Sample records for renal dynamic imaging

  1. Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles

    PubMed Central

    Chen, Feng; Goel, Shreya; Hernandez, Reinier; Graves, Stephen A.; Shi, Sixiang; Nickles, Robert J.; Cai, Weibo

    2016-01-01

    Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. Here, we report the dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 (64Cu) to form 64Cu-NOTA-Au-GSH. Systematic nanoparticle synthesis and characterizations were performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of 64Cu-NOTA-Au-GSH was observed (>75 %ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future. PMID:27062146

  2. Renal damages after extracorporeal shock wave lithotripsy evaluated by Gd-DTPA-enhanced dynamic magnetic resonance imaging.

    PubMed

    Umekawa, T; Kohri, K; Yamate, T; Amasaki, N; Ishikawa, Y; Takada, M; Iguchi, M; Kurita, T

    1992-01-01

    Renal damages after extracorporeal shock wave lithotripsy (ESWL) were evaluated by magnetic resonance imaging (MRI) including Gd-DTPA-enhanced dynamic MRI in 37 patients with renal stone by spin echo methods (T1 and T2-weighted scan) and small tip angle gradient echo method (T2-weighted scan). Sixty-eight percent of the patients had changes in the MRI findings after ESWL. The frequently observed findings were perirenal fluid collection (38%), loss of corticomedullary junction (35%), and increased signal intensity of muscle and other adjacent tissue (34%). Preoperative Gd-DTPA-enhanced dynamic MRI showed low intensity band which suggests Gd-DTPA secretion from the glomerulus into the renal tubulus. In all cases the low intensity band became unclear after ESWL because of renal contusion due to ESWL. MRI, including Gd-DTPA-enhanced dynamic MRI, is considered to be a good procedure for evaluation of renal damages due to ESWL.

  3. Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.

    PubMed

    Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro

    2018-05-01

    Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Determination of single-kidney glomerular filtration rate (GFR) with CT urography versus renal dynamic imaging Gates method.

    PubMed

    You, Shan; Ma, XianWu; Zhang, ChangZhu; Li, Qiang; Shi, WenWei; Zhang, Jing; Yuan, XiaoDong

    2018-03-01

    To present a single-kidney CT-GFR measurement and compare it with the renal dynamic imaging Gates-GFR. Thirty-six patients with hydronephrosis referred for CT urography and 99mTc-DTPA renal dynamic imaging were prospectively included. Informed consent was obtained from all patients. The CT urography protocol included non-contrast, nephrographic, and excretory phase imaging. The total CT-GFR was calculated by dividing the CT number increments of the total urinary system between the nephrographic and excretory phase by the products of iodine concentration in the aorta and the elapsed time, then multiplied by (1- Haematocrit). The total CT-GFR was then split into single-kidney CT-GFR by a left and right kidney proportionality factor. The results were compared with single-kidney Gates-GFR by using paired t-test, correlation analysis, and Bland-Altman plots. Paired difference between single-kidney CT-GFR (45.02 ± 13.91) and single-kidney Gates-GFR (51.21 ± 14.76) was 6.19 ± 5.63 ml/min, p<0.001, demonstrating 12.1% systematic underestimation with ±11.03 ml/min (±21.5%) measurement deviation. A good correlation was revealed between both measurements (r=0.87, p<0.001). The proposed single-kidney CT-GFR correlates and agrees well with the reference standard despite a systematic underestimation, therefore it could be a one-stop-shop for evaluating urinary tract morphology and split renal function. • A new CT method can assess split renal function • Only using images from CT urography and the value of haematocrit • A one-stop-shop CT technique without additional radiation dose.

  5. Determination of split renal function using dynamic CT-angiography: preliminary results.

    PubMed

    Helck, Andreas; Schönermarck, Ulf; Habicht, Antje; Notohamiprodjo, Mike; Stangl, Manfred; Klotz, Ernst; Nikolaou, Konstantin; la Fougère, Christian; Clevert, Dirk Andrè; Reiser, Maximilian; Becker, Christoph

    2014-01-01

    To determine the feasibility of a dynamic CT angiography-protocol with regard to simultaneous assessment of renal anatomy and function. 7 healthy potential kidney donors (58 ± 7 years) underwent a dynamic computed tomography angiography (CTA) using a 128-slice CT-scanner with continuous bi-directional table movement, allowing the coverage of a scan range of 18 cm within 1.75 sec. Twelve scans of the kidneys (n = 14) were acquired every 3.5 seconds with the aim to simultaneously obtain CTA and renal function data. Image quality was assessed quantitatively (HU-measurements) and qualitatively (grade 1-4, 1 = best). The glomerular filtration rate (GFR) was calculated by a modified Patlak method and compared with the split renal function obtained with renal scintigraphy. Mean maximum attenuation was 464 ± 58 HU, 435 ± 48 HU and 277 ± 29 HU in the aorta, renal arteries, and renal veins, respectively. The abdominal aorta and all renal vessels were depicted excellently (grade 1.0). The image quality score for cortex differentiation was 1.6 ± 0.49, for the renal parenchyma 2.4 ± 0.49. GFR obtained from dynamic CTA correlated well with renal scintigraphy with a correlation coefficient of r = 0.84; P = 0.0002 (n = 14). The average absolute deviation was 1.6 mL/min. The average effective dose was 8.96 mSv. Comprehensive assessment of renal anatomy and function is feasible using a single dynamic CT angiography examination. The proposed protocol may help to improve management in case of asymmetric kidney function as well as to simplify evaluation of potential living kidney donors.

  6. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of

  7. High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Jung, Yeongri; Jia, Yali; An, Lin; Wang, Ruikang K.

    2011-03-01

    We present a non-invasive, label-free imaging technique called Ultrahigh Sensitive Optical Microangiography (UHSOMAG) for high sensitive volumetric imaging of renal microcirculation. The UHS-OMAG imaging system is based on spectral domain optical coherence tomography (SD-OCT), which uses a 47000 A-line scan rate CCD camera to perform an imaging speed of 150 frames per second that takes only ~7 seconds to acquire a 3D image. The technique, capable of measuring slow blood flow down to 4 um/s, is sensitive enough to image capillary networks, such as peritubular capillaries and glomerulus within renal cortex. We show superior performance of UHS-OMAG in providing depthresolved volumetric images of rich renal microcirculation. We monitored the dynamics of renal microvasculature during renal ischemia and reperfusion. Obvious reduction of renal microvascular density due to renal ischemia was visualized and quantitatively analyzed. This technique can be helpful for the assessment of chronic kidney disease (CKD) which relates to abnormal microvasculature.

  8. Usefulness of parametric renal clearance images in the assessment of basic risk factors for renalnal clearance images in the assessment of basic risk factors for renal scarring in children with recurrent urinary tract infections.

    PubMed

    Pietrzak-Stelasiak, Ewa; Bieńkiewicz, Małgorzata; Woźnicki, Wojciech; Bubińska, Krystyna; Kowalewska-Pietrzak, Magdalena; Płachcińska, Anna; Kuśmierek, Jacek

    2017-01-01

    Clinically confirmed incidents of acute pyelonephritis (APN) following recurrent infections of urinary tract (UTI) form basic risk factors for renal scarring in children. Vesico-uretheral reflux (VUR) of higher grade is additional risk factor for this scarring. Opinions on diagnostic value of summed sequential images of renal uptake phase (SUM) of dynamic renal scintigraphy in detection of renal scars are diverse. However, several publications point to higher diagnostic efficacy of clearance parametric images (PAR) generated from this study. To establish a clinical value of parametric renal clearance images in detection of renal scarring. A prospective study was performed in a group of 91 children at the age of 4 to 18 years with recurrent UTI. Clinically documented incidents of APN were noted in 32 children: in 8 cases - one and in the remaining 24 - 2 to 5 (mean 3) incidents. In the remaining 59 patients only infections of the lower part of urinary tract were diagnosed. Static renal 99mTc-DMSA SPECT study and after 2-4 days dynamic renal studies (99mTc-EC) were performed in every patient not earlier than 6 months after the last documented incident of UTI. PAR images generated from a dynamic study by in-house developed software and SUM images were compared with a gold standard SPECT study. Percentages of children with detected renal scar(s) with SPECT and PAR methods amounted to 55% and 54%, respectively and were statistically significantly higher (p < 0.0001) than with SUM method - 31%. Scars in children with history of APN detected with SPECT and PAR methods were significantly more frequent than with infections of only lower part of urinary tract (72% vs. 46%; p = 0.017 and 69% vs. 46%; p = 0.036, respectively). A SUM method did not reveal statistically significant differences between frequencies of detection of scars in groups specified above - 38% vs. 27% (p = 0.31). Both SPECT and PAR methods showed also that frequencies of occurrence of renal scars in

  9. Effect of renal denervation on dynamic autoregulation of renal blood flow.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2004-06-01

    Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.

  10. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  11. Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.

    PubMed

    DiBona, Gerald F

    2005-03-01

    Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.

  12. Renal amyloidosis. Evaluation by gallium imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, V.W.; Skinner, M.; Cohen, A.S.

    1986-09-01

    A study has been performed to evaluate the efficacy of gallium imaging in the detection of renal amyloidosis. Ten of the 11 patients who had biopsy-proven renal amyloidosis demonstrated marked uptake in both kidneys. One patient revealed moderate gallium uptake in his kidneys. None of the patients had underlying renal or extrarenal pathology other than amyloidosis, which could account for renal gallium uptake (renal infection, neoplasm, hepatic failure or frequent blood transfusions). Four patients also had extrarenal foci of abnormal gallium uptake, suggesting other sites of amyloid deposits. Our data strongly suggest that gallium imaging has a high sensitivity formore » detection of renal amyloidosis. Its specificity is enhanced significantly by careful review of the clinical history to exclude other known causes of renal gallium uptake. Potentially, gallium imaging may be used to monitor the progress of patients under experimental therapy.« less

  13. A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.

    2006-06-01

    Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.

  14. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know.

    PubMed

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.

  15. Differentiation of Solid Renal Tumors with Multiparametric MR Imaging.

    PubMed

    Lopes Vendrami, Camila; Parada Villavicencio, Carolina; DeJulio, Todd J; Chatterjee, Argha; Casalino, David D; Horowitz, Jeanne M; Oberlin, Daniel T; Yang, Guang-Yu; Nikolaidis, Paul; Miller, Frank H

    2017-01-01

    Characterization of renal tumors is critical to determine the best therapeutic approach and improve overall patient survival. Because of increased use of high-resolution cross-sectional imaging in clinical practice, renal masses are being discovered with increased frequency. As a result, accurate imaging characterization of these lesions is more important than ever. However, because of the wide array of imaging features encountered as well as overlapping characteristics, identifying reliable imaging criteria for differentiating malignant from benign renal masses remains a challenge. Multiparametric magnetic resonance (MR) imaging based on various anatomic and functional parameters has an important role and adds diagnostic value in detection and characterization of renal masses. MR imaging may allow distinction of benign solid renal masses from several renal cell carcinoma (RCC) subtypes, potentially suggest the histologic grade of a neoplasm, and play an important role in ensuring appropriate patient management to avoid unnecessary surgery or other interventions. It is also a useful noninvasive imaging tool for patients who undergo active surveillance of renal masses and for follow-up after treatment of a renal mass. The purpose of this article is to review the characteristic MR imaging features of RCC and common benign renal masses and propose a diagnostic imaging approach to evaluation of solid renal masses using multiparametric MR imaging. © RSNA, 2017.

  16. Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent.

    PubMed

    Lüdemann, Lutz; Nafz, Benno; Elsner, Franz; Grosse-Siestrup, Christian; Meissler, Michael; Kaufels, Nicola; Rehbein, Hagen; Persson, Pontus B; Michaely, Henrik J; Lengsfeld, Philipp; Voth, Matthias; Gutberlet, Matthias

    2009-03-01

    To evaluate for the first time in an animal model the possibility of absolute regional quantification of renal medullary and cortical perfusion by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a blood pool contrast agent. A total of 18 adult female pigs (age, 16-22 weeks; body weight, 45-65 kg; no dietary restrictions) were investigated by DCE-MRI. Absolute renal blood flow (RBF) measured by an ultrasound transit time flow probe around the renal vein was used as the standard of reference. An inflatable stainless cuff placed around the renal artery near its origin from the abdominal aorta was used to reduce RBF to 60%, 40%, and 20% of the baseline flow. The last measurement was performed with the cuff fully reopened. Absolute RBF values during these 4 perfusion states were compared with the results of DCE-MRI performed on a 1.5-T scanner with an 8-channel phased-array surface coil. All scans were acquired in breath-hold technique in the coronal plane using a field of view of 460 mm.Each dynamic scan commenced with a set of five 3D T1-weighted gradient echo sequences with different flip angles (alpha = 2 degrees, 5 degrees, 10 degrees, 20 degrees, 30 degrees): TE, 0.88 milliseconds; TR, 2.65 milliseconds; slice thickness, 8.8 mm for 4 slices; acquisition matrix, 128 x 128; and acquisitions, 4. These data served to calculate 3D intrinsic longitudinal relaxation rate maps (R10) and magnetization (M0). Immediately after these images, the dynamic 3D T1-weighted gradient echo images were acquired with the same parameters and a constant alpha = 30 degrees, half Fourier, 1 acquisition, 64 frames, a time interval of 1.65 seconds between each frame, and a total duration of 105.6. Three milliliters of an albumin-binding blood pool contrast agent (0.25 mmol/mL gadofosveset trisodium, Vasovist, Bayer Schering Pharma AG, Berlin, Germany) was injected at a rate of 3 mL/s. Perfusion was calculated using the arterial input function from the aorta, which was

  17. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  18. Prospective MR image alignment between breath-holds: Application to renal BOLD MRI.

    PubMed

    Kalis, Inge M; Pilutti, David; Krafft, Axel J; Hennig, Jürgen; Bock, Michael

    2017-04-01

    To present an image registration method for renal blood oxygen level-dependent (BOLD) measurements that enables semiautomatic assessment of parenchymal and medullary R2* changes under a functional challenge. In a series of breath-hold acquisitions, three-dimensional data were acquired initially for prospective image registration of subsequent BOLD measurements. An algorithm for kidney alignment for BOLD renal imaging (KALIBRI) was implemented to detect the positions of the left and right kidney so that the kidneys were acquired in the subsequent BOLD measurement at consistent anatomical locations. Residual in-plane distortions were corrected retrospectively so that semiautomatic dynamic R2* measurements of the renal cortex and medulla become feasible. KALIBRI was tested in six healthy volunteers during a series of BOLD experiments, which included a 600- to 1000-mL water challenge. Prospective image registration and BOLD imaging of each kidney was achieved within a total measurement time of about 17 s, enabling its execution within a single breath-hold. KALIBRI improved the registration by up to 35% as found with mutual information measures. In four volunteers, a medullary R2* decrease of up to 40% was observed after water ingestion. KALIBRI improves the quality of two-dimensional time-resolved renal BOLD MRI by aligning local renal anatomy, which allows for consistent R2* measurements over many breath-holds. Magn Reson Med 77:1573-1582, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Pharmacodynamic Biomarker for Pazopanib in Metastatic Renal Carcinoma.

    PubMed

    Sweis, Randy F; Medved, Milica; Towey, Shannon; Karczmar, Gregory S; Oto, Aytekin; Szmulewitz, Russell Z; O'Donnell, Peter H; Fishkin, Paul; Karrison, Theodore; Stadler, Walter M

    2017-04-01

    Traditional imaging assessment criteria might not correlate well with clinical benefit from vascular endothelial growth factor pathway-directed therapy in metastatic renal cancer. Preclinical data suggest tumor growth is preceded by a rise in K trans level, a parameter derived from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) that reflects vascular permeability. We thus hypothesized that K trans might be a predictive biomarker for pazopanib. Patients with metastatic renal cancer were treated with pazopanib at 800 mg oral daily until disease progression. MRI of the abdomen and pelvis with a DCE-MRI sequence was obtained at baseline and every 8 weeks. Seventy-three DCE-MRI scans were completed and 66 were technically assessable. Of the 17 patients with at least 1 DCE-MRI scan after the baseline scan, 16 (94%) had a decline in K trans level. Changes in K trans compared with baseline after 1, 8, 16, and 24 weeks were -49%, -65%, -63%, and -53%, respectively (P = .0052, repeated measures analysis of variance). The median K trans nadir occurred at 8 weeks. The median progression-free survival (PFS) was 32.1 weeks. PFS was longer in patients with higher baseline K trans values (P = .036, log rank). Baseline K trans did not reach significance in a Cox proportional hazard model including clinical prognostic index and previous treatments (P = .083). We show that K trans is a pharmacodynamic biomarker for pazopanib therapy in metastatic renal cancer. Because of the small sample size, the predictive capacity of K trans recovery could not be assessed, but baseline K trans correlated with PFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia.

    PubMed

    Hirakawa, Yosuke; Mizukami, Kiichi; Yoshihara, Toshitada; Takahashi, Ippei; Khulan, Purevsuren; Honda, Tomoko; Mimura, Imari; Tanaka, Tetsuhiro; Tobita, Seiji; Nangaku, Masaomi

    2018-06-01

    Renal tubulointerstitial hypoxia is recognized as a final common pathway of chronic kidney disease and is considered a promising drug target. However, hypoxia in the tubules is not well examined because of limited detection methods. Here, we devised a method to visualize renal tubular oxygen tension with spatial resolution at a cellular level using the cell-penetrating phosphorescent probe, BTPDM1 (an iridium-based cationic lipophilic dye), and confocal phosphorescence lifetime imaging microscopy to precisely assess renal hypoxia. Imaging with BTPDM1 revealed an oxygen gradient between S1 and S2 segments in mouse kidney. We also demonstrated that our microscopy system can detect subtle changes of hypoxemia and reoxygenation, and the acquired phosphorescence lifetime can be converted to partial pressure of oxygen. This new method allows, for the first time, visualization of intravital oxygen gradients at the renal surface with high spatial resolution. Thus, the confocal phosphorescence lifetime imaging microscopy platform, combined with BTPDM1, will promote an accurate understanding of tissue hypoxia, including renal hypoxia. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Renal arteries (image)

    MedlinePlus

    ... then injected into the renal artery through the catheter, and images of the vessels of the kidney are taken. The test is a useful aid in evaluating kidney function and diagnosing any narrowing of the arteries, blood clots, tumors or aneurysms.

  2. Imaging for percutaneous renal access and management of renal calculi.

    PubMed

    Park, Sangtae; Pearle, Margaret S

    2006-08-01

    Percutaneous renal stone surgery requires detailed imaging to define stone burden and delineate the anatomy of the kidney and nearby organs. It is also essential to carry out safe percutaneous access and to assess postoperative outcomes. The emergence of CT as the imaging modality of choice for detecting renal calculi and the ability of CT urography with or without three-dimensional reconstruction to delineate the collecting system makes this the most versatile and sensitive imaging modality for pre- and postoperative evaluation. At present, intravenous urogram continues to play an important role in the evaluation of patients considered for percutaneous nephrostolithotomy. Fluoroscopy re-mains the mainstay of intraoperative imaging, although ultrasound is a useful alternative. Selection and application of appropriate imaging modalities for patients undergoing per-cutaneous nephrostolithotomy enhances the safety and success of the procedure.

  3. Three new renal simulators for use in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dullius, Marcos; Fonseca, Mateus; Botelho, Marcelo; Cunha, Clêdison; Souza, Divanízia

    2014-03-01

    Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was develop and evaluate the performance of three renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99mTc-DMSA in different concentrations. These static phantoms were manufactured in two ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99mTc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems.

  4. CT imaging spectrum of infiltrative renal diseases.

    PubMed

    Ballard, David H; De Alba, Luis; Migliaro, Matias; Previgliano, Carlos H; Sangster, Guillermo P

    2017-11-01

    Most renal lesions replace the renal parenchyma as a focal space-occupying mass with borders distinguishing the mass from normal parenchyma. However, some renal lesions exhibit interstitial infiltration-a process that permeates the renal parenchyma by using the normal renal architecture for growth. These infiltrative lesions frequently show nonspecific patterns that lead to little or no contour deformity and have ill-defined borders on CT, making detection and diagnosis challenging. The purpose of this pictorial essay is to describe the CT imaging findings of various conditions that may manifest as infiltrative renal lesions.

  5. Magnetic resonance imaging (MRI) of the renal sinus.

    PubMed

    Krishna, Satheesh; Schieda, Nicola; Flood, Trevor A; Shanbhogue, Alampady Krishna; Ramanathan, Subramaniyan; Siegelman, Evan

    2018-04-09

    This article presents methods to improve MR imaging approach of disorders of the renal sinus which are relatively uncommon and can be technically challenging. Multi-planar Single-shot T2-weighted (T2W) Fast Spin-Echo sequences are recommended to optimally assess anatomic relations of disease. Multi-planar 3D-T1W Gradient Recalled Echo imaging before and after Gadolinium administration depicts the presence and type of enhancement and relation to arterial, venous, and collecting system structures. To improve urographic phase MRI, concentrated Gadolinium in the collecting systems should be diluted. Diffusion-Weighted Imaging (DWI) should be performed before Gadolinium administration to minimize T2* effects. Renal sinus cysts are common but can occasionally be confused for dilated collecting system or calyceal diverticula, with the latter communicating with the collecting system and filling on urographic phase imaging. Vascular lesions (e.g., aneurysm, fistulas) may mimic cystic (or solid) lesions on non-enhanced MRI but can be suspected by noting similar signal intensity to the blood pool and diagnosis can be confirmed with MR angiogram/venogram. Multilocular cystic nephroma commonly extends to the renal sinus, however, to date are indistinguishable from cystic renal cell carcinoma (RCC). Solid hilar tumors are most commonly RCC and urothelial cell carcinoma (UCC). Hilar RCC are heterogeneous, hypervascular with epicenter in the renal cortex compared to UCC which are centered in the collecting system, homogeneously hypovascular, and show profound restricted diffusion. Diagnosis of renal sinus invasion in RCC is critically important as it is the most common imaging cause of pre-operative under-staging of disease. Fat is a normal component of the renal sinus; however, amount of sinus fat correlates with cardiovascular disease and is also seen in lipomatosis. Fat-containing hilar lesions include lipomas, angiomyolipomas, and less commonly other tumors which engulf sinus

  6. Multiphoton imaging for assessing renal disposition in acute kidney injury

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.

    2016-11-01

    Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.

  7. Modified dixon‐based renal dynamic contrast‐enhanced MRI facilitates automated registration and perfusion analysis

    PubMed Central

    Leiner, Tim; Vink, Eva E.; Blankestijn, Peter J.; van den Berg, Cornelis A.T.

    2017-01-01

    Purpose Renal dynamic contrast‐enhanced (DCE) MRI provides information on renal perfusion and filtration. However, clinical implementation is hampered by challenges in postprocessing as a result of misalignment of the kidneys due to respiration. We propose to perform automated image registration using the fat‐only images derived from a modified Dixon reconstruction of a dual‐echo acquisition because these provide consistent contrast over the dynamic series. Methods DCE data of 10 hypertensive patients was used. Dual‐echo images were acquired at 1.5 T with temporal resolution of 3.9 s during contrast agent injection. Dixon fat, water, and in‐phase and opposed‐phase (OP) images were reconstructed. Postprocessing was automated. Registration was performed both to fat images and OP images for comparison. Perfusion and filtration values were extracted from a two‐compartment model fit. Results Automatic registration to fat images performed better than automatic registration to OP images with visible contrast enhancement. Median vertical misalignment of the kidneys was 14 mm prior to registration, compared to 3 mm and 5 mm with registration to fat images and OP images, respectively (P = 0.03). Mean perfusion values and MR‐based glomerular filtration rates (GFR) were 233 ± 64 mL/100 mL/min and 60 ± 36 mL/minute, respectively, based on fat‐registered images. MR‐based GFR correlated with creatinine‐based GFR (P = 0.04) for fat‐registered images. For unregistered and OP‐registered images, this correlation was not significant. Conclusion Absence of contrast changes on Dixon fat images improves registration in renal DCE MRI and enables automated postprocessing, resulting in a more accurate estimation of GFR. Magn Reson Med 80:66–76, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access

  8. Nonoperative management of blunt renal trauma: Is routine early follow-up imaging necessary?

    PubMed Central

    Malcolm, John B; Derweesh, Ithaar H; Mehrazin, Reza; DiBlasio, Christopher J; Vance, David D; Joshi, Salil; Wake, Robert W; Gold, Robert

    2008-01-01

    Background There is no consensus on the role of routine follow-up imaging during nonoperative management of blunt renal trauma. We reviewed our experience with nonoperative management of blunt renal injuries in order to evaluate the utility of routine early follow-up imaging. Methods We reviewed all cases of blunt renal injury admitted for nonoperative management at our institution between 1/2002 and 1/2006. Data were compiled from chart review, and clinical outcomes were correlated with CT imaging results. Results 207 patients were identified (210 renal units). American Association for the Surgery of Trauma (AAST) grades I, II, III, IV, and V were assigned to 35 (16%), 66 (31%), 81 (39%), 26 (13%), and 2 (1%) renal units, respectively. 177 (84%) renal units underwent routine follow-up imaging 24–48 hours after admission. In three cases of grade IV renal injury, a ureteral stent was placed after serial imaging demonstrated persistent extravasation. In no other cases did follow-up imaging independently alter clinical management. There were no urologic complications among cases for which follow-up imaging was not obtained. Conclusion Routine follow-up imaging is unnecessary for blunt renal injuries of grades I-III. Grade IV renovascular injuries can be followed clinically without routine early follow-up imaging, but urine extravasation necessitates serial imaging to guide management decisions. The volume of grade V renal injuries in this study is not sufficient to support or contest the need for routine follow-up imaging. PMID:18768088

  9. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Eppur Si Muove: The Dynamic Nature of Physiological Control of Renal Blood Flow by the Renal Sympathetic Nerves

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.

    2016-01-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571

  11. High temporal resolution dynamic contrast-enhanced MRI using compressed sensing-combined sequence in quantitative renal perfusion measurement.

    PubMed

    Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-10-01

    To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Functional renal imaging: new trends in radiology and nuclear medicine.

    PubMed

    Durand, Emmanuel; Chaumet-Riffaud, Philippe; Grenier, Nicolas

    2011-01-01

    The objective of this work is to compare the characteristics of various techniques for functional renal imaging, with a focus on nuclear medicine and magnetic resonance imaging. Even with low spatial resolution and rather poor signal-to-noise ratio, classical nuclear medicine has the advantage of linearity and good sensitivity. It remains the gold standard technique for renal relative functional assessment. Technetium-99m ((99m)Tc)-labeled diethylenetriamine penta-acetate remains the reference glomerular tracer. Tubular tracers have been improved: (123)I- or (131)I-hippuran, (99m)Tc-MAG3 and, recently, (99m)Tc-nitrilotriacetic acid. However, advancement in molecular imaging has not produced a groundbreaking tracer. Renal magnetic resonance imaging with classical gadolinated tracers probably has potential in this domain but has a lack of linearity and, therefore, its value still needs evaluation. Moreover, the advent of nephrogenic systemic fibrosis has delayed its expansion. Other developments, such as diffusion or blood oxygen level-dependent imaging, may have a role in the future. The other modalities have a limited role in clinical practice for functional renal imaging. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Dynamic Computed Tomographic Features of Adult Renal Cell Carcinoma Associated With Xp11.2 Translocation/TFE3 Gene Fusions: Comparison With Clear Cell Renal Cell Carcinoma.

    PubMed

    He, Jian; Gan, Weidong; Liu, Song; Zhou, Kefeng; Zhang, Gutian; Guo, Hongqian; Zhu, Bin

    2015-01-01

    To investigate the dynamic contrast-enhanced computed tomography (CT) characteristics of renal cell carcinoma associated with Xp11.2 translocation and TFE gene fusion (Xp11.2 RCC) by comparison with clear cell renal cell carcinoma (CCRCC). Dynamic contrast-enhanced CT images and clinical and pathological records of 20 adult patients with Xp11.2 RCC confirmed by TFE3 immunohistochemical and fluorescence in situ hybridization assay were retrospectively analyzed and compared with the findings of 21 contemporary CCRCCs. Renal cell carcinoma associated with Xp11.2 translocation and TFE gene fusions often occurred in young (30.6 ± 8.6 years) patients with hematuria (9/20). They presented as well-defined (17/20) cystic-solid (17/20) mass with hemorrhage (8/20) and circular/rim calcifications (6/20). Dynamic contrast-enhanced CT showed heterogeneous moderate prolonged enhancement. A tumor-to-cortex attenuation ratio in corticomedullary phase less than 0.62 gave a sensitivity of 90.0% and a specificity of 92.9% in differentiating Xp11.2 RCC from CCRCC (area under the receiver operating characteristic curve = 0.957, P < 0.001). Computed tomographic characteristics and dynamic contrast-enhanced patterns and index can differentiate Xp11.2 RCC from CCRCC.

  14. Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury

    PubMed Central

    Roberts, John; Chen, Bo; Curtis, Lisa M.; Agarwal, Anupam; Sanders, Paul W.; Zinn, Kurt R.

    2012-01-01

    Accurate determination of renal function in mice is a major impediment to the use of murine models in acute kidney injury. The purpose of this study was to determine whether early changes in renal function could be detected using dynamic gamma camera imaging in a mouse model of ischemia-reperfusion (I/R) injury. C57BL/6 mice (n = 5/group) underwent a right nephrectomy, followed by either 30 min of I/R injury or sham surgery of the remaining kidney. Dynamic renal studies (21 min, 10 s/frame) were conducted before surgery (baseline) and at 5, 24, and 48 h by injection of 99mTc-mercaptoacetyltriglycine (MAG3; ~1.0 mCi/mouse) via the tail vein. The percentage of injected dose (%ID) in the kidney was calculated for each 10-s interval after MAG3 injection, using standard region of interest analyses. A defect in renal function in I/R-treated mice was detected as early as 5 h after surgery compared with sham-treated mice, identified by the increased %ID (at peak) in the I/R-treated kidneys at 100 s (P < 0.01) that remained significantly higher than sham-treated mice for the duration of the scan until 600 s (P < 0.05). At 48 h, the renal scan demonstrated functional renal recovery of the I/R mice and was comparable to sham-treated mice. Our study shows that using dynamic imaging, renal dysfunction can be detected and quantified reliably as early as 5 h after I/R insult, allowing for evaluation of early treatment interventions. PMID:17634403

  15. [Studies on renal damages after extracorporeal shock wave lithotripsy using Gd-DTPA-enhanced dynamic MRI].

    PubMed

    Umekawa, T; Kohri, K; Iguchi, M; Kurita, T

    1991-11-01

    Renal damages after ESWL treatment were examined by Gd-DTPA enhanced dynamic MRI. Gd-DTPA was used as the contrast medium and fast magnetic resonance imaging with suspended respiration using the flip angle of 20 degrees and gradient echo technique at 0.5 Tesla was used for photographing. In normal kidneys, a low intensity band was observed with the passage of Gd-DTPA through the kidney from 1 to 2 minutes after the injection. In patients who underwent ESWL treatment, however, the low intensity band which was observed before ESWL treatment became partly obscure after ESWL treatment. Furthermore, these find changes in the renal parenchyma could not be fully detected by usual MRI which does not use Gd-DTPA. Gd-DTPA enhanced dynamic MRI was considered to be effective for finding the limited dose of shock waves for ESWL treatment.

  16. Imaging regional renal function parameters using radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Qiao, Yi

    A compartmental model is given for evaluating kidney function accurately and noninvasively. This model is cast into a parallel multi-compartment structure and each pixel region (picture element) of kidneys is considered as a single kidney compartment. The loss of radionuclide tracers from the blood to the kidney and from the kidney to the bladder are modelled in great detail. Both the uptake function and the excretion function of the kidneys can be evaluated pixel by pixel, and regional diagnostic information on renal function is obtained. Gamma Camera image data are required by this model and a screening test based renal function measurement is provided. The regional blood background is subtracted from the kidney region of interest (ROI) and the kidney regional rate constants are estimated analytically using the Kuhn-Pucker multiplier method in convex programming by considering the input/output behavior of the kidney compartments. The detailed physiological model of the peripheral compartments of the system, which is not available for most radionuclide tracers, is not required in the determination of the kidney regional rate constants and the regional blood background factors within the kidney ROI. Moreover, the statistical significance of measurements is considered to assure the improved statistical properties of the estimated kidney rate constants. The relations between various renal function parameters and the kidney rate constants are established. Multiple renal function measurements can be found from the renal compartmental model. The blood radioactivity curve and the regional (or total) radiorenogram determining the regional (or total) summed behavior of the kidneys are obtained analytically with the consideration of the statistical significance of measurements using convex programming methods for a single peripheral compartment system. In addition, a new technique for the determination of 'initial conditions' in both the blood compartment and the kidney

  17. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  18. Radiologic imaging of the renal parenchyma structure and function.

    PubMed

    Grenier, Nicolas; Merville, Pierre; Combe, Christian

    2016-06-01

    Radiologic imaging has the potential to identify several functional and/or structural biomarkers of acute and chronic kidney diseases that are useful diagnostics to guide patient management. A renal ultrasound examination can provide information regarding the gross anatomy and macrostructure of the renal parenchyma, and ultrasound imaging modalities based on Doppler or elastography techniques can provide haemodynamic and structural information, respectively. CT is also able to combine morphological and functional information, but the use of CT is limited due to the required exposure to X-ray irradiation and a risk of contrast-induced nephropathy following intravenous injection of a radio-contrast agent. MRI can be used to identify a wide range of anatomical and physiological parameters at the tissue and even cellular level, such as tissue perfusion, oxygenation, water diffusion, cellular phagocytic activity, tissue stiffness, and level of renal filtration. The ability of MRI to provide valuable information for most of these parameters within a renal context is still in development and requires more clinical experience, harmonization of technical procedures, and an evaluation of reliability and validity on a large scale.

  19. In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models.

    PubMed

    Ogunlade, Olumide; Connell, John J; Huang, Jennifer L; Zhang, Edward; Lythgoe, Mark F; Long, David A; Beard, Paul

    2018-06-01

    Noninvasive imaging of the kidney vasculature in preclinical murine models is important for the assessment of renal development, studying diseases and evaluating new therapies but is challenging to achieve using existing imaging modalities. Photoacoustic imaging is a promising new technique that is particularly well suited to visualizing the vasculature and could provide an alternative to existing preclinical imaging methods for studying renal vascular anatomy and function. To investigate this, an all-optical Fabry-Perot-based photoacoustic scanner was used to image the abdominal region of mice. High-resolution three-dimensional, noninvasive, label-free photoacoustic images of the mouse kidney and renal vasculature were acquired in vivo. The scanner was also used to visualize and quantify differences in the vascular architecture of the kidney in vivo due to polycystic kidney disease. This study suggests that photoacoustic imaging could be utilized as a novel preclinical imaging tool for studying the biology of renal disease.

  20. Image-guided techniques in renal and hepatic interventions.

    PubMed

    Najmaei, Nima; Mostafavi, Kamal; Shahbazi, Sahar; Azizian, Mahdi

    2013-12-01

    Development of new imaging technologies and advances in computing power have enabled the physicians to perform medical interventions on the basis of high-quality 3D and/or 4D visualization of the patient's organs. Preoperative imaging has been used for planning the surgery, whereas intraoperative imaging has been widely employed to provide visual feedback to a clinician when he or she is performing the procedure. In the past decade, such systems demonstrated great potential in image-guided minimally invasive procedures on different organs, such as brain, heart, liver and kidneys. This article focuses on image-guided interventions and surgery in renal and hepatic surgeries. A comprehensive search of existing electronic databases was completed for the period of 2000-2011. Each contribution was assessed by the authors for relevance and inclusion. The contributions were categorized on the basis of the type of operation/intervention, imaging modality and specific techniques such as image fusion and augmented reality, and organ motion tracking. As a result, detailed classification and comparative study of various contributions in image-guided renal and hepatic interventions are provided. In addition, the potential future directions have been sketched. With a detailed review of the literature, potential future trends in development of image-guided abdominal interventions are identified, namely, growing use of image fusion and augmented reality, computer-assisted and/or robot-assisted interventions, development of more accurate registration and navigation techniques, and growing applications of intraoperative magnetic resonance imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Magnetization Transfer Magnetic Resonance Imaging Noninvasively Detects Renal Fibrosis in Swine Atherosclerotic Renal Artery Stenosis at 3.0 T.

    PubMed

    Jiang, Kai; Ferguson, Christopher M; Woollard, John R; Zhu, Xiangyang; Lerman, Lilach O

    2017-11-01

    Renal fibrosis is a useful biomarker for diagnosis and evaluation of therapeutic interventions of renal diseases but often requires invasive testing. Magnetization transfer magnetic resonance imaging (MT-MRI), which evaluates the presence of macromolecules, offers a noninvasive tool to probe renal fibrosis in murine renal artery stenosis (RAS) at 16.4 T. In this study, we aimed to identify appropriate imaging parameters for collagen detection at 3.0 T MRI and to test the utility of MT-MRI in measuring renal fibrosis in a swine model of atherosclerotic RAS (ARAS). To select the appropriate offset frequency, an MT-MRI study was performed on a phantom containing 0% to 40% collagen I and III with offset frequencies from -1600 to +1600 Hz and other MT parameters empirically set as pulse width at 16 milliseconds and flip angle at 800 degrees. Then selected MT parameters were used in vivo on pigs 12 weeks after sham (n = 8) or RAS (n = 10) surgeries. The ARAS pigs were fed with high-cholesterol diet to induce atherosclerosis. The MT ratio (MTR) was compared with ex vivo renal fibrosis measured using Sirius-red staining. Offset frequencies at 600 and 1000 Hz were selected for collagen detection without direct saturation of free water signal, and subsequently applied in vivo. The ARAS kidneys showed mild cortical and medullary fibrosis by Sirius-red staining. The cortical and medullary MTRs at 600 and 1000 Hz were both increased. Renal fibrosis measured ex vivo showed good linear correlations with MTR at 600 (cortex: Pearson correlation coefficient r = 0.87, P < 0.001; medulla: r = 0.70, P = 0.001) and 1000 Hz (cortex: r = 0.75, P < 0.001; medulla: r = 0.83, P < 0.001). Magnetization transfer magnetic resonance imaging can noninvasively detect renal fibrosis in the stenotic swine kidney at 3.0 T. Therefore, MT-MRI may potentially be clinically applicable and useful for detection and monitoring of renal pathology in subjects with RAS.

  2. Atherosclerotic renal artery stenosis in the post-CORAL era part 1: the renal penumbra concept and next-generation functional diagnostic imaging.

    PubMed

    Sag, Alan Alper; Inal, Ibrahim; Okcuoglu, John; Rossignol, Patrick; Ortiz, Alberto; Afsar, Baris; Sos, Thomas A; Kanbay, Mehmet

    2016-04-01

    After three neutral trials in which renal artery stenting failed to improve renal function or reduce cardiovascular and renal events, the controversy surrounding diagnosis and treatment of atherosclerotic renal artery stenosis and renovascular hypertension has led to paradigm shifts in the diagnostic algorithm. Noninvasive determination of earlier events (cortex hypoxia and renal artery hemodynamic changes) will supersede late sequelae (calcific stenosis, renal cortical thinning). Therefore, this review proposes the concept of renal penumbra in defining at-risk ischemic renal parenchyma. The complex field of functional renal magnetic resonance imaging will be reviewed succinctly in a clinician-directed fashion. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  3. Mitochondria‐targeted antioxidant MitoQ reduced renal damage caused by ischemia‐reperfusion injury in rodent kidneys: Longitudinal observations of T 2‐weighted imaging and dynamic contrast‐enhanced MRI

    PubMed Central

    Liu, Xiaoge; Murphy, Michael P.; Xing, Wei; Wu, Huanhuan; Zhang, Rui

    2017-01-01

    Purpose To investigate the effect of mitochondria‐targeted antioxidant MitoQ in reducing the severity of renal ischemia‐reperfusion injury (IRI) in rats using T2‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI). Methods Ischemia‐reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T2‐weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate kcl was derived from DCE‐MRI. Histopathology was evaluated after the final MRI examination. Results The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). Kcl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). Conclusions These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T2‐weighted imaging and DCE‐MRI. Magn Reson Med 79:1559–1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28608403

  4. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    NASA Astrophysics Data System (ADS)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  5. Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer

    PubMed Central

    Kothari, Sonal; Phan, John H.; Young, Andrew N.; Wang, May D.

    2016-01-01

    Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an “optimal” diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided diagnosis PMID:28163980

  6. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    PubMed

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.

  7. Appraisal of lupus nephritis by renal imaging with gallium-67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakir, A.A.; Lopez-Majano, V.; Hryhorczuk, D.O.

