Science.gov

Sample records for remote controlled system

  1. Remotely controllable mixing system

    NASA Technical Reports Server (NTRS)

    Belew, R. R. (Inventor)

    1986-01-01

    This invention relates to a remotely controllable mixing system in which a plurality of mixing assemblies are arranged in an annular configuration, and wherein each assembly employs a central chamber and two outer, upper and lower chambers. Valves are positioned between chambers, and these valves for a given mixing assembly are operated by upper and lower control rotors, which in turn are driven by upper and lower drive rotors. Additionally, a hoop is compressed around upper control rotors and a hoop is compressed around lower control rotors to thus insure constant frictional engagement between all control rotors and drive rotors. The drive rollers are driven by a motor.

  2. Intelligent System Controller for remote systems

    SciTech Connect

    Harrigan, R.W.

    1992-01-01

    The US Department of Energy's Office of Technology Development (OTD) has sponsored the development of the Generic Intelligent System Controller (GISC) for application to the clean up of hazardous waste sites. Of primary interest to the OTD is the development of technologies which result in faster, safer, and cheaper cleanup of hazardous waste sites than possible using conventional approaches. An objective of the GISC development project is to achieve these goals by developing a modular robotics control approach which reduces the time and cost of development by allowing reuse of control system software and uses computer models to improve the safety of remote site cleanup while reducing the time and life cycle costs.

  3. Remote controlled high wall coal mining system

    SciTech Connect

    Apt, J.J.; Dury, J.D.; Lansberry, J.B.

    1982-04-06

    A high wall mining system including a continuous mining machine is claimed. The system consists of a remote control station outwardly of the high wall from which extend electric cables wound on cable reels which extend to the continuous mining machine enabling the operator to control the machine based upon television pictures transmitted to the control station from television cameras on the machine, and the signals from laser and sonar guidance systems provided at the control station in cooperation with elements on the continuous mining machine, and an extensible and retractable vacuum air conveyor system for the coal recovered by the mining machine.

  4. System for remote control of underground device

    DOEpatents

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  5. System and method for controlling remote devices

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.; Scott, Jeff W.; Clark, David A.

    2006-02-07

    A system and method for controlling remote devices utilizing a radio frequency identification (RFID) tag device having a control circuit adapted to render the tag device, and associated objects, permanently inoperable in response to radio-frequency control signals. The control circuit is configured to receive the control signals that can include an enable signal, and in response thereto enable an associated object, such as a weapon; and in response to a disable signal, to disable the tag itself, or, if desired, to disable the associated weapon or both the device and the weapon. Permanent disabling of the tag can be accomplished by several methods, including, but not limited to, fusing a fusable link, breaking an electrically conductive path, permanently altering the modulation or backscattering characteristics of the antenna circuit, and permanently erasing an associated memory. In this manner, tags in the possession of unauthorized employees can be remotely disabled, and weapons lost on a battlefield can be easily tracked and enabled or disabled automatically or at will.

  6. Visual Systems for Remotely Controlled Vehicles

    NASA Technical Reports Server (NTRS)

    Rezek, T.

    1984-01-01

    The Variable Acuity Remote Viewing System is discussed. It was conceived as a technique for resolving the field of view/resolution/ bandwidth tradeoffs that exist in remote viewing systems. This system is based on the fact that integration of the human eye acuity function shows only about 130,000 pixels are required to fully support the human vision. This quantity is well within the capabilities of conventional video systems. The technique utilizes a non-linear optical system in both the sensing and display equipment. The non-linearity is achieved by a special lens which translates a uniform pixel array on its image plane into the object field as a variable angular array. This lens will record the same angular detail the eye would see when viewing the same scene and compress this detail into a uniform matrix of equal sized picture elements on its image plane. This image can be scanned with a broadcast quality tv having a 525 line raster scan. Conventional transmission equipment can then also be used to send the image information to a remote location. When received, the image is projected by a light valve projector onto a hemispherical screen by an identical non-linear lens.

  7. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote...

  8. Expert operator preferences in remote manipulator control systems

    SciTech Connect

    Sundstrom, E.; Draper, J.V.; Fausz, A.; Woods, H.

    1995-06-01

    This report describes a survey of expert remote manipulator operators designed to identify features of control systems related to operator efficiency and comfort. It provides information for designing the control center for the Single-Shell Tank Waste Retrieval Manipulator System (TWRMS) Test Bed, described in a separate report. Research questions concerned preferred modes of control, optimum work sessions, sources of operator fatigue, importance of control system design features, and desired changes in control rooms. Participants comprised four expert remote manipulator operators at Oak Ridge National Laboratory, who individually have from 9 to 20 years of experience using teleoperators. The operators had all used rate and position control, and all preferred bilateral (force-reflecting) position control. They reported spending an average of 2.75 h in control of a teleoperator system during a typical shift. All were accustomed to working in a crew of two and alternating control and support roles in 2-h rotations in an 8-h shift. Operators reported that fatigue in using remote manipulator systems came mainly from watching TV monitors and making repetitive motions. Three of four experienced symptoms, including headaches and sore eyes, wrists, and back. Of 17 features of control rooms rated on importance, highest ratings went to comfort and support provided by the operator chair, location of controls, location of video monitors, video image clarity, types of controls, and control modes. When asked what they wanted to change, operators said work stations designed for comfort; simpler, lighter hand-controls; separate controls for each camera; better placement of remote camera; color monitors; and control room layouts that support crew interaction. Results of this small survey reinforced the importance of ergonomic factors in remote manipulation.

  9. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  10. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  11. Reaction control system/remote manipulator system automation

    NASA Technical Reports Server (NTRS)

    Hiers, Harry K.

    1990-01-01

    The objectives of this project is to evaluate the capability of the Procedural Reasoning System (PRS) in a typical real-time space shuttle application and to assess its potential for use in the Space Station Freedom. PRS, developed by SRI International, is a result of research in automating the monitoring and control of spacecraft systems. The particular application selected for the present work is the automation of malfunction handling procedures for the Shuttle Remote Manipulator System (SRMS). The SRMS malfunction procedures will be encoded within the PRS framework, a crew interface appropriate to the RMS application will be developed, and the real-time data interface software developed. The resulting PRS will then be integrated with the high-fidelity On-orbit Simulation of the NASA Johnson Space Center's System Engineering Simulator, and tests under various SRMS fault scenarios will be conducted.

  12. Remote Neural Pendants In A Welding-Control System

    NASA Technical Reports Server (NTRS)

    Venable, Richard A.; Bucher, Joseph H.

    1995-01-01

    Neural network integrated circuits enhance functionalities of both remote terminals (called "pendants") and communication links, without necessitating installation of additional wires in links. Makes possible to incorporate many features into pendant, including real-time display of critical welding parameters and other process information, capability for communication between technician at pendant and host computer or technician elsewhere in system, and switches and potentiometers through which technician at pendant exerts remote control over such critical aspects of welding process as current, voltage, rate of travel, flow of gas, starting, and stopping. Other potential manufacturing applications include control of spray coating and of curing of composite materials. Potential nonmanufacturing uses include remote control of heating, air conditioning, and lighting in electrically noisy and otherwise hostile environments.

  13. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... source into the body or to the surface of the body for radiation therapy. This generic type of device...

  14. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... source into the body or to the surface of the body for radiation therapy. This generic type of device...

  15. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... source into the body or to the surface of the body for radiation therapy. This generic type of device...

  16. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... source into the body or to the surface of the body for radiation therapy. This generic type of device...

  17. Remotely controlled vehicles and systems for integrated remediation of buried tru wastes

    SciTech Connect

    Tucker, H.J.; Ballantyne, J.; Rife, G.; Fung, P.

    1996-12-31

    This paper describes the design, implementation and testing of remotely controlled vehicle systems developed for cooperative retrieval and transportation of Transuranic (TRU) buried wastes. The systems described are for the control of a Remote Excavator (REMEX), a Self Guided Transfer Vehicle (SGTV), a Remotely Controlled Materials Handling System and a Virtual Environment for Remote Operations (VERO), using imaging by a 3D Laser Camera.

  18. ACE Observatory Control System - 16 years of remote intercontinental observing

    NASA Astrophysics Data System (ADS)

    Mack, Peter

    2011-03-01

    The ACE Observatory Control System has been used for remote control since 1995. The system was designed for use at isolated observatories with no-one present on the mountain-top. The software provides complete diagnostic feedback to the astronomer and is supplemented by live audio-visual. Accessories include environmental sensors (weather station, all-sky camera, constellation cameras), automated mirror covers and remote power control. This gives the astronomer the same experience as being present at the observatory. The system is installed on 30 telescopes and many of them are used for routine nightly intercontinental observations, such as Taejeon (S. Korea) to Mt. Lemmon (Arizona) and southeast USA to KPNO and CTIO. The system has fully integrated autoguider acquisition and science camera control. We describe the building blocks of the system and the accessories including automated mirror covers, weather station, all sky camera, remote power control and dome control. Future plans are presented for a fully autonomous platform-independent scheduler and robot for use on multiple telescopes.

  19. The Fermilab CMTF cryogenic distribution remote control system

    NASA Astrophysics Data System (ADS)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-01

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  20. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  1. Solid state remote power controllers for 120 Vdc power systems

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Baker, D. E.

    1976-01-01

    Solid state Remote Power Controllers (RPCs) developed for use in any dc power system with voltage up to 120 Vdc and distributed power up to 3.6 kW per bus are described. The RPCs were demonstrated to be reliable, 99 percent efficient, comparatively simple, and potentially low in cost. Advantages of the RPCs include: contactless switching; controlled rates of current rise and fall; current limiting; and fast, well-defined, repeatable response to overloads and faults.

  2. Scrubber and remote control system improves productivity and safety

    SciTech Connect

    Kost, J.

    1984-07-01

    The paper describes the development of a scrubber and remote control system for a continuous miner. Test results using the system and a greater depth of cut showed that productivity was increased without any sacrifice to health and safety. Approval has been obtained from MSHA for operation under a ventilation plan which allows a 40 aft cut and a face-to-brattice distance of 40 ft when the scrubber is in operation.

  3. A Self Calibrating Remote Controllable Water Monitoring System

    NASA Astrophysics Data System (ADS)

    Croft, J. E.; Heath, G. L.

    2006-12-01

    The Idaho National Laboratory (INL) has been asked to support Mountain States Environmental (MSE) by providing an automated remote monitoring system for a treatment process of acid mine discharge from the Susie mine, which is located outside of Rimini near Helena, Montana. The mine, now abandoned, produces water year around that is contaminated with lead, zinc, cadmium and arsenic (Pb, Zn, Cd, and As). MSE is managing a project to install and test a pilot scale treatment system that will operate year around treating the discharge water to remove the metal contaminants of concern. The treatment system employs a combination of lime addition, iron addition, settling chambers, sand filters and polishing to treat the contaminated water. The system requires routine monitoring to ensure that process controls remain functional. The INL is developing a monitoring system capable of self calibrating, with two way communication, in a remote location that will provide physical and chemical water quality measurements throughout the treatment system.

  4. Web based remote monitoring and controlling system for vulnerable environments

    NASA Astrophysics Data System (ADS)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  5. Neural joint control for Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.

    1992-01-01

    Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.

  6. A Self-Calibrating Remote Control Chemical Monitoring System

    SciTech Connect

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  7. Telepresence system development for application to the control of remote robotic systems

    NASA Technical Reports Server (NTRS)

    Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien

    1989-01-01

    The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.

  8. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    SciTech Connect

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  9. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    NASA Astrophysics Data System (ADS)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-12-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Because each subsystem has to be far away from each other and be placed in the distant location, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  10. Influence of network latency in a remote control system using haptic media

    NASA Astrophysics Data System (ADS)

    Asano, Toshio; Ishibashi, Yutaka; Kurokawa, Youichi

    2006-10-01

    This paper deals with a remote control system which controls a haptic interface device with another remote haptic interface device. Applications of the system include a remote drawing instruction system, a remote calligraphy system and a remote medical operation system. This paper examines the influence of network latency on the output quality of haptic media by subjective assessment in the remote drawing instruction system. As a result, we show that the instructor has smaller Mean Opinion Score (MOS) values than the learner, and the MOS value can be estimated with high accuracy from the summation of the network latency from an instructor's terminal to a learner's terminal and that in the opposite direction.

  11. Field Deployable Tritium Assay System Remote Control Software

    Energy Science and Technology Software Center (ESTSC)

    1998-05-12

    The FDTASREM software is a command control based application for the Field Deployable Tritium Assay System (FDTAS-Invention Disclosure SRS-96-091 has been submitted). The program runs on the Remote computer which is located at the field site with the FDTAS sampling and analysis components. The application executes commands received over the connected phone line from the operator via the FDTAS Host GUI running in the laboratory some distance away. The FDTASREM controls interface with the FDTASmore » auto sampler and the analysis systems. It tells the sampler to take a sample from a specified location and send it to the analyzer. Once the sample is sent to the analyzer, FDTASREM sequences the internal valves and pumps to deliver the sample and cocktail to the counting chamber. Once the analysis is complete, the program can execute the clean command and prepare the system for the next sample.« less

  12. Remote and Local Display Applications for the Launch Control System and the Kennedy Ground Control System

    NASA Technical Reports Server (NTRS)

    Gordillo, Orlando Enrique

    2016-01-01

    This spring 2016 semester, I interned through the OSSI Intern program, sponsored by USRA, at NASA's Kennedy Space Center. I worked under the Engineering Directorate (NE-ES), under the software branch. We are creating the future Launch Control System (LCS). The system monitors, manages and sends commands to ground or flight subsystems. I worked on both the remote applications, which reside in the firing room, and local applications that are in Panel Views. The two kinds of applications have completely different development environments but work in parallel. For each project I was assigned to work with a specific subsystems team. I worked with the Launch Release Subsystem (LRS) on the remote side and with the Environmental Control Subsystem (ECS) on the Local side.

  13. Multivariable control of the Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Adams, Neil J.; Appleby, Brent D.; Prakash, OM, II

    1991-01-01

    Linear controllers are designed to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in position hold mode. Design techniques used include H2 and H-infinity optimization. The nonlinear SRMS is linearized by modeling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability using both the small gain theorem with an H-infinity norm and the less conservative mu-analysis test. Regulator designs offer significant improvement over the current system for the nominal plant. Unfortunately, the SRMS model suffers from lightly damped poles with real parametric uncertainty. Under such conditions, the mu-analysis test, which allows for complex perturbations, cannot guarantee robust stability.

  14. 46 CFR 62.35-5 - Remote propulsion-control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control....

  15. 46 CFR 62.35-5 - Remote propulsion-control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control....

  16. 46 CFR 62.35-5 - Remote propulsion-control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control....

  17. Web-based remote machine control system in Java

    NASA Astrophysics Data System (ADS)

    Lee, Shiwoo

    2000-12-01

    Rapidly evolving information technology, especially World Wide Web (WWW), brought many innovative changes to people's lives and businesses. Information technology not only influences people's daily lives and business but also impacts on manufacturing. As computers become powerful and affordable, factories introduced computers to their shop floor to integrate manufacturing since 1980's. Because manufacturing industries tend to acquire world-wide manufacturing facilities, it got difficult to set up, control, maintain, and optimize to facilitate manufacturing resources on global sites. However, little work has been done in the area of global manufacturing until recently. A Web-Based Machine Control System (WMCS), which controls remote manufacturing resources using a general-purpose web browser has been implemented at Computer Integrated Manufacturing (CIM) laboratory of Northeastern University. This research presents a framework and Java implementation of WMCS for Manufacturing. The general-purpose web browser has been used as a front-end interface to interact with WMCS through HTTP (Hyper-Text Transfer Protocol) protocol.

  18. Evaluation of a Remote Monitoring System for Diabetes Control

    PubMed Central

    Katalenich, Bonnie; Shi, Lizheng; Liu, Shuqian; Shao, Hui; McDuffie, Roberta; Carpio, Gandahari; Thethi, Tina; Fonseca, Vivian

    2015-01-01

    Purpose The use of technology to implement cost-effective health care management on a large scale may be an alternative for diabetes management but needs to be evaluated in controlled trials. This study assessed the utility and cost-effectiveness of an automated Diabetes Remote Monitoring and Management System (DRMS) in glycemic control versus usual care. Methods In this randomized, controlled study, patients with uncontrolled diabetes on insulin were randomized to use of the DRMS or usual care. Participants in both groups were followed up for 6 months and had 3 clinic visits at 0, 3, and 6 months. The DRMS used text messages or phone calls to remind patients to test their blood glucose and to report results via an automated system, with no human interaction unless a patient had severely high or low blood glucose. The DRMS made adjustments to insulin dose(s) based on validated algorithms. Participants reported medication adherence through the Morisky Medication Adherence Scale-8, and diabetes-specific quality of life through the diabetes Daily Quality of Life questionnaire. A cost-effectiveness analysis was conducted based on the estimated overall costs of DRMS and usual care. Findings A total of 98 patients were enrolled (59 [60%] female; mean age, 59 years); 87 participants (89%) completed follow-up. HbA1c was similar between the DRMS and control groups at 3 months (7.60% vs 8.10%) and at 6 months (8.10% vs 7.90%). Changes from baseline to 6 months were not statistically significant for self-reported medication adherence and diabetes-specific quality of life, with the exception of the Daily Quality of Life–Social/Vocational Concerns subscale score (P = 0.04). Implications An automated system like the DRMS may improve glycemic control to the same degree as usual clinic care and may significantly improve the social/vocational aspects of quality of life. Cost-effectiveness analysis found DRMS to be cost-effective when compared to usual care and suggests DRMS has a

  19. Remote vehicle controller

    NASA Astrophysics Data System (ADS)

    Schmitz, John J.

    1992-06-01

    A remote control system is disclosed for use with vehicles having radios. A first vehicle has a controller attached to the radio for use in sending signals to a second vehicle. The second, remotely controlled, vehicle has a receiver connected to the vehicle radio which receives commands from the first radio to effect the desired motion and action of the second vehicle. The receiver and controller have circuitry which allows them to be reprogrammed to function on various military vehicles and also be attached to the different radio systems in use by the U.S. Military.

  20. Remote controlled tool systems for nuclear sites have subsea applications

    SciTech Connect

    Bath, B.; Yemington, C.; Kuhta, B.

    1995-10-01

    Remotely operated underwater tool systems designed to operate in Nuclear Fuel Storage Basins can be applied to deep water, subsea oilfield applications. Spent nuclear fuel rods re stored underwater in large indoor swimming pool-like facilities where the water cover shields the workers from the radiation. This paper describes three specialized tooling systems that were designed and built by Sonsub for work at the Department of Energy`s Hanford site. The Door Seal Tool removed an existing seal system, cleaned a 20 ft. tall, carbon steel, underwater hatch and installed a new stainless steel gasket surface with underwater epoxy. The Concrete Sampling Tool was built to take core samples from the vertical, concrete walls of the basins. The tool has three hydraulic drills with proprietary hollow core drill bits to cut and retrieve the concrete samples. The Rack Saw remotely attached itself to a structure, cut a variety of steel shapes and pipes, and retained the cut pieces for retrieval. All of these systems are remotely operated with onboard video cameras and debris collection systems. The methods and equipment proven in this application are available to refurbish sealing surfaces and to drill or sample concrete in offshore oil field applications.

  1. Hybrid control and acquisition system for remote control systems for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Garufi, Fabio; Acernese, Fausto; Boiano, Alfonso; De Rosa, Rosario; Romano, Rocco; Barone, Fabrizio

    2008-10-01

    In this paper we describe the architecture and the performances of a hybrid modular acquisition and control system prototype for environmental monitoring and geophysics. The system, an alternative to a VME-UDP/IP based system, is based on a dual-channel 18-bit low noise ADC and a 16-bit DAC module at 1 MHz. The module can be configured as stand-alone or mounted on a motherboard as mezzanine. Both the modules and the motherboard can send/receive the configuration and the acquired/correction data for control through a standard EPP parallel port to a standard PC for the real-time computation. The tests have demonstrated that a distributed control systems based on this architecture exhibits a delay time of less than 25 us on a single channel, i.e a sustained sampling frequency of more than 40 kHz (and up to 80 kHz). The system is now under extensive test in the remote controls of seismic sensors (to simulate a geophysics networks of sensors) of a large baseline suspended Michelson interferometer.

  2. Hybrid control and acquisition system for remote control systems for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Garufi, Fabio; Acernese, Fausto; Boiano, Alfonso; De Rosa, Rosario; Romano, Rocco; Barone, Fabrizio

    2008-03-01

    In this paper we describe the architecture and the performances of a hybrid modular acquisition and control system prototype for environmental monitoring and geophysics. The system, an alternative to a VME-UDP/IP based system, is based on a dual-channel 18-bit low noise ADC and a 16-bit DAC module at 1 MHz. The module can be configured as stand-alone or mounted on a motherboard as mezzanine. Both the modules and the motherboard can send/receive the configuration and the acquired/correction data for control through a standard EPP parallel port to a standard PC for the real-time computation. The tests have demonstrated that a distributed control systems based on this architecture exhibits a delay time of less than 25 us on a single channel, i.e a sustained sampling frequency of more than 40 kHz (and up to 80 kHz). The system is now under extensive test in the remote controls of seismic sensors (to simulate a geophysics networks of sensors) of a large baseline suspended Michelson interferometer.

  3. Remote control radioactive-waste removal system uses modulated laser transmitter

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Kopia, L. P.; Rowland, C. W.; Sinclair, A. R.

    1971-01-01

    Laser remote control system consists of transmitter, auto tracker, and receiver. Transmitter and tracker, packaged together and bore sighted, constitute control station, receiver is slave station. Model has five command channels and optical link operating range of 110 m.

  4. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-07-09

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables.

  5. Scrubber and remote control system improves productivity and safety

    SciTech Connect

    Kust, J.

    1984-07-01

    The test program conducted at NREC No. 1 Mine clearly indicated that methane levels did not increase with greater depths of cut (up to 40 ft) and corresponding increases in the face-to-brattice distance and methane and respirable dust levels remained well within acceptable levels. By using the scrubber, remote control, and greater depth of cut, productivity is increased without any sacrifice to miner health and safety. Based on the test results, NREC recently received approval from MSHA to operate under a ventilation plan which allows a 40-ft cut and face-to-brattice distance of 40 ft when the scrubber is in operation.

  6. Digital system for monitoring and controlling remote processes

    NASA Astrophysics Data System (ADS)

    Roach, Dennis P.

    The need to operate increasingly complex and potentially hazardous facilities at higher degrees of efficiency can be met through the development of automated process control systems. The availability of microcomputers capable of interfacing to data acquisition and control equipment results in the possibility of developing such systems at low investment costs. An automated control system is described which maintains a constant or time varying pressure in a pressure vessel. Process control data acquisition and analysis is carried out using a commercially available microcomputer and data scanner interface device. In this system, a computer interface is developed to allow precision positioning of custom designed proportional valves. Continuous real time process control is achieved through a direct digital control algorithm. The advantages to be gained by adapting this system to other process control applications is discussed. The modular design and ability of this system to operate many types of hardware control mechanisms makes it adaptable to a wide variety of industrial applications.

  7. A multi-mode manipulator display system for controlling remote robotic systems

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.

    1994-01-01

    The objective and contribution of the research presented in this paper is to provide a Multi-Mode Manipulator Display System (MMDS) to assist a human operator with the control of remote manipulator systems. Such systems include space based manipulators such as the space shuttle remote manipulator system (SRMS) and future ground controlled teleoperated and telescience space systems. The MMDS contains a number of display modes and submodes which display position control cues position data in graphical formats, based primarily on manipulator position and joint angle data. Therefore the MMDS is not dependent on visual information for input and can assist the operator especially when visual feedback is inadequate. This paper provides descriptions of the new modes and experiment results to date.

  8. Laser communication system for controlling several functions at a location remote to the laser

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Rowland, C. W.; Sinclair, A. R. (Inventor)

    1973-01-01

    A multichannel laser remote control system is described. The system is used in areas where radio frequency, acoustic, and hardware control systems are unsatisfactory or prohibited and where line of sight is unobstructed. A modulated continuous wave helium-neon laser is used as the transmitter and a 360 degree light collector serves as the antenna at the receiver.

  9. Remote observing from the bottom up: the architecture of the WIYN telescope control system

    NASA Astrophysics Data System (ADS)

    Percival, Jeffrey W.

    1995-06-01

    Remote observing has many definitions, ranging from unattended batch-mode use through simple remote logins to fully faithful off-site observing centers indistinguishable from the on- site telescope control room. There are problems with each of these ideas: batch mode operation, for example, precludes remote interactive target acquisition and remote access to targets of opportunity. Simple remote login suffers from network problems such as full-duplex character latency; shipping screens instead of the underlying data can cause bandwidth problems and interferes with analyzing or archiving data. Brute-force reproduction of the control room requires expensive fiber or satellite connections. The WIYN Telescope control system was designed to be inexpensive to build and inexpensive to maintain. We emphasized the use of standard tools, portable implementations, and network friendliness. These techniques and features are precisely those that underlie a powerful remote observing capability. The WIYN Telescope control system therefore supports remote observing from the very lowest levels, and does so effectively and inexpensively using a carefully planned architecture, standard software and network tools, and innovative methods to ship large digital images over low bandwidth connections such as phone lines. Even before the construction was complete, these techniques proved their value by allowing remote access for the purposes of eavesdropping, troubleshooting, and servo tuning. This paper presents a block diagram and detailed descriptions of the WIYN Telescope control system architecture. Each aspect of the control system is discussed with respect to its contribution to the overall goal of remote observing, including multi-user access, bandwidth conservation, interoperability, and portability.

  10. A remotely augmented vehicle approach to flight testing RPV control systems

    NASA Technical Reports Server (NTRS)

    Deets, D. A.; Edwards, J. W.

    1974-01-01

    A remotely augmented vehicle concept for flight testing advanced control systems was developed as an outgrowth of a remotely piloted research vehicle (RPV) program in which control laws are implemented through telemetry uplink and downlink data channels using a general purpose ground based digital computer which provides the control law computations. Some advantages of this approach are that the cost of one control system facility is spread over a number of RPV programs, and control laws can be changed quickly as required, without changing the flight hardware. The remotely augmented vehicle concept is described, and flight test results from a subscale F-15 program are discussed. Suggestions of how the concept could lead to more effective testing of RPV control system concepts, and how it is applicable to a military RPV reconnaissance mission are given.

  11. Adaptive guidance and control for future remote sensing systems

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Myers, J. E.

    1980-01-01

    A unique approach to onboard processing was developed that is capable of acquiring high quality image data for users in near real time. The approach is divided into two steps: the development of an onboard cloud detection system; and the development of a landmark tracker. The results of these two developments are outlined and the requirements of an operational guidance and control system capable of providing continuous estimation of the sensor boresight position are summarized.

  12. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  13. Fuzzy control system for a remote focusing microscope

    NASA Technical Reports Server (NTRS)

    Weiss, Jonathan J.; Tran, Luc P.

    1992-01-01

    Space Station Crew Health Care System procedures require the use of an on-board microscope whose slide images will be transmitted for analysis by ground-based microbiologists. Focusing of microscope slides is low on the list of crew priorities, so NASA is investigating the option of telerobotic focusing controlled by the microbiologist on the ground, using continuous video feedback. However, even at Space Station distances, the transmission time lag may disrupt the focusing process, severely limiting the number of slides that can be analyzed within a given bandwidth allocation. Substantial time could be saved if on-board automation could pre-focus each slide before transmission. The authors demonstrate the feasibility of on-board automatic focusing using a fuzzy logic ruled-based system to bring the slide image into focus. The original prototype system was produced in under two months and at low cost. Slide images are captured by a video camera, then digitized by gray-scale value. A software function calculates an index of 'sharpness' based on gray-scale contrasts. The fuzzy logic rule-based system uses feedback to set the microscope's focusing control in an attempt to maximize sharpness. The systems as currently implemented performs satisfactorily in focusing a variety of slide types at magnification levels ranging from 10 to 1000x. Although feasibility has been demonstrated, the system's performance and usability could be improved substantially in four ways: by upgrading the quality and resolution of the video imaging system (including the use of full color); by empirically defining and calibrating the index of image sharpness; by letting the overall focusing strategy vary depending on user-specified parameters; and by fine-tuning the fuzzy rules, set definitions, and procedures used.

  14. A secure and reliable monitor and control system for remote observing with the Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Wallace, Gary; Souccar, Kamal; Malin, Daniella

    2004-09-01

    Remote access to telescope monitor and control capabilities necessitates strict security mechanisms to protect the telescope and instruments from malicious or unauthorized use, and to prevent data from being stolen, altered, or corrupted. The Large Millimeter Telescope (LMT) monitor and control system (LMTMC) utilizes the Common Object Request Broker Architecture (CORBA) middleware technology to connect remote software components. The LMTMC provides reliable and secure remote observing by automatically generating SSLIOP enabled CORBA objects. TAO, the ACE open source Object Request Broker (ORB), now supports secure communications by implementing the Secure Socket Layer Inter-ORB Protocol (SSLIOP) as a pluggable protocol. This capability supplies the LMTMC with client and server authentication, data integrity, and encryption. Our system takes advantage of the hooks provided by TAO SSLIOP to implement X.509 certificate based authorization. This access control scheme includes multiple authorization levels to enable granular access control.

  15. A Remote Irrigation Monitoring and Control System (RIMCS) for Continuous Move Systems. Part A: Description and Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous move irrigation systems have been modified since the 1990s to support variable rate irrigation. Most of these systems used PLC (Programmable Logic Controllers) technology that did a good job of on-site control but were expensive to add remote, real-time monitoring and control aspects ma...

  16. A remote irrigation monitoring and control system (RIMCS) for Continuous Move Systems. Part B: Field Testing and Results.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision irrigation systems can have inherent errors that affect the accuracy of variable water application rates and affect the transferability of the control system. The objective of this study was to assess the performance and transferability of a remote irrigation monitoring and control system ...

  17. Supervisory autonomous local-remote control system design: Near-term and far-term applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul

    1993-01-01

    The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.

  18. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  19. A remote control for the C. elegans nervous system

    NASA Astrophysics Data System (ADS)

    Leifer, Andrew M.; Fang-Yen, Christopher; Samuel, Aravinthan D. T.

    2010-03-01

    We demonstrate a closed-loop optogenetic illumination system to stimulate or inhibit arbitrary patterns of neurons and muscle in a freely roaming worm. Transgenic worms that express light-sensitive ion channels in neurons or muscle are used. A microscope with a video camera records the worm's posture and motion. As the worm moves unrestrained, custom real-time image processing software analyzes the worm's position and estimates the location of targeted muscle and neuron cells. For each frame captured by the camera, the software generates an illumination pattern and directs a digital mirror device to shine laser light onto the targeted cells. The system can illuminate an arbitrary spatial and temporal pattern and thus can selectively inhibit or stimulate different sets of cells during the course of a single experiment. The image processing software is very fast and analyzes a 1024 by 768 pixel image containing a worm in less than 10ms. The system has been tested using worms expressing Channelrhodopsin and Halorhodopsin in both neurons and muscle. Preliminary results from an investigation of the C. elegans motor circuit are shown.

  20. Remote CCTV system

    SciTech Connect

    Prell, G.A.; Wiesener, R.W.

    1988-01-01

    A closed-circuit television (CCTV) system has been designed for remote viewing of operations in large nuclear process facilities. The system consists of portable monitoring and control consoles (PMCCs), which can be located at up to 40 different plug-in stations and can monitor and control selected cameras from up to 50 in-cell locations. In-cell crane-mounted cameras utilize duplex laser communication links for video and control signal transmission, which replaced complex cable handling systems. The basis system is illustrated. Radiation-hardened pan-and-tilt mounted cameras are remotely replaceable. All camera assemblies, except the crane-mounted units, include microphones for sound monitoring, and the station audio signal can be directed to any PMCC plug-in station.

  1. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    SciTech Connect

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL`s Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL`s low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans.

  2. Remote systems development

    NASA Technical Reports Server (NTRS)

    Olsen, R.; Schaefer, O.; Hussey, J.

    1992-01-01

    Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed.

  3. Remotely controlled spray gun

    NASA Technical Reports Server (NTRS)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  4. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  5. Multi-axis hand controller for the shuttle remote manipulator system

    NASA Technical Reports Server (NTRS)

    Lippay, A. L.

    1977-01-01

    The Shuttle Remote Manipulator System, has a articulated arm of 50 ft. length with six motor-driven joints. The basic purpose is to establish physical contact with various space hardware items and maneuver these to the desired position and attitude with respect to the Orbiter, nulling out relative velocities and stabilizing the free-body system by managing residual energies. The normal operating mode is resolved-motion end-point rate control by man-in-loop command. The translational freedoms are defined so that the End Effector (EEFTR) of the arm will move in planes parallel to the principal translational planes of the Orbiter, at a rate commanded by the displacement of the Translation Hand Controller in the corresponding freedom and direction. The rotational freedoms are rate-controlled by the Rotation Hand Controller about pivot axes parallel to Orbiter roll, pitch and yaw, originating at the EEFTR reference point.

  6. The remote supervisory and controlling experiment system of traditional Chinese medicine production based on Fieldbus

    NASA Astrophysics Data System (ADS)

    Zhan, Jinliang; Lu, Pei

    2006-11-01

    Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.

  7. Solid State Remote Power Controllers for high voltage DC distribution systems

    NASA Technical Reports Server (NTRS)

    Billings, W. W.; Sundberg, G. R.

    1977-01-01

    Presently, hybrid Remote Power Controllers (RPC's) are in production and prototype units are available for systems utilizing 28VDC, 120VDC, 115VAC/400 Hz and 230VAC/400 Hz. This paper describes RPC development in a new area of application: HVDC distribution systems utilizing 270/300VDC. Two RPC current ratings, 1 amp and 2 amps, were selected for development as they are adequate to control 90% of projected system loads. The various aspects and trade-offs encountered in circuit development are discussed with special focus placed on the circuits that see the duress of the high dc potentials. The comprehensive evaluation tests are summarized which confirmed the RPC compliance with the specification and with system/load compatibility requirements. In addition, present technology status and new applications are summarized.

  8. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    SciTech Connect

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  9. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet.

