strong evidences support a distinctive pathological contribution of adipose tissue depending on its anatomical site of accumulation. Therefore, subcutaneous adipose tissue (SAT) has been lately considered metabolically benign compared to visceral fat (VAT), whose location is associated to the risk of developing cardiovascular disease, insulin resistance, and other associated comorbidities. Under the above situation, the chronic local inflammation that characterizes obese adipose tissue, has acquired a major role on the pathogenesis of obesity. In this work, we have analyzed for the first time human obese VAT and SAT secretomes using an improved quantitative proteomic approach for the study of tissue secretomes, Comparison of Isotope-Labeled Amino acid Incorporation Rates (CILAIR). The use of double isotope-labeling-CILAIR approach to analyze VAT and SAT secretomes allowed the identification of location-specific secreted proteins and its differential secretion. Additionally to the very high percentage of identified proteins previously implicated in obesity or in its comorbidities, this approach was revealed as a useful tool for the study of the obese adipose tissue microenvironment including extracellular matrix (ECM) remodeling and inflammatory status. The results herein presented reinforce the fact that VAT and SAT depots have distinct features and contribute differentially to metabolic disease. PMID:26198096

  8. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers.

    PubMed

    Barozzi, Iros; Simonatto, Marta; Bonifacio, Silvia; Yang, Lin; Rohs, Remo; Ghisletti, Serena; Natoli, Gioacchino

    2014-06-01

    Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features. PMID:24813947

  9. Closing the Gap between Single Molecule and Bulk FRET Analysis of Nucleosomes

    PubMed Central

    Gansen, Alexander; Hieb, Aaron R.; Böhm, Vera; Tóth, Katalin; Langowski, Jörg

    2013-01-01

    Nucleosome structure and stability affect genetic accessibility by altering the local chromatin morphology. Recent FRET experiments on nucleosomes have given valuable insight into the structural transformations they can adopt. Yet, even if performed under seemingly identical conditions, experiments performed in bulk and at the single molecule level have given mixed answers due to the limitations of each technique. To compare such experiments, however, they must be performed under identical conditions. Here we develop an experimental framework that overcomes the conventional limitations of each method: single molecule FRET experiments are carried out at bulk concentrations by adding unlabeled nucleosomes, while bulk FRET experiments are performed in microplates at concentrations near those used for single molecule detection. Additionally, the microplate can probe many conditions simultaneously before expending valuable instrument time for single molecule experiments. We highlight this experimental strategy by exploring the role of selective acetylation of histone H3 on nucleosome structure and stability; in bulk, H3-acetylated nucleosomes were significantly less stable than non-acetylated nucleosomes. Single molecule FRET analysis further revealed that acetylation of histone H3 promoted the formation of an additional conformational state, which is suppressed at higher nucleosome concentrations and which could be an important structural intermediate in nucleosome regulation. PMID:23637734

  10. Distinct Features of the Histone Core Structure in Nucleosomes Containing the Histone H2A.B Variant

    PubMed Central

    Sugiyama, Masaaki; Arimura, Yasuhiro; Shirayama, Kazuyoshi; Fujita, Risa; Oba, Yojiro; Sato, Nobuhiro; Inoue, Rintaro; Oda, Takashi; Sato, Mamoru; Heenan, Richard K.; Kurumizaka, Hitoshi

    2014-01-01

    Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes. PMID:24853749

  11. Structure of Pneumococcal Peptidoglycan Hydrolase LytB Reveals Insights into the Bacterial Cell Wall Remodeling and Pathogenesis*

    PubMed Central

    Bai, Xiao-Hui; Chen, Hui-Jie; Jiang, Yong-Liang; Wen, Zhensong; Huang, Yubin; Cheng, Wang; Li, Qiong; Qi, Lei; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao

    2014-01-01

    Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases. PMID:25002590

  12. Rbm20-deficient cardiogenesis reveals early disruption of RNA processing and sarcomere remodeling establishing a developmental etiology for dilated cardiomyopathy

    PubMed Central

    Beraldi, Rosanna; Li, Xing; Martinez Fernandez, Almudena; Reyes, Santiago; Secreto, Frank; Terzic, Andre; Olson, Timothy M.; Nelson, Timothy J.

    2014-01-01

    Dilated cardiomyopathy (DCM) due to mutations in RBM20, a gene encoding an RNA-binding protein, is associated with high familial penetrance, risk of progressive heart failure and sudden death. Although genetic investigations and physiological models have established the linkage of RBM20 with early-onset DCM, the underlying basis of cellular and molecular dysfunction is undetermined. Modeling human genetics using a high-throughput pluripotent stem cell platform was herein designed to pinpoint the initial transcriptome dysfunction and mechanistic corruption in disease pathogenesis. Tnnt2-pGreenZeo pluripotent stem cells were engineered to knockdown Rbm20 (shRbm20) to determine the cardiac-pathogenic phenotype during cardiac differentiation. Intracellular Ca2+ transients revealed Rbm20-dependent alteration in Ca2+ handling, coinciding with known pathological splice variants of Titin and Camk2d genes by Day 24 of cardiogenesis. Ultrastructural analysis demonstrated elongated and thinner sarcomeres in the absence of Rbm20 that is consistent with human cardiac biopsy samples. Furthermore, Rbm20-depleted transcriptional profiling at Day 12 identified Rbm20-dependent dysregulation with 76% of differentially expressed genes linked to known cardiac pathology ranging from primordial Nkx2.5 to mature cardiac Tnnt2 as the initial molecular aberrations. Notably, downstream consequences of Rbm20-depletion at Day 24 of differentiation demonstrated significant dysregulation of extracellular matrix components such as the anomalous overexpression of the Vtn gene. By using the pluripotent stem cell platform to model human cardiac disease according to a stage-specific cardiogenic roadmap, we established a new paradigm of familial DCM pathogenesis as a developmental disorder that is patterned during early cardiogenesis and propagated with cellular mechanisms of pathological cardiac remodeling. PMID:24584570

  13. Transcriptome Sequencing and Genome-wide Association Analyses Reveal Lysosomal Function and Actin Cytoskeleton Remodeling in Schizophrenia and Bipolar Disorder

    PubMed Central

    Kim, Sanghyeon; Reimers, Mark; Bacanu, Silviu-Alin; Yu, Hui; Liu, Chunyu; Sun, Jingchun; Wang, Quan; Jia, Peilin; Xu, Fengping; Zhang, Yong; Kendler, Kenneth S.; Peng, Zhiyu; Chen, Xiangning

    2014-01-01

    Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of postmortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q ≤ 0.01, 53 genes; q ≤ 0.05, 213 genes; q ≤ 0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (p < 10−7 ) and BPD (p = 0.029). To our knowledge, this is the first time that a substantially large number of genes shows concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor mediated phagocytosis, regulation of actin skeleton pathways, along with several cancer pathways. Functional analyses of these genes revealed an interconnected pathway network centered on lysosomal function and the regulation of actin cytoskeleton. These pathways and their interacting network were principally confirmed by an independent transcriptome sequencing dataset of hippocampus. Dysregulation of lysosomal function and cytoskeleton remodeling has direct impacts on endocytosis, phagocytosis, exocytosis, vesicle trafficking, neuronal maturation and migration, neurite outgrowth, and synaptic density and plasticity, and different aspects of these processes have been implicated in SCZ and BPD

  14. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  15. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  16. Theoretical models of possible compact nucleosome structures.

    PubMed

    Besker, Neva; Anselmi, Claudio; De Santis, Pasquale

    2005-04-01

    Chromatin structure seems related to the DNA linker length. This paper presents a systematic search of the possible chromatin structure as a function of the linker lengths, starting from three different low-resolution molecular models of the nucleosome. Gay-Berne potential was used to evaluate the relative nucleosome packing energy. Results suggest that linker DNAs, which bridges and orientate nucleosomes, affect both the geometry and the rigidity of the global chromatin structure. PMID:15752596

  17. Isolation of an activator-dependent, promoter-specific chromatin remodeling factor

    PubMed Central

    Ehrensberger, Andreas H.; Kornberg, Roger D.

    2011-01-01

    Repressed PHO5 gene chromatin, isolated from yeast in the native state, was remodeled by yeast extract in a gene activator-dependent, ATP-dependent manner. The product of the reaction bore the hallmark of the process in vivo, the selective removal of promoter nucleosomes, without effect on open reading frame nucleosomes. Fractionation of the extract identified a single protein, chromodomain helicase DNA binding protein 1 (Chd1), capable of the remodeling activity. Deletion of the CHD1 gene in an isw1Δ pho80Δ strain abolished PHO5 gene expression, demonstrating the relevance of the remodeling reaction in vitro to the process in vivo. PMID:21646535

  18. Isolation of an activator-dependent, promoter-specific chromatin remodeling factor.

    PubMed

    Ehrensberger, Andreas H; Kornberg, Roger D

    2011-06-21

    Repressed PHO5 gene chromatin, isolated from yeast in the native state, was remodeled by yeast extract in a gene activator-dependent, ATP-dependent manner. The product of the reaction bore the hallmark of the process in vivo, the selective removal of promoter nucleosomes, without effect on open reading frame nucleosomes. Fractionation of the extract identified a single protein, chromodomain helicase DNA binding protein 1 (Chd1), capable of the remodeling activity. Deletion of the CHD1 gene in an isw1Δ pho80Δ strain abolished PHO5 gene expression, demonstrating the relevance of the remodeling reaction in vitro to the process in vivo. PMID:21646535

  19. Comparative analysis of the nucleosomal structure of rye, wheat and their relatives.

    PubMed

    Vershinin, A V; Heslop-Harrison, J S

    1998-01-01

    Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175-185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion. PMID:9484470

  20. Tetrameric organization of vertebrate centromeric nucleosomes

    PubMed Central

    Dimitriadis, Emilios K.; Weber, Christian; Gill, Rajbir K.; Diekmann, Stephan; Dalal, Yamini

    2010-01-01

    Mitosis ensures equal genome segregation in the eukaryotic lineage. This process is facilitated by microtubule attachment to each chromosome via its centromere. In centromeres, canonical histone H3 is replaced in nucleosomes by a centromere-specific histone H3 variant (CENH3), providing the unique epigenetic signature required for microtubule binding. Due to recent findings of alternative CENH3 nucleosomal forms in invertebrate centromeres, it has been debated whether the classical octameric nucleosomal arrangement of two copies of CENH3, H4, H2A, and H2B forms the basis of the vertebrate centromere. To address this question directly, we examined CENH3 [centromere protein A (CENP-A)] nucleosomal organization in human cells, using a combination of nucleosome component analysis, atomic force microscopy (AFM), and immunoelectron microscopy (immuno-EM). We report that native CENP-A nucleosomes contain centromeric alpha satellite DNA, have equimolar amounts of H2A, H2B, CENP-A, and H4, and bind kinetochore proteins. These nucleosomes, when measured by AFM, yield one-half the dimensions of canonical octameric nucleosomes. Using immuno-EM, we find that one copy of CENP-A, H2A, H2B, and H4 coexist in CENP-A nucleosomes, in which internal C-terminal domains are accessible. Our observations indicate that CENP-A nucleosomes are organized as asymmetric heterotypic tetramers, rather than canonical octamers. Such altered nucleosomes form a chromatin fiber with distinct folding characteristics, which we utilize to discriminate tetramers directly within bulk chromatin. We discuss implications of our observations in the context of universal epigenetic and mechanical requirements for functional centromeres. PMID:21059934

  1. Epigenetic Regulation by ATP-Dependent Chromatin-Remodeling Enzymes: SNF-ing Out Crosstalk.

    PubMed

    Runge, John S; Raab, Jesse R; Magnuson, Terry

    2016-01-01

    Cells utilize precise mechanisms to access genomic DNA with spatiotemporal accuracy. ATP-dependent chromatin-remodeling enzymes (also known simply as "remodelers") comprise a specialized class of enzymes that is intimately involved in genomic organization and accessibility. Remodelers selectively position nucleosomes to either alleviate chromatin compaction or achieve genomic condensation locally, based on a multitude of cellular signals. By dictating nucleosome position, remodelers control local euchromatic and heterochromatic states. These activities govern the accessibility of regulatory regions like promoters and enhancers to transcription factors, RNA polymerases, and coactivators or -repressors. As studies unravel the complexities of epigenetic topography, evidence points to a chromatin-based interactome where regulators interact competitively, cooperatively, and/or codependently through physical and functional means. These types of interactions, or crosstalk, between remodelers raise important questions for tissue development. Here, we briefly review the evidence for remodeler interactions and argue for additional studies examining crosstalk. PMID:26969969

  2. The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic Fidelity.

    PubMed

    Roulland, Yohan; Ouararhni, Khalid; Naidenov, Mladen; Ramos, Lorrie; Shuaib, Muhammad; Syed, Sajad Hussain; Lone, Imtiaz Nizar; Boopathi, Ramachandran; Fontaine, Emeline; Papai, Gabor; Tachiwana, Hiroaki; Gautier, Thierry; Skoufias, Dimitrios; Padmanabhan, Kiran; Bednar, Jan; Kurumizaka, Hitoshi; Schultz, Patrick; Angelov, Dimitar; Hamiche, Ali; Dimitrov, Stefan

    2016-08-18

    CENP-A is a histone variant, which replaces histone H3 at centromeres and confers unique properties to centromeric chromatin. The crystal structure of CENP-A nucleosome suggests flexible nucleosomal DNA ends, but their dynamics in solution remains elusive and their implication in centromere function is unknown. Using electron cryo-microscopy, we determined the dynamic solution properties of the CENP-A nucleosome. Our biochemical, proteomic, and genetic data reveal that higher flexibility of DNA ends impairs histone H1 binding to the CENP-A nucleosome. Substituting the 2-turn αN-helix of CENP-A with the 3-turn αN-helix of H3 results in compact particles with rigidified DNA ends, able to bind histone H1. In vivo replacement of CENP-A with H3-CENP-A hybrid nucleosomes leads to H1 recruitment, delocalization of kinetochore proteins, and significant mitotic and cytokinesis defects. Our data reveal that the evolutionarily conserved flexible ends of the CENP-A nucleosomes are essential to ensure the fidelity of the mitotic pathway. PMID:27499292

  3. From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle.

    PubMed

    Buttgereit, Andreas; Weber, Cornelia; Garbe, Christoph S; Friedrich, Oliver

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a common inherited muscle disease showing chronic inflammation and progressive muscle weakness. Absent dystrophin renders sarcolemma more Ca(2+) -permeable, disturbs signalling and triggers inflammation. Sustained degeneration/regeneration cycles render muscle cytoarchitecture susceptible to remodelling. Quantitative morphometry was introduced in living cells using second-harmonic generation (SHG) microscopy of myosin. As the time course of cellular remodelling is not known, we used SHG microscopy in mdx muscle fibres over a wide age range for three-dimensional (3D) rendering and detection of verniers and cosine angle sums (CASs). Wild-type (wt) and transgenic mini-dystrophin mice (MinD) were also studied. Vernier densities (VDs) declined in wt and MinD fibres until adulthood, while in mdx fibres, VDs remained significantly elevated during the life span. CAS values were close to unity in adult wt and MinD fibres, in agreement with tight regular myofibril orientation, while always smaller in mdx fibres. Using SHG 3D morphometry, we identified two types of altered ultrastructure: branched fibres and a novel, previously undetected 'chaotic' fibre type, both of which can be classified by distinct CAS and VD combinations. We present a novel model of tissue remodelling in dystrophic progression with age that involves the transition from normal to chaotic to branched fibres. Our model predicts a ~50% contribution of altered cytoarchitecture to progressive force loss with age. We also provide an improved automated image algorithm that is suitable for future ageing studies in human myopathies. PMID:23132094

  4. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  5. A brief review of nucleosome structure.

    PubMed

    Cutter, Amber R; Hayes, Jeffrey J

    2015-10-01

    The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones. PMID:25980611

  6. Genetic variants in chromatin-remodeling pathway associated with lung cancer risk in a Chinese population.

    PubMed

    Geng, Liguo; Zhu, Meng; Wang, Yuzhuo; Cheng, Yang; Liu, Jia; Shen, Wei; Li, Zhihua; Zhang, Jiahui; Wang, Cheng; Jin, Guangfu; Ma, Hongxia; Shen, Hongbing; Hu, Zhibin; Dai, Juncheng

    2016-08-10

    Chromatin remodeling complexes utilize the energy of ATP hydrolysis to remodel nucleosomes and have essential roles in transcriptional modulation. Increasing evidences indicate that these complexes directly interact with numerous proteins and regulate the formation of cancer. However, few studies reported the association of polymorphisms in chromatin remodeling genes and lung cancer. We hypothesized that variants in critical genes of chromatin remodeling pathway might contribute to the susceptibility of lung cancer. To validate this hypothesis, we systematically screened 40 polymorphisms in six key chromatin remodeling genes (SMARCA5, SMARCC2, SMARCD2, ARID1A, NR3C1 and SATB1) and evaluated them with a case-control study including 1341 cases and 1982 controls. Logistic regression revealed that four variants in NR3C1 and SATB1 were significantly associated with lung cancer risk after false discovery rate (FDR) correction [For NR3C1, rs9324921: odds ratio (OR)=1.23, P for FDR=0.029; rs12521436: OR=0.85, P for FDR=0.040; rs4912913: OR=1.17, P for FDR=0.040; For SATB1, rs6808523: OR=1.33, P for FDR=0.040]. Combing analysis presented a significant allele-dosage tendency for the number of risk alleles and lung cancer risk (Ptrend<0.001). Moreover, expression quantitative trait loci (eQTL) analysis revealed that these two genes were differently expressed between lung tumor and adjacent normal tissues in the database of The Cancer Genome Atlas (TCGA) (P=0.009 for rs6808523). These findings suggested that genetic variants in key chromatin remodeling genes may contribute to lung cancer risk in Chinese population. Further large and well-designed studies are warranted to validate our results. PMID:27179949

  7. Mapping nucleosome resolution chromosome folding in yeast by Micro-C

    PubMed Central

    Hsieh, Tsung-Han S.; Weiner, Assaf; Lajoie, Bryan; Dekker, Job; Friedman, Nir; Rando, Oliver J.

    2015-01-01

    SUMMARY We describe a Hi-C based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically-associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, “gene looping” factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction. PMID:26119342

  8. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome.

    PubMed

    Öztürk, Mehmet Ali; Pachov, Georgi V; Wade, Rebecca C; Cojocaru, Vlad

    2016-08-19

    Linker histones are essential for DNA compaction in chromatin. They bind to nucleosomes in a 1:1 ratio forming chromatosomes. Alternative configurations have been proposed in which the globular domain of the linker histone H5 (gH5) is positioned either on- or off-dyad between the nucleosomal and linker DNAs. However, the dynamic pathways of chromatosome assembly remain elusive. Here, we studied the conformational plasticity of gH5 in unbound and off-dyad nucleosome-bound forms with classical and accelerated molecular dynamics simulations. We find that the unbound gH5 converts between open and closed conformations, preferring the closed form. However, the open gH5 contributes to a more rigid chromatosome and restricts the motion of the nearby linker DNA through hydrophobic interactions with thymidines. Moreover, the closed gH5 opens and reorients in accelerated simulations of the chromatosome. Brownian dynamics simulations of chromatosome assembly, accounting for a range of amplitudes of nucleosome opening and different nucleosome DNA sequences, support the existence of both on- and off-dyad binding modes of gH5 and reveal alternative, sequence and conformation-dependent chromatosome configurations. Taken together, these findings suggest that the conformational dynamics of linker histones and nucleosomes facilitate alternative chromatosome configurations through an interplay between induced fit and conformational selection. PMID:27270081

  9. Structure, dynamics, and evolution of centromeric nucleosomes

    PubMed Central

    Dalal, Yamini; Furuyama, Takehito; Vermaak, Danielle; Henikoff, Steven

    2007-01-01

    Centromeres are defining features of eukaryotic chromosomes, providing sites of attachment for segregation during mitosis and meiosis. The fundamental unit of centromere structure is the centromeric nucleosome, which differs from the conventional nucleosome by the presence of a centromere-specific histone variant (CenH3) in place of canonical H3. We have shown that the CenH3 nucleosome core found in interphase Drosophila cells is a heterotypic tetramer, a “hemisome” consisting of one molecule each of CenH3, H4, H2A, and H2B, rather than the octamer of canonical histones that is found in bulk nucleosomes. The surprising discovery of hemisomes at centromeres calls for a reevaluation of evidence that has long been interpreted in terms of a more conventional nucleosome. We describe how the hemisome structure of centromeric nucleosomes can account for enigmatic properties of centromeres, including kinetochore accessibility, epigenetic inheritance, rapid turnover of misincorporated CenH3, and transcriptional quiescence of pericentric heterochromatin. Structural differences mediated by loop 1 are proposed to account for the formation of stable tetramers containing CenH3 rather than stable octamers containing H3. Asymmetric CenH3 hemisomes might interrupt the global condensation of octameric H3 arrays and present an asymmetric surface for kinetochore formation. We suggest that this simple mechanism for differentiation between centromeric and packaging nucleosomes evolved from an archaea-like ancestor at the dawn of eukaryotic evolution. PMID:17893333

  10. Nucleosome positioning from tiling microarray data

    PubMed Central

    Yassour, Moran; Kaplan, Tommy; Jaimovich, Ariel; Friedman, Nir

    2008-01-01

    Motivation: The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5–10 bp) resolution. Toward this end, several recent works used dense tiling arrays to map nucleosomes in a high-throughput manner. These data were then parsed and hand-curated, and the positions of nucleosomes were assessed. Results: In this manuscript, we present a fully automated algorithm to analyze such data and predict the exact location of nucleosomes. We introduce a method, based on a probabilistic graphical model, to increase the resolution of our predictions even beyond that of the microarray used. We show how to build such a model and how to compile it into a simple Hidden Markov Model, allowing for a fast and accurate inference of nucleosome positions. We applied our model to nucleosomal data from mid-log yeast cells reported by Yuan et al. and compared our predictions to those of the original paper; to a more recent method that uses five times denser tiling arrays as explained by Lee et al.; and to a curated set of literature-based nucleosome positions. Our results suggest that by applying our algorithm to the same data used by Yuan et al. our fully automated model traced 13% more nucleosomes, and increased the overall accuracy by about 20%. We believe that such an improvement opens the way for a better understanding of the regulatory mechanisms controlling gene expression, and how they are encoded in the DNA. Contact: nir@cs.huji.ac.il PMID:18586706

  11. SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules.

    PubMed

    Job, Godwin; Brugger, Christiane; Xu, Tao; Lowe, Brandon R; Pfister, Yvan; Qu, Chunxu; Shanker, Sreenath; Baños Sanz, José I; Partridge, Janet F; Schalch, Thomas

    2016-04-21

    Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci. PMID:27105116

  12. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility.

    PubMed

    Riedmann, Caitlyn; Fondufe-Mittendorf, Yvonne N

    2016-01-01

    Chromatin architectural proteins (CAPs) bind the entry/exit DNA of nucleosomes and linker DNA to form higher order chromatin structures with distinct transcriptional outcomes. How CAPs mediate nucleosome dynamics is not well understood. We hypothesize that CAPs regulate DNA target site accessibility through alteration of the rate of spontaneous dissociation of DNA from nucleosomes. We investigated the effects of histone H1, high mobility group D1 (HMGD1), and methyl CpG binding protein 2 (MeCP2), on the biophysical properties of nucleosomes and chromatin. We show that MeCP2, like the repressive histone H1, traps the nucleosome in a more compact mononucleosome structure. Furthermore, histone H1 and MeCP2 hinder model transcription factor Gal4 from binding to its cognate DNA site within the nucleosomal DNA. These results demonstrate that MeCP2 behaves like a repressor even in the absence of methylation. Additionally, MeCP2 behaves similarly to histone H1 and HMGD1 in creating a higher-order chromatin structure, which is susceptible to chromatin remodeling by ISWI. Overall, we show that CAP binding results in unique changes to nucleosome structure and dynamics. PMID:27624769

  13. Nucleosome

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication.

  14. A Kinetic Analysis of the Auxin Transcriptome Reveals Cell Wall Remodeling Proteins That Modulate Lateral Root Development in Arabidopsis[W][OPEN

    PubMed Central

    Lewis, Daniel R.; Olex, Amy L.; Lundy, Stacey R.; Turkett, William H.; Fetrow, Jacquelyn S.; Muday, Gloria K.

    2013-01-01

    To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in CELLULASE3/GLYCOSYLHYDROLASE9B3 and LEUCINE RICH EXTENSIN2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development. PMID:24045021

  15. Alternative Splicing of NURF301 Generates Distinct NURF Chromatin Remodeling Complexes with Altered Modified Histone Binding Specificities

    PubMed Central

    Kwon, So Yeon; Xiao, Hua; Wu, Carl; Badenhorst, Paul

    2009-01-01

    Drosophila NURF is an ISWI–containing chromatin remodeling complex that catalyzes ATP–dependent nucleosome sliding. By sliding nucleosomes, NURF can alter chromatin structure and regulate transcription. NURF301/BPTF is the only NURF–specific subunit of NURF and is instrumental in recruiting the complex to target genes. Here we demonstrate that three NURF301 isoforms are expressed and that these encode functionally distinct NURF chromatin remodeling complexes. Full-length NURF301 contains a C-terminal bromodomain and juxtaposed PHD finger that bind histone H3 trimethylated at Lys4 (H3K4me3) and histone H4 acetylated at Lys16 (H4K16Ac) respectively. However, a NURF301 isoform that lacks these C-terminal domains is also detected. This truncated NURF301 isoform assembles a complex containing ISWI, NURF55, and NURF38, indicating that a second class of NURF remodeling complex, deficient in H3K4me3 and H4K16Ac recognition, exists. By comparing microarray expression profiles and phenotypes of null Nurf301 mutants with mutants that remove the C-terminal PHD fingers and bromodomain, we show that full-length NURF301 is not essential for correct expression of the majority of NURF gene targets in larvae. However, full-length NURF301 is required for spermatogenesis. Mutants that lack full-length NURF exhibit a spermatocyte arrest phenotype and fail to express a subset of spermatid differentiation genes. Our data reveal that variants of the NURF ATP–dependent chromatin remodeling complex that recognize post-translational histone modifications are important regulators of primary spermatocyte differentiation in Drosophila. PMID:19629165

  16. Nucleosome repeat lengths and columnar chromatin structure.

    PubMed

    Trifonov, Edward N

    2016-06-01

    Thorough quantitative study of nucleosome repeat length (NRL) distributions, conducted in 1992 by J. Widom, resulted in a striking observation that the linker lengths between the nucleosomes are quantized. Comparison of the NRL average values with the MNase cut distances predicted from the hypothetical columnar structure of chromatin (this work) shows a close correspondence between the two. This strongly suggests that the NRL distribution, actually, reflects the dominant role of columnar chromatin structure common for all eukaryotes. PMID:26208520

  17. Doxorubicin enhances nucleosome turnover around promoters.

    PubMed

    Yang, Fan; Kemp, Christopher J; Henikoff, Steven

    2013-05-01

    Doxorubicin is an anthracycline DNA intercalator that is among the most commonly used anticancer drugs. Doxorubicin causes DNA double-strand breaks in rapidly dividing cells, although whether it also affects general chromatin properties is unknown. Here, we use a metabolic labeling strategy to directly measure nucleosome turnover to examine the effect of doxorubicin on chromatin dynamics in squamous cell carcinoma cell lines derived from genetically defined mice. We find that doxorubicin enhances nucleosome turnover around gene promoters and that turnover correlates with gene expression level. Consistent with a direct action of doxorubicin, enhancement of nucleosome turnover around promoters gradually increases with time of exposure to the drug. Interestingly, enhancement occurs both in wild-type cells and in cells lacking either the p53 tumor suppressor gene or the master regulator of the DNA damage response, ATM, suggesting that doxorubicin action on nucleosome dynamics is independent of the DNA damage checkpoint. In addition, another anthracycline drug, aclarubicin, shows similar effects on enhancing nucleosome turnover around promoters. Our results suggest that anthracycline intercalation promotes nucleosome turnover around promoters by its effect on DNA topology, with possible implications for mechanisms of cell killing during cancer chemotherapy. PMID:23602475

  18. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells.

    PubMed

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J; Cheng, Jianfeng; Mirshahi, Faridoddin; Sanyal, Arun J

    2014-07-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. PMID:24763554

  19. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells

    PubMed Central

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J.; Cheng, Jianfeng; Mirshahi, Faridoddin

    2014-01-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. PMID:24763554

  20. Synaptoproteomic Analysis of a Rat Gene-Environment Model of Depression Reveals Involvement of Energy Metabolism and Cellular Remodeling Pathways

    PubMed Central

    Failler, Marion; Corna, Stefano; Racagni, Giorgio; Mathé, Aleksander A.; Popoli, Maurizio

    2015-01-01

    Background: Major depression is a severe mental illness that causes heavy social and economic burdens worldwide. A number of studies have shown that interaction between individual genetic vulnerability and environmental risk factors, such as stress, is crucial in psychiatric pathophysiology. In particular, the experience of stressful events in childhood, such as neglect, abuse, or parental loss, was found to increase the risk for development of depression in adult life. Here, to reproduce the gene x environment interaction, we employed an animal model that combines genetic vulnerability with early-life stress. Methods: The Flinders Sensitive Line rats (FSL), a validated genetic animal model of depression, and the Flinders Resistant Line (FRL) rats, their controls, were subjected to a standard protocol of maternal separation (MS) from postnatal days 2 to 14. A basal comparison between the two lines for the outcome of the environmental manipulation was performed at postnatal day 73, when the rats were into adulthood. We carried out a global proteomic analysis of purified synaptic terminals (synaptosomes), in order to study a subcellular compartment enriched in proteins involved in synaptic function. Two-dimensional gel electrophoresis (2-DE), mass spectrometry, and bioinformatic analysis were used to analyze proteins and related functional networks that were modulated by genetic susceptibility (FSL vs. FRL) or by exposure to early-life stress (FRL + MS vs. FRL and FSL + MS vs. FSL). Results: We found that, at a synaptic level, mainly proteins and molecular pathways related to energy metabolism and cellular remodeling were dysregulated. Conclusions: The present results, in line with previous works, suggest that dysfunction of energy metabolism and cytoskeleton dynamics at a synaptic level could be features of stress-related pathologies, in particular major depression. PMID:25522407

  1. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction.