    1985-08-01

    To assess the activity of lupus nephritis, 43 patients with systemic lupus erythematosus (SLE) were studied by gallium imaging. Delayed renal visualization 48 hours after the gallium injection, a positive result, was noted in 25 of 48 scans. Active renal disease was defined by the presence of hematuria, pyuria (10 or more red blood cells or white blood cells per high-power field), proteinuria (1 g or more per 24 hours), a rising serum creatinine level, or a recent biopsy specimen showing proliferative and/or necrotizing lesions involving more than 20 percent of glomeruli. Renal disease was active in 18 instances, inactivemore » in 23, and undetermined in seven (a total of 48 scans). Sixteen of the 18 scans (89 percent) in patients with active renal disease showed positive findings, as compared with only four of 23 scans (17 percent) in patients with inactive renal disease (p less than 0.001). Patients with positive scanning results had a higher rate of hypertension (p = 0.02), nephrotic proteinuria (p = 0.01), and progressive renal failure (p = 0.02). Mild mesangial nephritis (World Health Organization classes I and II) was noted only in the patients with negative scanning results (p = 0.02) who, however, showed a higher incidence of severe extrarenal SLE (p = 0.04). It is concluded that gallium imaging is a useful tool in evaluating the activity of lupus nephritis.« less

  8. Estimation of pressure gradients at renal artery stenoses

    NASA Astrophysics Data System (ADS)

    Yim, Peter J.; Cebral, Juan R.; Weaver, Ashley; Lutz, Robert J.; Vasbinder, G. Boudewijn C.

    2003-05-01

    Atherosclerotic disease of the renal artery can reduce the blood flow leading to renovascular hypertension and ischemic nephopathy. The kidney responds to a decrease in blood flow by activation of the renin-angiotensin system that increases blood pressure and can result in severe hypertension. Percutaneous translumenal angioplasty (PTA) may be indicated for treatment of renovascular hypertension (RVH). However, direct measurement of renal artery caliber and degree of stenosis has only moderate specificity for detection of RVH. A confounding factor in assessment of the proximal renal artery is that diffuse atherosclerotic disease of the distal branches of the renal artery can produce the same effect on blood-flow as atherosclerotic disease of the proximal renal artery. A methodology is proposed for estimation of pressure gradients at renal artery stenoses from magnetic resonance imaging that could improve the evaluation of renal artery disease. In the proposed methodology, pressure gradients are estimated using computational fluid dynamics (CFD) modeling. Realistic CFD models are constructed from images of vessel shape and measurements of blood-flow rates which are available from magnetic resonance angiography (MRA) and phase-contrast magnetic resonance (MR) imaging respectively. CFD measurement of renal artery pressure gradients has been validated in a physical flow-through model.

  9. Mitochondria-targeted antioxidant MitoQ reduced renal damage caused by ischemia-reperfusion injury in rodent kidneys: Longitudinal observations of T2 -weighted imaging and dynamic contrast-enhanced MRI.

    PubMed

    Liu, Xiaoge; Murphy, Michael P; Xing, Wei; Wu, Huanhuan; Zhang, Rui; Sun, Haoran

    2018-03-01

    To investigate the effect of mitochondria-targeted antioxidant MitoQ in reducing the severity of renal ischemia-reperfusion injury (IRI) in rats using T 2 -weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI). Ischemia-reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T 2 -weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate k cl was derived from DCE-MRI. Histopathology was evaluated after the final MRI examination. The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). K cl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T 2 -weighted imaging and DCE-MRI. Magn Reson Med 79:1559-1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Intensity ratio curve analysis of small renal masses on T2-weighted magnetic resonance imaging: Differentiation of fat-poor angiomyolipoma from renal cell carcinoma.

    PubMed

    Moriyama, Shingo; Yoshida, Soichiro; Tanaka, Hajime; Tanaka, Hiroshi; Yokoyama, Minato; Ishioka, Junichiro; Matsuoka, Yoh; Saito, Kazutaka; Kihara, Kazunori; Fujii, Yasuhisa

    2018-03-25

    To assess the diagnostic ability of a pixel intensity-based analysis in evaluating the magnetic resonance imaging characteristics of small renal masses, especially in differentiating fat-poor angiomyolipoma from renal cell carcinoma. T2-weighted images from 121 solid small renal masses (<4 cm) without visible fat (14 fat-poor angiomyolipomas, 92 clear cell renal cell carcinomas, six chromophobe renal cell carcinomas and nine papillary renal cell carcinomas) were retrospectively evaluated. An intensity ratio curve was plotted using intensity ratios, which were ratios of signal intensities of tumor pixels (each pixel along a linear region of interest drawn across the renal tumor on T2-weighted image) to the signal intensity of a normal renal cortex. The diagnostic ability of the intensity ratio curve analysis was evaluated. The tumors were classified into three types: intensity ratio fat-poor angiomyolipoma (n = 19) with no pseudocapsule, iso-low intensity and no heterogeneity; intensity ratio clear cell renal cell carcinoma (n = 76) with a pseudocapsule, iso-high intensity and heterogeneity; and other type of intensity ratio (n = 26), including tumors that did not fall into the above two categories. The sensitivity/specificity/accuracy of the intensity ratio curve analysis in diagnosing fat-poor angiomyolipoma was 93%/94%/94%, respectively. When the intensity ratio curve analysis was applied only to the tumor with undetermined radiological diagnosis, the sensitivity for diagnosing fat-poor angiomyolipoma compared with subjective reading alone significantly improved (93% vs 50%; P = 0.014). Our novel semiquantitative model for combined assessment of key features of fat-poor angiomyolipoma, including low intensity, homogeneity and absence of a pseudocapsule on T2-weighted image, might make diagnosis of fat-poor angiomyolipoma more accurate. © 2018 The Japanese Urological Association.

  11. Prospective study comparing three-dimensional computed tomography and magnetic resonance imaging for evaluating the renal vascular anatomy in potential living renal donors.

    PubMed

    Bhatti, Aftab A; Chugtai, Aamir; Haslam, Philip; Talbot, David; Rix, David A; Soomro, Naeem A

    2005-11-01

    To prospectively compare the accuracy of multislice spiral computed tomographic angiography (CTA) and magnetic resonance angiography (MRA) in evaluating the renal vascular anatomy in potential living renal donors. Thirty-one donors underwent multislice spiral CTA and gadolinium-enhanced MRA. In addition to axial images, multiplanar reconstruction and maximum intensity projections were used to display the renal vascular anatomy. Twenty-four donors had a left laparoscopic donor nephrectomy (LDN), whereas seven had right open donor nephrectomy (ODN); LDN was only considered if the renal vascular anatomy was favourable on the left. CTA and MRA images were analysed by two radiologists independently. The radiological and surgical findings were correlated after the surgery. CTA showed 33 arteries and 32 veins (100% sensitivity) whereas MRA showed 32 arteries and 31 veins (97% sensitivity). CTA detected all five accessory renal arteries whereas MRA only detected one. CTA also identified all three accessory renal veins whereas MRA identified two. CTA had a sensitivity of 97% and 47% for left lumbar and left gonadal veins, whereas MRA had a sensitivity of 74% and 46%, respectively. Multislice spiral CTA with three-dimensional reconstruction was more accurate than MRA for both renal arterial and venous anatomy.

  12. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  13. Detection of urinary extravasation by delayed technetium-99m DTPA renal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taki, J.; Tonami, N.; Aburano, T.

    Delayed imaging with Tc-99m DTPA renal scintigraphy demonstrated urinary extravasation in a patient with acute anuria in whom early sequential imaging showed no abnormal extrarenal radionuclide accumulation.

  14. Renal volume assessed by magnetic resonance imaging volumetry correlates with renal function in living kidney donors pre- and postdonation: a retrospective cohort study.

    PubMed

    Lange, Daniel; Helck, Andreas; Rominger, Axel; Crispin, Alexander; Meiser, Bruno; Werner, Jens; Fischereder, Michael; Stangl, Manfred; Habicht, Antje

    2018-07-01

    Renal function of potential living kidney donors is routinely assessed with scintigraphy. Kidney anatomy is evaluated by imaging techniques such as magnetic resonance imaging (MRI). We evaluated if a MRI-based renal volumetry is a good predictor of kidney function pre- and postdonation. We retrospectively analyzed the renal volume (RV) in a MRI of 100 living kidney donors. RV was correlated with the tubular excretion rate (TER) of MAG3-scintigraphy, a measured creatinine clearance (CrCl), and the estimated glomerular filtration rate (eGFR) by Cockcroft-Gault (CG), CKD-EPI, and modification of diet in renal disease (MDRD) formula pre- and postdonation during a follow-up of 3 years. RV correlated significantly with the TER (total: r = 0.6735, P < 0.0001). Correlation between RV and renal function was the highest for eGFR by CG (r = 0.5595, P < 0.0001), in comparison with CrCl, MDRD-GFR, and CKD-EPI-GFR predonation. RV significantly correlated with CG-GFR postdonation and predicted CG-GFR until 3 years after donation. MRI renal volumetry might be an alternative technique for the evaluation of split renal function and prediction of renal function postdonation in living kidney donors. © 2018 Steunstichting ESOT.

  15. Lymphatic Drainage from Renal Tumors In Vivo: A Prospective Sentinel Node Study Using SPECT/CT Imaging.

    PubMed

    Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel

    2018-06-01

    Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the

  16. Using OCT to predict post-transplant renal function

    NASA Astrophysics Data System (ADS)

    Andrews, Peter M.; Chen, Yu; Wierwille, Jeremiah; Joh, Daniel; Alexandrov, Peter; Rogalsky, Derek; Moody, Patrick; Chen, Allen; Cooper, Matthew; Verbesey, Jennifer E.; Gong, Wei; Wang, Hsing-Wen

    2013-03-01

    The treatment of choice for patients with end-stage renal disease is kidney transplantation. However, acute tubular necrosis (ATN) induced by an ischemic insult (e.g., from prolonged ex vivo storage times, or non-heart beating cadavers) is a major factor limiting the availability of donor kidneys. In addition, ischemic induced ATN is a significant risk factor for eventual graft survival and can be difficult to discern from rejection. Currently, there are no rapid and reliable tests to determine ATN suffered by donor kidneys and whether or not donor kidneys might exhibit delayed graft function. OCT (optical coherence tomography) is a rapidly emerging imaging modality that can function as a type of "optical biopsy", providing cross-sectional images of tissue morphology in situ and in real-time. In a series of recent clinical trials, we evaluated the ability of OCT to image those features of the renal microstructure that are predictive of ATN. Specifically, we found that OCT could effectively image through the intact human renal capsule and determine the extent of acute tubular necrosis. We also found that Doppler based OCT (i.e., DOCT) revealed renal blood flow dynamics that is also reported to be a determiner of post-transplant renal function. This kind of information will allow transplant surgeons to make the most efficient use of available donor kidneys, eliminate the possible use of bad donor kidneys, provide a measure of expected post-transplant renal function, and allow better distinction between post-transplant immunological rejection and ischemic-induced acute renal failure.

  17. "One-Stop Shop": Free-Breathing Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Kidney Using Iterative Reconstruction and Continuous Golden-Angle Radial Sampling.

    PubMed

    Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel

    2016-11-01

    The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the

  18. Image-guided percutaneous microwave ablation of small renal tumours: short- and mid-term outcomes.

    PubMed

    Genson, Pierre-Yves; Mourey, Eric; Moulin, Morgan; Favelier, Sylvain; Di Marco, Lucy; Chevallier, Olivier; Cercueil, Jean-Pierre; Krausé, Denis; Cormier, Luc; Loffroy, Romaric

    2015-10-01

    The purpose is to assess the short- and mid-term outcomes of microwave ablation (MWA) of small renal tumours in selected patients. From August 2012 to February 2015, 29 renal tumours in 23 patients (17 male, 6 female, mean age 75 years) were treated by percutaneous MWA under imaging guidance. The tumours were 1-4.7 cm in diameter (mean size, 2.7 cm). Therapeutic effects were assessed at follow-up with magnetic resonance imaging (MRI). All patients were followed up for 2-25 months (mean, 12.2 months) to observe the therapeutic effects and complications. Changes in renal function at day 1 after treatment were statistically analyzed using the Student paired t-test or the paired Wilcoxon test. Technical success was achieved in all cases. One severe bleeding complication post-procedure occurred leading to death. No other unexpected side effects were observed after the MWA procedures. Clinical effectiveness was 100%. None of the patients showed recurrence on MRI imaging follow-up. No significant changes in renal function were noted after treatment (P=0.57). Our preliminary study demonstrates that the use of MWA for the treatment of small renal tumours can be applied as safely and efficiently as other ablative techniques in selected patients not eligible for surgery.

  19. Computed tomography and magnetic resonance imaging of adult renal cell carcinoma associated with Xp11.2 translocation.

    PubMed

    Dang, Trien T; Ziv, Etay; Weinstein, Stefanie; Meng, Maxwell V; Wang, Zhen; Coakley, Fergus V

    2012-01-01

    This study aimed to report the computed tomography (CT) and magnetic resonance imaging (MRI) findings of renal cell carcinoma associated with Xp11.2 translocation in adults. We retrospectively identified 9 adults with renal cell carcinoma associated with Xp11.2 translocation who underwent baseline cross-sectional imaging with CT (n = 9) or MRI (n = 3). All available clinical, imaging, and histopathological records were reviewed. Mean patient age was 24 years (range, 18-45 years). Eight of 9 cancers demonstrated imaging findings of hemorrhage or necrosis (n = 3), advanced stage disease (n = 2), or both (n = 3) at CT or MRI. The possibility of renal cell carcinoma associated with Xp11.2 translocation should be considered for a renal mass seen in a patient 45 years or younger, which demonstrates hemorrhage or necrosis or advanced stage disease at CT or MRI.

  20. Quantitative Contour Analysis as an Image-based Discriminator Between Benign and Malignant Renal Tumors.

    PubMed

    Yap, Felix Y; Hwang, Darryl H; Cen, Steven Y; Varghese, Bino A; Desai, Bhushan; Quinn, Brian D; Gupta, Megha Nayyar; Rajarubendra, Nieroshan; Desai, Mihir M; Aron, Manju; Liang, Gangning; Aron, Monish; Gill, Inderbir S; Duddalwar, Vinay A

    2018-04-01

    To investigate whether morphologic analysis can differentiate between benign and malignant renal tumors on clinically acquired imaging. Between 2009 and 2014, 3-dimensional tumor volumes were manually segmented from contrast-enhanced computerized tomography (CT) images from 150 patients with predominantly solid, nonmacroscopic fat-containing renal tumors: 100 renal cell carcinomas and 50 benign lesions (eg, oncocytoma and lipid-poor angiomyolipoma). Tessellated 3-dimensional tumor models were created from segmented voxels using MATLAB code. Eleven shape descriptors were calculated: sphericity, compactness, mean radial distance, standard deviation of the radial distance, radial distance area ratio, zero crossing, entropy, Feret ratio, convex hull area and convex hull perimeter ratios, and elliptic compactness. Morphometric parameters were compared using the Wilcoxon rank-sum test to investigate whether malignant renal masses demonstrate more morphologic irregularity than benign ones. Only CHP in sagittal orientation (median 0.96 vs 0.97) and EC in coronal orientation (median 0.92 vs 0.93) differed significantly between malignant and benign masses (P = .04). When comparing these 2 metrics between coronal and sagittal orientations, similar but nonsignificant trends emerged (P = .07). Other metrics tested were not significantly different in any imaging plane. Computerized image analysis is feasible using shape descriptors that otherwise cannot be visually assessed and used without quantification. Shape analysis via the transverse orientation may be reasonable, but encompassing all 3 planar dimensions to characterize tumor contour can achieve a more comprehensive evaluation. Two shape metrics (CHP and EC) may help distinguish benign from malignant renal tumors, an often challenging goal to achieve on imaging and biopsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Magnetic resonance imaging and computed tomography characteristics of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion.

    PubMed

    Wang, Wei; Ding, Jianhui; Li, Yuan; Wang, Chaofu; Zhou, Liangping; Zhu, Hui; Peng, Weijun

    2014-01-01

    To characterize Xp11.2 translocation renal cell carcinoma (RCC) using magnetic resonance imaging (MRI) and computed tomography (CT). This study retrospectively collected the MRI and CT data of twelve patients with Xp11.2 translocation RCC confirmed by pathology. Nine cases underwent dynamic contrast-enhanced MRI (DCE-MRI) and 6 cases underwent CT, of which 3 cases underwent MRI and CT simultaneously. The MRI and CT findings were analyzed in regard to tumor position, size, hemorrhagic, cystic or necrotic components, calcification, tumor density, signal intensity and enhancement features. The age of the 12 patients ranged from 13 to 46 years (mean age: 23 years). T2WI revealed heterogeneous intensity, hyper-intensity, and slight hypo-intensity in 6 cases, 2 cases, and 1 case, respectively. On DCE-MR images, mild, moderate, and marked rim enhancement of the tumor in the corticomedullary phase (CMP) were observed in 1, 6, and 2 cases, respectively. The tumor parenchyma showed iso-attenuation (n = 4) or slight hyper-attenuation (n = 1) compared to the normal renal cortex on non-contrast CT images. Imaging findings were suggestive of hemorrhage (n = 4) or necrosis (n = 8) in the tumors, and there was evidence of calcification in 8 cases by CT (n = 3) and pathology (n = 8). On dynamic contrast-enhanced CT images, 3 cases and 1 case manifested moderate and strong CMP enhancement, respectively. Nine tumors by MRI and 4 tumors by CT showed prolonged enhancement. Three neoplasms presented at stage I, 2 at stage II, 3 at stage III, and 4 at stage IV according the 2010 AJCC staging criteria. XP11.2 translocation RCC should be considered when a child or young adult patient presents with a renal tumor with heterogeneous features such as hemorrhage, necrosis, cystic changes, and calcification on CT and MRI and/or is accompanied by metastatic evidence.

  2. Magnetic Resonance Imaging and Computed Tomography Characteristics of Renal Cell Carcinoma Associated with Xp11.2 Translocation/TFE3 Gene Fusion

    PubMed Central

    Li, Yuan; Wang, Chaofu; Zhou, Liangping; Zhu, Hui; Peng, Weijun

    2014-01-01

    Purpose To characterize Xp11.2 translocation renal cell carcinoma (RCC) using magnetic resonance imaging (MRI) and computed tomography (CT). Methods This study retrospectively collected the MRI and CT data of twelve patients with Xp11.2 translocation RCC confirmed by pathology. Nine cases underwent dynamic contrast-enhanced MRI (DCE-MRI) and 6 cases underwent CT, of which 3 cases underwent MRI and CT simultaneously. The MRI and CT findings were analyzed in regard to tumor position, size, hemorrhagic, cystic or necrotic components, calcification, tumor density, signal intensity and enhancement features. Results The age of the 12 patients ranged from 13 to 46 years (mean age: 23 years). T2WI revealed heterogeneous intensity, hyper-intensity, and slight hypo-intensity in 6 cases, 2 cases, and 1 case, respectively. On DCE-MR images, mild, moderate, and marked rim enhancement of the tumor in the corticomedullary phase (CMP) were observed in 1, 6, and 2 cases, respectively. The tumor parenchyma showed iso-attenuation (n = 4) or slight hyper-attenuation (n = 1) compared to the normal renal cortex on non-contrast CT images. Imaging findings were suggestive of hemorrhage (n = 4) or necrosis (n = 8) in the tumors, and there was evidence of calcification in 8 cases by CT (n = 3) and pathology (n = 8). On dynamic contrast-enhanced CT images, 3 cases and 1 case manifested moderate and strong CMP enhancement, respectively. Nine tumors by MRI and 4 tumors by CT showed prolonged enhancement. Three neoplasms presented at stage I, 2 at stage II, 3 at stage III, and 4 at stage IV according the 2010 AJCC staging criteria. Conclusions XP11.2 translocation RCC should be considered when a child or young adult patient presents with a renal tumor with heterogeneous features such as hemorrhage, necrosis, cystic changes, and calcification on CT and MRI and/or is accompanied by metastatic evidence. PMID:24926688

  3. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    PubMed

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  4. Renal perfusion scintiscan

    MedlinePlus

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  5. Renal Cysts

    MedlinePlus

    ... inside the renal cysts. Your doctor may use ultrasound imaging to monitor renal cysts for any changes over ... Related Articles and Media Ultrasound - Abdomen Children's (Pediatric) Ultrasound - Abdomen Magnetic Resonance Imaging (MRI) - Body Ultrasound - Pelvis Children's (Pediatric) Nuclear Medicine ...

  6. 320-row CT renal perfusion imaging in patients with aortic dissection: A preliminary study.

    PubMed

    Liu, Dongting; Liu, Jiayi; Wen, Zhaoying; Li, Yu; Sun, Zhonghua; Xu, Qin; Fan, Zhanming

    2017-01-01

    To investigate the clinical value of renal perfusion imaging in patients with aortic dissection (AD) using 320-row computed tomography (CT), and to determine the relationship between renal CT perfusion imaging and various factors of aortic dissection. Forty-three patients with AD who underwent 320-row CT renal perfusion before operation were prospectively enrolled in this study. Diagnosis of AD was confirmed by transthoracic echocardiography. Blood flow (BF) of bilateral renal perfusion was measured and analyzed. CT perfusion imaging signs of AD in relation to the type of AD, number of entry tears and the false lumen thrombus were observed and compared. The BF values of patients with type A AD were significantly lower than those of patients with type B AD (P = 0.004). No significant difference was found in the BF between different numbers of intimal tears (P = 0.288), but BF values were significantly higher in cases with a false lumen without thrombus and renal arteries arising from the true lumen than in those with thrombus (P = 0.036). The BF values measured between the true lumen, false lumen and overriding groups were different (P = 0.02), with the true lumen group having the highest. Also, the difference in BF values between true lumen and false lumen groups was statistically significant (P = 0.016), while no statistical significance was found in the other two groups (P > 0.05). The larger the size of intimal entry tears, the greater the BF values (P = 0.044). This study shows a direct correlation between renal CT perfusion changes and AD, with the size, number of intimal tears, different types of AD, different renal artery origins and false lumen thrombosis, significantly affecting the perfusion values.

  7. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation.

    PubMed

    Prowle, John R; Molan, Maurice P; Hornsey, Emma; Bellomo, Rinaldo

    2012-06-01

    In septic patients, decreased renal perfusion is considered to play a major role in the pathogenesis of acute kidney injury. However, the accurate measurement of renal blood flow in such patients is problematic and invasive. We sought to overcome such obstacles by measuring renal blood flow in septic patients with acute kidney injury using cine phase-contrast magnetic resonance imaging. Pilot observational study. University-affiliated general adult intensive care unit. Ten adult patients with established septic acute kidney injury and 11 normal volunteers. Cine phase-contrast magnetic resonance imaging measurement of renal blood flow and cardiac output. The median age of the study patients was 62.5 yrs and eight were male. At the time of magnetic resonance imaging, eight patients were mechanically ventilated, nine were on continuous hemofiltration, and five required vasopressors. Cine phase-contrast magnetic resonance imaging examinations were carried out without complication. Median renal blood flow was 482 mL/min (range 335-1137) in septic acute kidney injury and 1260 mL/min (range 791-1750) in healthy controls (p = .003). Renal blood flow indexed to body surface area was 244 mL/min/m2 (range 165-662) in septic acute kidney injury and 525 mL/min/m2 (range 438-869) in controls (p = .004). In patients with septic acute kidney injury, median cardiac index was 3.5 L/min/m2 (range 1.6-8.7), and median renal fraction of cardiac output was only 7.1% (range 4.4-10.8). There was no rank correlation between renal blood flow index and creatinine clearance in patients with septic acute kidney injury (r = .26, p = .45). Cine phase-contrast magnetic resonance imaging can be used to noninvasively and safely assess renal perfusion during critical illness in man. Near-simultaneous accurate measurement of cardiac output enables organ blood flow to be assessed in the context of the global circulation. Renal blood flow seems consistently reduced as a fraction of cardiac output in

  8. Evidence of a heterogeneous tissue oxygenation: renal ischemia/reperfusion injury in a large animal model

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Huffman, Scott W.; Alemozaffar, Mehrdad; Gage, Frederick A.; Levin, Ira W.; Elster, Eric A.

    2013-03-01

    Renal ischemia that occurs intraoperatively during procedures requiring clamping of the renal artery (such as renal procurement for transplantation and partial nephrectomy for renal cancer) is known to have a significant impact on the viability of that kidney. To better understand the dynamics of intraoperative renal ischemia and recovery of renal oxygenation during reperfusion, a visible reflectance imaging system (VRIS) was developed to measure renal oxygenation during renal artery clamping in both cooled and warm porcine kidneys. For all kidneys, normothermic and hypothermic, visible reflectance imaging demonstrated a spatially distinct decrease in the relative oxy-hemoglobin concentration (%HbO2) of the superior pole of the kidney compared to the middle or inferior pole. Mean relative oxy-hemoglobin concentrations decrease more significantly during ischemia for normothermic kidneys compared to hypothermic kidneys. VRIS may be broadly applicable to provide an indicator of organ ischemia during open and laparoscopic procedures.

  9. Anatomic distribution of renal artery stenosis in children: implications for imaging.

    PubMed

    Vo, Nghia J; Hammelman, Ben D; Racadio, Judy M; Strife, C Frederic; Johnson, Neil D; Racadio, John M

    2006-10-01

    Renal artery stenosis (RAS) causes significant hypertension in children. Frequently, pediatric RAS occurs with systemic disorders. In these cases, stenoses are often complex and/or include long segments. We believed that hypertensive children without comorbid conditions had a different lesion distribution and that the difference might have implications for imaging and treatment. To identify locations of RAS lesions in these hypertensive children without comorbid conditions. Patients who had renal angiography for hypertension from 1993 to 2005 were identified. Patients with systemic disorders, renovascular surgery, or normal angiograms were excluded. The angiograms of the remaining patients were reviewed for number, type, and location of stenoses. Eighty-seven patients underwent renal angiography for hypertension; 30 were excluded for comorbid conditions. Twenty-one of the remaining 57 patients had abnormal angiograms; 24 stenoses were identified in those patients. All were focal and distributed as follows: 6 (25%) main renal artery, 12 (50%) 2nd order branch, 3 (12.5%) 3rd order branch, and 3 (12.5%) accessory renal artery. Hypertensive children without comorbid conditions who have RAS usually have single, focal branch artery stenoses. This distribution supports angiography in these patients because of its superior sensitivity in detecting branch vessel disease and its therapeutic role in percutaneous transluminal renal angioplasty.

  10. TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z; Shi, J; Yang, Y

    Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in themore » transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the

  11. Superparamagnetic And Paramagnetic MRI Contrast Agents: Application Of Rapid Magnetic Resonance Imaging To Assess Renal Function

    NASA Astrophysics Data System (ADS)

    Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne

    1988-06-01

    The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.

  12. Arterial spin labelling MRI for detecting pseudocapsule defects and predicting renal capsule invasion in renal cell carcinoma.

    PubMed

    Zhang, H; Wu, Y; Xue, W; Zuo, P; Oesingmann, N; Gan, Q; Huang, Z; Wu, M; Hu, F; Kuang, M; Song, B

    2017-11-01

    To evaluate prospectively the performance of combining morphological and arterial spin labelling (ASL) magnetic resonance imaging (MRI) for detecting pseudocapsule defects in renal cell carcinoma (RCC), and to predict renal capsule invasion confirmed histopathologically. Twenty consecutive patients with suspicious renal tumours underwent MRI. Renal ASL imaging was performed and renal blood flow was measured quantitatively. The diagnostic performance of T2-weighted images alone, and a combination of T2-weighted and ASL images for predicting renal capsule invasion were assessed. Twenty renal lesions were evaluated in 20 patients. All lesions were clear cell RCCs (ccRCCs) confirmed at post-surgical histopathology. Fifteen ccRCCs showed pseudocapsule defects on T2-weighted images, of which 12 cases showed existing blood flow in defect areas on perfusion images. To predict renal capsule invasion, the sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 71.4%, 86.7%, 100%, respectively, for T2-weighted images alone, and 92.3%, 100%, 100%, 87.5%, respectively, for the combination of T2-weighted and ASL images. ASL images can reflect the perfusion of pseudocapsule defects and as such, the combination of T2-weighted and ASL images produces promising diagnostic accuracy for predicting renal capsule invasion. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Use of computed tomography renal angiography for screening feline renal transplant donors.

    PubMed

    Bouma, Jennifer L; Aronson, Lillian R; Keith, Dennis G; Saunders, H Mark

    2003-01-01

    Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a

  14. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading

    PubMed Central

    Cho, Nam-Hoon; Choi, Heung-Kook

    2014-01-01

    One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701

  15. Analysis of the Sensitivity and Specificity of Noninvasive Imaging Tests for the Diagnosis of Renal Artery Stenosis

    PubMed Central

    Borelli, Flavio Antonio de Oliveira; Pinto, Ibraim M. F.; Amodeo, Celso; Smanio, Paola E. P.; Kambara, Antonio M.; Petisco, Ana Claudia G.; Moreira, Samuel M.; Paiva, Ricardo Calil; Lopes, Hugo Belotti; Sousa, Amanda G. M. R.

    2013-01-01

    Background Aging and atherosclerosis are related to renovascular hypertension in elderly individuals. Regardless of comorbidities, renal artery stenosis is itself an important cause of cardiovascular morbidity and mortality. Objective To define the sensitivity, specificity, positive predictive value, and negative predictive value of noninvasive imaging tests used in the diagnosis of renal artery stenosis. Methods In a group of 61 patients recruited, 122 arteries were analized, thus permitting the definition of sensitivity, specificity, and the relative contribution of each imaging study performed (Doppler, scintigraphy and computed tomographic angiography in comparison to renal arteriography). Results The mean age was 65.43 years (standard deviation: 8.7). Of the variables related to the study population that were compared to arteriography, two correlated with renal artery stenosis, renal dysfunction and triglycerides. The median glomerular filtration rate was 52.8 mL/min/m2. Doppler showed sensitivity of 82.90%, specificity of 70%, a positive predictive value of 85% and negative predictive value of 66.70%. For tomography, sensitivity was 66.70%, specificity 80%, positive predictive value 87.50% and negative predictive value 55.20%. With these findings, we could identify the imaging tests that best detected stenosis. Conclusion Tomography and Doppler showed good quality and efficacy in the diagnosis of renal artery stenosis, with Doppler having the advantage of not requiring the use of contrast medium for the assessment of a disease that is common in diabetics and is associated with renal dysfunction and severe left ventricular dysfunction. PMID:24061685

  16. Renal sympathetic denervation increases renal blood volume per cardiac cycle: a serial magnetic resonance imaging study in resistant hypertension.

    PubMed

    Delacroix, Sinny; Chokka, Ramesh G; Nelson, Adam J; Wong, Dennis T; Sidharta, Samuel; Pederson, Stephen M; Rajwani, Adil; Nimmo, Joanne; Teo, Karen S; Worthley, Stephen G

    2017-01-01

    Preclinical studies have demonstrated improvements in renal blood flow after renal sympathetic denervation (RSDN); however, such effects are yet to be confirmed in patients with resistant hypertension. Herein, we assessed the effects of RSDN on renal artery blood flow and diameter at multiple time points post-RSDN. Patients (n=11) with systolic blood pressures ≥160 mmHg despite taking three or more antihypertensive medications at maximum tolerated dose were recruited into this single-center, prospective, non-blinded study. Magnetic resonance imaging indices included renal blood flow and renal artery diameters at baseline, 1 month and 6 months. In addition to significant decreases in blood pressures ( p <0.0001), total volume of blood flow per cardiac cycle increased by 20% from 6.9±2 mL at baseline to 8.4±2 mL ( p =0.003) at 1 month and to 8.0±2 mL ( p =0.04) 6 months post-procedure, with no changes in the renal blood flow. There was a significant decrease in renal artery diameters from 7±2 mm at baseline to 6±1 mm ( p =0.03) at 1 month post-procedure. This decrease was associated with increases in maximum velocity of blood flow from 73±20 cm/s at baseline to 78±19 cm/s at 1 month post-procedure. Notably, both parameters reverted to 7±2 mm and 72±18 cm/s, respectively, 6 months after procedure. RSDN improves renal physiology as evidenced by significant improvements in total volume of blood flow per cardiac cycle. Additionally, for the first time, we identified a transient decrease in renal artery diameters immediately after procedure potentially caused by edema and inflammation that reverted to baseline values 6 months post-procedure.

  17. Quantitative assessment of dynamic PET imaging data in cancer imaging.

    PubMed

    Muzi, Mark; O'Sullivan, Finbarr; Mankoff, David A; Doot, Robert K; Pierce, Larry A; Kurland, Brenda F; Linden, Hannah M; Kinahan, Paul E

    2012-11-01

    Clinical imaging in positron emission tomography (PET) is often performed using single-time-point estimates of tracer uptake or static imaging that provides a spatial map of regional tracer concentration. However, dynamic tracer imaging can provide considerably more information about in vivo biology by delineating both the temporal and spatial pattern of tracer uptake. In addition, several potential sources of error that occur in static imaging can be mitigated. This review focuses on the application of dynamic PET imaging to measuring regional cancer biologic features and especially in using dynamic PET imaging for quantitative therapeutic response monitoring for cancer clinical trials. Dynamic PET imaging output parameters, particularly transport (flow) and overall metabolic rate, have provided imaging end points for clinical trials at single-center institutions for years. However, dynamic imaging poses many challenges for multicenter clinical trial implementations from cross-center calibration to the inadequacy of a common informatics infrastructure. Underlying principles and methodology of PET dynamic imaging are first reviewed, followed by an examination of current approaches to dynamic PET image analysis with a specific case example of dynamic fluorothymidine imaging to illustrate the approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits. Copyright © 2016 the American Physiological Society.

  19. Renal MR angiography and perfusion in the pig using hyperpolarized water.

    PubMed

    Wigh Lipsø, Kasper; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling; Laustsen, Christoffer; Ardenkjaer-Larsen, Jan Henrik

    2017-09-01

    To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. Protons dissolved in deuterium oxide (D 2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T 1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values.

    PubMed

    Tofts, Paul S; Cutajar, Marica; Mendichovszky, Iosif A; Peters, A Michael; Gordon, Isky

    2012-06-01

    To model the uptake phase of T(1)-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values. The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K ( trans ) (ml min(-1) [ml tissue](-1)), perfusion F (ml min(-1) [100 ml tissue](-1)), blood volume v ( b ) (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min(-1)). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility. Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K ( trans ): 0.25; F: 219; v ( b ): 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7-18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T(1), flip angle, haematocrit and relaxivity. These renal biomarkers can potentially measure renal physiology in diagnosis and treatment. • Dynamic contrast-enhanced magnetic resonance imaging can measure renal function. • Filtration and perfusion values in healthy volunteers agree with published normal values. • Precision measured in healthy volunteers is between 7 and 15%.

  1. Renal carcinomas associated with Xp11.2 translocations/TFE3 gene fusions: findings on MRI and computed tomography imaging.

    PubMed

    Liu, Kefu; Xie, Ping; Peng, Weijun; Zhou, Zhengrong

    2014-08-01

    To retrospectively analyze MRI and computed tomographic (CT) findings from renal carcinomas associated with Xp11.2 translocations/TFE3 gene fusions (Xp11-RCC). Institutional review board permission was obtained to review patient medical records, and the requirement for informed consent was waved . The clinical and MRI/CT features of five cases with Xp11-RCC that were confirmed by pathology were analyzed retrospectively. The image characteristics included the lesion location and size, contribution of cystic and solid components, intratumoral necrosis or hemorrhage, invasion of perinephric tissue and renal sinus, lymphadenopathy, major venous or arterial vascular invasion, pattern of the tumor growth, intratumor calcification and lipids, homogeneity of SI on T2-weighted images, attenuation and SI of the mass with respect to the normal renal cortex on precontrast and contrasted CT/MRI images, tumor SIs, tumor attenuations and tumor-to-cortex indices, homogeneity of enhancement on the contrasted images. The mean age was 32 years (range, 15-47 years). Most patients (4/5) were women. All tumors showed a cortical location. The average tumor size was 9 cm (range, 4-18 cm). Four tumors comprised a predominantly solid lesion with focal necrosis, and one tumor comprised a solid lesion with significant necrosis. All tumors showed intertumor hemorrhage, infiltrative growth and invasion of the perirenal adipose/renal sinus. Four cases showed retroperitoneal lymphadenopathy, of which one case showed simultaneous mediastinal and supraclavicular lymphadenopathy. All tumors from four cases showed mild hyperintensity on T1-weighted MRI images, and three tumors showed hypointensity on T2-weighted MRI images relative to the renal cortex except for 1 tumor that showed significant hemorrhage and a relative hyperintensity. For 3 cases who were imaged with CT, two tumors imaged using nonenhanced CT images showed mild hyperdensity relative to the renal cortex. Calcification was noted in all

  2. Correlation between differential renal function estimation using CT-based functional renal parenchymal volume and (99m)Tc - DTPA renal scan.

    PubMed

    Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J

    2012-10-01

    Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.

  3. Changes of renal sinus fat and renal parenchymal fat during an 18-month randomized weight loss trial.

    PubMed

    Zelicha, Hila; Schwarzfuchs, Dan; Shelef, Ilan; Gepner, Yftach; Tsaban, Gal; Tene, Lilac; Yaskolka Meir, Anat; Bilitzky, Avital; Komy, Oded; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Sarusi, Benjamin; Thiery, Joachim; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Haviv, Yosef S; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2018-08-01

    Data regarding the role of kidney adiposity, its clinical implications, and its dynamics during weight-loss are sparse. We investigated the effect of long-term weight-loss induced intervention diets on dynamics of renal-sinus-fat, an ectopic fat depot, and %renal-parenchymal-fat, lipid accumulation within the renal parenchyma. We randomized 278 participants with abdominal obesity/dyslipidemia to low-fat or Mediterranean/low-carbohydrate diets, with or without exercise. We quantified renal-sinus-fat and %renal-parenchymal-fat by whole body magnetic-resonance-imaging. Participants (age = 48 years; 89% men; body-mass-index = 31 kg/m 2 ) had 86% retention to the trial after 18 months. Both increased renal-sinus-fat and %renal-parenchymal-fat were directly associated with hypertension, and with higher abdominal deep-subcutaneous-adipose-tissue and visceral-adipose-tissue (p of trend < 0.05 for all) after adjustment for body weight. Higher renal-sinus-fat was associated with lower estimated-glomerular-filtration-rate and with higher microalbuminuria and %HbA1C beyond body weight. After 18 months of intervention, overall renal-sinus-fat (-9%; p < 0.05 vs. baseline) but not %renal-parenchymal-fat (-1.7%; p = 0.13 vs. baseline) significantly decreased, and similarly across the intervention groups. Renal-sinus-fat and %renal-parenchymal-fat changes were correlated with weight-loss per-se (p < 0.05). In a model adjusted for age, sex, and visceral-adipose-tissue changes, 18 months reduction in renal-sinus-fat associated with decreased pancreatic, hepatic and cardiac fats (p < 0.05 for all) and with decreased cholesterol/high-density lipoprotein-cholesterol (HDL-c) (β = 0.13; p = 0.05), triglycerides/HDL-c (β = 0.13; p = 0.05), insulin (β = 0.12; p = 0.05) and gamma glutamyl transpeptidase (β = 0.24; p = 0.001), but not with improved renal function parameters or blood pressure. Decreased intake of sodium was associated with a reduction in

  4. Renal venogram

    MedlinePlus

    ... be black. Other structures will be shades of gray. Veins are not normally seen in an x- ... Venogram - kidney; Renal vein thrombosis - venogram Images Kidney anatomy Kidney - blood and urine flow Renal veins References ...

  5. ESPR uroradiology task force and ESUR Paediatric Work Group--Imaging recommendations in paediatric uroradiology, part VI: childhood renal biopsy and imaging of neonatal and infant genital tract. Minutes from the task force session at the annual ESPR Meeting 2012 in Athens on childhood renal biopsy and imaging neonatal genitalia.

    PubMed

    Riccabona, Michael; Lobo, Maria Luisa; Willi, Ulrich; Avni, Fred; Damasio, Beatrice; Ording-Mueller, Lil-Sofie; Blickman, Johan; Darge, Kassa; Papadopoulou, Frederika; Vivier, Pierre-Hugues

    2014-04-01

    The European Society of Paediatric Radiology Uroradiology Task Force and the ESUR Paediatric Work Group jointly publish guidelines for paediatric urogenital imaging. Two yet unaddressed topics involving patient safety and imaging load are addressed in this paper: renal biopsy in childhood and imaging of the neonatal genital tract, particularly in girls. Based on our thorough review of literature and variable practice in multiple centers, procedural recommendations are proposed on how to perform renal biopsy in children and how to approach the genital tract in (female) neonates. These are statements by consensus due to lack of sufficient evidence-based data. The procedural recommendation on renal biopsy in childhood aims at improving patient safety and reducing the number of unsuccessful passes and/or biopsy-related complications. The recommendation for an imaging algorithm in the assessment of the neonatal genital tract focuses on the potential of ultrasonography to reduce the need for more invasive or radiating imaging, however, with additional fluoroscopy or MRI to be used in selected cases. Adherence to these recommendations will allow comparable data and evidence to be generated for future adaptation of imaging strategies in paediatric uroradiology.

  6. Localized chromophobe renal cell carcinoma: preoperative imaging judgment and laparoscopic simple enucleation for treatment.