    PubMed

    Bernard, O; Chachuat, B; Hélias, A; Le Dantec, B; Sialve, B; Steyer, J-P; Lardon, L; Neveu, P; Lambert, S; Gallop, J; Dixon, M; Ratini, P; Quintabà, A; Frattesi, S; Lema, J M; Roca, E; Ruiz, G; Rodriguez, J; Franco, A; Vanrolleghem, P; Zaher, U; De Pauw, D J W; De Neve, K; Lievens, K; Dochaine, D; Schoefs, O; Fibrianto, H; Farina, R; Alcaraz Gonzalez, V; Gonzalez Alvarez, V; Lemaire, P; Martinez, J A; Esandi, F; Duclaud, O; Lavigne, J F

    2005-01-01

    The TELEMAC project brings new methodologies from the Information and Science Technologies field to the world of water treatment. TELEMAC offers an advanced remote management system which adapts to most of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment. The TELEMAC system takes advantage of new sensors to better monitor the process dynamics and to run automatic controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality suitable for cogeneration. If the automatic system detects a failure which cannot be solved automatically or locally by a technician, then an expert from the TELEMAC Control Centre is contacted via the internet and manages the problem. PMID:16180464

  10. Design and implementation of geographic information systems, remote sensing, and global positioning system-based information platform for locust control

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zhu, Dehai; Ye, Sijing; Yao, Xiaochuang; Li, Jun; Zhang, Nan; Han, Yueqi; Zhang, Long

    2014-01-01

    To monitor and control locusts efficiently, an information platform for locust control based on the global positioning system (GPS), remote sensing (RS), and geographic information systems (GIS) was developed. The platform can provide accurate information about locust occurrence and control strategies for a specific geographic place. The platform consists of three systems based on modern pest control: field ecology (locust occurrence) and GIS in a mobile GPS pad, a processing system for locust information based on GIS and RS, and a WebGIS-based real-time monitoring and controlling system. This platform was run at different geographical locations for three years and facilitated locust control in China with high efficiency and great accuracy.

  11. International Space Station alpha remote manipulator system workstation controls test report

    NASA Technical Reports Server (NTRS)

    Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick

    1994-01-01

    Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.

  12. Remote Systems Design & Deployment

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  13. BARCOS, an automation and remote control system for atmospheric observations with a Bruker interferometer.

    PubMed

    Neefs, E; De Mazière, M; Scolas, F; Hermans, C; Hawat, T

    2007-03-01

    In order to make long-term monitoring of the atmospheric composition using commercial Bruker Fourier transform spectrometers more cost effective, a system called BARCOS has been developed. The system enables one to perform the operation of the spectrometric atmospheric observations in a remotely controlled or autonomous way, without human presence at the measuring site. Several observation geometries are foreseen, including solar and lunar absorption spectrometry. BARCOS is built using existing commercial hardware and software components, including the Bruker software for the operation of the spectrometer (OPUS) and runs in a personal computer (Microsoft) environment. It includes a small meteorological station. It is a flexible system, allowing manual interventions at any time. To run BARCOS effectively, the only prerequisite is that internet access is available at the site of operation. This article describes the BARCOS system hardware and software configurations. PMID:17411219

  14. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, N.E.; Svoboda, J.M.

    1999-05-25

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.

  15. Remotely controlled sensor apparatus for use in dig-face characterization system

    DOEpatents

    Josten, Nicholas E.; Svoboda, John M.

    1999-01-01

    A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.

  16. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  17. Feedback control system based on a remote operated PID controller implemented using mbed NXP LPC1768 development board

    NASA Astrophysics Data System (ADS)

    Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae

    2015-11-01

    Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.

  18. Navigation technique for MR-endoscope system using a wireless accelerometer-based remote control device.

    PubMed

    Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki

    2013-01-01

    The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device. PMID:24111031

  19. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  20. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  1. Remote Control of the CFHT Dome Shutter

    NASA Astrophysics Data System (ADS)

    Look, Ivan; Roberts, Larry; Vermeulen, Tom; Taroma, Ralph; Matsushige, Grant

    2011-03-01

    Several years ago CFHT proposed developing a Remote Observing Environment aimed at producing Science Observations at their Facility on Mauna Kea from their Headquarters in Waimea, HI. This Remote Observing Project commonly referred to as OAP (Observatory Automation Project) was completed at the end of January 2011 and has been providing the majority of Science Data since. My poster will attempt to provide Design Information on the Dome Shutter, which is both Controlled and Monitored Remotely from Waimea. The Dome Shutter Control System incorporates an upgraded Allen-Bradley PLC processor (SLC 5/05), which provides Remote Operation and Monitoring of the existing System. Several earlier upgrade projects were integrated to provide improvement to the Shutter System such as PLC Control, System Feedback, and Safety Features. This particular upgrade provides Remote capability, CFHT developed Control GUI, and Remote monitoring that promise to deliver a more versatile, visual, and safer Shutter Operation. The Dome Shutter Control System provides three modes of Operation namely; Remote, Integration, and Local. The Control GUI is used to operate the Shutter remotely. Integration mode is provided to develop PLC software code and is performed by connecting a Laptop directly to the Shutter Control Panel. Local mode is retained to provide Remote Lockout (No Remote Control), which allows Shutter control ONLY via the existing Electrical Panel. This mode is primarily intended for Shutter maintenance and troubleshooting. The Dome Shutter remains the first Line-of-Defense for Telescope protection due to inclement weather and so special attention was considered during Remote development. The Shutter has been equipped with an Autonomous Shutdown sequence in the event of Power or Network failure. If Loss of HELCO Power or Start-up of our Stand-by Diesel Generator is detected; a planned timing sequence will Close the Shutter Automatically. Likewise, an internal CFHT Network heartbeat was

  2. On-Line Remote Catalog Access and Circulation Control System. Part I: Functional Specifications. Part II: User's Manual.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Gaithersburg, MD. Data Processing Div.

    The Ohio State University Libraries On-line Remote Catalog Access and Circulation Control System (LCS) began on-line operations with the conversion of one department library in November 1970. By December all 26 libraries had been converted to the automated system and LCS was fully operational one month ahead of schedule. LCS is designed as a…

  3. Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy)

    NASA Astrophysics Data System (ADS)

    Tecca, Pia R.; Galgaro, Antonio; Genevois, Rinaldo; Deganutti, Andrea M.

    2003-06-01

    Direct measurements of the hydrological conditions for the occurrence of debris flows and of flow behaviour are of the outmost importance for developing effective flow prevention techniques. An automated and remotely controlled monitoring system was installed in Acquabona Creek in the Dolomites, Italian Eastern Alps, where debris flows occur every year. Its present configuration consists of three on-site stations, located in the debris-flow initiation area, in the lower channel and in the retention basin. The monitoring system is equipped with sensors for measuring rainfall, pore-water pressure in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore-pressure at the base of the flow. Three video cameras take motion pictures of the events at the initiation zone, in the lower channel and in the deposition area. Data from the on-site stations are radio-transmitted to an off-site station and stored in a host PC, from where they are telemetrically downloaded and used by the Padova University for the study of debris flows. The efficiency of the sensors and of the whole monitoring system has been verified by the analysis of data collected so far. Examples of these data are presented and briefly discussed. If implemented at the numerous debris-flow sites in the Dolomitic Region, the technology used, derived from the development of this system, will provide civil defence and warn residents of impending debris flows.

  4. Controlling Home Appliances Remotely through Voice Command

    NASA Astrophysics Data System (ADS)

    Baig, Faisal; Beg, Saira; Fahad Khan, Muhammad

    2012-06-01

    Controlling appliances is a main part of automation. The main object of Home automation is to provide a wireless communication link of home appliances to the remote user. The main objective of this work is to make such a system which controls the home appliances remotely. This paper discusses two methods of controlling home appliances one is via voice to text SMS and other is to use the mobile as a remote control, this system will provide a benefit to the elderly and disable people and also to those who are unaware of typing an SMS.

  5. Fingerprint authentication via joint transform correlator and its application in remote access control of a 3D microscopic system

    NASA Astrophysics Data System (ADS)

    He, Wenqi; Lai, Hongji; Wang, Meng; Liu, Zeyi; Yin, Yongkai; Peng, Xiang

    2014-05-01

    We present a fingerprint authentication scheme based on the optical joint transform correlator (JTC) and further describe its application to the remote access control of a Network-based Remote Laboratory (NRL). It is built to share a 3D microscopy system of our realistic laboratory in Shenzhen University with the remote co-researchers in Stuttgart University. In this article, we would like to focus on the involved security issues, mainly on the verification of various remote visitors to our NRL. By making use of the JTC-based optical pattern recognition technique as well as the Personal Identification Number (PIN), we are able to achieve the aim of authentication and access control for any remote visitors. Note that only the authorized remote visitors could be guided to the Virtual Network Computer (VNC), a cross-platform software, which allows the remote visitor to access the desktop applications and visually manipulate the instruments of our NRL through the internet. Specifically to say, when a remote visitor attempts to access to our NRL, a PIN is mandatory required in advance, which is followed by fingerprint capturing and verification. Only if both the PIN and the fingerprint are correct, can one be regarded as an authorized visitor, and then he/she would get the authority to visit our NRL by the VNC. It is also worth noting that the aforementioned "two-step verification" strategy could be further applied to verify the identity levels of various remote visitors, and therefore realize the purpose of diversified visitor management.

  6. Design and Analysis of a Region-Wide Remotely Controllable Electrical Lock-Out System

    SciTech Connect

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Howlader, Mostofa; Kisner, Roger A; Ewing, Paul D; McIntyre, Timothy J

    2012-01-01

    Electric utilities have a main responsibility to protect the lives and safety of their workers when they are working on low-, medium-, and high-voltage power lines and distribution circuits. With the anticipated widespread deployment of smart grids, a secure and highly reliable means of maintaining isolation of customer-owned distributed generation (DG) from the affected distribution circuits during maintenance is necessary to provide a fully de-energized work area, ensure utility personnel safety, and prevent hazards that can lead to accidents such as accidental electrocution from unanticipated power sources. Some circuits are serviced while energized (live line work) while others are de-energized for maintenance. For servicing de-energized circuits and equipment, lock-out tag-out (LOTO) programs provide a verifiable procedure for ensuring that circuit breakers are locked in the off state and tagged to indicate that status to operational personnel so that the lines will be checked for voltage to verify they are de-energized. The de-energized area is isolated from any energized sources, which traditionally are the substations. This procedure works well when all power sources and their interconnections are known armed with this knowledge, utility personnel can determine the appropriate circuits to de-energize for isolating the target line or equipment. However, with customer-owned DG tied into the grid, the risk of inadvertently reenergizing a circuit increases because circuit connections may not be adequately documented and are not under the direct control of the local utility. Thus, the active device may not be properly de-energized or isolated from the work area. Further, a remote means of de-energizing and locking out energized devices provides an opportunity for greatly reduced safety risk to utility personnel compared to manual operations. In this paper, we present a remotely controllable LOTO system that allows individual workers to determine the

  7. SMALL DRINKING WATER SYSTEMS HANDBOOK A GUIDE TO "PACKAGED" FILTRATION AND DISINFECTION TECHNOLOGIES WITH REMOTE MONITORING AND CONTROL TOOLS

    EPA Science Inventory

    The intent of this handbook is to highlight information appropriate to small systems with an emphasis on filtration and disinfection technologies and how they can be "packaged" with remote monitoring and control technologies to provide a healthy and affordable solution for small ...

  8. Improved head-controlled TV system produces high-quality remote image

    NASA Technical Reports Server (NTRS)

    Goertz, R.; Lindberg, J.; Mingesz, D.; Potts, C.

    1967-01-01

    Manipulator operator uses an improved resolution tv camera/monitor positioning system to view the remote handling and processing of reactive, flammable, explosive, or contaminated materials. The pan and tilt motions of the camera and monitor are slaved to follow the corresponding motions of the operators head.

  9. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells

    SciTech Connect

    Sinogeikin, Stanislav V. Smith, Jesse S.; Rod, Eric; Lin, Chuanlong; Kenney-Benson, Curtis; Shen, Guoyin

    2015-07-15

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.

  10. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Sinogeikin, Stanislav V.; Smith, Jesse S.; Rod, Eric; Lin, Chuanlong; Kenney-Benson, Curtis; Shen, Guoyin

    2015-07-01

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.

  11. Primary reaction control system/remote manipulator system interaction with loaded arm. Space shuttle engineering and operations support

    NASA Technical Reports Server (NTRS)

    Taylor, E. C.; Davis, J. D.

    1978-01-01

    A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs.

  12. Remote control mine-detection system with GPR and metal detector

    NASA Astrophysics Data System (ADS)

    Ivashov, Sergey I.; Makarenkov, V. I.; Masterkov, A. V.; Razevig, Vladimir V.; Sablin, Vyacheslav N.; Sheyko, Anton P.; Vasilyev, Igor A.

    2000-04-01

    In this paper we describe a method of minefield reconnaissance with the use of the multi-frequency ground-penetrating radar (GPR) combined with a metal detector. This method allows the mine images in the soil to be obtained in the band of the mine detector sensors. An experimental installation with remote control and scanning sensors has been designed and built. A mine detector of this kind can be used in peacekeeping and humanitarian operations.

  13. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  14. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  15. Remote Environmental Monitoring System CRADA

    SciTech Connect

    Hensley, R.D.

    2000-03-30

    The goal of the project was to develop a wireless communications system, including communications, command, and control software, to remotely monitor the environmental state of a process or facility. Proof of performance would be tested and evaluated with a prototype demonstration in a functioning facility. AR Designs' participation provided access to software resources and products that enable network communications for real-time embedded systems to access remote workstation services such as Graphical User Interface (GUI), file I/O, Events, Video, Audio, etc. in a standardized manner. This industrial partner further provided knowledge and links with applications and current industry practices. FM and T's responsibility was primarily in hardware development in areas such as advanced sensors, wireless radios, communication interfaces, and monitoring and analysis of sensor data. This role included a capability to design, fabricate, and test prototypes and to provide a demonstration environment to test a proposed remote sensing system. A summary of technical accomplishments is given.

  16. Remote terminal system evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.

    1975-01-01

    An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.

  17. Solar System Remote Sensing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This volume contains abstracts that have been accepted for presentation at the symposium on Solar System Remote Sensing, September 20-21, 2002, in Pittsburgh, Pennsylvania. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Departments at the Lunar and Planetary Institute.

  18. Implementation of an operator intervention system for remote control of the RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Furukawa, K.; Higurashi, Y.; Nakagawa, T.

    2014-02-01

    The control system for the RIKEN 28 GHz superconducting electron cyclotron resonance ion source (28 GHz SC-ECRIS) consists of a distributed control system based on the experimental physics and industrial control system. To maintain the beam quality for the long beam-service time at the radioactive isotope beam factory, beam tuning to prevent subtle changes in the 28 GHz SC-ECRIS conditions is required. Once this is achieved, it should then be possible to check conditions and operate the ion source at any time. We have designed a web-based operational interface to remotely control the ion source, but for access and control from several locations, suitable access security, policies, and methods are required. We thus implemented an operator intervention system that makes it possible to safely access the network externally with the permission of on-site accelerator operators in the control room.

  19. Remote control of an impact demonstration vehicle

    NASA Technical Reports Server (NTRS)

    Harney, P. F.; Craft, J. B., Jr.; Johnson, R. G.

    1985-01-01

    Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described.

  20. 46 CFR 111.54-3 - Remote control.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have...

  1. 46 CFR 111.54-3 - Remote control.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have...

  2. 46 CFR 111.54-3 - Remote control.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have...

  3. 46 CFR 111.54-3 - Remote control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have...

  4. 46 CFR 111.54-3 - Remote control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Remote control. 111.54-3 Section 111.54-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Circuit Breakers § 111.54-3 Remote control. Remotely controlled circuit breakers must have...

  5. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO....434 Remote control operation. (a) A remote control system must provide adequate monitoring and...

  6. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO....434 Remote control operation. (a) A remote control system must provide adequate monitoring and...

  7. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO....434 Remote control operation. (a) A remote control system must provide adequate monitoring and...

  8. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO....434 Remote control operation. (a) A remote control system must provide adequate monitoring and...

  9. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration. [performance tests of remote control equipment for roving vehicles

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. W.

    1976-01-01

    Problems related to the design and control of an autonomous rover for the purpose of unmanned exploration of the planets were considered. Building on the basis of prior studies, a four wheeled rover of unusual mobility and maneuverability was further refined and tested under both laboratory and field conditions. A second major effort was made to develop autonomous guidance. Path selection systems capable of dealing with relatively formidable hazard and terrains involving various short range (1.0-3.0 meters), hazard detection systems using a triangulation detection concept were simulated and evaluated. The mechanical/electronic systems required to implement such a scheme were constructed and tested. These systems include: laser transmitter, photodetectors, the necessary data handling/controlling systems and a scanning mast. In addition, a telemetry system to interface the vehicle, the off-board computer and a remote control module for operator intervention were developed. Software for the autonomous control concept was written. All of the systems required for complete autonomous control were shown to be satisfactory except for that portion of the software relating to the handling of interrupt commands.

  10. Application of remote monitoring and automatic control system using neural network for small wastewater treatment plants in Korea.

    PubMed

    Lee, H; Lee, K M; Park, C H; Park, Y H

    2005-01-01

    For this study, an automatic control system has been developed by using a neural network and internet-based remote monitoring system for efficient operation of plants that have a serious variance of influent loading and have difficulties in appropriate maintenance, just like small wastewater treatment plants in Korea. In the control algorithm, ORP was used as the main sensor for control. At the point where the ORP value was judged to reach the "nitrate knee" of denitrification and phosphorus release, ORP indicated the state of lower saturation read by the neural network and then changed the operating condition from the reduction state to the oxidation state. For example, if ORP indicates the state of higher saturation at the point of "nitrogen breakpoint" or "ammonia valley" of nitrification, the neural network reads it and cuts off the oxygen supply and mixing. The dORP data have been used as one of the main input for the neural network. After the operation of lab-scale cyclic aeration process using an automatic control system, it has been found that regardless of loading variance, more than 95% of organic matters and more than 60% of nitrogen and phosphorus have been removed. Assuming that an internet-connected computer and a basic web browser are available, this study has developed a remote monitoring system that can monitor the operating status of small plants or any troubles with them. PMID:16104428

  11. Remote, PCM-controlled, multi-channel radio frequency FM telemetry system for cryogenic wind tunnel application

    NASA Technical Reports Server (NTRS)

    Diamond, John K.

    1989-01-01

    A telemetry system used in the NASA-Langley cryogenic transonic wind tunnel to obtain rotational strain and temperature data is described. The system consists of four FM transmitters allowing for a remotely controlled PCM combination. A rotating four-contact mercury slip-ring is used as an interface between the fixed and rotating mechnical structures. Over 60 channels of data on the main fan disk and blade structures have been obtained. These data are studied to verify computer predictions and mechanical life. A series of block diagrams are included.

  12. Remote control apparatus for transmission

    SciTech Connect

    Ebina, A.

    1989-01-10

    A remote control apparatus for a transmission is described, comprising: means for sending a signal representing an operation state of a change lever; auxiliary power means, remote-controlled by the change lever, for changing a gear position of the transmission and sending a signal representing the gear position; and control means for controlling an operation of the auxiliary power means in accordance with the change lever operation state signal and gear position signal, the control means being provided with neutral position holding means comprises signal transmission delay means. This comprises means for detecting that the shift path on which the striker presently exists is different from the shift path instructed according to the change lever operating signal, then detecting that the striker has reached the first neutral position according to the neutral position signal and generating a neutral position detection signal.

  13. Field testing of a remote controlled robotic tele-echo system in an ambulance using broadband mobile communication technology.

    PubMed

    Takeuchi, Ryohei; Harada, Hiroshi; Masuda, Kohji; Ota, Gen-ichiro; Yokoi, Masaki; Teramura, Nobuyasu; Saito, Tomoyuki

    2008-06-01

    We report the testing of a mobile Robotic Tele-echo system that was placed in an ambulance and successfully transmitted clear real time echo imaging of a patient's abdomen to the destination hospital from where this device was being remotely operated. Two-way communication between the paramedics in this vehicle and a doctor standing by at the hospital was undertaken. The robot was equipped with an ultrasound probe which was remotely controlled by the clinician at the hospital and ultrasound images of the patient were transmitted wirelessly. The quality of the ultrasound images that were transmitted over the public mobile telephone networks and those transmitted over the Multimedia Wireless Access Network (a private networks) were compared. The transmission rate over the public networks and the private networks was approximately 256 Kbps, 3 Mbps respectively. Our results indicate that ultrasound images of far higher definition could be obtained through the private networks. PMID:18444361

  14. Decoding the TV remote control

    NASA Astrophysics Data System (ADS)

    O'Connell, James

    2000-01-01

    Digital infrared pulses are generated by a semiconductor light-emitting diode in the remote control devices used with consumer electronics. The pulse string is detected and analyzed using a silicon solar cell as a receiver and educational data taking and analyzing computer programs.

  15. Decoding the TV Remote Control.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Describes how to observe the pulse structure of the infrared signals from the light-emitting diode in a TV remote control. This exercise in decoding infrared digital signals provides an opportunity to discuss semiconductors, photonics technology, cryptology, and the physics of how things work. (WRM)

  16. Application of remote sensing to arthropod vector surveillance and control.

    PubMed

    Washino, R K; Wood, B L

    1994-01-01

    A need exists to further develop new technologies, such as remote sensing and geographic information systems analysis, for estimating arthropod vector abundance in aquatic habitats and predicting adult vector population outbreaks. A brief overview of remote sensing technology in vector surveillance and control is presented, and suggestions are made on future research opportunities in light of current and proposed remote sensing systems. PMID:8024079

  17. Development of a novel remote-controlled and self-contained audiovisual-aided interactive system for immobilizing claustrophobic patients.

    PubMed

    Ju, Harang; Kim, Siyong; Read, Paul; Trifiletti, Daniel; Harrell, Andrew; Libby, Bruce; Kim, Taeho

    2015-01-01

    In radiotherapy, only a few immobilization systems, such as open-face mask and head mold with a bite plate, are available for claustrophobic patients with a certain degree of discomfort. The purpose of this study was to develop a remote-controlled and self-contained audiovisual (AV)-aided interactive system with the iPad mini with Retina display for intrafractional motion management in brain/H&N (head and neck) radiotherapy for claustrophobic patients. The self-contained, AV-aided interactive system utilized two tablet computers: one for AV-aided interactive guidance for the subject and the other for remote control by an operator. The tablet for audiovisual guidance traced the motion of a colored marker using the built-in front-facing camera, and the remote control tablet at the control room used infrastructure Wi-Fi networks for real-time communication with the other tablet. In the evaluation, a programmed QUASAR motion phantom was used to test the temporal and positional accuracy and resolution. Position data were also obtained from ten healthy volunteers with and without guidance to evaluate the reduction of intrafractional head motion in simulations of a claustrophobic brain or H&N case. In the phantom study, the temporal and positional resolution was 24 Hz and 0.2 mm. In the volunteer study, the average superior-inferior and right-left displacement was reduced from 1.9 mm to 0.3 mm and from 2.2 mm to 0.2 mm with AV-aided interactive guidance, respectively. The superior-inferior and right-left positional drift was reduced from 0.5 mm/min to 0.1 mm/min and from 0.4 mm/min to 0.04 mm/min with audiovisual-aided interactive guidance. This study demonstrated a reduction in intrafractional head motion using a remote-controlled and self-contained AV-aided interactive system of iPad minis with Retina display, easily obtainable and cost-effective tablet computers. This approach can potentially streamline clinical flow for claustrophobic patients without a head mask and

  18. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/remote manipulator system subsystem

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained in the NASA FMEA/CIL documentation. This report documents the results of the independent analysis of the EPD and C/RMS (both port and starboard) hardware. The EPD and C/RMS subsystem hardware provides the electrical power and power control circuitry required to safely deploy, operate, control, and stow or guillotine and jettison two (one port and one starboard) RMSs. The EPD and C/RMS subsystem is subdivided into the four following functional divisions: Remote Manipulator Arm; Manipulator Deploy Control; Manipulator Latch Control; Manipulator Arm Shoulder Jettison; and Retention Arm Jettison. The IOA analysis process utilized available EPD and C/RMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based on the severity of the effect for each failure mode.

  19. 46 CFR 62.35-5 - Remote propulsion-control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1). Manual alternative... vessels propelled by steam turbines, the navigation bridge primary control system must include safety limit controls for high and low boiler water levels and low steam pressure. Actuation of these...

  20. 46 CFR 62.35-5 - Remote propulsion-control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1). Manual alternative... vessels propelled by steam turbines, the navigation bridge primary control system must include safety limit controls for high and low boiler water levels and low steam pressure. Actuation of these...

  1. 241-SY-101 data acquisition and control system (DACS) remote operator interface operational test report

    SciTech Connect

    ERMI, A.M.

    1999-06-24

    The readiness of the upgraded 241-SY-101 Data Acquisition and Control System (DACS) to provide proper control and monitoring of the mixer pump and instrumentation in tank 241-SY-101 was evaluated by the performance of OTP-440-001. Results of the OTP are reported here.

  2. Nanoparticle Mediated Remote Control of Enzymatic Activity

    PubMed Central

    Knecht, Leslie D.; Ali, Nur; Wei, Yinan; Hilt, J. Zach; Daunert, Sylvia

    2012-01-01

    Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide-crosslinked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HADST. This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe3O4 nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields. PMID:22989219

  3. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  4. An initial trial of a prototype telepathology system featuring static imaging with discrete control of the remote microscope.

    PubMed

    Winokur, T S; McClellan, S; Siegal, G P; Reddy, V; Listinsky, C M; Conner, D; Goldman, J; Grimes, G; Vaughn, G; McDonald, J M

    1998-07-01

    Routine diagnosis of pathology images transmitted over telecommunications lines remains an elusive goal. Part of the resistance stems from the difficulty of enabling image selection by the remote pathologist. To address this problem, a telepathology microscope system (TelePath, TeleMedicine Solutions, Birmingham, Ala) that has features associated with static and dynamic imaging systems was constructed. Features of the system include near real time image transmission, provision of a tiled overview image, free choice of any fields at any desired optical magnification, and automated tracking of the pathologist's image selection. All commands and images are discrete, avoiding many inherent problems of full motion video and continuous remote control. A set of 64 slides was reviewed by 3 pathologists in a simulated frozen section environment. Each pathologist provided diagnoses for all 64 slides, as well as qualitative information about the system. Thirty-one of 192 diagnoses disagreed with the reference diagnosis that had been reached before the trial began. Qf the 31, 13 were deferrals and 12 were diagnoses of cases that had a deferral as the reference diagnosis. In 6 cases, the diagnosis disagreed with the reference diagnosis yielding an overall accuracy of 96.9%. Confidence levels in the diagnoses were high. This trial suggests that this system provides high-quality anatomic pathology services, including intraoperative diagnoses, over telecommunications lines. PMID:9661922

  5. Remote Radio Control of Insect Flight

    PubMed Central

    Sato, Hirotaka; Berry, Christopher W.; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E.; Lavella, Gabriel; VandenBrooks, John M.; Harrison, Jon F.; Maharbiz, Michel M.

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses. PMID:20161808

  6. Remote maintenance monitoring system

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  7. Use of remote sensing and a geographical information system in a national helminth control programme in Chad.

    PubMed Central

    Brooker, Simon; Beasley, Michael; Ndinaromtan, Montanan; Madjiouroum, Ester Mobele; Baboguel, Marie; Djenguinabe, Elie; Hay, Simon I.; Bundy, Don A. P.

    2002-01-01

    OBJECTIVE: To design and implement a rapid and valid epidemiological assessment of helminths among schoolchildren in Chad using ecological zones defined by remote sensing satellite sensor data and to investigate the environmental limits of helminth distribution. METHODS: Remote sensing proxy environmental data were used to define seven ecological zones in Chad. These were combined with population data in a geographical information system (GIS) in order to define a sampling protocol. On this basis, 20 schools were surveyed. Multilevel analysis, by means of generalized estimating equations to account for clustering at the school level, was used to investigate the relationship between infection patterns and key environmental variables. FINDINGS: In a sample of 1023 schoolchildren, 22.5% were infected with Schistosoma haematobium and 32.7% with hookworm. None were infected with Ascaris lumbricoides or Trichuris trichiura. The prevalence of S. haematobium and hookworm showed marked geographical heterogeneity and the observed patterns showed a close association with the defined ecological zones and significant relationships with environmental variables. These results contribute towards defining the thermal limits of geohelminth species. Predictions of infection prevalence were made for each school surveyed with the aid of models previously developed for Cameroon. These models correctly predicted that A. lumbricoides and T. trichiura would not occur in Chad but the predictions for S. haematobium were less reliable at the school level. CONCLUSION: GIS and remote sensing can play an important part in the rapid planning of helminth control programmes where little information on disease burden is available. Remote sensing prediction models can indicate patterns of geohelminth infection but can only identify potential areas of high risk for S. haematobium. PMID:12471398

  8. Remotely Sensed Ground Control Points

    NASA Astrophysics Data System (ADS)

    Hummel, P.

    2016-06-01

    Accurate ground control is required to georeferenced airborne and spaceborne images. The production of ortho-photogrammetric data requires ground control that is traditionally provided as Ground Control Points (GCPs) by GNSS measurements in the field. However, it can be difficult to acquire accurate ground control points due to required turn-around time, high costs or impossible access. CompassData, Inc. a specialist in ground control, has expanded its service to deliver Remotely Sensed Ground Control Points (RSGCPs®). TerraSAR-X and TanDEM-X are two satellites with such high accuracy of their orbital positions and SAR data that RSGCPs® can be produced to a sub-meter quality depending on certain parameters and circumstances. The technology and required parameters are discussed in this paper as well as the resulting accuracies.

  9. The GRO remote terminal system

    NASA Technical Reports Server (NTRS)

    Zillig, David J.; Valvano, Joe

    1994-01-01

    In March 1992, NASA HQ challenged GSFC/Code 531 to propose a fast, low-cost approach to close the Tracking Data Relay Satellite System (TDRSS) Zone-of-Exclusion (ZOE) over the Indian Ocean in order to provide global communications coverage for the Compton Gamma Ray Observatory (GRO) spacecraft. GRO had lost its tape recording capability which limited its valuable science data return to real-time contacts with the TDRS-E and TDRS-W synchronous data relay satellites, yielding only approximately 62 percent of the possible data obtainable. To achieve global coverage, a TDRS spacecraft would have to be moved over the Indian Ocean out of line-of-sight control of White Sands Ground Terminal (WSGT). To minimize operations life cycle costs, Headquarters also set a goal for remote control, from the WSGT, of the overseas ground station which was required for direct communications with TDRS-1. On August 27, 1992, Code 531 was given the go ahead to implement the proposed GRO Relay Terminal System (GRTS). This paper describes the Remote Ground Relay Terminal (RGRT) which went operational at the Canberra Deep Space Communications Complex (CDSCC) in Canberra, Australia in December 1993 and is currently augmenting the TDRSS constellation in returning between 80-100 percent of GRO science data under the control of a single operator at WSGT.

  10. The GRO remote terminal system

    NASA Astrophysics Data System (ADS)

    Zillig, David J.; Valvano, Joe

    1994-11-01

    In March 1992, NASA HQ challenged GSFC/Code 531 to propose a fast, low-cost approach to close the Tracking Data Relay Satellite System (TDRSS) Zone-of-Exclusion (ZOE) over the Indian Ocean in order to provide global communications coverage for the Compton Gamma Ray Observatory (GRO) spacecraft. GRO had lost its tape recording capability which limited its valuable science data return to real-time contacts with the TDRS-E and TDRS-W synchronous data relay satellites, yielding only approximately 62 percent of the possible data obtainable. To achieve global coverage, a TDRS spacecraft would have to be moved over the Indian Ocean out of line-of-sight control of White Sands Ground Terminal (WSGT). To minimize operations life cycle costs, Headquarters also set a goal for remote control, from the WSGT, of the overseas ground station which was required for direct communications with TDRS-1. On August 27, 1992, Code 531 was given the go ahead to implement the proposed GRO Relay Terminal System (GRTS). This paper describes the Remote Ground Relay Terminal (RGRT) which went operational at the Canberra Deep Space Communications Complex (CDSCC) in Canberra, Australia in December 1993 and is currently augmenting the TDRSS constellation in returning between 80-100 percent of GRO science data under the control of a single operator at WSGT.

  11. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, M.A.

    1992-11-10

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  12. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, Melvin A.

    1992-01-01

    A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

  13. Computer control for remote wind turbine operation

    SciTech Connect

    Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J.

    1997-12-31

    Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.

  14. Human factors in remote control engineering development activities

    SciTech Connect

    Clarke, M.M.; Hamel, W.R.; Draper, J.V.

    1983-01-01

    Human factors engineering, which is an integral part of the advanced remote control development activities at the Oak Ridge National Laboratory, is described. First, work at the Remote Systems Development Facility (RSDF) has shown that operators can perform a wide variety of tasks, some of which were not specifically designed for remote systems, with a dextrous electronic force-reflecting servomanipulator and good television remote viewing capabilities. Second, the data collected during mock-up remote maintenance experiments at the RSDF have been analyzed to provide guidelines for the design of human interfaces with an integrated advanced remote maintenance system currently under development. Guidelines have been provided for task allocation between operators, remote viewing systems, and operator controls. 6 references, 5 figures, 2 tables.

  15. Remote Control of Neuronal Signaling

    PubMed Central

    Rogan, Sarah C.

    2011-01-01

    A significant challenge for neuroscientists is to determine how both electrical and chemical signals affect the activity of cells and circuits and how the nervous system subsequently translates that activity into behavior. Remote, bidirectional manipulation of those signals with high spatiotemporal precision is an ideal approach to addressing that challenge. Neuroscientists have recently developed a diverse set of tools that permit such experimental manipulation with varying degrees of spatial, temporal, and directional control. These tools use light, peptides, and small molecules to primarily activate ion channels and G protein-coupled receptors (GPCRs) that in turn activate or inhibit neuronal firing. By monitoring the electrophysiological, biochemical, and behavioral effects of such activation/inhibition, researchers can better understand the links between brain activity and behavior. Here, we review the tools that are available for this type of experimentation. We describe the development of the tools and highlight exciting in vivo data. We focus primarily on designer GPCRs (receptors activated solely by synthetic ligands, designer receptors exclusively activated by designer drugs) and microbial opsins (e.g., channelrhodopsin-2, halorhodopsin, Volvox carteri channelrhodopsin) but also describe other novel techniques that use orthogonal receptors, caged ligands, allosteric modulators, and other approaches. These tools differ in the direction of their effect (activation/inhibition, hyperpolarization/depolarization), their onset and offset kinetics (milliseconds/minutes/hours), the degree of spatial resolution they afford, and their invasiveness. Although none of these tools is perfect, each has advantages and disadvantages, which we describe, and they are all still works in progress. We conclude with suggestions for improving upon the existing tools. PMID:21415127

  16. The application of NASREM to remote robot control

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Dionise, Joe; Dobryden, AL

    1990-01-01

    The implementation of a remote robot controller, wherein the distance to the remote robot causes significant communication time delays is described. The NASREM telrobot control architecture is used as a basis for the implementation of the system. Levels 1 through 4 of the hierarchy were implemented. The solution to the problems encounterd during the implementation and those which are unique to remote robot control are described.