    PubMed

    Zeilinger, S; Schmoll, M; Pail, M; Mach, R L; Kubicek, C P

    2003-10-01

    The 5' regulatory region of the cbh2 gene of Hypocrea jecorina contains the cbh2 activating element (CAE) which is essential for induction of cbh2 gene expression by sophorose and cellulose. The CAE consists of two motifs, a CCAAT box on the template strand and a GTAATA box on the coding strand, which cooperate during induction. Northern analyses of cbh2 gene expression has revealed an absolute dependence on induction, but no direct effect of Cre1-mediated carbon catabolite repression. Investigation of the chromatin structure in the wild-type strain showed that, under repressing conditions, there is a nucleosome free region (nfr) around the CAE, which is flanked by strictly positioned nucleosomes. Induction results in a loss of positioning of nucleosomes -1 and -2 downstream of the CAE, thus making the TATA box accessible. Simultaneous mutation of both motifs of the CAE, or of the CCAAT-box alone, also leads to shifting of nucleosome -1, which normally covers the TATA-box under repressing conditions, whereas mutation of the GTAATA element results in a narrowing of the nfr, indicating that the proteins that bind to both motifs in the CAE interact with chromatin, although in different ways. A cellulase-negative mutant strain, which has previously been shown to be altered in protein binding to the CAE, still displayed the induction-specific changes in nucleosome structure, indicating that none of the proteins that directly interact with CAE are affected, and that nucleosome rearrangement and induction of cbh2 expression are uncoupled. Interestingly, the carbon catabolite repressor Cre1 is essential for strict nucleosome positioning in the 5' regulatory sequences of cbh2 under all of the conditions tested, and induction can occur in a promoter that lacks positioned nucleosomes. These data suggest that Cre1, the Hap2/3/5 complex and the GTAATA-binding protein are all involved in nucleosome assembly on the cbh2 promoter, and that the latter two respond to inducing

  2. Minor Groove Binder Distamycin Remodels Chromatin but Inhibits Transcription

    PubMed Central

    Majumder, Parijat; Banerjee, Amrita; Shandilya, Jayasha; Senapati, Parijat; Chatterjee, Snehajyoti; Kundu, Tapas K.; Dasgupta, Dipak

    2013-01-01

    The condensed structure of chromatin limits access of cellular machinery towards template DNA. This in turn represses essential processes like transcription, replication, repair and recombination. The repression is alleviated by a variety of energy dependent processes, collectively known as “chromatin remodeling”. In a eukaryotic cell, a fine balance between condensed and de-condensed states of chromatin helps to maintain an optimum level of gene expression. DNA binding small molecules have the potential to perturb such equilibrium. We present herein the study of an oligopeptide antibiotic distamycin, which binds to the minor groove of B-DNA. Chromatin mobility assays and circular dichroism spectroscopy have been employed to study the effect of distamycin on chromatosomes, isolated from the liver of Sprague-Dawley rats. Our results show that distamycin is capable of remodeling both chromatosomes and reconstituted nucleosomes, and the remodeling takes place in an ATP-independent manner. Binding of distamycin to the linker and nucleosomal DNA culminates in eviction of the linker histone and the formation of a population of off-centered nucleosomes. This hints at a possible corkscrew type motion of the DNA with respect to the histone octamer. Our results indicate that distamycin in spite of remodeling chromatin, inhibits transcription from both DNA and chromatin templates. Therefore, the DNA that is made accessible due to remodeling is either structurally incompetent for transcription, or bound distamycin poses a roadblock for the transcription machinery to advance. PMID:23460895

  3. Trajectories of microsecond molecular dynamics simulations of nucleosomes and nucleosome core particles.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-06-01

    We present here raw trajectories of molecular dynamics simulations for nucleosome with linker DNA strands as well as minimalistic nucleosome core particle model. The simulations were done in explicit solvent using CHARMM36 force field. We used this data in the research article Shaytan et al., 2016 [1]. The trajectory files are supplemented by TCL scripts providing advanced visualization capabilities. PMID:27222871

  4. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks.

    PubMed

    Gursoy-Yuzugullu, Ozge; House, Nealia; Price, Brendan D

    2016-05-01

    The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template. PMID:26625977

  5. Nucleolin mediates nucleosome disruption critical for DNA double-strand break repair.

    PubMed

    Goldstein, Michael; Derheimer, Frederick A; Tait-Mulder, Jacqueline; Kastan, Michael B

    2013-10-15

    Recruitment of DNA repair factors and modulation of chromatin structure at sites of DNA double-strand breaks (DSBs) is a complex and highly orchestrated process. We developed a system that can induce DSBs rapidly at defined endogenous sites in mammalian genomes and enables direct assessment of repair and monitoring of protein recruitment, egress, and modification at DSBs. The tight regulation of the system also permits assessments of relative kinetics and dependencies of events associated with cellular responses to DNA breakage. Distinct advantages of this system over focus formation/disappearance assays for assessing DSB repair are demonstrated. Using ChIP, we found that nucleosomes are partially disassembled around DSBs during nonhomologous end-joining repair in G1-arrested mammalian cells, characterized by a transient loss of the H2A/H2B histone dimer. Nucleolin, a protein with histone chaperone activity, interacts with RAD50 via its arginine-glycine rich domain and is recruited to DSBs rapidly in an MRE11-NBS1-RAD50 complex-dependent manner. Down-regulation of nucleolin abrogates the nucleosome disruption, the recruitment of repair factors, and the repair of the DSB, demonstrating the functional importance of nucleosome disruption in DSB repair and identifying a chromatin-remodeling protein required for the process. Interestingly, the nucleosome disruption that occurs during DSB repair in cycling cells differs in that both H2A/H2B and H3/H4 histone dimers are removed. This complete nucleosome disruption is also dependent on nucleolin and is required for recruitment of replication protein A to DSBs, a marker of DSB processing that is a requisite for homologous recombination repair. PMID:24082117

  6. Theoretical analysis of epigenetic cell memory by nucleosome modification.

    PubMed

    Dodd, Ian B; Micheelsen, Mille A; Sneppen, Kim; Thon, Geneviève

    2007-05-18

    Chromosomal regions can adopt stable and heritable alternative states resulting in bistable gene expression without changes to the DNA sequence. Such epigenetic control is often associated with alternative covalent modifications of histones. The stability and heritability of the states are thought to involve positive feedback where modified nucleosomes recruit enzymes that similarly modify nearby nucleosomes. We developed a simplified stochastic model for dynamic nucleosome modification based on the silent mating-type region of the yeast Schizosaccharomyces pombe. We show that the mechanism can give strong bistability that is resistant both to high noise due to random gain or loss of nucleosome modifications and to random partitioning upon DNA replication. However, robust bistability required: (1) cooperativity, the activity of more than one modified nucleosome, in the modification reactions and (2) that nucleosomes occasionally stimulate modification beyond their neighbor nucleosomes, arguing against a simple continuous spreading of nucleosome modification. PMID:17512413

  7. A 145-base pair DNA sequence that positions itself precisely and asymmetrically on the nucleosome core.

    PubMed Central

    Ramsay, N; Felsenfeld, G; Rushton, B M; McGhee, J D

    1984-01-01

    A 145-bp DNA sequence, cloned from Escherichia coli, was reconstituted into nucleosome core particles by a number of methods. The behaviour of the resulting complex upon sucrose gradient sedimentation and nucleoprotein gel electrophoresis closely resembled that of control bulk nucleosome core particles. DNase I digestion of the 32P-end-labelled complex revealed the 10-bp periodicity of cleavages expected for DNA bound on a histone surface. The narrow cleavage sites observed (1 bp wide) imply that the sequence occupies a single preferred position on the nucleosome core, accurate to the level of single base pairs. By relating the digestion pattern observed to the pattern of site protection found for random sequence nucleosomes, the DNA position was found to be offset by 17 bp from that in the normal core particle. A number of experiments argue against the involvement of length or end effects and suggest that it is some feature of the DNA sequence itself that determines this precise positioning of DNA on the nucleosome. Images Fig. 3. Fig. 4. Fig. 5. PMID:6096135

  8. UV damage in DNA promotes nucleosome unwrapping.

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2010-08-20

    The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased "intrinsic exposure" of nucleosome-associated DNA lesions in chromatin to repair proteins. PMID:20562439

  9. The Nucleosome Map of the Mammalian Liver

    PubMed Central

    Li, Zhaoyu; Schug, Jonathan; Tuteja, Geetu; White, Peter; Kaestner, Klaus H.

    2011-01-01

    Mammalian genomes contain billions of basepairs of DNA that must be highly compacted as chromatin to fit into the nano-scale of the nucleus, but yet be accessible to allow for transcription to occur. Binding to nucleosomal DNA is critical for ‘pioneer’ transcription factors such as the winged helix transcription factors Foxa1 and Foxa2 to regulate chromatin structure and gene activation. Here we report the genome-wide map of nucleosome positions in the mouse liver, with emphasis on transcriptional start sites, CpG islands, Foxa2 binding sites, and their correlation with gene expression. Despite the heterogeneity of liver tissue, we could clearly discern the nucleosome pattern of the predominant liver cell, the hepatocyte. By analyzing nucleosome occupancy and the distributions of heterochromatin protein 1 (Hp1), CBP (also known as Crebbp), and p300 (Ep300) in Foxa1/2-deficient livers we find, surprisingly, that the maintenance of nucleosome position and chromatin structure surrounding Foxa2 binding sites is independent of Foxa1/2. PMID:21623366

  10. Predicting Nucleosome Positioning Using Multiple Evidence Tracks

    NASA Astrophysics Data System (ADS)

    Reynolds, Sheila M.; Weng, Zhiping; Bilmes, Jeff A.; Noble, William Stafford

    We describe a probabilistic model, implemented as a dynamic Bayesian network, that can be used to predict nucleosome positioning along a chromosome based on one or more genomic input tracks containing position-specific information (evidence). Previous models have either made predictions based on primary DNA sequence alone, or have been used to infer nucleosome positions from experimental data. Our framework permits the combination of these two distinct types of information. We show how this flexible framework can be used to make predictions based on either sequence-model scores or experimental data alone, or by using the two in combination to interpret the experimental data and fill in gaps. The model output represents the posterior probability, at each position along the chromosome, that a nucleosome core overlaps that position, given the evidence. This posterior probability is computed by integrating the information contained in the input evidence tracks along the entire input sequence, and fitting the evidence to a simple grammar of alternating nucleosome cores and linkers. In addition to providing a novel mechanism for the prediction of nucleosome positioning from arbitrary heterogeneous data sources, this framework is also applicable to other genomic segmentation tasks in which local scores are available from models or from data that can be interpreted as defining a probability assignment over labels at that position. The ability to combine sequence-based predictions and data from experimental assays is a significant and novel contribution to the ongoing research regarding the primary structure of chromatin and its effects upon gene regulation.

  11. Nucleosome formation with the testis-specific histone H3 variant, H3t, by human nucleosome assembly proteins in vitro

    PubMed Central

    Tachiwana, Hiroaki; Osakabe, Akihisa; Kimura, Hiroshi; Kurumizaka, Hitoshi

    2008-01-01

    Five non-allelic histone H3 variants, H3.1, H3.2, H3.3, H3t and CENP-A, have been identified in mammals. H3t is robustly expressed in the testis, and thus was assigned as the testis-specific H3 variant. However, recent proteomics and tissue-specific RT-PCR experiments revealed a small amount of H3t expression in somatic cells. In the present study, we purified human H3t as a recombinant protein, and showed that H3t/H4 forms nucleosomes with H2A/H2B by the salt-dialysis method, like the conventional H3.1/H4. We found that H3t/H4 is not efficiently incorporated into the nucleosome by human Nap1 (hNap1), due to its defective H3t/H4 deposition on DNA. In contrast, human Nap2 (hNap2), a paralog of hNap1, promotes nucleosome assembly with H3t/H4. Mutational analyses revealed that the Ala111 residue, which is conserved among H3.1, H3.2 and H3.3, but not in H3t, is the essential residue for the hNap1-mediated nucleosome assembly. These results suggest that H3t may be incorporated into chromatin by a specific chaperone-mediated pathway. PMID:18281699

  12. Regulatory motifs on ISWI chromatin remodelers: molecular mechanisms and kinetic proofreading

    NASA Astrophysics Data System (ADS)

    Brysbaert, Guillaume; Lensink, Marc F.; Blossey, Ralf

    2015-02-01

    Recently, kinetic proofreading scenarios have been proposed for the regulation of chromatin remodeling, first on purely theoretical grounds (Blossey and Schiessel 2008 HFSP J. 2 167-70) and deduced from experiments on the ISWI/ACF system (Narlikar 2010 Curr. Opin. Chem. Biol. 14 660). In the kinetic proofreading scenario of chromatin remodeling, the combination of the recognition of a histone tail state and ATP-hydrolysis in the remodeler motor act together to select (i.e. proofread) a nucleosomal substrate. ISWI remodelers have recently been shown to have an additional level of regulation as they contain auto-inhibitory motifs which need to be inactivated through an interaction with the nucleosome. In this paper we show that the auto-regulatory effect enhances substrate recognition in kinetic proofreading. We further report some suggestive additional insights into the molecular mechanism underlying ISWI-autoregulation.

  13. The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin

    PubMed Central

    Zocco, Manuel; Marasovic, Mirela; Pisacane, Paola; Bilokapic, Silvija; Halic, Mario

    2016-01-01

    To maintain genome stability, cells pack large portions of their genome into silent chromatin or heterochromatin. Histone H3 lysine 9 methylation, a hallmark of heterochromatin, is recognized by conserved readers called chromodomains. But how chromodomains interact with their actual binding partner, the H3K9 methylated nucleosome, remains elusive. We have determined the structure of a nucleosome trimethylated at lysine 9 of histone H3 (H3K9me3 Nucleosome) in a complex with the chromodomain of Chp1, a protein required for RNA interference-dependent heterochromatin formation in fission yeast. The cryo-electron microscopy structure reveals that the chromodomain of Chp1 binds the histone H3 lysine 9 methylated tail and the core of the nucleosome, primarily histones H3 and H2B. Mutations in chromodomain of Chp1 loops, which interact with the nucleosome core, abolished this interaction in vitro. Moreover, fission yeast cells with Chp1 loop mutations have a defect in Chp1 recruitment and heterochromatin formation. This study reveals the structural basis for heterochromatic silencing and suggests that chromodomains could read histone code in the H3 tail and the nucleosome core, which would provide an additional layer of regulation. PMID:27462451

  14. BINOCh: binding inference from nucleosome occupancy changes

    PubMed Central

    Meyer, Clifford A.; He, Housheng H.; Brown, Myles; Liu, X. Shirley

    2011-01-01

    Summary: Transcription factor binding events are frequently associated with a pattern of nucleosome occupancy changes in which nucleosomes flanking the binding site increase in occupancy, while those in the vicinity of the binding site itself are displaced. Genome-wide information on enhancer proximal nucleosome occupancy can be readily acquired using ChIP-seq targeting enhancer-related histone modifications such as H3K4me2. Here, we present a software package, BINOCh that allows biologists to use such data to infer the identity of key transcription factors that regulate the response of a cell to a stimulus or determine a program of differentiation. Availability: The BINOCh open source Python package is freely available at http://liulab.dfci.harvard.edu/BINOCh under the FreeBSD license. Contact: cliff@jimmy.harvard.edu; xsliu@jimmy.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21551136

  15. Nucleosome structure in chromatin from heated cells

    SciTech Connect

    Warters, R.L.; Roti Roti, J.L.; Winward, R.T.

    1980-12-01

    The effect of hyperthermia (40 to 80/sup 0/C) on the nucleosome structure of mammalian chromatin was determined using the enzyme micrococcal nuclease. At equivalent fractional DNA digestion it was found that neither the size of DNA nor the total fraction of cellular DNA associated with nucleosome structure is altered by heat exposure up to 48/sup 0/C for 30 min. It is proposed that this heat-induced reduction in the accessibility to nuclease attack of DNA in chromatin from heated cells is due to the increased protein mass associated with chromatin.

  16. Histone H2B ubiquitylation represses gametogenesis by opposing RSC-dependent chromatin remodeling at the ste11 master regulator locus.

    PubMed

    Materne, Philippe; Vázquez, Enrique; Sánchez, Mar; Yague-Sanz, Carlo; Anandhakumar, Jayamani; Migeot, Valerie; Antequera, Francisco; Hermand, Damien

    2016-01-01

    In fission yeast, the ste11 gene encodes the master regulator initiating the switch from vegetative growth to gametogenesis. In a previous paper, we showed that the methylation of H3K4 and consequent promoter nucleosome deacetylation repress ste11 induction and cell differentiation (Materne et al., 2015) but the regulatory steps remain poorly understood. Here we report a genetic screen that highlighted H2B deubiquitylation and the RSC remodeling complex as activators of ste11 expression. Mechanistic analyses revealed more complex, opposite roles of H2Bubi at the promoter where it represses expression, and over the transcribed region where it sustains it. By promoting H3K4 methylation at the promoter, H2Bubi initiates the deacetylation process, which decreases chromatin remodeling by RSC. Upon induction, this process is reversed and efficient NDR (nucleosome depleted region) formation leads to high expression. Therefore, H2Bubi represses gametogenesis by opposing the recruitment of RSC at the promoter of the master regulator ste11 gene. PMID:27171419

  17. Histone H2B ubiquitylation represses gametogenesis by opposing RSC-dependent chromatin remodeling at the ste11 master regulator locus

    PubMed Central

    Materne, Philippe; Vázquez, Enrique; Sánchez, Mar; Yague-Sanz, Carlo; Anandhakumar, Jayamani; Migeot, Valerie; Antequera, Francisco; Hermand, Damien

    2016-01-01

    In fission yeast, the ste11 gene encodes the master regulator initiating the switch from vegetative growth to gametogenesis. In a previous paper, we showed that the methylation of H3K4 and consequent promoter nucleosome deacetylation repress ste11 induction and cell differentiation (Materne et al., 2015) but the regulatory steps remain poorly understood. Here we report a genetic screen that highlighted H2B deubiquitylation and the RSC remodeling complex as activators of ste11 expression. Mechanistic analyses revealed more complex, opposite roles of H2Bubi at the promoter where it represses expression, and over the transcribed region where it sustains it. By promoting H3K4 methylation at the promoter, H2Bubi initiates the deacetylation process, which decreases chromatin remodeling by RSC. Upon induction, this process is reversed and efficient NDR (nucleosome depleted region) formation leads to high expression. Therefore, H2Bubi represses gametogenesis by opposing the recruitment of RSC at the promoter of the master regulator ste11 gene. DOI: http://dx.doi.org/10.7554/eLife.13500.001 PMID:27171419

  18. GAGA Factor Maintains Nucleosome-Free Regions and Has a Role in RNA Polymerase II Recruitment to Promoters

    PubMed Central

    Fuda, Nicholas J.; Guertin, Michael J.; Sharma, Sumeet; Danko, Charles G.; Martins, André L.; Siepel, Adam; Lis, John T.

    2015-01-01

    Previous studies have shown that GAGA Factor (GAF) is enriched on promoters with paused RNA Polymerase II (Pol II), but its genome-wide function and mechanism of action remain largely uncharacterized. We assayed the levels of transcriptionally-engaged polymerase using global run-on sequencing (GRO-seq) in control and GAF-RNAi Drosophila S2 cells and found promoter-proximal polymerase was significantly reduced on a large subset of paused promoters where GAF occupancy was reduced by knock down. These promoters show a dramatic increase in nucleosome occupancy upon GAF depletion. These results, in conjunction with previous studies showing that GAF directly interacts with nucleosome remodelers, strongly support a model where GAF directs nucleosome displacement at the promoter and thereby allows the entry Pol II to the promoter and pause sites. This action of GAF on nucleosomes is at least partially independent of paused Pol II because intergenic GAF binding sites with little or no Pol II also show GAF-dependent nucleosome displacement. In addition, the insulator factor BEAF, the BEAF-interacting protein Chriz, and the transcription factor M1BP are strikingly enriched on those GAF-associated genes where pausing is unaffected by knock down, suggesting insulators or the alternative promoter-associated factor M1BP protect a subset of GAF-bound paused genes from GAF knock-down effects. Thus, GAF binding at promoters can lead to the local displacement of nucleosomes, but this activity can be restricted or compensated for when insulator protein or M1BP complexes also reside at GAF bound promoters. PMID:25815464

  19. Mechanisms of ATP-Dependent Chromatin Remodeling Motors.

    PubMed

    Zhou, Coral Y; Johnson, Stephanie L; Gamarra, Nathan I; Narlikar, Geeta J

    2016-07-01

    Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies. We use these studies as a guiding framework to discuss the current state of knowledge of chromatin remodeling mechanisms and highlight exciting open questions that would continue to benefit from biophysical analyses. PMID:27391925

  20. Nucleosomes unfold completely at a transcriptionally active promoter.

    PubMed

    Boeger, Hinrich; Griesenbeck, Joachim; Strattan, J Seth; Kornberg, Roger D

    2003-06-01

    It has long been known that promoter DNA is converted to a nuclease-sensitive state upon transcriptional activation. Recent findings have raised the possibility that this conversion reflects only a partial unfolding or other perturbation of nucleosomal structure, rather than the loss of nucleosomes. We report topological, sedimentation, nuclease digestion, and ChIP analyses, which demonstrate the complete unfolding of nucleosomes at the transcriptionally active PHO5 promoter of the yeast Saccharomyces cerevisiae. Although nucleosome loss occurs at all promoter sites, it is not complete at any of them, suggesting the existence of an equilibrium between the removal of nucleosomes and their reformation. PMID:12820971

  1. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling.

    PubMed

    Roberts, George G; Hudson, Alan P

    2006-08-01

    Transcriptome analyses using a wild-type strain of Saccharomyces cerevisiae were performed to assess the overall pattern of gene expression during the transition from glucose-based fermentative to glycerol-based respiratory growth. These experiments revealed a complex suite of metabolic and structural changes associated with the adaptation process. Alterations in gene expression leading to remodeling of various membrane transport systems and the cortical actin cytoskeleton were observed. Transition to respiratory growth was accompanied by alterations in transcript patterns demonstrating not only a general stress response, as seen in earlier studies, but also the oxidative and osmotic stress responses. In some contrast to earlier studies, these experiments identified modulation of expression for many genes specifying transcription factors during the transition to glycerol-based growth. Importantly and unexpectedly, an ordered series of changes was seen in transcript levels from genes encoding components of the TFIID, SAGA (Spt-Ada-Gcn5-Acetyltransferase), and SLIK (Saga LIKe) complexes and all three RNA polymerases, suggesting a modulation of structure for the basal transcriptional machinery during adaptation to respiratory growth. In concert with data given in earlier studies, the results presented here highlight important aspects of metabolic and other adaptations to respiratory growth in yeast that are common to utilization of multiple carbon sources. Importantly, they also identify aspects specific to adaptation of this organism to growth on glycerol as sole carbon source. PMID:16741729

  2. A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold

    PubMed Central

    Andersson, Charlotta S.; Högbom, Martin

    2009-01-01

    Chlamydia trachomatis R2c is the prototype for a recently discovered group of ribonucleotide reductase R2 proteins that use a heterodinuclear Mn/Fe redox cofactor for radical generation and storage. Here, we show that the Mycobacterium tuberculosis protein Rv0233, an R2 homologue and a potential virulence factor, contains the heterodinuclear manganese/iron-carboxylate cofactor but displays a drastic remodeling of the R2 protein scaffold into a ligand-binding oxidase. The first structural characterization of the heterodinuclear cofactor shows that the site is highly specific for manganese and iron in their respective positions despite a symmetric arrangement of coordinating residues. In this protein scaffold, the Mn/Fe cofactor supports potent 2-electron oxidations as revealed by an unprecedented tyrosine-valine crosslink in the active site. This wolf in sheep's clothing defines a distinct functional group among R2 homologues and may represent a structural and functional counterpart of the evolutionary ancestor of R2s and bacterial multicomponent monooxygenases. PMID:19321420

  3. Remodeling of the Infection Chamber before Infection Thread Formation Reveals a Two-Step Mechanism for Rhizobial Entry into the Host Legume Root Hair1

    PubMed Central

    Teillet, Alice; Chabaud, Mireille; Ivanov, Sergey; Genre, Andrea; Limpens, Erik; de Carvalho-Niebel, Fernanda; Barker, David G.

    2015-01-01

    In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs. PMID:25659382

  4. DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity

    PubMed Central

    Naughtin, Monica; Haftek-Terreau, Zofia; Xavier, Johan; Meyer, Sam; Silvain, Maud; Jaszczyszyn, Yan; Levy, Nicolas; Miele, Vincent; Benleulmi, Mohamed Salah; Ruff, Marc; Parissi, Vincent; Vaillant, Cédric; Lavigne, Marc

    2015-01-01

    Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein. PMID:26075397

  5. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes.

    PubMed

    Logie, C; Tse, C; Hansen, J C; Peterson, C L

    1999-02-23

    SWI/SNF and RSC are large, distinct multi-subunit complexes that use the energy of ATP hydrolysis to disrupt nucleosome structure, facilitating the binding of transcription factors or restriction enzymes to nucleosomes [Cote, J., Quinn, J., Workman, J. L., and Peterson, C. L. (1994) Science 265, 53-60 (1); Lorch, Y., Cairns, B. R., Zhang, M., and Kornberg, R. D. (1998) Cell 94, 29-34 (2)]. Here we have used a quantitative assay to measure the activities of these ATP-dependent chromatin remodeling complexes using nucleosomal arrays reconstituted with hypoacetylated, hyperacetylated, or partially trypsinized histones. This assay is based on measuring the kinetics of restriction enzyme digestion of a site located within the central nucleosome of a positioned 11-mer array [Logie, C., and Peterson, C. L. (1997) EMBO J. 16, 6772-6782 (3)]. We find that the DNA-stimulated ATPase activities of SWI/SNF and RSC are not altered by the absence of the histone N-termini. Furthermore, ATP-dependent nucleosome remodeling is also equivalent on all three substrate arrays under reaction conditions where the concentrations of nucleosomal array and either SWI/SNF or RSC are equivalent. However, SWI/SNF and RSC cannot catalytically remodel multiple nucleosomal arrays in the absence of the histone termini, and this catalytic activity of SWI/SNF is decreased by histone hyperacetylation. These results indicate that the histone termini are important for SWI/SNF and RSC function; and, furthermore, our data defines a step in the remodeling cycle where the core histone termini exert their influence. This step appears to be after remodeling, but prior to intermolecular transfer of the remodelers to new arrays. PMID:10029546

  6. Dynamic Nucleosome Organization at hox Promoters during Zebrafish Embryogenesis

    PubMed Central

    Weicksel, Steven E.; Xu, Jia; Sagerström, Charles G.

    2013-01-01

    Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR) at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements) as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors). However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development. PMID:23671670

  7. The Snf2 Homolog Fun30 Acts as a Homodimeric ATP-dependent Chromatin-remodeling Enzyme*

    PubMed Central

    Awad, Salma; Ryan, Daniel; Prochasson, Philippe; Owen-Hughes, Tom; Hassan, Ahmed H.

    2010-01-01

    The Saccharomyces cerevisiae Fun30 (Function unknown now 30) protein shares homology with an extended family of Snf2-related ATPases. Here we report the purification of Fun30 principally as a homodimer with a molecular mass of about 250 kDa. Biochemical characterization of this complex reveals that it has ATPase activity stimulated by both DNA and chromatin. Consistent with this, it also binds to both DNA and chromatin. The Fun30 complex also exhibits activity in ATP-dependent chromatin remodeling assays. Interestingly, its activity in histone dimer exchange is high relative to the ability to reposition nucleosomes. Fun30 also possesses a weakly conserved CUE motif suggesting that it may interact specifically with ubiquitinylated proteins. However, in vitro Fun30 was found to have no specificity in its interaction with ubiquitinylated histones. PMID:20075079

  8. Live Cell Imaging Reveals Novel Functions of Salmonella enterica SPI2-T3SS Effector Proteins in Remodeling of the Host Cell Endosomal System

    PubMed Central

    Rajashekar, Roopa; Liebl, David; Chikkaballi, Deepak; Liss, Viktoria; Hensel, Michael

    2014-01-01

    Intracellular Salmonella enterica induce a massive remodeling of the endosomal system in infected host cells. One dramatic consequence of this interference is the induction of various extensive tubular aggregations of membrane vesicles, and tubules positive for late endosomal/lysosomal markers are referred to as Salmonella-induced filaments or SIF. SIF are highly dynamic in nature with extension and collapse velocities of 0.4–0.5 µm x sec−1. The induction of SIF depends on the function of the Salmonella Pathogenicity Island 2 (SPI2) encoded type III secretion system (T3SS) and a subset of effector proteins. In this study, we applied live cell imaging and electron microscopy to analyze the role of individual effector proteins in SIF morphology and dynamic properties of SIF. SIF in cells infected with sifB, sseJ, sseK1, sseK2, sseI, sseL, sspH1, sspH2, slrP, steC, gogB or pipB mutant strains showed a morphology and dynamics comparable to SIF induced by WT Salmonella. SIF were absent in cells infected with the sifA-deficient strain and live cell analyses allowed tracking of the loss of the SCV membrane of intracellular sifA Salmonella. In contrast to analyses in fixed cells, in living host cells SIF induced by sseF- or sseG-deficient strains were not discontinuous, but rather continuous and thinner in diameter. A very dramatic phenotype was observed for the pipB2-deficient strain that induced very bulky, non-dynamic aggregations of membrane vesicles. Our study underlines the requirement of the study of Salmonella-host interaction in living systems and reveals new phenotypes due to the intracellular activities of Salmonella. PMID:25522146

  9. Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis).

    PubMed

    Grene, Ruth; Klumas, Curtis; Suren, Haktan; Yang, Kuan; Collakova, Eva; Myers, Elijah; Heath, Lenwood S; Holliday, Jason A

    2012-01-01

    Microarray gene expression profiling is a powerful technique to understand complex developmental processes, but making biologically meaningful inferences from such studies has always been challenging. We previously reported a microarray study of the freezing acclimation period in Sitka spruce (Picea sitchensis) in which a large number of candidate genes for climatic adaptation were identified. In the current paper, we apply additional systems biology tools to these data to further probe changes in the levels of genes and metabolites and activities of associated pathways that regulate this complex developmental transition. One aspect of this adaptive process that is not well understood is the role of the cell wall. Our data suggest coordinated metabolic and signaling responses leading to cell wall remodeling. Co-expression of genes encoding proteins associated with biosynthesis of structural and non-structural cell wall carbohydrates was observed, which may be regulated by ethylene signaling components. At the same time, numerous genes, whose products are putatively localized to the endomembrane system and involved in both the synthesis and trafficking of cell wall carbohydrates, were up-regulated. Taken together, these results suggest a link between ethylene signaling and biosynthesis, and targeting of cell wall related gene products during the period of winter hardening. Automated Layout Pipeline for Inferred NEtworks (ALPINE), an in-house plugin for the Cytoscape visualization environment that utilizes the existing GeneMANIA and Mosaic plugins, together with the use of visualization tools, provided images of proposed signaling processes that became active over the time course of winter hardening, particularly at later time points in the process. The resulting visualizations have the potential to reveal novel, hypothesis-generating, gene association patterns in the context of targeted subcellular location. PMID:23112803

  10. Substantial Histone Reduction Modulates Genomewide Nucleosomal Occupancy and Global Transcriptional Output

    PubMed Central

    Celona, Barbara; Weiner, Assaf; Di Felice, Francesca; Mancuso, Francesco M.; Cesarini, Elisa; Rossi, Riccardo L.; Gregory, Lorna; Baban, Dilair; Rossetti, Grazisa; Grianti, Paolo; Pagani, Massimiliano; Bonaldi, Tiziana; Ragoussis, Jiannis; Friedman, Nir; Camilloni, Giorgio; Bianchi, Marco E.; Agresti, Alessandra

    2011-01-01

    The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6 mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic regulation. PMID:21738444

  11. A Highly Conserved Region within H2B Is Important for FACT To Act on Nucleosomes

    PubMed Central

    Zheng, Suting; Crickard, J. Brooks; Srikanth, Abhinaya

    2014-01-01

    Histone N-terminal tails play crucial roles in chromatin-related processes. The tails of histones H3 and H4 are highly conserved and well characterized, but much less is known about the functions of the tails of histones H2A and H2B and their sequences are more divergent among eukaryotes. Here we characterized the function of the only highly conserved region in the H2B tail, the H2B repression (HBR) domain. Once thought to play a role only in repression, it also has an uncharacterized function in gene activation and DNA damage responses. We report that deletion of the HBR domain impairs the eviction of nucleosomes at the promoters and open reading frames of genes. A closer examination of the HBR domain mutants revealed that they displayed phenotypes similar to those of histone chaperone complex FACT mutants, including an increase in intragenic transcription and the accumulation of free histones in cells. Biochemical characterization of recombinant nucleosomes indicates that deletion of the HBR domain impairs FACT-dependent removal of H2A-H2B from nucleosomes, suggesting that the HBR domain plays an important role in allowing FACT to disrupt dimer-DNA interactions. We have uncovered a previously unappreciated role for the HBR domain in regulating chromatin structure and have provided insight into how FACT acts on nucleosomes. PMID:24248595

  12. [The effect of DNA supercoiling DNA on nucleosome structure].