    PubMed

    Ren, Wenbiao; Xue, Bichen; Qu, Jiandong; Liu, Longfei; Li, Chao; Zu, Xiongbing

    2018-04-30

    To evaluate the preoperative imaging manifestation and therapeutic effect of laparoscopic simple enucleation (SE) for localized chromophobe renal cell carcinoma (chRCC). Clinical data of 36 patients who underwent laparoscopic SE of localized chRCC at our institute were retrospectively analyzed. All patients underwent preoperative renal protocol CT (unenhanced, arterial, venous, and delayed images). CT scan characteristics were evaluated. After intraoperative occlusion of the renal artery, the tumor was free bluntly along the pseudocapsule and enucleated totally. The patients were followed up regularly after the operation. Mean tumor diameter was 3.9±1.0 cm, 80% of tumors were homogeneous and all the tumors had complete pseudocapsule. The attenuation values were slightly lower than normal renal cortex and degree of enhancement of the tumors were significantly lower than normal renal cortex. Mean operation time was 104.3±18.2 min. Mean warm ischemia time (WIT) was 21.3±3.5 min. Mean blood loss was 78.6±25.4 mL. No positive surgical margin was identified. Mean postoperative hospital stay was 5.3±1.5 d. Hematuria occurred in 3 patients and all disappeared within 3 days. After a mean follow-up of 32.1±20.6 months, no patient had local recurrence or metastatic progression. Localized chRCCs have a great propensity for homogeneity and complete pseudocapsule. The attenuation values were slightly lower than normal renal cortex and small degree of enhancement. Laparoscopic SE is a safe and effective treatment for localized chRCC. The oncological results were satisfactory. Copyright® by the International Brazilian Journal of Urology.

  7. Renal papillary necrosis

    MedlinePlus

    ... asking your provider. Alternative Names Necrosis - renal papillae; Renal medullary necrosis Images Kidney anatomy Kidney - blood and urine flow References Bushinsky DA, Monk RD. Nephrolithiasis and nephrocalcinosis. ...

  8. Nephron blood flow dynamics measured by laser speckle contrast imaging

    PubMed Central

    Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V.; Pavlov, Alexey N.; Cupples, William A.; Sorensen, Charlotte Mehlin

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50–100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney. PMID:21048025

  9. Dynamical Imaging with Interferometry

    NASA Astrophysics Data System (ADS)

    Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy; Chael, Andrew A.; Rosen, Julian; Shiokawa, Hotaka; Roelofs, Freek; Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S.

    2017-12-01

    By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ∼ 20 s and exhibits intrahour variability. To address this challenge, we develop several techniques to reconstruct dynamical images (“movies”) from interferometric data. Our techniques are applicable to both single-epoch and multiepoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7 mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.

  10. Preoperative evaluation of renal anatomy and renal masses with helical CT, 3D-CT and 3D-CT angiography.

    PubMed

    Toprak, Uğur; Erdoğan, Aysun; Gülbay, Mutlu; Karademir, Mehmet Alp; Paşaoğlu, Eşref; Akar, Okkeş Emrah

    2005-03-01

    The aim of this prospective study was to determine the efficacy of three-dimensional computed tomography (3D-CT) and three-dimensional computed tomographic angiography (3D-CTA) that were reconstructed by using the axial images of the multiphasic helical CT in the preoperative evaluation of renal masses and demonstration of renal anatomy. Twenty patients that were suspected of having renal masses upon initial physical examination and ultrasonographic evaluation were examined through multiphasic helical CT. Two authors executed CT evaluations. Axial images were first examined and then used to reconstruct 3D-CT and 3D- CTA images. Number, location and size of the renal masses and other findings were noted. Renal vascularization and relationships of the renal masses with the neighboring renal structures were further investigated with 3D-CT and 3D-CTA images. Out of 20 patients, 13 had histopathologically proven renal cell carcinoma. The diagnoses of the remaining seven patients were xanthogranulomatous pyelonephritis, abscess, simple cyst, infected cyst, angiomyolipoma, oncocytoma and arteriovenous fistula. In the renal cell carcinoma group, 3 patients had stage I, 7 patients had stage II, and 3 patients had stage III disease. Sizes of renal cell carcinoma masses were between 23 mm to 60 mm (mean, 36 mm). Vascular invasion was shown in 2 renal cell carcinoma patients. Collecting system invasion was identified in 11 of 13 renal cell patients. These radiologic findings were confirmed with surgical specimens. Three-dimensional CT and 3D-CTA are non-invasive, effective imaging techniques for the preoperative evaluation of renal masses.

  11. Rotational digital subtraction angiography of the renal arteries: technique and evaluation in the study of native and transplant renal arteries.

    PubMed

    Seymour, H R; Matson, M B; Belli, A M; Morgan, R; Kyriou, J; Patel, U

    2001-02-01

    Rotational digital subtraction angiography (RDSA) allows multidirectional angiographic acquisitions with a single injection of contrast medium. The role of RDSA was evaluated in 60 patients referred over a 7-month period for diagnostic renal angiography and 12 patients referred for renal transplant studies. All angiograms were assessed for their diagnostic value, the presence of anomalies and the quantity of contrast medium used. The effective dose for native renal RDSA was determined. 41 (68.3%) native renal RDSA images and 8 (66.7%) transplant renal RDSA images were of diagnostic quality. Multiple renal arteries were identified in 9/41 (22%) native renal RDSA diagnostic images. The mean volume of contrast medium in the RDSA runs was 51.2 ml and 50 ml for native and transplant renal studies, respectively. The mean effective dose for 120 degrees native renal RDSA was 2.36 mSv, equivalent to 1 year's mean background radiation. Those RDSA images that were non-diagnostic allowed accurate prediction of the optimal angle for further static angiographic series, which is of great value in transplant renal vessels.

  12. 7 T renal MRI: challenges and promises.

    PubMed

    de Boer, Anneloes; Hoogduin, Johannes M; Blankestijn, Peter J; Li, Xiufeng; Luijten, Peter R; Metzger, Gregory J; Raaijmakers, Alexander J E; Umutlu, Lale; Visser, Fredy; Leiner, Tim

    2016-06-01

    The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging.

  13. [Renal arterial spin labeling magnetic resonance imaging in normal adults: a study with a 3.0 T scanner].

    PubMed

    Zhang, Fan; Zhang, Xuelin; Yang, Li; Shen, Jie; Gao, Wei

    2013-10-01

    To analyze the renal relative blood flow value (rBFV) and image quality in normal adults using single-shot fast spin echo, flow sensitive invention recovery (SSFSE-FAIR) magnetic resonance (MR) sequence and echo planar imaging, and flow sensitive invention recovery (EPI-FAIR) MR sequence, and assess its value for clinical application in routine renal examination. Forty volunteers (25 male and 15 female adults, aged 30 to 62 years) with normal renal function were included in this prospective study. All the subjects underwent 3.0 Tesla MR scanning using 3 MR scan modes, namely breath-holding EPI-FAIR, breath-holding SSFSE-FAIR and free breathing SSFSE-FAIR. SSFSE-FAIR without breath-holding was capable of differentiating the renal cortex and medulla with the corresponding rBFVs of 111.48∓9.23 and 94.98∓3.38, respectively. Breath-holding SSFSE-FAIR and EPI-FAIR failed to distinguish the borders of the renal cortex and medulla. The EPI-FAIR rBFV of mixed cortex and medulla value was 178.50∓17.17 (95%CI: 167.59, 189.41). Breath-holding SSFSE-FAIR and EPI-FAIR can not distinguish the renal cortex and medulla due to a poor spatial resolution but can be used for rough evaluation of renal blood perfusion. Free breathing SSFSE-FAIR with an improved spatial resolution allows evaluation of the status of renal perfusion of the cortex and medulla.

  14. Feasibility of three-dimensional magnetic resonance angiography-fluoroscopy image fusion technique in guiding complex endovascular aortic procedures in patients with renal insufficiency.

    PubMed

    Schwein, Adeline; Chinnadurai, Ponraj; Shah, Dipan J; Lumsden, Alan B; Bechara, Carlos F; Bismuth, Jean

    2017-05-01

    Three-dimensional image fusion of preoperative computed tomography (CT) angiography with fluoroscopy using intraoperative noncontrast cone-beam CT (CBCT) has been shown to improve endovascular procedures by reducing procedure length, radiation dose, and contrast media volume. However, patients with a contraindication to CT angiography (renal insufficiency, iodinated contrast allergy) may not benefit from this image fusion technique. The primary objective of this study was to evaluate the feasibility of magnetic resonance angiography (MRA) and fluoroscopy image fusion using noncontrast CBCT as a guidance tool during complex endovascular aortic procedures, especially in patients with renal insufficiency. All endovascular aortic procedures done under MRA image fusion guidance at a single-center were retrospectively reviewed. The patients had moderate to severe renal insufficiency and underwent diagnostic contrast-enhanced magnetic resonance imaging after gadolinium or ferumoxytol injection. Relevant vascular landmarks electronically marked in MRA images were overlaid on real-time two-dimensional fluoroscopy for image guidance, after image fusion with noncontrast intraoperative CBCT. Technical success, time for image registration, procedure time, fluoroscopy time, number of digital subtraction angiography (DSA) acquisitions before stent deployment or vessel catheterization, and renal function before and after the procedure were recorded. The image fusion accuracy was qualitatively evaluated on a binary scale by three physicians after review of image data showing virtual landmarks from MRA on fluoroscopy. Between November 2012 and March 2016, 10 patients underwent endovascular procedures for aortoiliac aneurysmal disease or aortic dissection using MRA image fusion guidance. All procedures were technically successful. A paired t-test analysis showed no difference between preimaging and postoperative renal function (P = .6). The mean time required for MRA-CBCT image

  15. Energy-Specific Optimization of Attenuation Thresholds for Low-Energy Virtual Monoenergetic Images in Renal Lesion Evaluation.

    PubMed

    Patel, Bhavik N; Farjat, Alfredo; Schabel, Christoph; Duvnjak, Petar; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Marin, Daniele

    2018-05-01

    The purpose of this study was to determine in vitro and in vivo the optimal threshold for renal lesion vascularity at low-energy (40-60 keV) virtual monoenergetic imaging. A rod simulating unenhanced renal parenchymal attenuation (35 HU) was fitted with a syringe containing water. Three iodinated solutions (0.38, 0.57, and 0.76 mg I/mL) were inserted into another rod that simulated enhanced renal parenchyma (180 HU). Rods were inserted into cylindric phantoms of three different body sizes and scanned with single- and dual-energy MDCT. In addition, 102 patients (32 men, 70 women; mean age, 66.8 ± 12.9 [SD] years) with 112 renal lesions (67 nonvascular, 45 vascular) measuring 1.1-8.9 cm underwent single-energy unenhanced and contrast-enhanced dual-energy CT. Optimal threshold attenuation values that differentiated vascular from nonvascular lesions at 40-60 keV were determined. Mean optimal threshold values were 30.2 ± 3.6 (standard error), 20.9 ± 1.3, and 16.1 ± 1.0 HU in the phantom, and 35.9 ± 3.6, 25.4 ± 1.8, and 17.8 ± 1.8 HU in the patients at 40, 50, and 60 keV. Sensitivity and specificity for the thresholds did not change significantly between low-energy and 70-keV virtual monoenergetic imaging (sensitivity, 87-98%; specificity, 90-91%). The AUC from 40 to 70 keV was 0.96 (95% CI, 0.93-0.99) to 0.98 (95% CI, 0.95-1.00). Low-energy virtual monoenergetic imaging at energy-specific optimized attenuation thresholds can be used for reliable characterization of renal lesions.

  16. Dynamic granularity of imaging systems

    DOE PAGES

    Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; ...

    2015-11-04

    Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the “dynamic granularity” G dyn as a standardized, objective relation between a detector’s spatial resolution (granularity) and dynamic range for complex imaging systems in a given environmentmore » rather than the widely found characterization of detectors such as cameras or films by themselves. We found that this relation can partly be explained through consideration of the signal’s photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system’s performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. Our article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia’s Z-Backlighter facility.« less

  17. Review of renal cell carcinoma and its common subtypes in radiology

    PubMed Central

    Low, Gavin; Huang, Guan; Fu, Winnie; Moloo, Zaahir; Girgis, Safwat

    2016-01-01

    Representing 2%-3% of adult cancers, renal cell carcinoma (RCC) accounts for 90% of renal malignancies and is the most lethal neoplasm of the urologic system. Over the last 65 years, the incidence of RCC has increased at a rate of 2% per year. The increased incidence is at least partly due to improved tumor detection secondary to greater availability of high-resolution cross-sectional imaging modalities over the last few decades. Most RCCs are asymptomatic at discovery and are detected as unexpected findings on imaging performed for unrelated clinical indications. The 2004 World Health Organization Classification of adult renal tumors stratifies RCC into several distinct histologic subtypes of which clear cell, papillary and chromophobe tumors account for 70%, 10%-15%, and 5%, respectively. Knowledge of the RCC subtype is important because the various subtypes are associated with different biologic behavior, prognosis and treatment options. Furthermore, the common RCC subtypes can often be discriminated non-invasively based on gross morphologic imaging appearances, signal intensity on T2-weighted magnetic resonance images, and the degree of tumor enhancement on dynamic contrast-enhanced computed tomography or magnetic resonance imaging examinations. In this article, we review the incidence and survival data, risk factors, clinical and biochemical findings, imaging findings, staging, differential diagnosis, management options and post-treatment follow-up of RCC, with attention focused on the common subtypes. PMID:27247714

  18. Comparison of magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS) in the evaluation of unclear solid renal lesions.

    PubMed

    Rübenthaler, J; Paprottka, K; Marcon, J; Hameister, E; Hoffmann, K; Joiko, N; Reiser, M; Clevert, D A

    2016-01-01

    To compare the sensitivity and specificity of contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) in the evaluation of unclear renal lesions to the histopathological outcome. A total of 36 patients with a single unclear solid renal lesion with initial imaging studies between 2005 and 2015 were included. CEUS and MRI were used for determining malignancy or benignancy and initial findings were correlated with the histopathological outcome. Out of the 36 renal masses a total of 28 lesions were malignant (77.8%) and 8 were found to be benign (22.2%). Diagnostic accuracy was testes by using the histopathological diagnosis as the gold standard. CEUS showed a sensitivity of 96.4%, a specificity of 100.0%, a positive predictive value (PPV) of 100.0% and a negative predictive value (NPV) of 88,9%. MRI showed a sensitivity of 96.4%, a specificity of 75.0%, a PPV of 93.1% and a NPV of 85.7%. Out of the 28 malignant lesions a total of 18 clear cell renal carcinomas, 6 papillary renal cell carcinomas and 4 other malignant lesions, e.g. metastases, were diagnosed. Out of the 8 benign lesions a total 3 angiomyolipomas, 2 oncocytomas, 1 benign renal cyst and 2 other benign lesions, e.g. renal adenomas were diagnosed. Using CEUS, 1 lesion was falsely identified as benign. Using MRI, 2 lesions were falsely identified as benign and 1 lesion was falsely identified as malignant. CEUS is an useful method which can be additionally used to clinically differentiate between malignant and benign renal lesions. CEUS shows a comparable sensitivity, specificity, PPV and NPV to MRI. In daily clinical routine, patients with contraindications for other imaging modalities can particularly benefit using this method.

  19. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    PubMed

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  20. The International Atomic Energy Agency software package for the analysis of scintigraphic renal dynamic studies: a tool for the clinician, teacher, and researcher.

    PubMed

    Zaknun, John J; Rajabi, Hossein; Piepsz, Amy; Roca, Isabel; Dondi, Maurizio

    2011-01-01

    Under the auspices of the International Atomic Energy Agency, a new-generation, platform-independent, and x86-compatible software package was developed for the analysis of scintigraphic renal dynamic imaging studies. It provides nuclear medicine professionals cost-free access to the most recent developments in the field. The software package is a step forward towards harmonization and standardization. Embedded functionalities render it a suitable tool for education, research, and for receiving distant expert's opinions. Another objective of this effort is to allow introducing clinically useful parameters of drainage, including normalized residual activity and outflow efficiency. Furthermore, it provides an effective teaching tool for young professionals who are being introduced to dynamic kidney studies by selected teaching case studies. The software facilitates a better understanding through practically approaching different variables and settings and their effect on the numerical results. An effort was made to introduce instruments of quality assurance at the various levels of the program's execution, including visual inspection and automatic detection and correction of patient's motion, automatic placement of regions of interest around the kidneys, cortical regions, and placement of reproducible background region on both primary dynamic and on postmicturition studies. The user can calculate the differential renal function through 2 independent methods, the integral or the Rutland-Patlak approaches. Standardized digital reports, storage and retrieval of regions of interest, and built-in database operations allow the generation and tracing of full image reports and of numerical outputs. The software package is undergoing quality assurance procedures to verify the accuracy and the interuser reproducibility with the final aim of launching the program for use by professionals and teaching institutions worldwide. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Renal artery origins: best angiographic projection angles.

    PubMed

    Verschuyl, E J; Kaatee, R; Beek, F J; Patel, N H; Fontaine, A B; Daly, C P; Coldwell, D M; Bush, W H; Mali, W P

    1997-10-01

    To determine the best projection angles for imaging the renal artery origins in profile. A mathematical model of the anatomy at the renal artery origins in the transverse plane was used to analyze the amount of aortic lumen that projects over the renal artery origins at various projection angles. Computed tomographic (CT) angiographic data about the location of 400 renal artery origins in 200 patients were statistically analyzed. In patients with an abdominal aortic diameter no larger than 3.0 cm, approximately 0.5 mm of the proximal part of the renal artery and origin may be hidden from view if there is a projection error of +/-10 degrees from the ideal image. A combination of anteroposterior and 20 degrees and 40 degrees left anterior oblique projections resulted in a 92% yield of images that adequately profiled the renal artery origins. Right anterior oblique projections resulted in the least useful images. An error in projection angle of +/-10 degrees is acceptable for angiographic imaging of the renal artery origins. Patients sex, site of interest (left or right artery), and local diameter of the abdominal aorta are important factors to consider.

  2. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.

    PubMed

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2015-09-01

    Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P < 0.001), and reabsorbed sodium was 37% that of controls (6.9 vs 19.1 mol/24 h; P < 0.001). Single-kidney patient renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P < 0.001). Glomerular filtration fraction was 9% in patients and 18% in controls (P < 0.001). Patients and controls had similar CR2* (13.4 vs 13.3 s(-1)) and medullary MR2* (26.4 vs 26.5 s(-1)) values. Linear regression analysis demonstrated no associations between R2* and renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons

  3. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    PubMed

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust

  4. Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features.

    PubMed

    Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M

    2015-01-01

    Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e - 3) on all calculi from 1 to 433 mm(3) in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis.

  5. Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features

    PubMed Central

    Liu, Jianfei; Wang, Shijun; Turkbey, Evrim B.; Linguraru, Marius George; Yao, Jianhua; Summers, Ronald M.

    2015-01-01

    Purpose: Renal calculi are common extracolonic incidental findings on computed tomographic colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system to accurately detect renal calculi on CTC images. Methods: The authors developed a total variation (TV) flow method to reduce image noise within the kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the authors computed texture and shape features that were imported to support vector machines for calculus classification. The method was validated on a dataset of 192 patients and compared to a baseline approach that detects calculi by thresholding. The authors also compared their method with the detection approaches using anisotropic diffusion and nonsmoothing. Results: At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline thresholding approach were 69% and 35% (p < 1e − 3) on all calculi from 1 to 433 mm3 in the testing dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were 36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more clinically relevant calculi were considered. Conclusions: Experimental results demonstrated that TV-flow and MSER features are efficient means to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the proposed method can potentially improve diagnosis. PMID:25563255

  6. Assessment of myocardial mechanics in patients with end-stage renal disease and renal transplant recipients using speckle tracking echocardiography.

    PubMed

    Pirat, Bahar; Bozbas, Huseyin; Simsek, Vahide; Sade, L Elif; Sayin, Burak; Muderrisoglu, Haldun; Haberal, Mehmet

    2015-04-01

    Velocity vector imaging allows quantitation of myocardial strain and strain rate from 2-dimensional images based on speckle tracking echocardiography. The aim of this study was to analyze the changes in myocardial strain and strain rate patterns in patients with end-stage renal disease and renal transplant recipients. We studied 33 patients with end-stage renal disease on hemodialysis (19 men; mean age, 36 ± 8 y), 24 renal transplant recipients with functional grafts (21 men; mean age, 36 ± 7 y) and 26 age- and sex-matched control subjects. Longitudinal peak systolic strain and strain rate for basal, mid, and apical segments of the left ventricular wall were determined by velocity vector imaging from apical 4- and 2-chamber views. The average longitudinal strain and strain rate for the left ventricle were noted. From short-axis views at the level of papillary muscles, average circumferential, and radial strain, and strain rate were assessed. Mean heart rate and systolic and diastolic blood pressure during imaging were similar between the groups. Longitudinal peak systolic strain and strain rate at basal and mid-segments of the lateral wall were significantly higher in renal transplant recipients and control groups than endstage renal disease patients. Average longitudinal systolic strain from the 4-chamber view was highest in control subjects (-14.5% ± 2.9%) and was higher in renal transplant recipients (-12.5% ± 3.0%) than end-stage renal disease patients (-10.2% ± 1.6%; P ≤ .001). Radial and circumferential strain and strain rate at the level of the papillary muscle were lower in patients with end-stage renal disease than other groups. Differences in myocardial function in patients with end-stage renal disease, renal transplant recipients, and normal controls can be quantified by strain imaging. Myocardial function is improved in renal transplant recipients compared with end-stage renal disease patients.

  7. Is there a role for free breathing non-contrast steady-state free precession renal MRA imaging for assessing live donors? A preliminary study.

    PubMed

    Laurence, I; Ariff, B; Quest, R A; Moser, S; Glover, A; Taube, D; Gishen, P; Papalois, V; Juli, C

    2012-08-01

    Accurate pre-operative evaluation of renal vascular anatomy is essential for successful renal harvest in live donor transplantation. Non-contrast renal MR angiographic (MRA) techniques are potentially well suited to the screening of donors; however, their restricted imaging field of view (FOV) has previously been an important limitation. We sought to assess whether the addition of a large FOV balanced fast field echo (BFFE) steady-state free precession (SSFP) sequence to non-contrast SSFP MRA could overcome this problem. Comparison with contrast-enhanced MRA (CE MRA) and findings at surgery were performed. 22 potential renal donors each underwent SSFP and CE MRA. 11 out of 22 potential donors subsequently underwent a donor nephrectomy. All images were diagnostic. Both SSFP MRA and CE MRA identified an equal number of arteries. Surgery confirmed two accessory renal arteries, both demonstrated with both imaging techniques. A third accessory vessel was identified with both techniques on a kidney contralateral to the donated organ. 6 out of 11 procured kidneys demonstrated early branch arteries at surgery, 5 out of 6 of which had been depicted on both SSFP and CE MRA. The median grading of image quality for main renal arteries was slightly better for CE MRA (p=0.048), but for accessory vessels it was better for SSFP MRA. This pilot study indicates that by combining free-breathing SSFP MRA with large-FOV bFFE images, an accurate depiction of renal vascular anatomy without the need for intravenous contrast administration can be obtained, as compared with surgical findings and CE MRA.

  8. Is there a role for free breathing non-contrast steady-state free precession renal MRA imaging for assessing live donors? A preliminary study

    PubMed Central

    Laurence, I; Ariff, B; Quest, R A; Moser, S; Glover, A; Taube, D; Gishen, P; Papalois, V; Juli, C

    2012-01-01

    Objective Accurate pre-operative evaluation of renal vascular anatomy is essential for successful renal harvest in live donor transplantation. Non-contrast renal MR angiographic (MRA) techniques are potentially well suited to the screening of donors; however, their restricted imaging field of view (FOV) has previously been an important limitation. We sought to assess whether the addition of a large FOV balanced fast field echo (BFFE) steady-state free precession (SSFP) sequence to non-contrast SSFP MRA could overcome this problem. Comparison with contrast-enhanced MRA (CE MRA) and findings at surgery were performed. Methods 22 potential renal donors each underwent SSFP and CE MRA. 11 out of 22 potential donors subsequently underwent a donor nephrectomy. Results All images were diagnostic. Both SSFP MRA and CE MRA identified an equal number of arteries. Surgery confirmed two accessory renal arteries, both demonstrated with both imaging techniques. A third accessory vessel was identified with both techniques on a kidney contralateral to the donated organ. 6 out of 11 procured kidneys demonstrated early branch arteries at surgery, 5 out of 6 of which had been depicted on both SSFP and CE MRA. The median grading of image quality for main renal arteries was slightly better for CE MRA (p=0.048), but for accessory vessels it was better for SSFP MRA. Conclusion This pilot study indicates that by combining free-breathing SSFP MRA with large-FOV bFFE images, an accurate depiction of renal vascular anatomy without the need for intravenous contrast administration can be obtained, as compared with surgical findings and CE MRA. PMID:22253354

  9. Imaging techniques in the management of chronic kidney disease: current developments and future perspectives.

    PubMed

    Herget-Rosenthal, Stefan

    2011-05-01

    The measurement of both renal function and structure is critical in clinical nephrology to detect, stage, and monitor chronic kidney disease (CKD). Current imaging modalities especially ultrasound (US), computed tomography, and magnetic resonance imaging (MRI) provide adequate information on structural changes but little on functional impairment in CKD. Although not yet considered first-line procedures for evaluating patients with renal disease, new US and MR imaging techniques may permit the assessment of renal function in the near future. Combined with established imaging techniques, contrast-enhanced US, dynamic contrast-enhanced MRI, blood oxygen level dependency MRI, or diffusion-weighted imaging may provide rapid, accurate, simultaneous, and noninvasive imaging of the structure of kidneys, macrovascular and microvascular renal perfusion, oxygenation, and glomerular filtration rate. Recent developments in molecular imaging indicate that pathophysiological pathways of renal diseases such as apoptosis, coagulation, fibrosis, and ischemia will be visualized at the tissue level. These major advances in imaging and developments in hardware and software could enable comprehensive imaging of renal structure and function in four dimensions (three dimensions plus time), and imaging is expected to play an increasing role in the management of CKD. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... Site Index A-Z Magnetic Resonance Imaging (MRI) – Dynamic Pelvic Floor Dynamic pelvic floor magnetic resonance imaging ( ... the limitations of pelvic floor MRI? What is dynamic pelvic floor MRI? Magnetic resonance imaging (MRI) is ...

  11. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model.

    PubMed

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael

    2017-08-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma

  12. Renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion: imaging findings in 21 patients.

    PubMed

    Chen, Xiao; Zhu, Qingqiang; Li, Baoxin; Cui, Wenjing; Zhou, Hao; Duan, Na; Liu, Yongkang; Kundra, Vikas; Wang, Zhongqiu

    2017-02-01

    To characterize imaging features of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE gene fusion. Twenty-one patients with Xp11.2/TFE RCC were retrospectively evaluated. Tumour location, size, density, cystic or solid appearance, calcification, capsule sign, enhancement pattern and metastases were assessed. Fourteen women and seven men were identified with 12 being 25 years old or younger. Tumours were solitary and cystic-solid (76.2 %) masses with a capsule (76.2 %); 90.5 % were located in the medulla. Calcifications and lymph node metastases were each observed in 24 %. On unenhanced CT, tumour attenuation was greater than in normal renal parenchyma (85.7 %). Tumour enhancement was less than in normal renal cortex on all enhanced phases, greater than in normal renal medulla on cortical and medullary phases, but less than in normal renal medulla on delayed phase. On MR, the tumours were isointense on T1WI, heterogeneously hypointense on T2WI and slightly hyperintense on diffusion-weighted imaging. Xp11.2/TFE RCC usually occurs in young women. It is a cystic-solid, hyperdense mass with a capsule. It arises from the renal medulla with enhancement less than in the cortex but greater than in the medulla in all phases except the delayed phase, when it is lower than in the medulla. • Xp11.2/TFE RCC was more prevalent in young women. • On unenhanced CT, Xp11.2/TFE RCC attenuation was greater than in renal parenchyma. • Xp111/2TFE RCC arises primarily from the renal medulla. • Xp11.2/TFE RCC enhancement was less than in the cortex on all phases. • Enhancement was greater than in the medulla in arterial and corticomedullary phase.

  13. Dynamic analysis of renal nerve activity responses to baroreceptor denervation in hypertensive rats.

    PubMed

    DiBona, G F; Jones, S Y

    2001-04-01

    Sinoaortic and cardiac baroreflexes exert important control over renal sympathetic nerve activity. Alterations in these reflex mechanisms contribute to renal sympathoexcitation in hypertension. Nonlinear dynamic analysis was used to examine the chaotic behavior of renal sympathetic nerve activity in normotensive Sprague-Dawley and Wistar-Kyoto rats and spontaneously hypertensive rats before and after complete baroreceptor denervation (sinoaortic and cardiac baroreceptor denervation). The peak interval sequence of synchronized renal sympathetic nerve discharge was extracted and used for analysis. In all rat strains, this yielded systems whose correlation dimensions converged to similar low values over the embedding dimension range of 10 to 15 and whose greatest Lyapunov exponents were positive. In Sprague-Dawley and Wistar-Kyoto rats, compete baroreceptor denervation was associated with decreases in the correlation dimensions (Sprague-DAWLEY: 2.42+/-0.04 to 2.16+/-0.04; Wistar-KYOTO: 2.44+/-0.04 to 2.34+/-0.04) and in the greatest Lyapunov exponents (Sprague-DAWLEY: 0.199+/-0.004 to 0.130+/-0.015; Wistar-KYOTO: 0.196+/-0.002 to 0.136+/-0.010). Spontaneously hypertensive rats had a similar correlation dimension, which was unaffected by complete baroreceptor denervation (2.42+/-0.02 versus 2.42+/-0.03), and a lower value for the greatest Lyapunov exponent, which decreased to a lesser extent after complete baroreceptor denervation (0.183+/-0.006 versus 0.158+/-0.006). These results indicate that removal of sinoaortic and cardiac baroreceptor regulation of renal sympathetic nerve activity is associated with a greater decrease in the chaotic behavior of renal sympathetic nerve activity in normotensive compared with hypertensive rats. This suggests that the central neural mechanisms that regulate renal sympathetic nerve activity in response to alterations in cardiovascular reflex inputs are different in spontaneously hypertensive rats from those in Sprague-Dawley and

  14. The incidence and location of prostatic calculi on noncontrast computed tomography images in patients with renal calculi.

    PubMed

    Balasar, Mehmet; Poyraz, Necdet; Göğer, Yunus Emre; Unal, Yunus; Pişkin, Mehmet Mesut

    2015-08-01

    In this study, the incidence and location of prostatic calculi on noncontrast abdominal computed tomography (NCACT) images of patients with and without renal stones were investigated. Between 2006 and 2013, NCACT images were taken of 133 patients treated for renal stones (Group I) and of 100 age-matched control patients with putative urinary stone disease (Group II) in our clinic. The incidence and location of prostatic calculi on these images were determined. The location of prostatic calculus was classified as type A if they were located in the main prostatic ducts, and type B if they were located outside the ducts. Prostatic calculi were present in 44.4% of patients in Group I and 21.0% of patients in Group II. The incidence of prostatic calculi was significantly higher in patients with urinary stones compared with those without (P<0.001). The location of prostatic calculi in Group I included 74.6% type A and 25.4% type B while in Group II the locations were 76.2% type A and 23.8% type B. The incidence of prostatic calculi is more prevalent in patients with renal stones. On NCACT images, prostatic calculi were mostly detected in the main prostatic ducts, which were defined as type A.

  15. Mid-Term Vascular Safety of Renal Denervation Assessed by Follow-up MR Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Axel, E-mail: axel.schmid@uk-erlangen.de; Schmieder, Raphael; Lell, Michael

    Background/AimsRenal denervation (RDN) emerged as a treatment option for reducing blood pressure (BP) in patients with treatment-resistant hypertension (TRH). However, concerns have been raised regarding the incidence of late renal artery stenosis or thromboembolism after RDN. The goal of the current study was, therefore, to conduct a prospective clinical trial on the mid-term vascular integrity of the renal arteries and the perfusion of the renal parenchyma assessed by magnetic resonance imaging (MRI) in the follow-up after catheter-based RDN.MethodsIn our single-centre investigator initiated study, 51 patients with true TRH underwent catheter-based RDN using the Symplicity Flex{sup TM} catheter (Medtronic Inc., Palomore » Alto, CA). Follow-up MRI was performed at a median of 11 months (interquartile range 6–18 months) after RDN on a 1.5T MR unit. High-resolution MR angiography (MRA) and MRI results were compared to the baseline digital angiography of renal arteries obtained at time of RDN. In case of uncertainties (N = 2) catheter angiography was repeated.ResultsBoth office and 24-h ambulatory BP were significantly reduced 6 and 12 months after RDN. Renal function remained unchanged 6 and 12 months after RDN. In all patients, MRA excluded new or progression of pre-existing low grade renal artery stenosis as well as focal aneurysms at the sites of radiofrequency ablation. In none of the patients new segmental perfusion deficits in either kidney were detected on MRI.ConclusionsNo vascular or parenchymal complications after radiofrequency-based RDN were detected in 51 patients followed up by MRI.« less

  16. Image reconstruction of dynamic infrared single-pixel imaging system

    NASA Astrophysics Data System (ADS)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  17. In situ assessment of the renal microcirculation in mechanically ventilated rats using sidestream dark-field imaging.

    PubMed

    Astapenko, D; Jor, O; Lehmann, C; Cerny, V

    2015-02-01

    For microcirculation research there is a need for baseline data and feasibility protocols describing microcirculation of various organs. The aim of our study was to examine the reliability and reproducibility of sidestream dark-field (SDF) imaging within the renal cortical microcirculation in rats. Renal microcirculation was observed using SDF probe placed on the exposed renal surface via the upper midline laparotomy. Video sequences recorded intermittently in short apneic pauses were analyzed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, the Netherlands). Results are expressed as mean (SD) or median (25-75% percentiles). We obtained 60 clear sequences from all recorded analyzable videos from all the animals. The total small vessel and all vessel density (in mm.mm(-2) ) were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The perfused small and all vessel density were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The DeBacker Score was (19.14 ± 0.43), the proportion of perfused vessels was 100% (100-100%) and the microvascular flow index was 3.49 (3-3.75). We conclude SDF imaging provides a reliable method to examine the renal microvascular bed in vivo and thus can be used for the study of the renal cortical vascular network in various experimental diseases models and clinical settings. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  18. Nephrogenic Systemic Fibrosis Risk After Liver Magnetic Resonance Imaging With Gadoxetate Disodium in Patients With Moderate to Severe Renal Impairment

    PubMed Central

    Lauenstein, Thomas; Ramirez-Garrido, Francisco; Kim, Young Hoon; Rha, Sung Eun; Ricke, Jens; Phongkitkarun, Sith; Boettcher, Joachim; Gupta, Rajan T.; Korpraphong, Pornpim; Tanomkiat, Wiwatana; Furtner, Julia; Liu, Peter S.; Henry, Maren; Endrikat, Jan

    2015-01-01

    Objective The objective of this study was to assess the risk of gadoxetate disodium in liver imaging for the development of nephrogenic systemic fibrosis (NSF) in patients with moderate to severe renal impairment. Materials and Methods We performed a prospective, multicenter, nonrandomized, open-label phase 4 study in 35 centers from May 2009 to July 2013. The study population consisted of patients with moderate to severe renal impairment scheduled for liver imaging with gadoxetate disodium. All patients received a single intravenous bolus injection of 0.025-mmol/kg body weight of liver-specific gadoxetate disodium. The primary target variable was the number of patients who develop NSF within a 2-year follow-up period. Results A total of 357 patients were included, with 85 patients with severe and 193 patients with moderate renal impairment, which were the clinically most relevant groups. The mean time period from diagnosis of renal disease to liver magnetic resonance imaging (MRI) was 1.53 and 5.46 years in the moderate and severe renal impairment cohort, respectively. Overall, 101 patients (28%) underwent additional contrast-enhanced MRI with other gadolinium-based MRI contrast agents within 12 months before the start of the study or in the follow-up. No patient developed symptoms conclusive of NSF within the 2-year follow-up. Conclusions Gadoxetate disodium in patients with moderate to severe renal impairment did not raise any clinically significant safety concern. No NSF cases were observed. PMID:25756684

  19. Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements.

    PubMed

    Pohlmann, Andreas; Arakelyan, Karen; Hentschel, Jan; Cantow, Kathleen; Flemming, Bert; Ladwig, Mechthild; Waiczies, Sonia; Seeliger, Erdmann; Niendorf, Thoralf

    2014-08-01

    This study was designed to detail the relation between renal T2* and renal tissue pO2 using an integrated approach that combines parametric magnetic resonance imaging (MRI) and quantitative physiological measurements (MR-PHYSIOL). Experiments were performed in 21 male Wistar rats. In vivo modulation of renal hemodynamics and oxygenation was achieved by brief periods of aortic occlusion, hypoxia, and hyperoxia. Renal perfusion pressure (RPP), renal blood flow (RBF), local cortical and medullary tissue pO2, and blood flux were simultaneously recorded together with T2*, T2 mapping, and magnetic resonance-based kidney size measurements (MR-PHYSIOL). Magnetic resonance imaging was carried out on a 9.4-T small-animal magnetic resonance system. Relative changes in the invasive quantitative parameters were correlated with relative changes in the parameters derived from MRI using Spearman analysis and Pearson analysis. Changes in T2* qualitatively reflected tissue pO2 changes induced by the interventions. T2* versus pO2 Spearman rank correlations were significant for all interventions, yet quantitative translation of T2*/pO2 correlations obtained for one intervention to another intervention proved not appropriate. The closest T2*/pO2 correlation was found for hypoxia and recovery. The interlayer comparison revealed closest T2*/pO2 correlations for the outer medulla and showed that extrapolation of results obtained for one renal layer to other renal layers must be made with due caution. For T2* to RBF relation, significant Spearman correlations were deduced for all renal layers and for all interventions. T2*/RBF correlations for the cortex and outer medulla were even superior to those between T2* and tissue pO2. The closest T2*/RBF correlation occurred during hypoxia and recovery. Close correlations were observed between T2* and kidney size during hypoxia and recovery and for occlusion and recovery. In both cases, kidney size correlated well with renal vascular conductance

  20. Four-dimensional MRI of renal function in the developing mouse.

    PubMed

    Xie, Luke; Subashi, Ergys; Qi, Yi; Knepper, Mark A; Johnson, G Allan

    2014-09-01

    The major roles of filtration, metabolism and high blood flow make the kidney highly vulnerable to drug-induced toxicity and other renal injuries. A method to follow kidney function is essential for the early screening of toxicity and malformations. In this study, we acquired high spatiotemporal resolution (four dimensional) datasets of normal mice to follow changes in kidney structure and function during development. The data were acquired with dynamic contrast-enhanced MRI (via keyhole imaging) and a cryogenic surface coil, allowing us to obtain a full three-dimensional image (isotropic resolution, 125 microns) every 7.7 s over a 50-min scan. This time course permitted the demonstration of both contrast enhancement and clearance. Functional changes were measured over a 17-week course (at 3, 5, 7, 9, 13 and 17 weeks). The time dimension of the MRI dataset was processed to produce unique image contrasts to segment the four regions of the kidney: cortex (CO), outer stripe (OS) of the outer medulla (OM), inner stripe (IS) of the OM and inner medulla (IM). Local volumes, time-to-peak (TTP) values and decay constants (DC) were measured in each renal region. These metrics increased significantly with age, with the exception of DC values in the IS and OS. These data will serve as a foundation for studies of normal renal physiology and future studies of renal diseases that require early detection and intervention. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Effects of high-fat diet and losartan on renal cortical blood flow using contrast ultrasound imaging.

    PubMed

    Declèves, Anne-Emilie; Rychak, Joshua J; Smith, Dan J; Sharma, Kumar

    2013-11-01

    Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.

  2. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  3. Simultaneous evaluation of renal morphology and function in live kidney donors using dynamic magnetic resonance imaging.

    PubMed

    Artunc, F; Yildiz, S; Rossi, C; Boss, A; Dittmann, H; Schlemmer, H P; Risler, T; Heyne, N

    2010-06-01

    Evaluation of potential kidney donors requires the assessment of both kidney anatomy and function. In this prospective study, we sought to expand the diagnostic yield of magnetic resonance (MR) by adding functional measurements of glomerular filtration rate (GFR) and split renal function. Between 2007 and 2009, all potential kidney donors presenting to our facility underwent a comprehensive single-stop MR study that included an assessment of anatomy, angiography and functional measurements. GFR was measured after a bolus injection of gadobutrol (4 ml, approximately 0.05 mmol/kg) and calculated from the washout of the signal intensity obtained over the liver. Split renal function was calculated from the increase of signal intensity over the renal cortex. Values were compared to renal scintigraphy with (99m)Tc-DTPA from the same day. The MR investigation was successfully performed in 21 participants. The GFR derived from MR (MR-GFR) correlated well (r = 0.84) with the GFR derived from scintigraphy (DTPA-GFR). The mean value of the paired differences was 4 +/- 13 [SD] ml/min/1.73 m(2) and was not significantly different from zero. The ratio between right and left kidney function was similar with both techniques (1.01 +/- 0.17 with MR and 1.06 +/- 0.12 with scintigraphy, P = 0.20). We demonstrate an MR-based approach to comprehensively evaluate both kidney anatomy and function in a single investigation, thereby facilitating the evaluation of potential kidney donors.