  17. 49 CFR 229.15 - Remote control locomotives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OCU is equipped with a tilt bypass system that permits the tilt protection feature to be temporarily... functions shall remain active. The remote control system shall be designed so that if the signal from the OCU to the RCL is interrupted for a set period not to exceed five seconds, the remote control...

  18. Remote Operations Control Center (ROCC)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Undergraduate students Kristina Wines and Dena Renzo at Rensselaer Poloytech Institute (RPI) in Troy, NY, monitor the progress of the Isothermal Dendritic Growth Experiment (IDGE) during the U.S. Microgravity Payload-4 (USMP-4) mission (STS-87), Nov. 19 - Dec.5, 1997). Remote Operations Control Center (ROCC) like this one will become more common during operations with the International Space Station. The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. Photo credit: Rensselaer Polytechnic Institute (RPI)

  19. Remote control canard missile with a free-rolling tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1981-01-01

    An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.

  20. Remote mud pump control apparatus

    SciTech Connect

    Thompson, S.R.; Harbour, W.D. Jr.

    1986-06-17

    An apparatus is described for controlling the circulation of fluid in a subterranean well consisting of: a pump; a choke communicable with the pump; pump monitoring means for regulating the pump speed to vary the flow rate of the circulating fluid; choke monitoring means located at the surface of the well remote from the pump monitoring means and including choke regulating means for varying the fluid flow area through the choke to control the pressure of the circulating fluid as the flow rate is changed by variations in the pump speed; the improvement comprising: a second pump control means incorporated in the choke monitoring means and communicable with the pump through the pump monitoring means for regulating the pump speed.

  1. Remote environmental sensor array system

    NASA Astrophysics Data System (ADS)

    Hall, Geoffrey G.

    This thesis examines the creation of an environmental monitoring system for inhospitable environments. It has been named The Remote Environmental Sensor Array System or RESA System for short. This thesis covers the development of RESA from its inception, to the design and modeling of the hardware and software required to make it functional. Finally, the actual manufacture, and laboratory testing of the finished RESA product is discussed and documented. The RESA System is designed as a cost-effective way to bring sensors and video systems to the underwater environment. It contains as water quality probe with sensors such as dissolved oxygen, pH, temperature, specific conductivity, oxidation-reduction potential and chlorophyll a. In addition, an omni-directional hydrophone is included to detect underwater acoustic signals. It has a colour, high-definition and a low-light, black and white camera system, which it turn are coupled to a laser scaling system. Both high-intensity discharge and halogen lighting system are included to illuminate the video images. The video and laser scaling systems are manoeuvred using pan and tilt units controlled from an underwater computer box. Finally, a sediment profile imager is included to enable profile images of sediment layers to be acquired. A control and manipulation system to control the instruments and move the data across networks is integrated into the underwater system while a power distribution node provides the correct voltages to power the instruments. Laboratory testing was completed to ensure that the different instruments associated with the RESA performed as designed. This included physical testing of the motorized instruments, calibration of the instruments, benchmark performance testing and system failure exercises.

  2. T3: Secure, Scalable, Distributed Data Movement and Remote System Control for Enterprise Level Cyber Security

    SciTech Connect

    Thomas, Gregory S.; Nickless, William K.; Thiede, David R.; Gorton, Ian; Pitre, Bill J.; Christy, Jason E.; Faultersack, Elizabeth M.; Mauth, Jeffery A.

    2009-07-20

    Enterprise level cyber security requires the deployment, operation, and monitoring of many sensors across geographically dispersed sites. Communicating with the sensors to gather data and control behavior is a challenging task when the number of sensors is rapidly growing. This paper describes the system requirements, design, and implementation of T3, the third generation of our transport software that performs this task. T3 relies on open source software and open Internet standards. Data is encoded in MIME format messages and transported via NNTP, which provides scalability. OpenSSL and public key cryptography are used to secure the data. Robustness and ease of development are increased by defining an internal cryptographic API, implemented by modules in C, Perl, and Python. We are currently using T3 in a production environment. It is freely available to download and use for other projects.

  3. Remote Control Southern Hemisphere SSA Observatory

    NASA Astrophysics Data System (ADS)

    Ritchie, I.; Pearson, M.; Sang, J.

    2013-09-01

    EOS Space Systems (EOSSS) is a research and development company which has developed custom observatories, camera and telescope systems for space surveillance since 1996, as well as creating several evolutions of systems control software for control of observatories and laser tracking systems. Our primary reserach observatory is the Space Reserach Centre (SRC) at Mount Stromlo Asutralia. The current SRC control systems are designed such that remote control can be offered for real time data collection, noise filtering and flexible session management. Several imaging fields of view are available simultaneously for tracking orbiting objects, with real time imaging to Mag 18. Orbiting objects can have the centroids post processed into orbital determination/ orbital projection (OD/OP) elements. With or without laser tracking of orbiting objects, they can be tracked in terminator conditions and their OD/OP data created, then enhanced by proprietary methods involving ballistic coefficient estimation and OD convergence pinning, using a priori radar elements. Sensors in development include a thermal imager for satellite thermal signature detection. Extending laser tracking range by use of adaptive optics beam control is also in development now. This Southern Hemisphere observatory is in a unique position to facilitate the study of space debris, either stand-alone or as part of a network such as Falcon. Current national and international contracts will enhance the remote control capabilities further, creating a resource ready to go for a wide variety of SSA missions.

  4. Virtual Machine Language Controls Remote Devices

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.

  5. Variable acuity remote viewing system flight demonstration

    NASA Technical Reports Server (NTRS)

    Fisher, R. W.

    1983-01-01

    The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.

  6. A low noise remotely controllable wireless telemetry system for single-unit recording in rats navigating in a vertical maze.

    PubMed

    Chen, Hsin-Yung; Wu, Jin-Shang; Hyland, Brian; Lu, Xiao-Dong; Chen, Jia Jin Jason

    2008-08-01

    The use of cables for recording neural activity limits the scope of behavioral tests used in conscious free-moving animals. Particularly, cable attachments make it impossible to record in three-dimensional (3D) mazes where levels are vertically stacked or in enclosed spaces. Such environments are of particular interest in investigations of hippocampal place cells, in which neural activity is correlated with spatial position in the environment. We developed a flexible miniaturized Bluetooth-based wireless data acquisition system. The wireless module included an 8-channel analogue front end, digital controller, and Bluetooth transceiver mounted on a backpack. Our bidirectional wireless design allowed all data channels to be previewed at 1 kHz sample rate, and one channel, selected by remote control, to be sampled at 10 kHz. Extracellular recordings of neuronal activity are highly susceptible to ambient electrical noise due to the high electrode impedance. Through careful design of appropriate shielding and hardware configuration to avoid ground loops, mains power and Bluetooth hopping frequency noise were reduced sufficiently to yield signal quality comparable to those recorded by wired systems. With this system we were able to obtain single-unit recordings of hippocampal place cells in rats running an enclosed vertical maze, over a range of 5 m. PMID:18509686

  7. Telescope Automation and Remote Observing System (TAROS)

    NASA Astrophysics Data System (ADS)

    Wilson, G.; Czezowski, A.; Hovey, G. R.; Jarnyk, M. A.; Nielsen, J.; Roberts, B.; Sebo, K.; Smith, D.; Vaccarella, A.; Young, P.

    2005-12-01

    TAROS is a system that will allow for the Australian National University telescopes at a remote location to be operated automatically or interactively with authenticated control via the internet. TAROS is operated by a Java front-end GUI and employs the use of several Java technologies - such as Java Message Service (JMS) for communication between the telescope and the remote observer, Java Native Interface to integrate existing data acquisition software written in C++ (CICADA) with new Java programs and the JSky collection of Java GUI components for parts of the remote observer client. In this poster the design and implementation of TAROS is described.

  8. Robotics and remote systems applications

    SciTech Connect

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  9. Rantiga Osservatorio, Tincana (MPC-D03): Observations and searching for small Solar System bodies using a remotely controlled telescope

    NASA Astrophysics Data System (ADS)

    Zolnowski, M.; Kusiak, M.

    2014-07-01

    Rantiga Osservatorio is the first Polish project aimed at discovering and observing small solar-system objects, including near-Earth objects and comets. The observatory officially started in March 2012, as a result of cooperation between two amateur astronomers: Michal Zolnowski and Michal Kusiak. Subsequently, our station received official designation D03 assigned by the IAU's Minor Planet Center. The equipment is installed in northern Italy, on the border between Emilia-Romagna and Tuscany, in the small village of Tincana at an altitude of 643 m. The heart of the observatory is a 0.4-meter reflector f/3.8, mounted on Paramount ME and CCD camera SBIG STX-16803. The equipment is controlled by an industrial computer connected to the internet, and software allowing for automation and remote control of the telescope from Poland. It is also the first Polish amateur observatory which has been used for the discoveries of potentially new asteroids since 1949. Between 2012 and 2013, Rantiga Osservatorio made it possible to submit over 13,000 astrometric measurements of 3,500 asteroids, and we also reported 1,151 candidates for potentially unknown objects. During our presentation, we would like to introduce details of design and several enhancements to allow a convenient and safe way to control an observing session from anywhere in the world using a smartphone.

  10. Performance of a Frequency-Hopped Real-Time Remote Control System in a Multiple Access Scenario

    NASA Astrophysics Data System (ADS)

    Cervantes, Frank

    A recent trend is observed in the context of the radio-controlled aircrafts and automobiles within the hobby grade category and Unmanned Aerial Vehicles (UAV) applications moving to the well-known Industrial, Scientific and Medical (ISM) band. Based on this technological fact, the present thesis evaluates an individual user performance by featuring a multiple-user scenario where several point-to-point co-located real-time Remote Control (RC) applications operate using Frequency Hopping Spread Spectrum (FHSS) as a medium access technique in order to handle interference efficiently. Commercial-off-the-shelf wireless transceivers ready to operate in the ISM band are considered as the operational platform supporting the above-mentioned applications. The impact of channel impairments and of different critical system engineering issues, such as working with real clock oscillators and variable packet duty cycle, are considered. Based on the previous, simulation results allowed us to evaluate the range of variation for those parameters for an acceptable system performance under Multiple Access (MA) environments.

  11. [Remote radiation planning support system].

    PubMed

    Atsumi, Kazushige; Nakamura, Katsumasa; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Shinoto, Makoto; Asai, Kaori; Sakamoto, Katsumi; Hirakawa, Masakazu; Honda, Hiroshi

    2012-08-01

    We constructed a remote radiation planning support system between Kyushu University Hospital (KUH) in Fukuoka and Kyushu University Beppu Hospital (KBH) in Oita. Between two institutions, radiology information system for radiotherapy division (RT-RIS) and radiation planning system (RTPS) were connected by virtual private network (VPN). This system enables the radiation oncologists at KUH to perform radiotherapy planning for the patients at KBH. The detail of the remote radiation planning support system in our institutions is as follows: The radiation oncologist at KBH performs radiotherapy planning and the data of the patients are sent anonymously to the radiation oncologists at KUH. The radiation oncologists at KUH receive the patient's data, access to RTPS at KBH, verify or change the radiation planning at KBH: Radiation therapy is performed at KBH according to the confirmed plan by the radiation oncologists at KUH. Our remote radiation planning system is useful for providing radiation therapy with safety and accuracy. PMID:23157128

  12. Systems development of a stall/spin research facility using remotely controlled/augmented aircraft models. Volume 1: Systems overview

    NASA Technical Reports Server (NTRS)

    Montoya, R. J.; Jai, A. R.; Parker, C. D.

    1979-01-01

    A ground based, general purpose, real time, digital control system simulator (CSS) is specified, developed, and integrated with the existing instrumentation van of the testing facility. This CSS is built around a PDP-11/55, and its operational software was developed to meet the dual goal of providing the immediate capability to represent the F-18 drop model control laws and the flexibility for expansion to represent more complex control laws typical of control configured vehicles. Overviews of the two CSS's developed are reviewed as well as the overall system after their integration with the existing facility. Also the latest version of the F-18 drop model control laws (REV D) is described and the changes needed for its incorporation in the digital and analog CSS's are discussed.

  13. A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China.

    PubMed

    Yang, Guo-Jing; Vounatsou, Penelope; Zhou, Xiao-Nong; Utzinger, Jürg; Tanner, Marcel

    2005-01-01

    Geographic information system (GIS) and remote sensing (RS) technologies offer new opportunities for rapid assessment of endemic areas, provision of reliable estimates of populations at risk, prediction of disease distributions in areas that lack baseline data and are difficult to access, and guidance of intervention strategies, so that scarce resources can be allocated in a cost-effective manner. Here, we focus on the epidemiology and control of schistosomiasis in China and review GIS and RS applications to date. These include mapping prevalence and intensity data of Schistosoma japonicum at a large scale, and identifying and predicting suitable habitats for Oncomelania hupensis, the intermediate host snail of S. japonicum, at a small scale. Other prominent applications have been the prediction of infection risk due to ecological transformations, particularly those induced by floods and water resource developments, and the potential impact of climate change. We also discuss the limitations of the previous work, and outline potential new applications of GIS and RS techniques, namely quantitative GIS, WebGIS, and utilization of emerging satellite information, as they hold promise to further enhance infection risk mapping and disease prediction. Finally, we stress current research needs to overcome some of the remaining challenges of GIS and RS applications for schistosomiasis, so that further and sustained progress can be made to control this disease in China and elsewhere. PMID:16112638

  14. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, David W.; Hager, E. Randolph

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  15. Stereo vision controlled bilateral telerobotic remote assembly station

    NASA Astrophysics Data System (ADS)

    Dewitt, Robert L.

    1992-05-01

    The objective of this project was to develop a bilateral six degree-of-freedom telerobotic component assembly station utilizing remote stereo vision assisted control. The component assembly station consists of two Unimation Puma 260 robot arms and their associated controls, two Panasonic miniature camera systems, and an air compressor. The operator controls the assembly station remotely via kinematically similar master controllers. A Zenith 386 personal computer acts as an interface and system control between the human operator's controls and the Val II computer controlling the arms. A series of tasks, ranging in complexity and difficulty, was utilized to assess and demonstrate the performance of the complete system.

  16. Remote sensing and control of irrigation system using a distributed wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distributed in-field sensor-based irrigation systems offer the potential to support site-specific irrigation management that allows producers to maximize their productivity while saving water. However, the seamless integration of sensor fusion, data interface, software design, and communications for...

  17. Remote file inquiry (RFI) system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    System interrogates and maintains user-definable data files from remote terminals, using English-like, free-form query language easily learned by persons not proficient in computer programming. System operates in asynchronous mode, allowing any number of inquiries within limitation of available core to be active concurrently.

  18. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  19. Nitrogen rejection with pressure swing adsorption. Principles, design and remote control using an expert system

    SciTech Connect

    Buras, R.J.; Chan, A.; Mitariten, M.J.

    1995-11-01

    The rejection of nitrogen from low-quality natural gas has historically been accomplished through low-temperature cryogenic systems and generally applied to large volumes of gas. Until recently, the treatment of small gas volumes has presented difficulty in meeting economic targets. The Gas Research Institute (GRI) has indicated that in 1988, total nonassociated raw gas reserves in the lower 48 states was 144 TCF. Of these reserves, an estimated 19.2 TCF (13.3%) contain nitrogen greater than or equal to 4% and that only 1.7 TCF of this high nitrogen gas is in production. Nitrogen rejection from associated gas is also an expanding market and includes the applications of coal seam gas and GOB gas processing. UOP has developed and commercialized its NITREX process for these markets. This process separates nitrogen from methane through the cycling of multiple fixed beds of adsorbent. The NITREX system requires little pretreatment and is a shop-fabricated system with maximized skid mounting of components. The economic attractiveness of upgrading low-quality natural gas has been extended to low gas volumes through the use of this technology. POLYBED{reg_sign}PSA systems were first commercialized for the separation of light gases in 1966. This technology operates by using a fixed bed of adsorbent to adsorb gases of higher boiling points and molecular weights from lighter gases. Commercially attractive separations include the purification of hydrogen from light gases, the upgrading of raw helium for liquefaction and the manufacture of ultra pure methane for chemical plant feedstock.

  20. A robust two-way switching control system for remote piloting and stabilization of low-cost quadrotor UAVs

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Vivani, Andrea

    2015-04-01

    The aim of this paper is to present two control logics and an attitude estimator for UAV stabilization and remote piloting, that are as robust as possible to physical parameters variation and to other external disturbances. Moreover, they need to be implemented on low-cost micro-controllers, in order to be attractive for commercial drones. As an example, possible applications of the two switching control logics could be area surveillance and facial recognition by means of a camera mounted on the drone: the high computational speed logic is used to reach the target, when the high-stability one is activated, in order to complete the recognition tasks.

  1. A fully remote control cryogenless ozone precursor system with improved sensitivity

    SciTech Connect

    Cardin, D.B.; Deschenes, J.T.

    1994-12-31

    In compliance with Title 1 of the 1990 Clean Air Act Amendment (1990 CAAA), hydrocarbons in the C2-C10 molecular weight range will be monitored to assess their contribution to ozone formation in approximately 35 cities which exceed current ozone standards during summer months. A cryogenless C2-C10 ``AUTOGC`` system is presented that exceeds the monitoring requirements specified in the technical assistance document for ozone precursor monitoring. Samples can be analyzed hourly or once every 3, 8, or 24 hours to provide as much resolution as necessary. Sampling frequency can be changed via modem to accommodate periods of high and low ozone concentrations. A benchtop 16-position manifold makes it possible to analyze other gas streams at programmed intervals, such as propane and hexane standards, retention time standards, and system blanks. Integration of the ambient air sample first into a canister allows standards and blanks to be run while continuing to analyze ambient air 24 hours per day. Access to the GC/FID and preconcentrator are possible via modem using a Windows{trademark} interface for data retrieval, verification of proper operation, and adjustment of method parameters. Data will be presented showing performance in determining ozone precursor concentrations in Los Angeles, California.

  2. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  3. Controlling TV-Camera f-Stop Remotely

    NASA Technical Reports Server (NTRS)

    Talley, G. L., Jr.; Herbison, D. R.; Routh, G. F.

    1984-01-01

    Lens opening of television camera controlled manually from remote location by simple and inexpensive data link without modifications to camera lens system. Allows closeup views of wide-brightness-range events otherwise hazardous for human operator.

  4. A low cost, high performance remotely controlled backhoe/excavator

    SciTech Connect

    Rizzo, J.

    1995-12-31

    This paper addresses a state of the art, low cost, remotely controlled backhoe/excavator system for remediation use at hazardous waste sites. The all weather, all terrain, Remote Dig-It is based on a simple, proven construction platform and incorporates state of the art sensors, control, telemetry and other subsystems derived from advanced underwater remotely operated vehicle systems. The system can be towed to a site without the use of a trailer, manually operated by an on board operator or operated via a fiber optic or optional RF communications link by a remotely positioned operator. A proportional control system is piggy backed onto the standard manual control system. The control system improves manual operation, allows rapid manual/remote mode selection and provides fine manual or remote control of all functions. The system incorporates up to 4 separate video links, acoustic obstacle proximity sensors, and stereo audio pickups and an optional differential GPS navigation. Video system options include electronic panning and tilting within a distortion-corrected wide angle field of view. The backhoe/excavator subsystem has a quick disconnect interface feature which allows its use as a manipulator with a wide variety of end effectors and tools. The Remote Dig-It was developed to respond to the need for a low-cost, effective remediation system for use at sites containing hazardous materials. The prototype system was independently evaluated for this purpose by the Army at the Jefferson Proving Ground where it surpassed all performance goals. At the time of this writing, the Remote Dig-It system is currently the only backhoe/excavator which met the Army`s goals for remediation systems for use at hazardous waste sites and it costs a fraction of any known competing offerings.

  5. Remotely Accessible Management System (RAMS).

    ERIC Educational Resources Information Center

    Wood, Rex

    Oakland Schools, an Intermediate School District for Administration, operates a Remotely Accessible Management System (RAMS). RAMS is composed of over 100 computer programs, each of which performs procedures on the files of the 28 local school districts comprising the constituency of Oakland Schools. This regional service agency covers 900 square…

  6. Remote tactile sensing glove-based system.

    PubMed

    Culjat, Martin O; Son, Ji; Fan, Richard E; Wottawa, Christopher; Bisley, James W; Grundfest, Warren S; Dutson, Erik P

    2010-01-01

    A complete glove-based master-slave tactile feedback system was developed to provide users with a remote sense of touch. The system features a force-sensing master glove with piezoresistive force sensors mounted at each finger tip, and a pressure-transmitting slave glove with silicone-based pneumatically controlled balloon actuators, mounted at each finger tip on another hand. A control system translates forces detected on the master glove, either worn by a user or mounted on a robotic hand, to discrete pressure levels at the fingers of another user. System tests demonstrated that users could accurately identify the correct finger and detect three simultaneous finger stimuli with 99.3% and 90.2% accuracy, respectively, when the subjects were located in separate rooms. The glove-based tactile feedback system may have application to virtual reality, rehabilitation, remote surgery, medical simulation, robotic assembly, and military robotics. PMID:21096379

  7. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to

  8. The future of remote ECG monitoring systems

    PubMed Central

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-01-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  9. The future of remote ECG monitoring systems.

    PubMed

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-09-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  10. A teleoperated system for remote site characterization

    NASA Technical Reports Server (NTRS)

    Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon

    1994-01-01

    The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).

  11. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, D.W.; Hager, E.R.

    1984-02-22

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  12. Remotely-Operated Traffic Control Light

    NASA Technical Reports Server (NTRS)

    Reedy, J. S.

    1984-01-01

    Traffic warning light for school crossing, construction zones, and other hazardous areas activated by remote control. Apparatus consists of small radio transmitter, pole-mounted strobe light with attached power supply and radio receiver.

  13. Telerobotic on-orbit remote fluid resupply system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.

  14. 47 CFR 80.1183 - Remote control for maneuvering or navigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Remote control for maneuvering or navigation... Communications § 80.1183 Remote control for maneuvering or navigation. (a) An on-board station may be used for remote control of maneuvering or navigation control systems aboard the same ship or, where that ship...

  15. 47 CFR 80.1183 - Remote control for maneuvering or navigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Remote control for maneuvering or navigation... Communications § 80.1183 Remote control for maneuvering or navigation. (a) An on-board station may be used for remote control of maneuvering or navigation control systems aboard the same ship or, where that ship...

  16. 47 CFR 80.1183 - Remote control for maneuvering or navigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Remote control for maneuvering or navigation... Communications § 80.1183 Remote control for maneuvering or navigation. (a) An on-board station may be used for remote control of maneuvering or navigation control systems aboard the same ship or, where that ship...

  17. 47 CFR 80.1183 - Remote control for maneuvering or navigation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Remote control for maneuvering or navigation... Communications § 80.1183 Remote control for maneuvering or navigation. (a) An on-board station may be used for remote control of maneuvering or navigation control systems aboard the same ship or, where that ship...

  18. 47 CFR 80.1183 - Remote control for maneuvering or navigation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Remote control for maneuvering or navigation... Communications § 80.1183 Remote control for maneuvering or navigation. (a) An on-board station may be used for remote control of maneuvering or navigation control systems aboard the same ship or, where that ship...

  19. Technical Update: Johnson Space Center system using a solid electrolytic cell in a remote location to measure oxygen fugacities in CO/CO2 controlled-atmosphere furnaces

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Williams, R. J.; Le, L.; Wagstaff, J.; Lofgren, G.; Lanier, A.; Carter, W.; Roshko, A.

    1993-01-01

    Details are given for the design and application of a (one atmosphere) redox-control system. This system differs from that given in NASA Technical Memorandum 58234 in that it uses a single solid-electrolytic cell in a remote location to measure the oxygen fugacities of multiple CO/CO2 controlled-atmosphere furnaces. This remote measurement extends the range of sample-furnace conditions that can be measured using a solid-electrolytic cell, and cuts costs by extending the life of the sensors and by minimizing the number of sensors in use. The system consists of a reference furnace and an exhaust-gas manifold. The reference furnace is designed according to the redox control system of NASA Technical Memorandum 58234, and any number of CO/CO2 controlled-atmosphere furnaces can be attached to the exhaust-gas manifold. Using the manifold, the exhaust gas from individual CO/CO2 controlled atmosphere furnaces can be diverted through the reference furnace, where a solid-electrolyte cell is used to read the ambient oxygen fugacity. The oxygen fugacity measured in the reference furnace can then be used to calculate the oxygen fugacity in the individual CO/CO2 controlled-atmosphere furnace. A BASIC computer program was developed to expedite this calculation.

  20. New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system

    NASA Astrophysics Data System (ADS)

    La Spina, A.; Burton, M. R.; Harig, R.; Mure, F.; Rusch, P.; Jordan, M.; Caltabiano, T.

    2013-01-01

    The ordinary, low intensity activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, "major explosions" and "paroxysms". These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had somewhat more direct connection to a primary, deep degassing system while the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation

  1. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  2. Digital wireless control system

    NASA Astrophysics Data System (ADS)

    Smith, R.

    1993-08-01

    The Digital Wireless Control System (DWCS) is designed to initiate high explosives safely while using a wireless remote control system. Numerous safety features have been designed into the fire control system to mitigate the hazards associated with remote initiation of high explosives. These safety features range from a telemetry (TM) fire control status system to mechanical timers and keyed power lockout switches. The environment, safety, and health (ES&H) Standard Operating Procedure (SOP) SP471970 is intended as a guide when working with the DWCS. This report describes the Digital Wireless Control System and outlines each component's theory of operation and its relationship to the system.

  3. Application of Risk Analysis Based On Remote Sensing and Geographic Information System Technologies To Control of Malaria In Nigeria

    NASA Astrophysics Data System (ADS)

    Njemanze, Philip; Njemanze, Philip; Peters, Constance; Uwaeziozi, Amarachukwu

    More than 1 million Africans die from malaria each year. Remote sensing (RS) and geographic information system (GIS) technologies could be applied to study the risk of malaria epidemic. The patient population included 45,140 of persons aged 0-85 years seen at primary health centers in 18 different local government areas (LGAs) of Imo State. Maps of old Imo State were converted to digital form using ARC/INFO GIS software, and the resulting coverages included hydrology, towns, and villages. Remote sensing images from Advanced Very High Resolution Radiometer (AVHRR) data set were used to obtain color-coded monthly normalized-difference vegetation index or NDVI. Three groups were distinguished as: group A LGAs using water from natural hydrology and bore-holes, group B - using rain water harvesting from roof tops into surface water reservoirs, and group C - using ground surface catchment of rain water with ground ponds. These stagnant ponds were Anopheles mosquito breeding sites. The NDVI values were used to determine water availability, and were least in January/February each year, and highest in April/May. Probabilistic layer analysis (PLA) was used to determine the Odds Ratio (OR), Relative Risk (RR) and Attributable Risk (AR) for malaria in groups A, B, C. Significant risk for malaria was associated with local water conservation methods in group C, compared to A, (OR = 4.55; RR = 4.46, AR = 77.6

  4. Holographic enhanced remote sensing system

    NASA Technical Reports Server (NTRS)

    Iavecchia, Helene P.; Gaynor, Edwin S.; Huff, Lloyd; Rhodes, William T.; Rothenheber, Edward H.

    1990-01-01

    The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site.

  5. The development of the DAST I remotely piloted research vehicle for flight testing an active flutter suppression control system. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Grose, D. L.

    1979-01-01

    The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.

  6. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  7. UKIRT remote operations fail-safe system

    NASA Astrophysics Data System (ADS)

    Gorges, Bryan; Walther, Craig; Chuter, Tim

    2012-09-01

    Remote operation of a four meter class telescope on the summit of Mauna Kea from 40 kilometers away presents unique challenges. Concerns include: communication links being severed, the computer controlling the enclosure becoming inoperable, non-responsive software, inclement weather, or the operator forgetting or unable to close the dome during a personal emergency. These issues are addressed at the United Kingdom Infrared Telescope (UKIRT) by a series of deadman handshakes starting on the operator's end with a graphical user interface that requires periodic attention and culminates with hardware in the telescope that will initiate a closing sequence when regular handshake signals do not continue. Software packages including Experimental Physics and Industrial Control Systems1 (EPICS) and a distributed, real time computing system for instrumentation2 (DRAMA) were used in this project to communicate with hardware control systems and to coordinate systems. After testing, this system has been used in operation since January 2011.

  8. The automation of remote vehicle control. [in Mars roving vehicles

    NASA Technical Reports Server (NTRS)

    Paine, G.

    1977-01-01

    The automation of remote vehicles is becoming necessary to overcome the requirement of having man present as a controller. By removing man, remote vehicles can be operated in areas where the environment is too hostile for man, his reaction times are too slow, time delays are too long, and where his presence is too costly, or where system performance can be improved. This paper addresses the development of automated remote vehicle control for nonspace and space tasks from warehouse vehicles to proposed Mars rovers. The state-of-the-art and the availability of new technology for implementing automated control are reviewed and the major problem areas are outlined. The control strategies are divided into those where the path is planned in advance or constrained, or where the system is a teleoperator, or where automation or robotics have been introduced.

  9. Implantable, remotely-programmable insulin infusion system

    SciTech Connect

    Carlson, G.A.; Bair, R.E.; Gaona, J.I. Jr.; Love, J.T.; Urenda, R.S.

    1981-10-01

    An implantable, remotely-programmable insulin infusion system is described which has a mass of 280 grams and an implanted lifetime exceeding two years. The system uses a rotary solenoid-driven peristaltic pump controlled by low power CMOS timing circuitry which provides bimodal insulin delivery. Fifteen low rates from 0.39 to 5.9 units/hour and 15 high doses from 0.84 to 12.5 units are available using U100 insulin. The system has been tested in the laboratory, evaluated in diabetic dogs, and implanted in one diabetic human.

  10. A teleoperated system for remote site characterization

    SciTech Connect

    Sandness, G.A.; Richardson, B.S.; Pence, J.

    1993-08-01

    The detection and characterization of buried objects and materials is an important first step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. To address the need to minimize the exposure of on-site personnel to the hazards associated with such sites, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by an radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS). The sensors are environmentally protected, internally cooled, and interchangeable based on mission requirements. To date, the RCS has been successfully tested at the Oak Ridge National Laboratory and the Idaho National Engineering Laboratory.

  11. Remote monitoring of a Fire Protection System

    NASA Astrophysics Data System (ADS)

    Bauman, Steven; Vermeulen, Tom; Roberts, Larry; Matsushige, Grant; Gajadhar, Sarah; Taroma, Ralph; Elizares, Casey; Arruda, Tyson; Potter, Sharon; Hoffman, James

    2011-03-01

    Some years ago CFHT proposed developing a Remote Observing Environment aimed at producing Science Observations at their Observatory Facility on Mauna Kea from their Headquarters facility in Waimea, HI. This Remote Observing Project commonly referred to as OAP (Observatory Automation Project) was completed at the end of January 2011 and has been providing the majority of Science Data since. My poster will discuss the upgrades to the existing fire alarm protection system. With no one at the summit during nightly operations, the observatory facility required automated monitoring of the facility for safety to personnel and equipment in the case of a fire. An addressable analog fire panel was installed which utilizes digital communication protocol (DCP), intelligent communication with other devices, and an RS-232 interface which provides feedback and real-time monitoring of the system. Using the interface capabilities of the panel, it provides notifications when heat detectors, smoke sensors, manual pull stations, or the main observatory computer room fire suppression system has been activated. The notifications are sent out as alerts to staff in the form of test massages and emails and the observing control GUI interface alerts the remote telescope operator with a map showing the location of the fire occurrence and type of device that has been triggered. And all of this was accomplished without the need for an outside vendor to monitor the system and facilitate warnings or notifications regarding the system.

  12. Design of a multisystem remote maintenance control room

    SciTech Connect

    Draper, J.V.; Handel, S.J.; Kring, C.T.; Kawatsuma, S.

    1988-01-01

    The Remote Systems Development Section of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory (ORNL) and Japan's Power Reactor and Nuclear Fuel Development Corporation (PNC) recently collaborated in the development of a control room concept for remote operations. This report describes design methods and the resulting control room concept. The design project included five stages. The first was compilation of a complete function list; functions are tasks performed by operators in the control room while operating equipment located in the remote area. The second step was organization of the function list into ''function groups;'' function groups are sets of functions that operate one piece of equipment. The third stage was determination of crew size and requirements for supervision. The fourth stage was development of conceptual designs of displays and controls. The fifth stage was development of plans for placement of crew stations within the control room. 5 figs., 1 tab.

  13. Remote Arrhythmia Monitoring System Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  14. Mobile remote manipulator vehicle system

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)

    1987-01-01

    A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.

  15. Development of a remote building monitoring system

    SciTech Connect

    Olken, F.; Jacobsen, H.A.; McParland, C.; Piette, M.A.; Anderson, M.F.

    1998-07-01

    The authors describe the design, development and initial operation of a prototype system which permits remote monitoring of multiple heterogeneous commercial buildings across the Internet from a single control center. Their system is distinguished by its ability to interface to multiple heterogeneous legacy building Energy Management Control Systems (EMCSs), its use of the Common Object Request Broker Architecture (CORBA) standard communication protocols, development of a standardized naming system for monitoring points, the use of a relational DBMS to store time series data, automatic unit conversion, and a scripted time series visualization system. The authors discuss design decisions related to the selection of CORBA and a relational DBMS implementation. They also discuss related standards efforts such as BACnet and the International Alliance for Interoperability. They conclude with discussions of the HVAC system data and future work.

  16. Magnetic nanoparticles and nanocomposites for remote controlled therapies.

    PubMed

    Hauser, Anastasia K; Wydra, Robert J; Stocke, Nathanael A; Anderson, Kimberly W; Hilt, J Zach

    2015-12-10

    This review highlights the state-of-the-art in the application of magnetic nanoparticles (MNPs) and their composites for remote controlled therapies. Novel macro- to nano-scale systems that utilize remote controlled drug release due to actuation of MNPs by static or alternating magnetic fields and magnetic field guidance of MNPs for drug delivery applications are summarized. Recent advances in controlled energy release for thermal therapy and nanoscale energy therapy are addressed as well. Additionally, studies that utilize MNP-based thermal therapy in combination with other treatments such as chemotherapy or radiation to enhance the efficacy of the conventional treatment are discussed. PMID:26407670

  17. The small light multi-function integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Lin, Zhaorong; Yao, Yigang

    2015-08-01

    With the development of network information, the era of big data is coming, and this has high demand to the information quantity and the diversity of the remote sensing images. Currently the available remote sensing system focuses on the convenience and the celerity of the acquiring images, and lacking the remote sensing system which can acquire the image with the diversity and large amount of information. In this paper, a new small light multifunction integrated remote sensing and the remote sensing information network system of multi-sensor are proposed to meet the new developing requirements of the current network information. The small light multi-function integrated remote sensing system consists of a load platform, the integrated sensor system, the airborne control system, the stabilized platform, the transmission system and the ground processing system. The components, function and the principle of the system are introduced, and the key technologies of the integrated remote sensing system are analyzed, in the last the applications of the system are described in order to make a contribution to the industrialization of the big data remote sensing.