    PubMed

    Sivolob, A V; Khrapunov, S N

    1991-01-01

    The circular DNA which contains nucleosomes and additional supercoils has been considered theoretically. The different possible effect of increased negative supercoiling on the nucleosome structure have been studied. According to the model proposed all supercoils in the nucleosome-containing circular DNA are realized as torsional deformations of the double helix. The free energy of both supercoiling (torsional deformations) and nucleosome stabilization have been taken into consideration to obtain the equation for free energy of nucleosome-containing circular DNA. The analysis of this equation and the experimental data by Garner et al. (II Psoc. Natl. Acad. Sci. USA. 1987. P. 2620-2623) about the maximum amount of supercoiling obtained by DNA-topoisomerase II treatment of nucleosome-containing pBR322 plasmid has been performed. It has been shown that two possibilities are consistent with both the equation and experimental data. These are: (1) the increased supercoiling induces the torsional strains not only in linker regions but also in nucleosome DNA and thus supercoiling causes an instability on nucleosome structure; (2) increased supercoiling induces a structural change of nucleosome which is accompanied by nucleosome DNA unwinding and its transition into form with approximately 11 base pairs per turn of double helix. It has been evaluated that in the first case the average torsional rigidity of nucleosome DNA should be approximately 2.5 times as much and in the second case--much more than the rigidity of naked DNA. Both types of nucleosome structural changes may cause its transition to a potentially active state for transcription. It is suggested that increased supercoiling can be a switch mechanism of chromatin activation. PMID:1654518

  13. The prenucleosome, a stable conformational isomer of the nucleosome

    PubMed Central

    Fei, Jia; Torigoe, Sharon E.; Brown, Christopher R.; Khuong, Mai T.; Kassavetis, George A.; Boeger, Hinrich; Kadonaga, James T.

    2015-01-01

    Chromatin comprises nucleosomes as well as nonnucleosomal histone–DNA particles. Prenucleosomes are rapidly formed histone–DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone–DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone–DNA species in the cell. PMID:26680301

  14. Nucleosome immobilization strategies for single-pair FRET microscopy.

    PubMed

    Koopmans, Wiepke J A; Schmidt, Thomas; van Noort, John

    2008-10-01

    All genomic transactions in eukaryotes take place in the context of the nucleosome, the basic unit of chromatin, which is responsible for DNA compaction. Overcoming the steric hindrance that nucleosomes present for DNA-processing enzymes requires significant conformational changes. The dynamics of these have been hard to resolve. Single-pair Fluorescence Resonance Energy Transfer (spFRET) microscopy is a powerful technique for observing conformational dynamics of the nucleosome. Nucleosome immobilization allows the extension of observation times to a limit set only by photobleaching, and thus opens the possibility of studying processes occurring on timescales ranging from milliseconds to minutes. It is crucial however, that immobilization itself does not introduce artifacts in the dynamics. Here we report on various nucleosome immobilization strategies, such as single-point attachment to polyethylene glycol (PEG) or surfaces coated with bovine serum albumin (BSA), and confinement in porous agarose or polyacrylamide gels. We compare the immobilization specificity and structural integrity of immobilized nucleosomes. A crosslinked star polyethylene glycol coating performs best with respect to tethering specificity and nucleosome integrity, and enables us to reproduce for the first time bulk nucleosome unwrapping kinetics in single nucleosomes without immobilization artifacts. PMID:18792054

  15. The effect of DNA supercoiling on nucleosome structure and stability

    NASA Astrophysics Data System (ADS)

    Elbel, Tabea; Langowski, Jörg

    2015-02-01

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  16. Exploration of nucleosome positioning patterns in transcription factor function

    PubMed Central

    Maehara, Kazumitsu; Ohkawa, Yasuyuki

    2016-01-01

    The binding of transcription factors (TFs) triggers activation of specific chromatin regions through the recruitment and activation of RNA polymerase. Unique nucleosome positioning (NP) occurs during gene expression and has been suggested to be involved in various other chromatin functions. However, the diversity of NP that can occur for each function has not been clarified. Here we used MNase-Seq data to evaluate NP around 258 cis-regulatory elements in the mouse genome. Principal component analysis of the 258 elements revealed that NP consisted of five major patterns. Furthermore, the five NP patterns had predictive power for the level of gene expression. We also demonstrated that selective NP patterns appeared around TF binding sites. These results suggest that the NP patterns are correlated to specific functions on chromatin. PMID:26790608

  17. DNA-histone interactions are sufficient to position a single nucleosome juxtaposing Drosophila Adh adult enhancer and distal promoter.

    PubMed Central

    Jackson, J R; Benyajati, C

    1993-01-01

    The alcohol dehydrogenase gene (Adh) of Drosophila melanogaster is transcribed from two tandem promoters in distinct developmental and tissue-specific patterns. Both promoters are regulated by separate upstream enhancer regions. In its wild-type context the adult enhancer specifically stimulates only the distal promoter, approximately 400 bp downstream, and not the proximal promoter, which is approximately 700 bp further downstream. Genomic footprinting and micrococcal nuclease analyses have revealed a specifically positioned nucleosome between the distal promoter and adult enhancer. In vitro reconstitution of this nucleosome demonstrated that DNA-core histone interactions alone are sufficient to position the nucleosome. Based on this observation and sequence periodicities in the underlying DNA, the mechanism of positioning appears to involve specific DNA structural features (ie flexibility or curvature). We have observed this nucleosome positioned early during development, before tissue differentiation, and before non-histone protein-DNA interactions are established at the distal promoter or adult enhancer. This nucleosome positioning element in the Adh regulatory region could be involved in establishing a specific tertiary nucleoprotein structure that facilitates specific cis-element accessibility and/or distal promoter-adult enhancer interactions. Images PMID:8451195

  18. A deformation energy-based model for predicting nucleosome dyads and occupancy

    PubMed Central

    Liu, Guoqing; Xing, Yongqiang; Zhao, Hongyu; Wang, Jianying; Shang, Yu; Cai, Lu

    2016-01-01

    Nucleosome plays an essential role in various cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to decode the mechanism of nucleosome positioning and identify nucleosome positions in the genome. In this paper, we present a model for predicting nucleosome positioning based on DNA deformation, in which both bending and shearing of the nucleosomal DNA are considered. The model successfully predicted the dyad positions of nucleosomes assembled in vitro and the in vitro map of nucleosomes in Saccharomyces cerevisiae. Applying the model to Caenorhabditis elegans and Drosophila melanogaster, we achieved satisfactory results. Our data also show that shearing energy of nucleosomal DNA outperforms bending energy in nucleosome occupancy prediction and the ability to predict nucleosome dyad positions is attributed to bending energy that is associated with rotational positioning of nucleosomes. PMID:27053067

  19. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF

    PubMed Central

    Chatterjee, Nilanjana; North, Justin A.; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as “readers,” which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  20. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    PubMed

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  1. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    PubMed

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes. PMID:25710170

  2. Genome Wide Nucleosome Mapping for HSV-1 Shows Nucleosomes Are Deposited at Preferred Positions during Lytic Infection

    PubMed Central

    Oh, Jaewook; Sanders, Iryna F.; Chen, Eric Z.; Li, Hongzhe; Tobias, John W.; Isett, R. Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A.; Fraser, Nigel W.

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes. PMID:25710170

  3. Training-free atomistic prediction of nucleosome occupancy.

    PubMed

    Minary, Peter; Levitt, Michael

    2014-04-29

    Nucleosomes alter gene expression by preventing transcription factors from occupying binding sites along DNA. DNA methylation can affect nucleosome positioning and so alter gene expression epigenetically (without changing DNA sequence). Conventional methods to predict nucleosome occupancy are trained on observed DNA sequence patterns or known DNA oligonucleotide structures. They are statistical and lack the physics needed to predict subtle epigenetic changes due to DNA methylation. The training-free method presented here uses physical principles and state-of-the-art all-atom force fields to predict both nucleosome occupancy along genomic sequences as well as binding to known positioning sequences. Our method calculates the energy of both nucleosomal and linear DNA of the given sequence. Based on the DNA deformation energy, we accurately predict the in vitro occupancy profile observed experimentally for a 20,000-bp genomic region as well as the experimental locations of nucleosomes along 13 well-established positioning sequence elements. DNA with all C bases methylated at the 5 position shows less variation of nucleosome binding: Strong binding is weakened and weak binding is strengthened compared with normal DNA. Methylation also alters the preference of nucleosomes for some positioning sequences but not others. PMID:24733939

  4. Rigid-body molecular dynamics of DNA inside a nucleosome.

    PubMed

    Fathizadeh, Arman; Berdy Besya, Azim; Reza Ejtehadi, Mohammad; Schiessel, Helmut

    2013-03-01

    The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on 5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful tool to predict nucleosome positioning. PMID:23475204

  5. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly

    PubMed Central

    MacAlpine, Heather K.; Lubelsky, Yoav; Hartemink, Alexander J.

    2015-01-01

    Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Although pre-RC assembly is well characterized in vitro, the process is poorly understood within the local chromatin environment surrounding replication origins. To reveal how the chromatin architecture modulates origin selection and activation, we “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. Our nucleotide-resolution protein occupancy profiles resolved a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1, suggesting that stable ORC chromatin association in G2 is a determinant of origin efficiency. G1 nucleosome remodeling concomitant with pre-RC assembly expanded the origin nucleosome-free region and enhanced activation efficiency. Finally, the local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ARS consensus sequence (ACS). PMID:25593310

  6. Transfer of nucleosomes from parental to replicated chromatin.

    PubMed Central

    Krude, T; Knippers, R

    1991-01-01

    Simian virus 40 (SV40) minichromosomes were used as the substrate for in vitro replication. Protein-free SV40 DNA or plasmids, carrying the SV40 origin of replication, served as controls. Replicated minichromosomal DNA possessed constrained negative superhelicity indicative of the presence of nucleosomes. The topological state of replicated minichromosomal DNA was precisely determined by two-dimensional gel electrophoresis. We show that most or all nucleosomes, present on the replicated minichromosomal DNA, were derived from the parental minichromosome substrate. The mode and the rate of nucleosome transfer from parental to minichromosomal daughter DNA were not influenced by high concentrations of competing replicating and nonreplicating protein-free DNA, indicating that nucleosomes remain associated with DNA during the replication process. The data also show that parental nucleosomes were segregated to the replicated daughter DNA strands in a dispersive manner. Images PMID:1658628

  7. Octamer displacement and redistribution in transcription of single nucleosomes.

    PubMed Central

    O'Donohue, M F; Duband-Goulet, I; Hamiche, A; Prunell, A

    1994-01-01

    Single nucleosomes were assembled on a 357bp DNA fragment containing a 5S RNA gene from sea urchin and a promoter for SP6 RNA polymerase, and were fractionated as a function of their positions by gel electrophoresis. Transcribed nucleosome positions were detected by observing band disappearance in gels, which in turn provided evidence for the displacement of the histone octamer upon transcription. Differential band disappearance showed that nucleosomes closer to the promoter were harder to transcribe, and transcription was blocked when the nucleosome proximal boundary was at the start site. Nucleosomes located at discrete positions were also eluted from the gel bands and transcribed. In this case, new bands appeared as a consequence of octamer redistribution. Such redistribution occurred over all untranscribed positions, as well as over transcribed positions close enough to the promoter. Similar conclusions were derived from another previously investigated fragment containing a Xenopus 5S RNA gene. Images PMID:8152924

  8. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  9. The structural basis of modified nucleosome recognition by 53BP1.

    PubMed

    Wilson, Marcus D; Benlekbir, Samir; Fradet-Turcotte, Amélie; Sherker, Alana; Julien, Jean-Philippe; McEwan, Andrea; Noordermeer, Sylvie M; Sicheri, Frank; Rubinstein, John L; Durocher, Daniel

    2016-08-01

    DNA double-strand breaks (DSBs) elicit a histone modification cascade that controls DNA repair. This pathway involves the sequential ubiquitination of histones H1 and H2A by the E3 ubiquitin ligases RNF8 and RNF168, respectively. RNF168 ubiquitinates H2A on lysine 13 and lysine 15 (refs 7, 8) (yielding H2AK13ub and H2AK15ub, respectively), an event that triggers the recruitment of 53BP1 (also known as TP53BP1) to chromatin flanking DSBs. 53BP1 binds specifically to H2AK15ub-containing nucleosomes through a peptide segment termed the ubiquitination-dependent recruitment motif (UDR), which requires the simultaneous engagement of histone H4 lysine 20 dimethylation (H4K20me2) by its tandem Tudor domain. How 53BP1 interacts with these two histone marks in the nucleosomal context, how it recognizes ubiquitin, and how it discriminates between H2AK13ub and H2AK15ub is unknown. Here we present the electron cryomicroscopy (cryo-EM) structure of a dimerized human 53BP1 fragment bound to a H4K20me2-containing and H2AK15ub-containing nucleosome core particle (NCP-ubme) at 4.5 Å resolution. The structure reveals that H4K20me2 and H2AK15ub recognition involves intimate contacts with multiple nucleosomal elements including the acidic patch. Ubiquitin recognition by 53BP1 is unusual and involves the sandwiching of the UDR segment between ubiquitin and the NCP surface. The selectivity for H2AK15ub is imparted by two arginine fingers in the H2A amino-terminal tail, which straddle the nucleosomal DNA and serve to position ubiquitin over the NCP-bound UDR segment. The structure of the complex between NCP-ubme and 53BP1 reveals the basis of 53BP1 recruitment to DSB sites and illuminates how combinations of histone marks and nucleosomal elements cooperate to produce highly specific chromatin responses, such as those elicited following chromosome breaks. PMID:27462807

  10. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair

    PubMed Central

    Czaja, Wioletta; Mao, Peng; Smerdon, Michael J.

    2012-01-01

    DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo. PMID:23109894

  11. Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development.

    PubMed

    Ziegler-Birling, Céline; Daujat, Sylvain; Schneider, Robert; Torres-Padilla, Maria-Elena

    2016-08-01

    In mammals, the time period that follows fertilization is characterized by extensive chromatin remodeling, which enables epigenetic reprogramming of the gametes. Major changes in chromatin structure persist until the time of implantation, when the embryo develops into a blastocyst, which comprises the inner cell mass and the trophectoderm. Changes in DNA methylation, histone variant incorporation, and covalent modifications of the histones tails have been intensively studied during pre-implantation development. However, modifications within the core of the nucleosomes have not been systematically analyzed. Here, we report the first characterization and temporal analysis of 3 key acetylated residues in the core of the histone H3: H3K64ac, H3K122ac, and H3K56ac, all located at structurally important positions close to the DNA. We found that all 3 acetylations occur during pre-implantation development, but with different temporal kinetics. Globally, H3K64ac and H3K56ac were detected throughout cleavage stages, while H3K122ac was only weakly detectable during this time. Our work contributes to the understanding of the contribution of histone modifications in the core of the nucleosome to the "marking" of the newly established embryonic chromatin and unveils new modification pathways potentially involved in epigenetic reprogramming. PMID:26479850

  12. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition

    PubMed Central

    Newhart, Alyshia; Powers, Sara Lawrence; Shastrula, Prashanth Krishna; Sierra, Isabel; Joo, Lucy M.; Hayden, James E.; Cohen, Andrew R.; Janicki, Susan M.

    2016-01-01

    In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation. PMID:26842893

  13. Nucleosomal structure at hyperacetylated loci probed in nuclei by DNA-histone crosslinking.

    PubMed Central

    Ebralidse, K K; Hebbes, T R; Clayton, A L; Thorne, A W; Crane-Robinson, C

    1993-01-01

    Chemically induced histone-DNA crosslinking in nuclei is used to monitor structural changes in chromosomal domains containing hyperacetylated histones. Core particles harbouring the crosslinks are immunofractionated with antibodies specific for acetylated histones. Crosslinking is revealed by gel separation of tryptic peptides from core histones that carry 32P-labelled residual nucleotide. The large number of DNA-histone crosslinks retained indicates that acetylated core histone tails are not totally displaced from the DNA. Changes in the patterns of crosslinked peptides imply a restructuring of hyperacetylated histone-DNA interactions at several points within the nucleosome. This demonstrates that a distinct conformational state is adopted in acetylated nucleosomes, known to be concentrated at transcriptionally active loci. Images PMID:8233821

  14. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair

    PubMed Central

    Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K.; Price, Brendan D.

    2015-01-01

    The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4–Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair. PMID:26034280

  15. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    PubMed

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods. PMID:26656614

  16. The involvement of nucleosomes in Giemsa staining of chromosomes. A new hypothesis on the banding mechanism.

    PubMed

    van Duijn, P; van Prooijen-Knegt, A C; van der Ploeg, M

    1985-01-01

    A new hypothesis is proposed on the involvement of nucleosomes in Giemsa banding of chromosomes. Giemsa staining as well as the concomitant swelling can be explained as an insertion of the triple charged hydrophobic dye complex between the negatively-charged super-coiled helical DNA and the denatured histone cores of the nucleosomes still present in the fixed chromosomes. New cytochemical data and recent results from biochemical literature on nucleosomes are presented in support of this hypothesis. Chromosomes are stained by the Giemsa procedure in a purple (magenta) colour. Giemsa staining of DNA and histone (isolated or in a simple mixture) in model experiments results in different colours, indicating that a higher order configuration of these chromosomal components lies at the basis of the Giemsa method. Cytophotometry of Giemsa dye absorbance of chromosomes shows that the banding in the case of saline pretreatment is due to a relative absence of the complex in the faintly coloured bands (interbands). Pretreatment with trypsin results in an increase in Giemsa dye uptake in the stained bands. Cytophotometric measurements of free phosphate groups before and after pretreatment with saline, reveal a blocking of about half of the free phosphate groups indicating that a substantial number of free amino groups is still present in the fixed chromosomes. Glutaraldehyde treatment inhibited Giemsa-banding irreversibly while the formaldehyde-induced disappearance of the bands could be restored by a washing procedure. These results correlate with those of biochemical nucleosome studies using the same aldehydes. Based on these findings and on the known properties of nucleosomes, a mechanism is proposed that explains the collapse of the chromosome structure when fixed chromosomes are transferred to aqueous buffer solutions. During homogeneous Giemsa staining reswelling of the unpretreated chromosome is explained by insertion of the hydrophobic Giemsa complex between the

  17. Remodeling and Shuttling

    PubMed Central

    Rodrigueza, Wendi V.; Williams, Kevin Jon; Rothblat, George H.; Phillips, Michael C.

    2016-01-01

    In normal physiology, cells are exposed to cholesterol acceptors of different sizes simultaneously. The current study examined the possible interactions between two different classes of acceptors, one large (large unilamellar phospholipid vesicles, LUVs) and one small (HDL or other small acceptors), added separately or in combination to Fu5AH rat hepatoma cells. During a 24-hour incubation, LUVs of palmitoyl-oleoyl phosphatidylcholine at 1 mg phospholipid (PL) per milliliter extracted ≈20% of cellular unesterified cholesterol (UC) label and mass in a slow, continuous fashion (half-time [t½] for UC efflux was ≈50 hours) and human HDL3 at 25 μg PL per milliliter extracted ≈15% cellular UC label with no change in cellular cholesterol mass (t½ of ≈8 hours). In contrast, the combination of LUVs and HDL3 extracted over 90% of UC label (t½ of ≈4 hours) and ≈50% of the UC mass, indicating synergy. To explain this synergy, specific particle interactions were examined, namely, remodeling, in which the two acceptors alter each other’s composition and thus the ability to mobilize cellular cholesterol, and shuttling, in which the small acceptor ferries cholesterol from cells to the large acceptor. To examine remodeling, LUVs and HDL were coincubated and reisolated before application to cells. This HDL became UC depleted, PL enriched, and lost a small amount of apolipoprotein A-I. Compared with equivalent numbers of control HDL particles, remodeled HDL caused faster efflux (t½ ≈4 hours) and exhibited a greater capacity to sequester cellular cholesterol over 24 hours (≈38% versus ≈15% for control HDL), consistent with their enrichment in PL. Remodeled LUVs still extracted ≈20% of cellular UC. Thus, remodeling accounted for some but not all of the synergy between LUVs and HDL. To examine shuttling, several approaches were used. First, reisolation of particles after an 8-hour exposure to cells revealed that HDL contained very little of the cellular UC

  18. Sequence structure of Lowary/Widom clones forming strong nucleosomes.

    PubMed

    Trifonov, Edward N

    2016-04-01

    Lowary and Widom selected from random sequences those which form exceptionally stable nucleosomes, including clone 601, the current champion of strong nucleosome (SN) sequences. This unique sequence database (LW sequences) carries sequence elements which confer stability on the nucleosomes formed on the sequences, and, thus, may serve as source of information on the structure of "ideal" or close to ideal nucleosome DNA sequence. An important clue is also provided by crystallographic study of Vasudevan and coauthors on clone 601 nucleosomes. It demonstrated that YR·YR dinucleotide stacks (primarily TA·TA) follow one another at distances 10 or 11 bases or multiples thereof, such that they all are located on the interface between DNA and histone octamer. Combining this important information with alignment of the YR-containing 10-mers and 11-mers from LW sequences, the bendability matrices of the stable nucleosome DNA are derived. The matrices suggest that the periodically repeated TA (YR), RR, and YY dinucleotides are the main sequence features of the SNs. This consensus coincides with the one for recently discovered SNs with visibly periodic DNA sequences. Thus, the experimentally observed stable LW nucleosomes and SNs derived computationally appear to represent the same entity - exceptionally stable SNs. PMID:26208855

  19. Predicting Nucleosome Positioning Based on Geometrically Transformed Tsallis Entropy

    PubMed Central

    Wu, Jing; Zhang, Yusen; Mu, Zengchao

    2014-01-01

    As the fundamental unit of eukaryotic chromatin structure, nucleosome plays critical roles in gene expression and regulation by controlling physical access to transcription factors. In this paper, based on the geometrically transformed Tsallis entropy and two index-vectors, a valid nucleosome positioning information model is developed to describe the distribution of A/T-riched and G/C-riched dimeric and trimeric motifs along the DNA duplex. When applied to train the support vector machine, the model achieves high AUCs across five organisms, which have significantly outperformed the previous studies. Besides, we adopt the concept of relative distance to describe the probability of arbitrary DNA sequence covered by nucleosome. Thus, the average nucleosome occupancy profile over the S.cerevisiae genome is calculated. With our peak detection model, the isolated nucleosomes along genome sequence are located. When compared with some published results, it shows that our model is effective for nucleosome positioning. The index-vector component is identified to be an important influencing factor of nucleosome organizations. PMID:25380134

  20. ACF chromatin remodeling complex mediates stress–induced depressive–like behavior

    PubMed Central

    Sun, HaoSheng; Damez–Werno, Diane M.; Scobie, Kimberly N.; Shao, Ning–Yi; Dias, Caroline; Rabkin, Jacqui; Koo, Ja Wook; Korb, Erica; Bagot, Rosemary C.; Ahn, Francisca H.; Cahill, Michael E.; Labonté, Benoit; Mouzon, Ezekiell; Heller, Elizabeth A.; Cates, Hannah; Golden, Sam A; Gleason, Kelly; Russo, Scott J; Andrews, Simon; Neve, Rachael; Kennedy, Pamela J.; Maze, Ian; Dietz, David M.; Allis, C. David; Turecki, Gustavo; Varga–Weisz, Patrick; Tamminga, Carol; Shen, Li; Nestler, Eric J.

    2015-01-01

    Improved treatment for major depressive disorder (MDD) remains elusive due to limited understanding of its underlying biological mechanisms. Stress–induced maladaptive transcriptional regulation within limbic neural circuits likely contributes to the development of MDD, possibly through epigenetic factors that regulate chromatin structure. We establish that persistent upregulation of the ACF ATP–dependent chromatin remodeling complex, occurring in the nucleus accumbens of stress–susceptible mice and depressed humans, is necessary for stress–induced depressive–like behaviors. Altered ACF binding after chronic stress is correlated with altered nucleosome positioning, particularly around the transcription start sites of affected genes. These alterations in ACF binding and nucleosome positioning are associated with repressed expression of genes implicated in susceptibility to stress. Together, we identify the ACF chromatin remodeling complex as a critical component in the development of susceptibility to depression and in regulating stress–related behaviors. PMID:26390241

  1. Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery.

    PubMed

    Moshkin, Yuri M; Armstrong, Jennifer A; Maeda, Robert K; Tamkun, John W; Verrijzer, Peter; Kennison, James A; Karch, Francois

    2002-10-15

    De novo chromatin assembly into regularly spaced nucleosomal arrays is essential for eukaryotic genome maintenance and inheritance. The Anti-Silencing Function 1 protein (ASF1) has been shown to be a histone chaperone, participating in DNA-replication-coupled nucleosome assembly. We show that mutations in the Drosophila asf1 gene derepress silencing at heterochromatin and that the ASF1 protein has a cell cycle-specific nuclear and cytoplasmic localization. Furthermore, using both genetic and biochemical methods, we demonstrate that ASF1 interacts with the Brahma (SWI/SNF) chromatin-remodelling complex. These findings suggest that ASF1 plays a crucial role in both chromatin assembly and SWI/SNF-mediated chromatin remodelling. PMID:12381660

  2. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation

    PubMed Central

    Cauchy, Pierre; Maqbool, Muhammad A.; Zacarias-Cabeza, Joaquin; Vanhille, Laurent; Koch, Frederic; Fenouil, Romain; Gut, Marta; Gut, Ivo; Santana, Maria A.; Griffon, Aurélien; Imbert, Jean; Moraes-Cabé, Carolina; Bories, Jean-Christophe; Ferrier, Pierre; Spicuglia, Salvatore; Andrau, Jean-Christophe

    2016-01-01

    Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4−/CD8− double negative (DN) to CD4+/CD8+ double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1−/− thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity. PMID:26673693

  3. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation.

    PubMed

    Cauchy, Pierre; Maqbool, Muhammad A; Zacarias-Cabeza, Joaquin; Vanhille, Laurent; Koch, Frederic; Fenouil, Romain; Gut, Marta; Gut, Ivo; Santana, Maria A; Griffon, Aurélien; Imbert, Jean; Moraes-Cabé, Carolina; Bories, Jean-Christophe; Ferrier, Pierre; Spicuglia, Salvatore; Andrau, Jean-Christophe

    2016-05-01

    Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4(-)/CD8(-) double negative (DN) to CD4(+)/CD8(+) double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1(-/-) thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity. PMID:26673693

  4. An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling.

    PubMed

    Tarazona, Pablo; Feussner, Kirstin; Feussner, Ivo

    2015-11-01

    Within the lipidome of plants a few bulk molecular species hamper the detection of the rest, which are present at relatively low levels. In addition, low-abundance species are often masked by numerous isobaric interferences, such as those caused by isoelemental species and isotopologues. This scenario not only means that minor species are underrepresented, but also leads to potential misidentifications and limits the structural information gathered by lipidomics approaches. In order to overcome these limitations we have developed a multiplexed liquid chromatography-mass spectrometry lipidomics platform able to achieve an enhanced coverage of plant lipidomes. The platform is based on a single extraction step followed by a series of ultra-performance liquid chromatography separations. Post-column flow is then directed to both a triple quadrupole analyzer for targeted profiling and a time-of-flight analyzer for accurate mass analysis. As a proof of concept, plants were subjected to cold or drought, which are known to trigger widespread remodeling events in plant cell membranes. Analysis of the leaf lipidome yielded 393 molecular species within 23 different lipid classes. This enhanced coverage allowed us to identify lipid molecular species and even classes that are altered upon stress, allowing hypotheses on role of glycosylinositolphosphoceramides (GIPC), steryl glycosides (SG) and acylated steryl glycosides (ASG) in drought stress to be addressed and confirming the findings from numerous previous studies with a single, wide-ranging lipidomics approach. This extended our knowledge on membrane remodeling during the drought response, integrating sphingolipids and sterol lipids into the current glycerolipid-based model. PMID:26340975

  5. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  6. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    PubMed Central

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735

  7. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  8. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    SciTech Connect

    Persson, Jenna; Ekwall, Karl

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  9. Single-molecule decoding of combinatorially modified nucleosomes.

    PubMed

    Shema, Efrat; Jones, Daniel; Shoresh, Noam; Donohue, Laura; Ram, Oren; Bernstein, Bradley E

    2016-05-01

    Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation. PMID:27151869

  10. Histone octamer acetylation affects the free energy of nucleosome formation

    NASA Astrophysics Data System (ADS)

    Mooney, Alex; Manohar, Mridula; Edon, Annick; Nakkula, Robin; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Nucleosomes, histone octamer-DNA complexes, form the fundamental repeating units of eukaryotic chromatin. Numerous post-translational modifications of histone octamers are found in vivo and are known to play roles in gene regulation and DNA repair, but the molecular functions of these modifications are not well understood. In this study we consider the effects of acetylating histone protein H3 residues Lys^115 and Lys^122. These modifications reduce the positive surface charge of the histone octamer at contact points with the negatively charged DNA phosphate backbone and add steric bulk in the dyad region. We report results from competitive reconstitutions that show the free energy of nucleosome formation between wild-type and modified histone octamer binding to a strong nucleosome positioning sequence is reduced. These results suggest that these modifications may be involved in nucleosome assembly and disassembly.