  4. [Diffusion weighted imaging and perfusion weighted imaging in the differential diagnosis of benign and malignant renal masses on 3.0 T MRI].

    PubMed

    Xu, Xiaowen; Wang, Peijun; Ma, Liang; Shao, Zhihong; Zhang, Min

    2015-01-20

    To explore the value of diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI) in identifying benign and malignant renal masses and differentiating the histological types of renal masses. Fifteen healthy volunteers and 46 patients with renal masses proven by pathology, including clear cell carcinomas (n = 18), papillary carcinomas (n = 8), chromophobe carcinomas (n = 7) and angiomyolipomas (n = 13), were examined with DWI and PWI scan at 3.0 T MRI. ANOVA was employed to compare the values of transfer constant (K(trans)), rate constant of backflux (Kep) and extra-vascular extra-cellular space fractional volume (Ve) proceeded by PWI and the value of ADC resulted from DWI between normal kidney and different histological types of renal masses. Receiver operating characteristics (ROC) curve was used to analyze and compare the diagnostic value of the methods of PWI and DWI in differentiating benign and malignant renal masses. The ADC value of normal renal parenchyma was (2.10 ± 0.24) × 10⁻³ mm²/s, which was statistically higher than benign and malignant renal masses (P < 0.05). The ADC value of benign masses was statistically higher than that of all histological types of malignant masses (P < 0.05). Among three histological types of malignancies, clear cell carcinoma showed the statistically highest ADC value (P < 0.05). But the difference between papillary carcinoma and chromophobe carcinoma had no statistical significance (P > 0.05).Values of K(trans), Kep and Ve between normal renal parenchyma and different histological types of renal masses had statistical differences.Values of K(trans) and Ve in three histological types of malignant renal masses were statistically higher than those of benign renal masses.Kep value of clear cell carcinoma was significantly higher than that of benign renal masses (P < 0.05).However, other histological types of malignant masses had no significant difference with benign masses.For three malignant masses, K(trans) of

  5. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    PubMed

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  6. Artifact in dynamic imaging of the kidneys with $sup 131$I-o-iodohippurate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekier, A.; Bandhauer, K.

    1974-02-01

    An artifactural area of increased activity over the left lumbar region was observed in the radionuclide imaging of the kidneys with /sup 131/I-o- iodohippurate. The renal scan was falsely interpreted as a functionally reduced left kidney. The following renal arteriogram shows only a right renal artery. The agenesia of the left kidney was confirmed by a laparotomy. This artifact was probably due to gastric secretion of free /sup 131/I. (auth)

  7. Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.

    2011-02-15

    Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed formore » use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate

  8. Automated renal histopathology: digital extraction and quantification of renal pathology

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.

    2016-03-01

    The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.

  9. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats.

    PubMed

    Romero, Cesar A; Cabral, Glauber; Knight, Robert A; Ding, Guangliang; Peterson, Edward L; Carretero, Oscar A

    2018-01-01

    Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min -1 ·100 g tissue -1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min -1 ·100 g tissue -1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min -1 ·100 g tissue -1 ; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.

  10. The role of dynamic renal scintigraphy on clinical decision making in hydronephrotic children.

    PubMed

    Çamlar, Seçil Arslansoyu; Deveci, Nazlı; Soylu, Alper; Türkmen, Mehmet Atilla; Özmen, Derya; Çapakaya, Gamze; Kavukçu, Salih

    2017-01-01

    Hydronephrosis may be related to an obstructive cause, ureteropelvic/uretero-vesical junction obstruction or nonobstructive [vesicoureteral reflux (VUR)]. When an obstructive pathology is considered, dynamic renal scintigraphy may help to predict whether it is a true obstruction or not. In this study, we aimed to determine the contribution of dynamic renal scintigraphy with [99] mTc-MAG-3 to the clinical decision-making for surgery in hydronephrotic children. Files of the patients evaluated by MAG-3 scintigraphy for antenatal (AH)/postnatal (PH) hydronephrosis between 1992 and 2014 were reviewed. Gender, age, hydronephrosis (HN) grade by ultrasound (US), presence of VUR, MAG-3 result (obstructive vs. nonobstructive), ultimate diagnosis, and need for surgery were assessed. Cases with double collecting system and neurogenic bladder were excluded from the study. All of the patients had normal serum creatinine and eGFR. There were a total of 178 patients with 218 hydronephrotic renal units (mean age 34.7 ± 52.7 months; male/ female = 121/57, AH of 62%). MAG-3 was nonobstructive in 134 and obstructive in 84 hydronephrotic renal units. MAG-3 was obstructive in 47 of 121 (39%) males and 30 of 57 (53%) females (P = 0.058, odds ratio (OR) for obstruction was 1.9 for girls). MAG-3 was obstructive in 47 of 135 (35%) units with AH and 37 of 83 (45%) units with PH (P = 0.137). In 81 units with the society of fetal urology-4 HN by US, MAG-3 was obstructive in 55 (68%), and surgery was required in 52 of 55 (95%). Surgery was required for only two (7%) of the remaining 26 units with nonobstructive dilatation (P <0.001, sensitivity 96%, specificity 89%, OR 208). Antero-posterior diameter >16.5 mm was the best cutoff level for predicting obstruction by MAG-3 (sensitivity 75.2%; specificity 71%; OR 3.8). MAG-3 significantly affects clinical decision for surgery in HN. Hydronephrotic girls have more risk in terms of true obstruction. Combining MAG-3 with US improves the

  11. High dynamic range coding imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  12. Development and prospective evaluation of an automated software system for quality control of quantitative 99mTc-MAG3 renal studies.

    PubMed

    Folks, Russell D; Garcia, Ernest V; Taylor, Andrew T

    2007-03-01

    Quantitative nuclear renography has numerous potential sources of error. We previously reported the initial development of a computer software module for comprehensively addressing the issue of quality control (QC) in the analysis of radionuclide renal images. The objective of this study was to prospectively test the QC software. The QC software works in conjunction with standard quantitative renal image analysis using a renal quantification program. The software saves a text file that summarizes QC findings as possible errors in user-entered values, calculated values that may be unreliable because of the patient's clinical condition, and problems relating to acquisition or processing. To test the QC software, a technologist not involved in software development processed 83 consecutive nontransplant clinical studies. The QC findings of the software were then tabulated. QC events were defined as technical (study descriptors that were out of range or were entered and then changed, unusually sized or positioned regions of interest, or missing frames in the dynamic image set) or clinical (calculated functional values judged to be erroneous or unreliable). Technical QC events were identified in 36 (43%) of 83 studies. Clinical QC events were identified in 37 (45%) of 83 studies. Specific QC events included starting the camera after the bolus had reached the kidney, dose infiltration, oversubtraction of background activity, and missing frames in the dynamic image set. QC software has been developed to automatically verify user input, monitor calculation of renal functional parameters, summarize QC findings, and flag potentially unreliable values for the nuclear medicine physician. Incorporation of automated QC features into commercial or local renal software can reduce errors and improve technologist performance and should improve the efficiency and accuracy of image interpretation.

  13. Yield of Routine Image-Guided Biopsy of Renal Mass Thermal Ablation Zones: 11-Year Experience.

    PubMed

    Wasnik, Ashish P; Higgins, Ellen J; Fox, Giovanna A; Caoili, Elaine M; Davenport, Matthew S

    2018-06-19

    To determine the yield of routine image-guided core biopsy of renal cell carcinoma (RCC) thermal ablation zones. Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act-compliant quality improvement effort. Routine core biopsy of RCC ablation zones was performed 2 months postablation from July 2003 to December 2014. Routine nicotinamide adenine dinucleotide staining was performed by specialized genitourinary pathologists to assess cell viability. The original purpose of performing routine postablation biopsy was to verify, in addition to imaging, whether the mass was completely treated. Imaging was stratified as negative, indeterminate, or positive for viable malignancy. Histology was stratified as negative, indeterminate, positive, or nondiagnostic for viable malignancy. Histology results were compared to prebiopsy imaging findings. Routine ablation zone biopsy was performed after 50% (146/292) of index ablations (24 cryoablations, 122 radiofrequency ablations), and postablation imaging was performed more often with multiphasic computed tomography than magnetic resonance imaging (100 vs 46, p < 0.0001). When imaging was negative (n = 117), biopsy added no additional information (92% [n = 108] negative, 0.9% [n = 1] indeterminate, 7% [n = 8] nondiagnostic). When imaging was indeterminate (n = 19), 11% (n = 2) of biopsies had viable RCC and 89% (n = 17) were negative. When imaging was positive, biopsy detected viable neoplasm in only 10% (1/10) of cases; 80% (8/10) were negative and 10% (1/10) were nondiagnostic. Routine biopsy of renal ablation zones to validate postablation imaging results was not value-added and therefore was discontinued at the study institution. Copyright © 2018. Published by Elsevier Inc.

  14. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    NASA Astrophysics Data System (ADS)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  15. Contemporary evaluation and management of renal trauma.

    PubMed

    Chouhan, Jyoti D; Winer, Andrew G; Johnson, Christina; Weiss, Jeffrey P; Hyacinthe, Llewellyn M

    2016-04-01

    Renal trauma occurs in approximately 1%-5% of all trauma cases. Improvements in imaging and management over the last two decades have caused a shift in the treatment of this clinical condition. A systematic search of PubMed was performed to identify relevant and contemporary articles that referred to the management and evaluation of renal trauma. Computed tomography remains a mainstay of radiological evaluation in hemodynamically stable patients. There is a growing body of literature showing that conservative, non-operative management of renal trauma is safe, even for Grade IV-V renal injuries. If surgical exploration is planned due to other injuries, a conservative approach to the kidney can often be utilized. Follow up imaging may be warranted in certain circumstances. Urinoma, delayed bleeding, and hypertension are complications that require follow up. Appropriate imaging and conservative approaches are a mainstay of current renal trauma management.

  16. Renal Sinus Fat Invasion and Tumoral Thrombosis of the Inferior Vena Cava-Renal Vein: Only Confined to Renal Cell Carcinoma

    PubMed Central

    Harman, Mustafa; Guneyli, Serkan; Sen, Sait; Elmas, Nevra

    2014-01-01

    Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this case presentation, we aimed to report cross-sectional imaging findings of two cases diagnosed as E-AML and pathological correlation of these aforementioned masses mimicking RCC. PMID:25506021

  17. Renal sinus fat invasion and tumoral thrombosis of the inferior vena cava-renal vein: only confined to renal cell carcinoma.

    PubMed

    Acar, Turker; Harman, Mustafa; Guneyli, Serkan; Sen, Sait; Elmas, Nevra

    2014-01-01

    Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this case presentation, we aimed to report cross-sectional imaging findings of two cases diagnosed as E-AML and pathological correlation of these aforementioned masses mimicking RCC.

  18. A detail enhancement and dynamic range adjustment algorithm for high dynamic range images

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Wang, Huachuang; Liang, Mingtao; Yu, Cong; Hu, Jinlong; Cheng, Hua

    2014-08-01

    Although high dynamic range (HDR) images contain large amounts of information, they have weak texture and low contrast. What's more, these images are difficult to be reproduced on low dynamic range displaying mediums. If much more information is to be acquired when these images are displayed on PCs, some specific transforms, such as compressing the dynamic range, enhancing the portions of little difference in original contrast and highlighting the texture details on the premise of keeping the parts of large contrast, are needed. To this ends, a multi-scale guided filter enhancement algorithm which derives from the single-scale guided filter based on the analysis of non-physical model is proposed in this paper. Firstly, this algorithm decomposes the original HDR images into base image and detail images of different scales, and then it adaptively selects a transform function which acts on the enhanced detail images and original images. By comparing the treatment effects of HDR images and low dynamic range (LDR) images of different scene features, it proves that this algorithm, on the basis of maintaining the hierarchy and texture details of images, not only improves the contrast and enhances the details of images, but also adjusts the dynamic range well. Thus, it is much suitable for human observation or analytical processing of machines.

  19. Squamous cell carcinoma within a horseshoe kidney with associated renal stones detected by computed tomography and magnetic resonance imaging.

    PubMed

    Imbriaco, Massimo; Iodice, Delfina; Erra, Paola; Terlizzi, Angela; Di Carlo, Rosanna; Di Vito, Concetta; Imbimbo, Ciro

    2011-07-01

    We describe a 69-year-old man who came to our observation with a history of persistent left flank abdominal pain, fever for several weeks, and a previous history of passing renal stones. Radiological examinations with computed tomography and magnetic resonance imaging revealed a solid mass within the left side of a horseshoe kidney, with associated large renal stones. The patient subsequently underwent partial left nephrectomy. The final diagnosis was consistent with squamous cell carcinoma arising in a horseshoe kidney, with associated renal stones. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Assessment of Renal Pathological Changes in Lupus Nephritis Using Diffusion Weighted Imaging: A Multiple Correspondence Analysis.

    PubMed

    Zheng, Zhenfeng; Yan, Tiekun; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-05-30

    Renal pathological changes affect the motion of water molecules, which can be detected using diffusion-weighted imaging (DWI). The current study was performed to explore the correlation between renal tissue pathological injuries and DWI iconographical parameters in lupus nephritis (LN). Twenty adult patients with LN and 11 healthy volunteers were recruited. Patients with LN received renal biopsies and renal DWI-MRI inspections. The renal biopsy tissues were characterized based on the ISN/RPS 2003 classification. The volunteers, who were of comparable gender and age, only underwent renal DWI-MRI inspection. Four DWI parameters, namely, apparent diffusion coefficient (ADC), pure diffusion coefficient (Dt), pseudo-diffusion coefficient (Dp), and perfusion fraction (fp), were calculated using monoexponential and biexponential functions, respectively. Data from different renal areas and pathological pattern groups were compared. Multiple correspondence analysis (MCA) was performed to explore the correlation between each DWI index and multiple pathological features. ADC, Dt, and fp values were lower in the LN group compared to the controls (P < 0.001) regardless of the renal area in the cortex and medulla. Dp values were higher in the LN group (P = 0.004). A difference in mean DWI parameters was found between three LN subgroups and the healthy volunteers, with the exception of the Dp index in the renal cortex. MCA showed that serious proliferative pathological injuries and lower ADC and Dt values were located in the same quadrant. The MCA plots of Dp and fp provided similar results. Higher Dp and fp values were located in the MCA plot quadrant with more serious proliferative pathological changes. DWI is a noninvasive technique that may be used to detect renal pathophysiological changes. Renal cell proliferation and intestinal fibrosis may impact the movement of water in certain microenvironments. Enhanced perfusion may be a compensatory mechanism that is associated with

  1. Chemical shift magnetic resonance imaging for distinguishing minimal-fat renal angiomyolipoma from renal cell carcinoma: a meta-analysis.

    PubMed

    Chen, Ling-Shan; Zhu, Zheng-Qiu; Wang, Zhi-Tao; Li, Jing; Liang, Li-Feng; Jin, Ji-Yang; Wang, Zhong-Qiu

    2018-05-01

    To determine the performance of chemical shift signal intensity index (CS-SII) values for distinguishing minimal-fat renal angiomyolipoma (mfAML) from renal cell carcinoma (RCC) and to assess RCC subtype characterisation. We identified eligible studies on CS magnetic resonance imaging (CS-MRI) of focal renal lesions via PubMed, Embase, and the Cochrane Library. CS-SII values were extracted by lesion type and evaluated using linear mixed model-based meta-regression. RCC subtypes were analysed. Two-sided p value <0.05 indicated statistical significance. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Eleven articles involving 850 patients were included. Minimal-fat AML had significantly higher CS-SII value than RCC (p < 0.05); there were no significant differences between mfAML and clear cell RCC (cc-RCC) (p = 0.112). Clear cell RCC had a significantly higher CS-SII value than papillary RCC (p-RCC) (p < 0.001) and chromophobe RCC (ch-RCC) (p = 0.045). The methodological quality was relatively high, and Begg's test data points indicated no obvious publication bias. The CS-SII value for differentiating mfAML from cc-RCC remains unproven, but is a promising method for differentiating cc-RCC from p-RCC and ch-RCC. • RCC CS-SII values are significantly lower than those of mfAML overall. • CS-SII values cannot aid differentiation between mfAML and cc-RCC. • CS-SII values might help characterise RCC subtypes.

  2. Incompletely characterized incidental renal masses: emerging data support conservative management.

    PubMed

    Silverman, Stuart G; Israel, Gary M; Trinh, Quoc-Dien

    2015-04-01

    With imaging, most incidental renal masses can be diagnosed promptly and with confidence as being either benign or malignant. For those that cannot, management recommendations can be devised on the basis of a thorough evaluation of imaging features. However, most renal masses are either too small to characterize completely or are detected initially in imaging examinations that are not designed for full evaluation of them. These masses constitute a group of masses that are considered incompletely characterized. On the basis of current published guidelines, many masses warrant additional imaging. However, while the diagnosis of renal cancer at a curable stage remains the first priority, there is the additional need to reduce unnecessary healthcare costs and radiation exposure. As such, emerging data now support foregoing additional imaging for many incompletely characterized renal masses. These data include the low risk of progression to metastases or death for small renal masses that have undergone active surveillance (including biopsy-proven cancers) and a better understanding of how specific imaging features can be used to diagnose their origins. These developments support (a) avoidance of imaging entirely for those incompletely characterized renal masses that are highly likely to be benign cysts and (b) delay of further imaging of small solid masses in selected patients. Although more evidence-based data are needed and comprehensive management algorithms have yet to be defined, these recommendations are medically appropriate and practical, while limiting the imaging of many incompletely characterized incidental renal masses.

  3. The Role of Apparent Diffusion Coefficient Quantification in Differentiating Benign and Malignant Renal Masses by 3 Tesla Magnetic Resonance Imaging.

    PubMed

    Göya, Cemil; Hamidi, Cihad; Bozkurt, Yaşar; Yavuz, Alpaslan; Kuday, Suzan; Gümüş, Hatice; Türkçü, Gül; Hattapoğlu, Salih; Bilici, Aslan

    2015-07-01

    Diffusion-weighted magnetic resonance imaging (DWI) is a widely-accepted diagnostic modality whose efficacy has been investigated by numerous past studies in the differentiation of malignant lesions from benign entities. The aim of this study was to evaluate the efficiency of diffusion-weighted magnetic resonance imaging in the characterization of renal lesions. Diagnostic accuracy study. A total of 137 patients with renal lesions were included in this study. The median apparent diffusion coefficient (ADC) values as well as the b 800 and b 1600 signal intensities of normal kidneys, solid components of mixed renal masses, and total cystic lesions were evaluated. There were significant differences between the ADC values of lesions and normal renal parenchyma, and between the ADC values of benign and malignant renal lesions on DWIs at b values of 800 and 1600 s/mm(2) (p<0.001 and p<0.001, respectively). There were significant differences between the ADC values of Bosniak Category 1 and 2 cysts and the ADC values of Bosniak Category 1 and 3 cysts on DWIs at b values of 800 s/mm(2) (p<0.001) and 1600 s/mm(2) (p<0.001). A cutoff value of 1.902 × 10(-3) mm(2)/s for the ADC with a b value of 800 s/mm(2) provided 88% sensitivity and 96% specificity for differentiation between benign and malignant renal lesions. A cutoff value of 1.623 × 10(-3) mm(2)/s for the ADC with a b value of 1600 s/mm(2) provided 79% sensitivity and 96% specificity (p<0.001) for the differentiation between benign and malignant renal lesions. Accurate assessment of renal masses is important for determining the necessity for surgical intervention. DWI provides additional value by differentiating benign from malignant renal tumors and can be added to routine kidney MRI protocols.

  4. Positron emission tomography in renal cell carcinoma: an imaging biomarker in development.

    PubMed

    Khandani, Amir H; Rathmell, W Kimryn

    2012-07-01

    Positron emission tomography (PET) has revolutionized cancer imaging. The current workhorse of molecular imaging, fluorodeoxyglucose (FDG) PET is used in the majority of malignant tumors with a few exceptions. Renal cell carcinoma (RCC) is one of those exceptions because of its variable uptake of FDG, although this variable uptake may actually be an asset in predicting response to some targeted agents, as will be discussed later. Beyond FDG, there is only scattered information in the literature on the use of PET in RCC. The purpose of this review is to summarize the current status of PET usage in RCC and point out its potentials and future directions. We will start with a brief overview of the demographics, molecular pathogenesis, and evolving treatment strategies in RCC because this information is essential for better understanding of uptake of various PET radiotracers in this cancer and their indications. This will be followed by discussing the role of PET in characterization of indeterminate renal masses, in staging and restaging of RCC, and, finally, in predicting and monitoring therapy response. Each of these 3 areas of PET usage will include the relevant radiotracers currently in use or in development. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. [Renal hemodynamic in hydronephrosis concurrent with hepatobiliary system disorders, its dynamics in the course of treatment].

    PubMed

    Mambetov, Zh S; Salimov, B G

    2016-02-01

    This article examines measurements of renal vascular ultrasound in 85 patients with hydronephrosis concurrent with disorders of the gallbladder and biliary tract, depending on severity and dynamics during treatment. The estimation of blood flow changes depending on applied renoprotective and hepatoprotective therapy is provided.

  6. An Incidental Renal Oncocytoma: 18F-Choline PET/MRI

    PubMed Central

    Mallia, Andrew; Bashir, Usman; Stirling, James; Wolfe, Konrad; Goh, Vicky; Cook, Gary

    2016-01-01

    PET/MRI is a new hybrid imaging modality and has the potential to become a powerful imaging tool. It is currently one of the most active areas of research in diagnostic imaging. The characterisation of an incidental renal lesion can be difficult. In particular, the differentiation of an oncocytoma from other solid renal lesions such as renal cell carcinoma (RCC) represents a diagnostic challenge. We describe the detection of an incidental renal oncocytoma in a 79-year gentleman who underwent a re-staging 18F-Choline PET/MRI following a rise in PSA values (4.07, nadir 1.3).

  7. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report.

    PubMed

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-08-14

    New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2012. Computed tomography and magnetic resonance imaging revealed a cT1aN0M0 renal cell carcinoma embedded in the upper central region of the left kidney. She was prescribed sunitinib as neoadjuvant therapy for 8 months, and then underwent partial nephrectomy. Tumor monitoring during this time was done using time-resolved three-dimensional phase-contrast magnetic resonance imaging, a recent technique which specifically measures blood flow in the various vessels of the kidney. This imaging allowed visualization of the redistribution of renal blood flow during treatment, and showed that flow to the tumor was decreased and flows to other areas increased. Of note, this change occurred in the absence of any change in tumor size. The ability of time-resolved three-dimensional phase-contrast magnetic resonance imaging to provide quantitative information on blood supply to tumors may be useful in monitoring the efficacy of sunitinib treatment.

  8. Renal cell carcinoma: the influence of new diagnostic imaging techniques on the size and stage of tumors diagnosed over the past 26 years.

    PubMed

    Touloupidis, Stavros; Papathanasiou, Athanasios; Kalaitzis, Christos; Fatles, Georgios; Manavis, Ioannis; Rombis, Vassilios

    2006-01-01

    We have analyzed data collected over a 26-year period for influences of new diagnostic imaging techniques (ultrasound, computed tomography, and magnetic resonance imaging) on the size, stage, and other parameters of renal cell carcinomas at the time of first diagnosis. We reviewed retrospectively the records of 203 patients who underwent operations at our institutions from 1973 to 1999. All the patients suffered from renal cell carcinoma. With this study we attempted to answer four questions regarding changes over this time span: (1) have new imaging techniques lead to a reduction in the median diameter of the tumor upon first diagnosis, (2) has the tumor stage decreased due to earlier diagnosis, (3) is there any correlation between tumor size and tumor stage, and (4) are the patient's early diagnoses at a younger age? Other parameters such as infiltration of the renal pelvis and the cell type were also examined. The tumor size and stage at the time of diagnosis and treatment are positively correlated, and both decrease significantly over the time span examined. There is also a strong association between tumor size and infiltration of the renal pelvis. The median age of the patients did not significantly change over time. The wider use of improved imaging techniques has significantly changed the clinical appearance of the renal cell carcinoma. The question is whether these techniques have also affected the prognosis of the disease.

  9. Renal Cyst Pseudoenhancement: Intraindividual Comparison Between Virtual Monochromatic Spectral Images and Conventional Polychromatic 120-kVp Images Obtained During the Same CT Examination and Comparisons Among Images Reconstructed Using Filtered Back Projection, Adaptive Statistical Iterative Reconstruction, and Model-Based Iterative Reconstruction

    PubMed Central

    Yamada, Yoshitake; Yamada, Minoru; Sugisawa, Koichi; Akita, Hirotaka; Shiomi, Eisuke; Abe, Takayuki; Okuda, Shigeo; Jinzaki, Masahiro

    2015-01-01

    Abstract The purpose of this study was to compare renal cyst pseudoenhancement between virtual monochromatic spectral (VMS) and conventional polychromatic 120-kVp images obtained during the same abdominal computed tomography (CT) examination and among images reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR). Our institutional review board approved this prospective study; each participant provided written informed consent. Thirty-one patients (19 men, 12 women; age range, 59–85 years; mean age, 73.2 ± 5.5 years) with renal cysts underwent unenhanced 120-kVp CT followed by sequential fast kVp-switching dual-energy (80/140 kVp) and 120-kVp abdominal enhanced CT in the nephrographic phase over a 10-cm scan length with a random acquisition order and 4.5-second intervals. Fifty-one renal cysts (maximal diameter, 18.0 ± 14.7 mm [range, 4–61 mm]) were identified. The CT attenuation values of the cysts as well as of the kidneys were measured on the unenhanced images, enhanced VMS images (at 70 keV) reconstructed using FBP and ASIR from dual-energy data, and enhanced 120-kVp images reconstructed using FBP, ASIR, and MBIR. The results were analyzed using the mixed-effects model and paired t test with Bonferroni correction. The attenuation increases (pseudoenhancement) of the renal cysts on the VMS images reconstructed using FBP/ASIR (least square mean, 5.0/6.0 Hounsfield units [HU]; 95% confidence interval, 2.6–7.4/3.6–8.4 HU) were significantly lower than those on the conventional 120-kVp images reconstructed using FBP/ASIR/MBIR (least square mean, 12.1/12.8/11.8 HU; 95% confidence interval, 9.8–14.5/10.4–15.1/9.4–14.2 HU) (all P < .001); on the other hand, the CT attenuation values of the kidneys on the VMS images were comparable to those on the 120-kVp images. Regardless of the reconstruction algorithm, 70-keV VMS images showed

  10. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  11. Dynamic deformation image de-blurring and image processing for digital imaging correlation measurement

    NASA Astrophysics Data System (ADS)

    Guo, X.; Li, Y.; Suo, T.; Liu, H.; Zhang, C.

    2017-11-01

    This paper proposes a method for de-blurring of images captured in the dynamic deformation of materials. De-blurring is achieved based on the dynamic-based approach, which is used to estimate the Point Spread Function (PSF) during the camera exposure window. The deconvolution process involving iterative matrix calculations of pixels, is then performed on the GPU to decrease the time cost. Compared to the Gauss method and the Lucy-Richardson method, it has the best result of the image restoration. The proposed method has been evaluated by using the Hopkinson bar loading system. In comparison to the blurry image, the proposed method has successfully restored the image. It is also demonstrated from image processing applications that the de-blurring method can improve the accuracy and the stability of the digital imaging correlation measurement.

  12. Disappearing renal calculus.

    PubMed

    Cui, Helen; Thomas, Johanna; Kumar, Sunil

    2013-04-10

    We present a case of a renal calculus treated solely with antibiotics which has not been previously reported in the literature. A man with a 17 mm lower pole renal calculus and concurrent Escherichia coli urine infection was being worked up to undergo percutaneous nephrolithotomy. However, after a course of preoperative antibiotics the stone was no longer seen on retrograde pyelography or CT imaging.

  13. Disappearing renal calculus

    PubMed Central

    Cui, Helen; Thomas, Johanna; Kumar, Sunil

    2013-01-01

    We present a case of a renal calculus treated solely with antibiotics which has not been previously reported in the literature. A man with a 17 mm lower pole renal calculus and concurrent Escherichia coli urine infection was being worked up to undergo percutaneous nephrolithotomy. However, after a course of preoperative antibiotics the stone was no longer seen on retrograde pyelography or CT imaging. PMID:23580676

  14. [Small renal mass].

    PubMed

    Prokofiev, D; Kreutzer, N; Kress, A; Wissing, F; Pfeifer, H; Stolzenburg, J-U; Dietel, A; Schwalenberg, T; Do, M; Truß, M C

    2012-10-01

    The frequent application of ultrasound and radiological imaging for non-urological indications in recent years has resulted in an increase in the diagnosis of small renal masses. The treatment options for patients with a small renal mass include active surveillance, surgery (both open and minimally invasive) as well as ablative techniques. As there is a risk for metastatic spread even in small renal masses surgical extirpation remains the treatment of choice in most patients. Ablative procedures, such as cryoablation and radiofrequency ablation are appropriate for old and multi-morbid patients who require active treatment of a small renal mass. Active surveillance is an alternative for high-risk patients. Meticulous patient selection by the urologist and patient preference will determine the choice of treatment option in the future.

  15. Renal perfusion index reflects cardiac systolic function in chronic cardio-renal syndrome.

    PubMed

    Lubas, Arkadiusz; Ryczek, Robert; Kade, Grzegorz; Niemczyk, Stanisław

    2015-04-17

    Cardiac dysfunction can modify renal perfusion, which is crucial to maintain sufficient kidney tissue oxygenation. Renal cortex perfusion assessed by dynamic ultrasound method is related both to renal function and cardiac hemodynamics. The aim of the study was to test the hypothesis that Renal Perfusion Index (RPI) can more closely reflect cardiac hemodynamics and differentiate etiology of chronic cardio-renal syndrome. Twenty-four patients with hypertension and chronic kidney disease (CKD) at 2-4 stage (12 with hypertensive nephropathy and 12 with CKD prior to hypertension) were enrolled in the study. Blood tests, 24-h ABPM, echocardiography, and ultrasonography with estimation of Total renal Cortical Perfusion intensity and Renal Perfusion Index (RPI) were performed. In the group of all patients, RPI correlated with left ventricular stoke volume (LVSV), and cardiac index, but not with markers of renal function. In multiple stepwise regression analysis CKD-EPI(Cys-Cr) (b=-0.360), LVSV (b=0.924) and MAP (b=0.376) together independently influenced RPI (R2=0.74; p<0.0001). RPI<0.567 allowed for the identification of patients with chronic cardio-renal syndrome with sensitivity of 41.7% and specificity of 83.3%. Renal perfusion index relates more strongly to cardiac output than to renal function, and could be helpful in recognizing chronic cardio-renal syndrome. Applicability of RPI in diagnosing early abnormalities in the cardio-renal axis requires further investigation.

  16. Renal cell carcinoma containing abundant non-calcified fat.

    PubMed

    Wasser, Elliot J; Shyn, Paul B; Riveros-Angel, Marcela; Sadow, Cheryl A; Steele, Graeme S; Silverman, Stuart G

    2013-06-01

    Renal masses found to contain macroscopic fatty elements on CT or MRI imaging can generally be classified as benign angiomyolipomas. Rarely, renal cell carcinomas may also contain evidence of macroscopic fat. When true adipocytic elements are present, this is generally due to a process of osseous metaplasia in which both fat cells and calcification are co-localized within the mass. We present a patient with a large papillary renal cell carcinoma containing abundant fat with sparse, punctate calcification remote from the fatty elements on imaging. This report highlights the need for radiologists to maintain caution when diagnosing renal angiomyolipomas on the basis of macroscopic fat and reviews the current literature on fat-containing renal masses.

  17. Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects.

    PubMed

    Geist, Barbara K; Baltzer, Pascal; Fueger, Barbara; Hamboeck, Martina; Nakuz, Thomas; Papp, Laszlo; Rasul, Sazan; Sundar, Lalith Kumar Shiyam; Hacker, Marcus; Staudenherz, Anton

    2018-05-09

    A method was developed to assess the kidney parameters glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) from 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG) concentration behavior in kidneys, measured with positron emission tomography (PET) scans. Twenty-four healthy adult subjects prospectively underwent dynamic simultaneous PET/magnetic resonance imaging (MRI) examination. Time activity curves (TACs) were obtained from the dynamic PET series, with the guidance of MR information. Patlak analysis was performed to determine the GFR, and based on integrals, ERPF was calculated. Results were compared to intra-individually obtained reference values determined from venous blood samples. Total kidney GFR and ERPF as estimated by dynamic PET/MRI were highly correlated to their reference values (r = 0.88/p < 0.0001 and r = 0.82/p < 0.0001, respectively) with no significant difference between their means. The study is a proof of concept that GFR and ERPF can be assessed with dynamic FDG PET/MRI scans in healthy kidneys. This has advantages for patients getting a routine scan, where additional examinations for kidney function estimation could be avoided. Further studies are required for transferring this PET/MRI method to PET/CT applications.

  18. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility.

    PubMed

    Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky

    2014-06-01

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.

  19. Arterial Transit Time-corrected Renal Blood Flow Measurement with Pulsed Continuous Arterial Spin Labeling MR Imaging.

    PubMed

    Shimizu, Kazuhiro; Kosaka, Nobuyuki; Fujiwara, Yasuhiro; Matsuda, Tsuyoshi; Yamamoto, Tatsuya; Tsuchida, Tatsuro; Tsuchiyama, Katsuki; Oyama, Nobuyuki; Kimura, Hirohiko

    2017-01-10

    The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99m Tc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL-MRI as debated in brain imaging.

  20. Application of Onyx for Renal Arteriovenous Malformation With First Case Report of a Renal Hyperdense Striation Sign

    PubMed Central

    Juan, Yu-Hsiang; Lin, Yu-Ching; Sheng, Ting-Wen; Cheung, Yun-Chung; Ng, Shu-Hang; Yu, Chin-Wei; Wong, Ho-Fai

    2015-01-01

    Abstract Onyx is an emerging treatment modality for visceral vascular malformations, especially in cases in which delicate nidal penetration of the arteriovenous malformation (AVM) is desired. A computed tomography (CT) image presentation of hyperdense striations along the renal medulla secondary to the tantalum powder has not been previously reported. A 65-year-old woman presented to our institution with intermittent gross hematuria and left flank pain for 10 days. Both CT and conventional angiographies confirmed cirsoid-type renal AVM, which was successfully treated with Onyx. Follow-up CT after treatment revealed presence of hyperdense striations along the renal medulla, which resolved during later image follow-up. Despite its frequent usage in neural intervention, the application of Onyx in visceral AVM is gradually gaining interest, especially in cases in which delicate nidal penetration of the AVM is desired. Renal hyperdense striation sign should be recognized to avoid confusion with embolizer migration, and further studies in patients with renal function impairment may be helpful in understanding its influence of renal function. PMID:26426661

  1. [A computer tomography assisted method for the automatic detection of region of interest in dynamic kidney images].

    PubMed

    Jing, Xueping; Zheng, Xiujuan; Song, Shaoli; Liu, Kai

    2017-12-01

    Glomerular filtration rate (GFR), which can be estimated by Gates method with dynamic kidney single photon emission computed tomography (SPECT) imaging, is a key indicator of renal function. In this paper, an automatic computer tomography (CT)-assisted detection method of kidney region of interest (ROI) is proposed to achieve the objective and accurate GFR calculation. In this method, the CT coronal projection image and the enhanced SPECT synthetic image are firstly generated and registered together. Then, the kidney ROIs are delineated using a modified level set algorithm. Meanwhile, the background ROIs are also obtained based on the kidney ROIs. Finally, the value of GFR is calculated via Gates method. Comparing with the clinical data, the GFR values estimated by the proposed method were consistent with the clinical reports. This automatic method can improve the accuracy and stability of kidney ROI detection for GFR calculation, especially when the kidney function has been severely damaged.

  2. Robust image registration for multiple exposure high dynamic range image synthesis

    NASA Astrophysics Data System (ADS)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  3. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls.

    PubMed

    Toriihara, Akira; Kitazume, Yoshio; Nishida, Hidenori; Kubota, Kazunori; Nakadate, Masashi; Tateishi, Ukihide

    2015-01-01

    The whole-body 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) distribution in chronic renal failure (CRF) patients on hemodialysis would be different from that in subjects with normal renal function, because they lack urinary FDG excretion and remain in a constant volume overload. We evaluated the difference in the physiological uptake pattern of FDG between chronic renal failure patients on hemodialysis and control subjects. The subjects for this retrospective study consisted of 24 chronic renal failure patients on hemodialysis (HD group) and 24 age- and sex-matched control subjects (NC group). Standardized uptake values normalized by the body weight (SUVbw), ideal body weight (SUVibw), lean body mass (SUVlbm), and body surface area (SUVbsa) in the cerebellum, lungs, liver, gluteal muscles and subcutaneous fat, spleen, thoracolumbar spine, thoracic and abdominal aorta, and right atrium were calculated in positron emission tomography/computed tomography (PET/CT) images. SUVbw in the gluteal muscles, subcutaneous fat, spleen and right atrium was significantly higher in the HD group as compared to that in the NC group (p < 0.05; unpaired t test). In addition, SUVibm, SUVlbm, as well as SUVbsa in the abdominal aorta were significantly higher in the HD group as compared to those in the NC group (p < 0.05; unpaired t test). In conclusion, as compared to normal subjects, chronic renal failure patients on hemodialysis show significantly higher physiological FDG uptake in the soft tissues, spleen and blood pool.

  4. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls

    PubMed Central

    Toriihara, Akira; Kitazume, Yoshio; Nishida, Hidenori; Kubota, Kazunori; Nakadate, Masashi; Tateishi, Ukihide

    2015-01-01

    The whole-body 2-deoxy-2-[18F]fluoro-D-glucose (FDG) distribution in chronic renal failure (CRF) patients on hemodialysis would be different from that in subjects with normal renal function, because they lack urinary FDG excretion and remain in a constant volume overload. We evaluated the difference in the physiological uptake pattern of FDG between chronic renal failure patients on hemodialysis and control subjects. The subjects for this retrospective study consisted of 24 chronic renal failure patients on hemodialysis (HD group) and 24 age- and sex-matched control subjects (NC group). Standardized uptake values normalized by the body weight (SUVbw), ideal body weight (SUVibw), lean body mass (SUVlbm), and body surface area (SUVbsa) in the cerebellum, lungs, liver, gluteal muscles and subcutaneous fat, spleen, thoracolumbar spine, thoracic and abdominal aorta, and right atrium were calculated in positron emission tomography/computed tomography (PET/CT) images. SUVbw in the gluteal muscles, subcutaneous fat, spleen and right atrium was significantly higher in the HD group as compared to that in the NC group (p < 0.05; unpaired t test). In addition, SUVibm, SUVlbm, as well as SUVbsa in the abdominal aorta were significantly higher in the HD group as compared to those in the NC group (p < 0.05; unpaired t test). In conclusion, as compared to normal subjects, chronic renal failure patients on hemodialysis show significantly higher physiological FDG uptake in the soft tissues, spleen and blood pool. PMID:25973341

  5. Personalized design and virtual evaluation of physician-modified stent grafts for juxta-renal abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Sanathkhani, Soroosh; Shroff, Sanjeev G.; Menon, Prahlad G.

    2017-02-01

    Endovascular aneurysm repair (EVAR) of juxtarenal aortic aneurysms (JAA) is particularly challenging owing to the requirement of suprarenal EVAR graft fixation, which has been associated with significant declines in long term renal function. Therefore, the ability to design fenestrated EVAR grafts on a personalized basis in order to ensure visceral and renal perfusion, is highly desirable. The objectives of this study are: a) To demonstrate novel 3D geometric methods to virtually design and deploy EVAR grafts into a virtually designed JAA, by applying a custom surface mesh deformation tool to a patient-specific descending aortic model reconstructed from computed tomographic (CT) images; and b) To virtually evaluate patient-specific renal flow and wall stresses in these patient-specific virtually EVAR geometries, using computational fluid dynamics (CFD). The presented framework may provide the modern cardiovascular surgeon the ability to leverage non-invasive, pre-operative imaging equipment to personalize and guide EVAR therapeutic strategy. Our CFD studies revealed that virtual EVAR grafting of a patient-specific JAA, with optimal fenestration sites and renal stenting, led to a 179.67±15.95% and 1051.43±18.34% improvement in right and left renal flow rates, respectively, when compared with the baseline patient-specific aortic geometry with renal stenoses, whereas a right and left renal flow improved by 36.44±2.24% and 885.93±12.41%, respectively, relative to the equivalently modeled JAA with renal stenoses, considering averages across the three simulated inflow rate cases. The proposed framework have utility to iteratively optimize suprarenal EVAR fixation length and achieve normal renal wall shear stresses and streamlined juxtarenal hemodynamics.

  6. Diagnostic accuracy of a volume-rendered computed tomography movie and other computed tomography-based imaging methods in assessment of renal vascular anatomy for laparoscopic donor nephrectomy.