  18. Semantic remote patient monitoring system.

    PubMed

    Shojanoori, Reza; Juric, Radmila

    2013-02-01

    We propose an automated and personalized remote patient monitoring (RPM) system, which is applied to care homes and is dependent on the manipulation of semantics describing situations during patient monitoring in ontological models. Decision making in RPM is based on reasoning performed upon ontologies, which secures the delivery of appropriate e-health services in care homes. Our working experiment shows an example of preventive e-healthcare, but it can be extended to any situation that requires either urgent action from healthcare professionals or a simple recommendation during RPM. We use Semantic Web technology and OWL/SWRL-enabled ontologies to illustrate the proposal and feasibility of implementing this RPM system as a software solution in pervasive healthcare. It will be of interest to healthcare professionals, who can directly shape and populate the proposed ontological model, and software engineers, who would consider using OWL/SWRL when creating e-health services in general. PMID:23363406

  19. Bidirectional controlled joint remote state preparation

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Bai, Ming-Qiang; Mo, Zhi-Wen

    2015-11-01

    Fusing the ideas of bidirectional controlled teleportation and joint remote state preparation, we put forward a protocol for implementing five-party bidirectional controlled joint remote state preparation (BCJRSP) by using an eight-qubit cluster state as quantum channel. It can be shown that two distant senders can simultaneously and deterministically exchange their states with the other senders under the control of the supervisor. In order to extend BCJRSP, we generalize this protocol from five participants to multi participants utilizing two multi-qubit GHZ-type states as channel and propose two generalized BCJRSP schemes. On the other hand, we generalize the BCJRSP to multidirectional controlled joint remote state preparation by utilizing multi GHZ-type states of multi-qubit as quantum channel. By integrating bidirectional quantum teleportation, quantum state sharing and joint remote state preparation, some modified versions are discussed. Only Pauli operations and single-qubit measurements are used in our schemes, so the scheme with five-party is easily realized in physical experiment.

  20. Diffraction experiments with infrared remote controls

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-02-01

    In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.

  1. Remote Excavation System test plan

    SciTech Connect

    Walker, S.; Hyde, R.A.

    1993-05-01

    The Office of Technology Development (OTD) established the Robotics Technology Development Program (RTDP) to integrate robotic development activities on a national basis; provide needs-oriented, timely, and economical robotics technology to support environmental and waste operations activities at Department of Energy (DOE) sites; and provide the focus and direction for the near term (less than five years) and guidance for the tong-term (five to twenty years) research and development efforts for site-specific problems. The RTDP consists of several programs including the Buried Waste Robotics Program (BWRP), which addresses remote buried waste applications. The Remote Excavation System (RES) was developed under the RTDP to provide a safer method of excavating hazardous materials for both the DOE and the Department of Defense (DOD). The excavator, initially developed by the DOD as a manually-operated small excavator, has been modified for teleoperation with joint funding from the BWRP and the DOD. The Buried Waste Integrated Demonstration (BWID) and the Uranium Soils Integrated Demonstration (USID) are funding the demonstration, testing, and evaluation of the RES covered in this test plan. This document covers testing both at Oak Ridge National Laboratory (ORNL) and the Idaho National Engineering Laboratory (INEL), as funded by BWID and USID. This document describes the tests planned for the RES demonstration for the BWRP. The purposes of the test plan are (1) to establish test parameters to ensure that the demonstration results are deemed useful and usable and (2) to demonstrate performance in a safe manner within all regulatory requirements.

  2. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    Beech, Geoffrey; Conley, Gerald; Diaz, Claudine; Dimella, Timothy; Dodson, Pete; Hykin, Jeff; Richards, Byron; Richardson, Kroy; Shetzer, Christie; Vandyke, Melissa

    1990-01-01

    A first generation lunar transportation vehicle was designed for use on the surface of the Moon between the years 2010 and 2020. Attention is focussed on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three cart, six-wheeled articulated vehicle. It's purpose will be for the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 kilometers). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the asronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include: a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat restraints, heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model was built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  3. Lunar articulated remote transportation system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The students of the Florida A&M/Florida State University College of Engineering continued their design from 1988 to 1989 on a first generation lunar transportation vehicle for use on the surface of the Moon between the years 2010 and 2020. Attention is focused on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three-cart, six-wheeled articulated vehicle. Its purpose will be the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 km). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the astronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat retraints; heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model has been built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  4. Metasurface Spatial Processor for Electromagnetic Remote Control

    NASA Astrophysics Data System (ADS)

    Achouri, Karim; Lavigne, Guillaume; Salem, Mohamed A.; Caloz, Christophe

    2016-05-01

    We introduce the concept of metasurface spatial processor, whose transmission is remotely and coherently controlled by the superposition of an incident wave and a control wave through the metasurface. The conceptual operation of this device is analogous to both that of a transistor and a Mach-Zehnder interferometer, while offering much more diversity in terms of electromagnetic transformations. We demonstrate two metasurfaces, that perform the operation of electromagnetic switching and amplification.

  5. Remote Handling System for Ignitor^*

    NASA Astrophysics Data System (ADS)

    Galbiati, L.; Bianchi, A.; Lucca, F.; Coppi, B.

    2005-10-01

    Since access in Ignitor is through the limited width of the equatorial ports, the use of remote handling (RH) technology for any in-vessel intervention is required, even before the vessel becomes activated. In particular, the first wall of Ignitor, which is made of TZM (Molybdenum) tiles mounted on Inconel tile-carriers covering the entire plasma chamber, has been designed to be installed and replaced entirely by the RH system. The presence of radiation screens inside the cryostat and around the ports ensure a sufficiently low level of activation around the machine to avoid the need of ex-vessel RH techniques. The in-vessel RH system is based on two transporters carrying an articulated boom with end-effectors, supported by a movable structure over a transport system that can be lifted and set in position adjacent to two opposite horizontal ports. The design of the in-vessel RH system, of the boom and its enclosure, and of the most significant end-effectors (welding and cutting tools, and tools for the removal and handling of tile carriers) has been completed. A series of other dedicated tools for installation and maintainances of diagnostics components, of the RF antennas, vacuum cleaners, tools for general inspection and metrology are included in the design. ^*Sponsored in part by ENEA of Italy and by the U.S. DOE.

  6. Remote data acquisition system based on DataSocket technology

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Yang, Le-Ping

    2003-09-01

    The paper discusses a design of a remote data acquisition system based on DataSocket technology, the main idea of this system is that using the abilities of high speed live data publishing and data sharing of DataSocket technology to transmit the control commands of DAQ cards and measurement data. This system resolves the problems of using RDA technology to realize remote data acquisition.

  7. Remote robot manipulator coupled with remote-controlled guide vehicle for soil sampling in hazardous waste sites

    NASA Astrophysics Data System (ADS)

    Kim, Kiho

    The important initial step for remediation of hazardous waste is contaminant analysis since the cleanup operation can not begin until the contaminants in hazardous waste sites have been clearly identified. Ames Laboratory, one of the U.S. Department of Energy sites, has developed a robotic sampling system for automation of real-time contaminant analysis in situ which will provide the advantage of lowering the cost per sample, eliminating personnel exposure to hazardous environments, and allowing quicker results. Successful accomplishment of real-time contaminant analysis will require a remote manipulator to perform the sampling tasks in remote and unstructured surroundings, and a remote-controlled guide vehicle to move a remote manipulator into the desired sampling location. This thesis focuses on the design and construction of a remote-controlled guide vehicle to move the robotic sampling system into the contaminated field to obtain soil samples at the desired locations, the development of an integrated dynamic model of a remote manipulator, the identification of dynamic parameters in the integrated dynamic model, and the design of a mobile robotic sampling system. A four-wheeled vehicle prototype has been constructed and its performance tested manually in the field to verify the design requirements. To remotely control the vehicle, mechanical requirements to activate the brake, throttle, transmission, and steering linkages were determined based on experimental results. A teleoperated control utilizing hundred feet long umbilical cords was first employed to remotely control the vehicle. Next, the vehicle was modified to remotely operate in the field by radio control without the aid of long umbilical cords, satisfying all the design specifications. To reduce modeling error in the robotic system, the integrated dynamic system comprised of a remote manipulator (located on a trailer pulled by the remote-controlled guide vehicle) and its drive system has been modeled

  8. A proposed protocol for remote control of automated assessment devices

    SciTech Connect

    Kissock, P.S.

    1996-09-01

    Systems and devices that are controlled remotely are becoming more common in security systems in the US Air Force and other government agencies to provide protection of valuable assets. These systems reduce the number of needed personnel while still providing a high level of protection. However, each remotely controlled device usually has its own communication protocol. This limits the ability to change devices without changing the system that provides the communications control to the device. Sandia is pursuing a standard protocol that can be used to communicate with the different devices currently in use, or may be used in the future, in the US Air Force and other government agencies throughout the security community. Devices to be controlled include intelligent pan/tilt mounts, day/night video cameras., thermal imaging cameras, and remote data processors. Important features of this protocol include the ability to send messages of varying length, identify the sender, and more importantly, control remote data processors. As camera and digital signal processor (DSP) use expands, the DSP will begin to reside in the camera itself. The DSP can be used to provide auto-focus, frame-to- frame image registration, video motion detection (VMD), target detection, tracking, image compression, and many other functions. With the serial data control link, the actual DSP software can be updated or changed as required. Coaxial video cables may become obsolete once a compression algorithm is established in the DSP. This paper describes the proposed public domain protocol, features, and examples of use. The authors hope to elicit comments from security technology developers regarding format and use of remotely controlled automated assessment devices. 2 figs., 1 tab.

  9. An underwater work systems package. [remote handling

    NASA Technical Reports Server (NTRS)

    Estabrook, N. B.

    1975-01-01

    A modular unit which is adaptable to several existing deep sea submersibles was developed to extend their working abilities and acquire knowledge of components and techniques for working in the deep sea environment. This work systems package is composed of an aluminum pipe structure on which are mounted two six-function grabber arms, a seven function manipulator, tool suit, 1,000/lb. capacity winch, electrohydraulic power supply, electronics housing, lights, and television. The unit is designed to be operated by itself either remotely or with divers, attached to manned submersibles, or mounted on unmanned cable-controlled submersibles.

  10. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    SciTech Connect

    Alonzo, G M

    1995-01-01

    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  11. Natural Resource Information System. Remote Sensing Studies.

    ERIC Educational Resources Information Center

    Leachtenauer, J.; And Others

    A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…

  12. 47 CFR 78.51 - Remote control operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote control operation. 78.51 Section 78.51... SERVICE General Operating Requirements § 78.51 Remote control operation. (a) A CARS station may be operated by remote control: Provided, That such operation is conducted in accordance with the...

  13. Wind-tunnel investigation at supersonic speeds of a remote-controlled canard missile with a free-rolling-tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1985-01-01

    Wind tunnel tests were conducted at Mach numbers 1.70, 2.16, and 2.86 to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed or free rolling tailfin afterbodies. Mechanical coupling effects of the free-rolling-tail afterbody were investigated by using an electronic electromagnetic brake system providing arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail roll rate. Remote-controlled canards were deflected to provide pitch, yaw, and roll control. Results indicate that the induced rolling moment coefficients due to canard yaw control are reduced and linearized for the free-rolling-tail (free-tail) configuration. The canards of the latter provide conventional roll control for the entire angle-of-attack test range. For the free-tail configuration, the induced rolling moment coefficient due to canard yaw control increased and the canard roll control decreased with increases in brake torque, which simulated bearing friction torque. It appears that a compromise in regard to bearing friction, for example, low-cost bearings with some friction, may allow satisfactory free-tail aerodynamic characteristics that include reductions in adverse rolling-moment coefficients and lower tail roll rates.

  14. Division 1137 property control system

    SciTech Connect

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  15. Optimizing Optics For Remotely Controlled Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Billet, A. B.

    1984-09-01

    The past decade has shown a dramatic increase in the use of unmanned tethered vehicles in worldwide marine fields. These vehicles are used for inspection, debris removal and object retrieval. With advanced robotic technology, remotely operated vehicles (ROVs) are now able to perform a variety of jobs previously accomplished only by divers. The ROVs can be used at greater depths and for riskier jobs, and safety to the diver is increased, freeing him for safer, more cost-effective tasks requiring human capabilities. Secondly, the ROV operation becomes more cost effective to use as work depth increases. At 1000 feet a diver's 10 minutes of work can cost over $100,000 including support personnel, while an ROV operational cost might be 1/20 of the diver cost per day, based on the condition that the cost for ROV operation does not change with depth, as it does for divers. In the ROV operation the television lens must be as good as the human eye, with better light gathering capability than the human eye. The RCV-150 system is an example of these advanced technology vehicles. With the requirements of manueuverability and unusual inspection, a responsive, high performance, compact vehicle was developed. The RCV-150 viewing subsystem consists of a television camera, lights, and topside monitors. The vehicle uses a low light level Newvicon television camera. The camera is equipped with a power-down iris that closes for burn protection when the power is off. The camera can pan f 50 degrees and tilt f 85 degrees on command from the surface. Four independently controlled 250 watt quartz halogen flood lamps illuminate the viewing area as required; in addition, two 250 watt spotlights are fitted. A controlled nine inch CRT monitor provides real time camera pictures for the operator. The RCV-150 vehicle component system consists of the vehicle structure, the vehicle electronics, and hydraulic system which powers the thruster assemblies and the manipulator. For this vehicle, a light

  16. Development of an airborne remote sensing system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizi...

  17. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  18. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  19. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  20. 47 CFR 74.634 - Remote control operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Remote control operation. 74.634 Section 74.634 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Stations § 74.634 Remote control operation. (a) A TV auxiliary station may be operated by remote...

  1. 47 CFR 74.634 - Remote control operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Remote control operation. 74.634 Section 74.634 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Stations § 74.634 Remote control operation. (a) A TV auxiliary station may be operated by remote...

  2. 47 CFR 74.434 - Remote control operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.434 Remote control operation....

  3. 47 CFR 74.634 - Remote control operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote control operation. 74.634 Section 74.634 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Stations § 74.634 Remote control operation. (a) A TV auxiliary station may be operated by remote...

  4. 47 CFR 74.634 - Remote control operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote control operation. 74.634 Section 74.634 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... Stations § 74.634 Remote control operation. (a) A TV auxiliary station may be operated by remote...

  5. Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers

    ERIC Educational Resources Information Center

    Besada-Portas, E.; Lopez-Orozco, J. A.; de la Torre, L.; de la Cruz, J. M.

    2013-01-01

    This paper presents a new methodology to develop remote laboratories for systems engineering and automation control courses, based on the combined use of TwinCAT, a laboratory Java server application, and Easy Java Simulations (EJS). The TwinCAT system is used to close the control loop for the selected plants by means of programmable logic…

  6. Lighting for remote viewing systems

    SciTech Connect

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  7. Lighting for remote viewing systems

    SciTech Connect

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages.

  8. Lighting for remote viewing systems

    SciTech Connect

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  9. Polystyrene as a model system to probe the impact of ambient gas chemistry on polymer surface modifications using remote atmospheric pressure plasma under well-controlled conditions.

    PubMed

    Bartis, Elliot A J; Luan, Pingshan; Knoll, Andrew J; Hart, Connor; Seog, Joonil; Oehrlein, Gottlieb S

    2015-01-01

    An atmospheric pressure plasma jet (APPJ) was used to treat polystyrene (PS) films under remote conditions where neither the plume nor visible afterglow interacts with the film surface. Carefully controlled conditions were achieved by mounting the APPJ inside a vacuum chamber interfaced to a UHV surface analysis system. PS was chosen as a model system as it contains neither oxygen nor nitrogen, has been extensively studied, and provides insight into how the aromatic structures widespread in biological systems are modified by atmospheric plasma. These remote treatments cause negligible etching and surface roughening, which is promising for treatment of sensitive materials. The surface chemistry was measured by X-ray photoelectron spectroscopy to evaluate how ambient chemistry, feed gas chemistry, and plasma-ambient interaction impact the formation of specific moieties. A variety of oxidized carbon species and low concentrations of NOx species were measured after APPJ treatment. In the remote conditions used in this work, modifications are not attributed to short-lived species, e.g., O atoms. It was found that O3 does not correlate with modifications, suggesting that other long-lived species such as singlet delta oxygen or NOx are important. Indeed, surface-bound NO3 was observed after treatment, which must originate from gas phase NOx as neither N nor O are found in the pristine film. By varying the ambient and feed gas chemistry to produce O-rich and O-poor conditions, a possible correlation between the oxygen and nitrogen composition was established. When oxygen is present in the feed gas or ambient, high levels of oxidation with low concentrations of NO3 on the surface were observed. For O-poor conditions, NO and NO2 were measured, suggesting that these species contribute to the oxidation process, but are easily oxidized when oxygen is present. That is, surface oxidation limits and competes with surface nitridation. Overall, surface oxidation takes place easily

  10. Remotely operated gripper provides vertical control rod movement

    NASA Technical Reports Server (NTRS)

    Hutter, E.; Koch, L. J.

    1968-01-01

    Remote actuation of a gripper shaft affects vertical engagement between a drive shaft and control rod. A secondary function of the gripper is to provide remote indication of positive completion of the gripping or ungripping operation.

  11. Remote sensing for control of tsetse flies

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Remotely sensed information is discussed which has potential for aiding in the control or eradication of tsetse flies. Data are available from earth resources meteorological, and manned satellites, from airborne sensors, and possibly from data collection platforms. A new zone discrimination technique, based on data from meteorological satellites may also allow the identification of zones hospitable to one or another species of tsetse. For background, a review is presented of the vegetation of Tanzania and Zanzibar, and illustrations presented of automatic processing of data from these areas. In addition, a review is presented of the applicability of temperature data to tsetse areas.

  12. High aspect ratio, remote controlled pumping assembly

    DOEpatents

    Brown, S.B.; Milanovich, F.P.

    1995-11-14

    A miniature dual syringe-type pump assembly is described which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor. 4 figs.

  13. High aspect ratio, remote controlled pumping assembly

    DOEpatents

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  14. Remote control of a DC discharge experiment

    NASA Astrophysics Data System (ADS)

    Dominguez, Arturo; Zwicker, A.; Wissel, S. A.; Ross, J.

    2013-10-01

    Glow discharges are an excellent tool to introduce plasmas to the general public, in part, because of their visual nature. In this poster, we present recent developments of the Remote DC Discharge Experiment. This experiment consists of a 36'' long × 3.5'' radius glass tube containing air held at pressures of approximately 30-200mTorr with a variable voltage between the ends which can be set between 0-2000V to create a glow discharge. Surrounding the tube, a set of Helmholtz coils can be controlled to demonstrate the effects of axial magnetic fields on the plasma. While the experiment is located at PPPL, a webcam displays the experiment online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The interface has been designed to attract users with a wide range of academic backgrounds by presenting different levels of interactivity, including the most advanced level which gives the user the possibility of empirically finding the breakdown voltage as a function of pressure and electrode separation.

  15. A Pilot Study on the Development of Remote Quality Control of Digital Mammography Systems in the NHS Breast Screening Programme.

    PubMed

    Looney, P; Halling-Brown, M D; Oduko, J M; Young, K C

    2015-10-01

    In the UK, physicists and radiographers perform routine quality control (QC) of digital mammography equipment at daily, weekly and monthly intervals. The tests performed and tolerances are specified by standard protocols. The manual nature of many of the tests introduces variability due to the positioning of regions of interest (ROIs) and can be time consuming. The tools on workstations provided by manufacturers limit the range of analysis that radiographers can perform and do not allow for a standard set of tools and analysis because they are specific to a given manufacturer. Automated software provides a means of reducing the variability in the analysis and also provides the possibility of additional, more complex analysis than is currently performed on the daily, weekly and monthly checks by radiographers. To this end, a set of tools has been developed to analyse the routine images taken by radiographers. As well as automatically reproducing the usual measurements by radiographers more complex analysis is provided. A QC image collection system has been developed which automatically routes QC data from a clinical site to a centralised server for analysis. A Web-based interface has been created that allows the users to view the performance of the mammographic equipment. The pilot system obtained over 3000 QC images from seven X-ray units at a single screening centre over 2 years. The results show that these tools and methods of analysis can highlight changes in a detector over time that may otherwise go unnoticed with the conventional analysis. PMID:25582530

  16. Multivariable control of the Space Shuttle remote manipulator system using H2 and H(infinity) optimization. M.S. Thesis - Massachusetts Inst. of Tech.

    NASA Technical Reports Server (NTRS)

    Prakash, OM, II

    1991-01-01

    Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.

  17. Virtual collaborative environments: programming and controlling robotic devices remotely

    NASA Astrophysics Data System (ADS)

    Davies, Brady R.; McDonald, Michael J., Jr.; Harrigan, Raymond W.

    1995-12-01

    This paper describes a technology for remote sharing of intelligent electro-mechanical devices. An architecture and actual system have been developed and tested, based on the proposed National Information Infrastructure (NII) or Information Highway, to facilitate programming and control of intelligent programmable machines (like robots, machine tools, etc.). Using appropriate geometric models, integrated sensors, video systems, and computing hardware; computer controlled resources owned and operated by different (in a geographic sense as well as legal sense) entities can be individually or simultaneously programmed and controlled from one or more remote locations. Remote programming and control of intelligent machines will create significant opportunities for sharing of expensive capital equipment. Using the technology described in this paper, university researchers, manufacturing entities, automation consultants, design entities, and others can directly access robotic and machining facilities located across the country. Disparate electro-mechanical resources will be shared in a manner similar to the way supercomputers are accessed by multiple users. Using this technology, it will be possible for researchers developing new robot control algorithms to validate models and algorithms right from their university labs without ever owning a robot. Manufacturers will be able to model, simulate, and measure the performance of prospective robots before selecting robot hardware optimally suited for their intended application. Designers will be able to access CNC machining centers across the country to fabricate prototypic parts during product design validation. An existing prototype architecture and system has been developed and proven. Programming and control of a large gantry robot located at Sandia National Laboratories in Albuquerque, New Mexico, was demonstrated from such remote locations as Washington D.C., Washington State, and Southern California.

  18. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  19. Remotely Controlled Isomer Selective Molecular Switching.

    PubMed

    Schendel, Verena; Borca, Bogdana; Pentegov, Ivan; Michnowicz, Tomasz; Kraft, Ulrike; Klauk, Hagen; Wahl, Peter; Schlickum, Uta; Kern, Klaus

    2016-01-13

    Nonlocal addressing-the "remote control"-of molecular switches promises more efficient processing for information technology, where fast speed of switching is essential. The surface state of the (111) facets of noble metals, a confined two-dimensional electron gas, provides a medium that enables transport of signals over large distances and hence can be used to address an entire ensemble of molecules simultaneously with a single stimulus. In this study we employ this characteristic to trigger a conformational switch in anthradithiophene (ADT) molecules by injection of hot carriers from a scanning tunneling microscope (STM) tip into the surface state of Cu(111). The carriers propagate laterally and trigger the switch in molecules at distances as far as 100 nm from the tip location. The switching process is shown to be long-ranged, fully reversible, and isomer selective, discriminating between cis and trans diastereomers, enabling maximum control. PMID:26619213

  20. Remote inspection system for hazardous sites

    SciTech Connect

    Redd, J.; Borst, C.; Volz, R.A.; Everett, L.J.

    1999-04-01

    Long term storage of special nuclear materials poses a number of problems. One of these is a need to inspect the items being stored from time to time. Yet the environment is hostile to man, with significant radiation exposure resulting from prolonged presence in the storage facility. This paper describes research to provide a remote inspection capability, which could lead to eliminating the need for humans to enter a nuclear storage facility. While there are many ways in which an RI system might be created, this paper describes the development of a prototype remote inspection system, which utilizes virtual reality technology along with robotics. The purpose of this system is to allow the operator to establish a safe and realistic telepresence in a remote environment. In addition, it was desired that the user interface for the system be as intuitive to use as possible, thus eliminating the need for extensive training. The goal of this system is to provide a robotic platform with two cameras, which are capable of providing accurate and reliable stereographic images of the remote environment. One application for the system is that it might be driven down the corridors of a nuclear storage facility and utilized to inspect the drums inside, all without the need for physical human presence. Thus, it is not a true virtual reality system providing simulated graphics, but rather an augmented reality system, which performs remote inspection of an existing, real environment.

  1. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  2. Concepts for continuous quality monitoring and station remote control

    NASA Astrophysics Data System (ADS)

    Ettl, M.; Neidhardt, A.; Rottmann, H.; Mühlbauer, M.; Plötz, C.; Himwich, E.; Beaudoin, C.; Szomoru, A.

    2011-07-01

    In the newly funded "Novel EXploration Pushing Robuste-VLBI Services", - project (NEXPReS) the Technische Universitaet Muenchen realize concepts for continuous quality monitoring and station remote control in cooperation with the Max-Planck-Institute for Radioastronomy, Bonn. NEXPReS is a three-year project aimed at further developing e-VLBI services of the European VLBI Network (EVN), with the goal of incorporating e-VLBI into every astronomical observation conducted by the EVN. This project focus on developments of an operational e-control system with authentication and authorization. It includes an appropriate role management with different remote access states for future observation strategies. To allow a flexible control of different systems in parallel sophisticated graphical user interfaces are designed and realized. It requires also a session oriented data management. Because of the higher degree of automation additional system parameters and information is collected with a new system monitoring. The whole system for monitoring and control is fully compatible to the NASA field system as extension. The concept will be proofed with regular tests between Wettzell and Effelsberg.

  3. Overview of remote data transmission systems

    NASA Astrophysics Data System (ADS)

    Paulson, Richard W.

    Remote data transmission systems for monitoring the environment are reviewed, including the Argos system, geostationary meteorological satellite systems, and the meteorburst technique which relies on micrometeor trails in the atmosphere to reflect radio messages between a hydrologic station and an interrogation site. The snow telemetry hydrologic data collection system, Landsat series of satellites, synchronous meteorological and geostationary operational environmental satellites are discussed. Specific elements of these systems are examined and major operators and users of the systems are identified.

  4. Determination of the Critical Parameters for Remote Microscope Control

    NASA Technical Reports Server (NTRS)

    Hahn, R. C.; Herbach, B. A.; Johnston, J. C.; Bethea, M.

    1991-01-01

    As part of a program to determine the capabilities of Telescience as applied to Microgravity Materials Science the need for a remotely controlled microscope was recognized. For this purpose we equipped a microscope with an X-Y-Z positioning device and motors on the zoom and focus controls. Computer control of these devices allowed remote operation. A standard TV camera was mounted to the computer controlled video board which could compress the image in resolution and grey scale. The operator control console was programmed to display three still video pictures as well as provide command access. A standard data transfer network was used to transmit the video data files and the command interaction was via a high speed phone modem. This system, with the microscope in the Microgravity Materials Science Laboratory (MMSL) at LeRC and the control at RPI, was used to determine the accuracy of setting, time required to achieve setting and the operator ease factor. It was found that the focus setting could be established well within the resolution limit of the TV system and that each motion took about 50 seconds and approximately 12 minutes was required to reach ?best? focus. These times could be reduced significantly with operator experience. The operators were provided with ancillary equipment which provided assistance in making the necessary decisions and they reported satisfaction with the control.

  5. AN OVERVIEW OF U.S. EPA RESEARCH ON REMOTE MONITORING AND CONTROL TECHNOLOGIES FOR SMALL DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    There are approximately 160,000 small community and non-community drinking water treatment systems in the United States. According to recent estimates, small systems contribute to 94% of the Safe Drinking Water Act violations annually. A majority of these are for microbiological...

  6. AN OVERVIEW OF U.S. EPA RESEARCH ON REMOTE MONITORING AND CONTROL TECHNOLOGIES FOR SMALL DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    There are approximately 160,000 small community and non-community drinking water treatment systems in the United States. According to recent estimates, small systems contribute to 94% of the Safe Drinking Water Act violations annually. A majority of these are for microbiological ...

  7. Sensor motion control and mobile platforms for aquatic remote sensing

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    2006-09-01

    Modern remote sensing systems used in repetitive environmental monitoring and surveillance applications are used on various platforms. These platforms can be categorized as stationary (fixed) or moving platforms. The sensing systems monitor the ambient environment which also may have inherent motion, such as the water surface with water waves. This is particularly the case for airborne or ship borne sensing of aquatic environments and is true for ground based walking or crawling systems. The time sequential comparison and spatial registration of sensor images, particularly "hyperspectral imagery" requires pixel to pixel registration for science based change and target (or medium) detection applications. These applications require sensor motion control combined with platform motion control. If the pixel sizes are small - on the order of 1 meter to less than 1 mm, then "nano-positioning accuracy" may be necessary for various aspects of the camera or surveillance sensor system, and/or related sensors used to control the moving platform. In this paper and presentation, an overview of converging technologies to sensor motion control and nano-positioning is discussed. The paper and presentation will demonstrate that the technologies converging on this aspect of remote sensing monitoring systems will require professionals with a combination of skills that are not readily available in today's workforce nor taught in educational programs today - especially at the undergraduate level. Thus there is a need to consider new avenues for educating professionals necessary to engineer and apply these converging technologies to important social environmental monitoring and surveillance needs.

  8. Display aids for remote control of untethered undersea vehicles

    NASA Technical Reports Server (NTRS)

    Verplank, W. L.

    1978-01-01

    A predictor display superimposed on slow-scan video or sonar data is proposed as a method to allow better remote manual control of an untethered submersible. Simulation experiments show good control under circumstances which otherwise make control practically impossible.

  9. Remote weapon station for automatic target recognition system demand analysis

    NASA Astrophysics Data System (ADS)

    Lei, Zhang; Li, Sheng-cai; Shi, Cai

    2015-08-01

    Introduces a remote weapon station basic composition and the main advantage, analysis of target based on image automatic recognition system for remote weapon station of practical significance, the system elaborated the image based automatic target recognition system in the photoelectric stabilized technology, multi-sensor image fusion technology, integrated control target image enhancement, target behavior risk analysis technology, intelligent based on the character of the image automatic target recognition algorithm research, micro sensor technology as the key technology of the development in the field of demand.

  10. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  11. Future Radiometer Systems for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Njoku, Eni G.

    2000-01-01

    This paper will describe a new exciting concept for using microwave systems for Earth remote sensing. This concept will use a 6-m diameter mesh deployable antenna with active and passive systems to provide moderate spatial resolution images at L and S-band microwave frequencies.

  12. Studies to design and develop improved remote manipulator systems

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Remote manipulator control considered is based on several levels of automatic supervision which derives manipulator commands from an analysis of sensor states and task requirements. Principle sensors are manipulator joint position, tactile, and currents. The tactile sensor states can be displayed visually in perspective or replicated in the operator's control handle of perceived by the automatic supervisor. Studies are reported on control organization, operator performance and system performance measures. Unusual hardware and software details are described.

  13. Study to design and develop remote manipulator systems

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Salisbury, J. K., Jr.

    1977-01-01

    A description is given of part of a continuing effort both to develop models for and to augment the performance of humans controlling remote manipulators. The project plan calls for the performance of several standard tasks with a number of different manipulators, controls, and viewing conditions, using an automated performance measuring system; in addition, the project plan calls for the development of a force-reflecting joystick and supervisory display system.

  14. 49 CFR 229.15 - Remote control locomotives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Remote control locomotives. 229.15 Section 229.15 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.15 Remote control locomotives. (a) Design and operation. (1)...

  15. 47 CFR 78.51 - Remote control operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote control operation. 78.51 Section 78.51 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES CABLE TELEVISION RELAY SERVICE General Operating Requirements § 78.51 Remote control operation. (a) A CARS station may...

  16. 47 CFR 74.533 - Remote control and unattended operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Remote control and unattended operation. 74.533... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Aural Broadcast Auxiliary Stations § 74.533 Remote control and unattended operation. (a) Aural broadcast STL and...

  17. 47 CFR 74.533 - Remote control and unattended operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote control and unattended operation. 74.533... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Aural Broadcast Auxiliary Stations § 74.533 Remote control and unattended operation. (a) Aural broadcast STL and...

  18. 47 CFR 74.533 - Remote control and unattended operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote control and unattended operation. 74.533... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Aural Broadcast Auxiliary Stations § 74.533 Remote control and unattended operation. (a) Aural broadcast STL and...

  19. 47 CFR 74.533 - Remote control and unattended operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Remote control and unattended operation. 74.533... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Aural Broadcast Auxiliary Stations § 74.533 Remote control and unattended operation. (a) Aural broadcast STL and...

  20. Determination of value of bovine respiratory disease control using a remote early disease identification system compared with conventional methods of metaphylaxis and visual observations.

    PubMed

    White, B J; Amrine, D E; Goehl, D R

    2015-08-01

    Mitigation of the deleterious effects of bovine respiratory disease (BRD) is an important issue in the cattle industry. Conventional management of calves at high risk for BRD often includes mass treatment with antimicrobials at arrival followed by visual observation for individual clinical cases. These methods have proven effective; however, control program efficacy is influenced by the accuracy of visual observation. A remote early disease identification (REDI) system has been described that monitors cattle behavior to identify potential BRD cases. The objective of this research was to compare health and performance outcomes using either traditional BRD control (visual observation and metaphylaxis) or REDI during a 60-d postarrival phase in high-risk beef calves. The randomized controlled clinical trial was performed in 8 replicates at 3 different facilities over a 19-mo period. In each replicate, a single load of calves was randomly allocated to receive either conventional management (CONV; total = 8) or REDI (total = 8) as the method for BRD control. Cattle were monitored with each diagnostic method for the first 30 d on feed and performance variables were collected until approximately 60 d after arrival. Statistical differences ( < 0.10) were not identified in common performance (ADG) or health (morbidity, first treatment success, and mortality risk) among the treatment groups. Calves in the REDI pens had a lower ( < 0.01) average number of days on feed at first treatment (9.1 ± 1.2 d) compared with CONV pens (15.8 ± 1.2 d). There were no statistical differences ( > 0.10) in risk of BRD treatment and REDI calves were not administered antimicrobials at arrival; therefore, REDI calves had a lower ( < 0.01) average number of doses of antimicrobials/calf (0.75 ± 0.1 doses) compared with CONV calves (1.67 ± 0.1 doses). In this trial, the REDI system was comparable to conventional management with the potential advantages of earlier BRD diagnosis and decreased use

  1. Transient analysis of energy Transfer Control (ECT) and compressor bleed concepts of remote lift fan control

    NASA Technical Reports Server (NTRS)

    Sellers, J. F.