  11. Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach

    PubMed Central

    Eslami-Mossallam, Behrouz; Schram, Raoul D.; Tompitak, Marco; van Noort, John; Schiessel, Helmut

    2016-01-01

    Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function. PMID:27272176

  12. Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach.

    PubMed

    Eslami-Mossallam, Behrouz; Schram, Raoul D; Tompitak, Marco; van Noort, John; Schiessel, Helmut

    2016-01-01

    Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function. PMID:27272176

  13. Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility

    PubMed Central

    Ngo, Thuy T. M.; Zhang, Qiucen; Zhou, Ruobo

    2015-01-01

    Summary Dynamics of the nucleosome and exposure of nucleosomal DNA play key roles in many nuclear processes but local dynamics of the nucleosome and its modulation by DNA sequence are poorly understood. Using single-molecule assays we observed that the nucleosome can unwrap asymmetrically and directionally under force. The relative DNA flexibility of the inner quarters of nucleosomal DNA controls the unwrapping direction such that the nucleosome unwraps from the stiffer side. If the DNA flexibility is similar on two sides, it stochastically unwraps from either side. The two ends of the nucleosome are orchestrated such that the opening of one end helps to stabilize the other end, providing a mechanism to amplify even small differences in flexibility to a large asymmetry in nucleosome stability. Our discovery of DNA flexibility as a critical factor for nucleosome dynamics and mechanical stability suggests a novel mechanism of gene regulation by DNA sequence and modifications. PMID:25768909

  14. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility.

    PubMed

    Ngo, Thuy T M; Zhang, Qiucen; Zhou, Ruobo; Yodh, Jaya G; Ha, Taekjip

    2015-03-12

    Dynamics of the nucleosome and exposure of nucleosomal DNA play key roles in many nuclear processes, but local dynamics of the nucleosome and its modulation by DNA sequence are poorly understood. Using single-molecule assays, we observed that the nucleosome can unwrap asymmetrically and directionally under force. The relative DNA flexibility of the inner quarters of nucleosomal DNA controls the unwrapping direction such that the nucleosome unwraps from the stiffer side. If the DNA flexibility is similar on two sides, it stochastically unwraps from either side. The two ends of the nucleosome are orchestrated such that the opening of one end helps to stabilize the other end, providing a mechanism to amplify even small differences in flexibility to a large asymmetry in nucleosome stability. Our discovery of DNA flexibility as a critical factor for nucleosome dynamics and mechanical stability suggests a novel mechanism of gene regulation by DNA sequence and modifications. PMID:25768909

  15. Gene Expression Profiles of Peripheral Blood Mononuclear Cells Reveal Transcriptional Signatures as Novel Biomarkers for Cardiac Remodeling in Rats with Aldosteronism and Hypertensive Heart Disease

    PubMed Central

    Gerling, Ivan C.; Ahokas, Robert A.; Kamalov, German; Zhao, Wenyuan; Bhattacharya, Syamal K.; Sun, Yao; Weber, Karl T.

    2013-01-01

    Objectives In searching for a noninvasive surrogate tissue having mimicry with the prooxidant/-proinflammatory hypertensive heart disease (HHD) phenotype, we turned to peripheral blood mononuclear cells (PBMC). We tested whether iterations in [Ca2+]i, [Zn2+]i and oxidative stress in cardiomyocytes and PBMC would complement each other eliciting similar shifts in gene expression profiles in these tissues demonstrable during preclinical (wk 1) and pathologic (wk 4) stages of aldosterone/salt treatment (ALDOST). Background Inappropriate neurohormonal activation contributes to pathologic remodeling of myocardium in HHD associated with aldosteronism. In rats receiving chronic ALDOST, evidence of reparative fibrosis replacing necrotic cardiomyocytes and coronary vasculopathy appears at wk 4 associated with the induction of oxidative stress by mitochondria that overwhelms endogenous, largely Zn2+-based, antioxidant defenses. Biomarker-guided prediction of risk prior to the appearance of cardiac pathology would prove invaluable. Methods In PBMC and cardiomyocytes, quantitation of cytoplasmic free Ca2+ and Zn2+, H2O2 and 8-iosprostane levels, as well as isolation of RNA and gene expression, together with statistical and clustering analyses, and confirmation of genes by in situ hybridization and RT-PCR, were performed. Results Compared to controls, at wk 1 and 4 ALDOST, we found comparable: increments in [Ca2+]i, [Zn2+]i and 8-isoprotane coupled to increased H2O2 production in cardiac mitochondria and PBMC, together with the common networks of expression profiles dominated by genes involved in oxidative stress, inflammation and repair. These included three central Ingenuity pathway-linked genes: p38MAPK, a stress-responsive protein; NFκB, a redox-sensitive transcription factor and a proinflammatory cascade it regulates; and TGF-β1, a fibrogenic cytokine involved in tissue repair. Conclusions Significant overlapping demonstrated in the molecular mimicry of PBMC and

  16. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae

    PubMed Central

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-01-01

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics. PMID:26498326

  17. Comprehensive nucleosome mapping of the human genome in cancer progression

    PubMed Central

    Druliner, Brooke R.; Vera, Daniel; Johnson, Ruth; Ruan, Xiaoyang; Apone, Lynn M.; Dimalanta, Eileen T.; Stewart, Fiona J.; Boardman, Lisa; Dennis, Jonathan H.

    2016-01-01

    Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation. PMID:26735342

  18. Nucleosomes determine their own patch size in base excision repair

    PubMed Central

    Meas, Rithy; Smerdon, Michael J.

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2–12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in ‘designed’ nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  19. Nucleosomes determine their own patch size in base excision repair.

    PubMed

    Meas, Rithy; Smerdon, Michael J

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2-12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in 'designed' nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  20. The universality of nucleosome organization: from yeast to human

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    The basic units of DNA packaging are called nucleosomes. Their locations on the chromosomes play an essential role in gene regulation. We study nucleosome positioning in yeast, fly, mouse, and human, and build biophysical models in order to explain the genome-wide nucleosome organization. We show that DNA sequence alone is not able to generate the phased arrays of nucleosomes observed in vivo near the transcription start sites. We discuss simple models which can account for the formation of nucleosome depleted regions and nucleosome phasing at the gene promoters. We show that the same principles apply to different organisms. References: [1] RV Chereji, D Tolkunov, G Locke, AV Morozov - Phys. Rev. E 83, 050903 (2011) [2] RV Chereji, AV Morozov - J. Stat. Phys. 144, 379 (2011) [3] RV Chereji, AV Morozov - Proc. Natl. Acad. Sci. U.S.A. 111, 5236 (2014) [4] RV Chereji, T-W Kan, et al. - Nucleic Acids Res. (2015) doi: 10.1093/nar/gkv978 [5] RV Chereji, AV Morozov - Brief. Funct. Genomics 14, 50 (2015) [6] HA Cole, J Ocampo, JR Iben, RV Chereji, DJ Clark - Nucleic Acids Res. 42, 12512 (2014) [7] D Ganguli, RV Chereji, J Iben, HA Cole, DJ Clark - Genome Res. 24, 1637 (2014)

  1. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  2. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription.

    PubMed

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  3. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation.

    PubMed

    Klein, Brianna J; Muthurajan, Uma M; Lalonde, Marie-Eve; Gibson, Matthew D; Andrews, Forest H; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  4. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation

    PubMed Central

    Klein, Brianna J.; Muthurajan, Uma M.; Lalonde, Marie-Eve; Gibson, Matthew D.; Andrews, Forest H.; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G.; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G.

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  5. In vitro chromatin assembly of the HIV-1 promoter. ATP-dependent polar repositioning of nucleosomes by Sp1 and NFkappaB.

    PubMed

    Widlak, P; Gaynor, R B; Garrard, W T

    1997-07-11

    Nuclease hypersensitive sites exist in vivo in the chromatin of the integrated human immunodeficiency virus (HIV)-1 proviral genome, in the 5'-long terminal repeat (LTR) within the promoter/enhancer region near Sp1 and NFkappaB binding sites. Previous studies from the Kadonaga and Jones laboratories have shown that Sp1 and NFkappaB can establish hypersensitive sites in a truncated form of this LTR when added before in vitro chromatin assembly with Drosophila extracts, thus facilitating subsequent transcriptional activation of a linked reporter gene upon the association of additional factors (Pazin, M. J., Sheridan, P. L., Cannon, K., Cao, Z., Keck, J. G., Kadanaga, J. T., and Jones, K. A. (1996) Genes & Dev. 10, 37-49). Here we assess the role of a full-length LTR and 1 kilobase pair of downstream flanking HIV sequences in chromatin remodeling when these transcription factors are added after chromatin assembly. Using Xenopus laevis oocyte extracts to assemble chromatin in vitro, we have confirmed that Sp1 and NFkappaB can indeed induce sites hypersensitive to DNase I, micrococcal nuclease, or restriction enzymes on either side of factor binding sites in chromatin but not naked DNA. We extend these earlier studies by demonstrating that the process is ATP-dependent when the factors are added after chromatin assembly and that histone H1, AP1, TBP, or Tat had no effect on hypersensitive site formation. Furthermore, we have found that nucleosomes upstream of NFkappaB sites are rotationally positioned prior to factor binding and that their translational frame is registered after binding NFkappaB. On the other hand, binding of Sp1 positions adjacent downstream nucleosome(s). We term this polar repositioning because each factor aligns nucleosomes only on one side of its binding sites. Mutational analysis and oligonucleotide competition each demonstrated that this remodeling required Sp1 and NFkappaB binding sites. PMID:9211915

  6. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression

    PubMed Central

    2011-01-01

    Background As cell-free circulating DNA exists predominantly as mono- and oligonucleosomes, the focus of the current study was to examine the interplay of circulating nucleosomes, DNA, proteases and caspases in blood of patients with benign and malignant breast diseases. Methods The concentrations of cell-free DNA and nucleosomes as well as the protease and caspase activities were measured in serum of patients with benign breast disease (n = 20), primary breast cancer (M0, n = 31), metastatic breast cancer (M1, n = 32), and healthy individuals (n = 28) by PicoGreen, Cell Death Detection ELISA, Protease Fluorescent Detection Kit and Caspase-Glo®3/7 Assay, respectively. Results Patients with benign and malignant tumors had significantly higher levels of circulating nucleic acids in their blood than healthy individuals (p = 0.001, p = 0.0001), whereas these levels could not discriminate between benign and malignant lesions. Our analyses of all serum samples revealed significant correlations of circulating nucleosome with DNA concentrations (p = 0.001), nucleosome concentrations with caspase activities (p = 0.008), and caspase with protease activities (p = 0.0001). High serum levels of protease and caspase activities associated with advanced tumor stages (p = 0.009). Patients with lymph node-positive breast cancer had significantly higher nucleosome levels in their blood than node-negative patients (p = 0.004). The presence of distant metastases associated with a significant increase in serum nucleosome (p = 0.01) and DNA levels (p = 0.04), and protease activities (p = 0.008). Conclusion Our findings demonstrate that high circulating nucleic acid concentrations in blood are no indicators of a malignant breast tumor. However, the observed changes in apoptosis-related deregulation of proteolytic activities along with the elevated serum levels of nucleosomes and DNA in blood are linked to breast cancer progression. PMID:21211028

  7. The uni chromosome of Chlamydomonas: histone genes and nucleosome structure.

    PubMed

    Walther, Z; Hall, J L

    1995-09-25

    The uni linkage group (ULG) of Chlamydomonas reinhardtii contains many genes involved in the basal body-flagellar system. Recent evidence suggests that the corresponding uni chromosome is located in close proximity to the basal body complex. In the course of studies into its molecular organization, we have found a cluster of four histone genes on the ULG. The genes are arranged as divergently-transcribed pairs: H3-H4 and H2B-H2A. Genomic sequencing reveals that these genes lack introns and contain characteristic 3' palindromes similar to those of animals. The predicted amino acid sequences are highly conserved across species, with greatest similarities to the histone genes of Volvox. Southern analysis shows that each histone gene is present in 15-20 copies in Chlamydomonas and suggests a dispersed genomic organization. Northern analysis of mitotically-synchronized cells shows that, like the replication-dependent histones of higher eukaryotes, Chlamydomonas histone genes are expressed during S-phase. Using a gene-specific probe on Northern blots, we provide evidence that the ULG H4 gene is regulated in the same manner as other Chlamydomonas histone genes. Finally, micrococcal nuclease protection experiments show that the uni chromosome itself associates with histone proteins and displays a conventional nucleosomal banding pattern. PMID:7479007

  8. Electrostatic Analysis of The Nucleosome Stability

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Adams, David; Onufriev, Alexey

    2007-03-01

    The wrapping and unwrapping of the DNA around the histone octomer of a nucleosome core particle (NCP) plays a vital role in many cellular processes, such as transcription, replication, and cell differentiation. The exact mechanisms underlying the associated transitions in the NCP are still not well understood. We present a simple, two-state electrostatic model of the NCP that agrees with a number of experiments and suggests mechanisms that could initiate DNA unwrapping in vivo. We present and discuss a 2D phase diagram of the system as a function of ambient salt concentration and the net charge of the histone octomer. The model also predicts the free energy of a NCP at physiological conditions. The stability of the system is strongly dependent on the charge of the histone octomer, hinting at possible modes of control in in vivo (acetylation and/or pH changes). The model permits analytical solutions in the low and high salt limits. The analysis of these solutions suggests simple physical mechanisms behind the observed folding and unfolding behavior at environmental solvent conditions.

  9. Measuring genome-wide nucleosome turnover using CATCH-IT.

    PubMed

    Teves, Sheila S; Deal, Roger B; Henikoff, Steven

    2012-01-01

    The dynamic interplay between DNA-binding proteins and nucleosomes underlies essential nuclear processes such as transcription, replication, and DNA repair. Manifestations of this interplay include the assembly, eviction, and replacement of nucleosomes. Hence, measurements of nucleosome turnover kinetics can lead to insights into the regulation of dynamic chromatin processes. In this chapter, we describe a genome-wide method for measuring nucleosome turnover that uses metabolic labeling followed by capture of newly synthesized histones, which we have termed Covalent Attachment of Tagged Histones to Capture and Identify Turnover (CATCH-IT). Although CATCH-IT can be used with any genome-wide mapping procedure, high-resolution profiling is attainable using paired-end sequencing of native chromatin. Our protocol also includes an efficient Solexa DNA sequencing library preparation protocol that can be used for single base-pair resolution mapping of both nucleosome and subnucleosomal particles. We not only describe the use of these protocols in the context of a Drosophila cell line but also provide the necessary changes for adaptation to other model systems. PMID:22929769

  10. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis

    PubMed Central

    Lu, Lin-Yu; Wu, Jiaxue; Ye, Lin; Gavrilina, Galina B.; Saunders, Thomas L.; Yu, Xiaochun

    2010-01-01

    Summary During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at post-meiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI), but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal. PMID:20153262

  11. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini.

    PubMed

    Panchenko, Tanya; Sorensen, Troy C; Woodcock, Christopher L; Kan, Zhong-Yuan; Wood, Stacey; Resch, Michael G; Luger, Karolin; Englander, S Walter; Hansen, Jeffrey C; Black, Ben E

    2011-10-01

    Centromere protein A (CENP-A) is a histone H3 variant that marks centromere location on the chromosome. To study the subunit structure and folding of human CENP-A-containing chromatin, we generated a set of nucleosomal arrays with canonical core histones and another set with CENP-A substituted for H3. At the level of quaternary structure and assembly, we find that CENP-A arrays are composed of octameric nucleosomes that assemble in a stepwise mechanism, recapitulating conventional array assembly with canonical histones. At intermediate structural resolution, we find that CENP-A-containing arrays are globally condensed relative to arrays with the canonical histones. At high structural resolution, using hydrogen-deuterium exchange coupled to mass spectrometry (H/DX-MS), we find that the DNA superhelical termini within each nucleosome are loosely connected to CENP-A, and we identify the key amino acid substitution that is largely responsible for this behavior. Also the C terminus of histone H2A undergoes rapid hydrogen exchange relative to canonical arrays and does so in a manner that is independent of nucleosomal array folding. These findings have implications for understanding CENP-A-containing nucleosome structure and higher-order chromatin folding at the centromere. PMID:21949362

  12. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes

    PubMed Central

    Grigoryev, Sergei A.; Bascom, Gavin; Buckwalter, Jenna M.; Schubert, Michael B.; Woodcock, Christopher L.; Schlick, Tamar

    2016-01-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  13. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.

    PubMed

    Grigoryev, Sergei A; Bascom, Gavin; Buckwalter, Jenna M; Schubert, Michael B; Woodcock, Christopher L; Schlick, Tamar

    2016-02-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  14. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-01-16

    An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies. PMID:26699921

  15. Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair

    PubMed Central

    Xu, Ye; Ayrapetov, Marina K.; Xu, Chang; Gursoy-Yuzugullu, Ozge; Hu, Yiduo; Price, Brendan D.

    2012-01-01

    Chromatin remodeling during DNA double-strand break (DSB) repair is required to facilitate access to and repair of DSBs. This remodeling requires increased acetylation of histones and a shift in nucleosome organization to create open, relaxed chromatin domains. However, the underlying mechanism driving changes in nucleosome structure at DSBs is poorly defined. Here, we demonstrate that histone H2A.Z is exchanged onto nucleosomes at DSBs by the p400 remodeling ATPase. H2A.Z exchange at DSBs shifts the chromatin to an open conformation, and is required for acetylation and ubiquitination of histones and for loading of the brca1 complex. H2A.Z exchange also restricts single-stranded DNA production by nucleases and is required for loading of the Ku70/80 DSB repair protein. H2A.Z exchange therefore promotes specific patterns of histone modification and reorganization of the chromatin architecture, leading to the assembly of a chromatin template which is an efficient substrate for the DSB repair machinery. PMID:23122415

  16. Nucleosome disassembly during human non-homologous end joining followed by concerted HIRA- and CAF-1-dependent reassembly

    PubMed Central

    Li, Xuan; Tyler, Jessica K

    2016-01-01

    The cell achieves DNA double-strand break (DSB) repair in the context of chromatin structure. However, the mechanisms used to expose DSBs to the repair machinery and to restore the chromatin organization after repair remain elusive. Here we show that induction of a DSB in human cells causes local nucleosome disassembly, apparently independently from DNA end resection. This efficient removal of histone H3 from the genome during non-homologous end joining was promoted by both ATM and the ATP-dependent nucleosome remodeler INO80. Chromatin reassembly during DSB repair was dependent on the HIRA histone chaperone that is specific to the replication-independent histone variant H3.3 and on CAF-1 that is specific to the replication-dependent canonical histones H3.1/H3.2. Our data suggest that the epigenetic information is re-established after DSB repair by the concerted and interdependent action of replication-independent and replication-dependent chromatin assembly pathways. DOI: http://dx.doi.org/10.7554/eLife.15129.001 PMID:27269284

  17. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects

    PubMed Central

    Hildebrand, Erica M.; Biggins, Sue

    2016-01-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-ACse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-ACse4 for degradation. To identify additional mechanisms that prevent CENP-ACse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-ACse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-ACse4 is enriched at promoters that contain histone H2A.ZHtz1 nucleosomes, but that H2A.ZHtz1 is not required for CENP-ACse4 mislocalization. Instead, the INO80 complex, which removes H2A.ZHtz1 from nucleosomes, promotes the ectopic deposition of CENP-ACse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-ACse4. The down-regulated genes are enriched for CENP-ACse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. PMID:26982580

  18. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects.

    PubMed

    Hildebrand, Erica M; Biggins, Sue

    2016-03-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. PMID:26982580

  19. Altered Nucleosome Positioning at the Transcription Start Site and Deficient Transcriptional Initiation in Friedreich Ataxia*

    PubMed Central

    Chutake, Yogesh K.; Costello, Whitney N.; Lam, Christina; Bidichandani, Sanjay I.

    2014-01-01

    Most individuals with Friedreich ataxia (FRDA) are homozygous for an expanded GAA triplet repeat (GAA-TR) mutation in intron 1 of the FXN gene, which results in deficiency of FXN transcript. Consistent with the expanded GAA-TR sequence as a cause of variegated gene silencing, evidence for heterochromatin has been detected in intron 1 in the immediate vicinity of the expanded GAA-TR mutation in FRDA. Transcriptional deficiency in FRDA is thought to result from deficient elongation through the expanded GAA-TR sequence because of repeat-proximal heterochromatin and abnormal DNA structures adopted by the expanded repeat. There is also evidence for deficient transcriptional initiation in FRDA, but its relationship to the expanded GAA-TR mutation remains unclear. We show that repressive chromatin extends from the expanded GAA-TR in intron 1 to the upstream regions of the FXN gene, involving the FXN transcriptional start site. Using a chromatin accessibility assay and a high-resolution nucleosome occupancy assay, we found that the major FXN transcriptional start site, which is normally in a nucleosome-depleted region, is rendered inaccessible by altered nucleosome positioning in FRDA. Consistent with the altered epigenetic landscape the FXN gene promoter, a typical CpG island promoter, was found to be in a transcriptionally non-permissive state in FRDA. Both metabolic labeling of nascent transcripts and an unbiased whole transcriptome analysis revealed a severe deficiency of transcriptional initiation in FRDA. Deficient transcriptional initiation, and not elongation, is the major cause of FXN transcriptional deficiency in FRDA, and it is related to the spread of repressive chromatin from the expanded GAA-TR mutation. PMID:24737321

  20. Sequence-dependent Kink-and-Slide Deformations of Nucleosomal DNA Facilitated by Histone Arginines Bound in the Minor Groove

    PubMed Central

    Wang, Difei; Ulyanov, Nikolai B.; Zhurkin, Victor B.

    2010-01-01

    -based elastic energy functions, and the current one based on all-atom calculations. Our findings are useful for refining the score functions for the prediction of nucleosome positioning. In addition, the reverse bending behavior of the YR and RY steps revealed under the Kink-and-Slide constraint is important for understanding the molecular mechanisms of binding transcription factors (such as p53) to DNA exposed on the surface of nucleosome. PMID:20232937

  1. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. PMID:25296770

  2. Promoter nucleosome dynamics regulated by signalling through the CTD code.

    PubMed

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. PMID:26098123

  3. Promoter nucleosome dynamics regulated by signalling through the CTD code

    PubMed Central

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI: http://dx.doi.org/10.7554/eLife.09008.001 PMID:26098123

  4. Nucleosome interactions in chromatin: fiber stiffening and hairpin formation.

    PubMed

    Mergell, Boris; Everaers, Ralf; Schiessel, Helmut

    2004-07-01

    We use Monte Carlo simulations to study attractive and excluded volume interactions between nucleosome core particles in 30-nm chromatin fibers. The nucleosomes are treated as disklike objects having an excluded volume and short-range attraction modeled by a variant of the Gay-Berne potential. The nucleosomes are connected via bendable and twistable linker DNA in the crossed linker fashion. We investigate the influence of the nucleosomal excluded volume on the stiffness of the fiber. For parameter values that correspond to chicken erythrocyte chromatin, we find that the persistence length is governed to a large extent by that excluded volume whereas the soft linker backbone elasticity plays only a minor role. We further find that internucleosomal attraction can induce the formation of hairpin configurations. Tension-induced opening of such configurations into straight fibers manifests itself in a quasiplateau in the force-extension curve that resembles results from recent micromanipulation experiments. Such hairpins may play a role in the formation of higher-order structures in chromosomes like chromonema fibers. PMID:15324096

  5. Effect of the Spiroiminodihydantoin Lesion on Nucleosome Stability and Positioning.

    PubMed

    Norabuena, Erika M; Barnes Williams, Sara; Klureza, Margaret A; Goehring, Liana J; Gruessner, Brian; Radhakrishnan, Mala L; Jamieson, Elizabeth R; Núñez, Megan E

    2016-04-26

    DNA is constantly under attack by oxidants, generating a variety of potentially mutagenic covalently modified species, including oxidized guanine base products. One such product is spiroiminodihydantoin (Sp), a chiral, propeller-shaped lesion that strongly destabilizes the DNA helix in its vicinity. Despite its unusual shape and thermodynamic effect on double-stranded DNA structure, DNA duplexes containing the Sp lesion form stable nucleosomes upon being incubated with histone octamers. Indeed, among six different combinations of lesion location and stereochemistry, only two duplexes display a diminished ability to form nucleosomes, and these only by ∼25%; the other four are statistically indistinguishable from the control. Nonetheless, kinetic factors also play a role: when the histone proteins have less time during assembly of the core particle to sample both lesion-containing and normal DNA strands, they are more likely to bind the Sp lesion DNA than during slower assembly processes that better approximate thermodynamic equilibrium. Using DNase I footprinting and molecular modeling, we discovered that the Sp lesion causes only a small perturbation (±1-2 bp) on the translational position of the DNA within the nucleosome. Each diastereomeric pair of lesions has the same effect on nucleosome positioning, but lesions placed at different locations behave differently, illustrating that the location of the lesion and not its shape serves as the primary determinant of the most stable DNA orientation. PMID:27074396

  6. Sequence-dependent nucleosome structural and dynamic polymorphism. Potential involvement of histone H2B N-terminal tail proximal domain.

    PubMed

    Sivolob, Andrei; Lavelle, Christophe; Prunell, Ariel

    2003-02-01

    Relaxation of nucleosomes on an homologous series (pBR) of ca 350-370 bp DNA minicircles originating from plasmid pBR322 was recently used as a tool to study their structure and dynamics. These nucleosomes thermally fluctuated between three distinct DNA conformations within a histone N-terminal tail-modulated equilibrium: one conformation was canonical, with 1.75 turn wrapping and negatively crossed entering and exiting DNAs; another was also "closed", but with these DNAs positively crossed; and the third was "open", with a lower than 1.5 turn wrapping and uncrossed DNAs. In this work, a new minicircle series (5S) of similar size was used, which contained the 5S nucleosome positioning sequence. Results showed that DNA in pBR nucleosomes was untwisted by approximately 0.2 turn relative to 5S nucleosomes, which DNase I footprinting confirmed in revealing a approximately 1 bp untwisting at each of the two dyad-distal sites where H2B N-terminal tails pass between the two gyres. In contrast, both nucleosomes showed untwistings at the dyad-proximal sites, i.e. on the other gyre, which were also observed in the high-resolution crystal structure. 5S nucleosomes also differ with respect to their dynamics: they hardly accessed the positively crossed conformation, but had an easier access to the negatively crossed conformation. Simulation showed that such reverse effects on the conformational free energies could be simply achieved by slightly altering the trajectories of entering and exiting DNAs. We propose that this is accomplished by H2B tail untwisting at the distal sites through action at a distance ( approximately 20 bp) on H3-tail interactions with the small groove at the nucleosome entry-exit. These results may help to gain a first glimpse into the two perhaps most intriguing features of the high-resolution structure: the alignment of the grooves on the two gyres and the passage of H2B and H3 N-terminal tails between them. PMID:12547190

  7. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  8. Arginine-phosphate salt bridges between histones and DNA: Intermolecular actuators that control nucleosome architecture

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.; Li, Yun; Singh, Gautam; Olson, Wilma K.

    2014-10-01

    Structural bioinformatics and van der Waals density functional theory are combined to investigate the mechanochemical impact of a major class of histone-DNA interactions, namely, the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. Principal component analysis reveals that the configurational fluctuations of the sugar-phosphate backbone display sequence-specific directionality and variability, and clustering of nucleosome crystal structures identifies two major salt-bridge configurations: a monodentate form in which the arginine end-group guanidinium only forms one hydrogen bond with the phosphate, and a bidentate form in which it forms two. Density functional theory calculations highlight that the combination of sequence, denticity, and salt-bridge positioning enables the histones to apply a tunable mechanochemical stress to the DNA via precise and specific activation of backbone deformations. The results suggest that selection for specific placements of van der Waals contacts, with high-precision control of the spatial distribution of intermolecular forces, may serve as an underlying evolutionary design principle for the structure and function of nucleosomes, a conjecture that is corroborated by previous experimental studies.

  9. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC

    PubMed Central

    Ouararhni, Khalid; Roulland, Yohan; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-01-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER. PMID:27467129

  10. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC.

    PubMed

    Charles Richard, John Lalith; Shukla, Manu Shubhdarshan; Menoni, Hervé; Ouararhni, Khalid; Lone, Imtiaz Nisar; Roulland, Yohan; Papin, Christophe; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-07-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER. PMID:27467129

  11. Akirin: a context-dependent link between transcription and chromatin remodeling.

    PubMed

    Nowak, Scott J; Baylies, Mary K

    2012-01-01

    Embryonic patterning relies upon an exquisitely timed program of gene regulation. While the regulation of this process via the action of transcription factor networks is well understood, new lines of study have highlighted the importance of a concurrently regulated program of chromatin remodeling during development. Chromatin remodeling refers to the manipulation of the chromatin architecture through rearrangement, repositioning, or restructuring of nucleosomes to either favor or hinder the expression of associated genes. While the role of chromatin remodeling pathways during tumor development and cancer progression are beginning to be clarified, the roles of these pathways in the course of tissue specification, morphogenesis and patterning remains relatively unknown. Further, relatively little is understood as to the mechanism whereby developmentally critical transcription factors coordinate with chromatin remodeling factors to optimize target gene loci for gene expression. Such a mechanism might involve direct transcription factor/chromatin remodeling factor interactions, or could likely be mediated via an unknown intermediary. Our group has identified the relatively unknown protein Akirin as a putative member of this latter group: a secondary cofactor that serves as an interface between a developmentally critical transcription factor and the chromatin remodeling machinery. This role for the Akirin protein suggests a novel regulatory mode for regulating gene expression during development. PMID:23242134

  12. Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair

    PubMed Central

    Klement, Karolin; Luijsterburg, Martijn S.; Pinder, Jordan B.; Cena, Chad S.; Del Nero, Victor; Wintersinger, Christopher M.; Dellaire, Graham; van Attikum, Haico

    2014-01-01

    Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis. This obstruction is alleviated by chromatin relaxation via ATM-dependent KAP-1S824 phosphorylation (pKAP-1) and CHD3.1 dispersal from heterochromatic DSBs; however, how heterochromatin compaction is actually adjusted after CHD3.1 dispersal is unknown. In this paper, we demonstrate that Artemis-dependent DSB repair in heterochromatin requires ISWI (imitation switch)-class ACF1–SNF2H nucleosome remodeling. Compacted chromatin generated by CHD3.1 after DNA replication necessitates ACF1–SNF2H–mediated relaxation for DSB repair. ACF1–SNF2H requires RNF20 to bind heterochromatic DSBs, underlies RNF20-mediated chromatin relaxation, and functions downstream of pKAP-1–mediated CHD3.1 dispersal to enable DSB repair. CHD3.1 and ACF1–SNF2H display counteractive activities but similar histone affinities (via the plant homeodomains of CHD3.1 and ACF1), which we suggest necessitates a two-step dispersal and recruitment system regulating these opposing chromatin remodeling activities during DSB repair. PMID:25533843

  13. Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair.