    PubMed

    Yamamoto, Shingo; Tanooka, Masao; Ando, Kumiko; Yamano, Toshiko; Ishikura, Reiichi; Nojima, Michio; Hirota, Shozo; Shima, Hiroki

    2009-12-01

    To evaluate the diagnostic accuracy of computed tomography (CT)-based imaging methods for assessing renal vascular anatomy, imaging studies, including standard axial CT, three-dimensional volume-rendered CT (3DVR-CT), and a 3DVR-CT movie, were performed on 30 patients who underwent laparoscopic donor nephrectomy (10 right side, 20 left side) for predicting the location of the renal arteries and renal, adrenal, gonadal, and lumbar veins. These findings were compared with videos obtained during the operation. Two of 37 renal arteries observed intraoperatively were missed by standard axial CT and 3DVR-CT, whereas all arteries were identified by the 3DVR-CT movie. Two of 36 renal veins were missed by standard axial CT and 3DVR-CT, whereas 1 was missed by the 3DVR-CT movie. In 20 left renal hilar anatomical structures, 20 adrenal, 20 gonadal, and 22 lumbar veins were observed during the operation. Preoperatively, the standard axial CT, 3DVR-CT, and 3DVR-CT movie detected 11, 19, and 20 adrenal veins; 13, 14, and 19 gonadal veins; and 6, 11, and 15 lumbar veins, respectively. Overall, of 135 renal vascular structures, the standard axial CT, 3DVR-CT, and 3DVR-CT movie accurately detected 99 (73.3%), 113 (83.7%), and 126 (93.3%) vessels, respectively, which indicated that the 3DVR-CT movie demonstrated a significantly higher detection rate than other CT-based imaging methods (P < 0.05). The 3DVR-CT movie accurately provides essential information about the renal vascular anatomy before laparoscopic donor nephrectomy.

  7. Dynamic image reconstruction: MR movies from motion ghosts.

    PubMed

    Xiang, Q S; Henkelman, R M

    1992-01-01

    It has been previously shown that an image with motion ghost artifacts can be decomposed into a ghost mask superimposed over a ghost-free image. The present study demonstrates that the ghost components carry useful dynamic information and should not be discarded. Specifically, ghosts of different orders indicate the intensity and phase of the corresponding harmonics contained in the quasi-periodically varying spin-density distribution. A summation of the ghosts weighted by appropriate temporal phase factors can give a time-dependent dynamic image that is a movie of the object motion. This dynamic image reconstruction technique does not necessarily require monitoring of the motion and thus is easy to implement and operate. It also has a shorter imaging time than point-by-point imaging of temporal variation, because the periodic motion is more efficiently sampled with a limited number of harmonics recorded in the motion ghosts. This technique was tested in both moving phantoms and volunteers. It is believed to be useful for dynamic imaging of time-varying anatomic structures, such as in the cardiovascular system.

  8. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment.

    PubMed

    Saeed, Maythem; Krug, Roland; Do, Loi; Hetts, Steven W; Wilson, Mark W

    2016-03-28

    To use magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU), magnetic resonance imaging (MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication (n = 24) using a 3T-MRg-HIFU (1.1 MHz frequency and 3000J-4400J energies). T2-weighted fast spin echo (T2-W), perfusion saturation recovery gradient echo and contrast enhanced (CE) T1-weighted (T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student's t-test was used and a P-value < 0.05 was considered statistically significant. Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or non-CE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images in vivo (0.12-0.36 cm(3) for single sonication 3000J, 0.50-0.84 cm(3), for double 3000J, 0.75-0.78 cm(3) for single 4400J and 0.12-2.65 cm(3) for double 4400J) and at postmortem (0.23-0.52 cm(3), 0.25-0.82 cm(3), 0.45-0.68 cm(3) and 0.29-1.80 cm(3), respectively) were comparable. The ablated volumes on 3000J and 4400J double sonication were significantly larger than single (P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively. Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI.

  9. Overcoming Dynamic Disturbances in Imaging Systems

    NASA Technical Reports Server (NTRS)

    Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian

    2000-01-01

    We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optomechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel

  10. Overcoming Dynamic Disturbances in Imaging Systems

    NASA Technical Reports Server (NTRS)

    Young, Eric W.; Dente, Gregory C.; Lyon, Richard G.; Chesters, Dennis; Gong, Qian

    2000-01-01

    We develop and discuss a methodology with the potential to yield a significant reduction in complexity, cost, and risk of space-borne optical systems in the presence of dynamic disturbances. More robust systems almost certainly will be a result as well. Many future space-based and ground-based optical systems will employ optical control systems to enhance imaging performance. The goal of the optical control subsystem is to determine the wavefront aberrations and remove them. Ideally reducing an aberrated image of the object under investigation to a sufficiently clear (usually diffraction-limited) image. Control will likely be distributed over several elements. These elements may include telescope primary segments, telescope secondary, telescope tertiary, deformable mirror(s), fine steering mirror(s), etc. The last two elements, in particular, may have to provide dynamic control. These control subsystems may become elaborate indeed. But robust system performance will require evaluation of the image quality over a substantial range and in a dynamic environment. Candidate systems for improvement in the Earth Sciences Enterprise could include next generation Landsat systems or atmospheric sensors for dynamic imaging of individual, severe storms. The technology developed here could have a substantial impact on the development of new systems in the Space Science Enterprise; such as the Next Generation Space Telescope(NGST) and its follow-on the Next NGST. Large Interferometric Systems of non-zero field, such as Planet Finder and Submillimeter Probe of the Evolution of Cosmic Structure, could benefit. These systems most likely will contain large, flexible optormechanical structures subject to dynamic disturbance. Furthermore, large systems for high resolution imaging of planets or the sun from space may also benefit. Tactical and Strategic Defense systems will need to image very small targets as well and could benefit from the technology developed here. We discuss a novel

  11. Penrose high-dynamic-range imaging

    NASA Astrophysics Data System (ADS)

    Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian

    2016-05-01

    High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.

  12. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    PubMed

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change. DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  13. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    PubMed Central

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change. Conclusion DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  14. 3D element imaging using NSECT for the detection of renal cancer: a simulation study in MCNP.

    PubMed

    Viana, R S; Agasthya, G A; Yoriyaz, H; Kapadia, A J

    2013-09-07

    This work describes a simulation study investigating the application of neutron stimulated emission computed tomography (NSECT) for noninvasive 3D imaging of renal cancer in vivo. Using MCNP5 simulations, we describe a method of diagnosing renal cancer in the body by mapping the 3D distribution of elements present in tumors using the NSECT technique. A human phantom containing the kidneys and other major organs was modeled in MCNP5. The element composition of each organ was based on values reported in literature. The two kidneys were modeled to contain elements reported in renal cell carcinoma (RCC) and healthy kidney tissue. Simulated NSECT scans were executed to determine the 3D element distribution of the phantom body. Elements specific to RCC and healthy kidney tissue were then analyzed to identify the locations of the diseased and healthy kidneys and generate tomographic images of the tumor. The extent of the RCC lesion inside the kidney was determined using 3D volume rendering. A similar procedure was used to generate images of each individual organ in the body. Six isotopes were studied in this work - (32)S, (12)C, (23)Na, (14)N, (31)P and (39)K. The results demonstrated that through a single NSECT scan performed in vivo, it is possible to identify the location of the kidneys and other organs within the body, determine the extent of the tumor within the organ, and to quantify the differences between cancer and healthy tissue-related isotopes with p ≤ 0.05. All of the images demonstrated appropriate concentration changes between the organs, with some discrepancy observed in (31)P, (39)K and (23)Na. The discrepancies were likely due to the low concentration of the elements in the tissue that were below the current detection sensitivity of the NSECT technique.

  15. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    PubMed

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  16. High Dynamic Range Imaging Using Multiple Exposures

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  17. Anatomic characteristics and natural history of renal artery aneurysms during longitudinal imaging surveillance.

    PubMed

    Wayne, Erik J; Edwards, Matthew S; Stafford, Jeanette M; Hansen, Kimberley J; Corriere, Matthew A

    2014-08-01

    Renal artery aneurysms (RAAs) are uncommon, and rates of growth and rupture are unknown. Limited evidence therefore exists to guide clinical management of RAAs, particularly small aneurysms that are asymptomatic. To further characterize the natural history of RAAs, we studied anatomic characteristics and changes in diameter during imaging surveillance. Patients evaluated for native RAAs at a single institution during a 5-year period (July 2008 to July 2013) were identified and analyzed retrospectively. Patients with two or more cross-sectional imaging studies (computed tomography or magnetic resonance imaging) more than 1 month apart were included. Demographic and clinical data were collected from medical records, and anatomic data (including aneurysm diameter, calcification, and location) were obtained from electronic images. Changes in RAA diameters over time were evaluated by plots and Wilcoxon signed rank tests. Sixty-eight RAAs in 55 patients were analyzed. Median follow-up was 19.4 months (interquartile range, 11.2-49.0 months). Mean age at presentation was 61.8 ± 9.8 years, and 73% of patients were women. Hypertension was prevalent among 73% of patients. Multiple RAAs were present in 18% of patients, and 24% also had arterial aneurysms of other splanchnic or iliac vessels. The majority of RAAs were calcified and located at the main renal artery bifurcation. Mean initial aneurysm diameter was 16.0 ± 6.4 mm. Median annualized growth rate was 0.06 mm (interquartile range, -0.07 to 0.33 mm; P = .11). No RAA ruptures or acute symptoms occurred during surveillance, and 10.3% of RAAs were repaired electively. Risk of short-term RAA growth or rupture was low. These findings suggest that annual (or less frequent) imaging surveillance is safe in the majority of patients and do not support pre-emptive repair of asymptomatic, small-diameter RAAs. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  18. Imaging of hemorrhagic fever with renal syndrome: a potential bioterrorism agent of military significance.

    PubMed

    Bui-Mansfield, Liem T; Cressler, Dana K

    2011-11-01

    Hemorrhagic fever with renal syndrome (HFRS) is a potentially fatal infectious disease with worldwide distribution. Its etiologic agents are viruses of the genus Hantavirus of the virus family Bunyaviridae. Hypothetical ease of production and distribution of these agents, with their propensity to incapacitate victims and overwhelm health care resources, lend themselves as significant potential biological agents of terrorism. HFRS has protean clinical manifestations, which may mimic upper respiratory tract infection, nephrolithiasis, and Hantavirus pulmonary syndrome and may delay proper treatment. Sequelae of HFRS, such as hemorrhage, acute renal failure, retroperitoneal edema, pancreatitis, pulmonary edema, and neurologic symptoms, can be detected by different imaging modalities. Medical providers caring for HFRS patients must be aware of its radiologic features, which may help to confirm its clinical diagnosis. In this article, the authors review the epidemiology, pathophysiology, clinical presentation, diagnosis, treatment, and complications of HFRS.

  19. A randomised controlled trial evaluating renal protective effects of selenium with vitamins A, C, E, verapamil, and losartan against extracorporeal shockwave lithotripsy-induced renal injury.

    PubMed

    El-Nahas, Ahmed R; Elsaadany, Mohamed M; Taha, Diaa-Eldin; Elshal, Ahmed M; El-Ghar, Mohamed Abo; Ismail, Amani M; Elsawy, Essam A; Saleh, Hazem H; Wafa, Ehab W; Awadalla, Amira; Barakat, Tamer S; Sheir, Khaled Z

    2017-01-01

    To evaluate the protective effects of selenium with vitamins A, C and E (selenium ACE, i.e. antioxidants), verapamil (calcium channel blocker), and losartan (angiotensin receptor blocker) against extracorporeal shockwave lithotripsy (ESWL)-induced renal injury. A randomised controlled trial was conducted between August 2012 and February 2015. Inclusion criteria were adult patients with a single renal stone (<2 cm) suitable for ESWL. Patients with diabetes, hypertension, congenital renal anomalies, moderate or marked hydronephrosis, or preoperative albuminuria (>300 mg/L) were excluded. ESWL was performed using the electromagnetic DoLiS lithotripter. Eligible patients were randomised into one of four groups using sealed closed envelopes: Group1, control; Group 2, selenium ACE; Group 3, losartan; and Group 4, verapamil. Albuminuria and urinary neutrophil gelatinase-associated lipocalin (uNGAL) were estimated after 2-4 h and 1 week after ESWL. The primary outcome was differences between albuminuria and uNGAL. Dynamic contrast-enhanced magnetic resonance imaging was performed before ESWL, and at 2-4 h and 1 week after ESWL to compare changes in renal perfusion. Of 329 patients assessed for eligibility, the final analysis comprised 160 patients (40 in each group). Losartan was the only medication that showed significantly lower levels of albuminuria after 1 week (P < 0.001). For perfusion changes, there was a statistically significant decrease in the renal perfusion in patients with obstructed kidneys in comparison to before ESWL (P = 0.003). These significant changes were present in the control or antioxidant group, whilst in the losartan and verapamil groups renal perfusion was not significantly decreased. Losartan was found to protect the kidney against ESWL-induced renal injury by significantly decreasing post-ESWL albuminuria. Verapamil and losartan maintained renal perfusion in patients with post-ESWL renal obstruction. © 2016 The Authors BJU International

  20. CT angiography of the renal arteries and veins: normal anatomy and variants.

    PubMed

    Hazırolan, Tuncay; Öz, Meryem; Türkbey, Barış; Karaosmanoğlu, Ali Devrim; Oğuz, Berna Sayan; Canyiğit, Murat

    2011-03-01

    Conventional angiography has long been regarded as gold standard imaging modality for evaluation of the renal vasculature. Introduction of multidetector computed tomography (MDCT) angiography had a groundbreaking impact on evaluation of the renal vessels and is gradually replacing conventional angiography as standard imaging. Herein, we review and illustrate the normal and variant anatomy of renal vessels with special emphasis on imaging protocols and reconstruction techniques in MDCT.

  1. Color transfer between high-dynamic-range images

    NASA Astrophysics Data System (ADS)

    Hristova, Hristina; Cozot, Rémi; Le Meur, Olivier; Bouatouch, Kadi

    2015-09-01

    Color transfer methods alter the look of a source image with regards to a reference image. So far, the proposed color transfer methods have been limited to low-dynamic-range (LDR) images. Unlike LDR images, which are display-dependent, high-dynamic-range (HDR) images contain real physical values of the world luminance and are able to capture high luminance variations and finest details of real world scenes. Therefore, there exists a strong discrepancy between the two types of images. In this paper, we bridge the gap between the color transfer domain and the HDR imagery by introducing HDR extensions to LDR color transfer methods. We tackle the main issues of applying a color transfer between two HDR images. First, to address the nature of light and color distributions in the context of HDR imagery, we carry out modifications of traditional color spaces. Furthermore, we ensure high precision in the quantization of the dynamic range for histogram computations. As image clustering (based on light and colors) proved to be an important aspect of color transfer, we analyze it and adapt it to the HDR domain. Our framework has been applied to several state-of-the-art color transfer methods. Qualitative experiments have shown that results obtained with the proposed adaptation approach exhibit less artifacts and are visually more pleasing than results obtained when straightforwardly applying existing color transfer methods to HDR images.

  2. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

    PubMed

    Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C

    2015-08-01

    Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research

  3. Solid renal masses in adults

    PubMed Central

    Mittal, Mahesh Kumar; Sureka, Binit

    2016-01-01

    With the ever increasing trend of using cross-section imaging in today's era, incidental detection of small solid renal masses has dramatically multiplied. Coincidentally, the number of asymptomatic benign lesions being detected has also increased. The role of radiologists is not only to identify these lesions, but also go a one step further and accurately characterize various renal masses. Earlier detection of small renal cell carcinomas means identifying at the initial stage which has an impact on prognosis, patient management and healthcare costs. In this review article we share our experience with the typical and atypical solid renal masses encountered in adults in routine daily practice. PMID:28104933

  4. Parametric imaging of clear cell and papillary renal cell carcinoma using contrast-enhanced ultrasound (CEUS).

    PubMed

    Rübenthaler, J; Reimann, R; Hristova, P; Staehler, M; Reiser, M; Clevert, D A

    2015-10-16

    The aim of this study was to analyse clear cell and papillary renal cell carcinoma (RCC) examined with contrast-enhanced ultrasound (CEUS) and a second generation blood pool agent (SonoVue®, Bracco, Milan, Italy) before clinical intervention. A total of 41 patients with histologically proven subtypes of RCC were examined. 29 patients had a clear cell RCC and 12 patients showed a papillary RCC. Average size in the clear cell RCC group was 6.07 cm and 1.88 cm in the papillary RCC group. An experienced radiologist examined all patients with CEUS. The following parameters were analysed: maximum signal intensity (PEAK), time elapsed until PEAK is reached (MTT), local blood flow (RBF), area under the time intensity curve (AUC) and the signal intensity (SI) during the course of time. For both groups all comparisons were made based on healthy renal parenchyma. In the clear cell RCC significant differences (significance level p < 0.05) between cancerous tissue and the healthy renal parenchyma were noticed in all four parameters. The clear cell RCC showed a significant reduced blood volume. It reached the PEAK reading relatively rapidly and its signal intensity was always lower than that of the healthy renal parenchyma. In the arterial phase retarded absorption of the contrast agent was observed, followed by fast washing out of the contrast agent bubbles.In the papillary RCC group, significant findings as to PEAK and RBF as well as a slightly significant difference as to AUC were recorded. The papillary RCC had a lower blood supply and reached its PEAK reading later. Its signal intensity was also reduced. The signal intensity of papillary NCC was significantly lower compared with clear cell RCC; absorption and washing out of the contrast agent was delayed. CEUS seems to be an useful additional method to clinically differentiate between clear cell and papillary RCC. In daily clinical use, patients with contraindication for other imaging methods, especially the

  5. Effects of Renal Denervation on Renal Artery Function in Humans: Preliminary Study

    PubMed Central

    Doltra, Adelina; Hartmann, Arthur; Stawowy, Philipp; Goubergrits, Leonid; Kuehne, Titus; Wellnhofer, Ernst; Gebker, Rolf; Schneeweis, Christopher; Schnackenburg, Bernhard; Esler, Murray; Fleck, Eckart; Kelle, Sebastian

    2016-01-01

    Aim To study the effects of RD on renal artery wall function non-invasively using magnetic resonance. Methods and Results 32 patients undergoing RD were included. A 3.0 Tesla magnetic resonance of the renal arteries was performed before RD and after 6-month. We quantified the vessel sharpness of both renal arteries using a quantitative analysis tool (Soap-Bubble®). In 17 patients we assessed the maximal and minimal cross-sectional area of both arteries, peak velocity, mean flow, and renal artery distensibility. In a subset of patients wall shear stress was assessed with computational flow dynamics. Neither renal artery sharpness nor renal artery distensibility differed significantly. A significant increase in minimal and maximal areas (by 25.3%, p = 0.008, and 24.6%, p = 0.007, respectively), peak velocity (by 16.9%, p = 0.021), and mean flow (by 22.4%, p = 0.007) was observed after RD. Wall shear stress significantly decreased (by 25%, p = 0.029). These effects were observed in blood pressure responders and non-responders. Conclusions RD is not associated with adverse effects at renal artery level, and leads to an increase in cross-sectional areas, velocity and flow and a decrease in wall shear stress. PMID:27003912

  6. Remote histology learning from static versus dynamic microscopic images.

    PubMed

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2016-05-06

    Histology is the study of microscopic structures in normal tissue sections. Curriculum redesign in medicine has led to a decrease in the use of optical microscopes during practical classes. Other imaging solutions have been implemented to facilitate remote learning. With advancements in imaging technologies, learning material can now be digitized. Digitized microscopy images can be presented in either a static or dynamic format. This study of remote histology education identifies whether dynamic pictures are superior to static images for the acquisition of histological knowledge. Test results of two cohorts of second-year Bachelor in Medicine students at Ghent University were analyzed in two consecutive academic years: Cohort 1 (n = 190) and Cohort 2 (n = 174). Students in Cohort 1 worked with static images whereas students in Cohort 2 were presented with dynamic images. ANCOVA was applied to study differences in microscopy performance scores between the two cohorts, taking into account any possible initial differences in prior knowledge. The results show that practical histology scores are significantly higher with dynamic images as compared to static images (F (1,361) = 15.14, P < 0.01), regardless of student's gender and performance level. Several reasons for this finding can be explained in accordance with cognitivist learning theory. Since the findings suggest that knowledge construction with dynamic pictures is stronger as compared to static images, dynamic images should be introduced in a remote setting for microscopy education. Further implementation within a larger electronic learning management system needs to be explored in future research. Anat Sci Educ 9: 222-230. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  7. Metabolic bone disease in chronic renal failure. II. Renal transplant patients.

    PubMed Central

    Huffer, W. E.; Kuzela, D.; Popovtzer, M. M.; Starzl, T. E.

    1975-01-01

    Trabecular vertebral bone of renal transplant patients was quantitatively compared with bone from normal individuals and dialyzed and nondialyzed patienets with chronic renal failure reported in detail in an earlier study. Long- and short-term transplant patients have increased bone resorption and mineralization defects similar to renal osteodystrophy in dialyzed and nondialyzed patients. However, in transplant patients the magnitude of resorption is greater, and bone volume tends to decrease rather than increase. Resorptive activity in transplant patients is maximal during the first year after transplantation. Bone volume decreases continuously for at least 96 months after transplantation. Only decreased bone volume correlated with success or failure of the renal transplant. Morphologic findings in this study correlate with other clinical and morphologic data to suggest that reduction in bone volume in transplant patients results from a combination of persistent hyperparathyroidism and suppression of bone formation by steroid therapy. Images Fig 1 PMID:1091152

  8. A case of septic pulmonary embolism associated with renal abscess mimicking pulmonary metastases of renal malignancy.

    PubMed

    Jung, Jo Sung; Lee, Sang Mi; Kim, Han Jo; Jang, Si-Hyong; Lee, Jeong Won

    2014-05-01

    We report the case of a 46-year-old woman with acute febrile symptom who had multiple pulmonary nodules and a renal mass. She underwent (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to find a hidden malignancy and the cause of her fever. FDG PET/CT images demonstrated a renal mass and multiple lung nodules with intense FDG uptake, which was suspicious of a renal malignancy with multiple pulmonary metastatic lesions. CT-guided biopsies of the pulmonary and renal lesions only showed chronic inflammatory infiltrates without evidence of malignancy. She was diagnosed with septic pulmonary embolism from a renal abscess. One month after antibiotic treatment, the follow-up chest and abdomen CT showed improvement of the lung and renal lesions. This is the first case demonstrating the FDG PET/CT finding of septic pulmonary embolism associated with renal abscess in the published literature.

  9. Unenhanced respiratory-gated magnetic resonance angiography (MRA) of renal artery in hypertensive patients using true fast imaging with steady-state precession technique compared with contrast-enhanced MRA.

    PubMed

    Zhang, Weisheng; Lin, Jiang; Wang, Shaowu; Lv, Peng; Wang, Lili; Liu, Hao; Chen, Caizhong; Zeng, Mengsu

    2014-01-01

    This study was aimed to evaluate the accuracy of "True Fast Imaging with Steady-State Precession" (TrueFISP) MR angiography (MRA) for diagnosis of renal arterial stenosis (RAS) in hypertensive patients. Twenty-two patients underwent both TrueFISP MRA and contrast-enhanced MRA (CE-MRA) on a 1.5-T MR imager. Volume of main renal arteries, length of maximal visible renal arteries, number of visualized branches, stenotic grade, and subjective quality were compared. Paired 2-tailed Student t test and Wilcoxon signed rank test were applied to evaluate the significance of these variables. Volume of main renal arteries, length of maximal visible renal arteries, and number of branches indicated no significant difference between the 2 techniques (P > 0.05). Stenotic degree of 10 RAS was greater on CE-MRA than on TrueFISP MRA. Qualitative scores from TrueFISP MRA were higher than those from CE-MRA (P < 0.05). TrueFISP MRA is a reliable and accurate method for evaluating RAS.

  10. Simultaneous extraction of centerlines, stenosis, and thrombus detection in renal CT angiography

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Durgan, Jacob; Hodgkiss, Thomas D.; Chandra, Shalabh

    2004-05-01

    The Renal Artery Stenosis (RAS) is the major cause of renovascular hypertension and CT angiography has shown tremendous promise as a noninvasive method for reliably detecting renal artery stenosis. The purpose of this study was to validate the semi-automated methods to assist in extraction of renal branches and characterizing the associated renal artery stenosis. Automatically computed diagnostic images such as straight MIP, curved MPR, cross-sections, and diameters from multi-slice CT are presented and evaluated for its acceptance. We used vessel-tracking image processing methods to extract the aortic-renal vessel tree in a CT data in axial slice images. Next, from the topology and anatomy of the aortic vessel tree, the stenosis, and thrombus section and branching of the renal arteries are extracted. The results are presented in curved MPR and continuously variable MIP images. In this study, 15 patients were scanned with contrast on Mx8000 CT scanner (Philips Medical Systems), with 1.0 mm thickness, 0.5mm slice spacing, and 120kVp and a stack of 512x512x150 volume sets were reconstructed. The automated image processing took less than 50 seconds to compute the centerline and borders of the aortic/renal vessel tree. The overall assessment of manual and automatically generated stenosis yielded a weighted kappa statistic of 0.97 at right renal arteries, 0.94 at the left renal branches. The thrombus region contoured manually and semi-automatically agreed upon at 0.93. The manual time to process each case is approximately 25 to 30 minutes.

  11. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    NASA Astrophysics Data System (ADS)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  12. [Differential diagnosis between renal cell carcinoma associated with XP11.2 translocation/TFE gene fusion and papillary renal cell carcinoma based on CT and MRI findings].

    PubMed

    Zhu, Qingqiang; Zhu, Wenrong; Wu, Jingtao; Fu, Jianxiong; Chen, Wenxin; Wang, Zhongqiu

    2014-05-20

    To comparative study of CT and MRI appearances in renal cell carcinoma associated with XP11.2 translocation/TFE gene fusion (XP11.2 RCC) and papillary renal cell carcinoma (PRCC). 12 patients with XP11.2 RCC and 18 patients with PRCC were retrospectively studied, and the data was analyzed by AVONA and chi-square text. 12 patients with XP11.2 RCC and 18 patients with PRCC, cystic components (2 vs 11, P < 0.05), calcification (0 vs 6, P < 0.05), hemorrhage (9 vs 5, P < 0.05), homogeneous enhancement (10 vs 7, P < 0.05) and had lymph node (3 vs 0) or hepatic metastasis (1vs 0) (P < 0.05). On unenhanced CT, the density of XP11.2 RCC was greater than PRCC, normal renal cortex or medulla (P < 0.05). Their degree of enhancement were less than normal renal cortex on all enhanced phases (P < 0.05). The enhancement degree of XP11.2 RCC was higher than PRCC (on all phases) and renal medulla (on cortical and medullary phase) (P < 0.05), but less than normal renal medulla on the delayed phase (P < 0.05). The enhancement degree of PRCC was lower than renal medulla on all phases (P < 0.05). The XP11.2 RCC was isointense on T1-weighted imaging, hypointense on T2-weighted imaging. The PRCC was isointense or hypointense on T1-weighted imaging, isointense on T2-weighted imaging. The CT and MRI could show imagings features of XP11.2 RCC and PRCC, and these features were helpful in predicting a specific subtype of renal cell carcinoma.

  13. Longitudinal changes in kidney parenchymal volume associated with renal artery stenting.

    PubMed

    Modrall, J Gregory; Timaran, Carlos H; Rosero, Eric B; Chung, Jayer; Plummer, Mitchell; Valentine, R James; Trimmer, Clayton

    2012-03-01

    This study assessed the longitudinal changes in renal volume after renal artery stenting (RAS) to determine if renal mass is preserved by stenting. The study cohort consisted of 38 patients with longitudinal imaging available for renal volume quantification before and after RAS. Renal volume was estimated as (kidney length) × (width) × (depth/2) based on preoperative renal imaging. For each patient, the clinical response of blood pressure (BP) and renal function to RAS was categorized according to modified American Heart Association guidelines. Changes in renal volume were assessed using paired nonparametric analyses. The cohort was a median age of 69 years (interquartile range [IQR], 60-74 years). A favorable BP response was observed in 11 of 38 patients (28.9%). At a median interval between imaging studies of 21 months (IQR, 13-32 months), ipsilateral renal volume was significantly increased from baseline (146.8 vs 133.8 cm(3);P = .02). This represents a 6.9% relative increase in ipsilateral kidney volume from baseline. A significant negative correlation between preoperative renal volume and the relative change in renal volume postoperatively (r = -0.42; P = .0055) suggests that smaller kidneys experienced the greatest gains in renal volume after stenting. It is noteworthy that the 25 patients with no change in BP or renal function-clinical failures using traditional definitions-experienced a 12% relative increase in ipsilateral renal volume after RAS. Multivariate analysis determined that stable or improved renal volume after stenting was an independent predictor of stable or improved long-term renal function (odds ratio, 0.008; 95% confidence interval, 0.000-0.206; P = .004). These data lend credence to the belief that RAS preserves renal mass in some patients. This benefit of RAS even extends to those patients who would be considered treatment failures by traditional definitions. Patients with stable or increased renal volume after RAS had more stable renal

  14. Renal calculi in primary hyperaldosteronism.

    PubMed Central

    Kabadi, U. M.

    1995-01-01

    Increased urinary calcium (Ca++) excretion and the presence of negative Ca++ balance is well documented in primary hyperaldosteronism. However, renal calculi as a major manifestation of this disorder has not previously been described. This report describes a patient who presented with renal calculi in association with primary hyperaldosteronism. We believe that primary hyperaldosteronism was a major pathogenetic factor in the formation of renal calculi since the increased urinary excretion of Ca++ and uric acid noted at onset declined following a short-term spironolactone administration and remission from renal calculi has persisted following initial nephrolithotomy and continued spironolactone therapy, which also corrected hypertension and hypokalemia, a hallmark of this disorder. Images Figure PMID:7479473

  15. Multifocal Renal Fungal Abscesses.

    PubMed

    Cho, Eric Y; Kaplan, Joshua R; Mamone, Linda; Mydlo, Jack H; Reese, Adam C

    2016-07-01

    We report a case of multiple fungal renal abscesses in a 36-year-old woman with a history of diabetes and intravenous substance use disorder. The patient presented with fever and hematuria, and was found to be bacteremic and fungemic. She was initially managed with broad-spectrum antibiotics and antifungals. She remained febrile and imaging on treatment day 14 showed no improvement of the renal abscesses. Thus, a nephrectomy was performed, after which the patient defervesced and follow-up blood cultures were negative. There is a paucity of literature regarding management of multifocal fungal renal abscesses that fail to respond to medical management. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. PET/CT in renal, bladder and testicular cancer

    PubMed Central

    Bouchelouche, Kirsten; Physician, Chief; Choyke, Peter L.

    2015-01-01

    Imaging plays an important role in the clinical management of cancer patients. Hybrid imaging with PET/CT is having a broad impact in oncology, and in recent years PET/CT is beginning to have an impact in uro-oncology as well. In both bladder and renal cancer there is a need to study the efficacy of other tracers than F-18 fluorodeoxyglucose (FDG), particularly tracers with only limited renal excretion. Thus, new tracers are being introduced in these malignancies. This review focuses on the clinical role of FDG and other PET agents in renal, bladder and testicular cancer. PMID:26099672

  17. Primary Renal Cell Lymphoma: Case Report, Diagnosis, and Management.

    PubMed

    Thawani, Rajat; Amar, Amarendra; Patowary, Jayanta; Kaul, Sumaid; Jena, Amarnath; Das, Pratap Kishore

    2017-01-01

    The symptoms of primary renal lymphoma (PRL) may mimic a renal cell carcinoma. Since the diagnosis is mostly after a radical nephrectomy, we recommend a percutaneous biopsy or cytology from the renal mass in patients who have features suggestive of a lymphoma. A magnetic resonance imaging may give an image more specific for a lymphoma. There are no clinical trials for the treatment of PRL, but all previously published case reports used R-CHOP and a few patients did better than the median survival of 6 months.

  18. Measurement of glomerulus diameter and Bowman's space width of renal albino rats.

    PubMed

    Kotyk, Taras; Dey, Nilanjan; Ashour, Amira S; Balas-Timar, Dana; Chakraborty, Sayan; Ashour, Ahmed S; Tavares, João Manuel R S

    2016-04-01

    Glomerulus diameter and Bowman's space width in renal microscopic images indicate various diseases. Therefore, the detection of the renal corpuscle and related objects is a key step in histopathological evaluation of renal microscopic images. However, the task of automatic glomeruli detection is challenging due to their wide intensity variation, besides the inconsistency in terms of shape and size of the glomeruli in the renal corpuscle. Here, a novel solution is proposed which includes the Particles Analyzer technique based on median filter for morphological image processing to detect the renal corpuscle objects. Afterwards, the glomerulus diameter and Bowman's space width are measured. The solution was tested with a dataset of 21 rats' renal corpuscle images acquired using light microscope. The experimental results proved that the proposed solution can detect the renal corpuscle and its objects efficiently. As well as, the proposed solution has the ability to manage any input images assuring its robustness to the deformations of the glomeruli even with the glomerular hypertrophy cases. Also, the results reported significant difference between the control and affected (due to ingested additional daily dose (14.6mg) of fructose) groups in terms of glomerulus diameter (97.40±19.02μm and 177.03±54.48μm, respectively). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.

    PubMed

    May, Philip C; Kreider, Wayne; Maxwell, Adam D; Wang, Yak-Nam; Cunitz, Bryan W; Blomgren, Philip M; Johnson, Cynthia D; Park, Joshua S H; Bailey, Michael R; Lee, Donghoon; Harper, Jonathan D; Sorensen, Mathew D

    2017-08-01

    Burst wave lithotripsy (BWL) is a transcutaneous technique with potential to safely and effectively fragment renal stones. Preclinical investigations of BWL require the assessment of potential renal injury. This study evaluates the capabilities of real-time ultrasound and MRI to detect and evaluate BWL injury that was induced in porcine kidneys. Ten kidneys from five female farm pigs were treated with either a 170 or 335 kHz BWL transducer using variable treatment parameters and monitored in real-time with ultrasound. Eight kidneys were perfusion fixed and scanned with a 3-Tesla MRI scanner (T1-weighted, T2-weighted, and susceptibility-weighted imaging), followed by processing via an established histomorphometric technique for injury quantification. In addition, two kidneys were separately evaluated for histologic characterization of injury quality. Observed B-mode hyperechoes on ultrasound consistent with cavitation predicted the presence of BWL-induced renal injury with a sensitivity and specificity of 100% in comparison to the histomorphometric technique. Similarly, MRI detected renal injury with a sensitivity of 90% and specificity of 100% and was able to identify the scale of lesion volumes. The injuries purposefully generated with BWL were histologically similar to those formed by shock wave lithotripsy. BWL-induced renal injury can be detected with a high degree of sensitivity and specificity by real-time ultrasound and post-treatment ex vivo MRI. No injury occurred in this study without cavitation detected on ultrasound. Such capabilities for injury detection and lesion volume quantification on MRI can be used for preclinical testing of BWL.

  20. Renal tract abnormalities missed in a historical cohort of young children with UTI if the NICE and AAP imaging guidelines were applied.

    PubMed

    Narchi, Hassib; Marah, Muhaned; Khan, Asad Aziz; Al-Amri, Abdulla; Al-Shibli, Amar

    2015-10-01

    In a historical cohort of children with a urinary tract infection (UTI) who had already undergone all the imaging procedures, the aim was to determine renal tract abnormalities which would have been missed had we implemented the new guidelines from the National Institute for Health and Care Excellence in the United Kingdom (NICE) or the American Academy of Pediatrics (AAP). After a UTI episode, forty-three children (28 females, 65%) aged between 2 months and 2 years presenting at two general hospitals with a febrile UTI before 2008 underwent all the recommended imaging studies predating the new guidelines. Hydronephrosis was defined and graded according to the Society for Fetal Urology (SFU) classification. Hydronephrosis grade II (mild pelvicalyceal dilatation), grade III (moderate dilatation), and grade IV (gross dilatation with thinning of the renal cortex), duplication, vesicoureteral reflux (VUR) grade II and above, renal scarring and reduced renal uptake (<45%) on technetium-99m-labeled dimercaptosuccinic acid (DMSA) scintigraphy were considered significant abnormalities. We calculated the proportion of abnormalities which would have been missed had the new guidelines been used instead. The median of age was 7.6 months (mean 8.7, range 2-24 months), with the majority (n = 37, 86%) being under 1 year of age. Ultrasound (US) showed hydronephrosis in 14 (32%), all grade II. A voiding cystourethrogram (VCUG) was performed in all and showed VUR ≥ grade II in 16 (37%), including eight children (19%) where it was bilateral. DMSA scan showed scarring in 25 children (58%) of whom 11 (26%) had bilateral scars. Reduced differential renal uptake was present in 10 children (23%). Of the 29 children with normal US, 18 (62%) had renal scarring and nine (31%) had VUR ≥ grade II. The NICE guidelines would have missed 63% of the children with VUR ≥ grade II, including a high proportion of grades IV and V VUR, 44% of the children with renal scarring, and 20% of the

  1. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    PubMed

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P < 0.001 and r = 0.94, P < 0.001). The preoperative and postoperative split estimated glomerular filtration rate of the operated kidney showed a moderate correlation with split renal function (r = 0.39, P = 0.004 and r = 0.49, P < 0.001). The correlation between reductions in split renal function and split renal volume of the operated kidney (r = 0.87, P < 0.001) was stronger than that between split renal function and percent reduction in split estimated glomerular filtration rate (r = 0.64, P < 0.001). The split renal volume calculated using computed tomography-based renal volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  2. [Asymptomatic Renal Stones: Do they really Exist?].

    PubMed

    Seseke, S; Rudolph, R; Rebmann, U

    2011-11-01

    Asymptomatic renal calculi without any history of colic, hematuria or infection can be found as an incidental finding during preven-tive check-ups. The aim of our study was to eval-uate whether these stones provoke symptoms with the need for further treatment during the follow-up and whether they cause cortical defects which may consecutively affect the renal func-tion. In a prospective study we evaluated 104  patients with renal calculi. The -medical history, radiological findings and functional imaging as well as urine and blood analyses were recorded and evaluated. The influence of stone size and localisation on the development of acute stone-related symptoms, renal function and renal scarring were evaluated. Furthermore, we analysed whether localised pathological findings in radiographic or functional imaging may influence the creatinine level. The follow-up was be-tween 12 and 48  months (median: 25  months). During the study period 27 / 104 of our patients (26 %) developed symptomatic events (renal colic, hematuria, infection) in which patients with middle pole calculi with a mean -cumulative stone diameter of 9.8  mm had the -highest risk. A localised renal scarring could be found in 36.6 %. These patients had a significantly higher risk in presenting an increased creatinine level. Increasing stone size was diagnosed in 39  cases (37.5 %). Asymptomatic renal stones have to be controlled regularly in order to prevent the -patient from loss of renal function and hypertension caused by increasing stones or urinary tract infection. © Georg Thieme Verlag KG Stuttgart ˙ New York.

  3. Quantitative MRI of kidneys in renal disease.

    PubMed

    Kline, Timothy L; Edwards, Marie E; Garg, Ishan; Irazabal, Maria V; Korfiatis, Panagiotis; Harris, Peter C; King, Bernard F; Torres, Vicente E; Venkatesh, Sudhakar K; Erickson, Bradley J

    2018-03-01

    To evaluate the reproducibility and utility of quantitative magnetic resonance imaging (MRI) sequences for the assessment of kidneys in young adults with normal renal function (eGFR ranged from 90 to 130 mL/min/1.73 m 2 ) and patients with early renal disease (autosomal dominant polycystic kidney disease). This prospective case-control study was performed on ten normal young adults (18-30 years old) and ten age- and sex-matched patients with early renal parenchymal disease (autosomal dominant polycystic kidney disease). All subjects underwent a comprehensive kidney MRI protocol, including qualitative imaging: T1w, T2w, FIESTA, and quantitative imaging: 2D cine phase contrast of the renal arteries, and parenchymal diffusion weighted imaging (DWI), magnetization transfer imaging (MTI), blood oxygen level dependent (BOLD) imaging, and magnetic resonance elastography (MRE). The normal controls were imaged on two separate occasions ≥24 h apart (range 24-210 h) to assess reproducibility of the measurements. Quantitative MR imaging sequences were found to be reproducible. The mean ± SD absolute percent difference between quantitative parameters measured ≥24 h apart were: MTI-derived ratio = 4.5 ± 3.6%, DWI-derived apparent diffusion coefficient (ADC) = 6.5 ± 3.4%, BOLD-derived R2* = 7.4 ± 5.9%, and MRE-derived tissue stiffness = 7.6 ± 3.3%. Compared with controls, the ADPKD patient's non-cystic renal parenchyma (NCRP) had statistically significant differences with regard to quantitative parenchymal measures: lower MTI percent ratios (16.3 ± 4.4 vs. 23.8 ± 1.2, p < 0.05), higher ADCs (2.46 ± 0.20 vs. 2.18 ± 0.10 × 10 -3  mm 2 /s, p < 0.05), lower R2*s (14.9 ± 1.7 vs. 18.1 ± 1.6 s -1 , p < 0.05), and lower tissue stiffness (3.2 ± 0.3 vs. 3.8 ± 0.5 kPa, p < 0.05). Excellent reproducibility of the quantitative measurements was obtained in all cases. Significantly different quantitative MR parenchymal

  4. Can MR Measurement of Renal Artery Flow and Renal Volume Predict the Outcome of Percutaneous Transluminal Renal Angioplasty?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkert, Christoph A.; Debatin, Jorg F.; Schneider, Ernst

    2001-07-15

    Purpose: Predicting therapeutic benefit from percutaneous transluminal renal angioplasty (PTRA) in patients with renal artery stenosis (RAS) remains difficult. This study investigates whether magnetic resonance (MR)-based renal artery flow measurements relative to renal parenchymal volume can predict clinical outcome following PTRA.Methods: The data on 23 patients (13 men, 10 women; age range 47-82 years, mean age 64 years) were analyzed. The indication for treatment was hypertension (n = 18) or renal insufficiency (n = 5). Thirty-four cases of RAS were identified: bilateral disease was manifest in 11 and unilateral disease in 12 patients. The MR imaging protocol included a breath-hold,more » cardiac-gated cine phase-contrast sequence for renal flow measurement and a fast multiplanar spoiled gradient-echo sequence for renal volume measurement. MR measurements were performed on the day prior to and the day following PTRA. Clinical success was defined as (a) a reduction in diastolic blood pressure > 15% or (b) a reduction in serum creatinine > 20%. Kidneys were categorized as normal volume or low volume. A renal flow index (RFI) was calculated by dividing the renal flow (ml/min) by the renal volume (cm{sup 3}).Results: Clinical success was observed in 11 patients. Twelve patients did not benefit from angioplasty. Normal kidney volume was seen in 10 of 11 responders and in 8 of 12 nonresponders, resulting in a sensitivity of 91%, specificity of 33%, a positive predictive value (PPV) of 56% and a negative predictive value (NPV) of 80%. A RFI below a threshold of 1.5 ml/min/cm{sup 3} predicted successful outcome with 100% sensitivity, 33% specificity, 58% PPV, and 100% NPV. The combination of normal renal volume and a RFI below 1.5 ml/min/cm{sup 3} identified PTRA responders with a sensitivity of 91%, a specificity of 67%, a PPV of 71%, and a NPV of 89%. PTRA resulted in a greater increase in renal flow in responders compared with nonresponders (p < 0.001).Conclusion

  5. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    PubMed

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  6. Radiologic Assessment of Native Renal Vasculature: A Multimodality Review.