    1973-01-01

    The transient performance of two concepts for control of vertical takeoff aircraft remote lift fans is analyzed and discussed. Both concepts employ flow transfer between pairs of lift fans located in separate parts of the aircraft in order to obtain attitude control moments for hover and low-speed flight. The results presented are from a digital computer, dynamic analysis of the YJ97/LF460 remote drive turbofan. The transient responses of the two systems are presented for step demands in lift and moment.

  2. Remote manipulator system steering capability for SVDS

    NASA Technical Reports Server (NTRS)

    Martin, D. T.

    1977-01-01

    Details of the remote manipulator system steering capability to be implemented into the space vehicle dynamics simulator are reported. The resolve rate law is included as part of the overall steering capability. The steering model includes three automatic modes, four manual augmented modes, and a single joint rate mode.

  3. Small geothermal electric systems for remote powering

    SciTech Connect

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  4. Optimal feedback control of a bioreactor with a remote sensor

    NASA Technical Reports Server (NTRS)

    Niranjan, S. C.; San, K. Y.

    1988-01-01

    Sensors used to monitor bioreactor conditions directly often perform poorly in the face of adverse nonphysiological conditions. One way to circumvent this is to use a remote sensor block. However, such a configuration usually causes a significant time lag between measurements and the actual state values. Here, the problem of implementing feedback control strategies for such systems, described by nonlinear equations, is addressed. The problem is posed as an optimal control problem with a linear quadratic performance index. The linear control law so obtained is used to implement feedback. A global linearization technique as well as an expansion using Taylor series is used to linearize the nonlinear system, and the feedback is subsequently implemented.

  5. Remote Operations and Ground Control Centers

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Lankford, Kimberly; Pitts, R. Lee

    2004-01-01

    The Payload Operations Integration Center (POIC) at the Marshall Space Flight Center supports the International Space Station (ISS) through remote interfaces around the world. The POIC was originally designed as a gateway to space for remote facilities; ranging from an individual user to a full-scale multiuser environment. This achievement was accomplished while meeting program requirements and accommodating the injection of modern technology on an ongoing basis to ensure cost effective operations. This paper will discuss the open POIC architecture developed to support similar and dissimilar remote operations centers. It will include technologies, protocols, and compromises which on a day to day basis support ongoing operations. Additional areas covered include centralized management of shared resources and methods utilized to provide highly available and restricted resources to remote users. Finally, the effort of coordinating the actions of participants will be discussed.

  6. Design of the TJ-II remote participation system

    NASA Astrophysics Data System (ADS)

    Vega, J.; Sánchez, E.; López, A.; Portas, A.; Ochando, M.; Mollinedo, A.; Sánchez, A.; Ruiz, M.; López, S.; Barrera, E.

    2003-03-01

    The TJ-II remote participation design has focused initially on providing remote access to elements that depend exclusively on characteristics of the TJ-II environment: data acquisition, data access, and diagnostics control systems. Aspects related to advanced display tools, audio information from the control room or videoconference sessions can be addressed, at least in a first step, by using standard solutions. Remote access will be accomplished through http servers and web browsers as they are standard elements available on all platforms. Access security rests on a validation scheme in which users are identified through a username and password, these data being transferred in a secure way by using a secure socket layer (SSL). After username and password validation, the security system assigns a session ticket to the user, in which the user profile (access authorization list) is encoded. User profiles determine several access levels to the system. Such levels delimit the authorizations for accessing different services according to the allowed degree of interaction of remote users with the TJ-II environment. The ticket will be sent in every user query, in order to test user permission for the requested action. Services can be classified into five groups: Measurement channel setup, read/write access to the TJ-II databases (raw data, analyzed data, elaborated data, and relational databases), diagnostic control system monitoring/programming, advanced data acquisition system configuration and, finally, reading/writing information on TJ-II operation logbook. The TJ-II remote participation system is strongly coupled with the local data acquisition system.

  7. Remote monitoring system research and implementation based on wireless communication

    NASA Astrophysics Data System (ADS)

    Fu, Weizhi; Meng, Xiaofeng

    2013-03-01

    With rapid development of automatic control and network techniques, network-based remote monitoring is becoming an investigating hotspot in the elevator industry. At the same time as the development of wireless communication technology, remote wireless monitoring technology is applied more and more widely in recent years. A variety of wireless detection equipment is entering various industrial enterprises, and has been widely used. At present, there are many defects of the traditional monitoring system, such as poor real-time, low reliability, low intelligence. Based on the analysis of the difficulties to monitor the mobile terminal, this paper firstly analyzes the GSM/GPRS technology, and then discusses a design of the remote monitoring system based on wireless communication. The architecture of the monitoring center is introduced in detail. It is characterized by user-friendly, easy operate, good real-time and easy to extend.

  8. Remote-handled transuranic system assessment appendices. Volume 2

    SciTech Connect

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives.

  9. Remote sensing and geographically based information systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. C.

    1977-01-01

    A structure is proposed for a geographically-oriented computer-based information system applicable to the analysis of remote sensing digital data. The structure, intended to answer a wide variety of user needs, would permit multiple views of the data, provide independent management of data security, quality and integrity, and rely on automatic data filing. Problems in geographically-oriented data systems, including those related to line encoding and cell encoding, are considered.

  10. RTS2 - Remote Telescope System, 2nd Version

    SciTech Connect

    Kubanek, Petr; Topinka, Martin; Strobl, Jan; Jelinek, Martin; Nekola, Martin; Hudec, Rene; Sanguino, Tomas de J. Mateo; Postigo, Antonio de Ugarte; Castro-Tirado, Alberto J.

    2004-09-28

    BART is a small remote controlled robotic CCD telescope, devoted to rapid observation of prompt gamma ray burst transients. During its operation since early 2001, it had three prompt observations with world-competitive response time. The constraints to object magnitude were estimated and published in GCN circulars. Telescope is located in Astronomical Institute of the Czech Academy of Sciences in Ondrejov. This poster describes its new control system, named RTS2, which has been in service since February 2003.

  11. 47 CFR 74.634 - Remote control operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Remote control operation. 74.634 Section 74.634 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Television Broadcast Auxiliary Stations § 74.634 Remote...

  12. Other remote sensing systems: Retrospect and outlook

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The history of remote sensing is reviewed and the scope and versatility of the several remote sensing systems already in orbit are discussed, especially those with sensors operating in other EM spectral modes. The multisensor approach is examined by interrelating LANDSAT observations with data from other satellite systems. The basic principles and practices underlying the use of thermal infrared and radar sensors are explored and the types of observations and interpretations emanating from the Nimbus, Heat Capacity Mapping Mission, and SEASAT programs are examined. Approved or proposed Earth resources oriented missions for the 1980's previewed include LANDSAT D, Stereosat, Gravsat, the French satellite SPOT-1, and multimission modular spacecraft launched from space shuttle. The pushbroom imager, the linear array pushbroom radiometer, the multispectral linear array, and the operational LANDSAT observing system, to be designed the LANDSAT-E series are also envisioned for this decade.

  13. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  14. A transportable executive system for use with remote sensing applications software

    NASA Technical Reports Server (NTRS)

    Van Wie, P.; Fischel, D.; Howell, D.

    1980-01-01

    This report describes a transportable software executive system under development. This executive will facilitate user access to data and programs used in remote sensing applications and will provide the necessary system control, bookkeeping, operating system interface, man-machine communications and other services needed to make the computer an effective and economical tool for the remote sensing investigator.

  15. Overhead robot system for remote HEPA filter replacement

    SciTech Connect

    Wiesener, R.W.

    1988-01-01

    A high-efficiency particulate air (HEPA) filter system for facility exhaust air filtraction of radioactive particles has been designed that utilizes a modified industrial gantry robot to remotely replace filter elements. The system filtration design capacity can be readily changed by increasing or decreasing the number of plenums, which only affects the cell length and robot bridge travel. The parallel flow plenum design incorporates remote HEPA filter housings, which are commercially available. Filter removal and replacement is accomplished with the robot under sequenced program control. A custom-designed robot control console, which interfaces with the standard gantry robot power center controller, minimizes operator training. Critical sequence steps are operator verified, using closed-circuit television (CCTV), before proceeding to the next programmed stop point. The robot can be operated in a teleoperator mode to perform unstructured maintenance tasks, such as replacing filter housing components and cell lights.

  16. Remote control of ATLAS-MPX Network and Data Visualization

    NASA Astrophysics Data System (ADS)

    Turecek, D.; Holy, T.; Pospisil, S.; Vykydal, Z.

    2011-05-01

    The ATLAS-MPX Network is a network of 15 Medipix2-based detector devices, installed in various positions in the ATLAS detector at CERN, Geneva. The aim of the network is to perform a real-time measurement of the spectral characteristics and the composition of radiation inside the ATLAS detector during its operation. The remote control system of ATLAS-MPX controls and configures all the devices from one place, via a web interface, accessible from different operating systems. The Data Visualization application, also with a web interface, has been developed in order to present measured data to the scientific community. It allows to browse through recorded frames from all devices and to search for specific frames by date and time. Charts containing the number of different types of tracks in each frame as a function of time may be rendered from the database.

  17. Remote procedure execution software for distributed systems

    SciTech Connect

    Petravick, D.L.; Berman, E.F.; Sergey, G.P.

    1989-05-01

    Remote Procedure Execution facilitates the construction of distributed software systems, spanning computers of various types. Programmers who use the RPX package specify subroutine calls which are to be executed on a remote computer. RPX is used to generate code for dummy routines which transmit input parameters and receive output parameters, as well as a main program which receives procedure call requests, calls the requested procedure, and returns the result. The package automatically performs datatype conversions and uses an appropriate connection oriented protocol. Supported operating systems/processors are VMS(VAX), UNIX(MIPS R2000, R3000) and Software Components Group's pSOS (680x0). Connection oriented protocols are supported over Ethernet (TCP/IP) and RS232 (a package of our own design). 2 refs., 2 figs.

  18. Operational LANDSAT remote sensing system development

    NASA Technical Reports Server (NTRS)

    Cotter, D. J.

    1981-01-01

    The reduction of $121.6 million dollars from NOAA's LANDSAT development program for FY 1982, and the shortened time period for transferring remote sensing technology to the private sector resulted in changes in the Agency's plans for managing the operational system. Proposed legislation for congressional consideration or enactment to establish conditions under which this private sector transfer will occur, and the expected gradual rise in the price of data products are discussed. No money exists for capital investment and none is projected for investing in an operational data handling system for the LANDSAT D satellite. Candidates knowledgeable of various aspects of the needs and uses of remote sensing are urged to consider participation in NOAA's advisory committee.

  19. Protecting worker health and safety using remote handling systems

    SciTech Connect

    Dennison, D.K.; Merrill, R.D.; Reed, R.K.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is currently developing and installing two large-scale, remotely controlled systems for use in improving worker health and safety by minimizing exposure to hazardous and radioactive materials. The first system is a full-scale liquid feed system for use in delivering chemical reagents to LLNL`s existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). The Tank Farm facility is used to remove radioactive and toxic materials in aqueous wastes prior to discharge to the City of Livermore Water Reclamation Plant (LWRP), in accordance with established discharge limits. Installation of this new reagent feed system improves operational safety and process efficiency by eliminating the need to manually handle reagents used in the treatment processes. This was done by installing a system that can inject precisely metered amounts of various reagents into the treatment tanks and can be controlled either remotely or locally via a programmable logic controller (PLC). The second system uses a robotic manipulator to remotely handle, characterize, process, sort, and repackage hazardous wastes containing tritium. This system uses an IBM-developed gantry robot mounted within a special glove box enclosure designed to isolate tritiated wastes from system operators and minimize the potential for release of tritium to the atmosphere. Tritiated waste handling is performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. The system is compatible with an existing portable gas cleanup unit designed to capture any gas-phase tritium inadvertently released into the glove box during waste handling.

  20. E-Control: First Public Release of Remote Control Software for VLBI Telescopes

    NASA Technical Reports Server (NTRS)

    Neidhardt, Alexander; Ettl, Martin; Rottmann, Helge; Ploetz, Christian; Muehlbauer, Matthias; Hase, Hayo; Alef, Walter; Sobarzo, Sergio; Herrera, Cristian; Himwich, Ed

    2010-01-01

    Automating and remotely controlling observations are important for future operations in a Global Geodetic Observing System (GGOS). At the Geodetic Observatory Wettzell, in cooperation with the Max-Planck-Institute for Radio Astronomy in Bonn, a software extension to the existing NASA Field System has been developed for remote control. It uses the principle of a remotely accessible, autonomous process cell as a server extension for the Field System. The communication is realized for low transfer rates using Remote Procedure Calls (RPC). It uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. The user interacts with this system over a modern graphical user interface created with wxWidgets. For security reasons the communication is automatically tunneled through a Secure Shell (SSH) session to the telescope. There are already successful test observations with the telescopes at O Higgins, Concepcion, and Wettzell. At Wettzell the software is already used routinely for weekend observations. Therefore the first public release of the software is now available, which will also be useful for other telescopes.

  1. Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshall Space Flight Center. Executive summary

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.

    1982-01-01

    The combination of human and machine capabilities into an integrated engineering system which is complex and interactive interdisciplinary undertaking is discussed. Human controlled remote systems referred to as teleoperators, are reviewed. The human factors requirements for remotely manned systems are identified. The data were developed in three principal teleoperator laboratories and the visual, manipulator and mobility laboratories are described. Three major sections are identified: (1) remote system components, (2) human operator considerations; and (3) teleoperator system simulation and concept verification.

  2. The solid state remote power controller: Its status, use and perspective

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Billings, W. W.

    1977-01-01

    Solid state remote power controllers (RPC's) are now available to control and protect all types of loads in both ac and dc power distribution systems. RPC's possess many outstanding qualities that make them attractive for most system applications. A review is given of the present state-of-the-art and applications for solid state RPC's for both aerospace and terrestrial systems.

  3. Remote-controlled experiments with cloud chemistry

    NASA Astrophysics Data System (ADS)

    Skilton, Ryan A.; Bourne, Richard A.; Amara, Zacharias; Horvath, Raphael; Jin, Jing; Scully, Michael J.; Streng, Emilia; Tang, Samantha L. Y.; Summers, Peter A.; Wang, Jiawei; Pérez, Eduardo; Asfaw, Nigist; Aydos, Guilherme L. P.; Dupont, Jairton; Comak, Gurbuz; George, Michael W.; Poliakoff, Martyn

    2015-01-01

    Developing cleaner chemical processes often involves sophisticated flow-chemistry equipment that is not available in many economically developing countries. For reactions where it is the data that are important rather than the physical product, the networking of chemists across the internet to allow remote experimentation offers a viable solution to this problem.

  4. Remote control continuous mining machine crushing accident data study

    SciTech Connect

    2006-05-11

    A committee was formed to identify norms and trends in remote control continuous miner crushing accidents as part of US MSHA's efforts to reduce and eliminate these types of accidents. The committee was tasked with collecting, reviewing, and evaluating remote control accident data to identify significant factors that could possibly contribute to remote control accidents. The report identifies that these types of accidents commonly happen to experienced miners during routine mining activities, with the majority occurring while moving the miner from one face to another (place changing). Another common aspect of the accidents is that many of the victims are newly employed at the mine where the accident occurred. Training all employees to stay outside the turning radius of an energized remote control continuous miner, establishing this as a safe operating procedure, and consistently enforcing this practice among miners will reduce these types of accidents. 10 figs., 5 tabs., 7 apps.

  5. Software architecture for an unattended remotely controlled telescope

    NASA Astrophysics Data System (ADS)

    Lucas, R. J.; Kolb, U.

    2011-10-01

    We report on the software architecture we developed for the Open University's remotely controlled telescope PIRATE. This facility is based in Mallorca and used in distance learning modules by undergraduate students and by postgraduate students for research projects.

  6. CNEOST Control Software System

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhao, H. B.; Xia, Y.; Lu, H.; Li, B.

    2015-03-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the message passing mechanism via WebSocket protocol, and improves its flexibility, expansibility, and scalability. The user interface with responsive web design realizes the remote operating under both desktop and mobile devices. The stable operating of software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  7. CNEOST Control Software System

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhao, Hai-bin; Xia, Yan; Lu, Hao; Li, Bin

    2016-01-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the messaging mechanism based on the WebSocket protocol, and possesses good flexibility and expansibility. The user interface based on the responsive web design has realized the remote observations under both desktop and mobile devices. The stable operation of the software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  8. Wireless remote monitoring system for sleep apnea

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  9. Development of a Remote Monitoring System Using Meteor Burst Technology

    SciTech Connect

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-07-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  10. Remote lubrication system for conveyor bearing

    SciTech Connect

    Bandy, C.L. Jr.

    1993-08-03

    In an assembly having a hard-to-reach rotary means supported by a bearing to be lubricated, a housing enclosing said bearing, and a fixed frame means for mounting said rotary means through said housing, a lubrication system is described comprising: access ports in said housing for communicating lubricant to said bearing; an elongated channel of predetermined length having at least two ends in said fixed frame means in fluid communication with at least one of said access ports located between said ends; means for sealing the ports not aligned with said channel; and stationary conduit means leading to a remote location in fluid communication with said channel; whereby lubricant is communicated through said conduit means, said channel, and at least one of said access ports for application to said bearing from a remote location.

  11. Design of real-time remote sensing image compression system

    NASA Astrophysics Data System (ADS)

    Wu, Wenbo; Lei, Ning; Wang, Kun; Wang, Qingyuan; Li, Tao

    2013-08-01

    This paper focuses on the issue of CCD remote sensing image compression. Compared with other images, CCD remote sensing image data is characterized with high speed and high quantized bits. A high speed CCD image compression system is proposed based on ADV212 chip. The system is mainly composed of three devices: FPGA, SRAM and ADV212. In this system, SRAM plays the role of data buffer, ADV212 focuses on data compression and the FPGA is used for image storage and interface bus control. Finally, a system platform is designed to test the performance of compression. Test results show that the proposed scheme can satisfy the real-time processing requirement and there is no obvious difference between the sourced image and the compressed image in respect of image quality.

  12. Remote visualization system based on particle based volume rendering

    NASA Astrophysics Data System (ADS)

    Kawamura, Takuma; Idomura, Yasuhiro; Miyamura, Hiroko; Takemiya, Hiroshi; Sakamoto, Naohisa; Koyamada, Koji

    2015-01-01

    In this paper, we propose a novel remote visualization system based on particle-based volume rendering (PBVR),1 which enables interactive analyses of extreme scale volume data located on remote computing systems. The re- mote PBVR system consists of Server, which generates particles for rendering, and Client, which processes volume rendering, and the particle data size becomes significantly smaller than the original volume data. Depending on network bandwidth, the level of detail of images is flexibly controlled to attain high frame rates. Server is highly parallelized on various parallel platforms with hybrid programing model. The mapping process is accelerated by two orders of magnitudes compared with a single CPU. The structured and unstructured volume data with ~108 cells is processed within a few seconds. Compared with commodity Client/Server visualization tools, the total processing cost is dramatically reduced by using proposed system.

  13. Automatic registration and mosaicking system for remotely sensed imagery

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitry V.; Fonseca, Leila M. G.; Kenney, Charles; Manjunath, Bangalore S.

    2003-03-01

    Image registration is an important operation in remote sensing applications that basically involves the identification of many control points in the images. As the manual identification of control points may be time-consuming and tedious several automatic techniques have been developed. This paper describes a system for automatic registration and mosaic of remote sensing images under development at the Division of Image Processing (National Institute for Space Research - INPE) and the Vision Lab (Electrical & Computer Engineering department, UCSB). Three registration algorithms, which showed potential for multisensor or temporal image registration, have been implemented. The system is designed to accept different types of data and information provided by the user which speed up the processing or avoid mismatched control points. Based on a statistical procedure used to characterize good and bad registration, the user can stop or modify the parameters and continue the processing. Extensive algorithm tests have been performed by registering optical, radar, multi-sensor, high-resolution images and video sequences. Furthermore, the system has been tested by remote sensing experts at INPE using full scene Landsat, JERS-1, CBERS-1 and aerial images. An online demo system, which contains several examples that can be carried out using web browser, is available.

  14. A case study in nonlinear dynamics and control of articulated spacecraft: The Space Station Freedom with a mobile remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer

    1994-01-01

    The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.

  15. Remote control over folding by light.

    PubMed

    Yu, Zhilin; Hecht, Stefan

    2016-05-10

    Integrating stimulus-responsive components into macromolecular architectures is a versatile strategy to create smart materials that can be controlled by external stimuli and even adapt to their environment. Helical foldamers, which are omnipresent in Nature and display well-defined yet dynamic structures, serve as an ideal platform to integrate photoswitches to modulate their conformations by light. This feature article summarizes the development of photoswitchable foldamers, focussing on various design approaches that incorporate the photoswitches either at the side chains, as tethered loops, or directly in the main chain. Based on the emerging insight into the folding-switching relationship more advanced molecular designs should enable the development of photoresponsive foldamers with high sensitivity to control and power functional macromolecular and supramolecular systems. PMID:27021403

  16. PV Charging System for Remote Area Operations

    SciTech Connect

    Ilsemann, Frederick; Thompson, Roger

    2008-07-31

    The objective of this project is to provide the public with a study of new as well existing technology to recharge batteries used in the field. A new product(s) will also be built based upon the information ascertained. American Electric Vehicles, Inc. (AEV) developed systems and methods suitable for charging state-of-the-art lithium-ion batteries in remote locations under both ideal and cloudy weather conditions. Conceptual designs are described for existing and next generation technology, particularly as regards solar cells, peak power trackers and batteries. Prototype system tests are reported.

  17. Lidar system for remote environmental studies.

    PubMed

    Gondal, M A; Mastromarino, J

    2000-10-01

    Light detection and ranging (lidar) system has been developed for remote monitoring of the environment. The system has been tested for measuring the size of clouds and by measurement of differential absorption due to pollutant gases like NO(2) and SO(2) in a cell. The lidar measurements revealed strong scattered signals from clouds situated around 11 km above the earth surface. The lidar data indicates that cloud thickness varied from 0.8 to 3.6 km at various times. PMID:18968100

  18. Analysis and Selection of a Remote Docking Simulation Visual Display System

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Fagg, M. F.

    1984-01-01

    The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.

  19. Berthing of Space Station Freedom using the shuttle remote manipulator system

    NASA Technical Reports Server (NTRS)

    Cooper, Paul; Demeo, Martha E.

    1993-01-01

    A large-angle, flexible, multi-body, dynamic modeling capability was developed to help validate analytical simulations of the dynamic motion and control forces which occur while berthing of Space Station Freedom to the Shuttle Orbiter during early assembly flights. The dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the Orbiter during a berthing maneuver are described. Emphasis is placed on the modeling of the Shuttle Remote Manipulator System in the multi-body simulation. The influence of the elastic behavior of the station and of the Remote Manipulator System on the attitude control of the station/Orbiter system during the maneuver is investigated.

  20. Remote temperature-set-point controller

    DOEpatents

    Burke, William F.; Winiecki, Alan L.

    1986-01-01

    An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  1. Remote control of self-assembled microswimmers

    NASA Astrophysics Data System (ADS)

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-11-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows.

  2. Remote control of self-assembled microswimmers

    PubMed Central

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-01-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows. PMID:26538006

  3. Implementation of Remote Acquisition and Storage System

    NASA Technical Reports Server (NTRS)

    Hess, Jason R.

    1995-01-01

    The existing system for gathering and processing acoustical test data had several shortcomings and limitations in the areas of microphone array size, sampling rate, and background noise. A new Remote Acquisition and Storage System (RASS) is being designed for applications not suited for the existing acquisition system. One of the first tasks in the design of the RASS was to redesign the microprocessor card of the existing system to include RS-232 serial ports to accept communications through the radio modem used in the RF link. Cost and parts availability comparisons were made between the newly designed board and commercially available models, and a commercially made model was selected. This model was tested for basic I/0 operations. The prototype of the RF telemetry system was set up and tested. Plans are now being developed for integrating the RF telemetry system with the other RASS subsystems.

  4. Remotely operated welding systems for EdF plant maintenance

    SciTech Connect

    Thapon, G. ); Blight, J.; Durand, B. )

    1992-01-01

    With the objective of improving weld quality, reducing outage times, and minimizing integrated dose, Electricite de France (EdF) and Comex Nucleaire (CxN) have developed a number of advanced remotely controlled welding systems. Three such developments are described, two having been used operationally and the third being qualified for use in the coming months. The three developments involve replacing pressurizes heaters, replacing fuel charge head sleeves, and real-time interactive welding.

  5. Active vibration damping of the Space Shuttle remote manipulator system

    NASA Technical Reports Server (NTRS)

    Scott, Michael A.; Gilbert, Michael G.; Demeo, Martha E.

    1991-01-01

    The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback.

  6. Head-coupled remote stereoscopic camera system for telepresence applications

    NASA Technical Reports Server (NTRS)

    Bolas, M. T.; Fisher, S. S.

    1990-01-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remore manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  7. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  8. Telerobotic virtual control system

    NASA Astrophysics Data System (ADS)

    Zhai, Shumin; Milgram, Paul

    1992-03-01

    A project to develop a telerobotic `virtual control' capability, currently underway at the University of Toronto, is described. The project centers on a new mode of interactive telerobotic control based on the technology of combining computer generated stereographic images with remotely transmitted stereoscopic video images. A virtual measurement technique, in conjunction with a basic level of digital image processing, comprising zooming, parallax adjustment, edge enhancement, and edge detection has been developed to assist the human operator in visualization of the remote environment and in spatial reasoning. The aim is to maintain target recognition, tactical planning, and high-level control functions in the hands of the human operator with the computer performing low-level computation and control. Control commands initiated by the operator are implemented through manipulation of a virtual image of the robot system, merged with a live video image of the remote scene. This paper discusses the philosophy and objectives of the project, with emphasis on the underlying human factor considerations in the design, and reports the progress made to date in this effort.

  9. Application of telerobotic control to remote processing of nuclear material

    SciTech Connect

    Merrill, R.D.; Grasz, E.L.; Herget, C.J.; Gavel, D.T.; Addis, R.B.; DeMinico, G.A.

    1991-07-08

    In processing radioactive material there are certain steps which have customarily required operators working at glove box enclosures. This can subject the operators to low level radiation dosages and the risk of accidental contamination, as well as generate significant radioactive waste to accommodate the human interaction. An automated system is being developed to replace the operator at the glove box and thus remove the human from these risks, and minimize waste. Although most of the processing can be automated with very little human operator interaction, there are some tasks where intelligent intervention is necessary to adapt to unexpected circumstances and events. These activities will require that the operator be able to interact with the process using a remote manipulator in a manner as natural as if the operator were actually in the work cell. This robot-based remote manipulation system, or telerobot, must provide the operator with an effective means of controlling the robot arm, gripper and tools. This paper describes the effort in progress in Lawrence Livermore National Laboratory to achieve this capability. 8 refs.

  10. Progress in remotely controlled hyperbaric pipeline tie-ins

    SciTech Connect

    Hutt, G.; Pachniuk, I.

    1993-12-31

    In recent years experience has been gained in the use of remotely installed and controlled equipment for hyperbaric pipeline tie-in operations. This has involved both the in-water construction tasks such as pipe alignment, preparation and habitat installation and tasks within the dry habitat. Central to these developments has been the introduction of mechanized orbital welding which was first used operationally in 1986. Since that date, the authors` Company has performed some 60 production tie-ins welds ranging in diameter from 8 inches to 40 inches and depths to 220 msw. The existing mechanized systems are all operated remotely but require divers assistance during the initial set-up in the habitat and to perform routine task during the course of welding such as measuring pipe fit-up, changing electrodes, servicing the wire feed and supervising the weldhead umbilicals. Progress towards fully diverless operations has been made by the development of a variety of sub-systems to carry out these routine tasks. Similarly, there has been a progressive introduction of ROV assisted tasks into construction projects often run in parallel with diving work with the objective of improving efficiency. The intention of this paper is to describe a number of the developments which will ultimately provide the basis for fully diverless hyperbaric welding.

  11. Shuttle remote manipulator system safety and rescue support capabilities

    NASA Technical Reports Server (NTRS)

    Brown, J. W.; Whitehead, G. D.

    1977-01-01

    The Remote Manipulator System (RMS) incorporates a manipulator arm with a payload-handling end effector, an arm positioning mechanism and a control system. The RMS is designed to capture and deploy free-flying payloads up to 4.6 m in diameter and 18.3 m long, weighing 14,515 kg. This paper describes the RMS with attention given to the arm, the supporting subsystems, and safety design features (displays and controls, the mechanical subsystem and operations). Man-in-the-loop simulations for the assurance of RMS and crew safety are described and the use of the RMS for EVA rescue support is considered in detail.

  12. Depth Perception In Remote Stereoscopic Viewing Systems

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  13. Advancement of remote systems technology: past perspectives and future plans

    SciTech Connect

    Feldman, M.J.; Hamel, W.R.

    1984-01-01

    In the Fuel Recycle Division, Consolidated Fuel Reprocessing Program, at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past five years. The new remote technology under development is expected to significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. The motivation and justification for the program are discussed by surveying the 40 years of remote operating experience which exists and considering the essential features of various old and new philosophies which have been, or are being, used in remote engineering. A future direction based upon the Teletec concept is explained, and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems capability is feasible through advanced technology. 20 references, 9 figures, 1 table.

  14. Advancement of remote systems technology: past perspectives and future plans

    SciTech Connect

    Feldman, M.J.; Hamel, W.R.

    1984-01-01

    In the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past five years. The new remote technology under development is expected to significantly improve remote operations by extending the range of admissible remote tasks and increasing remote work efficiency. The motivation and justification for the program are discussed by surveying the 40 years of remote operating experience which exists and considering the essential features of various old and new philosophies which have been, or are being, used in remote engineering. A future direction based upon the Remotex concept is explained, and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems capability is feasible through advanced technology. 9 references, 5 figures.

  15. Remotely Triggered Scaffolds for Controlled Release of Pharmaceuticals

    PubMed Central

    Roach, Paul; McGarvey, David J.; Lees, Martin R.; Hoskins, Clare

    2013-01-01

    Fe3O4-Au hybrid nanoparticles (HNPs) have shown increasing potential for biomedical applications such as image guided stimuli responsive drug delivery. Incorporation of the unique properties of HNPs into thermally responsive scaffolds holds great potential for future biomedical applications. Here we successfully fabricated smart scaffolds based on thermo-responsive poly(N-isopropylacrylamide) (pNiPAM). Nanoparticles providing localized trigger of heating when irradiated with a short laser burst were found to give rise to remote control of bulk polymer shrinkage. Gold-coated iron oxide nanoparticles were synthesized using wet chemical precipitation methods followed by electrochemical coating. After subsequent functionalization of particles with allyl methyl sulfide, mercaptodecane, cysteamine and poly(ethylene glycol) thiol to enhance stability, detailed biological safety was determined using live/dead staining and cell membrane integrity studies through lactate dehydrogenase (LDH) quantification. The PEG coated HNPs did not show significant cytotoxic effect or adverse cellular response on exposure to 7F2 cells (p < 0.05) and were carried forward for scaffold incorporation. The pNiPAM-HNP composite scaffolds were investigated for their potential as thermally triggered systems using a Q-switched Nd:YAG laser. These studies show that incorporation of HNPs resulted in scaffold deformation after very short irradiation times (seconds) due to internal structural heating. Our data highlights the potential of these hybrid-scaffold constructs for exploitation in drug delivery, using methylene blue as a model drug being released during remote structural change of the scaffold. PMID:23603890

  16. Remote surface inspection system. [of large space platforms

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Balaram, J.; Seraji, Homayoun; Kim, Won S.; Tso, Kam S.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  17. Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.

  18. Man's role in a remote orbital servicing system

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.; Hankins, W. W., III

    1983-01-01

    The Remote Orbital Servicing System (ROSS), a focal point for NASA research in automation and robotics, is discussed in terms of the role of man in such a system. In the supervisory control mode, the ROSS operator inputs high-level goals to a strategic (nonreal-time) planner which then passes the plan or series of actions to a tactical (real-time) planner which executes the plan. Using directed control, man makes more specific commands to perform strategic planning with or without the use of the automated strategic planner. Shared computer/manual control will require a multifunction interactive display. At the teleoperator control level, a hand controller is used to command the ROSS manipulator and end effectors.

  19. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  20. Remote control of astronomical instruments via the Internet

    NASA Astrophysics Data System (ADS)

    Ashley, M. C. B.; Brooks, P. W.; Lloyd, J. P.

    1996-01-01

    A software package called ERIC is described that provides a framework for allowing scientific instruments to be remotely controlled via the Internet. The package has been used to control four diverse astronomical instruments, and is now being made freely available to the community. For a description of ERIC's capabilities, and how to obtain a copy, see the conclusion to this paper.

  1. A remotely powered implantable biomedical system with location detector.

    PubMed

    Kilinc, Enver G; Ghanad, Mehrdad A; Maloberti, Franco; Dehollain, Catherine

    2015-02-01

    An universal remote powering and communication system is presented for the implantable medical devices. The system be interfaced with different sensors or actuators. A mobile external unit controls the operation of the implantable chip and reads the sensor's data. A locator system is proposed to align the mobile unit with the implant unit for the efficient magnetic power transfer. The location of the implant is detected with 6 mm resolution from the rectified voltage level at the implanted side. The rectified voltage level is fedback to the mobile unit to adjust the magnetic field strength and maximize the efficiency of the remote powering system. The sensor's data are transmitted by using a free running oscillator modulated with on-off key scheme. To tolerate large data carrier drifts, a custom designed receiver is implemented for the mobile unit. The circuits have been fabricated in 0.18 um CMOS technology. The remote powering link is optimized to deliver power at 13.56 MHz. On chip voltage regulator creates 1.8 V from a 0.9 V reference voltage to supply the sensor/actuator blocks. The implantable chip dissipates 595 μW and requires 1.48 V for start up. PMID:24988596

  2. Remote control of magnetostriction-based nanocontacts at room temperature.

    PubMed

    Jammalamadaka, S Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U Mohanan; Chelvane, J Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between "open" (zero conductance) and "closed" (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  3. Remote control of magnetostriction-based nanocontacts at room temperature

    NASA Astrophysics Data System (ADS)

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-09-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.