    PubMed

    Klement, Karolin; Luijsterburg, Martijn S; Pinder, Jordan B; Cena, Chad S; Del Nero, Victor; Wintersinger, Christopher M; Dellaire, Graham; van Attikum, Haico; Goodarzi, Aaron A

    2014-12-22

    Heterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis. This obstruction is alleviated by chromatin relaxation via ATM-dependent KAP-1S824 phosphorylation (pKAP-1) and CHD3.1 dispersal from heterochromatic DSBs; however, how heterochromatin compaction is actually adjusted after CHD3.1 dispersal is unknown. In this paper, we demonstrate that Artemis-dependent DSB repair in heterochromatin requires ISWI (imitation switch)-class ACF1-SNF2H nucleosome remodeling. Compacted chromatin generated by CHD3.1 after DNA replication necessitates ACF1-SNF2H-mediated relaxation for DSB repair. ACF1-SNF2H requires RNF20 to bind heterochromatic DSBs, underlies RNF20-mediated chromatin relaxation, and functions downstream of pKAP-1-mediated CHD3.1 dispersal to enable DSB repair. CHD3.1 and ACF1-SNF2H display counteractive activities but similar histone affinities (via the plant homeodomains of CHD3.1 and ACF1), which we suggest necessitates a two-step dispersal and recruitment system regulating these opposing chromatin remodeling activities during DSB repair. PMID:25533843

  14. Structural mechanics of DNA wrapping in the nucleosome.

    PubMed

    Battistini, Federica; Hunter, Christopher A; Gardiner, Eleanor J; Packer, Martin J

    2010-02-19

    Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597 degrees) in one plane and very little curvature (10 degrees) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30 degrees per helical turn throughout most of the structure but that there are two sharper kinks of 50 degrees at +/-2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500 degrees of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure

  15. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    PubMed

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding. PMID:26314830

  16. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions

    PubMed Central

    Schep, Alicia N.; Buenrostro, Jason D.; Denny, Sarah K.; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J.

    2015-01-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal “fingerprint” as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding. PMID:26314830

  17. The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis

    PubMed Central

    Bottardi, Stefania; Mavoungou, Lionel; Pak, Helen; Daou, Salima; Bourgoin, Vincent; Lakehal, Yahia A.; Affar, El Bachir; Milot, Eric

    2014-01-01

    IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of IkNULL hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation. PMID:25474253

  18. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos.

    PubMed

    McDougall, Melissa Q; Choi, Jaewoo; Stevens, Jan F; Truong, Lisa; Tanguay, Robert L; Traber, Maret G

    2016-08-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E-) or with added α-tocopherol (E+, 500mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E- and E+ embryos. The E- compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E- compared with E+ embryos at 24, 48, 72, and 120hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E- at all time-points. Additionally, H2(18)O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E- compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E- embryos. PMID:26774753

  19. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos

    PubMed Central

    McDougall, Melissa Q.; Choi, Jaewoo; Stevens, Jan F.; Truong, Lisa; Tanguay, Robert L.; Traber, Maret G.

    2016-01-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E−) or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96 h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos. PMID:26774753

  20. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Tolkunov, Denis; Locke, George; Morozov, Alexandre V.

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  1. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    SciTech Connect

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  2. The nature of the interaction of nucleosomes with a eukaryotic RNA polymerase II.

    PubMed Central

    Lilley, D M; Jacobs, M F; Houghton, M

    1979-01-01

    The integrity and stability of nucleosomes under transcription assay conditions has been found to depend on concentration and ionic environment. Rifamycin AF/013, a commonly used inhibitor of initiation, is particularly effective in destabilisation of nucleosomes. Intact nucleosomes are refractory to transcription by wheat RNA polymerase II, the histone core preventing initiation. Template titration suggests that the polymerase can, however, bind to nucleosomes, and a 15--16S complex has been observed on sucrose gradients. DNase I digestion of polymerase-nucleosome incubations indicates that whilst histone is still present in the complex, the nucleosome conformation is altered resulting in enhanced nucleolysis at sites near the DNA centre but reduced overall kinetics of digestion. Images PMID:493150

  3. The structure of nucleosomal core particles within transcribed and repressed gene regions.

    PubMed Central

    Studitsky, V M; Belyavsky, A V; Melnikova, A F; Mirzabekov, A D

    1988-01-01

    The arrangement of histones along DNA in nucleosomal core particles within transcribed heat shock gene (hsp 70) region and repressed insertion within ribosomal genes of Drosophila was analysed by using protein-DNA crosslinking methods combined with hybridization tests. In addition, two-dimensional gel electrophoresis was employed to compare the overall nucleosomal shape and the nucleosomal DNA size. The arrangement of histones along DNA and general compactness of nucleosomes were shown to be rather similar in transcriptionally active and inactive genomic regions. On the other hand, nucleosomes within transcriptionally active chromatin are characterized by a larger size of nucleosomal DNA produced by micrococcal nuclease digestion and some peculiarity in electrophoretic mobility. Images PMID:3144704

  4. Plasticity and epigenetic inheritance of centromere-specific histone H3 (CENP-A)-containing nucleosome positioning in the fission yeast.

    PubMed

    Yao, Jianhui; Liu, Xingkun; Sakuno, Takeshi; Li, Wenzhu; Xi, Yuanxin; Aravamudhan, Pavithra; Joglekar, Ajit; Li, Wei; Watanabe, Yoshinori; He, Xiangwei

    2013-06-28

    Nucleosomes containing the specific histone H3 variant CENP-A mark the centromere locus on each chromatin and initiate kinetochore assembly. For the common type of regional centromeres, little is known in molecular detail of centromeric chromatin organization, its propagation through cell division, and how distinct organization patterns may facilitate kinetochore assembly. Here, we show that in the fission yeast S. pombe, a relatively small number of CENP-A/Cnp1 nucleosomes are found within the centromeric core and that their positioning relative to underlying DNA varies among genetically homogenous cells. Consistent with the flexible positioning of Cnp1 nucleosomes, a large portion of the endogenous centromere is dispensable for its essential activity in mediating chromosome segregation. We present biochemical evidence that Cnp1 occupancy directly correlates with silencing of the underlying reporter genes. Furthermore, using a newly developed pedigree analysis assay, we demonstrated the epigenetic inheritance of Cnp1 positioning and quantified the rate of occasional repositioning of Cnp1 nucleosomes throughout cell generations. Together, our results reveal the plasticity and the epigenetically inheritable nature of centromeric chromatin organization. PMID:23661703

  5. Plasticity and Epigenetic Inheritance of Centromere-specific Histone H3 (CENP-A)-containing Nucleosome Positioning in the Fission Yeast*

    PubMed Central

    Yao, Jianhui; Liu, Xingkun; Sakuno, Takeshi; Li, Wenzhu; Xi, Yuanxin; Aravamudhan, Pavithra; Joglekar, Ajit; Li, Wei; Watanabe, Yoshinori; He, Xiangwei

    2013-01-01

    Nucleosomes containing the specific histone H3 variant CENP-A mark the centromere locus on each chromatin and initiate kinetochore assembly. For the common type of regional centromeres, little is known in molecular detail of centromeric chromatin organization, its propagation through cell division, and how distinct organization patterns may facilitate kinetochore assembly. Here, we show that in the fission yeast S. pombe, a relatively small number of CENP-A/Cnp1 nucleosomes are found within the centromeric core and that their positioning relative to underlying DNA varies among genetically homogenous cells. Consistent with the flexible positioning of Cnp1 nucleosomes, a large portion of the endogenous centromere is dispensable for its essential activity in mediating chromosome segregation. We present biochemical evidence that Cnp1 occupancy directly correlates with silencing of the underlying reporter genes. Furthermore, using a newly developed pedigree analysis assay, we demonstrated the epigenetic inheritance of Cnp1 positioning and quantified the rate of occasional repositioning of Cnp1 nucleosomes throughout cell generations. Together, our results reveal the plasticity and the epigenetically inheritable nature of centromeric chromatin organization. PMID:23661703

  6. O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence.

    PubMed

    Lee, Jong-Sun; Zhang, Zhiguo

    2016-06-01

    The histone chaperone HIRA complex, consisting of histone cell cycle regulator (HIRA), Ubinuclein1 (UBN1), and calcineurin binding protein 1 (CABIN1), deposits histone variant H3.3 to genic regions and regulates gene expression in various cellular processes, including cellular senescence. How HIRA-mediated nucleosome assembly of H3.3-H4 is regulated remains not well understood. Here, we show that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), an enzyme that catalyzes O-GlcNAcylation of serine or threonine residues, interacts with UBN1, modifies HIRA, and promotes nucleosome assembly of H3.3. Depletion of OGT or expression of the HIRA S231A O-GlcNAcylation-deficient mutant compromises formation of the HIRA-H3.3 complex and H3.3 nucleosome assembly. Importantly, OGT depletion or expression of the HIRA S231A mutant delays premature cellular senescence in primary human fibroblasts, whereas overexpression of OGT accelerates senescence. Taken together, these results support a model in which OGT modifies HIRA to regulate HIRA-H3.3 complex formation and H3.3 nucleosome assembly and reveal the mechanism by which OGT functions in cellular senescence. PMID:27217568

  7. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    PubMed

    Fan, Yanping; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2013-01-01

    In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs). The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar) plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+)), divalent (Mg(2+)) or trivalent (Co(NH(3))(6) (3+)) cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+), to partial aggregation with Mg(2+) and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+). The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions. PMID:23418426

  8. Super-coil me: Sizing up centromeric nucleosomes

    PubMed Central

    Williams, Ruth

    2009-01-01

    Every chromosome needs a centromere for proper segregation during cell division. Centromeric chromatin wraps around histones, providing an anchor for kinetochore proteins and spindle attachment. It is clear why cells need centromeres, but how they form and what they look like is less so. Recent reports extend our understanding of chaperones involved in centromere formation. And other accounts of half-sized, right-handed nucleosomes have created an unexpected twist. PMID:19704018

  9. Maintenance of Nucleosomal Balance in cis by Conserved AAA-ATPase Yta7

    PubMed Central

    Lombardi, Laura M.; Davis, Matthew D.; Rine, Jasper

    2015-01-01

    The extent of chromatin compaction is a fundamental driver of nuclear metabolism . Yta7 is a chromatin-associated AAA-ATPase, the human ortholog of which, ANCCA/ATAD2 transcriptionally activates pathways of malignancy in a broad range of cancers. Yta7 directly binds histone H3, and bulk chromatin exhibits increased nucleosomal density in yta7Δ mutants. The suppression of yta7Δ mutant growth and transcriptional phenotypes in budding yeast by decreased dosage of histones H3 and H4 indicates the acute sensitivity of cells to deviations in nucleosome spacing. This study investigated the global changes in chromatin structure upon Yta7 loss or overexpression and determined which of these effects reflected direct Yta7 activity. Metagene analysis of Yta7’s genome-wide localization indicated peak binding of Yta7 just downstream of the transcription start site. Cells lacking Yta7 exhibited increased nucleosome density within genes downstream of the +1 nucleosome, as defined by decreased internucleosomal distance, resulting in progressively 5′-shifted nucleosomes within the gene. In contrast, cells overexpressing Yta7 displayed profound 3′-shifts in nucleosome position and reduced nucleosome density within genes. Importantly, Yta7-bound regions were enriched for nucleosomal shifts, indicating that Yta7 acted locally to modulate nucleosome spacing. The phenotype of cells lacking both Yta7 and Rtt106, the histone H3/H4 chaperone, indicated that Yta7 functions in both Rtt106-dependent and Rtt106-independent ways to modulate nucleosome spacing within genes. This study suggested that Yta7 affected nucleosome density throughout the gene by both blocking Rtt106 from entering the gene, as shown previously at HTA1, and facilitating the loss of nucleosomes from the 5′-end. PMID:25406467

  10. Strong nucleosomes of mouse genome including recovered centromeric sequences.

    PubMed

    Salih, Bilal F; Teif, Vladimir B; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Recently discovered strong nucleosomes (SNs) characterized by visibly periodical DNA sequences have been found to concentrate in centromeres of Arabidopsis thaliana and in transient meiotic centromeres of Caenorhabditis elegans. To find out whether such affiliation of SNs to centromeres is a more general phenomenon, we studied SNs of the Mus musculus. The publicly available genome sequences of mouse, as well as of practically all other eukaryotes do not include the centromere regions which are difficult to assemble because of a large amount of repeat sequences in the centromeres and pericentromeric regions. We recovered those missing sequences using the data from MNase-seq experiments in mouse embryonic stem cells, where the sequence of DNA inside nucleosomes, including missing regions, was determined by 100-bp paired-end sequencing. Those nucleosome sequences, which are not matching to the published genome sequence, would largely belong to the centromeres. By evaluating SN densities in centromeres and in non-centromeric regions, we conclude that mouse SNs concentrate in the centromeres of telocentric mouse chromosomes, with ~3.9 times excess compared to their density in the rest of the genome. The remaining non-centromeric SNs are harbored mainly by introns and intergenic regions, by retro-transposons, in particular. The centromeric involvement of the SNs opens new horizons for the chromosome and centromere structure studies. PMID:24998943

  11. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure

    PubMed Central

    North, Justin A.; Šimon, Marek; Ferdinand, Michelle B.; Shoffner, Matthew A.; Picking, Jonathan W.; Howard, Cecil J.; Mooney, Alex M.; van Noort, John; Poirier, Michael G.; Ottesen, Jennifer J.

    2014-01-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure. PMID:24561803

  12. Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A

    PubMed Central

    Horikoshi, Naoki; Arimura, Yasuhiro; Taguchi, Hiroyuki; Kurumizaka, Hitoshi

    2016-01-01

    H2A.Z is incorporated into nucleosomes located around transcription start sites and functions as an epigenetic regulator for the transcription of certain genes. During transcriptional regulation, the heterotypic H2A.Z/H2A nucleosome containing one each of H2A.Z and H2A is formed. However, previous homotypic H2A.Z nucleosome structures suggested that the L1 loop region of H2A.Z would sterically clash with the corresponding region of canonical H2A in the heterotypic nucleosome. To resolve this issue, we determined the crystal structures of heterotypic H2A.Z/H2A nucleosomes. In the H2A.Z/H2A nucleosome structure, the H2A.Z L1 loop structure was drastically altered without any structural changes of the canonical H2A L1 loop, thus avoiding the steric clash. Unexpectedly, the heterotypic H2A.Z/H2A nucleosome is more stable than the homotypic H2A.Z nucleosome. These data suggested that the flexible character of the H2A.Z L1 loop plays an essential role in forming the stable heterotypic H2A.Z/H2A nucleosome. PMID:27358293

  13. Transcription-dependent and transcription-independent nucleosome disruption induced by dioxin.

    PubMed Central

    Morgan, J E; Whitlock, J P

    1992-01-01

    In mouse hepatoma cells, both the regulatory and the transcribed regions of the cyp1a1 gene assume a nucleosomal configuration when the gene is silent; two nucleosomes occupy specific sites at the transcriptional promoter. Activation of transcription by 2,3,7,8-tetrachlorodibenzo-p-dioxin is accompanied by changes in chromatin structure, which depend upon a functional aromatic hydrocarbon (Ah) receptor. In the transcribed region of the gene, nucleosome disruption occurs as a consequence of RNA elongation. In contrast, at the promoter, loss of positioned nucleosome sis independent of transcription and represents an event in the mechanism by which the liganded Ah receptor enhances transcriptional initiation. Images PMID:1454854

  14. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  15. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules

    PubMed Central

    Kelly, Theresa K.; Liu, Yaping; Lay, Fides D.; Liang, Gangning; Berman, Benjamin P.; Jones, Peter A.

    2012-01-01

    DNA methylation and nucleosome positioning work together to generate chromatin structures that regulate gene expression. Nucleosomes are typically mapped using nuclease digestion requiring significant amounts of material and varying enzyme concentrations. We have developed a method (NOMe-seq) that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to generate a high resolution footprint of nucleosome positioning genome-wide using less than 1 million cells while retaining endogenous DNA methylation information from the same DNA strand. Using a novel bioinformatics pipeline, we show a striking anti-correlation between nucleosome occupancy and DNA methylation at CTCF regions that is not present at promoters. We further show that the extent of nucleosome depletion at promoters is directly correlated to expression level and can accommodate multiple nucleosomes and provide genome-wide evidence that expressed non-CpG island promoters are nucleosome-depleted. Importantly, NOMe-seq obtains DNA methylation and nucleosome positioning information from the same DNA molecule, giving the first genome-wide DNA methylation and nucleosome positioning correlation at the single molecule, and thus, single cell level, that can be used to monitor disease progression and response to therapy. PMID:22960375

  16. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  17. Dynamics of the Competition Between Nucleosome Unwrapping and DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2015-03-01

    In eukaryotic organisms DNA is tightly wrapped into nucleosomes. This bears the question how this DNA can be accessed in order to be copied, transcribed, or repaired. A process that allows access to the DNA is transient unwrapping of the DNA from the histone proteins. We have developed a quantitative model of this unwrapping process which we calibrate by comparison to nucleosome unzipping experiments by the Wang group. We then apply this model to quantitatively explain the dynamics of transcription factor binding within nucleosomal DNA. In this context, it has been well known that nucleosomes reduce the affinity for transcription factors to binding sites covered by the nucleosome. It has been assumed that this is due to a reduction in on-rate since a transcription factor can only bind when a rare thermal fluctuation of the nucleosome makes the DNA accessible. However, recent experimental data surprisingly shows that the off-rate of transcription factors is also strongly affected in the presence of a nucleosome. The application of our nucleosome unwrapping free energy landscape demonstrates that this increase in off-rate by several orders of magnitude is a consequence of a competition between partial binding events of dimeric transcription factors and the nucleosome. This material is based upon work supported by the National Science Foundation under Grant Nos. 1105458 and 1410172.

  18. Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme

    PubMed Central

    Manning, Benjamin J.; Peterson, Craig L.

    2014-01-01

    Heterochromatin is a specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. Despite its globally repressive role, heterochromatin must also be dynamic, allowing for its repair and replication. In budding yeast, heterochromatin formation requires silent information regulators (Sirs) Sir2p, Sir3p, and Sir4p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating-type loci. Previously, we found that the SWI/SNF chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p from recombinant nucleosomal arrays, and this activity enhances early steps of recombinational repair in vitro. Here, we show that the ATPase subunit of SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein Sir3p. Two interaction surfaces are defined, including an interaction between the ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-Homology domain of Sir3p. A SWI/SNF complex harboring a Swi2p subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from nucleosomes, even though its ATPase and remodeling activities are intact. In addition, we find that the interaction between Swi2p and Sir3p is key for SWI/SNF to promote resistance to replication stress in vivo and for establishment of heterochromatin at telomeres. PMID:25453095

  19. On the mechanochemical machinery underlying chromatin remodeling

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.

    This dissertation discuss two recent efforts, via a unique combination of structural bioinformatics and density functional theory, to unravel some of the details concerning how molecular machinery within the eukaryotic cell nucleus controls chromatin architecture. The first, a study of the 5-methylation of cytosine in 5'-CG-3' : 5'-CG-3' base-pair steps, reveals that the methyl groups roughen the local elastic energy landscape of the DNA. This enhances the probability of the canonical B-DNA structure transitioning into the undertwisted A-like and overtwisted C-like forms seen in nucleosomes, or looped segments of DNA bound to histones. The second part focuses on the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. The arginine residues are ob- served to apply a tunable mechanical load to the backbone, enabling precision-controlled activation of DNA deformations.

  20. Binding of the wheat basic leucine zipper protein EmBP-1 to nucleosomal binding sites is modulated by nucleosome positioning.

    PubMed Central

    Niu, X; Adams, C C; Workman, J L; Guiltinan, M J

    1996-01-01

    To investigate interactions of the basic leucine zipper transcription factor EmBP-1 with its recognition sites in nucleosomal DNA, we reconstituted an abscisic acid response element and a high-affinity binding site for EmBP-1 into human and wheat nucleosome cores in vitro. DNA binding studies demonstrated that nucleosomal elements can be bound by EmBP-1 at reduced affinities relative to naked DNA. EmBP-1 affinity was lowest when the recognition sites were positioned near the center of the nucleosome. Binding was achieved with a truncated DNA binding domain; however, binding of full-length EmBP-1 caused additional strong DNase I hypersensitivity flanking the binding sites. Similar results were observed with nucleosomes reconstituted with either human or wheat histones, demonstrating a conserved mechanism of transcription factor-nucleosome interactions. We conclude that positioning of recognition sequences on a nucleosome may play an important role in regulating interactions of EmBP-1 with its target sites in plant cells. PMID:8837510

  1. Long-Range Correlations in Genomic DNA: A Signature of the Nucleosomal Structure

    NASA Astrophysics Data System (ADS)

    Audit, B.; Thermes, C.; Vaillant, C.; D'Aubenton-Carafa, Y.; Muzy, J. F.; Arneodo, A.

    2001-03-01

    We use the ``wavelet transform microscope'' to carry out a comparative statistical analysis of DNA bending profiles and of the corresponding DNA texts. In the three kingdoms, one reveals on both signals a characteristic scale of 100-200 bp that separates two different regimes of power-law correlations (PLC). In the small-scale regime, PLC are observed in eukaryotic, in double-strand DNA viral, and in archaeal genomes, which contrasts with their total absence in the genomes of eubacteria and their viruses. This strongly suggests that small-scale PLC are related to the mechanisms underlying the wrapping of DNA in the nucleosomal structure. We further speculate that the large scale PLC are the signature of the higher-order structure and dynamics of chromatin.

  2. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2BGlu2

    PubMed Central

    Grundy, Gabrielle J.; Polo, Luis M.; Zeng, Zhihong; Rulten, Stuart L.; Hoch, Nicolas C.; Paomephan, Pathompong; Xu, Yingqi; Sweet, Steve M.; Thorne, Alan W.; Oliver, Antony W.; Matthews, Steve J.; Pearl, Laurence H.; Caldecott, Keith W.

    2016-01-01

    PARP3 is a member of the ADP-ribosyl transferase superfamily that we show accelerates the repair of chromosomal DNA single-strand breaks in avian DT40 cells. Two-dimensional nuclear magnetic resonance experiments reveal that PARP3 employs a conserved DNA-binding interface to detect and stably bind DNA breaks and to accumulate at sites of chromosome damage. PARP3 preferentially binds to and is activated by mononucleosomes containing nicked DNA and which target PARP3 trans-ribosylation activity to a single-histone substrate. Although nicks in naked DNA stimulate PARP3 autoribosylation, nicks in mononucleosomes promote the trans-ribosylation of histone H2B specifically at Glu2. These data identify PARP3 as a molecular sensor of nicked nucleosomes and demonstrate, for the first time, the ribosylation of chromatin at a site-specific DNA single-strand break. PMID:27530147

  3. The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning.

    PubMed

    Levitsky, Victor G; Babenko, Vladimir N; Vershinin, Alexander V

    2014-01-01

    Similar to regularly spaced nucleosomes in chromatin, long tandem DNA arrays are composed of regularly alternating monomers that have almost identical primary DNA structures. Such a similarity in the structural organization makes these arrays especially interesting for studying the role of intrinsic DNA preferences in nucleosome positioning. We have studied the nucleosome formation potential of DNA tandem repeat families with different monomer lengths (ML). In total, 165 plant tandem repeat families from the PlantSat database (http://w3lamc.umbr.cas.cz/PlantSat/) were divided into two classes based on the number of nucleosome repeats in one DNA monomer. For predicting nucleosome formation potential, we developed the Phase method, which combines the advantages of multiple bioinformatics models. The Phase method was able to distinguish interfamily differences and intrafamily monomer variation and identify the influence of nucleotide context on nucleosome formation potential. Three main types of nucleosome arrangement in DNA tandem repeat arrays--regular, partially regular (partial), and flexible--were distinguished among a great variety of Phase profiles. The regular type, in which all nucleosomes of the monomer array are positioned in a context-dependent manner, is the most representative type of the class 1 families, with ML equal to or a multiple of the nucleosome repeat length (NRL). In the partially regular type, nucleotide context influences the positioning of only a subset of nucleosomes. The influence of the nucleotide context on nucleosome positioning has the least effect in the flexible type, which contains the greatest number of families (65). The majority of these families belong to class 2 and have nonmultiple ML to NRL ratios. PMID:23384242

  4. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative.

    PubMed Central

    Adams, C C; Workman, J L

    1995-01-01

    To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo. PMID:7862134

  5. Determinants of nucleosome positioning and their influence on plant gene expression

    PubMed Central

    Liu, Ming-Jung; Seddon, Alexander E.; Tsai, Zing Tsung-Yeh; Major, Ian T.; Floer, Monique; Howe, Gregg A.; Shiu, Shin-Han

    2015-01-01

    Nucleosome positioning influences the access of transcription factors (TFs) to their binding sites and gene expression. Studies in plant, animal, and fungal models demonstrate similar nucleosome positioning patterns along genes and correlations between occupancy and expression. However, the relationships among nucleosome positioning, cis-regulatory element accessibility, and gene expression in plants remain undefined. Here we showed that plant nucleosome depletion occurs on specific 6-mer motifs and this sequence-specific nucleosome depletion is predictive of expression levels. Nucleosome-depleted regions in Arabidopsis thaliana tend to have higher G/C content, unlike yeast, and are centered on specific G/C-rich 6-mers, suggesting that intrinsic sequence properties, such as G/C content, cannot fully explain plant nucleosome positioning. These 6-mer motif sites showed higher DNase I hypersensitivity and are flanked by strongly phased nucleosomes, consistent with known TF binding sites. Intriguingly, this 6-mer-specific nucleosome depletion pattern occurs not only in promoter but also in genic regions and is significantly correlated with higher gene expression level, a phenomenon also found in rice but not in yeast. Among the 6-mer motifs enriched in genes responsive to treatment with the defense hormone jasmonate, there are no significant changes in nucleosome occupancy, suggesting that these sites are potentially preconditioned to enable rapid response without changing chromatin state significantly. Our study provides a global assessment of the joint contribution of nucleosome occupancy and motif sequences that are likely cis-elements to the control of gene expression in plants. Our findings pave the way for further understanding the impact of chromatin state on plant transcriptional regulatory circuits. PMID:26063739

  6. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila.

    PubMed

    Chen, Xiao; Gao, Shan; Liu, Yifan; Wang, Yuanyuan; Wang, Yurui; Song, Weibo

    2016-09-01

    Genomic distribution of the nucleosome, the basic unit of chromatin, contains important epigenetic information. To map nucleosome distribution in structurally and functionally differentiated micronucleus (MIC) and macronucleus (MAC) of the ciliate Tetrahymena thermophila, we have purified MIC and MAC and performed micrococcal nuclease (MNase) digestion as well as hydroxyl radical cleavage. Different factors that may affect MNase digestion were examined, to optimize mono-nucleosome production. Mono-nucleosome purity was further improved by ultracentrifugation in a sucrose gradient. As MNase concentration increased, nucleosomal DNA sizes in MIC and MAC converged on 147 bp, as expected for the nucleosome core particle. Both MNase digestion and hydroxyl radical cleavage consistently showed a nucleosome repeat length of ~200 bp in MAC of Tetrahymena, supporting ~50 bp of linker DNA. Our work has systematically tested methods currently available for mapping nucleosome distribution in Tetrahymena, and provided a solid foundation for future epigenetic studies in this ciliated model organism. PMID:27568393

  7. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome

    PubMed Central

    Beh, Leslie Y.; Müller, Manuel M.; Muir, Tom W.; Kaplan, Noam; Landweber, Laura F.

    2015-01-01

    A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these “seed” nucleosomes—together with trans-acting factors—may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences. PMID:26330564

  8. Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays

    NASA Astrophysics Data System (ADS)

    Teif, Vladimir B.; Kepper, Nick; Yserentant, Klaus; Wedemann, Gero; Rippe, Karsten

    2015-02-01

    Heterochromatin protein 1 (HP1) participates in establishing and maintaining heterochromatin via its histone-modification-dependent chromatin interactions. In recent papers HP1 binding to nucleosomal arrays was measured in vitro and interpreted in terms of nearest-neighbour cooperative binding. This mode of chromatin interaction could lead to the spreading of HP1 along the nucleosome chain. Here, we reanalysed previous data by representing the nucleosome chain as a 1D binding lattice and showed how the experimental HP1 binding isotherms can be explained by a simpler model without cooperative interactions between neighboring HP1 dimers. Based on these calculations and spatial models of dinucleosomes and nucleosome chains, we propose that binding stoichiometry depends on the nucleosome repeat length (NRL) rather than protein interactions between HP1 dimers. According to our calculations, more open nucleosome arrays with long DNA linkers are characterized by a larger number of binding sites in comparison to chains with a short NRL. Furthermore, we demonstrate by Monte Carlo simulations that the NRL dependent folding of the nucleosome chain can induce allosteric changes of HP1 binding sites. Thus, HP1 chromatin interactions can be modulated by the change of binding stoichiometry and the type of binding to condensed (methylated) and non-condensed (unmethylated) nucleosome arrays in the absence of direct interactions between HP1 dimers.

  9. Novel nucleosomal particles containing core histones and linker DNA but no histone H1

    PubMed Central

    Cole, Hope A.; Cui, Feng; Ocampo, Josefina; Burke, Tara L.; Nikitina, Tatiana; Nagarajavel, V.; Kotomura, Naoe; Zhurkin, Victor B.; Clark, David J.