    PubMed

    Al-Katib, Sayf; Shetty, Monisha; Jafri, Syed Mohammad A; Jafri, Syed Zafar H

    2017-01-01

    A wide range of clinically important anatomic variants and pathologic conditions may affect the renal vasculature, and radiologists have a pivotal role in the diagnosis and management of these processes. Because many of these entities may not be suspected clinically, renal artery and vein assessment is an essential application of all imaging modalities. An understanding of the normal vascular anatomy is essential for recognizing clinically important anatomic variants. An understanding of the protocols used to optimize imaging modalities also is necessary. Renal artery stenosis is the most common cause of secondary hypertension and is diagnosed by using both direct ultrasonographic (US) findings at the site of stenosis and indirect US findings distal to the stenosis. Fibromuscular dysplasia, while not as common as atherosclerosis, remains an important cause of renal artery hypertension, especially among young female individuals. Fibromuscular dysplasia also predisposes individuals to renal artery aneurysms and dissection. Although most renal artery dissections are extensions of aortic dissections, on rare occasion they occur in isolation. Renal artery aneurysms often are not suspected clinically before imaging, but they can lead to catastrophic outcomes if they are overlooked. Unlike true aneurysms, pseudoaneurysms are typically iatrogenic or posttraumatic. However, multiple small pseudoaneurysms may be seen with underlying vasculitis. Arteriovenous fistulas also are commonly iatrogenic, whereas arteriovenous malformations are developmental (ie, congenital). Both of these conditions involve a prominent feeding artery and draining vein; however, arteriovenous malformations contain a nidus of tangled vessels. Nutcracker syndrome should be suspected when there is distention of the left renal vein with abrupt narrowing as it passes posterior to the superior mesenteric artery. Filling defects in a renal vein can be due to a bland or tumor thrombus. A tumor thrombus is

  7. Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping.

    PubMed

    Ding, Jiule; Xing, Wei; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming

    2015-01-01

    To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2(*) values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.

  8. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  9. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging.

    PubMed

    Wang, Feng; Jiang, Rosie; Takahashi, Keiko; Gore, John; Harris, Raymond C; Takahashi, Takamune; Quarles, C Chad

    2014-11-01

    The purpose of this study is to evaluate the utility of high-resolution non-invasive endogenous high-field MRI methods for the longitudinal structural and quantitative assessments of mouse kidney disease using the model of unilateral ureter obstruction (UUO). T1-weighted, T2-weighted and magnetization transfer (MT) imaging protocols were optimized to improve the regional contrast in mouse kidney. Conventional T1 and T2 weighted images were collected in UUO mice on day 0 (~3h), day 1, day 3 and day 6 after injury, on a 7 T small animal MRI system. Cortical and medullary thickness, corticomedullary contrast and Magnetization Transfer Ratio (MTR) were assessed longitudinally. Masson trichrome staining was used to histologically assess changes in tissue microstructure. Over the course of UUO progression there were significant (p<0.05) changes in thickness of cortex and outer medulla, and regional changes in T2 signal intensity and MTR values. Histological changes included tubular cell death, tubular dilation, urine retention, and interstitial fibrosis, assessed by histology. The MRI measures of renal cortical and medullary atrophy, cortical-medullary differentiation and MTR changes provide an endogenous, non-invasive and quantitative evaluation of renal morphology and tissue composition during UUO progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Modern Pathologic Diagnosis of Renal Oncocytoma.

    PubMed

    Wobker, Sara E; Williamson, Sean R

    2017-01-01

    Oncocytoma is a well-defined benign renal tumor, with classic gross and histologic features, including a tan or mahogany-colored mass with central scar, microscopic nested architecture, bland cytology, and round, regular nuclei with prominent central nucleoli. As a result of variations in this classic appearance, difficulty in standardizing diagnostic criteria, and entities that mimic oncocytoma, such as eosinophilic variant chromophobe renal cell carcinoma and succinate dehydrogenase-deficient renal cell carcinoma, pathologic diagnosis remains a challenge. This review addresses the current state of pathologic diagnosis of oncocytoma, with emphasis on modern diagnostic markers, areas of controversy, and emerging techniques for less invasive diagnosis, including renal mass biopsy and advanced imaging.

  11. Dynamic integral imaging technology for 3D applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Javidi, Bahram; Martínez-Corral, Manuel; Shieh, Han-Ping D.; Jen, Tai-Hsiang; Hsieh, Po-Yuan; Hassanfiroozi, Amir

    2017-05-01

    Depth and resolution are always the trade-off in integral imaging technology. With the dynamic adjustable devices, the two factors of integral imaging can be fully compensated with time-multiplexed addressing. Those dynamic devices can be mechanical or electrical driven. In this presentation, we will mainly focused on discussing various Liquid Crystal devices which can change the focal length, scan and shift the image position, or switched in between 2D/3D mode. By using the Liquid Crystal devices, dynamic integral imaging have been successfully applied on 3D Display, capturing, and bio-imaging applications.

  12. Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.

    PubMed

    DiBona, G F; Sawin, L L

    1999-02-01

    To examine the effect of activation of a unique population of renal sympathetic nerve fibers on renal blood flow (RBF) dynamics, anesthetized rats were instrumented with a renal sympathetic nerve activity (RSNA) recording electrode and an electromagnetic flow probe on the ipsilateral renal artery. Peripheral thermal receptor stimulation (external heat) was used to activate a unique population of renal sympathetic nerve fibers and to increase total RSNA. Total RSNA was reflexly increased to the same degree with somatic receptor stimulation (tail compression). Arterial pressure and heart rate were increased by both stimuli. Total RSNA was increased to the same degree by both stimuli but external heat produced a greater renal vasoconstrictor response than tail compression. Whereas both stimuli increased spectral density power of RSNA at both cardiac and respiratory frequencies, modulation of RBF variability by fluctuations of RSNA was small at these frequencies, with values for the normalized transfer gain being approximately 0.1 at >0.5 Hz. During tail compression coherent oscillations of RSNA and RBF were found at 0.3-0.4 Hz with normalized transfer gain of 0.33 +/- 0.02. During external heat coherent oscillations of RSNA and RBF were found at both 0.2 and 0.3-0.4 Hz with normalized transfer gains of 0. 63 +/- 0.05 at 0.2 Hz and 0.53 +/- 0.04 to 0.36 +/- 0.02 at 0.3-0.4 Hz. Renal denervation eliminated the oscillations in RBF at both 0.2 and 0.3-0.4 Hz. These findings indicate that despite similar increases in total RSNA, external heat results in a greater renal vasoconstrictor response than tail compression due to the activation of a unique population of renal sympathetic nerve fibers with different frequency-response characteristics of the renal vasculature.

  13. [64Cu]XYIMSR-06: A dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma.

    PubMed

    Minn, Il; Koo, Soo Min; Lee, Hye Soo; Brummet, Mary; Rowe, Steven P; Gorin, Michael A; Sysa-Shah, Polina; Lewis, William D; Ahn, Hye-Hyun; Wang, Yuchuan; Banerjee, Sangeeta Ray; Mease, Ronnie C; Nimmagadda, Sridhar; Allaf, Mohamad E; Pomper, Martin G; Yang, Xing

    2016-08-30

    Carbonic anhydrase IX (CAIX) is a cell surface enzyme that is over-expressed in approximately 95% of cases of clear cell renal cell carcinoma (ccRCC), the most common renal cancer. We synthesized and performed in vitro and in vivo evaluation of a dual-motif ligand, [64Cu]XYIMSR-06, for imaging CAIX expression on ccRCC tumors using positron emission tomography (PET). [64Cu]XYIMSR-06 was generated in yields of 51.0 ± 4.5% (n=5) and specific activities of 4.1 - 8.9 GBq/μmol (110-240 Ci/mmol). Tumor was visualized on PET images by 1 h post-injection with high tumor-to-background levels (>100 tumor-to-blood and -muscle) achieved within 24 h. Biodistribution studies demonstrated a maximum tumor uptake of 19.3% injected dose per gram of radioactivity at 4 h. Tumor-to-blood, -muscle and -kidney ratios were 129.6 ± 18.8, 84.3 ± 21.0 and 2.1 ± 0.3, respectively, at 8 h post-injection. At 24 h a tumor-to-kidney ratio of 7.1 ± 2.5 was achieved. These results indicate pharmacokinetics superior to those of previously reported imaging agents binding to CAIX. [64Cu]XYIMSR-06 is a new low-molecular-weight PET ligand targeting CAIX, which can image localized and metastatic ccRCC.

  14. Renal hemodynamics: the influence of the renal artery ostium flow diverter

    NASA Astrophysics Data System (ADS)

    Rossmann, Jenn Stroud; Albert, Scott; Balaban, Robert

    2013-11-01

    The recently identified renal artery ostium flow diverter may preferentially direct blood flow to the renal arteries, and may also influence flow patterns and recirculation known to be involved in atherogenesis. Three-dimensional computational fluid dynamics (CFD) simulations of steady and pulsatile blood flow are performed to investigate the influence of diverter size and position, and vascular geometry, on the flow patterns and fluid mechanical forces in the neighborhood of the diverter. CFD results show that the flow diverter does affect the blood distribution: depending on the diverter's position, the flow to the renal arteries may be increased or reduced. The results of simulations also show the diverter's effect on the Wall Shear Stress (WSS) distribution, and suggest that the diverter contributes to an atherogenic environment in the abdominal aorta, while being atheroprotective in the renal arteries themselves. These results support previous clinical findings, and suggest directions for further clinical study. The results of this work have direct implications in understanding the physiological significance of the diverter, and its potential role in the pathophysiological development of atherosclerosis.

  15. Slow-rotation dynamic SPECT with a temporal second derivative constraint.

    PubMed

    Humphries, T; Celler, A; Trummer, M

    2011-08-01

    Dynamic tracer behavior in the human body arises as a result of continuous physiological processes. Hence, the change in tracer concentration within a region of interest (ROI) should follow a smooth curve. The authors propose a modification to an existing slow-rotation dynamic SPECT reconstruction algorithm (dSPECT) with the goal of improving the smoothness of time activity curves (TACs) and other properties of the reconstructed image. The new method, denoted d2EM, imposes a constraint on the second derivative (concavity) of the TAC in every voxel of the reconstructed image, allowing it to change sign at most once. Further constraints are enforced to prevent other nonphysical behaviors from arising. The new method is compared with dSPECT using digital phantom simulations and experimental dynamic 99mTc -DTPA renal SPECT data, to assess any improvement in image quality. In both phantom simulations and healthy volunteer experiments, the d2EM method provides smoother TACs than dSPECT, with more consistent shapes in regions with dynamic behavior. Magnitudes of TACs within an ROI still vary noticeably in both dSPECT and d2EM images, but also in images produced using an OSEM approach that reconstructs each time frame individually, based on much more complete projection data. TACs produced by averaging over a region are similar using either method, even for small ROIs. Results for experimental renal data show expected behavior in images produced by both methods, with d2EM providing somewhat smoother mean TACs and more consistent TAC shapes. The d2EM method is successful in improving the smoothness of time activity curves obtained from the reconstruction, as well as improving consistency of TAC shapes within ROIs.

  16. Spatio-temporal diffusion of dynamic PET images

    NASA Astrophysics Data System (ADS)

    Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.

    2011-10-01

    Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.

  17. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Greco, Carlo; Motzer, Robert

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a highmore » single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.« less

  18. Noncontrast-enhanced magnetic resonance renal angiography using a repetitive artery and venous labelling technique at 3 T: comparison with contrast-enhanced magnetic resonance angiography in subjects with normal renal function.

    PubMed

    Park, Sung Yoon; Kim, Chan Kyo; Kim, EunJu; Park, Byung Kwan

    2015-02-01

    To investigate the feasibility of noncontrast-enhanced MR angiography (NC-MRA) using the repetitive artery and venous labelling (RAVEL) technique to evaluate renal arteries compared to contrast-enhanced MR angiography (CE-MRA). Twenty-five subjects with normal renal function underwent NC-MRA using a RAVEL technique and CE-MRA at 3 T. Two independent readers analysed the MRA images. Image quality, number of renal arteries, presence or absence of an early branching vessel, and diameter of the main renal arteries were evaluated. The overall image quality of NC-MRA was fair or greater in 88% of right and 92% of left renal arteries, while it was 96% in both sides with CE-MRA. On NC-MRA, the number of renal arteries in all subjects was perfectly predicted by both readers. Sensitivity and specificity for predicting early branching vessels were 82% and 100% for reader 1 and 82% and 95% for reader 2. Inter-modality agreement for comparing the diameters of main renal arteries was good or excellent at all segments for both readers. Inter-reader agreement was moderate or good at all segments except at the right distal segment on NC-MRA. NC-MRA with the RAVEL technique at 3 T may have comparable diagnostic feasibility for evaluating renal arteries compared to CE-MRA. • Accurate pre-treatment evaluation of renal artery anatomy helps clinical decision-making. • NC-MRA using RAVEL offers acceptable imaging quality for renal artery evaluation. • The 3 T RAVEL technique provides excellent diagnostic performance for renal artery evaluation. • The 3 T RAVEL technique may be an alternative to contrast-enhanced MRA.

  19. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  20. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.

    PubMed

    Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D

    2006-09-01

    Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.

  1. Microwave treatment of renal cell carcinoma adjacent to renal sinus.

    PubMed

    Gao, Yongyan; Liang, Ping; Yu, Xiaoling; Yu, Jie; Cheng, Zhigang; Han, Zhiyu; Duan, Shaobo; Huang, Hui

    2016-11-01

    To evaluate the efficacy and safety of ultrasound (US)-guided percutaneous microwave ablation (MWA) for renal cell carcinoma (RCC) adjacent to renal sinus. This retrospective study included 41 patients who underwent US-guided percutaneous MWA of 41 RCCs adjacent to the renal sinus from April 2006 to December 2015. Contrast-enhanced images of US and computed tomography (CT) or magnetic resonance (MR) imaging were performed at pre-ablation and 1day, 1 month, 3 months, and every 6 months after ablation. Initial ablation success (IAS), disease-free survival (DFS), RCC-related survival (RRS), and overall survival (OS) were recorded at the follow-up visits. IAS was achieved in 92.7% (38/41) of the study subjects. The IAS significantly differed between patients with RCCs ≤4cm (100%, 29/29) and RCCs >4cm (75%, 9/12, p=0.021). During the median follow-up of 37.6 (range, 3.0-97.3) months, the estimated 1-, 3-, and 5-year DFS of patients with an initial tumor of ≤4cm were 100%, 89.7%, and 81.5%, respectively. The 1-, 3-, and 5-year RRS were 100%, 93.3%, and 93.3%, respectively. The 1-, 3-, and 5-year OS were 97.1%, 87.8%, and 83.6%, respectively. The multivariate analysis using the Cox proportional hazard model revealed no independent predictor of recurrence among all the variables. There were no MWA-related deaths among the study subjects. One patient developed a retroperitoneal abscess after ablation. US-guided percutaneous MWA appears to be a promising method for RCCs adjacent to renal sinus, especially for tumors ≤4cm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Non-local means denoising of dynamic PET images.

    PubMed

    Dutta, Joyita; Leahy, Richard M; Li, Quanzheng

    2013-01-01

    Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while

  3. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  4. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  5. Cardiac fluid dynamics meets deformation imaging.

    PubMed

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  6. Monitoring for Renal Stone Recurrence in Astronauts With History of Stone

    NASA Technical Reports Server (NTRS)

    Reyes, David P.; Sargsyan, Ashot; Locke, James; Davis, Jeffrey

    2014-01-01

    After an initial stone episode persons are at increased risk for future stone formation. A systematic approach is required to monitor the efficacy of treatment and preventive measures, and to assess the risk of developing new stones. This is important for persons working in critical jobs or austere environments, such as astronauts. A literature review of the current standards of care for renal stone monitoring and imaging was done. Military and civil aviation standards were also reviewed, as well as the medical precedents from the space program. Additionally, a new, more effective, renal stone ultrasound protocol has been developed. Using this work, a monitoring algorithm was proposed that takes into consideration the unique mission and operational environment of spaceflight. The approach to imaging persons with history of renal stones varies widely in the literature. Imaging is often done yearly or biannually, which may be too long for mission critical personnel. In the proposed algorithm astronauts with a history of renal stone, who may be under consideration for assignment, are imaged by a detailed, physiciandriven, ultrasound protocol. Unassigned personnel are monitored by yearly ultrasound and urine studies. Any positive ultrasound study is then followed by low-dose renal computed tomography scan. Other criteria are also established. The proposed algorithm provides a balanced approach between efficacy and reduced radiation exposure for the monitoring of astronauts with a renal stone history. This may eventually allow a transition from a risk-averse, to a risk-modifying approach that can enable continued service of individuals with history of renal stone that have adequately controlled risk factors.

  7. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    PubMed

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  8. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  9. PET imaging and biodistribution analysis of the effects of succinylated gelatin combined with L-lysine on renal uptake and retention of ⁶⁴Cu-cyclam-RAFT-c(-RGDfK-)₄ in vivo.

    PubMed

    Jin, Zhao-Hui; Furukawa, Takako; Sogawa, Chizuru; Claron, Michael; Aung, Winn; Tsuji, Atsushi B; Wakizaka, Hidekatsu; Zhang, Ming-Rong; Boturyn, Didier; Dumy, Pascal; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2014-04-01

    (64)Cu-cyclam-RAFT-c(-RGDfK-)4, an αVβ3 integrin-targeting tetrameric cyclic RGD peptide probe, is a potential theranostic compound for positron emission tomography (PET) of tumor angiogenesis and for internal radiotherapy owing to the multiple decay modes of (64)Cu. Since kidneys are dose-limiting organs in internal radiotherapy, we aimed to reduce the renal accumulation of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 by co-injection with Gelofusine (GF), a succinylated gelatin solution, and/or L-lysine (Lys), and to explore, for the first time, the related mechanisms using the noninvasive and quantitative PET imaging technology. Biodistribution assays, dynamic and static PET scans, and metabolism studies with radio-thin-layer chromatography (radio-TLC) were performed in healthy or αVβ3-positive tumor-bearing mice. In the results, co-injection with GF markedly reduced the renal uptake and slightly increased the tumor uptake of (64)Cu-cyclam-RAFT-c(-RGDfK-)4. L-Lysine alone had no effect on the probe biodistribution, but the combined use of Lys and GF tended to enhance the effect of GF. Dynamic PET and metabolite analysis by radio-TLC highly revealed that GF blocks the renal reabsorption of (64)Cu-cyclam-RAFT-c(-RGDfK-)4, but does not interfere with its metabolism and excretion. In conclusion, administration of GF and Lys is a useful strategy for kidney protection in (64)Cu-cyclam-RAFT-c(-RGDfK-)4-based internal radiotherapy. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  10. High-dynamic-range imaging for cloud segmentation

    NASA Astrophysics Data System (ADS)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  11. Hierarchical content-based image retrieval by dynamic indexing and guided search

    NASA Astrophysics Data System (ADS)

    You, Jane; Cheung, King H.; Liu, James; Guo, Linong

    2003-12-01

    This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.

  12. Renal and adrenal tumors: Pathology, radiology, ultrasonography, therapy, immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, E.; Leder, L.D.

    1987-01-01

    Aspects as diverse as radiology, pathology, urology, pediatrics and immunology have been brought together in one book. The most up-do-date methods of tumor diagnosis by CT, NMR, and ultrasound are covered, as are methods of catheter embolization and radiation techniques in case of primarily inoperable tumors. Contents: Pathology of Renal and Adrenal Neoplasms; Ultrasound Diagnosis of Renal and Pararenal Tumors; Computed-Body-Tomography of Renal Carcinoma and Perirenal Masses; Magnetic Resonance Imaging of Renal Mass Lesions; I-125 Embolotherapy of Renal Tumors; Adrenal Mass Lesions in Infants and Children; Computed Tomography of the Adrenal Glands; Scintigraphic Studies of Renal and Adrenal Function; Surgicalmore » Management of Renal Cell Carcinoma; Operative Therapy of Nephroblastoma; Nonoperative Treatment of Renal Cell Carcinoma; Prenatal Wilms' Tumor; Congenital Neuroblastoma; Nonsurgical Management of Wilms' Tumor; Immunologic Aspects of Malignant Renal Disease.« less

  13. The dynamic process of adherence to a renal therapeutic regimen: perspectives of patients undergoing continuous ambulatory peritoneal dialysis.

    PubMed

    Lam, Lai Wah; Lee, Diana T F; Shiu, Ann T Y

    2014-06-01

    The nature of end-stage renal disease and the need for continuous ambulatory peritoneal dialysis require patients to manage various aspects of the disease, its symptoms and treatment. After attending a training programme, patients are expected to adhere to the renal therapeutic regimen and manage their disease with the knowledge and skills learned. While patients are the stakeholders of their health and related behaviour, their perceptions of adherence and how they adhere to their renal therapeutic regimen remains unexplored. To understand adherence from patients' perspectives and to describe changes in adherence to a therapeutic regimen among patients undergoing continuous ambulatory peritoneal dialysis. This study used a mixed methods design with two phases - a survey in phase I and semi-structured interviews in phase II. This paper presents phase II of the study. The study was conducted at a renal unit of an acute hospital in Hong Kong. Based on the phase I survey results, maximum variation sampling was employed to purposively recruit 36 participants of different genders (18 males, 18 females), ages (35-76 years), and lengths of dialysis experience (11-103 months) for the phase II interviews. Data were collected by tape-recorded semi-structured interviews. Content analysis was employed to analyse the transcribed data. Data collection and analysis were conducted simultaneously. Adherence was a dynamic process with three stages. At the stage of initial adherence, participants attempted to follow instructions but found that strict persistent adherence was impossible. After the first 2-6 months of dialysis, participants entered the stage of subsequent adherence, when they adopted selective adherence through experimenting, monitoring and making continuous adjustments. The stage of long-term adherence commenced after 3-5 years of dialysis, when participants were able to assimilate the modified therapeutic regimen into everyday life. The process of adherence was

  14. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.

    PubMed

    Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.

  15. Fluid dynamic modelling of renal pelvic pressure during endoscopic stone removal

    NASA Astrophysics Data System (ADS)

    Oratis, Alexandros; Subasic, John; Bird, James; Eisner, Brian

    2015-11-01

    Endoscopic kidney stone removal procedures are known to increase internal pressure in the renal pelvis, the kidney's urinary collecting system. High renal pelvic pressure incites systemic absorption of irrigation fluid, which can increase the risk of postoperative fever and sepsis or the unwanted absorption of electrolytes. Urologists choose the appropriate surgical procedure based on patient history and kidney stone size. However, no study has been conducted to compare the pressure profiles of each procedure, nor is there a precise sense of how the renal pelvic pressure scales with various operational parameters. Here we develop physical models for the flow rates and renal pelvic pressure for various procedures. We show that the results of our models are consistent with existing urological data on each procedure and that the models can predict pressure profiles where data is unavailable.

  16. Comparison of computer tomographic volumetry versus nuclear split renal function to determine residual renal function after living kidney donation.

    PubMed

    Patankar, Khalil; Low, Ronny Su-Tong; Blakeway, Darryn; Ferrari, Paolo

    2014-07-01

    Living-donor kidney transplantation is an established practice. Traditionally a combination of renal scintigram and computed tomography (CT) is used to select the kidney that is to be harvested in each donor. To evaluate the ability of split renal volume (SRV) calculated from volumetric examination of CT images compared to nuclear split renal function (nSRF) derived from gamma camera scintigram to predict donor residual single kidney function after donor nephrectomy. This pilot study comprised a retrospective analysis of CT images and renal scintigrams from 12 subsequent live kidney donors who had at least 12 months post-donation renal function follow-up. nSRF derived from the renal scintigram, expressed as the right kidney's function in percent of the total, was 50.2 ± 3.3 (range, 44.1-54.0%) and SRV estimated following analysis of CT imaging was 49.0 ± 2.9 (range, 46.4-52.3%). Although the correlation between nSRF and SRV was moderate (R = 0.46), there was 92% agreement on the dominant kidney if a difference of <2% in nSRF versus SRV was considered. Post-donation glomerular filtration rate (GFR) by CKD-EPI formula was 92 ± 10 mL/min/1.73m2 at 1 year and the correlation between estimated GFR (eGFR) at 1 year and extrapolated single kidney eGFR adjusted by nSRF (R(2 )= 0.69, P = 0.0007) or SRV (R(2 )= 0.74, P = 0.0003) was similar. Calculation of SRV from pre-donation CT examination is a valid method to estimate nSRF with good concordance with nSRF determined by renal scintigram and could replace the latter in the assessment of potential kidney donors. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Geometric Alteration of Renal Arteries After Fenestrated Grafting and the Impact on Renal Function.

    PubMed

    Ou, Jiale; Chan, Yiu-Che; Chan, Crystal Yin-Tung; Cheng, Stephen W K

    2017-05-01

    This study aims to investigate the degree of geometric change on renal arteries and its impact on renal function after fenestrated endovascular aortic repair (fEVAR). Twenty-five patients with fEVAR were included. There were 47 renal arteries target vessels, and 43 of these (22 left and 21 right vessels) stented successfully. Their preoperative and first postoperative follow-up computed tomography (CT) images were reconstructed using the Aquarius workstation (TeraRecon, San Mateo, CA, USA). The superior mesenteric artery (SMA) or celiac axis (if SMA was stented) was appointed as reference origin. The longitudinal orientation of a renal artery or a stent was represented by a takeoff angle (ToA) between the renal artery or stent and the distal abdominal aorta. The postoperative stent ToAs were compared with those of preoperative renal arteries. Preoperative and short-term postoperative serum creatinine levels were measured. Renal function impairment was indicated as a >30% or >2.0 mg/dL rise in serum creatinine compared to the preoperative level. The relationship between postoperative renal function impairment and the stent orientation or geometric changes in renal arteries was correlated. The patency rate of renal arteries was 100% at the first postoperative CT review. The average ToAs of both renal arteries were significantly enlarged after stenting (P < 0.05). Seven stent deformations (16.3%) in four patients (16.0%) were observed. They were attributed to caudal misalignment of the fenestrated stent graft (n = 6) or inaccurate graft sizing (n = 1). There was no stent fracture or target vessel loss. Postoperatively, nine patients (36.0%) at day 1 and 10 patients (41.7%) after 3 months suffered the renal function impairment. This was found not to be associated with the stent angulation or angular change of the renal arteries (both P > 0.05). The three patients with stent deformation due to misalignment suffered postoperative renal function impairment and

  18. Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.

  19. Metastatic renal cell carcinoma associated with acquired cystic kidney disease 15 years after successful renal transplantation.

    PubMed

    Lien, Y H; Kam, I; Shanley, P F; Schröter, G P

    1991-12-01

    Renal cell carcinoma (RCC) is a relatively uncommon cancer in renal transplant patients. From 1968 to 1987, 101 cases of RCC of native kidneys have been reported to the Cincinnati Transplant Tumor Registry. We describe here a case of metastatic RCC associated with acquired cystic kidney disease (ACKD) 15 years after successful renal transplantation. The patient presented with a subcutaneous nodule, which led to discovery of a large primary tumor in the left kidney. ACKD was present in the atrophic right kidney. The reported cases of ACKD-associated RCC in renal transplant recipients were reviewed. Most of these cases are middle-aged men with a long posttransplant course, good graft function, and usage of azathioprine and prednisone as immunosuppressive agents. ACKD can develop or persist and progress to RCC many years after successful renal transplantation. Transplant patients with flank pain, hematuria, or other suspicious symptoms should have imaging studies of their native kidneys.

  20. Complete dorsal pancreatic agenesis and unilateral renal agenesis.

    PubMed

    Moreira, Adriana; Carvalho, André; Portugal, Inês; Jesus, José Miguel

    2018-02-01

    Dorsal pancreatic agenesis is a very rare congenital anomaly. Unilateral renal agenesis, on the other hand, is a relatively common congenital anomaly, although its etiology is not fully understood. Renal and pancreatic embryologic development appears to be nonrelated. We report a case of a 34-year-old man who was referred to our hospital for evaluation of cholestasis and microalbuminuria. Ultrasound and magnetic resonance imaging examinations showed empty right renal fossa and absence of the pancreatic neck, body, and tail. Our case report is the second case of a dorsal pancreatic agenesis and unilateral renal agenesis in a young male patient.

  1. A Literature Review of Renal Surgical Anatomy and Surgical Strategies for Partial Nephrectomy

    PubMed Central

    Klatte, Tobias; Ficarra, Vincenzo; Gratzke, Christian; Kaouk, Jihad; Kutikov, Alexander; Macchi, Veronica; Mottrie, Alexandre; Porpiglia, Francesco; Porter, James; Rogers, Craig G.; Russo, Paul; Thompson, R. Houston; Uzzo, Robert G.; Wood, Christopher G.; Gill, Inderbir S.

    2016-01-01

    Context A detailed understanding of renal surgical anatomy is necessary to optimize preoperative planning and operative technique and provide a basis for improved outcomes. Objective To evaluate the literature regarding pertinent surgical anatomy of the kidney and related structures, nephrometry scoring systems, and current surgical strategies for partial nephrectomy (PN). Evidence acquisition A literature review was conducted. Evidence synthesis Surgical renal anatomy fundamentally impacts PN surgery. The renal artery divides into anterior and posterior divisions, from which approximately five segmental terminal arteries originate. The renal veins are not terminal. Variations in the vascular and lymphatic channels are common; thus, concurrent lymphadenectomy is not routinely indicated during PN for cT1 renal masses in the setting of clinically negative lymph nodes. Renal-protocol contrast-enhanced computed tomography or magnetic resonance imaging is used for standard imaging. Anatomy-based nephrometry scoring systems allow standardized academic reporting of tumor characteristics and predict PN outcomes (complications, remnant function, possibly histology). Anatomy-based novel surgical approaches may reduce ischemic time during PN; these include early unclamping, segmental clamping, tumor-specific clamping (zero ischemia), and unclamped PN. Cancer cure after PN relies on complete resection, which can be achieved by thin margins. Post-PN renal function is impacted by kidney quality, remnant quantity, and ischemia type and duration. Conclusions Surgical renal anatomy underpins imaging, nephrometry scoring systems, and vascular control techniques that reduce global renal ischemia and may impact post-PN function. A contemporary ideal PN excises the tumor with a thin negative margin, delicately secures the tumor bed to maximize vascularized remnant parenchyma, and minimizes global ischemia to the renal remnant with minimal complications. Patient summary In this report

  2. A Literature Review of Renal Surgical Anatomy and Surgical Strategies for Partial Nephrectomy.

    PubMed

    Klatte, Tobias; Ficarra, Vincenzo; Gratzke, Christian; Kaouk, Jihad; Kutikov, Alexander; Macchi, Veronica; Mottrie, Alexandre; Porpiglia, Francesco; Porter, James; Rogers, Craig G; Russo, Paul; Thompson, R Houston; Uzzo, Robert G; Wood, Christopher G; Gill, Inderbir S

    2015-12-01

    A detailed understanding of renal surgical anatomy is necessary to optimize preoperative planning and operative technique and provide a basis for improved outcomes. To evaluate the literature regarding pertinent surgical anatomy of the kidney and related structures, nephrometry scoring systems, and current surgical strategies for partial nephrectomy (PN). A literature review was conducted. Surgical renal anatomy fundamentally impacts PN surgery. The renal artery divides into anterior and posterior divisions, from which approximately five segmental terminal arteries originate. The renal veins are not terminal. Variations in the vascular and lymphatic channels are common; thus, concurrent lymphadenectomy is not routinely indicated during PN for cT1 renal masses in the setting of clinically negative lymph nodes. Renal-protocol contrast-enhanced computed tomography or magnetic resonance imaging is used for standard imaging. Anatomy-based nephrometry scoring systems allow standardized academic reporting of tumor characteristics and predict PN outcomes (complications, remnant function, possibly histology). Anatomy-based novel surgical approaches may reduce ischemic time during PN; these include early unclamping, segmental clamping, tumor-specific clamping (zero ischemia), and unclamped PN. Cancer cure after PN relies on complete resection, which can be achieved by thin margins. Post-PN renal function is impacted by kidney quality, remnant quantity, and ischemia type and duration. Surgical renal anatomy underpins imaging, nephrometry scoring systems, and vascular control techniques that reduce global renal ischemia and may impact post-PN function. A contemporary ideal PN excises the tumor with a thin negative margin, delicately secures the tumor bed to maximize vascularized remnant parenchyma, and minimizes global ischemia to the renal remnant with minimal complications. In this report we review renal surgical anatomy. Renal mass imaging allows detailed delineation of the

  3. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    PubMed

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all

  4. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2018-02-13

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  5. Renal and adrenal tumours in children

    PubMed Central

    2007-01-01

    The differential diagnosis of renal and supra-renal masses firstly depends on the age of the child. Neuroblastoma (NBL) may be seen antenatally or in the newborn period; this tumour has a good prognosis unlike NBL seen in older children (particularly NBL in those aged 2–4 years). Benign renal masses predominate in early infancy but beyond the first year of life Wilms' tumour is the most common renal malignancy, until adolescence when renal cell carcinoma has similar or increased frequency as children get older. Adrenal adenomas and carcinomas also occur in childhood; these tumours are indistinguishable on imaging but criteria for the diagnosis of adrenal carcinoma include size larger than 5 cm, a tendency to invade the inferior vena cava and to metastasise. The most topical dilemmas in the radiological assessment of renal and adrenal tumours are presented. Topics covered include a proposed revision to the staging of NBL, the problems inherent in distinguishing nephrogenic rests from Wilms' tumour and the current recently altered approach regarding small lung nodules in children with Wilms' tumour. PMID:17339140

  6. Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer.

    PubMed

    Shen, Sida; Jiang, Dawei; Cheng, Liang; Chao, Yu; Nie, Kaiqi; Dong, Ziliang; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang

    2017-09-26

    Developing tumor-homing nanoparticles with integrated diagnostic and therapeutic functions, and meanwhile could be rapidly excreted from the body, would be of great interest to realize imaging-guided precision treatment of cancer. In this study, an ultrasmall coordination polymer nanodot (CPN) based on the coordination between tungsten ions (W VI ) and gallic acid (W-GA) was developed via a simple method. After polyethylene glycol (PEG) modification, PEGylated W-GA (W-GA-PEG) CPNs with an ultrasmall hydrodynamic diameter of 5 nm were rather stable in various physiological solutions. Without the need of chelator molecules, W-GA-PEG CPNs could be efficiently labeled with radioisotope 64 Cu 2+ , enabling positron emission tomography (PET) imaging, which reveals efficient tumor accumulation and rapid renal clearance of W-GA-PEG CPNs upon intravenous injection. Utilizing the radio-sensitizing function of tungsten with strong X-ray absorption, such W-GA-PEG CPNs were able to greatly enhance the efficacy of cancer radiotherapy in inhibiting the tumor growth. With fast clearance and little long-term body retention, those W-GA-PEG CPNs exhibited no appreciable in vivo toxicity. This study presents a type of CPNs with excellent imaging and therapeutic abilities as well as rapid renal clearance behavior, promising for further clinic translation.

  7. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  8. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Boschi, Federico

    2011-12-01

    Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.

  9. A New Navigation System of Renal Puncture for Endoscopic Combined Intrarenal Surgery: Real-time Virtual Sonography-guided Renal Access.

    PubMed

    Hamamoto, Shuzo; Unno, Rei; Taguchi, Kazumi; Ando, Ryosuke; Hamakawa, Takashi; Naiki, Taku; Okada, Shinsuke; Inoue, Takaaki; Okada, Atsushi; Kohri, Kenjiro; Yasui, Takahiro

    2017-11-01

    To evaluate the clinical utility of a new navigation technique for percutaneous renal puncture using real-time virtual sonography (RVS) during endoscopic combined intrarenal surgery. Thirty consecutive patients who underwent endoscopic combined intrarenal surgery for renal calculi, between April 2014 and July 2015, were divided into the RVS-guided puncture (RVS; n = 15) group and the ultrasonography-guided puncture (US; n = 15) group. In the RVS group, renal puncture was repeated until precise piercing of a papilla was achieved under direct endoscopic vision, using the RVS system to synchronize the real-time US image with the preoperative computed tomography image. In the US group, renal puncture was performed under US guidance only. In both groups, 2 urologists worked simultaneously to fragment the renal calculi after inserting the miniature percutaneous tract. The mean sizes of the renal calculi in the RVS and the US group were 33.5 and 30.5 mm, respectively. A lower mean number of puncture attempts until renal access through the calyx was needed for the RVS compared with the US group (1.6 vs 3.4 times, respectively; P = .001). The RVS group had a lower mean postoperative hemoglobin decrease (0.93 vs 1.39 g/dL, respectively; P = .04), but with no between-group differences with regard to operative time, tubeless rate, and stone-free rate. None of the patients in the RVS group experienced postoperative complications of a Clavien score ≥2, with 3 patients experiencing such complications in the US group. RVS-guided renal puncture was effective, with a lower incidence of bleeding-related complications compared with US-guided puncture. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fuzzy rule-based image segmentation in dynamic MR images of the liver

    NASA Astrophysics Data System (ADS)

    Kobashi, Syoji; Hata, Yutaka; Tokimoto, Yasuhiro; Ishikawa, Makato

    2000-06-01

    This paper presents a fuzzy rule-based region growing method for segmenting two-dimensional (2-D) and three-dimensional (3- D) magnetic resonance (MR) images. The method is an extension of the conventional region growing method. The proposed method evaluates the growing criteria by using fuzzy inference techniques. The use of the fuzzy if-then rules is appropriate for describing the knowledge of the legions on the MR images. To evaluate the performance of the proposed method, it was applied to artificially generated images. In comparison with the conventional method, the proposed method shows high robustness for noisy images. The method then applied for segmenting the dynamic MR images of the liver. The dynamic MR imaging has been used for diagnosis of hepatocellular carcinoma (HCC), portal hypertension, and so on. Segmenting the liver, portal vein (PV), and inferior vena cava (IVC) can give useful description for the diagnosis, and is a basis work of a pres-surgery planning system and a virtual endoscope. To apply the proposed method, fuzzy if-then rules are derived from the time-density curve of ROIs. In the experimental results, the 2-D reconstructed and 3-D rendered images of the segmented liver, PV, and IVC are shown. The evaluation by a physician shows that the generated images are comparable to the hepatic anatomy, and they would be useful to understanding, diagnosis, and pre-surgery planning.

  11. A physiology-based parametric imaging method for FDG-PET data

    NASA Astrophysics Data System (ADS)

    Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele

    2017-12-01

    Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.

  12. Effect of Renal Function on Gadolinium-Related Signal Increases on Unenhanced T1-Weighted Brain Magnetic Resonance Imaging.