  4. Remote control of magnetostriction-based nanocontacts at room temperature

    PubMed Central

    Jammalamadaka, S. Narayana; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Kannan, U. Mohanan; Chelvane, J. Arout; Sürgers, Christoph

    2015-01-01

    The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature. PMID:26323326

  5. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  6. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  7. Interactive computer-enhanced remote viewing system

    SciTech Connect

    Tourtellott, J.A.; Wagner, J.F.

    1995-10-01

    Remediation activities such as decontamination and decommissioning (D&D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically.

  8. IGISOL control system modernization

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  9. The 2nd Conference on Remotely Manned Systems (RMS): Technology and Applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Control theory and the design of manipulators, teleoperators, and robots are considered. Applications of remotely manned vehicles to space maintenance and orbital assembly, industry and productivity, undersea operations, and rehabilitation systems are emphasized.

  10. Nuclear reactor remote disconnect control rod coupling indicator

    DOEpatents

    Vuckovich, Michael

    1977-01-01

    A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.

  11. Remote metrology system (RMS) design concept

    SciTech Connect

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  12. CSI computer system/remote interface unit acceptance test results

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.

    1992-01-01

    The validation tests conducted on the Control/Structures Interaction (CSI) Computer System (CCS)/Remote Interface Unit (RIU) is discussed. The CCS/RIU consists of a commercially available, Langley Research Center (LaRC) programmed, space flight qualified computer and a flight data acquisition and filtering computer, developed at LaRC. The tests were performed in the Space Structures Research Laboratory (SSRL) and included open loop excitation, closed loop control, safing, RIU digital filtering, and RIU stand alone testing with the CSI Evolutionary Model (CEM) Phase-0 testbed. The test results indicated that the CCS/RIU system is comparable to ground based systems in performing real-time control-structure experiments.

  13. Software for Simulating Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Ryan, Robert; Blonski, Slawomir; Russell, Jeffrey; Gasser, Gerald; Greer, Randall

    2003-01-01

    The Application Research Toolbox (ART) is a collection of computer programs that implement algorithms and mathematical models for simulating remote sensing systems. The ART is intended to be especially useful for performing design-tradeoff studies and statistical analyses to support the rational development of design requirements for multispectral imaging systems. Among other things, the ART affords a capability to synthesize coarser-spatial-resolution image-data sets from finer-spatial-resolution data sets and multispectral-image-data products from hyperspectral-image-data products. The ART also provides for synthesis of image-degradation effects, including point-spread functions, misregistration of spectral images, and noise. The ART can utilize real or synthetic data sets, along with sensor specifications, to create simulated data sets. In one example of a typical application, simulated data pertaining to an existing multispectral sensor system are used to verify the data collected by the system in operation. In the case of a proposed sensor system, the simulated data can be used to conduct trade studies and statistical analyses to ensure that the sensor system will satisfy the requirements of potential scientific, academic, and commercial user communities.

  14. Remote Operations of Laser Guide Star Systems: Gemini Observatory.

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine

    2011-03-01

    The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  15. Automated Water Analyser Computer Supported System (AWACSS) Part II: Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system.

    PubMed

    Tschmelak, Jens; Proll, Guenther; Riedt, Johannes; Kaiser, Joachim; Kraemmer, Peter; Bárzaga, Luis; Wilkinson, James S; Hua, Ping; Hole, J Patrick; Nudd, Richard; Jackson, Michael; Abuknesha, Ram; Barceló, Damià; Rodriguez-Mozaz, Sara; de Alda, Maria J López; Sacher, Frank; Stien, Jan; Slobodník, Jaroslav; Oswald, Peter; Kozmenko, Helena; Korenková, Eva; Tóthová, Lívia; Krascsenits, Zoltan; Gauglitz, Guenter

    2005-02-15

    A novel analytical system AWACSS (Automated Water Analyser Computer Supported System) based on immunochemical technology has been evaluated that can measure several organic pollutants at low nanogram per litre level in a single few-minutes analysis without any prior sample pre-concentration or pre-treatment steps. Having in mind actual needs of water-sector managers related to the implementation of the Drinking Water Directive (DWD) [98/83/EC, 1998. Council Directive (98/83/EC) of 3 November 1998 relating to the quality of water intended for human consumption. Off. J. Eur. Commun. L330, 32-54] and Water Framework Directive (WFD) [2000/60/EC, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Commun. L327, 1-72], drinking, ground, surface, and waste waters were major media used for the evaluation of the system performance. The first part article gave the reader an overview of the aims and scope of the AWACSS project as well as details about basic technology, immunoassays, software, and networking developed and utilised within the research project. The second part reports on the system performance, first real sample measurements, and an international collaborative trial (inter-laboratory tests) to compare the biosensor with conventional anayltical methods. The systems' capability for analysing a wide range of environmental organic micro-pollutants, such as modern pesticides, endocrine disrupting compounds and pharmaceuticals in surface, ground, drinking and waste water is shown. In addition, a protocol using reconstitution of extracts of solid samples, developed and applied for analysis of river sediments and food samples, is presented. Finally, the overall performance of the AWACSS system in comparison to the conventional analytical techniques, which included liquid and gas chromatographic systems with diode-array UV and mass

  16. Interactive computer-enhanced remote viewing system

    SciTech Connect

    Tourtellott, J.A.; Wagner, J.F.

    1995-12-01

    Remediation activities such as decontamination and decommissioning (D&D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths am clear of obstacles. This need for a task space model is most pronounced in the remediation of obsolete production facilities and underground storage tanks. Production facilities at many sites contain compact process machinery and systems that were used to produce weapons grade material. For many such systems, a complex maze of pipes (with potentially dangerous contents) must be removed, and this represents a significant D&D challenge. In an analogous way, the underground storage tanks at sites such as Hanford represent a challenge because of their limited entry and the tumbled profusion of in-tank hardware. In response to this need, the Interactive Computer-Enhanced Remote Viewing System (ICERVS) is being designed as a software system to: (1) Provide a reliable geometric description of a robotic task space, and (2) Enable robotic remediation to be conducted more effectively and more economically than with available techniques. A system such as ICERVS is needed because of the problems discussed below.

  17. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    SciTech Connect

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.

  18. Remote oil spill sensing system (ROSSS)

    SciTech Connect

    Fornaca, S.; Agravante, H.H.; Eberhard, C.; Hauss, B.I.

    1996-10-01

    To provide tactical information during an oil spill, TRW developed Remote Oil Spill Sensing System (ROSSS). It is an integrated system of airborne sensors for rapid in-situ surveillance and a ground system that provides data analysis and display support at the spill cleanup command center. It provides knowledge of precise location of oil spill and produces timely updates, which are critical for effective spill containment and cleanup operations. It is capable of distinguishing where the bulk of spill exists, which is key to directing cleanup efforts for maximum efficiency. Using a passive microwave radiometric imager as the primary sensor, it provides data acquisition capabilities in both day and night and through haze, fog, and light ram. The high-speed air-to-ground telemetry link permits timely delivery of surveyed data from the spill site to the ground system to aid in the planning and assessment of cleanup strategies. ROSSS has been in service since November, 1992, ready to respond in any oil spill emergencies along the U.S. West Coast. 9 refs., 4 figs.

  19. 47 CFR 27.1210 - Remote control operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service §...

  20. 47 CFR 27.1210 - Remote control operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service §...

  1. 47 CFR 27.1210 - Remote control operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service §...

  2. 47 CFR 27.1210 - Remote control operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service §...

  3. Millikan's Oil-Drop Experiment as a Remotely Controlled Laboratory

    ERIC Educational Resources Information Center

    Eckert, Bodo; Grober, Sebastian; Vetter, Martin; Jodl, Hans-Jorg

    2012-01-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n [middle dot] e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity…

  4. Experimenting from a Distance--Remotely Controlled Laboratory (RCL)

    ERIC Educational Resources Information Center

    Grober, Sebastian; Vetter, Martin; Eckert, Bodo; Jodl, Hans-Jorg

    2007-01-01

    The use of computers and multimedia, as well as the World Wide Web and new communication technologies, allows new forms of teaching and learning such as distance learning, blended learning, use of virtual libraries and many more. The herewith discussed remotely controlled laboratory (RCL) project shall offer an additional contribution. The basic…

  5. DESIGN OF A REMOTELY CONTROLLED HOVERCRAFT VEHICLE FOR SPILL RECONNAISSANCE

    EPA Science Inventory

    This program was undertaken to prepare a conceptual design for a practical prototype of a remotely-controlled reconnaissance vehicle for use in hazardous material spill environment. Data from past hazardous material spills were analyzed to determine the type of vehicle best suite...

  6. The New Remote-Controlled Telescope at Mt. Suhora Observatory

    NASA Astrophysics Data System (ADS)

    Stachowski, G.; Ogloza, W.; Drozdz, M.; Zakrzewski, B.

    2015-07-01

    We present technical details of the small, remote-controlled telescope we recently installed at Mt. Suhora Observatory, primarily for ground-based photometric follow-up observations of bright stars that are targets of the BRITE satellite mission, although other targets are also observed. A summary is also given of observations carried out so far.

  7. Solenoid permits remote control of stop watch and assures restarting

    NASA Technical Reports Server (NTRS)

    Kodai, C.

    1964-01-01

    Stop watch which may be remotely controlled by the use of a solenoid mechanism is described. When the solenoid is energized, the coil spring pulls the lever arm and starts the balance wheel. When it is not energized, the spring pulls the lever and stops the watch.

  8. 49 CFR 218.30 - Remotely controlled switches.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Remotely controlled switches. 218.30 Section 218.30 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Blue Signal Protection of Workers §...

  9. 49 CFR 218.30 - Remotely controlled switches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Remotely controlled switches. 218.30 Section 218.30 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD OPERATING PRACTICES Blue Signal Protection of Workers §...

  10. 47 CFR 74.533 - Remote control and unattended operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Remote control and unattended operation. 74.533 Section 74.533 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Aural Broadcast Auxiliary Stations § 74.533...

  11. 47 CFR 27.1210 - Remote control operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Remote control operation. 27.1210 Section 27.1210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service §...

  12. Ground-Based Icing Condition Remote Sensing System Definition

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2001-01-01

    This report documents the NASA Glenn Research Center activities to assess and down select remote sensing technologies for the purpose of developing a system capable of measuring icing condition hazards aloft. The information generated by such a remote sensing system is intended for use by the entire aviation community, including flight crews. air traffic controllers. airline dispatchers, and aviation weather forecasters. The remote sensing system must be capable of remotely measuring temperature and liquid water content (LWC), and indicating the presence of super-cooled large droplets (SLD). Technologies examined include Profiling Microwave Radiometer, Dual-Band Radar, Multi-Band Radar, Ka-Band Radar. Polarized Ka-Band Radar, and Multiple Field of View (MFOV) Lidar. The assessment of these systems took place primarily during the Mt. Washington Icing Sensors Project (MWISP) in April 1999 and the Alliance Icing Research Study (AIRS) from November 1999 to February 2000. A discussion of the various sensing technologies is included. The result of the assessment is that no one sensing technology can satisfy all of the stated project goals. Therefore a proposed system includes radiometry and Ka-band radar. A multilevel approach is proposed to allow the future selection of the fielded system based upon required capability and available funding. The most basic level system would be the least capable and least expensive. The next level would increase capability and cost, and the highest level would be the most capable and most expensive to field. The Level 1 system would consist of a Profiling Microwave Radiometer. The Level 2 system would add a Ka-Band Radar. The Level 3 system would add polarization to the Ka-Band Radar. All levels of the system would utilize hardware that is already under development by the U.S. Government. However, to meet the needs of the aviation community, all levels of the system will require further development. In addition to the proposed system

  13. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  14. Encryption for Remote Control via Internet or Intranet

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis

    2005-01-01

    A data-communication protocol has been devised to enable secure, reliable remote control of processes and equipment via a collision-based network, while using minimal bandwidth and computation. The network could be the Internet or an intranet. Control is made secure by use of both a password and a dynamic key, which is sent transparently to a remote user by the controlled computer (that is, the computer, located at the site of the equipment or process to be controlled, that exerts direct control over the process). The protocol functions in the presence of network latency, overcomes errors caused by missed dynamic keys, and defeats attempts by unauthorized remote users to gain control. The protocol is not suitable for real-time control, but is well suited for applications in which control latencies up to about 0.5 second are acceptable. The encryption scheme involves the use of both a dynamic and a private key, without any additional overhead that would degrade performance. The dynamic key is embedded in the equipment- or process-monitor data packets sent out by the controlled computer: in other words, the dynamic key is a subset of the data in each such data packet. The controlled computer maintains a history of the last 3 to 5 data packets for use in decrypting incoming control commands. In addition, the controlled computer records a private key (password) that is given to the remote computer. The encrypted incoming command is permuted by both the dynamic and private key. A person who records the command data in a given packet for hostile purposes cannot use that packet after the public key expires (typically within 3 seconds). Even a person in possession of an unauthorized copy of the command/remote-display software cannot use that software in the absence of the password. The use of a dynamic key embedded in the outgoing data makes the central-processing unit overhead very small. The use of a National Instruments DataSocket(TradeMark) (or equivalent) protocol or

  15. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    NASA Astrophysics Data System (ADS)

    Rossel, R. E.; Fedosseev, V. N.; Marsh, B. A.; Richter, D.; Rothe, S.; Wendt, K. D. A.

    2013-12-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  16. Development of a Near Ground Remote Sensing System

    PubMed Central

    Zhang, Yanchao; Xiao, Yuzhao; Zhuang, Zaichun; Zhou, Liping; Liu, Fei; He, Yong

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) have shown great potential in agriculture and are increasingly being developed for agricultural use. There are still a lot of experiments that need to be done to improve their performance and explore new uses, but experiments using UAVs are limited by many conditions like weather and location and the time it takes to prepare for a flight. To promote UAV remote sensing, a near ground remote sensing platform was developed. This platform consists of three major parts: (1) mechanical structures like a horizontal rail, vertical cylinder, and three axes gimbal; (2) power supply and control parts; (3) onboard application components. This platform covers five degrees of freedom (DOFs): horizontal, vertical, pitch, roll, yaw. A stm32 ARM single chip was used as the controller of the whole platform and another stm32 MCU was used to stabilize the gimbal. The gimbal stabilizer communicates with the main controller via a CAN bus. A multispectral camera was mounted on the gimbal. Software written in C++ language was developed as the graphical user interface. Operating parameters were set via this software and the working status was displayed in this software. To test how well the system works, a laser distance meter was used to measure the slide rail’s repeat accuracy. A 3-axis vibration analyzer was used to test the system stability. Test results show that the horizontal repeat accuracy was less than 2 mm; vertical repeat accuracy was less than 1 mm; vibration was less than 2 g and remained at an acceptable level. This system has high accuracy and stability and can therefore be used for various near ground remote sensing studies. PMID:27164111

  17. Development of a Near Ground Remote Sensing System.

    PubMed

    Zhang, Yanchao; Xiao, Yuzhao; Zhuang, Zaichun; Zhou, Liping; Liu, Fei; He, Yong

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) have shown great potential in agriculture and are increasingly being developed for agricultural use. There are still a lot of experiments that need to be done to improve their performance and explore new uses, but experiments using UAVs are limited by many conditions like weather and location and the time it takes to prepare for a flight. To promote UAV remote sensing, a near ground remote sensing platform was developed. This platform consists of three major parts: (1) mechanical structures like a horizontal rail, vertical cylinder, and three axes gimbal; (2) power supply and control parts; (3) onboard application components. This platform covers five degrees of freedom (DOFs): horizontal, vertical, pitch, roll, yaw. A stm32 ARM single chip was used as the controller of the whole platform and another stm32 MCU was used to stabilize the gimbal. The gimbal stabilizer communicates with the main controller via a CAN bus. A multispectral camera was mounted on the gimbal. Software written in C++ language was developed as the graphical user interface. Operating parameters were set via this software and the working status was displayed in this software. To test how well the system works, a laser distance meter was used to measure the slide rail's repeat accuracy. A 3-axis vibration analyzer was used to test the system stability. Test results show that the horizontal repeat accuracy was less than 2 mm; vertical repeat accuracy was less than 1 mm; vibration was less than 2 g and remained at an acceptable level. This system has high accuracy and stability and can therefore be used for various near ground remote sensing studies. PMID:27164111

  18. Telerobot local-remote control architecture for space flight program applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  19. Remote control of an MR imaging study via tele-collaboration tools

    NASA Astrophysics Data System (ADS)

    Sullivan, John M., Jr.; Mullen, Julia S.; Benz, Udo A.; Schmidt, Karl F.; Murugavel, Murali; Chen, Wei; Ghadyani, Hamid

    2005-04-01

    In contrast to traditional 'video conferencing' the Access Grid (AG), developed by Argonne National Laboratory, is a collaboration of audio, video and shared application tools which provide the 'persistent presence' of each participant. Among the shared application tools are the ability to share viewing and control of presentations, browsers, images and movies. When used in conjunction with Virtual Network Computing (VNC) software, an investigator can interact with colleagues at a remote site, and control remote systems via local keyboard and mouse commands. This combination allows for effective viewing and discussion of information, i.e. data, images, and results. It is clear that such an approach when applied to the medical sciences will provide a means by which a team of experts can not only access, but interact and control medical devices for the purpose of experimentation, diagnosis, surgery and therapy. We present the development of an application node at our 4.7 Tesla MR magnet facility, and a demonstration of remote investigator control of the magnet. A local magnet operator performs manual tasks such as loading the test subject into the magnet and administering the stimulus associated with the functional MRI study. The remote investigator has complete control of the magnet console. S/he can adjust the gradient coil settings, the pulse sequence, image capture frequency, etc. A geographically distributed audience views and interacts with the remote investigator and local MR operator. This AG demonstration of MR magnet control illuminates the potential of untethered medical experiments, procedures and training.

  20. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  1. Local and Remote Controls on Forced Sahelian Rainfall

    NASA Astrophysics Data System (ADS)

    Hill, S. A.; Ming, Y.

    2014-12-01

    Some models dry the African Sahel in response to uniform SST warming; others wetten it. Myriad local and remote processes determine this behavior, their relative importance and interactions uncertain. We present a conceptual framework for Sahelian rainfall centered on the region's moist stability, in which local processes dictate near-surface moist static energy (MSE) and remote convection controls MSE aloft via the weak temperature gradient dynamical constraint. A remote region's influence depends on that region's (1) convection characteristics relative to Sahelian convection and (2) proximity to the Sahel. We present tests of this picture from a series of atmospheric general circulation model simulations, discuss its limitations, and speculate on its applicability to other regions.

  2. Feasibility study ASCS remote sensing/compliance determination system

    NASA Technical Reports Server (NTRS)

    Duggan, I. E.; Minter, T. C., Jr.; Moore, B. H.; Nosworthy, C. T.

    1973-01-01

    A short-term technical study was performed by the MSC Earth Observations Division to determine the feasibility of the proposed Agricultural Stabilization and Conservation Service Automatic Remote Sensing/Compliance Determination System. For the study, the term automatic was interpreted as applying to an automated remote-sensing system that includes data acquisition, processing, and management.

  3. Remote access of modem by digital control

    NASA Technical Reports Server (NTRS)

    Lopez, H.

    1976-01-01

    Semiautomated system enables operator to measure overall quality of communications link between console (point A) and far-end location (point B). By transmitting test pattern from point A, receiving it at point B, and transmitting back to point A in loopback, unassisted operator can evaluate overall link performance.

  4. Kilovolt dc solid state remote power controller development

    NASA Technical Reports Server (NTRS)

    Mitchell, J. T.

    1982-01-01

    The experience gained in developing and applying solid state power controller (SSPC) technology at high voltage dc (HVDC) potentials and power levels of up to 25 kilowatts is summarized. The HVDC switching devices, power switching concepts, drive circuits, and very fast acting overcurrent protection circuits were analyzed. A 25A bipolar breadboard with Darlington connected switching transistor was built. Fault testing at 900 volts was included. A bipolar transistor packaged breadboard design was developed. Power MOSFET remote power controller (RPC) was designed.

  5. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. Each of these activities is summarized below. 6 references, 3 figures.

  6. Control room concept for remote maintenance in high radiation areas

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    This paper summarizes the design of a control room concept for an operator interface with remote maintenance equipment consisting of force-reflecting manipulators, tools, hoists, cranes, cameras, and lights. The design development involved two major activities. First, detailed requirements were defined for foreseeable functions that will be performed by the control room operators. Second, concepts were developed, tested, and refined to meet these requirements. 6 references, 3 figures.

  7. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  8. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Denny, Robert

    2011-03-01

    Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern

  9. Remote temperature-set-point controller

    DOEpatents

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  10. Survey of remote data monitoring systems

    SciTech Connect

    Logee, T.L.; Kendall, P.W.; Pollock, E.O.; Raymond, M.G.; Knapp, R.C. Jr.

    1984-09-01

    A self-contained data-logger device called an SDAS (Site Data Acquisition Subsystem) was built for the National Solar Data Network (NSDN) which could collect analog data from 96 channels, store the data for up to three days, and then transmit the stored data on request to a central facility by voice-grade telephone lines. This system has worked fairly well for the eight years that it has been in service. However, the design and components are getting old and newer dataloggers may be more reliable and accurate and less expensive. This report discusses the results of an extensive search for an SDAS replacement. The survey covered 62 models from 36 manufacturers. These numbers are not indicative of all the dataloggers or manufacturers available, but only those which appeared to have some qualifications for the NSDN datalogger replacement. This report views the datalogger as a system which is made up of sensors, a data acquisition and storage unit, a telecommunications subsystem, and a data processing subsystem. Therefore, there is a section on sensors used in the NSDN, telecommunications technology, and data processing requirements. These four components or subsystems are all necessary in order to have an integrated, successful remote data monitoring network.

  11. Development of an unmanned aerial vehicle-based remote sensing system for site-specific management in precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Aerial Vehicle (UAV) can be remotely controlled or fly autonomously based on pre-programmed flight plans or more complex dynamic automation systems. In agriculture, UAVs have been used for pest control and remote sensing. The objective of this research was to develop a UAV system to en...

  12. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    PubMed Central

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  13. A Remote-Control Airship for Coastal and Environmental Research

    NASA Astrophysics Data System (ADS)

    Puleo, J. A.; O'Neal, M. A.; McKenna, T. E.; White, T.

    2008-12-01

    The University of Delaware recently acquired an 18 m (60 ft) remote-control airship capable of carrying a 36 kg (120 lb) scientific payload for coastal and environmental research. By combining the benefits of tethered balloons (stable dwell time) and powered aircraft (ability to navigate), the platform allows for high-resolution data collection in both time and space. The platform was developed by Galaxy Blimps, LLC of Dallas, TX for collecting high-definition video of sporting events. The airship can fly to altitudes of at least 600 m (2000 ft) reaching speeds between zero and 18 m/s (35 knots) in winds up to 13 m/s (25 knots). Using a hand-held console and radio transmitter, a ground-based operator can manipulate the orientation and throttle of two gasoline engines, and the orientation of four fins. Airship location is delivered to the operator through a data downlink from an onboard altimeter and global positioning system (GPS) receiver. Scientific payloads are easily attached to a rail system on the underside of the blimp. Data collection can be automated (fixed time intervals) or triggered by a second operator using a second hand-held console. Data can be stored onboard or transmitted in real-time to a ground-based computer. The first science mission (Fall 2008) is designed to collect images of tidal inundation of a salt marsh to support numerical modeling of water quality in the Murderkill River Estuary in Kent County, Delaware (a tributary of Delaware Bay in the USA Mid-Atlantic region). Time sequenced imagery will be collected by a ten-megapixel camera and a thermal- infrared imager mounted in separate remote-control, gyro-stabilized camera mounts on the blimp. Live video- feeds will be transmitted to the instrument operator on the ground. Resulting time series data will ultimately be used to compare/update independent estimates of inundation based on LiDAR elevations and a suite of tide and temperature gauges.

  14. 14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. NBS REMOTE MANIPULATOR SIMULATOR (RMS) CONTROL ROOM. THE RMS CONTROL PANEL IS IDENTICAL TO THE SHUTTLE ORBITER AFT FLIGHT DECK WITH ALL RMS SWITCHES AND CONTROL KNOBS FOR INVOKING ANY POSSIBLE FLIGHT OPERATIONAL MODE. THIS INCLUDES ALL COMPUTER AIDED OPERATIONAL MODES, AS WELL AS FULL MANUAL MODE. THE MONITORS IN THE AFT FLIGHT DECK WINDOWS AND THE GLASSES THE OPERATOR WEARS PROVIDE A 3-D VIDEO PICTURE TO AID THE OPERATOR WITH DEPTH PERCEPTION WHILE OPERATING THE ARM. THIS IS REQUIRED BECAUSE THE RMS OPERATOR CANNOT VIEW RMS MOVEMENTS IN THE WATER WHILE AT THE CONTROL PANEL. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  15. Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.

    1982-01-01

    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks.

  16. Pipeline gets the most from remote operations controllers

    SciTech Connect

    1996-07-01

    As electronic flow measurement and control technology spread to the remote reaches of natural gas pipelines, transmission companies have benefited from the vast amount of data communicated back to central points for control and business purposes. At the same time, the companies operating these devices have become more and more dependent on the data they provide, so maintaining this instrumentation in a state of high reliability is extremely important. Field personnel must be able to communicate with the remote units to configure them and also to make sure they are operating properly. Built-in self-test diagnostics help in trouble-shooting, and watchdog software protects against erroneous outputs, but trained personnel are needed to ensure optimum operation. The paper describes the training program set up by Northwest Pipeline to train its own technicians to maintain its automatic control equipment.

  17. Controlling Malaria and Other Diseases Using Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    Remote sensing offers the vantage of monitoring a vast area of the Earth continuously. Once developed and launched, a satellite gives years of service in collecting data from the land, the oceans, and the atmosphere. Since the 1980s, attempts have been made to relate disease occurrence with remotely sensed environmental and geophysical parameters, using data from Landsat, SPOT, AVHRR, and other satellites. With higher spatial resolution, the recent satellite sensors provide a new outlook for disease control. At sub-meter to I 10m resolution, surface types associated with disease carriers can be identified more accurately. The Ikonos panchromatic sensor with I m resolution, and the Advanced Land Imager with 1 Om resolution on the newly launched Earth Observing-1, both have displayed remarkable mapping capabilities. In addition, an entire array of geophysical parameters can now be measured or inferred from various satellites. Airborne remote sensing, with less concerns on instrument weight, size, and power consumption, also offers a low-cost alternative for regional applications. NASA/GSFC began to collaborate with the Mahidol University on malaria and filariasis control using remote sensing in late 2000. The objectives are: (1) To map the breeding sites for the major vector species; (2) To identify the potential sites for larvicide and insecticide applications; (3) To explore the linkage of vector population and transmission intensity to environmental variables; (4) To monitor the impact of climate change and human activities on vector population and transmission; and (5) To develop a predictive model for disease distribution. Field studies are being conducted in several provinces in Thailand. Data analyses will soon begin. Malaria data in South Korea are being used as surrogates for developing classification techniques. GIS has been shown to be invaluable in making the voluminous remote sensing data more readily understandable. It will be used throughout this study

  18. Zombie algorithms: a timesaving remote sensing systems engineering tool

    NASA Astrophysics Data System (ADS)

    Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen

    2008-08-01

    In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.

  19. Optimal reliability design method for remote solar systems

    NASA Astrophysics Data System (ADS)

    Suwapaet, Nuchida

    A unique optimal reliability design algorithm is developed for remote communication systems. The algorithm deals with either minimizing an unavailability of the system within a fixed cost or minimizing the cost of the system with an unavailability constraint. The unavailability of the system is a function of three possible failure occurrences: individual component breakdown, solar energy deficiency (loss of load probability), and satellite/radio transmission loss. The three mathematical models of component failure, solar power failure, transmission failure are combined and formulated as a nonlinear programming optimization problem with binary decision variables, such as number and type (or size) of photovoltaic modules, batteries, radios, antennas, and controllers. Three possible failures are identified and integrated in computer algorithm to generate the parameters for the optimization algorithm. The optimization algorithm is implemented with a branch-and-bound technique solution in MS Excel Solver. The algorithm is applied to a case study design for an actual system that will be set up in remote mountainous areas of Peru. The automated algorithm is verified with independent calculations. The optimal results from minimizing the unavailability of the system with the cost constraint case and minimizing the total cost of the system with the unavailability constraint case are consistent with each other. The tradeoff feature in the algorithm allows designers to observe results of 'what-if' scenarios of relaxing constraint bounds, thus obtaining the most benefit from the optimization process. An example of this approach applied to an existing communication system in the Andes shows dramatic improvement in reliability for little increase in cost. The algorithm is a real design tool, unlike other existing simulation design tools. The algorithm should be useful for other stochastic systems where component reliability, random supply and demand, and communication are

  20. Telemanipulation - a special activity in remotely controlled operations

    SciTech Connect

    Rose, K.W. ); Andre, Y. )

    1992-01-01

    Work to be done in areas hostile to humans needs special and careful preparation. If short-term entry is possible, groups of men can be trained to do the necessary work. If not, special devices have to be designed, built, and tested on mockups before the real work can be executed. Based on experience gained from maintenance in car production and test programs for a reprocessing facility, it was decided to train a special group of men to do remotely controlled work in hostile areas without endangering them and to use their personal experience as the basis for future work. This is the old-fashioned way of all professions. Some needs to be able to do that remotely controlled work with normally existing operational means and combinations of them like cranes, mechanical and electromechanical master slave manipulators (MMSMs and EMSMs), saws, files, hammer, tig-welding equipment, etc., in air as well as underwater. This paper discusses use of a remote operator manipulator (ROM), remote operator welder (ROW), a test of underwater work, and the repair of two activated jets pumps of a boiling water reactor BWR with a fueling machine, reactor crane, EMSM, and conventional tools.

  1. Reliability review of the remote tool delivery system locomotor

    SciTech Connect

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  2. Interference coordination of heterogeneous LTE systems using remote radio heads

    NASA Astrophysics Data System (ADS)

    Kim, Jaewon; Lee, Donghyun; Sung, Wonjin

    2013-12-01

    In this paper, we present an operational strategy to mitigate co-channel interference (CCI) by using geographically distributed remote radio heads (RRHs). The inter-node CCI becomes a dominant performance degradation factor for heterogeneous network (HetNet) systems. Recently, there are emerging attempts in Third Generation Partnership Project to adopt advanced techniques to Long Term Evolution Advanced systems to mitigate CCI problems for HetNet systems, namely, the coordinated multipoint transmission (CoMP). However, the CoMP scheme cannot control the CCI generated from outside coordination boundaries. To resolve this problem, we propose a partial activation strategy by using RRHs deployed near cell edge which results in moving coverage boundary effects. Based on Monte Carlo system level simulations, performance of the conventional strategies and the presented strategy is evaluated. Simulation results show that the proposed scheme outperforms the enhanced inter-cell interference coordination and CoMP schemes especially for users located near cell edge areas.

  3. System and method for inventorying multiple remote objects

    DOEpatents

    Carrender, Curtis L.; Gilbert, Ronald W.

    2007-10-23

    A system and method of inventorying multiple objects utilizing a multi-level or a chained radio frequency identification system. The system includes a master tag and a plurality of upper level tags and lower level tags associated with respective objects. The upper and lower level tags communicate with each other and the master tag so that reading of the master tag reveals the presence and absence of upper and lower level tags. In the chained RF system, the upper and lower level tags communicate locally with each other in a manner so that more remote tags that are out of range of some of the upper and lower level tags have their information relayed through adjacent tags to the master tag and thence to a controller.

  4. System and method for inventorying multiple remote objects

    DOEpatents

    Carrender, Curtis L.; Gilbert, Ronald W.

    2009-12-29

    A system and method of inventorying multiple objects utilizing a multi-level or a chained radio frequency identification system. The system includes a master tag and a plurality of upper level tags and lower level tags associated with respective objects. The upper and lower level tags communicate with each other and the master tag so that reading of the master tag reveals the presence and absence of upper and lower level tags. In the chained RF system, the upper and lower level tags communicate locally with each other in a manner so that more remote tags that are out of range of some of the upper and lower level tags have their information relayed through adjacent tags to the master tag and thence to a controller.

  5. A remote Raman system for planetary exploration: evaluating remote Raman efficiency

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Lucey, Paul G.; Sharma, Shiv K.; Misra, Anupam K.; Hubble, Hugh W.

    2004-02-01

    Landers and rovers are important to solar system exploration, and we are designing and analyzing a remote Raman system for a planetary mission. Raman spectroscopy is a common and powerful technique for materials analysis. We have developed a system that enables Raman spectroscopic measurements at distances of more than 50 meters. In order to design a flight instrument, we need to quantitatively understand the Raman efficiency of natural surfaces. We define remote Raman efficiency as the ratio of radiant exitance leaving a natural surface to the irradiance of the incident laser. The radiant exitance of a natural surface is the product of the sample radiance (minus background), the projected solid angle in steradians, and the spectral bandwidth of the spectrometer. The laser irradiance is the product of the energy of the laser (mJ/pulse) and the pulse rate (Hz), divided by the area of the laser spot. We have determined the remote Raman efficiency for several minerals and rocks: dolomite marble, dacite, milky quartz, anorthosite, calcite, biotite granite, magnesite, chert, gypsum (selenite), fibrous gypsum, and sandstone. By quantifying the remote Raman efficiency, we will be able to determine the number and quality of spectra that a remote Raman system can acquire on a planetary surface where available power is limited. Studies on hematite indicate that Raman shift (and thus remote Raman efficiency) depends on laser wavelength.

  6. A Microinstrumentation System for Remote Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Mason, Andrew; Baer, Wayne G.; Wise, Kensall D.

    1995-01-01

    This paper reports on a hybrid micro-instrumentation system that includes a embedded micro-controller, transducers for monitoring environmental parameters, interface/readout electronics for linking the controller and the transducers, and custom circuitry for system power management. Sensors for measuring temperature, pressure, humidity, and acceleration are included in the initial system, which operates for more than 180 days and dissipates less than 700 microW from a 6V battery supply. The sensor scan rate is adaptive and can be event triggered. The system communicates internally over a 1 MHz, nine-line intramodule sensor bus and outputs data over a hard-wired serial interface or a 315MHz wireless link. The use of folding platform packaging allows an internal system volume as small as 5 cc.