    2016-01-01

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1. PMID:26400169

  10. Strategies for crystallizing a chromatin protein in complex with the nucleosome core particle

    PubMed Central

    Makde, Ravindra D.; Tan, Song

    2013-01-01

    The molecular details for how chromatin factors and enzymes interact with the nucleosome are critical to understand fundamental genetic processes including cell division and gene regulation. A structural understanding of such processes has been hindered by the difficulty producing diffraction quality crystals of chromatin proteins in complex with the nucleosome. We describe here the steps used to grow crystals of the 300 kDa RCC1 chromatin factor/nucleosome core particle complex which diffract to 2.9 Å resolution. These steps included both pre- and post-crystallization strategies potentially useful to other complexes. We screened multiple variant RCC1-nucleosome core particle complexes assembled using different RCC1 homologs and deletion variants, and nucleosomes containing nucleosomal DNA with different sequences and lengths as well as histone deletion variants. We found that using RCC1 from different species produced different crystal forms of the RCC1-nucleosome complex consistent with key crystal packing interactions mediated by RCC1. Optimization of post-crystallization soaks to dehydrate the crystals dramatically improved the diffraction quality of the RCC1/nucleosome crystal from 5.0 to 2.9 Å resolution. PMID:23928047

  11. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells

    PubMed Central

    Sebeson, Amy; Xi, Liqun; Zhang, Quanwei; Sigmund, Audrey; Wang, Ji-Ping; Wang, Xiaozhong

    2015-01-01

    The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation. PMID:25992972

  12. Immunoregulation of bone remodelling

    PubMed Central

    Singh, Ajai; Mehdi, Abbass A; Srivastava, Rajeshwer N; Verma, Nar Singh

    2012-01-01

    Remodeling, a continuous physiological process maintains the strength of the bones, which maintains a delicate balance between bone formation and resorption process. This review gives an insight to the complex interaction and correlation between the bone remodeling and the corresponding changes in host immunological environment and also summarises the most recent developments occuring in the understanding of this complex field. T cells, both directly and indirectly increase the expression of receptor activator of nuclear factor kB ligand (RANKL); a vital step in the activation of osteoclasts, thus positively regulates the osteoclastogenesis. Though various cytokines, chemikines, transcription factors and co-stimulatory molecules are shared by both skeletal and immune systems, but researches are being conducted to establish and analyse their role and / or control on this complex but vital process. The understanding of this part of research may open new horizons in the management of inflammatory and autoimmune diseases, resulting into bone loss and that of osteoporosis also. PMID:22837895

  13. NAP1-Assisted Nucleosome Assembly on DNA Measured in Real Time by Single-Molecule Magnetic Tweezers

    PubMed Central

    Vlijm, Rifka; Smitshuijzen, Jeremy S. J.; Lusser, Alexandra; Dekker, Cees

    2012-01-01

    While many proteins are involved in the assembly and (re)positioning of nucleosomes, the dynamics of protein-assisted nucleosome formation are not well understood. We study NAP1 (nucleosome assembly protein 1) assisted nucleosome formation at the single-molecule level using magnetic tweezers. This method allows to apply a well-defined stretching force and supercoiling density to a single DNA molecule, and to study in real time the change in linking number, stiffness and length of the DNA during nucleosome formation. We observe a decrease in end-to-end length when NAP1 and core histones (CH) are added to the dsDNA. We characterize the formation of complete nucleosomes by measuring the change in linking number of DNA, which is induced by the NAP1-assisted nucleosome assembly, and which does not occur for non-nucleosomal bound histones H3 and H4. By rotating the magnets, the supercoils formed upon nucleosome assembly are removed and the number of assembled nucleosomes can be counted. We find that the compaction of DNA at low force is about 56 nm per assembled nucleosome. The number of compaction steps and associated change in linking number indicate that NAP1-assisted nucleosome assembly is a two-step process. PMID:23050009

  14. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription

    PubMed Central

    Shen, Hong Ming; Poirier, Michael G.; Allen, Michael J.; North, Justin; Lal, Ratnesh; Widom, Jonathan

    2009-01-01

    The activation-induced cytidine deaminase (AID) initiates somatic hypermutation, class-switch recombination, and gene conversion of immunoglobulin genes. In vitro, AID has been shown to target single-stranded DNA, relaxed double-stranded DNA, when transcribed, or supercoiled DNA. To simulate the in vivo situation more closely, we have introduced two copies of a nucleosome positioning sequence, MP2, into a supercoiled AID target plasmid to determine where around the positioned nucleosomes (in the vicinity of an ampicillin resistance gene) cytidine deaminations occur in the absence or presence of transcription. We found that without transcription nucleosomes prevented cytidine deamination by AID. However, with transcription AID readily accessed DNA in nucleosomes on both DNA strands. The experiments also showed that AID targeting any DNA molecule was the limiting step, and they support the conclusion that once targeted to DNA, AID acts processively in naked DNA and DNA organized within transcribed nucleosomes. PMID:19380635

  15. Brownian dynamics simulation of the nucleosome chirality - the wrapping direction of DNA on the histone octamer

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Ye

    2005-03-01

    In eukaryote nucleosome, DNA wraps around a histone octamer in a left-handed way. We study the process of chirality formation of nucleosome with Brownian dynamics simulation. We model the histone octamer with a quantitatively adjustable chirality: left-handed, right-handed or non-chiral, and simulate the dynamical wrapping process of a DNA molecule on it. We find that the chirality of a nucleosome formed is strongly dependent on that of the histone octamer, and different chiralities of the histone octamer induce its different rotation directions in the wrapping process of DNA. In addition, a very weak chirality of the histone octamer is quite enough for sustaining the correct chirality of the nucleosome formed. We also show that the chirality of a nucleosome may be broken at elevated temperature.

  16. Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming

    PubMed Central

    Soufi, Abdenour; Garcia, Meilin Fernandez; Jaroszewicz, Artur; Osman, Nebiyu; Pellegrini, Matteo; Zaret, Kenneth S.

    2015-01-01

    SUMMARY Pioneer transcription factors (TFs) access silent chromatin and initiate cell fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naïve chromatin sites. PMID:25892221

  17. Pausing of RNA polymerase II Disrupts DNA-specified Nucleosome Organization to Enable Precise Gene Regulation

    PubMed Central

    Gilchrist, Daniel A.; Santos, Gilberto Dos; Fargo, David C.; Xie, Bin; Gao, Yuan; Li, Leping; Adelman, Karen

    2010-01-01

    Metazoan transcription is controlled either through coordinated recruitment of transcription machinery to the gene promoter, or through regulated pausing of RNA polymerase II (Pol II) in early elongation. We report that a striking difference between genes that use these distinct regulatory strategies lies in the “default” chromatin architecture specified by their DNA sequences. Pol II pausing is prominent at highly-regulated genes whose sequences inherently disfavor nucleosome formation within the gene, but favor occlusion of the promoter by nucleosomes. In contrast, housekeeping genes that lack pronounced Pol II pausing show higher nucleosome occupancy downstream, but their promoters are deprived of nucleosomes regardless of polymerase binding. Our results indicate that a key role of paused Pol II is to compete with nucleosomes for occupancy of highly-regulated promoters, thereby preventing the formation of repressive chromatin architecture to facilitate further or future gene activation. PMID:21074046

  18. Genome-wide Mapping of Nucleosome Positioning and DNA Methylation Within Individual DNA Molecules

    PubMed Central

    Liu, Yaping; Lay, Fides D.; Liang, Gangning; Berman, Benjamin P.; Jones, Peter A.; Kelly, Terry

    2012-01-01

    DNA methylation and nucleosome positioning work together to generate chromatin structures that regulate gene expression. Nucleosomes are typically mapped using nuclease digestion requiring significant amounts of material and varying enzyme concentrations. We have developed a method that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to footprint nucleosome positioning genome-wide using less than 1 million cells, which does not suffer from sequence based biases associated with MNase digestion and retains endogenous DNA methylation information. Using a novel bioinformatics pipeline we identify chromatin configurations associated with a variety of functional genomic loci including distinct promoter types, enhancers, insulators, X-inactivated and imprinted genes. Importantly, DNA methylation and nucleosome positioning information are obtained from the same DNA molecule, giving the first genome-wide DNA methylation and nucleosome positioning correlation at the single molecule level that can be used to monitor disease progression and response to therapy.

  19. Interaction of RNA polymerase II with acetylated nucleosomal core particles

    SciTech Connect

    Pineiro, M.; Gonzalez, P.J.; Hernandez, F.; Palacian, E. )

    1991-05-31

    Chemical acetylation of nucleosomal cores is accompanied by an increase in their efficiency as in vitro transcription templates. Low amounts of acetic anhydride cause preferential modification of the amino-terminal tails of core histones. Modification of these domains, which causes moderate structural effects, is apparently correlated with the observed stimulation of RNA synthesis. In contrast, extensive modification of the globular regions of core histones, which is accompanied by a large structural relaxation of the particle, causes little additional effect on transcription. Acetylation of the amino-terminal domains of histones might stimulate transcription by changing the interaction of the histone tails with components of the transcriptional machinery.

  20. Histone Methylation Marks on Circulating Nucleosomes as Novel Blood-Based Biomarker in Colorectal Cancer

    PubMed Central

    Gezer, Ugur; Yörüker, Ebru E.; Keskin, Metin; Kulle, Cemil Burak; Dharuman, Yoganiranjana; Holdenrieder, Stefan

    2015-01-01

    Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer as potential non-invasive biomarkers, as stable structure in circulation nucleosomes could be valuable sources for detection of cancer-specific alterations in histone modifications. Our interest is in histone methylation marks with a focus on colorectal cancer, one of the leading cancers respective the incidence and mortality. Our previous work included the analysis of trimethylations of lysine 9 on histone 3 (H3K9me3) and of lysine 20 on histone 4 (H4K20me3) by chromatin immuno- precipitation-related PCR in circulating nucleosomes. Here we asked whether global immunologic measurement of histone marks in circulation could be a suitable approach to show their potential as biomarkers. In addition to H3K9me3 and H4K20me3 we also measured H3K27me3 in plasma samples from CRC patients (n = 63) and cancer free individuals (n = 40) by ELISA-based methylation assays. Our results show that of three marks, the amounts of H3K27me3 (p = 0.04) and H4K20me3 (p < 0.001) were significantly lower in CRC patients than in healthy controls. For H3K9me3 similar amounts were measured in both groups. Areas under the curve (AUC) in receiver operating characteristic (ROC) curves indicating the power of CRC detection were 0.620 for H3K27me3, 0.715 for H4K20me3 and 0.769 for the combination of both markers. In conclusion, findings of this preliminary study reveal the potential of blood-based detection of CRC by quantification of histone methylation marks and the additive effect of the marker combination. PMID:26690425

  1. Distinct influences of tandem repeats and retrotransposons on CENH3 nucleosome positioning

    PubMed Central

    2011-01-01

    Background Unique structural characteristics of centromere chromatin enable it to support assembly of the kinetochore and its associated tensions. The histone H3 variant CENH3 (centromeric histone H3) is viewed as the key element of centromere chromatin and its interaction with centromere DNA is epigenetic in that its localization to centromeres is not sequence-dependent. Results In order to investigate what influence the DNA sequence exerts on CENH3 chromatin structure, we examined CENH3 nucleosome footprints on maize centromere DNA. We found a predominant average nucleosome spacing pattern of roughly 190-bp intervals, which was also the dominant arrangement for nucleosomes genome-wide. For CENH3-containing nucleosomes, distinct modes of nucleosome positioning were evident within that general spacing constraint. Over arrays of the major ~156-bp centromeric satellite sequence (tandem repeat) CentC, nucleosomes were not positioned in register with CentC monomers but in conformity with a striking ~10-bp periodicity of AA/TT dimers within the sequence. In contrast, nucleosomes on a class of centromeric retrotransposon (CRM2) lacked a detectable AA/TT periodicity but exhibited tightly phased positioning. Conclusions These data support a model in which general chromatin factors independent of both DNA sequence and CENH3 enforce roughly uniform centromeric nucleosome spacing while allowing flexibility in the mode in which nucleosomes are positioned. In the case of tandem repeat DNA, the natural bending effects related to AA/TT periodicity produce an energetically-favourable arrangement consistent with conformationally rigid nucleosomes and stable chromatin at centromeres. PMID:21352520

  2. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation

    PubMed Central

    Hernandez-Romano, Jesus; Carlos-Rivera, Francisco J; Salgado, Heladia; Lamadrid-Figueroa, Hector; Valverde-Garduño, Veronica; Rodriguez, Mario H; Martinez-Barnetche, Jesus

    2008-01-01

    Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species. PMID:18613977

  3. The Chromatin Remodeling Protein Bptf Promotes Posterior Neuroectodermal Fate by Enhancing Smad2-Activated wnt8a Expression.

    PubMed

    Ma, Yuanqing; Liu, Xiuli; Liu, Zhaoting; Wei, Shi; Shang, Hanqiao; Xue, Yu; Cao, Yu; Meng, Anming; Wang, Qiang

    2015-06-01

    During vertebrate embryogenesis, the neuroectoderm is induced from dorsal ectoderm and then partitioned into anterior and posterior neuroectodermal domains by posteriorizing signals, such as Wnt and fibroblast growth factor. However, little is known about epigenetic regulation of posteriorizing gene expression. Here, we report a requirement of the chromatin remodeling protein Bptf for neuroectodermal posteriorization in zebrafish embryos. Knockdown of bptf leads to an expansion of the anterior neuroectoderm at the expense of the posterior ectoderm. Bptf functionally and physically interacts with p-Smad2, which is activated by non-Nodal TGF-β signaling, to promote the expression of wnt8a, a critical gene for neural posteriorization. Bptf and Smad2 directly bind to and activate the wnt8a promoter through recruiting NURF remodeling complex. When bptf function or TGF-β signal transduction is inhibited, the nucleosome density on the wnt8a promoter is increased. We propose that Bptf and TGF-β/Smad2 mediate nucleosome remodeling to regulate wnt8a expression and hence neural posteriorization. PMID:26041917

  4. A histone arginine methylation localizes to nucleosomes in satellite II and III DNA sequences in the human genome

    PubMed Central

    2012-01-01

    Background Applying supervised learning/classification techniques to epigenomic data may reveal properties that differentiate histone modifications. Previous analyses sought to classify nucleosomes containing histone H2A/H4 arginine 3 symmetric dimethylation (H2A/H4R3me2s) or H2A.Z using human CD4+ T-cell chromatin immunoprecipitation sequencing (ChIP-Seq) data. However, these efforts only achieved modest accuracy with limited biological interpretation. Here, we investigate the impact of using appropriate data pre-processing —deduplication, normalization, and position- (peak-) finding to identify stable nucleosome positions — in conjunction with advanced classification algorithms, notably discriminatory motif feature selection and random forests. Performance assessments are based on accuracy and interpretative yield. Results We achieved dramatically improved accuracy using histone modification features (99.0%; previous attempts, 68.3%) and DNA sequence features (94.1%; previous attempts, <60%). Furthermore, the algorithms elicited interpretable features that withstand permutation testing, including: the histone modifications H4K20me3 and H3K9me3, which are components of heterochromatin; and the motif TCCATT, which is part of the consensus sequence of satellite II and III DNA. Downstream analysis demonstrates that satellite II and III DNA in the human genome is occupied by stable nucleosomes containing H2A/H4R3me2s, H4K20me3, and/or H3K9me3, but not 18 other histone methylations. These results are consistent with the recent biochemical finding that H4R3me2s provides a binding site for the DNA methyltransferase (Dnmt3a) that methylates satellite II and III DNA. Conclusions Classification algorithms applied to appropriately pre-processed ChIP-Seq data can accurately discriminate between histone modifications. Algorithms that facilitate interpretation, such as discriminatory motif feature selection, have the added potential to impart information about underlying

  5. Remodeling with the sun

    SciTech Connect

    Bodzin, S.

    1997-05-01

    Remodeling is the perfect time to improve daylighting, direct gain heating and shading with passive solar techniques. It can also provide the best opportunity to add solar water heating or even photoboltaics to a home. This article describes addition of such energy efficient plans to a home in terms of what is needed and what the benefits are: adding windows, North glass, east and west glass, south glass, daylighting, the roof, shingles and roofing tiles, walls and floors, solar hot water, photovoltaics. Two side bars discuss the sunplace: a passive solar room and angles and overhangs.

  6. DNA repair of a single UV photoproduct in a designed nucleosome

    SciTech Connect

    Kosmoskil, Joseph V.; Ackerman, Eric J. ); Smerdon, Michael J.

    2001-08-28

    Eukaryotic DNA repair enzymes must interact with the architectural hierarchy of chromatin. The challenge of finding damaged DNA complexed with histone proteins in nucleosomes is complicated by the need to maintain local chromatin structures involved in regulating other DNA processing events. The heterogeneity of lesions induced by DNA-damaging agents has led us to design homogeneously damaged substrates to directly compare repair of naked DNA with that of nucleosomes. Here we report that nucleotide excision repair in Xenopus nuclear extracts can effectively repair a single UV radiation photoproduct located 5 bases from the dyad center of a positioned nucleosome, although the nucleosome is repaired at about half the rate at which the naked DNA fragment is. Extract repair within the nucleosome is > 50-fold more rapid than either enzymatic photoreversal or endonuclease cleavage of the lesion in vitro. Furthermore, nucleosome formation occurs (after repair) only on damaged naked DNA ( 165-bp fragments) during a 1-h incubation in these extracts, even in the presence of a large excess of undamaged DNA. This is an example of selective nucleosome assembly by Xenopus nuclear extracts on a short linear DNA fragment containing a DNA lesion.

  7. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome

    PubMed Central

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.

    2015-01-01

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10–30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo. PMID:26602160

  8. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition

    PubMed Central

    Zasadzińska, Ewelina; Barnhart-Dailey, Meghan C; Kuich, P Henning J L; Foltz, Daniel R

    2013-01-01

    The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein-A (CENP-A). The deposition of new centromeric nucleosomes requires the CENP-A-specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3-like domain of HJURP binds a single CENP-A–histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP-A nucleosome. How an octameric CENP-A nucleosome forms from individual CENP-A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C-terminal domain that includes the second HJURP_C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP-A is deposited. Dimerization of HJURP is essential for the deposition of new CENP-A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP-A binding. These data provide a mechanism whereby the CENP-A pre-nucleosomal complex achieves assembly of the octameric CENP-A nucleosome through the dimerization of the CENP-A chaperone HJURP. PMID:23771058

  9. Dual recognition of CENP-A nucleosomes is required for centromere assembly

    PubMed Central

    Carroll, Christopher W.; Milks, Kirstin J.

    2010-01-01

    Centromeres contain specialized nucleosomes in which histone H3 is replaced by the histone variant centromere protein A (CENP-A). CENP-A nucleosomes are thought to act as an epigenetic mark that specifies centromere identity. We previously identified CENP-N as a CENP-A nucleosome-specific binding protein. Here, we show that CENP-C also binds directly and specifically to CENP-A nucleosomes. Nucleosome binding by CENP-C required the extreme C terminus of CENP-A and did not compete with CENP-N binding, which suggests that CENP-C and CENP-N recognize distinct structural elements of CENP-A nucleosomes. A mutation that disrupted CENP-C binding to CENP-A nucleosomes in vitro caused defects in CENP-C targeting to centromeres. Moreover, depletion of CENP-C with siRNA resulted in the mislocalization of all other nonhistone CENPs examined, including CENP-K, CENP-H, CENP-I, and CENP-T, and led to a partial reduction in centromeric CENP-A. We propose that CENP-C binds directly to CENP-A chromatin and, together with CENP-N, provides the foundation upon which other centromere and kinetochore proteins are assembled. PMID:20566683

  10. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy.

    PubMed

    Suzuki, Yuki; Higuchi, Yuji; Hizume, Kohji; Yokokawa, Masatoshi; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio

    2010-05-01

    Nucleosome is a fundamental structural unit of chromatin, and the exposure from or occlusion into chromatin of genomic DNA is closely related to the regulation of gene expression. In this study, we analyzed the molecular dynamics of poly-nucleosomal arrays in solution by fast-scanning atomic force microscopy (AFM) to obtain a visual glimpse of nucleosome dynamics on chromatin fiber at single molecule level. The influence of the high-speed scanning probe on nucleosome dynamics can be neglected since bending elastic energy of DNA molecule showed similar probability distributions at different scan rates. In the sequential images of poly-nucleosomal arrays, the sliding of the nucleosome core particle and the dissociation of histone particle were visualized. The sliding showed limited fluctuation within approximately 50nm along the DNA strand. The histone dissociation occurs by at least two distinct ways: a dissociation of histone octamer or sequential dissociations of tetramers. These observations help us to develop the molecular mechanisms of nucleosome dynamics and also demonstrate the ability of fast-scanning AFM for the analysis of dynamic protein-DNA interaction in sub-seconds time scale. PMID:20236766

  11. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome

    NASA Astrophysics Data System (ADS)

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.

    2015-11-01

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  12. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila

    PubMed Central

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B.; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R.

    2015-01-01

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC. PMID:26227968

  13. NSeq: a multithreaded Java application for finding positioned nucleosomes from sequencing data

    PubMed Central

    Nellore, Abhinav; Bobkov, Konstantin; Howe, Elizabeth; Pankov, Aleksandr; Diaz, Aaron; Song, Jun S.

    2012-01-01

    We introduce NSeq, a fast and efficient Java application for finding positioned nucleosomes from the high-throughput sequencing of MNase-digested mononucleosomal DNA. NSeq includes a user-friendly graphical interface, computes false discovery rates (FDRs) for candidate nucleosomes from Monte Carlo simulations, plots nucleosome coverage and centers, and exploits the availability of multiple processor cores by parallelizing its computations. Java binaries and source code are freely available at https://github.com/songlab/NSeq. The software is supported on all major platforms equipped with Java Runtime Environment 6 or later. PMID:23335939

  14. Nucleosome Assembly Alters the Accessibility of the Antitumor Agent Duocarmycin B2 to Duplex DNA.

    PubMed

    Zou, Tingting; Kizaki, Seiichiro; Pandian, Ganesh N; Sugiyama, Hiroshi

    2016-06-20

    To evaluate the reactivity of antitumor agents in a nucleosome architecture, we conducted in vitro studies to assess the alkylation level of duocarmycin B2 on nucleosomes with core and linker DNA using sequencing gel electrophoresis. Our results suggested that the alkylating efficiencies of duocarmycin B2 were significantly decreased in core DNA and increased at the histone-free linker DNA sites when compared with naked DNA conditions. Our finding that nucleosome assembly alters the accessibility of duocarmycin B2 to duplex DNA could advance its design as an antitumor agent. PMID:27123891

  15. To Remodel or To Build?

    ERIC Educational Resources Information Center

    Rosenblum, Todd

    2009-01-01

    The question of remodeling an existing house to make it wheelchair accessible or building a new barrier-free house is a difficult decision. This article presents some initial questions and considerations followed by a list of pros and cons for remodeling an existing house vs. building a new house.

  16. No-Regrets Remodeling, 2nd Edition

    SciTech Connect

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  17. Histone hyperacetylation can induce unfolding of the nucleosome core particle.

    PubMed Central

    Oliva, R; Bazett-Jones, D P; Locklear, L; Dixon, G H

    1990-01-01

    A direct correlation exists between the level of histone H4 hyperacetylation induced by sodium butyrate and the extent to which nucleosomes lose their compact shape and become elongated (62.0% of the particles have a length/width ratio over 1.6; overall mean in the length/width ratio = 1.83 +/- 0.48) when bound to electron microscope specimen grids at low ionic strength (1mM EDTA, 10mM Tris, pH 8.0). A marked proportion of elongated core particles is also observed in the naturally occurring hyperacetylated chicken testis chromatin undergoing spermatogenesis when analyzed at low ionic strength (36.8% of the particles have a length/width ratio over 1.6). Core particles of elongated shape (length/width ratio over 1.6) generated under low ionic strength conditions are absent in the hypoacetylated chicken erythrocyte chromatin and represent only 2.3% of the untreated Hela S3 cell core particles containing a low proportion of hyperacetylated histones. The marked differences between control and hyperacetylated core particles are absent if the particles are bound to the carbon support film in the presence of 0.2 M NaCl, 6mM MgCl2 and 10mM Tris pH 8.0, conditions known to stabilize nucleosomes. A survey of the published work on histone hyperacetylation together with the present results indicate that histone hyperacetylation does not produce any marked disruption of the core particle 'per se', but that it decreases intranucleosomal stabilizing forces as judged by the lowered stability of the hyperacetylated core particle under conditions of shearing stress such as cationic competition by the carbon support film of the EM grid for DNA binding. Images PMID:2339060

  18. Hmo1 directs pre-initiation complex assembly to an appropriate site on its target gene promoters by masking a nucleosome-free region.

    PubMed

    Kasahara, Koji; Ohyama, Yoshifumi; Kokubo, Tetsuro

    2011-05-01

    Saccharomyces cerevisiae Hmo1 binds to the promoters of ∼ 70% of ribosomal protein genes (RPGs) at high occupancy, but is observed at lower occupancy on the remaining RPG promoters. In Δhmo1 cells, the transcription start site (TSS) of the Hmo1-enriched RPS5 promoter shifted upstream, while the TSS of the Hmo1-limited RPL10 promoter did not shift. Analyses of chimeric RPS5/RPL10 promoters revealed a region between the RPS5 upstream activating sequence (UAS) and core promoter, termed the intervening region (IVR), responsible for strong Hmo1 binding and an upstream TSS shift in Δhmo1 cells. Chromatin immunoprecipitation analyses showed that the RPS5-IVR resides within a nucleosome-free region and that pre-initiation complex (PIC) assembly occurs at a site between the IVR and a nucleosome overlapping the TSS (+1 nucleosome). The PIC assembly site was shifted upstream in Δhmo1 cells on this promoter, indicating that Hmo1 normally masks the RPS5-IVR to prevent PIC assembly at inappropriate site(s). This novel mechanism ensures accurate transcriptional initiation by delineating the 5'- and 3'-boundaries of the PIC assembly zone. PMID:21288884

  19. Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE

    PubMed Central

    Urbonaviciute, Vilma; Fürnrohr, Barbara G.; Meister, Silke; Munoz, Luis; Heyder, Petra; De Marchis, Francesco; Bianchi, Marco E.; Kirschning, Carsten; Wagner, Hermann; Manfredi, Angelo A.; Kalden, Joachim R.; Schett, Georg; Rovere-Querini, Patrizia; Herrmann, Martin; Voll, Reinhard E.

    2008-01-01

    Autoantibodies against double-stranded DNA (dsDNA) and nucleosomes represent a hallmark of systemic lupus erythematosus (SLE). However, the mechanisms involved in breaking the immunological tolerance against these poorly immunogenic nuclear components are not fully understood. Impaired phagocytosis of apoptotic cells with consecutive release of nuclear antigens may contribute to the immune pathogenesis. The architectural chromosomal protein and proinflammatory mediator high mobility group box protein 1 (HMGB1) is tightly attached to the chromatin of apoptotic cells. We demonstrate that HMGB1 remains bound to nucleosomes released from late apoptotic cells in vitro. HMGB1–nucleosome complexes were also detected in plasma from SLE patients. HMGB1-containing nucleosomes from apoptotic cells induced secretion of interleukin (IL) 1β, IL-6, IL-10, and tumor necrosis factor (TNF) α and expression of costimulatory molecules in macrophages and dendritic cells (DC), respectively. Neither HMGB1-free nucleosomes from viable cells nor nucleosomes from apoptotic cells lacking HMGB1 induced cytokine production or DC activation. HMGB1-containing nucleosomes from apoptotic cells induced anti-dsDNA and antihistone IgG responses in a Toll-like receptor (TLR) 2–dependent manner, whereas nucleosomes from living cells did not. In conclusion, HMGB1–nucleosome complexes activate antigen presenting cells and, thereby, may crucially contribute to the pathogenesis of SLE via breaking the immunological tolerance against nucleosomes/dsDNA. PMID:19064698

  20. Centromere specific assembly of CENP-A nucleosomes is mediated by HJURP

    PubMed Central

    Foltz, Daniel R.; Jansen, Lars E.T.; Bailey, Aaron O.; Yates, John R.; Bassett, Emily A.; Wood, Stacey; Black, Ben E.; Cleveland, Don W.

    2009-01-01

    Summary The centromere is responsible for accurate chromosome segregation. Mammalian centromeres are specified epigenetically, with all active centromeres containing centromere specific chromatin in which CENP-A replaces histone H3 within the nucleosome. The proteins responsible for assembly of human CENP-A into centromeric nucleosomes during the G1 phase of the cell cycle are now identified to be distinct from the chromatin assembly factors that load other histone H3 variants. Prenucleosomal CENP-A is complexed with histone H4, nucleophosmin 1 and HJURP. Recruitment of new CENP-A into nucleosomes at replicated centromeres is dependent on HJURP. Recognition by HJURP is mediated through the centromere targeting domain (CATD) of CENP-A, a region that induces a unique conformational rigidity to both the subnucleosomal CENP-A heterotetramer and the corresponding assembled nucleosome. We propose HJURP to be a cell cycle regulated CENP-A specific histone chaperone required for centromeric chromatin assembly. PMID:19410544

  1. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.

    PubMed

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-04-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition. PMID:25854683

  2. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins

    PubMed Central

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-01-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition. PMID:25854683

  3. nuMap: a web platform for accurate prediction of nucleosome positioning.

    PubMed

    Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng

    2014-10-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. PMID:25220945

  4. The Effects of Chemotherapeutic Agents, Bleomycin, Etoposide, and Cisplatin, on Chromatin Remodeling in Male Rat Germ Cells.

    PubMed

    Bagheri-Sereshki, Negar; Hales, Barbara F; Robaire, Bernard

    2016-04-01

    The coadministration of bleomycin, etoposide, and cisplatin (BEP) has increased the survival rate of testicular cancer patients to over 90%. Previous studies have demonstrated that BEP induces germ cell damage during the final stages of spermatogenesis, when major chromatin remodeling occurs. Chromatin remodeling permits histone-protamine exchange, resulting in sperm head chromatin compaction. This process involves different epigenetic modifications of the core histones. The objective of these studies was to investigate the effects of BEP on epigenetic modifications to histones involved in chromatin remodeling. Brown Norway rats were treated with BEP, and their testes were removed to isolate pachytene spermatocytes and round spermatids by unit gravity sedimentation. Western blot analyses were conducted on extracted proteins to detect the expression of key modified histones. In a second cohort testes were prepared for immunohistochemical analysis. The stage-specific expression of each modified histone mark in rat spermatogenesis suggests the involvement of these modifications in chromatin remodeling. BEP treatment significantly increased expression of H3K9m and decreased that of tH2B (or Hist1h2ba) in pachytene spermatocytes, suggesting that nucleosomes were not destabilized to allow for transcription of genes involved in chromatin remodeling. Moreover, BEP treatment altered the expression of H4K8ac in round and elongating spermatids, suggesting that histone eviction was compromised, leading to a looser chromatin structure in mature spermatozoa. Less-compacted sperm chromatin, with alterations to the sperm epigenome, may have an adverse effect on male fertility. PMID:26911428

  5. Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication.

    PubMed

    Lacasse, Jonathan J; Schang, Luis M

    2012-10-01

    Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection. PMID:22875975

  6. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    PubMed

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse. PMID:26414157

  7. Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states.

    PubMed

    Dodd, Ian B; Sneppen, Kim

    2011-12-01

    Positive feedback in nucleosome modification has been proposed to allow large chromatin regions to exist stably and heritably in distinct expression states. However, modeling has shown that such epigenetic bistability requires that modifying enzymes recruited by nucleosomes are active on distant nucleosomes, potentially allowing uncontrollable spreading of modification. By modeling the silencing of mating-type loci in Saccharomyces cerevisiae, we show that a modification reaction that combines a long-range component and a locally acting component can provide bistability and can be blocked by simple barriers that interrupt the nucleosome chain. We find that robust containment of the silenced region could be achieved by the presence of a number of weak simple barriers in the surrounding chromatin and a limited capacity of the positive feedback reaction. In addition, we show that the state of the silenced region can be regulated by silencer elements acting only on neighboring nucleosomes. Thus, a relatively simple set of nucleosome-modifying enzymes and recognition domains is all that is needed to make chromatin-based epigenetics useful and safe. PMID:22037584

  8. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N

    PubMed Central

    Carroll, Christopher W.; Silva, Mariana C.C.; Godek, Kristina M.; Jansen, Lars E.T.; Straight, Aaron F.