    PubMed

    Cao, Yan; Zhang, Yang; Shih, George; Zhang, Yan; Bohmart, Andrew; Hecht, Elizabeth M; Prince, Martin R

    2016-11-01

    The purpose of this study was to determine if renal function affects signal changes in the deep brain nuclei on unenhanced T1-weighted images after administration of linear gadolinium-based contrast agents (GBCAs). An electronic medical records search of 2 large medical centers identified 25 patients who received linear GBCA while on hemodialysis and had unenhanced T1-weighted images of the brain before and after. The dentate-to-cerebellar peduncle (DCP) ratio, globus pallidus-to-mid thalamus (GPT) ratio, and choroid plexus-to-nearby white matter ratio were measured and compared with 25 age/sex/GBCA exposure-matched control patients with normal or near-normal renal function (estimated glomerular filtration rate >60 mL/min per 1.73 m). Two additional control groups included 13 patients on hemodialysis without GBCA exposure and 13 age/sex-matched patients with estimated glomerular filtration rate greater than 60 mL/min per 1.73 m. Hemodialysis patients (n = 25) with an average of 1.8 linear GBCA administrations had a 4.9% mean increase (1.00 ± 0.04 vs 1.05 ± 0.05; P < 0.001) in DCP, which was greater than the 1.6% change (0.99 ± 0.04 vs 1.00 ± 0.05; P = 0.08) observed in matched controls (P = 0.01). There was no significant signal change in the DCP ratio in the 13 hemodialysis patients (0.99 ± 0.04 vs 0.99 ± 0.04; P = 0.78) and 13 age/sex-matched patients (0.99 ± 0.02 vs 0.99 ± 0.03; P = 0.78) who did not receive GBCA. The hemodialysis patients had a baseline GPT that was higher than nondialysis patients (P < 0.001). However, the GPT change after GBCA administration was not significantly different from controls. Increased signal in the choroid plexus on unenhanced T1-weighted images after GBCA administration was noted in hemodialysis patients (0.72 ± 0.20 vs 0.86 ± 0.23; P = 0.006); however, a multivariate analysis showed this to be primarily related to hemodialysis (P = 0.003) with only a trend toward relating to GBCA exposure (P = 0.07). Hemodialysis

  13. Accessory renal arteries: Prevalence in resistant hypertension and an important role in nonresponse to radiofrequency renal denervation.

    PubMed

    VonAchen, Paige; Hamann, Jason; Houghland, Thomas; Lesser, John R; Wang, Yale; Caye, David; Rosenthal, Kristi; Garberich, Ross F; Daniels, Mary; Schwartz, Robert S

    The aim of this study was to understand the role of accessory renal arteries in resistant hypertension, and to establish their role in nonresponse to radiofrequency renal denervation (RDN) procedures. Prior studies suggest a role for accessory renal arteries in hypertensive syndromes, and recent clinical trials of renal denervation report that these anomalies are highly prevalent in resistant hypertension. This study evaluated the relationships among resistant hypertension, accessory renal arteries, and the response to radiofrequency (RF) renal denervation. Computed Tomography Angiography (CTA) and magnetic resonance imaging (MRI) scans from 58 patients with resistant hypertension undergoing RF renal denervation (RDN) were evaluated. Results were compared with CT scans in 57 healthy, normotensive subjects undergoing screening as possible renal transplant donors. All scans were carefully studied for accessory renal arteries, and were correlated with long term blood pressure reduction. Accessory renal arteries were markedly more prevalent in the hypertensive patients than normotensive renal donors (59% vs 32% respectively, p=0.004). RDN had an overall nonresponse rate of 29% (response rate 71%). Patients without accessory vessels had a borderline higher response rate to RDN than those with at least one accessory vessel (83% vs 62% respectively, p=0.076) and a higher RDN response than patients with untreated accessory arteries (83% vs 55%; p=0.040). For accessory renal arteries and nonresponse, the sensitivity was 76%, specificity 49%, with positive and negative predictive values 38% and 83% respectively. Accessory renal arteries were markedly over-represented in resistant hypertensives compared with healthy controls. While not all patients with accessory arteries were nonresponders, nonresponse was related to both the presence and non-treatment of accessory arteries. Addressing accessory renal arteries in future clinical trials may improve RDN therapeutic efficacy

  14. Bilateral renal calculi

    PubMed Central

    Sreenevasan, G

    1974-01-01

    Bilateral renal calculi were present in 114 (10.7%) of 1,070 cases of proved urinary calculus admitted to the Urological Department of the General Hospital, Kuala Lumpur, during the period November 1968—May 1973. The management of bilateral renal calculi is discussed with reference to the first 100 cases in this series. The introduction of renography has greatly facilitated the decision as to which kidney should be operated on first. The management of patients with and without uraemia is discussed and the use of the modified V and V—Y incisions for the removal of staghorn calculi is described. Complications and results are briefly reviewed. ImagesFig. 1Fig. 4Fig. 6Fig. 7 PMID:4845653

  15. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes

    DOE PAGES

    Cruz, Jeffrey A.; Savage, Linda J.; Zegarac, Robert; ...

    2016-06-22

    Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples inmore » mutants of Arabidopsis of such “emergent phenotypes” that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. Finally, these emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments.« less

  16. Effect of endogenous angiotensin II on the frequency response of the renal vasculature.

    PubMed

    Dibona, Gerald F; Sawin, Linda L

    2004-12-01

    The renal vasculature functions as an efficient low-pass filter of the multiple frequencies contained within renal sympathetic nerve activity. This study examined the effect of angiotensin II on the frequency response of the renal vasculature. Physiological changes in the activity of the endogenous renin-angiotensin system were produced by alterations in dietary sodium intake. The frequency response of the renal vasculature was evaluated using pseudorandom binary sequence renal nerve stimulation, and the role of angiotensin II was evaluated by the administration of the angiotensin II AT(1)-receptor antagonist losartan. In low-sodium-diet rats with increased renin-angiotensin system activity, losartan steepened the renal vascular frequency response (i.e., greater attenuation); this was not seen in normal- or high-sodium-diet rats with normal or decreased renin-angiotensin system activity. Analysis of the transfer function from arterial pressure to renal blood flow, i.e., dynamic autoregulation, showed that the tubuloglomerular feedback but not the myogenic component was enhanced in low- and normal- but not in high-sodium-diet rats and that this was reversed by losartan administration. Thus physiological increases in endogenous renin-angiotensin activity inhibit the renal vascular frequency response to renal nerve stimulation while selectively enhancing the tubuloglomerular feedback component of dynamic autoregulation of renal blood flow.

  17. Bilateral adrenal phaeochromocytomas associated with unilateral renal artery stenosis.

    PubMed Central

    Burns, A. P.; O'Connell, P. R.; Murnaghan, D. J.; Brady, M. P.

    1989-01-01

    A 21 year old male was discovered to be severely hypertensive. He was found to have bilateral adrenal phaeochromocytomas and a single renal artery stenosis. More than 40 cases of coexisting renal artery stenosis and phaeochromocytomas have been reported. The aetiology of renal artery stenosis in association with phaeochromocytoma maybe multifactorial and the radiographic appearances are not always clear-cut. Renin levels in this patient were elevated prior to the removal of the phaeochromocytomas but the renal vein renin ratio did not suggest that the renal artery stenosis contributed significantly to his hypertension. The patient's hypertension resolved following successful removal of the phaeochromocytomas despite persistence of the renal artery stenosis. Thus, though renin levels may be misleading in these cases, renal vein renin ratios may still be helpful in deciding on patient management. Images Figure 1 Figure 2 PMID:2694147

  18. [MRI findings of renal cell carcinoma associated with Xp11.2 translocations/TFE3 gene fusions].

    PubMed

    Zhong, Y; Wang, H Y; Chen, X; Guo, A T; Ma, L; Wang, Y W; Ye, H Y

    2016-09-06

    Objective: To analyze MRI findings of renal cell carcinoma associated with Xp11.2 translocation-TFE gene fusion(Xp11.2 RCC). Methods: MR imaging features of eleven patients with pathologically-proved Xp11.2 RCC were retrospectively analyzed from December 2008 to December 2015. The following MRI features of the lesions were analyzed in the study: location, maximal diameter, signal intensity, hemorrhage, necrosis, cystic change, enhancement features and metastasis. The data was analyzed by using t test. Results: Four men and seven women (mean age, 35.2 years; age range, 15-49 years) were included. Tumors occurred in the right kidney in 5 cases and the left kidney in 6 cases. On T 1 WI tumors showed heterogeneously hypo-intensity and iso-intensity, hyper-intensity in 10 cases, 1 cases, respectively. On T 2 WI tumors showed heterogeneously slight hypo-intensity, heterogeneously slight hyper-intensity and hyper-intensity in 6 cases, 4 cases, 1 case, respectively. On DWI tumors showed hyper-intensity and heterogeneously slight hype-intensity in 2 cases, 9 cases, respectively. ADC value of the tumors were statistically significant lower than that of renal cortex(×10 -3 mm 2 /s)(1.35±0.20 vs 2.09±0.11, P <0.05). Imaging findings were suggestive of hemorrhage( n =4) or necrosis ( n =1) or cystic change ( n =6) or lipid( n =1) in the tumors. On dynamic contrast-enhanced imaging, tumors showed lower signal intensity change (96%±93%, 110%±86% and 103%±46%, respectively) than did renal cortex (285%±109%, 254%±97% and 225%±90%, respectively) ( P <0.05). Tumor capsule showed in 7 cases. Enlarged lymph node was found in renal hilum in one case. Conclusion: MRI findings may show characteristic features of Xp11.2 RCC combined with patients' age and assist in preoperative correct diagnosis.

  19. Image dynamic range test and evaluation of Gaofen-2 dual cameras

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhua; Gan, Fuping; Wei, Dandan

    2015-12-01

    In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.

  20. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA.

    PubMed

    Tamada, Tsutomu; Ito, Katsuyoshi; Sone, Teruki; Yamamoto, Akira; Yoshida, Koji; Kakuba, Koki; Tanimoto, Daigo; Higashi, Hiroki; Yamashita, Takenori

    2009-03-01

    To evaluate the differences in enhancement of the abdominal solid organ and the major vessel on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) obtained with gadolinium ethoxybenzyldiethylenetriamine pentaacetic acid (Gd-EOB-DTPA: EOB) and gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) in the same patients. A total of 13 healthy volunteers underwent repeat assessments of abdominal MR examinations with DCE-MRI using either Gd-DTPA at a dose of 0.1 mmol/kg body weight or EOB at a dose of 0.025 mmol/kg body weight. DCE images were obtained at precontrast injection and in the arterial phase (AP: 25 seconds), portal phase (PP: 70 seconds), and equilibrium phase (EP: 3 minutes). The signal intensities (SIs) of liver at AP, PP, and EP; the SIs of spleen, renal cortex, renal medulla, pancreas, adrenal gland, aorta at AP; and the SIs of portal vein and inferior vena cava (IVC) at PP were defined using region-of-interest measurements, and were used for calculation of signal intensity ratio (SIR). The mean SIRs of liver (0.195+/-0.140), spleen (1.35+/-0.353), renal cortex (1.58+/-0.517), renal medulla (0.548+/-0.259), pancreas (0.540+/-0.183), adrenal gland (1.04+/-0.405), and aorta (2.44+/-0.648) at AP as well as the mean SIRs of portal vein (1.85+/-0.477) and IVC (1.16+/-0.187) at PP in the EOB images were significantly lower than those (0.337+/-0.200, 1.99+/-0.443, 2.01+/-0.474, 0.742+/-0.336, 0.771+/-0.227, 1.26+/-0.442, 3.22+/-1.20, 2.73+/-0.429, and 1.68+/-0.366, respectively) in the Gd-DTPA images (P<0.05 each). There was no significant difference in mean SIR of liver at PP between EOB (0.529+/-0.124) and Gd-DTPA (0.564+/-0.139). Conversely, the mean SIR of liver at EP was significantly higher with EOB (0.576+/-0.167) than with Gd-DTPA (0.396+/-0.093) (P<0.001). Lower arterial vascular and parenchymal enhancement with Gd-EOB, as compared with Gd-DTPA, may require reassessment of its dose, despite the higher late venous phase liver parenchymal

  1. High dynamic range CMOS (HDRC) imagers for safety systems

    NASA Astrophysics Data System (ADS)

    Strobel, Markus; Döttling, Dietmar

    2013-04-01

    The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.

  2. Comparative evaluation of technetium-99m-diethylenetriaminepentaacetic acid renal dynamic imaging versus the Modification of Diet in Renal Disease equation and the Chronic Kidney Disease Epidemiology Collaboration equation for the estimation of GFR.

    PubMed

    Huang, Qi; Chen, Yunshuang; Zhang, Min; Wang, Sihe; Zhang, Weiguang; Cai, Guangyan; Chen, Xiangmei; Sun, Xuefeng

    2018-04-01

    We compared the performance of technetium-99m-diethylenetriaminepentaacetic acid ( 99m Tc-DTPA) renal dynamic imaging (RDI), the MDRD equation, and the CKD EPI equation to estimate glomerular filtration rate (GFR). A total of 551 subjects, including CKD patients and healthy individuals, were enrolled in this study. Dual plasma sample clearance method of 99m Tc-DTPA was used as the true value for GFR (tGFR). RDI and the MDRD and CKD EPI equations for estimating GFR were compared and evaluated. Data indicate that RDI and the MDRD equation underestimated GFR and CKD EPI overestimated GFR. RDI was associated with significantly higher bias than the MDRD and CKD EPI equations. The regression coefficient, diagnostic precision, and consistency of RDI were significantly lower than either equation. RDI and the MDRD equation underestimated GFR to a greater degree in subjects with tGFR ≥ 90 ml/min/1.73 m 2 compared with the results obtained from all subjects. In the tGFR60-89 ml/min/1.73 m 2 group, the precision of RDI was significantly lower than that of both equations. In the tGFR30-59 ml/min/1.73 m 2 group, RDI had the least bias, the most precision, and significantly higher accuracy compared with either equation. In tGFR < 30 ml/min/1.73 m 2 , the three methods had similar performance and were not significantly different. RDI significantly underestimates GFR and performs no better than MDRD and CKD EPI equations for GFR estimation; thus, it should not be recommended as a reference standard against which other GFR measurement methods are assessed. However, RDI better estimates GFR than either equation for individuals in the tGFR30-59 ml/min/1.73 m 2 group and thus may be helpful to distinguish stage 3a and 3b CKD.

  3. Cardiovascular and pulmonary dynamics by quantitative imaging

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The accuracy and range of studies on cardiovascular and pulmonary functions can be greatly facilitated if the motions of the underlying organ systems throughout individual cycles can be directly visualized and readily measured with minimum or preferably no effect on these motions. Achievement of this objective requires development of techniques for quantitative noninvasive or minimally invasive dynamic and stop-action imaging of the organ systems. A review of advances in dynamic quantitative imaging of moving organs reveals that the revolutionary value of cross-sectional and three-dimensional images produced by various types of radiant energy such as X-rays and gamma rays, positrons, electrons, protons, light, and ultrasound for clinical diagnostic and biomedical research applications is just beginning to be realized. The fabrication of a clinically useful cross-section reconstruction device with sensing capabilities for both anatomical structural composition and chemical composition may be possible and awaits future development.

  4. Renal damage detected by DMSA, despite normal renal ultrasound, in children with febrile UTI.

    PubMed

    Bush, N C; Keays, M; Adams, C; Mizener, K; Pritzker, K; Smith, W; Traylor, J; Villanueva, C; Snodgrass, W T

    2015-06-01

    2011 American Academy of Pediatrics guidelines recommended renal-bladder ultrasound (RBUS) as the only evaluation after febrile urinary tract infection (FUTI) in infants aged 2-24 months. We determined the sensitivity, specificity, and false negative rate of RBUS to identify DMSA-detected renal damage in this age group as well as in older children. Consecutive patients referred to pediatric urology with a history of FUTI underwent DMSA ≥ 3 months after FUTI. Abnormal RBUS was defined as: Society of Fetal Urology hydronephrosis grades I-IV; hydroureter ≥ 7 mm; renal scar defined as focal parenchymal thinning; and/or size discrepancy ≥ 1 cm between kidneys. Abnormal DMSA was presence of any focal uptake defects and/or split renal function < 44%. We calculated sensitivity, specificity, positive and negative predictive values, and false negative rates of RBUS compared to DMSA. 618 patients (79% female), median age 3.4 years, were referred for FUTIs. Of the 512 (83%) with normal RBUS, 99 (19%) had abnormal DMSA. Children with normal RBUS after their first FUTI had abnormal DMSA in 15/151 (10%) aged ≤ 24 months and 23/119 (19%) aged > 24 months. RBUS had poor sensitivity (34%) and low positive predictive value (47%) to identify patients with renal damage. 99/149 (66%) children with renal damage on DMSA had normal RBUS. After FUTI, 66% of children with reduced renal function and/or renal cortical defects found by DMSA scintigraphy had a normal RBUS. Since abnormal DMSA may correlate with increased risk for VUR, recurrent FUTI and renal damage, our data suggest RBUS alone will fail to detect a significant proportion of patients at risk. The data suggest that imaging after FUTI should include acute RBUS and delayed DMSA, reserving VCUG for patients with abnormal DMSA and/or recurrent FUTI. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  5. Endovascular MR-guided Renal Embolization by Using a Magnetically Assisted Remote-controlled Catheter System

    PubMed Central

    Lillaney, Prasheel V.; Yang, Jeffrey K.; Losey, Aaron D.; Martin, Alastair J.; Cooke, Daniel L.; Thorne, Bradford R. H.; Barry, David C.; Chu, Andrew; Stillson, Carol; Do, Loi; Arenson, Ronald L.; Saeed, Maythem; Wilson, Mark W.

    2016-01-01

    Purpose To assess the feasibility of a magnetically assisted remote-controlled (MARC) catheter system under magnetic resonance (MR) imaging guidance for performing a simple endovascular procedure (ie, renal artery embolization) in vivo and to compare with x-ray guidance to determine the value of MR imaging guidance and the specific areas where the MARC system can be improved. Materials and Methods In concordance with the Institutional Animal Care and Use Committee protocol, in vivo renal artery navigation and embolization were tested in three farm pigs (mean weight 43 kg ± 2 [standard deviation]) under real-time MR imaging at 1.5 T. The MARC catheter device was constructed by using an intramural copper-braided catheter connected to a laser-lithographed saddle coil at the distal tip. Interventionalists controlled an in-room cart that delivered electrical current to deflect the catheter in the MR imager. Contralateral kidneys were similarly embolized under x-ray guidance by using standard clinical catheters and guidewires. Changes in renal artery flow and perfusion were measured before and after embolization by using velocity-encoded and perfusion MR imaging. Catheter navigation times, renal parenchymal perfusion, and renal artery flow rates were measured for MR-guided and x-ray–guided embolization procedures and are presented as means ± standard deviation in this pilot study. Results Embolization was successful in all six kidneys under both x-ray and MR imaging guidance. Mean catheterization time with MR guidance was 93 seconds ± 56, compared with 60 seconds ± 22 for x-ray guidance. Mean changes in perfusion rates were 4.9 au/sec ± 0.8 versus 4.6 au/sec ± 0.6, and mean changes in renal flow rate were 2.1 mL/min/g ± 0.2 versus 1.9 mL/min/g ± 0.2 with MR imaging and x-ray guidance, respectively. Conclusion The MARC catheter system is feasible for renal artery catheterization and embolization under real-time MR imaging in vivo, and quantitative physiologic

  6. Endovascular MR-guided Renal Embolization by Using a Magnetically Assisted Remote-controlled Catheter System.

    PubMed

    Lillaney, Prasheel V; Yang, Jeffrey K; Losey, Aaron D; Martin, Alastair J; Cooke, Daniel L; Thorne, Bradford R H; Barry, David C; Chu, Andrew; Stillson, Carol; Do, Loi; Arenson, Ronald L; Saeed, Maythem; Wilson, Mark W; Hetts, Steven W

    2016-10-01

    Purpose To assess the feasibility of a magnetically assisted remote-controlled (MARC) catheter system under magnetic resonance (MR) imaging guidance for performing a simple endovascular procedure (ie, renal artery embolization) in vivo and to compare with x-ray guidance to determine the value of MR imaging guidance and the specific areas where the MARC system can be improved. Materials and Methods In concordance with the Institutional Animal Care and Use Committee protocol, in vivo renal artery navigation and embolization were tested in three farm pigs (mean weight 43 kg ± 2 [standard deviation]) under real-time MR imaging at 1.5 T. The MARC catheter device was constructed by using an intramural copper-braided catheter connected to a laser-lithographed saddle coil at the distal tip. Interventionalists controlled an in-room cart that delivered electrical current to deflect the catheter in the MR imager. Contralateral kidneys were similarly embolized under x-ray guidance by using standard clinical catheters and guidewires. Changes in renal artery flow and perfusion were measured before and after embolization by using velocity-encoded and perfusion MR imaging. Catheter navigation times, renal parenchymal perfusion, and renal artery flow rates were measured for MR-guided and x-ray-guided embolization procedures and are presented as means ± standard deviation in this pilot study. Results Embolization was successful in all six kidneys under both x-ray and MR imaging guidance. Mean catheterization time with MR guidance was 93 seconds ± 56, compared with 60 seconds ± 22 for x-ray guidance. Mean changes in perfusion rates were 4.9 au/sec ± 0.8 versus 4.6 au/sec ± 0.6, and mean changes in renal flow rate were 2.1 mL/min/g ± 0.2 versus 1.9 mL/min/g ± 0.2 with MR imaging and x-ray guidance, respectively. Conclusion The MARC catheter system is feasible for renal artery catheterization and embolization under real-time MR imaging in vivo, and quantitative physiologic

  7. Dynamic Geometric Analysis of the Renal Arteries and Aorta following Complex Endovascular Aneurysm Repair.

    PubMed

    Ullery, Brant W; Suh, Ga-Young; Kim, John J; Lee, Jason T; Dalman, Ronald L; Cheng, Christopher P

    2017-08-01

    Aneurysm regression and target vessel patency during early and mid-term follow-up may be related to the effect of stent-graft configuration on the anatomy. We quantified geometry and remodeling of the renal arteries and aneurysm following fenestrated (F-) or snorkel/chimney (Sn-) endovascular aneurysm repair (EVAR). Twenty-nine patients (mean age, 76.8 ± 7.8 years) treated with F- or Sn-EVAR underwent computed tomography angiography at preop, postop, and follow-up. Three-dimensional geometric models of the aorta and renal arteries were constructed. Renal branch angle was defined relative to the plane orthogonal to the aorta. End-stent angle was defined as the angulation between the stent and native distal artery. Aortic volumes were computed for the whole aorta, lumen, and their difference (excluded lumen). Renal patency, reintervention, early mortality, postoperative renal impairment, and endoleak were reviewed. From preop to postop, F-renal branches angled upward, Sn-renal branches angled downward (P < 0.05), and Sn-renals exhibited increased end-stent angulation (12 ± 15°, P < 0.05). From postop to follow-up, branch angles did not change for either F- or Sn-renals, whereas F-renals exhibited increased end-stent angulation (5 ± 10°, P < 0.05). From preop to postop, whole aortic and excluded lumen volumes increased by 5 ± 14% and 74 ± 81%, whereas lumen volume decreased (39 ± 27%, P < 0.05). From postop to follow-up, whole aortic and excluded lumen volumes decreased similarly (P < 0.05), leaving the lumen volume unchanged. At median follow-up of 764 days (range, 7-1,653), primary renal stent patency was 94.1% and renal impairment occurred in 2 patients (6.7%). Although F- and Sn-EVAR resulted in significant, and opposite, changes to renal branch angle, only Sn-EVAR resulted in significant end-stent angulation increase. Longitudinal geometric analysis suggests that these anatomic alterations are primarily generated early as a

  8. The incidence of renal calcification in preterm infants.

    PubMed Central

    Short, A; Cooke, R W

    1991-01-01

    A total of 79 infants born at less than 32 weeks' gestation were studied with serial renal ultrasound scans to assess the incidence of nephrocalcinosis. Twenty one infants developed renal calcification giving an overall incidence of 26.6% in the study group. Affected infants were significantly smaller (mean (SD) birth weight 940 (323) g) and significantly less mature (mean (SD) gestation 26.9 (1.9) weeks). In 17 patients the calcification was represented by hyperechogenic renal pyramids alone, and in four patients renal calculi were demonstrated. Factors associated with renal calcification included hypophosphataemia, hypercalcaemia, hypercreatininaemia, and prolonged oxygen requirement during the first month of life. Multivariate analysis showed that the strongest clinical indicator of calcification was duration of oxygen treatment. Infants who still required oxygen treatment at 28 days had a 62% chance of developing renal calcification. Images Figure 4 Figure 5 PMID:2025034

  9. Magnetic Resonance Imaging-Derived Renal Oxygenation and Perfusion During Continuous, Steady-State Angiotensin-II Infusion in Healthy Humans.

    PubMed

    van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul

    2016-03-28

    The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, P<0.001). Glomerular filtration rate decreased from 121±23 to 110±18 mL/min per 1.73 m(2) (F[1.8, 2.4]=6.4, P=0.013). Cortical transverse relaxation rate (R2*; increases in R2* represent decreases in oxygenation) increased by 7.2±3.8% (F[3, 21]=7.37, P=0.001); medullar R2* did not change. Cortical R2* related to filtration fraction (R(2) 0.46, P<0.001). By direct comparison between "gold standard" kidney function measurements and BOLD MRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  10. Graphene Oxide/Ag Nanoparticles Cooperated with Simvastatin as a High Sensitive X-Ray Computed Tomography Imaging Agent for Diagnosis of Renal Dysfunctions.

    PubMed

    Li, Zhan; Tian, Longlong; Liu, Jianli; Qi, Wei; Wu, Qiang; Wang, Haijing; Ali, Mohammad Chand; Wu, Wangsuo; Qiu, Hongdeng

    2017-09-01

    Graphene oxides (GO) are attracting much attention in the diagnosis and therapy of the subcutaneous tumor as a novel biomaterial, but its diagnosis to tissue dysfunction is yet to be found. Here, a novel application of GO for diagnosis of renal dysfunction via contrast-enhanced computed tomography (CT) is proposed. In order to serve as contrast-enhanced agent, Ag nanoparticles (AgNPs) are composited on the surface of GO to promote its X-ray absorption, and then simvastatin is coinjected for eliminating in vivo toxicity induced by AgNPs. It is found that GO/AgNPs can enhance the imaging of CT into the lung, liver, and kidney of mice for a long circulation time (≈24 h) and a safety profile in vivo in the presence of simvastatin. Interestingly, the lower dose of GO/AgNPs (≈0.5 mg per kg bw) shows an excellent performance for CT imaging of renal perfusion, and visually exhibits the right renal dysfunction in model mice. Hence, this work suggests that graphene nanoparticles will play a vital role for the future medical translational development including drug carrier, biosensing, and disease therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dynamic intensity-weighted region of interest imaging for conebeam CT

    PubMed Central

    Pearson, Erik; Pan, Xiaochuan; Pelizzari, Charles

    2017-01-01

    BACKGROUND Patient dose from image guidance in radiotherapy is small compared to the treatment dose. However, the imaging beam is untargeted and deposits dose equally in tumor and healthy tissues. It is desirable to minimize imaging dose while maintaining efficacy. OBJECTIVE Image guidance typically does not require full image quality throughout the patient. Dynamic filtration of the kV beam allows local control of CT image noise for high quality around the target volume and lower quality elsewhere, with substantial dose sparing and reduced scatter fluence on the detector. METHODS The dynamic Intensity-Weighted Region of Interest (dIWROI) technique spatially varies beam intensity during acquisition with copper filter collimation. Fluence is reduced by 95% under the filters with the aperture conformed dynamically to the ROI during cone-beam CT scanning. Preprocessing to account for physical effects of the collimator before reconstruction is described. RESULTS Reconstructions show image quality comparable to a standard scan in the ROI, with higher noise and streak artifacts in the outer region but still adequate quality for patient localization. Monte Carlo modeling shows dose reduction by 10–15% in the ROI due to reduced scatter, and up to 75% outside. CONCLUSIONS The presented technique offers a method to reduce imaging dose by accepting increased image noise outside the ROI, while maintaining full image quality inside the ROI. PMID:27257875

  12. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  13. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  14. Groupwise Image Registration Guided by a Dynamic Digraph of Images.

    PubMed

    Tang, Zhenyu; Fan, Yong

    2016-04-01

    For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.

  15. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    PubMed

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  16. [Quality assurance of the renal applications software].

    PubMed

    del Real Núñez, R; Contreras Puertas, P I; Moreno Ortega, E; Mena Bares, L M; Maza Muret, F R; Latre Romero, J M

    2007-01-01

    The need for quality assurance of all technical aspects of nuclear medicine studies is widely recognised. However, little attention has been paid to the quality assurance of the applications software. Our work reported here aims at verifying the analysis software for processing of renal nuclear medicine studies (renograms). The software tools were used to build a synthetic dynamic model of renal system. The model consists of two phases: perfusion and function. The organs of interest (kidneys, bladder and aortic artery) were simple geometric forms. The uptake of the renal structures was described by mathematic functions. Curves corresponding to normal or pathological conditions were simulated for kidneys, bladder and aortic artery by appropriate selection of parameters. There was no difference between the parameters of the mathematic curves and the quantitative data produced by the renal analysis program. Our test procedure is simple to apply, reliable, reproducible and rapid to verify the renal applications software.

  17. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    PubMed Central

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  18. Value of three-dimensional volume rendering images in the assessment of the centrality index for preoperative planning in patients with renal masses.

    PubMed

    Sofia, C; Magno, C; Silipigni, S; Cantisani, V; Mucciardi, G; Sottile, F; Inferrera, A; Mazziotti, S; Ascenti, G

    2017-01-01

    To evaluate the precision of the centrality index (CI) measurement on three-dimensional (3D) volume rendering technique (VRT) images in patients with renal masses, compared to its standard measurement on axial images. Sixty-five patients with renal lesions underwent contrast-enhanced multidetector (MD) computed tomography (CT) for preoperative imaging. Two readers calculated the CI on two-dimensional axial images and on VRT images, measuring it in the plane that the tumour and centre of the kidney were lying in. Correlation and agreement of interobserver measurements and inter-method results were calculated using intraclass correlation (ICC) coefficients and the Bland-Altman method. Time saving was also calculated. The correlation coefficients were r=0.99 (p<0.05) and r=0.99 (p<0.05) for both the CI on axial and VRT images, with an ICC of 0.99, and 0.99, respectively. Correlation between the two methods of measuring the CI on VRT and axial CT images was r=0.99 (p<0.05). The two methods showed a mean difference of -0.03 (SD 0.13). Mean time saving per each examination with VRT was 45.5%. The present study showed that VRT and axial images produce almost identical values of CI, with the advantages of greater ease of execution and a time saving of almost 50% for 3D VRT images. In addition, VRT provides an integrated perspective that can better assist surgeons in clinical decision making and in operative planning, suggesting this technique as a possible standard method for CI measurement. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    DOE PAGES

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; ...

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  20. Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids

    NASA Astrophysics Data System (ADS)

    Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.

  1. Partial renal coverage in endovascular aneurysm repair causes unfavorable renal flow patterns in an infrarenal aneurysm model.

    PubMed

    van de Velde, Lennart; Donselaar, Esmé J; Groot Jebbink, Erik; Boersen, Johannes T; Lajoinie, Guillaume P R; de Vries, Jean-Paul P M; Zeebregts, Clark J; Versluis, Michel; Reijnen, Michel M P J

    2018-05-01

    To achieve an optimal sealing zone during endovascular aneurysm repair, the intended positioning of the proximal end of the endograft fabric should be as close as possible to the most caudal edge of the renal arteries. Some endografts exhibit a small offset between the radiopaque markers and the proximal fabric edge. Unintended partial renal artery coverage may thus occur. This study investigated the consequences of partial coverage on renal flow patterns and wall shear stress (WSS). In vitro models of an abdominal aortic aneurysm were used to visualize pulsatile flow using two-dimensional particle image velocimetry under physiologic resting conditions. One model served as control and two models were stented with an Endurant endograft (Medtronic Inc, Minneapolis, Minn), one without and one with partial renal artery coverage with 1.3 mm of stent fabric extending beyond the marker (16% area coverage). The magnitude and oscillation of WSS, relative residence time, and backflow in the renal artery were analyzed. In both stented models, a region along the caudal renal artery wall presented with low and oscillating WSS, not present in the control model. A region with very low WSS (<0.1 Pa) was present in the model with partial coverage over a length of 7 mm compared with a length of 2 mm in the model without renal coverage. Average renal backflow area percentage in the renal artery incrementally increased from control (0.9%) to the stented model without (6.4%) and with renal coverage (18.8%). In this flow model, partial renal coverage after endovascular aneurysm repair causes low and marked oscillations in WSS, potentially promoting atherosclerosis and subsequent renal artery stenosis. Awareness of the device-dependent offset between the fabric edge and the radiopaque markers is therefore important in endovascular practice. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Role of angiotensin II in dynamic renal blood flow autoregulation of the conscious dog

    PubMed Central

    Just, Armin; Ehmke, Heimo; Wittmann, Uwe; Kirchheim, Hartmut R

    2002-01-01

    The influence of angiotensin II (ANGII) on the dynamic characteristics of renal blood flow (RBF) was studied in conscious dogs by testing the response to a step increase in renal artery pressure (RAP) after a 60 s period of pressure reduction (to 50 mmHg) and by calculating the transfer function between physiological fluctuations in RAP and RBF. During the RAP reduction, renal vascular resistance (RVR) decreased and upon rapid restoration of RAP, RVR returned to baseline with a characteristic time course: within the first 10 s, RVR rose rapidly by 40 % of the initial change (first response, myogenic response). A second rise began after 20–30 s and reached baseline after an overshoot at 40 s (second response, tubuloglomerular feedback (TGF)). Between both responses, RVR rose very slowly (plateau). The transfer function had a low gain below 0.01 Hz (high autoregulatory efficiency) and two corner frequencies at 0.026 Hz (TGF) and at 0.12 Hz (myogenic response). Inhibition of angiotensin converting enzyme (ACE) lowered baseline RVR, but not the minimum RVR at the end of the RAP reduction (autoregulation-independent RVR). Both the first and second response were reduced, but the normalised level of the plateau (balance between myogenic response, TGF and possible slower mechanisms) and the transfer gain below 0.01 Hz were not affected. Infusion of ANGII after ramipril raised baseline RVR above the control condition. The first and second response and the transfer gain at both corner frequencies were slightly augmented, but the normalised level of the plateau was not affected. It is concluded that alterations of plasma ANGII within a physiological range do not modulate the relative contribution of the myogenic response to the overall short-term autoregulation of RBF. Consequently, it appears that ANGII augments not only TGF, but also the myogenic response. PMID:11773325

  3. An unusual case of Y-shaped right renal vein.

    PubMed

    Lavy, M; Martin, L; Eouzan, D; Turco, C; Heyd, B; Mantion, G; Parratte, B; Tatu, L

    2015-01-01

    Vascular renal anomalies are frequent, multiple and well described and result from errors in vessel embryogenesis between the 6th and 10th week of gestation. Historically, variations are described in anatomic dissection and currently mostly in image interpretation. We report an anatomic variation concerning the right renal vein which, to our knowledge, has never been described in the literature either by dissection or by radiological examination. This variation was discovered during the routine dissection of an embalmed male body. It consists of a Y-shaped right renal vein and is associated with multiple retroperitoneal variations: a bilateral accessory renal artery, a trident ending of the right renal artery and a left testicular vein variation. Venous and arterial renal anatomy and its variations are fundamentally important in renal surgery, especially concerning living donor renal grafts. These variations may be diagnosed thanks to injected tomodensitometry which has a good sensitivity and specificity for anomalies. Preoperative diagnosis of an anatomic vascular renal variation may reduce morbidity during surgery, which is why precise examination of injected tomography should be mandatory.

  4. Dynamic photoelasticity by TDI imaging

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Sajan, M. R.

    2001-06-01

    High speed photographic system like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for the recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording system requiring time consuming and tedious wet processing of the films. Digital cameras are replacing the conventional cameras, to certain extent in static experiments. Recently, there is lots of interest in development and modifying CCD architectures and recording arrangements for dynamic scenes analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration mode for digitally recording dynamic photoelastic stress patterns. Applications in strobe and streak photoelastic pattern recording and system limitations will be explained in the paper.

  5. Adaptive online self-gating (ADIOS) for free-breathing noncontrast renal MR angiography.

    PubMed

    Xie, Yibin; Fan, Zhaoyang; Saouaf, Rola; Natsuaki, Yutaka; Laub, Gerhard; Li, Debiao

    2015-01-01

    To develop a respiratory self-gating method, adaptive online self-gating (ADIOS), for noncontrast MR angiography (NC MRA) of renal arteries to overcome some limitations of current free-breathing methods. A NC MRA pulse sequence for online respiratory self-gating was developed based on three-dimensional balanced steady-state free precession (bSSFP) and slab-selective inversion-recovery. Motion information was derived directly from the slab being imaged for online gating. Scan efficiency was maintained by an automatic adaptive online algorithm. Qualitative and quantitative assessments of image quality were performed and results were compared with conventional diaphragm navigator (NAV). NC MRA imaging was successfully completed in all subjects (n = 15). Similarly good image quality was observed in the proximal-middle renal arteries with ADIOS compared with NAV. Superior image quality was observed in the middle-distal renal arteries in the right kidneys with no NAV-induced artifacts. Maximal visible artery length was significantly longer with ADIOS versus NAV in the right kidneys. NAV setup was completely eliminated and scan time was significantly shorter with ADIOS on average compared with NAV. The proposed ADIOS technique for noncontrast MRA provides high-quality visualization of renal arteries with no diaphragm navigator-induced artifacts, simplified setup, and shorter scan time. © 2014 Wiley Periodicals, Inc.

  6. Externally Delivered Focused Ultrasound for Renal Denervation.

    PubMed

    Neuzil, Petr; Ormiston, John; Brinton, Todd J; Starek, Zdenek; Esler, Murray; Dawood, Omar; Anderson, Thomas L; Gertner, Michael; Whitbourne, Rob; Schmieder, Roland E

    2016-06-27

    The aim of this study was to assess clinical safety and efficacy outcomes of renal denervation executed by an externally delivered, completely noninvasive focused therapeutic ultrasound device. Renal denervation has emerged as a potential treatment approach for resistant hypertension. Sixty-nine subjects received renal denervation with externally delivered focused ultrasound via the Kona Medical Surround Sound System. This approach was investigated across 3 consecutive studies to optimize targeting, tracking, and dosing. In the third study, treatments were performed in a completely noninvasive way using duplex ultrasound image guidance to target the therapy. Short- and long-term safety and efficacy were evaluated through use of clinical assessments, magnetic resonance imaging scans prior to and 3 and 24 weeks after renal denervation, and, in cases in which a targeting catheter was used to facilitate targeting, fluoroscopic angiography with contrast. All patients tolerated renal denervation using externally delivered focused ultrasound. Office blood pressure (BP) decreased by 24.6 ± 27.6/9.0 ± 15.0 mm Hg (from baseline BP of 180.0 ± 18.5/97.7 ± 13.7 mm Hg) in 69 patients after 6 months and 23.8 ± 24.1/10.3 ± 13.1 mm Hg in 64 patients with complete 1-year follow-up. The response rate (BP decrease >10 mm Hg) was 75% after 6 months and 77% after 1 year. The most common adverse event was post-treatment back pain, which was reported in 32 of 69 patients and resolved within 72 h in most cases. No intervention-related adverse events involving motor or sensory deficits were reported. Renal function was not altered, and vascular safety was established by magnetic resonance imaging (all patients), fluoroscopic angiography (n = 48), and optical coherence tomography (n = 5). Using externally delivered focused ultrasound and noninvasive duplex ultrasound, image-guided targeting was associated with substantial BP reduction without any major safety signals. Further

  7. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  8. Application of 80-kVp scan and raw data-based iterative reconstruction for reduced iodine load abdominal-pelvic CT in patients at risk of contrast-induced nephropathy referred for oncological assessment: effects on radiation dose, image quality and renal function.

    PubMed

    Nagayama, Yasunori; Tanoue, Shota; Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yoshida, Eri; Yoshida, Morikatsu; Kidoh, Masafumi; Tateishi, Machiko; Yamashita, Yasuyuki

    2018-05-01

    To evaluate the image quality, radiation dose, and renal safety of contrast medium (CM)-reduced abdominal-pelvic CT combining 80-kVp and sinogram-affirmed iterative reconstruction (SAFIRE) in patients with renal dysfunction for oncological assessment. We included 45 patients with renal dysfunction (estimated glomerular filtration rate  <45 ml per min per 1.73 m 2 ) who underwent reduced-CM abdominal-pelvic CT (360 mgI kg -1 , 80-kVp, SAFIRE) for oncological assessment. Another 45 patients without renal dysfunction (estimated glomerular filtration rate >60 ml per lmin per 1.73 m 2 ) who underwent standard oncological abdominal-pelvic CT (600 mgI kg -1 , 120-kVp, filtered-back projection) were included as controls. CT attenuation, image noise, and contrast-to-noise ratio (CNR) were compared. Two observers performed subjective image analysis on a 4-point scale. Size-specific dose estimate and renal function 1-3 months after CT were measured. The size-specific dose estimate and iodine load of 80-kVp protocol were 32 and 41%,, respectively, lower than of 120-kVp protocol (p < 0.01). CT attenuation and contrast-to-noise ratio of parenchymal organs and vessels in 80-kVp images were significantly better than those of 120-kVp images (p < 0.05). There were no significant differences in quantitative or qualitative image noise or subjective overall quality (p > 0.05). No significant kidney injury associated with CM administration was observed. 80-kVp abdominal-pelvic CT with SAFIRE yields diagnostic image quality in oncology patients with renal dysfunction under substantially reduced iodine and radiation dose without renal safety concerns. Advances in knowledge: Using 80-kVp and SAFIRE allows for 40% iodine load and 32% radiation dose reduction for abdominal-pelvic CT without compromising image quality and renal function in oncology patients at risk of contrast-induced nephropathy.