  7. Naval Remote Ocean Sensing System (NROSS) study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A set of hardware similar to the SEASAT A configuration requirement, suitable for installation and operation aboard a NOAA-D bus and a budgetary cost for one (1) protoflight model was provided. The scatterometer sensor is conceived as one of several sensors for the Navy Remote Ocean Sensing System (NROSS) Satellite Program. Deliverables requested were to include a final report with appropriate sketches and block diagrams showing the scatterometer design/configuration and a budgetary cost for all labor and materials to design, fabricate, test, and integrate this hardware into a NOAA-D satellite bus. This configuration consists of two (2) hardware assembles - a transmitter/receiver (T/R) assembly and an integrated electronics assembly (IEA). The T/R assembly as conceived is best located at the extreme opposite end of the satellite away from the solar array assembly and oriented in position to enable one surface of the assembly to have unobstructed exposure to space. The IEA is planned to be located at the bottom (Earth viewing) side of the satellite and requires a radiating plate.

  8. Closed-circuit television and remote crane control for vitrification facilities

    SciTech Connect

    Bennett, P.R.; Morrison, J.E.

    1986-01-01

    The Defense Waste Processing Facility is currently under construction at the Savannah River Plant. Within the main process cell (MPC), a 117-ton capacity bridge crane is to be installed to facilitate remote handling and processing operations. E. I. du Pont de Nemours and Company defined and PRC designed and built an operational prototype closed-circuit television (CCTV) and remote control system. Phase I of the program developed the CCTV system to prove the feasibility of a remote viewing system. The phase II program added full crane functional remote control and installed it on an existing hot canyon crane. This prototype system established the criteria for the development of the MPC crane and future crane systems. Parameters were: (a) failsafe assurance, (b) high liability, (c) ease of maintenance for dressed-out personnel, (d) rapid malfunction diagnosis, (e) ergonomics, (f) known picture orientation, and (g) audio system to monitor operational sounds. The complete system has undergone a total demonstration of its operational capabilities using simulator circuits for crane functions and is now being integrated with the crane for a full operational demonstration. The system will then be mothballed pending installation by construction personnel ready for cold startup of the plant in 1988.

  9. Computer-Controlled, Motorized Positioning System

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1994-01-01

    Computer-controlled, motorized positioning system developed for use in robotic manipulation of samples in custom-built secondary-ion mass spectrometry (SIMS) system. Positions sample repeatably and accurately, even during analysis in three linear orthogonal coordinates and one angular coordinate under manual local control, or microprocessor-based local control or remote control by computer via general-purpose interface bus (GPIB).

  10. Issues in human/computer control of dexterous remote hands

    NASA Technical Reports Server (NTRS)

    Salisbury, K.

    1987-01-01

    Much research on dexterous robot hands has been aimed at the design and control problems associated with their autonomous operation, while relatively little research has addressed the problem of direct human control. It is likely that these two modes can be combined in a complementary manner yielding more capability than either alone could provide. While many of the issues in mixed computer/human control of dexterous hands parallel those found in supervisory control of traditional remote manipulators, the unique geometry and capabilities of dexterous hands pose many new problems. Among these are the control of redundant degrees of freedom, grasp stabilization and specification of non-anthropomorphic behavior. An overview is given of progress made at the MIT AI Laboratory in control of the Salisbury 3 finger hand, including experiments in grasp planning and manipulation via controlled slip. It is also suggested how we might introduce human control into the process at a variety of functional levels.

  11. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  12. A Remote Characterization System for subsurface mapping of buried waste sites

    SciTech Connect

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface.

  13. Secure Remote Access Issues in a Control Center Environment

    NASA Technical Reports Server (NTRS)

    Pitts, Lee; McNair, Ann R. (Technical Monitor)

    2002-01-01

    The ISS finally reached an operational state and exists for local and remote users. Onboard payload systems are managed by the Huntsville Operations Support Center (HOSC). Users access HOSC systems by internet protocols in support of daily operations, preflight simulation, and test. In support of this diverse user community, a modem security architecture has been implemented. The architecture has evolved over time from an isolated but open system to a system which supports local and remote access to the ISS over broad geographic regions. This has been accomplished through the use of an evolved security strategy, PKI, and custom design. Through this paper, descriptions of the migration process and the lessons learned are presented. This will include product decision criteria, rationale, and the use of commodity products in the end architecture. This paper will also stress the need for interoperability of various products and the effects of seemingly insignificant details.

  14. Remote Excavation System technology evaluation report: Buried Waste Robotics Program

    SciTech Connect

    Not Available

    1993-09-01

    This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the system and discussed the procedures used to conduct the tests.

  15. Multiple node remote messaging

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos

    2010-08-31

    A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).

  16. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  17. A Ground Systems Template for Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  18. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary

  19. A centralised remote data collection system using automated traps for managing and controlling the population of the Mediterranean (Ceratitis capitata) and olive (Dacus oleae) fruit flies

    NASA Astrophysics Data System (ADS)

    Philimis, Panayiotis; Psimolophitis, Elias; Hadjiyiannis, Stavros; Giusti, Alessandro; Perelló, Josep; Serrat, Albert; Avila, Pedro

    2013-08-01

    The present paper describes the development of a novel monitoring system (e-FlyWatch system) for managing and controlling the population of two of the world's most destructive fruit pests, namely the olive fruit fly (Bactrocera oleae, Rossi - formerly Dacus oleae) and the Mediterranean fruit fly (Ceratitis capitata, also called medfly). The novel monitoring system consists of a) novel automated traps with optical and motion detection modules for capturing the flies, b) local stations including a GSM/GPRS module, sensors, flash memory, battery, antenna etc. and c) a central station that collects, stores and publishes the results (i.e. insect population in each field, sensor data, possible error/alarm data) via a web-based management software.The centralised data collection system provides also analysis and prediction models, end-user warning modules and historical analysis of infested areas. The e-FlyWatch system enables the SMEs-producers in the Fruit, Vegetable and Olive sectors to improve their production reduce the amount of insecticides/pesticides used and consequently the labour cost for spraying activities, and the labour cost for traps inspection.

  20. New technical observation strategies with e-control (new name: e-RemoteCtrl)

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Ettl, M.; Rottmann, H.; Plötz, C.; Mühlbauer, M.; Hase, H.; Alef, W.; Sobarzo, S.; Herrera, C.; Beaudoin, C.; Himwich, E.

    2011-07-01

    New remote control technologies for VLBI observations offers the possibilities of remote observations. This means that an operator has not to be on location of the telescope all the time (remote observation). This also allows to control more than one telescope by one operator(shared observation). At Wettzell also completely unattended observations have been done especially for the weekend sessions for over 2 years now. The development goal is to simplify operational workflows in combination with general control structures. These new observation control strategies are not limited to VLBI. They can also be applied to other geodetic space techniques such as SLR which are necessary to realize the Global Geodetic Observing System (GGOS). The demand for continuous and reliable observations requires to ease inconvenient night and weekend shifts. Remote controlled and autonomous observations will become more important in the future. The state-of-the-art software for control and monitoring is publicly available for testing and further developments. The most recent release integrates several new and comfortable features to support the daily work of an operator.

  1. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation.

    PubMed

    Zhang, Enming; Kircher, Moritz F; Koch, Martin; Eliasson, Lena; Goldberg, S Nahum; Renström, Erik

    2014-04-22

    The ability to control the movement of nanoparticles remotely and with high precision would have far-reaching implications in many areas of nanotechnology. We have designed a unique dynamic magnetic field (DMF) generator that can induce rotational movements of superparamagnetic iron oxide nanoparticles (SPIONs). We examined whether the rotational nanoparticle movement could be used for remote induction of cell death by injuring lysosomal membrane structures. We further hypothesized that the shear forces created by the generation of oscillatory torques (incomplete rotation) of SPIONs bound to lysosomal membranes would cause membrane permeabilization, lead to extravasation of lysosomal contents into the cytoplasm, and induce apoptosis. To this end, we covalently conjugated SPIONs with antibodies targeting the lysosomal protein marker LAMP1 (LAMP1-SPION). Remote activation of slow rotation of LAMP1-SPIONs significantly improved the efficacy of cellular internalization of the nanoparticles. LAMP1-SPIONs then preferentially accumulated along the membrane in lysosomes in both rat insulinoma tumor cells and human pancreatic beta cells due to binding of LAMP1-SPIONs to endogenous LAMP1. Further activation of torques by the LAMP1-SPIONs bound to lysosomes resulted in rapid decrease in size and number of lysosomes, attributable to tearing of the lysosomal membrane by the shear force of the rotationally activated LAMP1-SPIONs. This remote activation resulted in an increased expression of early and late apoptotic markers and impaired cell growth. Our findings suggest that DMF treatment of lysosome-targeted nanoparticles offers a noninvasive tool to induce apoptosis remotely and could serve as an important platform technology for a wide range of biomedical applications. PMID:24597847

  2. The Remote Analysis Station (RAS) as an instructional system

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Wilson, C. L.; Dye, R. H.; Jaworski, E.

    1981-01-01

    "Hands-on" training in LANDSAT data analysis techniques can be obtained using a desk-top, interactive remote analysis station (RAS) which consists of a color CRT imagery display, with alphanumeric overwrite and keyboard, as well as a cursor controller and modem. This portable station can communicate via modem and dial-up telephone with a host computer at 1200 baud or it can be hardwired to a host computer at 9600 baud. A Z80 microcomputer controls the display refresh memory and remote station processing. LANDSAT data is displayed as three-band false-color imagery, one-band color-sliced imagery, or color-coded processed imagery. Although the display memory routinely operates at 256 x 256 picture elements, a display resolution of 128 x 128 can be selected to fill the display faster. In the false color mode the computer packs the data into one 8-bit character. When the host is not sending pictorial information the characters sent are in ordinary ASCII code. System capabilities are described.

  3. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, W D

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available "Scallop" vehicle 1 , but has been modified by the Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a "head-to-head" fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  4. Welding Robot and Remote Handling System for the Yucca Mountain Waste Package Closure System

    SciTech Connect

    Barker, M.E.; Holt, T.E.; LaValle, D.R.; Pace, D.P.; Croft, K.M.; Shelton-Davis, C.V.

    2008-07-01

    In preparation for the license application and construction of a repository for housing the nation's spent nuclear fuel and high-level waste in Yucca Mountain, the Idaho National Laboratory (INL) has been charged with preparing a mock-up of a full-scale prototype system for sealing the waste packages (WP). Three critical pieces of the closure room include two PaR Systems TR4350 Telerobotic Manipulators and a PaR Systems XR100 Remote Handling System (RHS). The TR4350 Manipulators are 6-axis programmable robots that will be used to weld the WP lids and purge port cap as well as conduct nondestructive examinations. The XR100 Remote Handling System is a 4-axis programmable robot that will be used to transport the WP lids and process tools to the WP for operations and remove equipment for maintenance. The welding and RHS robots will be controlled using separate PaR 5/21 CIMROC Controllers capable of complex motion control tasks. A tele-operated PaR 4350 Manipulator will also be provided with the XR100 Remote Handling System. It will be used for maintenance and associated activities within the closure room. (authors)

  5. "Non-Reflective" Boundary Design via Remote Sensing and PID Control Valve

    SciTech Connect

    Zhang, Qin Fen; Karney, Professor Byran W.; Pejovic, Dr. Stanislav

    2011-01-01

    This paper develops the concept of a nonreflective (or semireflective) boundary condition using the combination of a remote sensor and a control system to modulate a relief valve. The essential idea is to sense the pressure change at a remote location and then to use the measured data to adjust the opening of an active control valve at the end of the line to eliminate or attenuate the wave reflections at the valve, thus controlling system transient pressures. This novel idea is shown here through numerical simulation to have considerable potential for transient protection. Using this model, wave reflections and resonance can be effectively eliminated for frictionless pipelines or initial no-flow conditions and can be better controlled in more realistic pipelines for a range of transient disturbances. In addition, the features of even-order harmonics and nonreflective boundary conditions during steady oscillation, obtained through time domain transient analysis, are verified by hydraulic impedance analysis in the frequency domain.

  6. Remote Control and Data Acquisition: A Case Study

    NASA Technical Reports Server (NTRS)

    DeGennaro, Alfred J.; Wilkinson, R. Allen

    2000-01-01

    This paper details software tools developed to remotely command experimental apparatus, and to acquire and visualize the associated data in soft real time. The work was undertaken because commercial products failed to meet the needs. This work has identified six key factors intrinsic to development of quality research laboratory software. Capabilities include access to all new instrument functions without any programming or dependence on others to write drivers or virtual instruments, simple full screen text-based experiment configuration and control user interface, months of continuous experiment run-times, order of 1% CPU load for condensed matter physics experiment described here, very little imposition of software tool choices on remote users, and total remote control from anywhere in the world over the Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a set of simple robust tools that are highly reliable, resource conserving, extensible, and versatile, with a uniform simple interface.

  7. Deterministic controlled remote state preparation using partially entangled quantum channel

    NASA Astrophysics Data System (ADS)

    Chen, Na; Quan, Dong Xiao; Yang, Hong; Pei, Chang Xing

    2016-04-01

    In this paper, we propose a novel scheme for deterministic controlled remote state preparation (CRSP) of arbitrary two-qubit states. Suitably chosen partially entangled state is used as the quantum channel. With proper projective measurements carried out by the sender and controller, the receiver can reconstruct the target state by means of appropriate unitary operation. Unit success probability can be achieved for arbitrary two-qubit states. Different from some previous CRSP schemes utilizing partially entangled channels, auxiliary qubit is not required in our scheme. We also show that the success probability is independent of the parameters of the partially entangled quantum channel.

  8. A concept for a mobile remote manipulator system

    NASA Astrophysics Data System (ADS)

    Mikulus, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.

    1985-04-01

    A conceptual design for a Mobile Remote Manipulator System (MRMS) is presented. This concept does not require continuous rails for mobility (only guide pins at truss hardpoints) and is very compact, being only one bay square. The MRMS proposed is highly maneuverable and is able to move in any direction along the orthogonal guide pin array under complete control at all times. The proposed concept would greatly enhance the safety and operational capabilities of astronauts performing EVA functions such as structural assembly, payload transport and attachment, space station maintenance, repair or modification, and future spacecraft construction or servicing. The MRMS drive system conceptual design presented is a reasonably simple mechanical device which can be designed to exhibit high reliability. Developmentally, all components of the proposed MRMS either exist or are considered to be completely state of the art designs requiring minimal development, features which should enhance reliability and minimize costs.

  9. A Concept for a Mobile Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Mikulus, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.

    1985-01-01

    A conceptual design for a Mobile Remote Manipulator System (MRMS) is presented. This concept does not require continuous rails for mobility (only guide pins at truss hardpoints) and is very compact, being only one bay square. The MRMS proposed is highly maneuverable and is able to move in any direction along the orthogonal guide pin array under complete control at all times. The proposed concept would greatly enhance the safety and operational capabilities of astronauts performing EVA functions such as structural assembly, payload transport and attachment, space station maintenance, repair or modification, and future spacecraft construction or servicing. The MRMS drive system conceptual design presented is a reasonably simple mechanical device which can be designed to exhibit high reliability. Developmentally, all components of the proposed MRMS either exist or are considered to be completely state of the art designs requiring minimal development, features which should enhance reliability and minimize costs.

  10. Quantum teleportation of dynamics and effective interactions between remote systems.

    PubMed

    Muschik, Christine A; Hammerer, Klemens; Polzik, Eugene S; Cirac, Ignacio J

    2013-07-12

    Most protocols for quantum information processing consist of a series of quantum gates, which are applied sequentially. In contrast, interactions between matter and fields, for example, as well as measurements such as homodyne detection of light are typically continuous in time. We show how the ability to perform quantum operations continuously and deterministically can be leveraged for inducing nonlocal dynamics between two separate parties. We introduce a scheme for the engineering of an interaction between two remote systems and present a protocol that induces a dynamics in one of the parties that is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time, and are based on real-time feedback. PMID:23889374

  11. INTERCOMPARISON OF OPTICAL REMOTE SENSING SYSTEMS FOR ROADSIDE MEASUREMENTS

    EPA Science Inventory

    The presentation describes results of an intercomparison of three optical remote sensing systems for measurements of nitric oxide emitted from passenger cars and light-duty trucks. The intercomparison included a standards comparison to establish comparability of standards, follo...

  12. Sample Acquisition and Handling System from a Remote Platform

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Jones, Jack A.

    2011-01-01

    A system has been developed to acquire and handle samples from a suspended remote platform. The system includes a penetrator, a penetrator deployment mechanism, and a sample handler. A gravity-driven harpoon sampler was used for the system, but other solutions can be used to supply the penetration energy, such as pyrotechnic, pressurized gas, or springs. The deployment mechanism includes a line that is attached to the penetrator, a spool for reeling in the line, and a line engagement control mechanism. The penetrator has removable tips that can collect liquid, ice, or solid samples. The handling mechanism consists of a carousel that can store a series of identical or different tips, assist in penetrator reconfiguration for multiple sample acquisition, and deliver the sample to a series of instruments for analysis. The carousel sample handling system was combined with a brassboard reeling mechanism and a penetrator with removable tips. It can attach the removable tip to the penetrator, release and retrieve the penetrator, remove the tip, and present it to multiple instrument stations. The penetrator can be remotely deployed from an aerobot, penetrate and collect the sample, and be retrieved with the sample to the aerobot. The penetrator with removable tips includes sample interrogation windows and a sample retainment spring for unconsolidated samples. The line engagement motor can be used to control the penetrator release and reeling engagement, and to evenly distribute the line on the spool by rocking between left and right ends of the spool. When the arm with the guiding ring is aligned with the spool axis, the line is free to unwind from the spool without rotating the spool. When the arm is perpendicular to the spool axis, the line can move only if the spool rotates.

  13. The design and development of a mobile transporter system for the Space Station Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas W.

    1987-01-01

    The analyses, selection process, and conceptual design of potential candidate Mobile Transporter (MT) systems to move the Space Station Remote Manipulator System (SSRMS) about the exposed faces of the Space Station truss structure are described. The actual requirements for a manipulator system on the space station are discussed, including potential tasks to be performed. The SSRMS operating environment and control methods are analyzed with potential design solutions highlighted. Three general categories of transporter systems are identified and analyzed. Several design solution have emerged that will satisfy these requirements. Their relative merits are discussed, and unique variations in each system are rated for functionality.

  14. Controller arm for a remotely related slave arm

    NASA Technical Reports Server (NTRS)

    Salisbury, J. K., Jr. (Inventor)

    1979-01-01

    A segmented controller arm configured and dimensioned to form a miniature kinematic replica of a remotely related slave arm is disclosed. The arm includes: (1) a plurality of joints for affording segments of the arm simultaneous angular displacement about a plurality of pairs of intersecting axes, (2) a plurality of position sensing devices for providing electrical signals indicative of angular displacement imparted to corresponding segments of the controller shaft about the axes, and (3) a control signal circuit for generating control signals to be transmitted to the slave arm. The arm is characterized by a plurality of yokes, each being supported for angular displacement about a pair of orthogonally related axes and counterbalanced against gravitation by a cantilevered mass.

  15. Supercooled large drop detection with NASA's Icing Remote Sensing System

    NASA Astrophysics Data System (ADS)

    Serke, David J.; Reehorst, Andrew L.; Politovich, Marcia K.

    2010-10-01

    In-flight icing occurs when aircraft impact supercooled liquid drops. The supercooled liquid freezes on contact and the accreted ice changes a plane's aerodynamic characteristics, which can lead to dangerous loss of control. NASA's Icing Remote Sensing System consists of a multi-channel radiometer, a laser ceilometer and a vertically-pointing Kaband radar, whos fields are merged with internal software logic to arrive at a hazard classification for in-flight icing. The radiometer is used to derive atmospheric temperature soundings and integrated liquid water and the ceilometer and radar are used to define cloud boundaries. The integrated liquid is then distributed within the determined cloud boundaries and layers to arrive at liquid water content profiles, which if present below freezing are categorized as icing hazards. This work outlines how the derived liquid water content and measured Ka-band reflectivity factor profiles can be used to derive a vertical profile of radar-estimated particle size. This is only possible because NASA's system arrives at independent and non-correlated measures of liquid water and reflectivity factor for a given range volume. The size of the drops significantly effect the drop collection efficiency and the location that icing accretion occurs on the craft's superstructure and thus how a vehicle's performance is altered. Large drops, generally defined as over 50 μm in diameter, tend to accrete behind the normal ice protected areas of the leading edge of the wing and other control surfaces. The NASA Icing Remote Sensing System was operated near Montreal, Canada for the Alliance Icing Research Study II in 2003 and near Cleveland, Ohio from 2006 onward. In this study, we present case studies to show how NASA's Icing Remote Sensing System can detect and differentiate between no icing, small drop and large drop in-flight icing hazards to aircraft. This new product provides crucial realtime hazard detection capabilities which improve

  16. The NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.

    2005-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.

  17. Prototype part task trainer: A remote manipulator system simulator

    NASA Technical Reports Server (NTRS)

    Shores, David

    1989-01-01

    The Part Task Trainer program (PTT) is a kinematic simulation of the Remote Manipulator System (RMS) for the orbiter. The purpose of the PTT is to supply a low cost man-in-the-loop simulator, allowing the student to learn operational procedures which then can be used in the more expensive full scale simulators. PTT will allow the crew members to work on their arm operation skills without the need for other people running the simulation. The controlling algorithms for the arm were coded out of the Functional Subsystem Requirements Document to ensure realistic operation of the simulation. Relying on the hardware of the workstation to provide fast refresh rates for full shaded images allows the simulation to be run on small low cost stand alone work stations, removing the need to be tied into a multi-million dollar computer for the simulation. PTT will allow the student to make errors which in full scale mock up simulators might cause failures or damage hardware. On the screen the user is shown a graphical representation of the RMS control panel in the aft cockpit of the orbiter, along with a main view window and up to six trunion and guide windows. The dials drawn on the panel may be turned to select the desired mode of operation. The inputs controlling the arm are read from a chair with a Translational Hand Controller (THC) and a Rotational Hand Controller (RHC) attached to it.

  18. Controlled Remote Preparation Via the Brown State with no Restriction

    NASA Astrophysics Data System (ADS)

    Gao, Cong; Ma, Song-Ya; Chen, Wei-Lin

    2016-05-01

    Two controlled remote state preparation protocols via the Brown state as the entangled channel are proposed. One prepares an arbitrary two-qubit state, and the other prepares an arbitrary three-qubit state. It is worth mentioning that Hurwitz matrix equation plays a key role in the construction of measurement basis. Comparing with the previous protocols, the novel schemes have no restriction on the coefficients of the prepared state while keeping the same success probability 50 %. It means that the application of the proposed schemes are more extensive in practice. Moreover, we discuss the special complex coefficient ensembles with unit success probability.

  19. STS-61 crewmembers training with the Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Remote Manipulator System (RMS) eases a mannequin representing an astronaut into position for an STS-61 Hubble Space Telescope (HST) servicing task in the Space Shuttle mockup and integration laboratory at JSC (35699, 35703); Wide-angle view of the RMS easing a mannequin into position for work on the HST mock-up in bldg 9N (35700-1); Swiss scientist Claude Nicollier, mission specialist, works the control of the RMS during a training session in the manipulator development facility (MDF) in JSC's Shuttle mock-up and integration laboratory. Astronaut Kenneth D. Bowersox (left), pilot, is among the other crewmembers in training for the STS-61 HST servicing mission (35702).

  20. Fundamentals and advances in the development of remote welding fabrication systems

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  1. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  2. A Multi-User Remote Academic Laboratory System

    ERIC Educational Resources Information Center

    Barrios, Arquimedes; Panche, Stifen; Duque, Mauricio; Grisales, Victor H.; Prieto, Flavio; Villa, Jose L.; Chevrel, Philippe; Canu, Michael

    2013-01-01

    This article describes the development, implementation and preliminary operation assessment of Multiuser Network Architecture to integrate a number of Remote Academic Laboratories for educational purposes on automatic control. Through the Internet, real processes or physical experiments conducted at the control engineering laboratories of four…

  3. A performance analysis method for distributed real-time robotic systems: A case study of remote teleoperation

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Sanderson, A. C.

    1994-01-01

    Robot coordination and control systems for remote teleoperation applications are by necessity implemented on distributed computers. Modeling and performance analysis of these distributed robotic systems is difficult, but important for economic system design. Performance analysis methods originally developed for conventional distributed computer systems are often unsatisfactory for evaluating real-time systems. The paper introduces a formal model of distributed robotic control systems; and a performance analysis method, based on scheduling theory, which can handle concurrent hard-real-time response specifications. Use of the method is illustrated by a case of remote teleoperation which assesses the effect of communication delays and the allocation of robot control functions on control system hardware requirements.

  4. Study and development of techniques for automatic control of remote manipulators

    NASA Technical Reports Server (NTRS)

    Shaket, E.; Leal, A.

    1976-01-01

    An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world.

  5. Controlled Soil Warming Powered by Alternative Energy for Remote Field Sites

    PubMed Central

    Johnstone, Jill F.; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2°C in 1 m2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes. PMID:24386125

  6. Security warning system monitors up to fifteen remote areas simultaneously

    NASA Technical Reports Server (NTRS)

    Fusco, R. C.

    1966-01-01

    Security warning system consisting of 15 television cameras is capable of monitoring several remote or unoccupied areas simultaneously. The system uses a commutator and decommutator, allowing time-multiplexed video transmission. This security system could be used in industrial and retail establishments.

  7. An intelligent remote monitoring system for artificial heart.

    PubMed

    Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G

    2005-12-01

    A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data. PMID:16379373

  8. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    SciTech Connect

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-07-21

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors.

  9. Rosie: remote work system for decontamination and dismantlement

    SciTech Connect

    Bares, L.C.; Conley, L.S.; Thompson, B.R.

    1996-12-31

    The Rosie worksystem includes a locomotor, heavy manipulator,operator console, and control system for remote operations. The locomotor is a highly mobile platform with tether management and hydraulic power onboard. The heavy manipulator is a high-payload, long-reach boom used to deploy a wide variety of tools and/or sensors into the work area. Rosie`s advanced control system, broad work capabibilites, and hardening/reliability for hazardous duty make it a new and unique capability that facilitates completion of significant cleanup projects throughout DOE and the private sector. Endurance testing of Rosie during last year has proven its capabilities and appropriateness for D&D applications. Design enhancements are being implemented to improve and add features necessary for deployment at an upcoming DOE facility decommissioning. A second Rosie unit is being fabricated fro use in the decommissioning of ANL`s CP-5 reactor facility starting late 1996. This paper overviews the Rosie system, testing results, design enhancements, and plans for use of this technology at CP-5.

  10. A remote camera operation system using a marker attached cap

    NASA Astrophysics Data System (ADS)

    Kawai, Hironori; Hama, Hiromitsu

    2005-12-01

    In this paper, we propose a convenient system to control a remote camera according to the eye-gazing direction of the operator, which is approximately obtained through calculating the face direction by means of image processing. The operator put a marker attached cap on his head, and the system takes an image of the operator from above with only one video camera. Three markers are set up on the cap, and 'three' is the minimum number to calculate the tilt angle of the head. The more markers are used, the robuster system may be made to occlusion, and the wider moving range of the head is tolerated. It is supposed that the markers must not exist on any three dimensional straight line. To compensate the marker's color change due to illumination conditions, the threshold for the marker extraction is adaptively decided using a k-means clustering method. The system was implemented with MATLAB on a personal computer, and the real-time operation was realized. Through the experimental results, robustness of the system was confirmed and tilt and pan angles of the head could be calculated with enough accuracy to use.

  11. Optimal dispatch strategy in remote hybrid power systems

    SciTech Connect

    Barley, C.D.; Winn, C.B.

    1996-10-01

    For small villages in developing countries, local stand-alone power systems are often more cost-effective than utility grid extension. Various combinations of wind turbine generators, photovoltaic arrays, diesel gensets, and batteries - remote hybrid power systems - may be preferred to diesel-only systems. Dispatch strategy is the aspect of control strategy that pertains to energy flows among components. In systems with both batteries and diesel genset(s), dispatch affects the life-cycle cost through both the fuel usage and the battery life. In this study, dispatch strategies are compared using (1) an analysis of cost trade-offs, (2) a simple, quasi-steady-state time-series model, and finally (3) HYBRID2, a more sophisticated stochastic time-series model. An idealized predictive dispatch strategy, based on assumed perfect knowledge of future load and wind conditions, is developed and used as a benchmark in evaluating simple, non-predictive strategies. The results illustrate the nature of the optimal strategy and indicate that one of two simple diesel dispatch strategies - either load-following or full power for a minimum run time - can, in conjunction with the frugal use of stored energy (the Frugal Discharge Strategy), be virtually as cost-effective as the Ideal Predictive Strategy. The optimal choice of these two simple charging strategies is correlated to three dimensionless parameters, yielding a generalized dispatch design chart for an important class of systems. 30 refs., 17 figs., 3 tabs.

  12. The solid state remote power controller - Its status, use and perspective. [for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Billings, W. W.

    1977-01-01

    Remote power controllers (RPCs) are solid state devices that combine in one unit the capability to perform all the needed functions of load switching, overload protection, and a direct indication of whether the load is on or off. They provide total system protection of equipment and wires. RPCs are designed to be located near the load and communicate control and status information remotely via low level signals of a few milliwatts. The design and operation of the RPC are considered, taking into account the operation of an RPC, the RPC power switch and drive circuits, control and trip circuits, fail-safe devices, and RPC overcurrent protection. Attention is given to the RPC development status, RPC applications, and RPC perspectives.

  13. Goniometer Control System for Coherent Bremsstrahlung Production

    SciTech Connect

    Acosta, Victor M

    2002-08-15

    A system for the generation of a high-intensity, quasi-monochromatic photon beam is discussed. The theory behind coherent bremsstrahlung photon beam production is analyzed and developed. The mechanics of a goniometer control system are presented. The software developed for remote control of the goniometer is also discussed. Finally, the results from various performance measurements are included.

  14. Remote Underwater Characterization System - Innovative Technology Summary Report

    SciTech Connect

    Willis, Walter David

    1999-04-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available “Scallop” vehicle1, but has been modified by Department of Energy’s Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a “head-tohead” fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations.

  15. Remote monitoring of VRLA batteries for telecommunications systems

    NASA Astrophysics Data System (ADS)

    Tsujikawa, Tomonobu; Matsushima, Toshio

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures.

  16. Energy storage in remote area power supply (RAPS) systems

    NASA Astrophysics Data System (ADS)

    Moseley, Patrick T.

    Preliminary cost analyses indicate that hybrid RAPS systems are more economically attractive as a means to provide electricity to remote villages than are alternatives such as 24 h diesel generation. A hybrid remote area power supply (RAPS) system is being deployed to provide 24 h electricity to villages in the Amazon region of Peru. The RAPS system consists of modules designed to provide 150 kWh per day of utility grade ac electricity over a 24 h period. Each module contains a diesel generator, battery bank using heavy-duty 2 V VRLA gelled electrolyte batteries, a battery charger, a photovoltaic array and an inverter. Despite early difficulties, the system in the first village has now commenced operation and the promise of RAPS schemes as a means for providing sustainable remote electrification appears to be bright.

  17. Test results of high-voltage, high-power, solid-state remote power controllers

    NASA Technical Reports Server (NTRS)

    Johnson, Yvette Binford; Kapustka, Robert E.

    1988-01-01

    This report discusses the results of testing high-voltage, high-power, solid-state remote power controllers (RPC) using RPCs designed and built by John C. Sturman at the Lewis Research Center, Cleveland, Ohio, and utilizing the Autonomously Managed Power Systems (AMPS) breadboard/test facility. These test results are used to determine usefulness of the RPCs for future applications in high-voltage direct-current space power.

  18. In situ technique for measurement and control of transistor characteristics during remote plasma etching

    NASA Astrophysics Data System (ADS)

    Lishan, David; Hu, Evelyn

    1991-09-01

    In situ electrical monitoring has been carried out in a remote plasma etching system allowing accurate control of device electrical parameters. We have used this technique to gate recess-etch two different high electron mobility transistor structures while recording device source-drain I-V characteristics throughout the etching. Current versus etching time data and time elapsed I-V curves are presented.

  19. High-performance image database system for remote sensing

    NASA Astrophysics Data System (ADS)

    Shock, Carter T.; Chang, Chialin; Davis, Larry S.; Goward, Samuel N.; Saltz, Joel H.; Sussman, Alan D.

    1996-02-01

    We present the design of an image database system for remotely sensed imagery. The system stores and serves level 1B remotely sensed data, providing users with a flexible and efficient means for specifying and obtaining image-like products on either a global or a local scale. We have developed both parallel and sequential versions of the system; the parallel version uses the CHAOS++ and Jovian libraries, developed at the University of Maryland as part of an NSF grand challenge project, to support parallel object oriented programming and parallel I/O, respectively.

  20. Security Design of Remote Maintenance Systems for Nuclear Power Plants Based on ISO/IEC 15408

    NASA Astrophysics Data System (ADS)

    Watabe, Ryosuke; Oi, Tadashi; Endo, Yoshio

    This paper presents a security design of remote maintenance systems for nuclear power plants. Based on ISO/IEC 15408, we list assets to be protected, threats to the assets, security objectives against the threats, and security functional requirements that achieve the security objectives. Also, we show relations between the threats and the security objectives, and relations between the security objectives and the security functional requirements. As a result, we concretize a necessary and sufficient security design of remote maintenance systems for nuclear power plants that can protect the instrumentation and control system against intrusion, impersonation, tapping, obstruction and destruction.

  1. Mathematical defense method of networked servers with controlled remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2006-05-01

    The networked server defense model is focused on reliability and availability in security respects. The (remote) backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network and replace broken main severs immediately. The networked server can be represent as "machines" and then the system deals with main unreliable, spare, and auxiliary spare machine. During vacation periods, when the system performs a mandatory routine maintenance, auxiliary machines are being used for back-ups; the information on the system is naturally delayed. Analog of the N-policy to restrict the usage of auxiliary machines to some reasonable quantity. The results are demonstrated in the network architecture by using the stochastic optimization techniques.

  2. Robotic system for remote maintenance of a pulsed nuclear reactor

    SciTech Connect

    Thunborg, S.

    1986-01-01

    Guidelines recently established for occupational radiation exposure specify that exposure should be as low as reasonably achievable. In conformance with these guidelines, SNL has developed a remote maintenance robot (RMR) system for use in the Sandia Pulse Reactor III (SPR III) facility. The RMR should reduce occupational radiation exposure by a factor of 4 and decrease reactor downtime. Other goals include developing a technology base for a more advanced pulse reactor and for the nuclear fuel cycle programs of the US Department of Energy and US Nuclear Regulatory Commission. The RMR has five major subsystems: (a) a chain-driven cart to bring the system into the reactor room; (b) a Puma 560 robot to perform dextrous operations; (c) a programmable turntable to orient the robot to any of the reactor's four sides; (d) a programmable overhead hoist for lifting components weighing up to 400 lb onto or off of the reactor; and (e) a supervisory control console for the system operator. Figure 1 is a schematic diagram of the turntable, hoist, and robot system in position around the SPR III reactor.