    2009-01-01

    Centromeres are specialized chromosomal domains that direct kinetochore assembly during mitosis. CENP-A, a histone H3-variant present exclusively in centromeric nucleosomes, is thought to act as an epigenetic mark that specifies centromere identity. Here we identify the essential centromere protein CENP-N as the first protein to selectively bind CENP-A nucleosomes but not H3 nucleosomes. CENP-N bound CENP-A nucleosomes in a DNA-sequence independent manner but did not bind soluble CENP-A/H4 tetramers. Mutations in CENP-N that reduced the affinity of CENP-N for CENP-A nucleosomes caused defects in CENP-N localization and had dominant effects on the recruitment of CENP-H, CENP-I and CENP-K to centromeres. Depletion of CENP-N with siRNA’s led to similar centromere assembly defects and resulted in reduced assembly of nascent CENP-A into centromeric chromatin. These data suggest that CENP-N interprets the information encoded within CENP-A nucleosomes and recruits to centromeric chromatin other proteins required for centromere function and propagation. PMID:19543270

  9. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

    PubMed

    Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith

    2016-02-29

    It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails. PMID:26553807

  10. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a nucleosome.

    PubMed

    Liu, X; Smerdon, M J

    2000-08-01

    A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition. PMID:10821833

  11. Free-energy landscape of mono- and dinucleosomes: Enhanced rotational flexibility of interconnected nucleosomes

    NASA Astrophysics Data System (ADS)

    Nam, Gi-Moon; Arya, Gaurav

    2016-03-01

    The nucleosome represents the basic unit of eukaryotic genome organization, and its conformational fluctuations play a crucial role in various cellular processes. Here we provide insights into the flipping transition of a nucleosome by computing its free-energy landscape as a function of the linking number and nucleosome orientation using the density-of-states Monte Carlo approach. To investigate how the energy landscape is affected by the presence of neighboring nucleosomes in a chromatin fiber, we also compute the free-energy landscape for a dinucleosome array. We find that the mononucleosome is bistable between conformations with negatively and positively crossed linkers while the conformation with open linkers appears as a transition state. The dinucleosome exhibits a markedly different energy landscape in which the conformation with open linkers populates not only the transition state but also the global minimum. This enhanced stability of the open state is attributed to increased rotational flexibility of nucleosomes arising from their mechanical coupling with neighboring nucleosomes. Our results provide a possible mechanism by which chromatin may enhance the accessibility of its DNA and facilitate the propagation and mitigation of DNA torsional stresses.

  12. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence.

    PubMed

    Nazarov, Igor; Chekliarova, Iana; Rychkov, Georgy; Ilatovskiy, Andrey V; Crane-Robinson, Colyn; Tomilin, Alexey

    2016-02-01

    Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions. PMID:26586109

  13. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.

    PubMed Central

    Gross, D S; Adams, C C; Lee, S; Stentz, B

    1993-01-01

    Heat shock genes are poised for rapid transcriptional activation in response to environmental stress. A universal structural characteristic of such genes is the presence of a nucleosome-free, DNase I hypersensitive promoter region. Here we investigate the structural and functional effects of mutating HSE1, the preferred heat shock factor (HSF) binding site upstream of the yeast HSP82 gene. In situ deletion or substitution of this sequence reduces both basal and induced transcription by at least two orders of magnitude. Moreover, such mutations lead to a dramatic transition in chromatin structure: the DNase I hypersensitive region is replaced by two stable, sequence-positioned nucleosomes. One of these is centered over the mutated heat shock element, while the other--as revealed by DNase I genomic footprinting--is precisely positioned in a rotational sense over the TATA-initiation site. Overexpression of yeast HSF strongly suppresses the null phenotype of the induced hsp82-delta HSE1 gene and re-establishes DNase I hypersensitivity over its promoter. Such suppression is mediated through sequence disposed immediately upstream of HSE1 and containing two low affinity heat shock elements. These data imply a critical role for HSF in displacing stably positioned nucleosomes in Saccharomyces cerevisiae and suggest that HSF transcriptionally activates HSP82 at least partly through its ability to alleviate nucleosome repression of the core promoter. Images PMID:8404861

  14. PuFFIN - a parameter-free method to build nucleosome maps from paired-end reads

    PubMed Central

    2014-01-01

    Background We introduce a novel method, called PuFFIN, that takes advantage of paired-end short reads to build genome-wide nucleosome maps with larger numbers of detected nucleosomes and higher accuracy than existing tools. In contrast to other approaches that require users to optimize several parameters according to their data (e.g., the maximum allowed nucleosome overlap or legal ranges for the fragment sizes) our algorithm can accurately determine a genome-wide set of non-overlapping nucleosomes without any user-defined parameter. This feature makes PuFFIN significantly easier to use and prevents users from choosing the "wrong" parameters and obtain sub-optimal nucleosome maps. Results PuFFIN builds genome-wide nucleosome maps using a multi-scale (or multi-resolution) approach. Our algorithm relies on a set of nucleosome "landscape" functions at different resolution levels: each function represents the likelihood of each genomic location to be occupied by a nucleosome for a particular value of the smoothing parameter. After a set of candidate nucleosomes is computed for each function, PuFFIN produces a consensus set that satisfies non-overlapping constraints and maximizes the number of nucleosomes. Conclusions We report comprehensive experimental results that compares PuFFIN with recently published tools (NOrMAL, TEMPLATE FILTERING, and NucPosSimulator) on several synthetic datasets as well as real data for S. cerevisiae and P. falciparum. Experimental results show that our approach produces more accurate nucleosome maps with a higher number of non-overlapping nucleosomes than other tools. PMID:25252810

  15. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos

    PubMed Central

    Paris, Daniel H.; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N.; Day, Nicholas P. J.; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and

  16. Redox regulation of vascular remodeling.

    PubMed

    Karimi Galougahi, Keyvan; Ashley, Euan A; Ali, Ziad A

    2016-01-01

    Vascular remodeling is a dynamic process of structural and functional changes in response to biochemical and biomechanical signals in a complex in vivo milieu. While inherently adaptive, dysregulation leads to maladaptive remodeling. Reactive oxygen species participate in homeostatic cell signaling in tightly regulated- and compartmentalized cellular circuits. It is well established that perturbations in oxidation-reduction (redox) homeostasis can lead to a state of oxidative-, and more recently, reductive stress. We provide an overview of the redox signaling in the vasculature and review the role of oxidative- and reductive stress in maladaptive vascular remodeling. Particular emphasis has been placed on essential processes that determine phenotype modulation, migration and fate of the main cell types in the vessel wall. Recent advances in systems biology and the translational opportunities they may provide to specifically target the redox pathways driving pathological vascular remodeling are discussed. PMID:26483132

  17. Plant cell remodeling by autophagy

    PubMed Central

    Kim, Jimi; Lee, Han Nim; Chung, Taijoon

    2014-01-01

    Plant seedlings are not photoautotrophs until they are equipped with photosynthetic machinery. Some plant cells are remodeled after being exposed to light, and a group of peroxisomal proteins are degraded during the remodeling. Autophagy was proposed as one of the mechanisms for the degradation of peroxisomal proteins. We recently showed that ATG7-dependent autophagy is partially responsible for the degradation of obsolete peroxisomal proteins during Arabidopsis seedling growth. PMID:24492493

  18. ATP-Dependent Chromatin Remodeling Complexes as Novel Targets for Cancer Therapy

    PubMed Central

    Mayes, Kimberly; Qiu, Zhijun; Alhazmi, Aiman; Landry, Joseph W.

    2016-01-01

    The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target. PMID:24889532

  19. Chromatin remodeling by cell cycle stage-specific extracts from Physarum polycephalum.

    PubMed

    Thiriet, C; Hayes, J J

    1999-03-01

    Remodeling of chromatin is an essential process allowing the establishment of specific genetic programs. The slime mold Physarum polycephalum presents the attractive advantage of natural synchrony of the cell cycle in several million nuclei. Whole-cell extracts prepared at precise stages during the cell cycle were tested for the ability to induce remodeling in erythrocyte nuclei as monitored by microscopy, protamine competition assays, micrococcal nuclease digestions, and release of histone H5. Extracts derived from two specific cell cycle stages caused opposite types of changes in erythrocyte nuclei. An increase in chromatin compaction was imparted by extracts prepared during S-phase while extracts harvested at the end of G2-phase caused increases in nuclear volume, DNA accessibility, and release of linker histone. We also found that late G2 extracts had the ability to alter the DNase I digestion profile of mononucleosomes reconstituted in vitro in a classical nucleosomes remodeling assay. The relevance of these finding to the Physarum cell cycle is discussed. PMID:10219572

  20. Understanding the role of chromatin remodeling in the regulation of circadian transcription in Drosophila.

    PubMed

    Kwok, Rosanna S; Lam, Vu H; Chiu, Joanna C

    2015-10-01

    Circadian clocks enable organisms to anticipate daily changes in the environment and coordinate temporal rhythms in physiology and behavior with the 24-h day-night cycle. The robust cycling of circadian gene expression is critical for proper timekeeping, and is regulated by transcription factor binding, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Recently, it has become clear that dynamic alterations in chromatin landscape at the level of histone posttranslational modification and nucleosome density facilitate rhythms in transcription factor recruitment and RNAPII activity, and are essential for progression through activating and repressive phases of circadian transcription. Here, we discuss the characterization of the BRAHMA (BRM) chromatin-remodeling protein in Drosophila in the context of circadian clock regulation. By dissecting its catalytic vs. non-catalytic activities, we propose a model in which the non-catalytic activity of BRM functions to recruit repressive factors to limit the transcriptional output of CLOCK (CLK) during the active phase of circadian transcription, while the primary function of the ATP-dependent catalytic activity is to tune and prevent over-recruitment of negative regulators by increasing nucleosome density. Finally, we divulge ongoing efforts and investigative directions toward a deeper mechanistic understanding of transcriptional regulation of circadian gene expression at the chromatin level. PMID:26926115

  1. Understanding the role of chromatin remodeling in the regulation of circadian transcription in Drosophila

    PubMed Central

    Kwok, Rosanna S.; Lam, Vu H.; Chiu, Joanna C.

    2015-01-01

    ABSTRACT Circadian clocks enable organisms to anticipate daily changes in the environment and coordinate temporal rhythms in physiology and behavior with the 24-h day-night cycle. The robust cycling of circadian gene expression is critical for proper timekeeping, and is regulated by transcription factor binding, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Recently, it has become clear that dynamic alterations in chromatin landscape at the level of histone posttranslational modification and nucleosome density facilitate rhythms in transcription factor recruitment and RNAPII activity, and are essential for progression through activating and repressive phases of circadian transcription. Here, we discuss the characterization of the BRAHMA (BRM) chromatin-remodeling protein in Drosophila in the context of circadian clock regulation. By dissecting its catalytic vs. non-catalytic activities, we propose a model in which the non-catalytic activity of BRM functions to recruit repressive factors to limit the transcriptional output of CLOCK (CLK) during the active phase of circadian transcription, while the primary function of the ATP-dependent catalytic activity is to tune and prevent over-recruitment of negative regulators by increasing nucleosome density. Finally, we divulge ongoing efforts and investigative directions toward a deeper mechanistic understanding of transcriptional regulation of circadian gene expression at the chromatin level. PMID:26926115

  2. SWI/SNF-Like Chromatin Remodeling Factor Fun30 Supports Point Centromere Function in S. cerevisiae

    PubMed Central

    Theodorou, Delphine; Harris, Rachael R.; Crawford, Margaret R.; Paszkiewicz, Konrad; Krueger, Felix; Correra, Rosa Maria; Vetter, Anna T.; Miller, J. Ross; Kent, Nicholas A.; Varga-Weisz, Patrick

    2012-01-01

    Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture. PMID:23028372

  3. ATP-Dependent Chromatin Remodeling by Cockayne Syndrome Protein B and NAP1-Like Histone Chaperones Is Required for Efficient Transcription-Coupled DNA Repair

    PubMed Central

    Lake, Robert J.; Basheer, Asjad; Fan, Hua-Ying

    2013-01-01

    The Cockayne syndrome complementation group B (CSB) protein is essential for transcription-coupled DNA repair, and mutations in CSB are associated with Cockayne syndrome—a devastating disease with complex clinical features, including the appearance of premature aging, sun sensitivity, and numerous neurological and developmental defects. CSB belongs to the SWI2/SNF2 ATP–dependent chromatin remodeler family, but the extent to which CSB remodels chromatin and whether this activity is utilized in DNA repair is unknown. Here, we show that CSB repositions nucleosomes in an ATP–dependent manner in vitro and that this activity is greatly enhanced by the NAP1-like histone chaperones, which we identify as new CSB–binding partners. By mapping functional domains and analyzing CSB derivatives, we demonstrate that chromatin remodeling by the combined activities of CSB and the NAP1-like chaperones is required for efficient transcription-coupled DNA repair. Moreover, we show that chromatin remodeling and repair protein recruitment mediated by CSB are separable activities. The collaboration that we observed between CSB and the NAP1-like histone chaperones adds a new dimension to our understanding of the ways in which ATP–dependent chromatin remodelers and histone chaperones can regulate chromatin structure. Taken together, the results of this study offer new insights into the functions of chromatin remodeling by CSB in transcription-coupled DNA repair as well as the underlying mechanisms of Cockayne syndrome. PMID:23637612

  4. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2).

    PubMed

    Grundy, Gabrielle J; Polo, Luis M; Zeng, Zhihong; Rulten, Stuart L; Hoch, Nicolas C; Paomephan, Pathompong; Xu, Yingqi; Sweet, Steve M; Thorne, Alan W; Oliver, Antony W; Matthews, Steve J; Pearl, Laurence H; Caldecott, Keith W

    2016-01-01

    PARP3 is a member of the ADP-ribosyl transferase superfamily that we show accelerates the repair of chromosomal DNA single-strand breaks in avian DT40 cells. Two-dimensional nuclear magnetic resonance experiments reveal that PARP3 employs a conserved DNA-binding interface to detect and stably bind DNA breaks and to accumulate at sites of chromosome damage. PARP3 preferentially binds to and is activated by mononucleosomes containing nicked DNA and which target PARP3 trans-ribosylation activity to a single-histone substrate. Although nicks in naked DNA stimulate PARP3 autoribosylation, nicks in mononucleosomes promote the trans-ribosylation of histone H2B specifically at Glu2. These data identify PARP3 as a molecular sensor of nicked nucleosomes and demonstrate, for the first time, the ribosylation of chromatin at a site-specific DNA single-strand break. PMID:27530147

  5. Calibrating ChIP-seq with nucleosomal internal standards to measure histone modification density genome-wide

    PubMed Central

    Grzybowski, Adrian T.; Chen, Zhonglei; Ruthenburg, Alexander J.

    2015-01-01

    SUMMARY Chromatin immunoprecipitation (ChIP) serves as a central experimental technique in epigenetics research, yet there are serious drawbacks: it is a relative measurement, which untethered to any external scale obscures fair comparison amongst experiments; it employs antibody reagents that have differing affinities and specificities for target epitopes that vary in abundance; and it is frequently not reproducible. To address these problems, we developed Internal Standard Calibrated ChIP (ICeChIP), wherein a native chromatin sample is spiked with nucleosomes reconstituted from recombinant and semisynthetic histones on barcoded DNA prior to immunoprecipitation. ICeChIP measures local histone modification densities on a biologically meaningful scale, enabling unbiased trans-experimental comparisons and reveals unique insight into the nature of bivalent domains. This technology provides in situ assessment of the immunoprecipitation step, accommodating for many experimental pitfalls, as well as providing a critical examination of untested assumptions inherent to conventional ChIP. PMID:26004229

  6. Nick translation of HeLa cell nuclei as a probe for locating DNase I-sensitive nucleosomes

    SciTech Connect

    Javaherian, K.; Fasman, G.D.

    1984-03-10

    The technique of nick translation of nuclei has been used in HeLa cells to label DNase I-sensitive regions. Micrococcal nuclease digestion of the nick translated nuclei was followed by a low ionic strength gel electrophoresis system which separates different types of mononucleosomes. The major label was observed in the vicinity of high mobility group protein containing mononucleosomes. However, further analysis revealed that the particle does not sediment in the position of mononucleosomes on a sucrose gradient. Two alternative explanations are discussed as the possible source of this particle. It is either a high mobility group protein containing nucleosome in some unfolded conformation or the labeled particle originates from discrete DNA fragments, wrapped around some nonhistone proteins, located in a highly DNase I-sensitive region, which is resistant to micrococcal nuclease digestion. 36 references, 7 figures.

  7. Nucleosome structure incorporated histone acetylation site prediction in arabidopsis thaliana

    PubMed Central

    2010-01-01

    Abstract Background Acetylation is a crucial post-translational modification for histones, and plays a key role in gene expression regulation. Due to limited data and lack of a clear acetylation consensus sequence, a few researches have focused on prediction of lysine acetylation sites. Several systematic prediction studies have been conducted for human and yeast, but less for Arabidopsis thaliana. Results Concerning the insufficient observation on acetylation site, we analyzed contributions of the peptide-alignment-based distance definition and 3D structure factors in acetylation prediction. We found that traditional structure contributes little to acetylation site prediction. Identified acetylation sites of histones in Arabidopsis thaliana are conserved and cross predictable with that of human by peptide based methods. However, the predicted specificity is overestimated, because of the existence of non-observed acetylable site. Here, by performing a complete exploration on the factors that affect the acetylability of lysines in histones, we focused on the relative position of lysine at nucleosome level, and defined a new structure feature to promote the performance in predicting the acetylability of all the histone lysines in A. thaliana. Conclusion We found a new spacial correlated acetylation factor, and defined a ε-N spacial location based feature, which contains five core spacial ellipsoid wired areas. By incorporating the new feature, the performance of predicting the acetylability of all the histone lysines in A. Thaliana was promoted, in which the previous mispredicted acetylable lysines were corrected by comparing to the peptide-based prediction. PMID:21047388

  8. IUGR increases chromatin-remodeling factor Brg1 expression and binding to GR exon 1.7 promoter in newborn male rat hippocampus.

    PubMed

    Ke, Xingrao; McKnight, Robert A; Gracey Maniar, Lia E; Sun, Ying; Callaway, Christopher W; Majnik, Amber; Lane, Robert H; Cohen, Susan S

    2015-07-15

    Intrauterine growth restriction (IUGR) increases the risk for neurodevelopment delay and neuroendocrine reprogramming in both humans and rats. Neuroendocrine reprogramming involves the glucocorticoid receptor (GR) gene that is epigenetically regulated in the hippocampus. Using a well-characterized rodent model, we have previously shown that IUGR increases GR exon 1.7 mRNA variant and total GR expressions in male rat pup hippocampus. Epigenetic regulation of GR transcription may involve chromatin remodeling of the GR gene. A key chromatin remodeler is Brahma-related gene-1(Brg1), a member of the ATP-dependent SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Brg1 regulates gene expression by affecting nucleosome repositioning and recruiting transcriptional components to target promoters. We hypothesized that IUGR would increase hippocampal Brg1 expression and binding to GR exon 1.7 promoter, as well as alter nucleosome positioning over GR promoters in newborn male pups. Further, we hypothesized that IUGR would lead to accumulation of specificity protein 1 (Sp1) and RNA pol II at GR exon 1.7 promoter. Indeed, we found that IUGR increased Brg1 expression and binding to GR exon 1.7 promoter. We also found that increased Brg1 binding to GR exon 1.7 promoter was associated with accumulation of Sp1 and RNA pol II carboxy terminal domain pSer-5 (a marker of active transcription). Furthermore, the transcription start site of GR exon 1.7 was located within a nucleosome-depleted region. We speculate that changes in hippocampal Brg1 expression mediate GR expression and subsequently trigger neuroendocrine reprogramming in male IUGR rats. PMID:25972460

  9. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability.

    PubMed

    Li, Zhenhai; Kono, Hidetoshi

    2016-01-01

    Nucleosome breathing potentially increases the DNA exposure, which in turn recruits DNA-binding protein and regulates gene transcription. Numerous studies have shown the critical roles of N-terminal tails of histones H3 and H4 in gene expression; however, few studies have focused on the H2A C-terminal tail. Here we present thorough computational studies on a single nucleosome particle showing the linker DNA closing and opening, which is thought to be nucleosome breathing. With our simulation, the H2A C-terminal and H3 N-terminal tails were found to modulate the nucleosome conformation differently. The H2A C-terminal tail regulates nucleosome conformation by binding to linker DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding to it in different patterns. Further MD simulation on tail truncated structures corroborates this analysis. These findings replenish our understanding of the histone tail regulation mechanism on atomic level. PMID:27527579

  10. The role of Nucleosome Positions on Chromatin Structure: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Lequieu, Joshua; Cordoba, Andres; de Pablo, Juan J.

    Nucleosomes compose the basic unit of chromatin, and their locations are central to the regulation and compaction of eukaryotic genomes. In this work, we examine the coupling between different length scales within chromatin by examining the influence of nucleosome positions on three-dimensional chromatin structure. First, using a detailed molecular model of DNA and proteins, we predict the one-dimensional positioning of nucleosomes and the repositioning mechanisms of nucleosomal DNA. We demonstrate that this mechanism is strongly dependent on DNA sequence and that DNA slides around the histone proteins by either a screw-like or loop-like rearrangement. Next, we couple this detailed model to a coarsened model of chromatin and examine the impact of DNA sequence on chromatin's three-dimensional structure. We show that both the locations of nucleosomes and the mechanisms by which they move have a significant impact on higher-order chromatin structure and that variations in DNA sequence lead to ''open'' or ''closed'' regions of chromatin. This approach represents an efficient tool towards understanding the higher order structure of chromatin and how various aspects of chromatin structure are coupled together.

  11. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation

    PubMed Central

    Sun, Yujia; Nien, Chung-Yi; Chen, Kai; Liu, Hsiao-Yun; Johnston, Jeff; Zeitlinger, Julia; Rushlow, Christine

    2015-01-01

    The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner. PMID:26335633

  12. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability

    PubMed Central

    Li, Zhenhai; Kono, Hidetoshi

    2016-01-01

    Nucleosome breathing potentially increases the DNA exposure, which in turn recruits DNA-binding protein and regulates gene transcription. Numerous studies have shown the critical roles of N-terminal tails of histones H3 and H4 in gene expression; however, few studies have focused on the H2A C-terminal tail. Here we present thorough computational studies on a single nucleosome particle showing the linker DNA closing and opening, which is thought to be nucleosome breathing. With our simulation, the H2A C-terminal and H3 N-terminal tails were found to modulate the nucleosome conformation differently. The H2A C-terminal tail regulates nucleosome conformation by binding to linker DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding to it in different patterns. Further MD simulation on tail truncated structures corroborates this analysis. These findings replenish our understanding of the histone tail regulation mechanism on atomic level. PMID:27527579

  13. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA.

    PubMed

    Tesoro, S; Ali, I; Morozov, A N; Sulaiman, N; Marenduzzo, D

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called '10 nm chromatin fibre', where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro. PMID:26871546

  14. Measuring inter-nucleosome interactions and the roles of histone tails

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Andresen, Kurt; Jimenez-Useche, Isabel; Yuan, Chongli; Qiu, Xiangyun

    2013-03-01

    Nucleosome is the first level of genome organization and regulation in eukaryotes, where negatively charged DNA is wrapped around positively charged histone proteins. Being a DNA-protein complex of biological origin, nucleosome is also a model multi-phasic nanoparticle with heterogeneous charge distributions and brush-like flexible tails of the histone proteins. In solutions of nucleosomes, electrostatic forces dominate inter-nucleosome interactions at long range while specific contacts, in particular the flexible histone tails, guides short range interactions. We have thus quantified how the ions from salts (KCl, MgCl2) modulate the inter-nucleosome pair potential by modeling the total small angle x-ray scattering profiles. We additionally elucidated the individual role of the charged tails of histones H3 and H4. We found that measured effective changes at low salt concentrations are about 1/5th of theoretically predicted renormalized charges and that H4 tail deletion suppresses the attraction at high salt concentrations to a larger extent than H3 tail deletion.

  15. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1.

    PubMed

    Boyes, J; Omichinski, J; Clark, D; Pikaart, M; Felsenfeld, G

    1998-06-12

    The ability of transcription factors to gain access to their sites in chromatin requires the disruption or displacement of nucleosomes covering the promoter, signalled by the generation of a nuclease hypersensitive site. We characterise here the alterations in nucleosome structure caused by binding of the erythroid factor GATA-1 to a nucleosome carrying GATA-1 sites. DNase I and micrococcal nuclease probes show that GATA-1 binding causes extensive, cooperative breakage of the histone/DNA contacts to generate a complex very similar to that formed by the factor with free DNA. The only region which differs is confined to about 50 bp surrounding the nucleosome dyad axis which appears to be the domain of residual contact between the DNA and histone octamer. Despite considerable breakage of the histone/DNA contacts, the complex is completely stable in solution, and disruption of the nucleosome is entirely reversible: it is regenerated quantitatively upon removal of the transcription factor. Moreover, the histone 2A/2B component of the octamer does not exchange to external competitor. We suggest that formation of this complex may be a step in the generation of a fully hypersensitive site in vivo over regulatory elements containing GATA family binding sites. PMID:9641976

  16. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Ali, I.; Morozov, A. N.; Sulaiman, N.; Marenduzzo, D.

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called ‘10 nm chromatin fibre’, where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas [1]. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.

  17. Nucleosome compaction facilitates HP1γ binding to methylated H3K9

    PubMed Central

    Mishima, Yuichi; Jayasinghe, Chanika D.; Lu, Kai; Otani, Junji; Shirakawa, Masahiro; Kawakami, Toru; Kimura, Hironobu; Hojo, Hironobu; Carlton, Peter; Tajima, Shoji; Suetake, Isao

    2015-01-01

    The α, β and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1's chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg2+ or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code. PMID:26319017

  18. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers.

    PubMed

    Maeshima, Kazuhiro; Rogge, Ryan; Tamura, Sachiko; Joti, Yasumasa; Hikima, Takaaki; Szerlong, Heather; Krause, Christine; Herman, Jake; Seidel, Erik; DeLuca, Jennifer; Ishikawa, Tetsuya; Hansen, Jeffrey C

    2016-05-17

    The existence of a 30-nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg(2+)-dependent self-association of linear 12-mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call "oligomers", are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10-nm fibers, rather than folded 30-nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro These results indicate that a 10-nm array of nucleosomes has the intrinsic ability to self-assemble into large chromatin globules stabilized by nucleosome-nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes. PMID:27072995

  19. Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses

    PubMed Central

    Rubinski, Anna; Ziv, Noam E.

    2015-01-01

    Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size “configurations”. Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby inhibitory and excitatory synapse remodeling, but also revealed that inhibitory synapse size configurations changed at considerably slower rates than those of their glutamatergic neighbors. These findings point to quantitative differences in spontaneous remodeling dynamics of inhibitory and excitatory synapses but also reveal deep qualitative similarities in the processes that control their sizes and govern their remodeling dynamics. PMID:26599330

  20. Response to Comment on "A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme".

    PubMed

    Watanabe, Shinya; Peterson, Craig L

    2016-07-22

    Wang et al report a failure to reproduce our biochemical observation that the INO80C and SWR1C/SWR1/SWR-C chromatin remodeling enzymes catalyze replacement of nucleosomal H2A.Z with H2A when the substrate contains H3-K56Q. They point to technical problems with our dimer exchange assay. In response, we have recapitulated our findings using a mobility shift assay that was developed and employed by Wang and colleagues. PMID:27463666

  1. Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast

    PubMed Central

    2011-01-01

    Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression. PMID:21981773

  2. Structural remodeling of unweighted soleus myotendinous junction in monkey.

    PubMed

    Roffino, Sandrine; Carnino, Alain; Chopard, Angèle; Mutin, Murielle; Marini, Jean-François

    2006-03-01

    This study describes the morphology of the soleus myotendinous junction (MTJ) in the Rhesus monkey. Ultrastructural observations revealed a structural complexity that probably reflects functional adaptations. We also studied ultrastructural modifications of the MTJ in response to 14 days of hypokinesia and microgravity (Bion 11 mission). The reduced limb mobility of the animals, placed in a safety seat aboard the satellite, induced a sarcolemmal remodeling that was enhanced by the microgravity conditions. Signs of MTJ remodeling such as alterations of contractile apparatus and myofilament-anchoring structures, T-tubule dilation, and autophagic vacuoles could be ascribed to the microgravity. PMID:16545758

  3. Brownian dynamics simulation of the effect of histone modification on nucleosome structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Dou, Shuo-Xing; Xie, Ping; Wang, Peng-Ye

    2007-05-01

    Using Brownian dynamics we simulate the effect of histone modification, such as phosphorylation, acetylation, and methylation, on nucleosome structure by varying the interaction force between DNA and the histone octamer. The simulation shows that the structural stability of nucleosome is very sensitive to the interaction force, and the DNA unwrapping from the modified histone octamer usually occurs turn by turn. Furthermore, the effects of temperature and DNA break as well as the competition between modified and normal histone octamers are investigated, with the simulation results being in agreement with the experimental observation that phosphorylated nucleosomes near DNA breaks are more easily depleted. Though the simulation study may only give a coarse grained view of the DNA unwrapping process for the modified histone octamer, it may provide insight into the mechanism of DNA repair.

  4. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure

    PubMed Central

    Nishino, Yoshinori; Eltsov, Mikhail; Joti, Yasumasa; Ito, Kazuki; Takata, Hideaki; Takahashi, Yukio; Hihara, Saera; Frangakis, Achilleas S; Imamoto, Naoko; Ishikawa, Tetsuya; Maeshima, Kazuhiro

    2012-01-01

    How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures. PMID:22343941

  5. Nucleosome Binding Alters the Substrate Bonding Environment of Histone H3 Lysine 36 Methyltransferase NSD2.

    PubMed

    Poulin, Myles B; Schneck, Jessica L; Matico, Rosalie E; Hou, Wangfang; McDevitt, Patrick J; Holbert, Marc; Schramm, Vern L

    2016-06-01

    Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone H3 lysine 36 (H3K36)-specific methyltransferase enzyme that is overexpressed in a number of cancers, including multiple myeloma. NSD2 binds to S-adenosyl-l-methionine (SAM) and nucleosome substrates to catalyze the transfer of a methyl group from SAM to the ε-amino group of histone H3K36. Equilibrium binding isotope effects and density functional theory calculations indicate that the SAM methyl group is sterically constrained in complex with NSD2, and that this steric constraint is released upon nucleosome binding. Together, these results show that nucleosome binding to NSD2 induces a significant change in the chemical environment of enzyme-bound SAM. PMID:27183271

  6. Site-specific aflatoxin B sub 1 adduction of sequence-positioned nucleosome core particles

    SciTech Connect

    Moyer, R.A.

    1988-01-01

    The question of how the presence of nucleosomal packing of DNA modifies carcinogen interaction at specific sites cannot be answered by studies on whole chromatin or bulk nucleosomes because of the heterogeneity of DNA sequences in the particles. This problem was circumvented by constructing nucleosomes that are homogenous in DNA-histone contact points. A cloned DNA fragment, containing a sea urchin 5S gene which precisely positions a histone octamer was employed. By using {sup 32}P end-labeled DNA and genotoxins that allow cleavage at sites of attack, the frequency of adduction at every susceptible nucleotide can be determined on sequencing gels. The small methylating agent dimethyl sulfate (DMS) and the bulky alkylating agent afatoxin B{sub 1}-dichloride (AFB{sub 1}-Cl{sub 2}) were used to probe the influence of DNA-histone interactions on DNA alkylation patterns in sequence-positioned core particles.

  7. RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response.

    PubMed

    Groocock, Lynda M; Nie, Minghua; Prudden, John; Moiani, Davide; Wang, Tao; Cheltsov, Anton; Rambo, Robert P; Arvai, Andrew S; Hitomi, Chiharu; Tainer, John A; Luger, Karolin; Perry, J Jefferson P; Lazzerini-Denchi, Eros; Boddy, Michael N

    2014-05-01

    The post-translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin-like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO-modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome-targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome-targeting is crucially required for the repair of TRF2-depleted dysfunctional telomeres by 53BP1-mediated non-homologous end joining. PMID:24714598

  8. Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleosome at 3.0 Å Resolution

    SciTech Connect

    Armache, Karim-Jean; Garlick, Joseph D.; Canzio, Daniele; Narlikar, Geeta J.; Kingston, Robert E.

    2011-11-30

    Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.

  9. Chemistry of bone remodelling preserved in extant and fossil Sirenia.

    PubMed

    Anné, Jennifer; Wogelius, Roy A; Edwards, Nicholas P; van Veelen, Arjen; Ignatyev, Konstantin; Manning, Phillip L

    2016-05-01

    Bone remodelling is a crucial biological process needed to maintain elemental homeostasis. It is important to understand the trace elemental inventories that govern these processes as malfunctions in bone remodelling can have devastating effects on an organism. In this study, we use a combination of X-ray techniques to map, quantify, and characterise the coordination chemistry of trace elements within the highly remodelled bone tissues of extant and extinct Sirenia (manatees and dugongs). The dense bone structure and unique body chemistry of sirenians represent ideal tissues for studying both high remodelling rates as well as unique fossilisation pathways. Here, elemental maps revealed uncorrelated patterning of Ca and Zn within secondary osteons in both extant and fossil sirenians, as well as elevated Sr within the connecting canals of fossil sirenians. Concentrations of these elements are comparable between extant and fossil material indicating geochemical processing of the fossil bone has been minimal. Zn was found to be bound in the same coordination within the apatite structure in both extant and fossil bone. Accurate quantification of trace elements in extant material was only possible when the organic constituents of the bone were included. The comparable distributions, concentrations, and chemical coordination of these physiologically important trace elements indicate the chemistry of bone remodelling has been preserved for 19 million years. This study signifies the powerful potential of merging histological and chemical techniques in the understanding of physiological processes in both extant and extinct vertebrates. PMID:26923825

  10. Nucleosomal organization of chromatin in sperm nuclei of the bivalve mollusc Aulacomya ater.

    PubMed

    Olivares, C; Ruiz, S

    1991-03-13

    The sperm nuclei of Aulacomya ater, family Mitylidae, contain three proteins (X, Aa5 and Aa6) which are specific to this cell type coexisting with a set of five somatic-type histones. Information about the chromatin structure resulting from this kind of association is scarce. Therefore, we have probed the structure of this sperm chromatin through digestion with micrococcal nuclease in combination with salt fractionation. The data obtained have allowed us to propose a nucleosomal arrangement for this chromatin. However, two types of nucleosomes would be present in agreement with their protein components. PMID:1861676

  11. Temperature-dependent cleavage of chromatin by micrococcal nuclease near the nucleosome center.

    PubMed

    Huang, S Y; Garrard, W T

    1986-04-01

    Digestion of nuclei at 4 degrees C with micrococcal nuclease results in significant intranucleosomal cleavage compared to digestion conducted at 37 degrees C. Employing nucleoprotein gel electrophoresis in one dimension followed by DNA electrophoresis in a second dimension, we demonstrate that such temperature-sensitive, internal cleavage predominantly occurs about 20 bp from the nucleosome center. We suggest that lower temperatures reduce the stability of hydrophobic interactions within the histone octamer and lead to a conformational alteration in nucleosomes that is detected by micrococcal nuclease. PMID:3956749

  12. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    PubMed

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  13. Rho Kinases and Cardiac Remodeling.

    PubMed

    Shimizu, Toru; Liao, James K

    2016-06-24

    Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498). PMID:27251065

  14. Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver

    PubMed Central

    Hoffman, Brad G.; Robertson, Gordon; Zavaglia, Bogard; Beach, Mike; Cullum, Rebecca; Lee, Sam; Soukhatcheva, Galina; Li, Leping; Wederell, Elizabeth D.; Thiessen, Nina; Bilenky, Mikhail; Cezard, Timothee; Tam, Angela; Kamoh, Baljit; Birol, Inanc; Dai, Derek; Zhao, YongJun; Hirst, Martin; Verchere, C. Bruce; Helgason, Cheryl D.; Marra, Marco A.; Jones, Steven J.M.; Hoodless, Pamela A.

    2010-01-01

    The liver and pancreas share a common origin and coexpress several transcription factors. To gain insight into the transcriptional networks regulating the function of these tissues, we globally identify binding sites for FOXA2 in adult mouse islets and liver, PDX1 in islets, and HNF4A in liver. Because most eukaryotic transcription factors bind thousands of loci, many of which are thought to be inactive, methods that can discriminate functionally active binding events are essential for the interpretation of genome-wide transcription factor binding data. To develop such a method, we also generated genome-wide H3K4me1 and H3K4me3 localization data in these tissues. By analyzing our binding and histone methylation data in combination with comprehensive gene expression data, we show that H3K4me1 enrichment profiles discriminate transcription factor occupied loci into three classes: those that are functionally active, those that are poised for activation, and those that reflect pioneer-like transcription factor activity. Furthermore, we demonstrate that the regulated presence of H3K4me1-marked nucleosomes at transcription factor occupied promoters and enhancers controls their activity, implicating both tissue-specific transcription factor binding and nucleosome remodeling complex recruitment in determining tissue-specific gene expression. Finally, we apply these approaches to generate novel insights into how FOXA2, PDX1, and HNF4A cooperate to drive islet- and liver-specific gene expression. PMID:20551221

  15. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure—a FRET study

    PubMed Central

    Gansen, Alexander; Tóth, Katalin; Schwarz, Nathalie; Langowski, Jörg

    2015-01-01

    Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones. PMID:25589544

  16. Organisation of nucleosomal arrays reconstituted with repetitive African green monkey α-satellite DNA as analysed by atomic force microscopy

    PubMed Central

    Bussiek, Malte; Müller, Gabriele; Waldeck, Waldemar; Diekmann, Stephan

    2007-01-01

    Alpha-satellite DNA (AS) is part of centromeric DNA and could be relevant for centromeric chromatin structure: its repetitive character may generate a specifically ordered nucleosomal arrangement and thereby facilitate kinetochore protein binding and chromatin condensation. Although nucleosomal positioning on some satellite sequences had been shown, including AS from African green monkey (AGM), the sequence-dependent nucleosomal organisation of repetitive AS of this species has so far not been analysed. We therefore studied the positioning of reconstituted nucleosomes on AGM AS tandemly repeated DNA. Enzymatic analysis of nucleosome arrays formed on an AS heptamer as well as the localisation of mononucleosomes on an AS dimer by atomic force microscopy (AFM) showed one major positioning frame, in agreement with earlier results. The occupancy of this site was in the range of 45–50%, in quite good agreement with published in vivo observations. AFM measurements of internucleosomal distances formed on the heptamer indicated that the nucleosomal arrangement is governed by sequence-specific DNA-histone interactions yielding defined internucleosomal distances, which, nevertheless, are not compatible with a uniform phasing of the nucleosomes with the AGM AS repeats. PMID:17503032

  17. High-resolution biophysical analysis of the dynamics of nucleosome formation.

    PubMed

    Hatakeyama, Akiko; Hartmann, Brigitte; Travers, Andrew; Nogues, Claude; Buckle, Malcolm

    2016-01-01

    We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical "Widom" sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides 'snapshots' of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization. PMID:27263658

  18. Changes in the molecular structure of mouse fetal astrocyte nucleosomes produced in vitro by methylmercuric chloride

    SciTech Connect

    Choi, B.H.; Simpkins, H.

    1986-04-01

    The fluorescent probe N-(3-pyrene)maleimide, which specifically labels the cysteine residues of histone H3 within the nucleosome, was used to monitor changes in the nucleosomal structure of mouse fetal astrocytes exposed to varying concentrations of methylmercuric chloride. Methylmercuric chloride treatment (10 ..mu..m) for 6 hr produced a significant decrease in the degree of fluorescence of the probe. The decrease was much smaller following a 4-hr incubation period. These results correlate with recent observations showing that significant changes in the thymidine labeling index occur following 4-6 hr of exposure to methylmercury (MeHg). It is hypothesized that MeHg enters the cells during the growth phase and attaches to the protein moiety of the nucleosome in or near the cysteine groups of histone H3, thus diminishing the binding capacity of the fluorescent probe. Addition of a detergent (sodium dodecyl sulfate) resulted in only a small increase in the degree of fluorescence of the treated nucleosomes as compared to controls, showing that the interaction of MeHg with the nuclear proteins was not dissociated by detergent. In view of the strong interaction between DNA and the histone dimer H3-H4 and the potential importance of the latter in gene regulation, these results suggest an additional means by which MeHg may exert its toxic effects.

  19. Binding of TATA Binding Protein to a Naturally Positioned Nucleosome Is Facilitated by Histone Acetylation

    PubMed Central

    Sewack, Gerald F.; Ellis, Thomas W.; Hansen, Ulla

    2001-01-01

    The TATA sequence of the human, estrogen-responsive pS2 promoter is complexed in vivo with a rotationally and translationally positioned nucleosome (NUC T). Using a chromatin immunoprecipitation assay, we demonstrate that TATA binding protein (TBP) does not detectably interact with this genomic binding site in MCF-7 cells in the absence of transcriptional stimuli. Estrogen stimulation of these cells results in hyperacetylation of both histones H3 and H4 within the pS2 chromatin encompassing NUC T and the TATA sequence. Concurrently, TBP becomes associated with the pS2 promoter region. The relationship between histone hyperacetylation and the binding of TBP was assayed in vitro using an in vivo-assembled nucleosomal array over the pS2 promoter. With chromatin in its basal state, the binding of TBP to the pS2 TATA sequence at the edge of NUC T was severely restricted, consistent with our in vivo data. Acetylation of the core histones facilitated the binding of TBP to this nucleosomal TATA sequence. Therefore, we demonstrate that one specific, functional consequence of induced histone acetylation at a native promoter is the alleviation of nucleosome-mediated repression of the binding of TBP. Our data support a fundamental role for histone acetylation at genomic promoters in transcriptional activation by nuclear receptors and provide a general mechanism for rapid and reversible transcriptional activation from a chromatin template. PMID:11158325

  20. Small-Activating RNA Can Change Nucleosome Positioning in Human Fibroblasts.

    PubMed

    Wang, Bin; Sun, Jing; Shi, Jiandong; Guo, Qing; Tong, Xiangrong; Zhang, Jin; Hu, Ningzhu; Hu, YunZhang

    2016-07-01

    RNA activation (RNAa) is a mechanism of positive gene expression regulation mediated by small-activating RNAs (saRNAs), which target gene promoters and have been used as tools to manipulate gene expression. Studies have shown that RNAa is associated with epigenetic modifications at promoter regions; however, it is unclear whether these modifications are the cause or a consequence of RNAa. In this study, we examined changes in nucleosome repositioning and the involvement of RNA polymerase II (RNAPII) in this process. We screened saRNAs for OCT4 (POU5F1), SOX2, and NANOG, and identified several novel saRNAs. We found that nucleosome positioning was altered after saRNA treatment and that the formation of nucleosome-depleted regions (NDRs) contributed to RNAa at sites of RNAPII binding, such as the TATA box, CpG islands (CGIs), proximal enhancers, and proximal promoters. Moreover, RNAPII appeared to be bound specifically to NDRs. These results suggested that changes in nucleosome positions resulted from RNAa. We thus propose a hypothesis that targeting promoter regions using exogenous saRNAs can induce the formation of NDRs, exposing regulatory binding sites to recruit RNAPII, a key component of preinitiation complex, and leading to increased initiation of transcription. PMID:26993320

  1. High-resolution biophysical analysis of the dynamics of nucleosome formation

    PubMed Central

    Hatakeyama, Akiko; Hartmann, Brigitte; Travers, Andrew; Nogues, Claude; Buckle, Malcolm

    2016-01-01

    We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical “Widom” sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides ‘snapshots’ of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization. PMID:27263658

  2. Kinase-mediated changes in nucleosome conformation trigger chromatin decondensation via poly-ADP-ribosylation

    PubMed Central

    Thomas, Colin J.; Kotova, Elena; Andrake, Mark; Adolf-Bryfogle, Jared; Glaser, Robert; Regnard, Catherine; Tulin, Alexei V.

    2014-01-01

    SUMMARY Dynamically controlled post-translational modifications of nucleosomal histones alter chromatin condensation to regulate transcriptional activation. We report that a nuclear tandem kinase, JIL-1, controls gene expression by activating Poly(ADP-ribose) Polymerase 1 (PARP-1). JIL-1 phosphorylates the C-terminus of the H2Av histone variant, which stimulates PARP-1 enzymatic activity in the surrounding chromatin, leading to further modification of histones and chromatin loosening. The H2Av nucleosome has a higher surface representation of PARP-1 binding patch consisting of H3 and H4 epitopes. Phosphorylation of H2Av by JIL-1 restructures this surface patch leading to activation of PARP-1. Exposure of Val61 and Leu23 of the H4 histone is critical for PARP-1 binding on nucleosome and PARP-1 activation following H2Av phosphorylation. We propose that chromatin loosening and associated initiation of gene expression is activated by phosphorylation of H2Av in a nucleosome positioned in promoter regions of PARP-1 dependent genes. PMID:24508391

  3. Single-molecule tools elucidate H2A.Z nucleosome composition

    PubMed Central

    Chen, Jiji; Miller, Andrew; Kirchmaier, Ann L.; Irudayaraj, Joseph M. K.

    2012-01-01

    Summary Although distinct epigenetic marks correlate with different chromatin states, how they are integrated within single nucleosomes to generate combinatorial signals remains largely unknown. We report the successful implementation of single molecule tools constituting fluorescence correlation spectroscopy (FCS), pulse interleave excitation-based Förster resonance energy transfer (PIE-FRET) and fluorescence lifetime imaging-based FRET (FLIM-FRET) to elucidate the composition of single nucleosomes containing histone variant H2A.Z (Htz1p in yeast) in vitro and in vivo. We demonstrate that yeast nucleosomes containing Htz1p are primarily composed of H4 K12ac and H3 K4me3 but not H3 K36me3 and that these patterns are conserved in mammalian cells. Quantification of epigenetic modifications in nucleosomes will provide a new dimension to epigenetics research and lead to a better understanding of how these patterns contribute to the targeting of chromatin-binding proteins and chromatin structure during gene regulation. PMID:22393239

  4. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy

    PubMed Central

    Badal, Shawn S.; Wang, Yin; Long, Jianyin; Corcoran, David L.; Chang, Benny H.; Truong, Luan D.; Kanwar, Yashpal S.; Overbeek, Paul A.; Danesh, Farhad R.

    2016-01-01

    How the kidney responds to the metabolic cues from the environment remains a central question in kidney research. This question is particularly relevant to the pathogenesis of diabetic nephropathy (DN) in which evidence suggests that metabolic events in podocytes regulate chromatin structure. Here, we show that miR-93 is a critical metabolic/epigenetic switch in the diabetic milieu linking the metabolic state to chromatin remodelling. Mice with inducible overexpression of a miR-93 transgene exclusively in podocytes exhibit significant improvements in key features of DN. We identify miR-93 as a regulator of nucleosomal dynamics in podocytes. miR-93 has a critical role in chromatin reorganization and progression of DN by modulating its target Msk2, a histone kinase, and its substrate H3S10. These findings implicate a central role for miR-93 in high glucose-induced chromatin remodelling in the kidney, and provide evidence for a previously unrecognized role for Msk2 as a target for DN therapy. PMID:27350436

  5. Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons

    PubMed Central

    Baranek, Constanze; Dittrich, Manuela; Parthasarathy, Srinivas; Bonnon, Carine Gaiser; Britanova, Olga; Lanshakov, Dmitriy; Boukhtouche, Fatiha; Sommer, Julia E.; Colmenares, Clemencia; Tarabykin, Victor; Atanasoski, Suzana

    2012-01-01

    First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski–Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification. PMID:22334647

  6. The chromatin remodeler Mi-2beta is required for CD4 expression and T cell development.

    PubMed

    Williams, Christine J; Naito, Taku; Arco, Pablo Gómez-Del; Seavitt, John R; Cashman, Susan M; De Souza, Beverly; Qi, Xiaoqing; Keables, Piper; Von Andrian, Ulrich H; Georgopoulos, Katia

    2004-06-01

    Changes in chromatin structure underlie the activation or silencing of genes during development. The chromatin remodeler Mi-2beta is highly expressed in thymocytes and is presumed to be a transcriptional repressor because of its presence in the nucleosome remodeling deacetylase (NuRD) complex. Using conditional inactivation, we show that Mi-2beta is required at several steps during T cell development: for differentiation of beta selected immature thymocytes, for developmental expression of CD4, and for cell divisions in mature T cells. We further show that Mi-2beta plays a direct role in promoting CD4 gene expression. Mi-2beta associates with the CD4 enhancer as well as the E box binding protein HEB and the histone acetyltransferase (HAT) p300, enabling their recruitment to the CD4 enhancer and causing histone H3-hyperacetylation to this regulatory region. These findings provide important insights into the regulation of CD4 expression during T cell development and define a role for Mi-2beta in gene activation. PMID:15189737

  7. miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy.

    PubMed

    Badal, Shawn S; Wang, Yin; Long, Jianyin; Corcoran, David L; Chang, Benny H; Truong, Luan D; Kanwar, Yashpal S; Overbeek, Paul A; Danesh, Farhad R

    2016-01-01

    How the kidney responds to the metabolic cues from the environment remains a central question in kidney research. This question is particularly relevant to the pathogenesis of diabetic nephropathy (DN) in which evidence suggests that metabolic events in podocytes regulate chromatin structure. Here, we show that miR-93 is a critical metabolic/epigenetic switch in the diabetic milieu linking the metabolic state to chromatin remodelling. Mice with inducible overexpression of a miR-93 transgene exclusively in podocytes exhibit significant improvements in key features of DN. We identify miR-93 as a regulator of nucleosomal dynamics in podocytes. miR-93 has a critical role in chromatin reorganization and progression of DN by modulating its target Msk2, a histone kinase, and its substrate H3S10. These findings implicate a central role for miR-93 in high glucose-induced chromatin remodelling in the kidney, and provide evidence for a previously unrecognized role for Msk2 as a target for DN therapy. PMID:27350436

  8. Chromatin remodeling system, cancer stem-like attractors, and cellular reprogramming.

    PubMed

    Zhang, Yue; Moriguchi, Hisashi

    2011-11-01

    The cancer cell attractors theory provides a next-generation understanding of carcinogenesis and natural explanation of punctuated clonal expansions of tumor progression. The impressive notion of atavism of cancer is now updated but more evidence is awaited. Besides, the mechanisms that the ectopic expression of some germline genes result in somatic tumors such as melanoma and brain tumors are emerging but are not well understood. Cancer could be triggered by cells undergoing abnormal cell attractor transitions, and may be reversible with "cyto-education". From mammals to model organisms like Caenorhabditis elegans and Drosophila melanogaster, the versatile Mi-2β/nucleosome remodeling and histone deacetylation complexes along with their functionally related chromatin remodeling complexes (CRCs), i.e., the dREAM/Myb-MuvB complex and Polycomb group complex are likely master regulators of cell attractors. The trajectory that benign cells switch to cancerous could be the reverse of navigation of embryonic cells converging from a series of intermediate transcriptional states to a final adult state, which is supported by gene expression dynamics inspector assays and some cross-species genetic evidence. The involvement of CRCs in locking cancer attractors may help find the recipes of perturbing genes to achieve successful reprogramming such that the reprogrammed cancer cell function in the same way as the normal cells. PMID:21909785

  9. Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP.

    PubMed

    Darvekar, Sagar; Johnsen, Sylvia Sagen; Eriksen, Agnete Bratsberg; Johansen, Terje; Sjøttem, Eva

    2012-02-15

    Transcriptional regulation requires co-ordinated action of transcription factors, co-activator complexes and general transcription factors to access specific loci in the dense chromatin structure. In the present study we demonstrate that the transcriptional co-regulator SPBP [stromelysin-1 PDGF (platelet-derived growth factor)-responsive element binding protein] contains two independent chromatin-binding domains, the SPBP-(1551-1666) region and the C-terminal extended PHD [ePHD/ADD (extended plant homeodomain/ATRX-DNMT3-DNMT3L)] domain. The region 1551-1666 is a novel core nucleosome-interaction domain located adjacent to the AT-hook motif in the DNA-binding domain. This novel nucleosome-binding region is critically important for proper localization of SPBP in the cell nucleus. The ePHD/ADD domain associates with nucleosomes in a histone tail-dependent manner, and has significant impact on the dynamic interaction between SPBP and chromatin. Furthermore, SPBP and its homologue RAI1 (retinoic-acid-inducible protein 1), are strongly enriched on chromatin in interphase HeLa cells, and both proteins display low nuclear mobility. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP-(1551-1666) and an ePHD/ADD domain with ability to bind nucleosomes. These results indicate that the transcriptional co-regulator SPBP and its homologue RAI1 implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome both belong to the expanding family of chromatin-binding proteins containing several domains involved in specific chromatin interactions. PMID:22081970

  10. Autoantibodies to histone, DNA and nucleosome antigens in canine systemic lupus erythematosus.

    PubMed Central

    Monestier, M; Novick, K E; Karam, E T; Chabanne, L; Monier, J C; Rigal, D

    1995-01-01

    Dogs can develop systemic lupus erythematosus syndromes that are clinically similar to those seen in humans. In contrast, previous observations suggest differences in their autoantibody reactivity patterns against histones and DNA which are components of the nucleosome in chromatin. The objective of this study was to assess comprehensively the levels of autoantibodies against histone, DNA and nucleosome antigens in a population of lupus dogs. The specificities of antibodies in lupus and control dog sera were determined using IgM- and IgG-specific reagents in an ELISA against a variety of chromatin antigens. When compared with control sera, IgG antibodies to individual histones H1, H2A, H3 and H4 were significantly higher in the lupus group. In contrast, we did not detect IgG antibodies specific for H2B, H2A-H2B, DNA, H2A-H2B-DNA or nucleosome in lupus dogs. There was no significant increase in any of the IgM specificities tested. Therefore, the reactivity pattern to nucleosome antigens in canine lupus is restricted to IgG antibodies against individual histones H1, H2A, H3 and H4. This stands in contrast with human and murine lupus, where autoantibodies are directed against a wide variety of nucleosomal determinants, suggesting that unique mechanisms lead to the expansion of anti-histone antibody clones in canine lupus. The high incidence of glomerulonephritis in dog lupus suggests that anti-DNA antibodies are not required for the development of this complication, whereas IgG anti-histone antibodies may be relevant to its pathogenesis. PMID:7529150

  11. Natural abundance carbon-13 nuclear magnetic resonance studies of histone and DNA dynamics in nucleosome cores.

    PubMed

    Hilliard, P R; Smith, R M; Rill, R L

    1986-05-01

    Natural abundance carbon-13 nuclear magnetic resonance spectra (67.9 MHz) were obtained for native nucleosome cores: cores dissociated in 2 M NaCl and 2 M NaCl, 6 M urea; and cores degraded with DNase I plus proteinase K. Phosphorus-31 NMR spectra of native and dissociated cores and core length DNA were also obtained at 60.7 MHz. The 31P resonance and spin-lattice relaxation time (T1) of DNA were only slightly affected by packaging in nucleosome cores, in agreement with other reports, but 13C resonances of DNA were essentially unobservable. The loss of DNA spectral intensity suggests that rapid internal motions of DNA sugar carbons in protein-free DNA previously demonstrated by 13C NMR methods are partly restricted in nucleosomes. The 13C spectrum of native cores contains many narrow intense resonances assigned to lysine side chain and alpha-carbons, glycine alpha-carbons, alanine alpha- and beta- carbons, and arginine side chain carbons. Several weaker resonances were also assigned. The narrow line widths, short T1 values, and non-minimal nuclear Overhauser enhancements of these resonances, including alpha- and beta-carbons, show that some terminal chain segments of histones in nucleosomes are as mobile as small random coil polypeptides. The mobile segments include about 9% of all histone residues and 25% of all lysines, but only 10% of all arginines. The compositions of these segments indicate that mobile regions are located in amino- or carboxyl-terminal sequences of two or more histones. In addition, high mobility was observed for side chain carbons of 45-50% of all lysines (delta and epsilon carbons) and about 25% of all arginines (zeta carbon) in histones (including those in mobile segments), suggesting that basic residues in terminal histone sequences are not strongly involved in nucleosome structure and may instead help stabilize higher order chromatin structure. PMID:3700380

  12. Frontiers in growth and remodeling.

    PubMed

    Menzel, Andreas; Kuhl, Ellen

    2012-06-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  13. Frontiers in growth and remodeling

    PubMed Central

    Menzel, Andreas; Kuhl, Ellen

    2012-01-01

    Unlike common engineering materials, living matter can autonomously respond to environmental changes. Living structures can grow stronger, weaker, larger, or smaller within months, weeks, or days as a result of a continuous microstructural turnover and renewal. Hard tissues can adapt by increasing their density and grow strong. Soft tissues can adapt by increasing their volume and grow large. For more than three decades, the mechanics community has actively contributed to understand the phenomena of growth and remodeling from a mechanistic point of view. However, to date, there is no single, unified characterization of growth, which is equally accepted by all scientists in the field. Here we shed light on the continuum modeling of growth and remodeling of living matter, and give a comprehensive overview of historical developments and trends. We provide a state-of-the-art review of current research highlights, and discuss challenges and potential future directions. Using the example of volumetric growth, we illustrate how we can establish and utilize growth theories to characterize the functional adaptation of soft living matter. We anticipate this review to be the starting point for critical discussions and future research in growth and remodeling, with a potential impact on life science and medicine. PMID:22919118

  14. Advances in understanding cartilage remodeling

    PubMed Central

    Li, Yefu; Xu, Lin

    2015-01-01

    Cartilage remodeling is currently among the most popular topics in osteoarthritis research. Remodeling includes removal of the existing cartilage and replacement by neo-cartilage. As a loss of balance between removal and replacement of articular cartilage develops (particularly, the rate of removal surpasses the rate of replacement), joints will begin to degrade. In the last few years, significant progress in molecular understanding of the cartilage remodeling process has been made. In this brief review, we focus on the discussion of some current “controversial” observations in articular cartilage degeneration: (1) the biological effect of transforming growth factor-beta 1 on developing and mature articular cartilages, (2) the question of whether aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAMTS5) are key enzymes in articular cartilage destruction, and (3) chondrocytes versus chondron in the development of osteoarthritis. It is hoped that continued discussion and investigation will follow to better clarify these topics. Clarification will be critical for those in search of novel therapeutic targets for the treatment of osteoarthritis. PMID:26380073

  15. PNPLA3 mediates hepatocyte triacylglycerol remodeling.

    PubMed

    Ruhanen, Hanna; Perttilä, Julia; Hölttä-Vuori, Maarit; Zhou, You; Yki-Järvinen, Hannele; Ikonen, Elina; Käkelä, Reijo; Olkkonen, Vesa M

    2014-04-01

    The I148M substitution in patatin-like phospholipase domain containing 3 (PNPLA3(I148M)) determines a genetic form of nonalcoholic fatty liver disease. To elucidate the mode of PNPLA3 action in human hepatocytes, we studied effects of WT PNPLA3 (PNPLA3(WT)) and PNPLA3(I148M) on HuH7 cell lipidome after [(13)C]glycerol labeling, cellular turnover of oleic acid labeled with 17 deuterium atoms ([D17]oleic acid) in triacylglycerols (TAGs), and subcellular distribution of the protein variants. PNPLA3(I148M) induced a net accumulation of unlabeled TAGs, but not newly synthesized total [(13)C]TAGs. Principal component analysis (PCA) revealed that both PNPLA3(WT) and PNPLA3(I148M) induced a relative enrichment of TAGs with saturated FAs or MUFAs, with concurrent enrichment of polyunsaturated phosphatidylcholines. PNPLA3(WT) associated in PCA with newly synthesized [(13)C]TAGs, particularly 52:1 and 50:1, while PNPLA3(I148M) associated with similar preexisting TAGs. PNPLA3(WT) overexpression resulted in increased [D17]oleic acid labeling of TAGs during 24 h, and after longer incubations their turnover was accelerated, effects not detected with PNPLA3(I148M). PNPLA3(I148M) localized more extensively to lipid droplets (LDs) than PNPLA3(WT), suggesting that the substitution alters distribution of PNPLA3 between LDs and endoplasmic reticulum/cytosol. This study reveals a function of PNPLA3 in FA-selective TAG remodeling, resulting in increased TAG saturation. A defect in TAG remodeling activity likely contributes to the TAG accumulation observed in cells expressing PNPLA3(I148M). PMID:24511104

  16. The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme

    PubMed Central

    Racki, Lisa R.; Naber, Nariman; Pate, Ed; Leonard, John; Cooke, Roger; Narlikar, Geeta J.

    2014-01-01

    The chromatin remodeling complex ACF helps establish the appropriate nucleosome spacing for generating repressed chromatin states. ACF activity is stimulated by two defining features of the nucleosomal substrate: a basic patch on the histone H4 N-terminal tail and the specific length of flanking DNA. Yet the mechanisms by which these two substrate cues function in the ACF remodeling reaction is not well understood. Using electron paramagnetic resonance spectroscopy with spin-labeled ATP analogs to probe the structure of the ATP active site under physiological solution conditions, we identify a closed state of the ATP-binding pocket that correlates with ATPase activity. We find that the H4 tail promotes pocket closure. We further show that ATPase stimulation by the H4 tail does not require a specific structure connecting the H4 tail and the globular domain. In the case of many DNA helicases, closure of the ATP- binding pocket is regulated by specific DNA substrates. Pocket closure by the H4 tail may analogously provide a mechanism to directly couple substrate recognition to activity. Surprisingly, the flanking DNA, which also stimulates ATP hydrolysis, does not promote pocket closure, suggesting that the H4 tail and flan