  3. An optically remote powered subsea video monitoring system

    NASA Astrophysics Data System (ADS)

    Lau, Fat Kit; Stewart, Brian; McStay, Danny

    2012-06-01

    The drive for Ocean pollution prevention requires a significant increase in the extent and type of monitoring of subsea hydrocarbon production equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such monitoring systems will all require to be powered. Conventionally electrical powering is supplied by standard subsea electrical cabling. The ability to visualise the assets being monitored and any changes or faults in the equipment is advantageous to an overall monitoring system. However the effective use of video cameras, particularly if the transmission of real time high resolution video is desired, requires a high data rate and low loss communication capability. This can be challenging for heavy and costly electrical cables over extended distances. For this reason optical fibre is often adopted as the communication channel. Using optical fibre cables for both communications and power delivery can also reduce the cost of cabling. In this paper we report a prototype optically remote powered subsea video monitoring system that provides an alternative approach to powering subsea video cameras. The source power is transmitted to the subsea module through optical fibre with an optical-to-electrical converter located in the module. To facilitate intelligent power management in the subsea module, a supercapacitor based intermediate energy storage is installed. Feasibility of the system will be demonstrated. This will include energy charging and camera operation times.

  4. Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad

    2015-01-01

    Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.

  5. Performance improvement in remote manipulation with time delay by means of a learning system.

    NASA Technical Reports Server (NTRS)

    Freedy, A.; Weltman, G.

    1973-01-01

    A teleoperating system is presented that involves shared control between a human operator and a general-purpose computer-based learning machine. This setup features a trainable control network termed the autonomous control subsystem (ACS) which is able to observe the operator's control actions, learn the task at hand, and take appropriate control actions. A working ACS system is described that has been put in operation for the purpose of exploring the uses of a remote intelligence of this type. The expansion of the present system into a multifunctional learning machine capable of a greater degree of autonomy is also discussed.

  6. Remote Imaging Applied to Schistosomiasis Control: The Anning River Project

    NASA Technical Reports Server (NTRS)

    Seto, Edmund Y. W.; Maszle, Don R.; Spear, Robert C.; Gong, Peng

    1997-01-01

    The use of satellite imaging to remotely detect areas of high risk for transmission of infectious disease is an appealing prospect for large-scale monitoring of these diseases. The detection of large-scale environmental determinants of disease risk, often called landscape epidemiology, has been motivated by several authors (Pavlovsky 1966; Meade et al. 1988). The basic notion is that large-scale factors such as population density, air temperature, hydrological conditions, soil type, and vegetation can determine in a coarse fashion the local conditions contributing to disease vector abundance and human contact with disease agents. These large-scale factors can often be remotely detected by sensors or cameras mounted on satellite or aircraft platforms and can thus be used in a predictive model to mark high risk areas of transmission and to target control or monitoring efforts. A review of satellite technologies for this purpose was recently presented by Washino and Wood (1994) and Hay (1997) and Hay et al. (1997).

  7. Experimenting from a distance—remotely controlled laboratory (RCL)

    NASA Astrophysics Data System (ADS)

    Gröber, Sebastian; Vetter, Martin; Eckert, Bodo; Jodl, Hans-Jörg

    2007-05-01

    The use of computers and multimedia, as well as the World Wide Web and new communication technologies, allows new forms of teaching and learning such as distance learning, blended learning, use of virtual libraries and many more. The herewith discussed remotely controlled laboratory (RCL) project shall offer an additional contribution. The basic idea is for a user to connect via the Internet with a computer from place A to a real experiment carried out in place B. An overview of our technical and didactical developments as well as an outlook on future plans is presented. Currently, about ten RCLs have been implemented. The essential characteristics of an RCL are the intuitive use and interactivity (operating the technical parameters), the possibility of different points of view of the ongoing experiment thanks to web cams and the quickest possible transfer of the data measured by the user. A reasonable use of sensibly chosen real experiments as remote labs allows a new form of homework and exercises, as well as project work and the execution of experiments, which usually would be a teacher's prerogative only.

  8. Multiple Classifier System for Remote Sensing Image Classification: A Review

    PubMed Central

    Du, Peijun; Xia, Junshi; Zhang, Wei; Tan, Kun; Liu, Yi; Liu, Sicong

    2012-01-01

    Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community. PMID:22666057

  9. Remote Learning for the Manipulation and Control of Robotic Cells

    ERIC Educational Resources Information Center

    Goldstain, Ofir; Ben-Gal, Irad; Bukchin, Yossi

    2007-01-01

    This work proposes an approach to remote learning of robotic cells based on internet and simulation tools. The proposed approach, which integrates remote-learning and tele-operation into a generic scheme, is designed to enable students and developers to set-up and manipulate a robotic cell remotely. Its implementation is based on a dedicated…

  10. Implementation and execution of civilian remote damage control resuscitation programs.

    PubMed

    Jenkins, Donald; Stubbs, James; Williams, Steve; Berns, Kathleen; Zielinski, Martin; Strandenes, Geir; Zietlow, Scott

    2014-05-01

    Remote damage control resuscitation is a recently defined term used to describe techniques and strategies to provide hemostatic resuscitation to injured patients in the prehospital setting. In the civilian setting, unlike the typical military setting, patients who require treatment for hemorrhage come in all ages with all types of comorbidities and have bleeding that may be non-trauma related. Thus, in the austere setting, addressing the needs of the patient is no less challenging than in the military environment, albeit the caregivers are typically not putting their lives at risk to provide such care. Two organizations have pioneered remote damage control resuscitation in the civilian environment: Mayo Clinic and Royal Caribbean Cruises Ltd. The limitations in rural Minnesota and shipboard are daunting. Patients who have hemorrhage requiring transfusion are often hundreds of miles from hospitals able to provide damage control resuscitation. This article details the development and implementation of novel programs specifically designed to address the varied needs of patients in such circumstances. The Mayo Clinic program essentially takes a standard-of-care treatment algorithm, by which the patient would be treated in the emergency department or trauma bay, and projects that forward into the rural environment with specially trained prehospital personnel and special resources. Royal Caribbean Cruises Ltd has adapted a traditional military field practice of transfusing warm fresh whole blood, adding significant safety measures not yet reported on the battlefield (see within this Supplement the article entitled "Emergency Whole Blood Use in the Field: A Simplified Protocol for Collection and Transfusion"). The details of development, implementation, and preliminary results of these two civilian programs are described herein. PMID:24662783

  11. Development of the remote diagnosis system of the solar radio telescope

    NASA Astrophysics Data System (ADS)

    Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki

    2005-04-01

    "The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.

  12. Electronic system for optical shutter control

    NASA Technical Reports Server (NTRS)

    Viljoen, H. C.; Gaylord, T. K.

    1976-01-01

    The paper describes a precise and versatile electronic system for shutter control in light beam experiments. Digital and analog circuitry is used to provide automatic timing, exposure control, manual operation, and remote programmability. A block diagram of the system is presented and the individual circuits - the timer control circuit, the clock control circuit, the comparator circuit, the exposure (integrator) circuit, and the shutter drive circuit are discussed in detail and diagrams are provided.

  13. 47 CFR 90.461 - Direct and remote control of transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Direct and remote control of transmitters. 90... RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control § 90.461 Direct and remote control...) Equipment used to provide the transmitter/dial-up-circuit interface is designed to preclude...

  14. 47 CFR 90.461 - Direct and remote control of transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Direct and remote control of transmitters. 90... RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control § 90.461 Direct and remote control...) Equipment used to provide the transmitter/dial-up-circuit interface is designed to preclude...

  15. Multi-controller quantum teleportation with remote rotation and its applications

    NASA Astrophysics Data System (ADS)

    Kao, Shih-Hung; Chen, Yu-Ting; Tsai, Chia-Wei; Hwang, Tzonelih

    2015-12-01

    This work proposes the first multi-controller quantum teleportation with remote rotations, which allows a sender to teleport an arbitrary qubit to a receiver and at the same time, many controllers can remotely perform two kinds of rotation operations with various angles on the teleported qubit. In order to show its usefulness, a controlled quantum teleportation protocol has also been proposed.

  16. New User Interface Capabilities for Control Systems

    SciTech Connect

    Kasemir, Kay

    2009-01-01

    Latest technologies promise new control system User Interface (UI) features and greater interoperability of applications. New developments using Java and Eclipse aim to unify diverse control systems and make communication between applications seamless. Web based user interfaces can improve portability and remote access. Modern programming tools improve efficiency, support testing and facilitate shared code. This paper will discuss new developments aimed at improving control system interfaces and their development environment.

  17. Safe and secure remote control for the Twin Radio Telescope Wettzell

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Ettl, M.; Mühlbauer, M.; Kronschnabl, G.; Alef, W.; Himwich, E.; Beaudoin, C.; Plötz, C.; Lovell, J.

    2013-08-01

    More VLBI stations, more experiments, more data and a faster analysis for a real-time monitoring of earth parameters and reference frames are the goals of the future VLBI2010 network. One key technology is e-VLBI. But also the control might follow to adapt and to manage these new challenges. Therefore the Technische Universität München (TUM), Germany realizes concepts for continuous quality monitoring and station remote control in cooperation with the Max Planck Institute for Radio Astronomy, Germany. The development is funded by the European Seventh Framework program in the three year project “Novel EXploration Pushing Robust e-VLBI Services (NEXPReS)” of the European VLBI Network (EVN). Within this project, the TUM focuses on developments for a safe, secure and reliable remote control (e-RemoteCtrl) of the NASA Field System with authentication, authorization and user roles to operate and automate radio telescopes, like the new Twin Radio Telescope Wettzell (TTW) at the Geodetic Observatory Wettzell, Germany. One of these telescopes will become operative this year, so that this is a first real-life test for the new control software and realizations.

  18. Vision System for Remote Strain/Deformation Measurement

    SciTech Connect

    Hovis, G.L.

    1999-01-26

    Machine vision metrology is ideally suited to the task of non-contact/non-intrusive deformation and strain measurement in a remote system. The objective of this work-in-progress is to develop a compact instrument for strain measurement consisting of a camera, image capture card, PC, software, and light source. The instrument is portable and useful in a variety of applications and environments. A digital camera with a microscopic lens is connected to an image capture card in a PC. Commercially available image processing software is used to control the image capture and image processing steps leading up to displacement/strain measurement. Image processing steps include filtering and edge/feature enhancement. Custom software is required to control/automate certain elements of the acquisition and processing. Images of a region on the surface of a specimen are acquired at hold points (during static tests) or at regular time intervals (during transients). Salient features in the image scene (microstructure, oxide deposits, etc.) are observed in subsequent images. The strain measurement algorithm characterizes relative motion of the salient features with individual displacement vectors yielding 2-D deformation equations. The set of deformation equations is solved simultaneously to yield unknown deformation gradient terms that are used to express 2-D strain. The overall concept, theory, and test results to date are presented herein.

  19. Independent Orbiter Assessment (IOA): Analysis of the remote manipulator system

    NASA Technical Reports Server (NTRS)

    Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Remote Manipulator System (RMS) are documented. The RMS hardware and software are primarily required for deploying and/or retrieving up to five payloads during a single mission, capture and retrieve free-flying payloads, and for performing Manipulator Foot Restraint operations. Specifically, the RMS hardware consists of the following components: end effector; displays and controls; manipulator controller interface unit; arm based electronics; and the arm. The IOA analysis process utilized available RMS hardware drawings, schematics and documents for defining hardware assemblies, components and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 574 failure modes analyzed, 413 were determined to be PCIs.

  20. Modeling, simulation, and analysis of optical remote sensing systems

    NASA Technical Reports Server (NTRS)

    Kerekes, John Paul; Landgrebe, David A.

    1989-01-01

    Remote Sensing of the Earth's resources from space-based sensors has evolved in the past 20 years from a scientific experiment to a commonly used technological tool. The scientific applications and engineering aspects of remote sensing systems have been studied extensively. However, most of these studies have been aimed at understanding individual aspects of the remote sensing process while relatively few have studied their interrelations. A motivation for studying these interrelationships has arisen with the advent of highly sophisticated configurable sensors as part of the Earth Observing System (EOS) proposed by NASA for the 1990's. Two approaches to investigating remote sensing systems are developed. In one approach, detailed models of the scene, the sensor, and the processing aspects of the system are implemented in a discrete simulation. This approach is useful in creating simulated images with desired characteristics for use in sensor or processing algorithm development. A less complete, but computationally simpler method based on a parametric model of the system is also developed. In this analytical model the various informational classes are parameterized by their spectral mean vector and covariance matrix. These class statistics are modified by models for the atmosphere, the sensor, and processing algorithms and an estimate made of the resulting classification accuracy among the informational classes. Application of these models is made to the study of the proposed High Resolution Imaging Spectrometer (HRIS). The interrelationships among observational conditions, sensor effects, and processing choices are investigated with several interesting results.

  1. Cooling systems for satellite remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Oren, J. A.

    1974-01-01

    The characteristics of a cryogenic cooling system for the Pollution Monitoring Satellite (PMS) are discussed. Studies were conducted to make the following determinations: (1) the characteristics and use of proven and state-of-the-art cryogenic cooling systems for six specified ranges of performance, (2) the system most applicable for each of the six cooling categories, and (3) conceptual designs for candidate system for each of the six representative cooling categories. The six cooling categories of electrical loads are defined. The desired mission life for the cooling system is two years with both continuous and intermittent operating conditions.

  2. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    SciTech Connect

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrieval categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.

  3. Remote sensing applications to Missouri environmental resources information system

    NASA Technical Reports Server (NTRS)

    Myers, R. E.

    1977-01-01

    An efficient system for retrieval of remotely sensed data to be used by natural resources oriented agencies, and a natural resources data system that can meet the needs of state agencies were studied. To accomplish these objectives, natural resources data sources were identified, and study of systems already in operation which address themselves to the more efficient utilization of natural resources oriented data was prepared.

  4. 21 CFR 880.6315 - Remote Medication Management System.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Remote Medication Management System. 880.6315 Section 880.6315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6315...

  5. Wake Shield Facility in grasp of the Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A wintry scene of Lake Winnipeg and surrounding area in Manitoba, Canada forms the backdrop for the Wake Shield Facility (WSF) in the grasp of the Canadian-built Remote Manipulator System (RMS) arm. The image was exposed with a 35mm camera through one of the windows on Discovery's aft flight deck.

  6. 21 CFR 880.6315 - Remote Medication Management System.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... delivery unit, to permit a health care professional to remotely schedule the patient's prescribed... to record a history of the event for the health care professional. The system is intended for use as an aid to health care professionals in managing therapeutic regimens for patients in the home...

  7. 21 CFR 880.6315 - Remote Medication Management System.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... delivery unit, to permit a health care professional to remotely schedule the patient's prescribed... to record a history of the event for the health care professional. The system is intended for use as an aid to health care professionals in managing therapeutic regimens for patients in the home...

  8. 21 CFR 880.6315 - Remote Medication Management System.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... delivery unit, to permit a health care professional to remotely schedule the patient's prescribed... to record a history of the event for the health care professional. The system is intended for use as an aid to health care professionals in managing therapeutic regimens for patients in the home...

  9. 21 CFR 880.6315 - Remote Medication Management System.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote Medication Management System. 880.6315 Section 880.6315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6315...

  10. A Remote Knowledge Repository System for Teaching and Learning.

    ERIC Educational Resources Information Center

    Martins, Protasio D.; Maidantchik, Carmen; Lemos, Leandro T.; Manoel de Seixas, Jose

    Changes in the global economy and the extensive use of the internet implied a conceptual redefinition of the working and social structure, and consequently an enhancement of educational systems that instruct engineers. This paper presents a repository of remote multimedia information such as formatted or non-formatted documents, hypertext pages,…

  11. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  12. Model analysis of remotely controlled rendezvous and docking with display prediction

    NASA Technical Reports Server (NTRS)

    Milgram, P.; Wewerinke, P. H.

    1986-01-01

    Manual control of rendezvous and docking (RVD) of two spacecraft in low earth orbit by a remote human operator is discussed. Experimental evidence has shown that control performance degradation for large transmission delays (between spacecraft and operations control center) can be substantially improved by the introduction of predictor displays. An intial Optimal Control Model (OCM) analysis of RVD translational and rotational perturbation control was performed, with emphasis placed on the predictive capabilities of the combined Kalman estimator/optimal predictor with respect to control performance, for a range of time delays, motor noise levels and tracking axes. OCM predictions are then used as a reference for comparing tracking performance with a simple predictor display, as well as with no display prediction at all. Use is made here of an imperfect internal model formulation, whereby it is assumed that the human operator has no knowledge of the system transmission delay.

  13. Active remote observing system for the 1-m telescope at Tonantzintla Observatory

    NASA Astrophysics Data System (ADS)

    Bernal, Abel; Martínez, Luis A.; Hernández, Héctor; Garfias, Fernando; Ángeles, Fernando

    2006-06-01

    We have designed and installed a new active remote observing system for the 1-m, f/15 telescope at the Tonantzintla Observatory. This remote system is operated in real-time through the Internet, allowing an observer to control the building, the telescope (pointing, guiding and focusing) and the CCD image acquisition at the main and finder telescopes from the Instituto de Astronomia headquarters in Mexico City (150 KM away). The whole system was modeled within the Unified Modeling Language (UML) and the design has proved to be versatile enough for a variety of astronomical instruments. We describe the system architecture and how different subsystems (telescope control, main telescope and finder image acquisition, weather station, videoconference, etc.) that are based on different operative system platforms (Linux, Windows, uIP) have been integrated. We present the first results of an IPv6 over IPv4 tunnel. Recent remote direct imaging and spectroscopic observations have been used to test the astronomical site. We conclude that this remote system is an excellent tool for supporting research and graduated observational astronomy programs.

  14. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement

    PubMed Central

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E.; Yang, Miaomiao; Brenckle, Mark A.; Kim, Stanley; Kaplan, David L.; Rogers, John A.; Omenetto, Fiorenzo G.

    2014-01-01

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476

  15. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.

    PubMed

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G

    2014-12-01

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period. PMID:25422476

  16. Automatic control system design of laser interferometer

    NASA Astrophysics Data System (ADS)

    Lu, Qingjie; Li, Chunjie; Sun, Hao; Ren, Shaohua; Han, Sen

    2015-10-01

    There are a lot of shortcomings with traditional optical adjustment in interferometry, such as low accuracy, time-consuming, labor-intensive, uncontrollability, and bad repetitiveness, so we treat the problem by using wireless remote control system. Comparing to the traditional method, the effect of vibration and air turbulence will be avoided. In addition the system has some peculiarities of low cost, high reliability and easy operation etc. Furthermore, the switching between two charge coupled devices (CCDs) can be easily achieved with this wireless remote control system, which is used to collect different images. The wireless transmission is achieved by using Radio Frequency (RF) module and programming the controller, pulse width modulation (PWM) of direct current (DC) motor, real-time switching of relay and high-accuracy displacement control of FAULHABER motor are available. The results of verification test show that the control system has good stability with less than 5% packet loss rate, high control accuracy and millisecond response speed.

  17. Remotely controlling of mobile robots using gesture captured by the Kinect and recognized by machine learning method

    NASA Astrophysics Data System (ADS)

    Hsu, Roy CHaoming; Jian, Jhih-Wei; Lin, Chih-Chuan; Lai, Chien-Hung; Liu, Cheng-Ting

    2013-01-01

    The main purpose of this paper is to use machine learning method and Kinect and its body sensation technology to design a simple, convenient, yet effective robot remote control system. In this study, a Kinect sensor is used to capture the human body skeleton with depth information, and a gesture training and identification method is designed using the back propagation neural network to remotely command a mobile robot for certain actions via the Bluetooth. The experimental results show that the designed mobile robots remote control system can achieve, on an average, more than 96% of accurate identification of 7 types of gestures and can effectively control a real e-puck robot for the designed commands.

  18. Trends in accelerator control systems

    SciTech Connect

    Crowley-Milling, M.C.

    1984-04-01

    Over the years, we have seen a revolution in control systems that has followed the ever decreasing cost of computer power and memory. It started with the data gathering, when people distrusted the computer to perform control actions correctly, through the stage of using a computer to perform control actions correctly, through the stage of using a computer system to provide a convenient remote look and adjust facility, to the present day, when more and more emphasis is being placed on using a computer system to simulate or model all or parts of the accelerator, feed in the required performance and calling for the computers to set the various parameters and then measure the actual performance, with iteration if necessary. The progress that has been made in the fields of architecture, communications, computers, interface, software design and operator interface is reviewed.

  19. [Remote passive sensing of aeroengine exhausts using FTIR system].

    PubMed

    Xia, Qing; Zuo, Hong-Fu; Li, Shao-Cheng; Wen, Zhen-Hua; Li, Yao-Hua

    2009-03-01

    The traditional method of measuring the aeroengine exhausts is intrusive gas sampling analysis techniques. The disadvantages of the techniques include complex system, difficult operation, high costs and potential danger because of back-pressure effects. The non-intrusive methods have the potential to overcome these problems. So the remote FTIR passive sensing is applied to monitor aeroengine exhausts and determine the concentration of the exhausts gases of aeroengines. The principle of FTIR remote passive sensing is discussed. The model algorithm for the calibration of FTIR system, the radiance power distribution and gas concentration are introduced. TENSOR27 FTIR-system was used to measure the spectra of infrared radiation emitted by the hot gases of exhausts in a test rig. The emission spectra of exhausts were obtained under different thrusts. By analyzing the spectra, the concentrations of CO2, CO and NO concentration were calculated under 4 thrusts. Researches on the determination of concentration of the exhausts gases of aeroengines by using the remote FTIR sensing are still in early stage in the domestic aeronautics field. The results of the spectra and concentration in the aeroengine test are published for the first time. It is shown that the remote FTIR passive sensing techniques have a great future in monitoring the hot gas of the aeroengines exhausts. PMID:19455785

  20. A video transmission system for low-bandwidth remote driving

    SciTech Connect

    DePiero, F.W.; Noell, T.E.; Gee, T.F.

    1993-05-01

    Oak Ridge National Laboratory (ORNL) staff have developed a real-time video transmission system for low-bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black-and-white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports the teleoperated driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds of up to 15 mph on a moguled dirt tract. The system also provides video transmissions for a mission package on board the vehicle. The system supports dynamic image quality adjustments that allow the remote driver to adjust to changing scenery and viewing requirements. During driving, the system`s nominal configuration had a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of {approx} 1s.

  1. Stimulus control and generalization of remote behavioral history.

    PubMed

    Okouchi, Hiroto; Lattal, Kennon A; Sonoda, Akira; Nakamae, Taichi

    2014-03-01

    Two experiments were conducted to assess stimulus control and generalization of remote behavioral history effects with humans. Undergraduates first responded frequently under a fixed-ratio (FR) schedule in the presence of one line length (16 mm or 31 mm) and infrequently on a tandem FR 1 differential-reinforcement-of-low-rate (DRL) schedule when a second line length (31 mm or 16 mm) was present. Next, an FR 1 schedule in effect in the presence of either stimulus produced comparable response rates between the stimuli. Finally, a tandem FR 1 fixed-interval (FI) schedule was in effect under those same stimuli (Experiment 1) or under 12 line lengths ranging from 7 to 40 mm (Experiment 2). In both experiments, responses under the tandem FR 1 FI schedule were frequent in the presence of stimuli previously correlated with the FR schedule and infrequent in the presence of stimuli previously correlated with the tandem FR 1 DRL schedule. Short-lived but systematic generalization gradients were obtained in Experiment 2. These results show that previously established rates of behavior that disappear when the establishing contingencies are changed can subsequently not only reappear when the contingencies change, but are controlled by and generalize across antecedent stimuli. PMID:24470148

  2. Remote controlled ISI devices for RPV bottom head

    SciTech Connect

    Shiga, S.; Mori, H.; Kobayashi, K. Sasaki, T.

    1995-08-01

    The bottom head of a reactor pressure vessel (RPV) of the boiling water reactor (BWR) is one of the areas on which it is very difficult to perform an inservice inspection (ISI). Welds in a bottom head central disk and a drain nozzle are required to be inspected, but its accessibility is restricted by a RPV skirt, a thermal insulation, control rod drive housings and incore monitor housings. Therefore, the remote mechanized scanners are necessary to access and examine the welds. Two kinds of new device were developed to accomplish this inspection. The bottom head central disk weld inspection device has a parallel link mechanism scanning arm with a combined-transducer module to get as much as wide scanning area between control rod drive housings. The device is driven along the weld by moving on the separable track which is set temporally on the bottom head insulation. The drain nozzle weld inspection device has a horseshoe shaped gear mechanism to drive a combined-transducer module. The device is set up on to the drain nozzle using an insertion handle. Both devices have an emergency retrieval mechanism to withdraw the devices in case of power loss accident. Those devices were demonstrated by a mock-up test to be applicable to the inspection of the RPV bottom head.

  3. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    SciTech Connect

    Morrison, R.E.; Robinson, S.H.

    1991-01-01

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander. 5 refs., 8 figs., 2 tabs.

  4. Remote Control Childhood: Combating the Hazards of Media Culture in Schools

    ERIC Educational Resources Information Center

    Levin, Diane

    2010-01-01

    Background: Media culture touches most aspects of the lives of children growing up today, beginning at the earliest ages. It is profoundly the lessons children learn as well as how they learn, thereby contributing to what this article characterizes as "remote control childhood." Educators need to understand remote control childhood so they can…

  5. Estimating the Infrared Radiation Wavelength Emitted by a Remote Control Device Using a Digital Camera

    ERIC Educational Resources Information Center

    Catelli, Francisco; Giovannini, Odilon; Bolzan, Vicente Dall Agnol

    2011-01-01

    The interference fringes produced by a diffraction grating illuminated with radiation from a TV remote control and a red laser beam are, simultaneously, captured by a digital camera. Based on an image with two interference patterns, an estimate of the infrared radiation wavelength emitted by a TV remote control is made. (Contains 4 figures.)

  6. 47 CFR 22.575 - Use of mobile channel for remote control of station functions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Use of mobile channel for remote control of...) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.575 Use of mobile channel for remote control of station functions. Carriers...

  7. 47 CFR 22.575 - Use of mobile channel for remote control of station functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Use of mobile channel for remote control of...) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.575 Use of mobile channel for remote control of station functions. Carriers...

  8. Application of network technology to Remote Monitoring System

    SciTech Connect

    Johnson, C.S.; Sorokowski, D.L.; Veevers, K.

    1994-08-01

    The Australian Safeguards Office (ASO) and the US Department of Energy (DOE) have sponsored work under a bilateral agreement to implement a Remote Monitoring System (RMS) at an Australian nuclear site operated by the Australian Nuclear Science and Technology Organization (ANSTO). The RMS, designed by Sandia National Laboratories (SNL), was installed in February 1994 at the Dry Spent Fuel Storage Facility (DSFSF) located at Lucas Heights, Australia. The RMS was designed to test a number of different concepts that would be useful for unattended remote monitoring activities. The DSFSF located in Building 27 is a very suitable test site for a RMS. The RMS uses a network of low cost nodes to collect data from a number of different sensors and security devices. Different sensors and detection devices have been installed to study how they can be used to complement each other for C/S applications. The data collected from the network will allow a comparison of how the various types of sensors perform under the same set of conditions. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Canberra, Australia and Albuquerque, NM, USA. These remote monitoring stations operated by ASO and SNL respectively, can retrieve data and images from the RMS computer at the DSFSF. The data and images are encrypted before transmission. The Remote Monitoring System field tests have been operational for six months with good test results. Sensors have performed well and the digital images have excellent resolution. The hardware and software have performed reliably without any major difficulties. This paper summarizes the highlights of the prototype system and the ongoing field tests.

  9. Design of image stabilization system for space remote sensor based on DaVinci technology

    NASA Astrophysics Data System (ADS)

    Li, Haoyang; Liu, Zhaojun; Xu, Pengmei

    2011-08-01

    Many factors affect space remote sensor imaging, causing image degradation of contrast and resolution decreasing, which cannot be solved neither by improving resolution of imaging components nor processing of images. In order to meet the imaging requirement of space remote sensor, image stabilization system should be included. In this paper, with a combining method of micro-mechanical and digital image stabilization, an image stabilization system based on DaVinci technology is designed, including imaging and sensing unit, operating and controlling unit and fast steering mirror unit, using TI TMS320DM6446 as the main processor of the image stabilization system, which performs the function of focal plane controlling, image acquisition, motion vector estimating, digital image stabilization operating, fast steering mirror controlling and image outputting. The workflow is as followings: first, through optical system, ground scene is imaged by imaging focal planes. Short exposure images acquired by imaging focal plane are transferred as series to the unit of computing and controlling. Then, inter-frame motion vector is computed from images according to gray projection algorithm, and employed as inputs with image series to do iterative back projection. In this way the final picture is obtained. Meanwhile, the control value obtained from the inter-frame motion vector is sent to the fast steering mirror unit, making compensation to damp vibrations. The results of experiments demonstrate that the image stabilization system improves the imaging performance of space remote sensor.

  10. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  11. Remote health monitoring system for detecting cardiac disorders.

    PubMed

    Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal

    2015-12-01

    Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events. PMID:26577166

  12. A video transmission system for low-bandwidth remote driving

    SciTech Connect

    DePiero, F.W.; Noell, T.E. ); Gee, T.F. )

    1993-01-01

    Oak Ridge National Laboratory (ORNL) staff have developed a real-time video transmission system for low-bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black-and-white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports the teleoperated driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds of up to 15 mph on a moguled dirt tract. The system also provides video transmissions for a mission package on board the vehicle. The system supports dynamic image quality adjustments that allow the remote driver to adjust to changing scenery and viewing requirements. During driving, the system's nominal configuration had a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of [approx] 1s.

  13. Controlling Asymmetric Remote and Cascade 1,3-Dipolar Cycloaddition Reactions by Organocatalysis.

    PubMed

    Poulsen, Pernille H; Vergura, Stefania; Monleón, Alicia; Jørgensen, Danny Kaare Bech; Jørgensen, Karl Anker

    2016-05-25

    The regio- and stereoselective control of cycloaddition reactions to polyconjugated systems has been demonstrated by applying asymmetric organocatalysis. Reaction of 2,4-dienals with nitrones allows for a highly regio- and stereoselective 1,3-dipolar cycloaddition in the presence of an aminocatalyst. The first cycloaddition on the remote olefin can be followed either by a cascade reaction or by other selective reactions of the remaining olefin. The chiral products are obtained in good to high yields and excellent diastereo- and enantioselectivities. The remote selective concept has been extended to 2,4,6-trienals by means of a novel enantioselective triple cascade 1,3-dipolar cycloaddition reaction. The formation of chiral poly 1,3-amino alcohols is also demonstrated. PMID:27160510

  14. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  15. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    SciTech Connect

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura; Kawaguchi, Isao; Miura, Yasuhiko; Ino, Tooru

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  16. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  17. Remote system for subsea wells tested

    SciTech Connect

    Vielvoye, R.

    1981-05-04

    At its experimental submarine station in the Grondin field offshore the West African state of Gabon, Societe Nationale Elf-Aquitaine has run a series of inspection, repair, and maintenance tests on two producing wells using a robot controlled from the surface. Designed for water depths beyond the range of divers, the TIM robot has a pair of manipulator arms and a rotating telescopic crane installed on a 14 by 7.6 ft carriage. Five television cameras fitted at various spots on the robot allow surface operators to direct TIM in such tasks as (1) installing a jumper pipe between a Christmas tree and the manifold, (2) connecting a jumper electric cable and hydraulic hose, (3) locally operating a safety valve, and (4) removing a guide line. During 104 hr of seabed experience, TIM outperformed divers, particularly in jobs requiring great strength.

  18. Remotely manned systems: Exploration and operation in space; Proceedings of the First National Conference, California Institute of Technology, Pasadena, Calif., September 13-15, 1972.

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1973-01-01

    Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.

  19. Parameters Describing Earth Observing Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Ryan, Robert E.; Pagnutti, Mary; Davis, Bruce; Markham, Brian; Storey, Jim

    2003-01-01

    The Earth science community needs to generate consistent and standard definitions for spatial, spectral, radiometric, and geometric properties describing passive electro-optical Earth observing sensors and their products. The parameters used to describe sensors and to describe their products are often confused. In some cases, parameters for a sensor and for its products are identical; in other cases, these parameters vary widely. Sensor parameters are bound by the fundamental performance of a system, while product parameters describe what is available to the end user. Products are often resampled, edge sharpened, pan-sharpened, or compressed, and can differ drastically from the intrinsic data acquired by the sensor. Because detailed sensor performance information may not be readily available to an international science community, standardization of product parameters is of primary performance. Spatial product parameters described include Modulation Transfer Function (MTF), point spread function, line spread function, edge response, stray light, edge sharpening, aliasing, ringing, and compression effects. Spectral product parameters discussed include full width half maximum, ripple, slope edge, and out-of-band rejection. Radiometric product properties discussed include relative and absolute radiometry, noise equivalent spectral radiance, noise equivalent temperature diffenence, and signal-to-noise ratio. Geometric product properties discussed include geopositional accuracy expressed as CE90, LE90, and root mean square error. Correlated properties discussed include such parameters as band-to-band registration, which is both a spectral and a spatial property. In addition, the proliferation of staring and pushbroom sensor architectures requires new parameters to describe artifacts that are different from traditional cross-track system artifacts. A better understanding of how various system parameters affect product performance is also needed to better ascertain the

  20. The Development of Data Acquisition and Remote Real-Time Display System for EAST NBI

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2013-10-01

    The data acquisition and remote real-time display system for the neutral beam injectors (NBI) on experimental advanced superconducting tokamak (EAST) are described in this paper. Distributed computer systems including local data acquisition (DAQ) facility, remote data server (DS), real-time display terminal are adopted with Linux and Windows operating system. Experimental signals are gathered by DAQ device at local working field. On the one hand, these gathered data will be sent to DS which runs on remote server main control layer on EAST NBI control network for saving and processing; on the other hand, these data will be sent to real-time display terminal which runs on remote monitoring layer on EAST NBI for displaying and monitoring experimental signals real-timely. Another point needs to be mentioned is that the real-time display software can call back historical data from DS for querying. The software of data acquisition and DS are programmed by C language while the real-time display software is programmed by Labview flow chart. The hardware mainly includes DAQ cards, server, industrial personal computer and others auxiliary hardware. Now the system proved to be performed well through experiments on NBI testing bed.