  9. WWSSF - a worldwide study on radioisotopic renal split function: reproducibility of renal split function assessment in children.

    PubMed

    Geist, Barbara Katharina; Dobrozemsky, Georg; Samal, Martin; Schaffarich, Michael P; Sinzinger, Helmut; Staudenherz, Anton

    2015-12-01

    The split or differential renal function is the most widely accepted quantitative parameter derived from radionuclide renography. To examine the intercenter variance of this parameter, we designed a worldwide round robin test. Five selected dynamic renal studies have been distributed all over the world by e-mail. Three of these studies are anonymized patient data acquired using the EANM standardized protocol and two studies are phantom studies. In a simple form, individual participants were asked to measure renal split function as well as to provide additional information such as data analysis software, positioning of background region of interest, or the method of calculation. We received the evaluation forms from 34 centers located in 21 countries. The analysis of the round robin test yielded an overall z-score of 0.3 (a z-score below 1 reflecting a good result). However, the z-scores from several centers were unacceptably high, with values greater than 3. In particular, the studies with impaired renal function showed a wide variance. A wide variance in the split renal function was found in patients with impaired kidney function. This study indicates the ultimate importance of quality control and standardization of the measurement of the split renal function. It is especially important with respect to the commonly accepted threshold for significant change in split renal function by 10%.

  10. Intravenous Renal Cell Transplantation for Polycystic Kidney Disease

    DTIC Science & Technology

    2014-06-01

    to measure serum creatinine. 5b. urine collection twice each month for measurements of protein and creatinine ratios Task 6. Intravital imaging...volume, renal fibrosis (quantified on trichrome stained sections), albuminuria, blood urea nitrogen (BUN) and kidney weight were significantly...IRCT markedly reduced cyst volume, renal fibrosis, albuminuria, blood urea nitrogen and kidney weights in treated rats, as compared to PCK rats

  11. Postoperative chronic renal failure: a new syndrome?

    PubMed Central

    Merino, G E; Buselmeier, T J; Kjellstrand, C M

    1975-01-01

    Of 125 patients with postsurgical acute tubular necrosis, 87 died, 34 regained clinical normal renal function, and 4 survivors (9.5%) were left with severe permanent renal failure, two of whom required chronic dialysis and transplantation. Preoperatively these 4 patients had normal renal function. The 4 patients were above age 60, two had undergone methoxyflurane anesthesia, and nephrotoxic antibiotics were used in all. The incidence of permanent renal failure is much higher than ever reported and may reflect the survival of patients who previously died because of less ideal dialysis. We believe that the cause of this permanent lesion is multifactorial, including age (over 60 years), nephrotoxic antibiotics (particularly cephalothin and gentamicin sulfate), and nephrotoxic anesthetic (methoxyflurane) agents. This combination of factors should be avoided whenever possible. Images Fig. 2. PMID:1147707

  12. Analysis of the dynamics of renal vascular resistance and urine flow rate in the cat following electrical stimulation of the renal nerves.

    PubMed

    Celler, B G; Stella, A; Golin, R; Zanchetti, A

    1996-08-01

    In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.

  13. Renal incidental findings on computed tomography

    PubMed Central

    Meyer, Hans Jonas; Pfeil, Alina; Schramm, Dominik; Bach, Andreas Gunter; Surov, Alexey

    2017-01-01

    Abstract Renal incidental findings (IFs) are common. However, previous reports investigated renal IFs were limited to patient selection. The purpose of this study was to estimate the prevalence and distribution of all renal IFs on computed tomography (CT) in a large patient collective. All patients, who underwent CT investigations of the abdominal region at our institution in the time period between January 2006 and February 2014 were included in this study. Inclusion criteria were as follows: no previous history of renal diseases and well image quality. Patients with known kidney disorders were excluded from the study. Overall, 7365 patients meet the inclusion criteria were identified. There were 2924 (39.7%) women and 4441 men (60.3%) with a mean age of 59.8 ± 16.7 years. All CTs were retrospectively analyzed in consensus by 2 radiologists. Collected data were evaluated by means of descriptive statistics. Overall, 2756 patients (37.42% of all included patients) showed 3425 different renal IFs (1.24 findings per patient). Of all renal IFs, 123 (3.6%) findings were clinically relevant, 259 (7.6%) were categorized as possibly clinically relevant, and 3043 (88.8%) were clinically non relevant. Different renal IFs can be detected on CT. The present study provides a real prevalence and proportion of them in daily clinical routine. Kidneys should be thoroughly evaluated because of the fact that incidental renal findings occur frequently. PMID:28658098

  14. Analysis of renal anomalies in VACTERL association.

    PubMed

    Cunningham, Bridget K; Khromykh, Alina; Martinez, Ariel F; Carney, Tyler; Hadley, Donald W; Solomon, Benjamin D

    2014-10-01

    VACTERL association refers to a combination of congenital anomalies that can include: vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula with esophageal atresia, renal anomalies (typically structural renal anomalies), and limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least three component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p = 0.22, p = 0.284, respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal ultrasound shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. © 2014 Wiley Periodicals, Inc.

  15. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.

  16. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Segmentation of mouse dynamic PET images using a multiphase level set method

    NASA Astrophysics Data System (ADS)

    Cheng-Liao, Jinxiu; Qi, Jinyi

    2010-11-01

    Image segmentation plays an important role in medical diagnosis. Here we propose an image segmentation method for four-dimensional mouse dynamic PET images. We consider that voxels inside each organ have similar time activity curves. The use of tracer dynamic information allows us to separate regions that have similar integrated activities in a static image but with different temporal responses. We develop a multiphase level set method that utilizes both the spatial and temporal information in a dynamic PET data set. Different weighting factors are assigned to each image frame based on the noise level and activity difference among organs of interest. We used a weighted absolute difference function in the data matching term to increase the robustness of the estimate and to avoid over-partition of regions with high contrast. We validated the proposed method using computer simulated dynamic PET data, as well as real mouse data from a microPET scanner, and compared the results with those of a dynamic clustering method. The results show that the proposed method results in smoother segments with the less number of misclassified voxels.

  18. [Sarcomatoid renal cell carcinoma].

    PubMed

    Arnoux, V; Lechevallier, E; Pamela, A; Long, J-A; Rambeaud, J-J

    2013-06-01

    The objective was to perform a systematic review of literature concerning epidemiology, clinical and biological data, prognosis and therapy of sarcomatoid renal cell carcinomas. Data on sarcomatoid renal cell carcinomas have been sought by querying the server Medline with MeSH terms following or combination of them: "renal carcinoma", "renal cell carcinoma," "renal cancer", "sarcomatoid" "sarcomatoid transformation" and "sarcomatoid differentiation." The articles obtained were selected according to their methodology, the language in English or French, the relevance and the date of publication. Twenty papers were selected. According to the literature, a sarcomatoid contingent can be observed in all subtypes of renal cell carcinomas, with a frequency of 1 to 15% of cases. The median age at diagnosis was 60 years with a majority of symptomatic patients (90%), mainly with abdominal pain and hematuria. These tumors were often found in patients with locally advanced or metastatic (45-77%). The imaging was not specific for the diagnosis and biopsy had a low sensitivity for identifying a sarcomatoid contingent. The treatment was based on a combination of maximal surgical resection whenever possible and systemic therapy for metastastic disease. Pathological data often showed large tumors, Furhman 4 grades, combined biphasic carcinomatous contingent (clear cell carcinoma in most cases) and sarcomatoid. Genetically, there was no specific abnormality but a complex association of chromosomal additions and deletions. The prognosis was pejorative with a specific median survival of 5 to 19 months without any impact of the sarcomatoid contingent rate. Sarcomatoid renal cell carcinoma is a form not to ignore despite its rarity. Mainly symptomatic and discovered at an advanced stage, it has a poor prognosis, requiring multidisciplinary management quickly and correctly. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Dioctophyma renale in a dog: clinical diagnosis and surgical treatment.

    PubMed

    Ferreira, Vivian Lindmayer; Medeiros, Fábio Pestana; July, José Roberto; Raso, Tânia Freitas

    2010-02-26

    This study reports a case of parasitism by the giant kidney worm, Dioctophyma renale, diagnosed in the right kidney of a domestic dog. An adult female German Shepherd was attended with clinical history of prostration and hyporexia. The hemogram showed changes compatible with an inflammatory process, for that reason, an abdominal ultrasound was requested. Ultrasound image suggested the presence of D. renale in the right kidney. The diagnosis was confirmed after urinalysis due to the presence of dioctophymas ova in the urinary sediment. Surgical treatment was made and the animal had an excellent recovery after the nephrectomy was performed. Generally, in almost all cases, parasitism by D. renale in domestic dogs is a necropsy finding, nevertheless imaging techniques as sonography and laboratorial exams as urinalysis have been proven to be important tools to achieve diagnosis. The purpose of this study is to report a case of parasitism by D. renale where diagnosis and treatment were made in time to allow the patient's recovery.

  20. An intrahepatic calculus superimposed over the right renal shadow: a case of mistaken identity.

    PubMed

    Learney, Robert M; Shrotri, Nitin

    2010-08-01

    A 36-year-old Caucasian British woman presented with a classic case of right renal colic. Initial plain abdominal radiography and intravenous urography identified an 8 x 5 mm calculus apparently lying within a right lower pole calyx. Following failed extracorporeal lithotripsy and flexible ureterorenoscopy, cross-sectional imaging revealed a misdiagnosis by superposition of an intrahepatic calculus over the right renal shadow. This case serves to support cross-sectional imaging in the diagnosis of renal calculi. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  2. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  3. Flow visualisation study of spiral flow in the aorta-renal bifurcation.

    PubMed

    Fulker, David; Javadzadegan, Ashkan; Li, Zuming; Barber, Tracie

    2017-10-01

    The aim of this study was to analyse the flow dynamics in an idealised model of the aorta-renal bifurcation using flow visualisation, with a particular focus on the effect of aorta-to-renal flow ratio and flow spirality. The recirculation length was longest when there was low flow in the renal artery and smaller in the presence of spiral flow. The results also indicate that patients without spiral flow or who have low flow in the renal artery due to the presence of stenosis may be susceptible to heightened development of atherosclerotic lesions.

  4. Blurred Star Image Processing for Star Sensors under Dynamic Conditions

    PubMed Central

    Zhang, Weina; Quan, Wei; Guo, Lei

    2012-01-01

    The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666

  5. The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi.

    PubMed

    Cao, Caijun; Nie, Liming; Lou, Cunguang; Xing, Da

    2010-09-07

    Imaging of renal calculi is important for patients who suffered a urinary calculus prior to treatment. The available imaging techniques include plain x-ray, ultrasound scan, intravenous urogram, computed tomography, etc. However, the visualization of a uric acid calculus (radiolucent calculi) is difficult and often impossible by the above imaging methods. In this paper, a new detection method based on microwave-induced thermoacoustic tomography was developed to detect the renal calculi. Thermoacoustic images of calcium oxalate and uric acid calculus were compared with their x-ray images. The microwave absorption differences among the calcium oxalate calculus, uric acid calculus and normal kidney tissue could be evaluated by the amplitude of the thermoacoustic signals. The calculi hidden in the swine kidney were clearly imaged with excellent contrast and resolution in the three orthogonal thermoacoustic images. The results indicate that thermoacoustic imaging may be developed as a complementary method for detecting renal calculi, and its low cost and effective feature shows high potential for clinical applications.

  6. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    PubMed

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  7. Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data

    PubMed Central

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700

  8. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Credit: NASA/GSFC

  9. Kalman Filter Techniques for Accelerated Cartesian Dynamic Cardiac Imaging

    PubMed Central

    Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.

    2012-01-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories, because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and SNR. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. PMID:22926804

  10. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.

    PubMed

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-Ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-03-05

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.

  11. Successful Embolization of a Renal Artery Pseudoaneurysm with Arteriovenous Fistula and Extravasations Using Onyx After Partial Nephrectomy for Renal Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenak, Kamil, E-mail: zelenak@mfn.s; Sopilko, Igor; Svihra, Jan

    2009-01-15

    Partial nephrectomy can be associated with vascular complications. Computed tomography (CT) with CT angiography is ideal for noninvasive imaging of this process. The treatment of choice is selective embolization. Successful transcatheter embolization of right renal subsegmental artery pseudoaneurysm with arteriovenous fistula and extravasations using Onyx was performed in a 66-year-old woman with macrohematuria 12 days after partial nephrectomy for renal cell carcinoma.

  12. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  13. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  14. Salt loading produces severe renal hemodynamic dysfunction independent of arterial pressure in spontaneously hypertensive rats.

    PubMed

    Matavelli, Luis C; Zhou, Xiaoyan; Varagic, Jasmina; Susic, Dinko; Frohlich, Edward D

    2007-02-01

    We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.

  15. Phase correlation imaging of unlabeled cell dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2016-09-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function.

  16. Multi-exposure high dynamic range image synthesis with camera shake correction

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  17. Atherosclerotic renal artery stenosis is associated with elevated cell cycle arrest markers related to reduced renal blood flow and postcontrast hypoxia.

    PubMed

    Saad, Ahmed; Wang, Wei; Herrmann, Sandra M S; Glockner, James F; Mckusick, Michael A; Misra, Sanjay; Bjarnason, Haraldur; Lerman, Lilach O; Textor, Stephen C

    2016-11-01

    Atherosclerotic renal artery stenosis (ARAS) reduces renal blood flow (RBF), ultimately leading to kidney hypoxia and inflammation. Insulin-like growth factor binding protein-7 (IGFBP-7) and tissue inhibitor of metalloproteinases-2 (TIMP-2) are biomarkers of cell cycle arrest, often increased in ischemic conditions and predictive of acute kidney injury (AKI). This study sought to examine the relationships between renal vein levels of IGFBP-7, TIMP-2, reductions in RBF and postcontrast hypoxia as measured by blood oxygen level-dependent (BOLD) magnetic resonance imaging. Renal vein levels of IGFBP-7 and TIMP-2 were obtained in an ARAS cohort (n= 29) scheduled for renal artery stenting and essential hypertensive (EH) healthy controls (n = 32). Cortical and medullary RBFs were measured by multidetector computed tomography (CT) immediately before renal artery stenting and 3 months later. BOLD imaging was performed before and 3 months after stenting in all patients, and a subgroup (N = 12) underwent repeat BOLD imaging 24 h after CT/stenting to examine postcontrast/procedure levels of hypoxia. Preintervention IGFBP-7 and TIMP-2 levels were elevated in ARAS compared with EH (18.5 ± 2.0 versus 15.7 ± 1.5 and 97.4 ± 23.1 versus 62.7 ± 9.2 ng/mL, respectively; P< 0.0001); baseline IGFBP-7 correlated inversely with hypoxia developing 24 h after contrast injection (r = -0.73, P< 0.0001) and with prestent cortical blood flow (r = -0.59, P= 0.004). These data demonstrate elevated IGFBP-7 and TIMP-2 levels in ARAS as a function of the degree of reduced RBF. Elevated baseline IGFBP-7 levels were associated with protection against postimaging hypoxia, consistent with 'ischemic preconditioning'. Despite contrast injection and stenting, AKI in these high-risk ARAS subjects with elevated IGFBP-7/TIMP-2 was rare and did not affect long-term kidney function. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  18. Clear cell papillary renal cell carcinoma as part of histologically discordant multifocal renal cell carcinoma: A case report and review of literature.

    PubMed

    Shao, Tiffany; Yousef, Peter; Shipilova, Irina; Saleeb, Rola; Lee, Jason Y; Krizova, Adriana

    2016-03-01

    Multifocal renal cell carcinoma of different histological subtypes within a single kidney is rare. We report a recently classified clear cell (tubulo) papillary renal cell carcinoma as part of an unusual case of multifocal renal cell carcinoma of discordant histological subtypes. A 57 year-old-man was found to have multiple renal tumors and cysts on imaging and underwent a laparoscopic left radical nephrectomy. Pathological review showed multifocal renal cell carcinoma (clear cell (tubulo) papillary, clear cell and papillary renal cell carcinomas and papillary adenomas). Morphology of clear cell papillary renal cell carcinoma was supported by immunohistochemical profile (CK7+, HMWK+, CAIX+, AMACR-, CD10-, TFE3-). This is the first report of clear cell papillary renal cell carcinoma as part of multifocal renal cell carcinoma of different histological subtypes. Related lineage of clear cell renal cell carcinoma and papillary renal cell carcinoma is supported by the highest prevalence of their combination within multifocal renal cell carcinoma of different histological subtypes along with their molecular interconnection. Clear cell papillary renal cell carcinoma may be uniquely placed between clear cell and papillary renal cell carcinomas since it shows morphological features intermediate between clear cell and papillary renal cell carcinoma along with overlapping but unique immunohistochemical profile. Clear cell papillary renal cell carcinoma may be molecularly related to clear cell and papillary renal cell carcinomas since the tumors overexpress markers of HIF pathway activation with normal/elevated VHL mRNA expression and some tumors show losses of chromosome 3. Due to the overlapping morphology, it is possible that cases of clear cell papillary renal cell carcinoma may have been misclassified as papillary or clear cell renal cell carcinoma in the literature, incorrectly increasing their reported prevalence. Identification of multifocal RCCs may be related to the

  19. Influence of the renal endothelin system on the autoregulation of renal blood flow in spontaneously hypertensive rats.

    PubMed

    Braun, C; Lang, C; Hocher, B; Gretz, N; van der Woude, F J; Rohmeiss, P

    1997-01-01

    The renal endothelin (ET) system has been claimed to play an important role in the regulation of renal blood flow (RBF) and sodium excretion in primary hypertension. The aim of the present study was to investigate the contribution of the endogenous ET system in the autoregulation of total RBF, cortical blood flow (CBF), pressure-dependent plasma renin activity (PRA) and pressure natriuresis in spontaneously hypertensive rats (SHR) by means of the combined (A/B) ET-receptor antagonist, bosentan. In anesthetized rats, RBF was measured by transit-time flow probes and CBF by laser flow probes. During the experiments, the rats received an intrarenal infusion of either bosentan (1 mg/kg/h) or vehicle. Renal perfusion pressure (RPP) was lowered in pressure steps of 5 mm Hg with a servo-controlled electropneumatic device via an inflatable suprarenal cuff. Bosentan had no effect on resting RPP, CBF, PRA and renal sodium excretion, whereas RBF was lowered by 30% (p < 0.05). Furthermore after bosentan the rats revealed a complete loss of RBF autoregulation. In contrast no changes in autoregulation of CBF, pressure-dependent PRA and pressure natriuresis were observed. Our findings demonstrate a significant impairment in total RBF autoregulatory ability during renal ET-receptor blockade which is not confined to the cortical vessels. These data suggest that the renal ET system plays an important role in the dynamic regulation of renal blood flow in SHR.

  20. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E [Livermore, CA; Zumstein, James E [Livermore, CA; Chang, John T [Danville, CA; Leach, Jr Richard R. [Castro Valley, CA

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  1. Multidetector computed tomography for preoperative evaluation of vascular anatomy in living renal donors.

    PubMed

    Türkvatan, Aysel; Akinci, Serkan; Yildiz, Sener; Olçer, Tülay; Cumhur, Turhan

    2009-04-01

    Currently, multidetector computed tomographic (MDCT) angiography has become a noninvasive alternative imaging modality to catheter renal angiography for the evaluation of renal vascular anatomy in living renal donors. In this study, we investigated the diagnostic accuracy of 16-slice MDCT in the preoperative assessment of living renal donors. Fifty-nine consecutive living renal donors (32 men, 27 women) underwent MDCT angiography followed by open donor nephrectomy. All MDCT studies were performed by using a 16-slice MDCT scanner with the same protocol consisting of arterial and nephrographic phases followed by conventional abdominal radiography. The MDCT images were assessed retrospectively for the number and branching pattern of the renal arteries and for the number and presence of major or minor variants of the renal veins. The results were compared with open surgical results. The sensitivity and specificity of MDCT for the detection of anatomic variants of renal arteries including the accessory arteries (n = 9), early arterial branching (n = 7) and major renal venous anomalies including the accessory renal veins (n = 3), late venous confluence (n = 4), circumaortic (n = 2) or retroaortic (n = 3) left renal veins were 100%. However, the sensitivity for identification of minor venous variants was 79%. All of three ureteral duplications were correctly identified at excretory phase conventional abdominal radiography. Sixteen-slice MDCT is highly accurate for the identification of anatomic variants of renal arteries and veins. Dual-phase MDCT angiography including arterial and nephrographic phases followed by conventional abdominal radiography enables complete assessment of renal donors without significant increase of radiation dose. However, the evaluation of minor venous variants may be problematic because of their small diameters and poor opacification.

  2. PET/CT imaging of clear cell renal cell carcinoma with 124I labeled chimeric antibody

    PubMed Central

    Bahnson, Eamonn E.; Murrey, Douglas A.; Mojzisik, Cathy M.; Hall, Nathan C.; Martinez-Suarez, Humberto J.; Knopp, Michael V.; Martin, Edward W.; Povoski, Stephen P.; Bahnson, Robert R.

    2009-01-01

    Clear cell renal cell carcinoma (ccRCC) presents problems for urologists in diagnosis, treatment selection, intraoperative surgical margin analysis, and long term monitoring. In this paper we describe the development of a radiolabeled antibody specific to ccRCC (124I-cG250) and its potential to help urologists manage each of these problems. We believe 124I-cG250, in conjunction with perioperative Positron emission tomography/computed tomography imaging and intraoperative handheld gamma probe use, has the potential to diagnose ccRCC, aid in determining a proper course of treatment (operative or otherwise), confirm complete resection of malignant tissue in real time, and monitor patients post-operatively. PMID:21789055

  3. Acoustic imaging of aircraft wake vortex dynamics

    DOT National Transportation Integrated Search

    2005-06-01

    The experience in utilizing a phased microphone array to passively image aircraft wake : vortices is highlighted. It is demonstrated that the array can provide visualization of wake : dynamics similar to smoke release or natural condensation of vorti...

  4. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    PubMed

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  5. Postnatal Imaging of Antenatal Hydronephrosis

    PubMed Central

    Kitchens, David M.; Herndon, C. D. Anthony

    2009-01-01

    Radiologic imaging of the newborn detected prenatally with hydronephrosis should follow a systematic approach. Upper and lower urinary tract imaging should be performed in most cases in order to determine the etiology and gauge the use of future imaging. An overview of renal ultrasound, voiding cystourethrography, renal scintigraphy, and magnetic resonance urography in the setting of antenatal hydronephrosis are discussed. PMID:19484160

  6. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke

    PubMed Central

    Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm

    2018-01-01

    Background and Purpose— It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. Methods— In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m2) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Results— Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69–2.75; P<0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69–9.32; P=0.002; 60–79 years: OR, 1.01; 95% CI, 0.72–1.41; P=0.963; ≥80 years: OR, 0.95; 95% CI, 0.59–1.54; P=0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56–1.02; P=0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21–7.98; P=0.018). Associations of renal impairment and SVD were

  7. Age-Specific Associations of Renal Impairment With Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Transient Ischemic Attack and Stroke.

    PubMed

    Liu, Bian; Lau, Kui Kai; Li, Linxin; Lovelock, Caroline; Liu, Ming; Kuker, Wilhelm; Rothwell, Peter M

    2018-04-01

    It has been hypothesized that cerebral small vessel disease (SVD) and chronic renal impairment may be part of a multisystem small-vessel disorder, but their association may simply be as a result of shared risk factors (eg, hypertension) rather than to a systemic susceptibility to premature SVD. However, most previous studies were hospital based, most had inadequate adjustment for hypertension, many were confined to patients with lacunar stroke, and none stratified by age. In a population-based study of transient ischemic attack and ischemic stroke (OXVASC [Oxford Vascular Study]), we evaluated the magnetic resonance imaging markers of cerebral SVD, including lacunes, white matter hyperintensities, cerebral microbleeds, and enlarged perivascular space. We studied the age-specific associations of renal impairment (estimated glomerular filtration rate <60 mL/min per 1.73 m 2 ) and total SVD burden (total SVD score) adjusting for age, sex, vascular risk factors, and premorbid blood pressure (mean blood pressure during 15 years preevent). Of 1080 consecutive patients, 1028 (95.2%) had complete magnetic resonance imaging protocol and creatinine measured at baseline. Renal impairment was associated with total SVD score (odds ratio [OR], 2.16; 95% confidence interval [CI], 1.69-2.75; P <0.001), but only at age <60 years (<60 years: OR, 3.97; 95% CI, 1.69-9.32; P =0.002; 60-79 years: OR, 1.01; 95% CI, 0.72-1.41; P =0.963; ≥80 years: OR, 0.95; 95% CI, 0.59-1.54; P =0.832). The overall association of renal impairment and total SVD score was also attenuated after adjustment for age, sex, history of hypertension, diabetes mellitus, and premorbid average systolic blood pressure (adjusted OR, 0.76; 95% CI, 0.56-1.02; P =0.067), but the independent association of renal impairment and total SVD score at age <60 years was maintained (adjusted OR, 3.11; 95% CI, 1.21-7.98; P =0.018). Associations of renal impairment and SVD were consistent for each SVD marker at age <60 years but

  8. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle.

    PubMed

    Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk

    2012-04-01

    To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P < 0.001) between MIN (ADC(mono) = 2.14 ± 0.08 × 10(-3) mm(2)/s) and MAX (ADC(mono) = 2.37 ± 0.04 × 10(-3) mm(2)/s). The correlation between renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.

  9. Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.

    PubMed

    Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H

    2013-05-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction. Copyright © 2012 Wiley Periodicals, Inc.

  10. Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells.

    PubMed

    Lajevardipour, Alireza; Chon, James W M; Chattopadhyay, Amitabha; Clayton, Andrew H A

    2016-11-22

    Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C 6 -NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.

  11. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Philip H. Scherrer (left) principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, while colleagues Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters (right) look on Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  12. SIMA: Python software for analysis of dynamic fluorescence imaging data.

    PubMed

    Kaifosh, Patrick; Zaremba, Jeffrey D; Danielson, Nathan B; Losonczy, Attila

    2014-01-01

    Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.

  13. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    PubMed

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  14. Standardized volume-rendering of contrast-enhanced renal magnetic resonance angiography.

    PubMed

    Smedby, O; Oberg, R; Asberg, B; Stenström, H; Eriksson, P

    2005-08-01

    To propose a technique for standardizing volume-rendering technique (VRT) protocols and to compare this with maximum intensity projection (MIP) in regard to image quality and diagnostic confidence in stenosis diagnosis with magnetic resonance angiography (MRA). Twenty patients were examined with MRA under suspicion of renal artery stenosis. Using the histogram function in the volume-rendering software, the 95th and 99th percentiles of the 3D data set were identified and used to define the VRT transfer function. Two radiologists assessed the stenosis pathology and image quality from rotational sequences of MIP and VRT images. Good overall agreement (mean kappa=0.72) was found between MIP and VRT diagnoses. The agreement between MIP and VRT was considerably better than that between observers (mean kappa=0.43). One of the observers judged VRT images as having higher image quality than MIP images. Presenting renal MRA images with VRT gave results in good agreement with MIP. With VRT protocols defined from the histogram of the image, the lack of an absolute gray scale in MRI need not be a major problem.

  15. Value of imaging studies after a first febrile urinary tract infection in young children: data from Italian renal infection study 1.

    PubMed

    Montini, Giovanni; Zucchetta, Pietro; Tomasi, Lisanna; Talenti, Enrico; Rigamonti, Waifro; Picco, Giorgio; Ballan, Alberto; Zucchini, Andrea; Serra, Laura; Canella, Vanna; Gheno, Marta; Venturoli, Andrea; Ranieri, Marco; Caddia, Valeria; Carasi, Carla; Dall'amico, Roberto; Hewitt, Ian

    2009-02-01

    We examined the diagnostic accuracy of routine imaging studies (ultrasonography and micturating cystography) for predicting long-term parenchymal renal damage after a first febrile urinary tract infection. This study addressed the secondary objective of a prospective trial evaluating different antibiotic regimens for the treatment of acute pyelonephritis. Data for 300 children < or =2 years of age, with normal prenatal ultrasound results, who completed the diagnostic follow-up evaluation (ultrasonography and technetium-99m-dimercaptosuccinic acid scanning within 10 days, cystography within 2 months, and repeat technetium-99m-dimercaptosuccinic acid scanning at 12 months to detect scarring) were analyzed. Outcome measures were sensitivity, specificity, and negative and positive predictive values for ultrasonography and cystography in predicting parenchymal renal damage on the 12-month technetium-99m-dimercaptosuccinic acid scans. The kidneys and urinary tracts were mostly normal. The acute technetium-99m-dimercaptosuccinic acid scans showed pyelonephritis in 54% of cases. Renal scarring developed in 15% of cases. The ultrasonographic and cystographic findings were poor predictors of long-term damage, showing minor sonographic abnormalities for 12 and reflux for 23 of the 45 children who subsequently developed scarring. The benefit of performing ultrasonography and scintigraphy in the acute phase or cystourethrography is minimal. Our findings support (1) technetium-99m-dimercaptosuccinic acid scintigraphy 6 months after infection to detect scarring that may be related to long-term hypertension, proteinuria, and renal function impairment (although the degree of scarring was generally minor and did not impair renal function) and (2) continued surveillance to identify recurrent urinary tract infections that may warrant further investigation.

  16. Anatomic optical coherence tomography for dynamic imaging of the upper airway

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Balakrishnan, Santosh; Iftimia, Nicusor; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-03-01

    To aid in diagnosis and treatment of upper airway obstructive disorders (UAOD), we propose anatomic Optical Coherence Tomography (aOCT) for endoscopic imaging of the upper airway lumen with high speed and resolution. aOCT and CT scans are performed sequentially on in vivo swine to compare dynamic airway imaging data. The aOCT system is capable of capturing the dynamic deformation of the airway during respiration. This may lead to methods for airway elastography and aid in our understanding of dynamic collapse in UAOD.

  17. Fast content-based image retrieval using dynamic cluster tree

    NASA Astrophysics Data System (ADS)

    Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping

    2008-03-01

    A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.

  18. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  19. Improved diagnostic differentiation of renal cystic lesions with phase-contrast computed tomography (PCCT)

    NASA Astrophysics Data System (ADS)

    Noel, Peter B.; Willner, Marian; Fingerle, Alexander; Herzen, Julia; Münzel, Daniela; Hahn, Dieter; Rummeny, Ernst J.; Pfeiffer, Franz

    2012-03-01

    The diagnostic quality of phase-contrast computed tomography (PCCT) is one the unexplored areas in medical imaging; at the same time, it seems to offer the opportunity as a fast and highly sensitive diagnostic tool. Conventional computed tomography (CT) has had an enormous impact on medicine, while it is limited in soft-tissue contrast. One example that portrays this challenge is the differentiation between benign and malignant renal cysts. In this work we report on a feasibility study to determine the usefulness of PCCT in differentiation of renal cysts. A renal phantom was imaged with a grating-based PCCT system consisting of a standard rotating anode x-ray tube (40 kV, 70 mA) and a Pilatus II photoncounting detector (pixel size: 172 μm). The phantom is composed of a renal equivalent soft-tissue and cystic lesions grouped in non-enhancing cyst and hemorrhage series and an iodine enhancing series. The acquired projection images (absorption and phase-contrast) are reconstructed with a standard filtered backprojection algorithm. For evaluation both reconstructions are compared in respect to contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and subjective image quality. We found that with PCCT a significantly improved differentiation between hemorrhage renal cysts from contrast enhancing malignant cysts is possible. If comparing PCCT and CT with respect to CNR and SNR, PCCT shows significant improvements. In conclusion, PCCT has the potential to improve the diagnostics and characterization of renal cysts without using any contrast agents. These results in combination with a non-synchrotron setup indicate a future paradigm shift in diagnostic computed tomography.

  20. 3.0Tesla magnetic resonance angiography (MRA) for comprehensive renal evaluation of living renal donors: pilot study with computerized tomography angiography (CTA) comparison.

    PubMed

    Gulati, Mittul; Dermendjian, Harout; Gómez, Ana M; Tan, Nelly; Margolis, Daniel J; Lu, David S; Gritsch, H Albin; Raman, Steven S

    2016-01-01

    Most living related donor (LRD) kidneys are harvested laparoscopically. Renal vascular anatomy helps determine donor suitability for laparoscopic nephrectomy. Computed tomography angiography (CTA) is the current gold standard for preoperative imaging; magnetic resonance angiography (MRA) offers advantages including lack of ionizing radiation and lower incidence of contrast reactions. We evaluated 3.0T MRA for assessing renal anatomy of LRDs. Thirty consecutive LRDs underwent CTA followed by 3.0T MRA. Data points included number and branching of vessels, incidental findings, and urothelial opacification. Studies were individually evaluated by three readers blinded to patient data. Studies were reevaluated in consensus with discrepancies revealed, and final consensus results were labeled "truth". Compared with consensus "truth", both computed tomography (CT) and magnetic resonance imaging were highly accurate for assessment of arterial and venous anatomy, although CT was superior for detection of late venous confluence as well as detection of renal stones. Both modalities were comparable in opacification of lower ureters and bladder; MRA underperformed CTA for opacification of upper urinary tracts. 3.0T MRA enabled excellent detection of comprehensive renal anatomy compared to CTA in LRDs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Femtosecond electron imaging of defect-modulated phonon dynamics

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2016-01-01

    Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790

  2. Effect of a stable prostacyclin analogue on canine renal allograft rejection.

    PubMed Central

    Tobimatsu, M; Ueda, Y; Toyoda, K; Saito, S; Konomi, K

    1987-01-01

    The effect of OP-41483 (Ono Pharmaceutical Co., Osaka, Japan), a stable prostacyclin analogue, on canine renal allograft rejection was investigated. Administration for 4 days after transplantation significantly increased renal cortical blood flow and urine output when compared with untreated dogs with renal allografts. Serum creatinine levels remained relatively low during postoperative days 1-4. Mean animal survival time was prolonged. Vascular lesions and mononuclear cell infiltration were greatly diminished in biopsy specimens removed on day 4. This stable prostacyclin analogue provided a degree of protection against canine renal allograft rejection. Images Figs. 1A and B. PMID:3545109

  3. Abdominal aortic aneurysm with ectopic renal artery origins: a case report.

    PubMed

    Kotsis, T; Mylonas, S; Katsenis, K; Arapoglou, V; Dimakakos, P

    2007-01-01

    The coexistense of an abdominal aortic aneurysm with ectopic main renal vasculature complicates aortic surgery and mandates a focused imaging evaluation and a carefully planned operation to minimize renal ischemia. We present the case of a 75-year-old man with an abdominal aortic aneurysm and a right kidney with two ectopic main renal arteries, one originating from the aneurysmal distal aorta and the other from the right common iliac artery; the patient underwent a surgical repair and followed an uneventful course with no deterioration of renal function. The preoperative and intraoperative details are reported, along with a review of the literature.

  4. Generation of high-dynamic range image from digital photo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han

    2016-10-01

    A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.

  5. A PET Tracer for Renal Organic Cation Transporters, ¹¹C-Metformin: Radiosynthesis and Preclinical Proof-of-Concept Studies.

    PubMed

    Jakobsen, Steen; Busk, Morten; Jensen, Jonas Brorson; Munk, Ole Lajord; Zois, Nora Elisabeth; Alstrup, Aage K O; Jessen, Niels; Frøkiær, Jørgen

    2016-04-01

    Organic cation transporters (OCTs) in the kidney proximal tubule (PT) participate in renal excretion of drugs and endogenous compounds. PT function is commonly impaired in kidney diseases, and consequently quantitative measurement of OCT function may provide an important estimate of kidney function. Metformin is a widely used drug and targets OCT type 2 located in the PT. Thus, we hypothesized that (11)C-labeled metformin would be a suitable PET tracer for quantification of renal function. (11)C-metformin was prepared by (11)C-methylation of 1-methylbiguanide. In vitro cell uptake of (11)C-metformin was studied in LLC-PK1 cells in the presence of increasing doses of unlabeled metformin. In vivo small-animal PET studies in Sprague-Dawley rats were performed at baseline and after treatment with OCT inhibitors to evaluate renal uptake of (11)C-metformin. Kidney and liver pharmacokinetics of (11)C-metformin was investigated in vivo by dynamic (11)C-metformin PET/CT in 6 anesthetized pigs, and renal clearance of (11)C-metformin was compared with renal clearance of (51)Cr-ethylenediaminetetraacetic acid (EDTA). Formation of (11)C metabolites was investigated by analysis of blood and urine samples. The radiochemical yield of (11)C-metformin was 15% ± 3% (n= 40, decay-corrected), and up to 1.5 GBq of tracer were produced with a radiochemical purity greater than 95% in less than 30 min. Dose-dependent uptake of (11)C-metformin in LLC-PK1 cells was rapid. Rat small-animal PET images showed (11)C-metformin uptake in the kidney and liver, the kinetics of which were changed after challenging animals with OCT inhibitors. In pigs, 80% of the injected metformin dose was rapidly present in the kidney, and a high dose of metformin caused a delayed renal uptake and clearance compared with baseline consistent with transporter-mediated competition. Renal clearance of (11)C-metformin was approximately 3 times the renal clearance of (51)Cr-EDTA. We successfully synthesized an (11)C

  6. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  7. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  8. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury

    PubMed Central

    Pollen, Sean; Greco, Elisabetta; Courtneidge, Holly; Hall, Andrew M.; Duchen, Michael R.; Tam, Frederick W. K.; Unwin, Robert J.; Singer, Mervyn

    2018-01-01

    Objective: To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Intervention: Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6–10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. Measurements and Main Results: By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. Conclusions: Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism. PMID:29293148

  9. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  10. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE)

    PubMed Central

    Sharif, Behzad; Derbyshire, J. Andrew; Faranesh, Anthony Z.; Bresler, Yoram

    2010-01-01

    MR imaging of the human heart without explicit cardiac synchronization promises to extend the applicability of cardiac MR to a larger patient population and potentially expand its diagnostic capabilities. However, conventional non-gated imaging techniques typically suffer from low image quality or inadequate spatio-temporal resolution and fidelity. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE) is a highly-accelerated non-gated dynamic imaging method that enables artifact-free imaging with high spatio-temporal resolutions by utilizing novel computational techniques to optimize the imaging process. In addition to using parallel imaging, the method gains acceleration from a physiologically-driven spatio-temporal support model; hence, it is doubly accelerated. The support model is patient-adaptive, i.e., its geometry depends on dynamics of the imaged slice, e.g., subject’s heart-rate and heart location within the slice. The proposed method is also doubly adaptive as it adapts both the acquisition and reconstruction schemes. Based on the theory of time-sequential sampling, the proposed framework explicitly accounts for speed limitations of gradient encoding and provides performance guarantees on achievable image quality. The presented in-vivo results demonstrate the effectiveness and feasibility of the PARADISE method for high resolution non-gated cardiac MRI during a short breath-hold. PMID:20665794

  11. Renal arteriography

    MedlinePlus

    Renal angiogram; Angiography - kidney; Renal angiography; Renal artery stenosis - arteriography ... an artery by a blood clot Renal artery stenosis Renal cell cancer Angiomyolipomas (noncancerous tumors of the ...

  12. Dynamic diffraction artefacts in Bragg coherent diffractive imaging

    DOE PAGES

    Hu, Wen; Huang, Xiaojing; Yan, Hanfei

    2018-02-01

    This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditionsmore » under which they are negligible.« less

  13. Dynamic diffraction artefacts in Bragg coherent diffractive imaging.

    PubMed

    Hu, Wen; Huang, Xiaojing; Yan, Hanfei

    2018-02-01

    This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible.

  14. Dynamic diffraction artefacts in Bragg coherent diffractive imaging

    PubMed Central

    Yan, Hanfei

    2018-01-01

    This article reports a theoretical study on the reconstruction artefacts in Bragg coherent diffractive imaging caused by dynamical diffraction effects. It is shown that, unlike the absorption and refraction effects that can be corrected after reconstruction, dynamical diffraction effects have profound impacts on both the amplitude and the phase of the reconstructed complex object, causing strong artefacts. At the dynamical diffraction limit, the reconstructed shape is no longer correct, as a result of the strong extinction effect. Simulations for hemispherical particles of different sizes show the type, magnitude and extent of the dynamical diffraction artefacts, as well as the conditions under which they are negligible. PMID:29507549

  15. Percutaneous Microwave Ablation of Renal Angiomyolipomas.

    PubMed

    Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T

    2016-03-01

    To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  16. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.

    PubMed

    Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng

    2017-09-08

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

  17. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    PubMed

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  18. Image communication scheme based on dynamic visual cryptography and computer generated holography

    NASA Astrophysics Data System (ADS)

    Palevicius, Paulius; Ragulskis, Minvydas

    2015-01-01

    Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.

  19. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  20. Stents in Renal Artery Bifurcation Stenosis: A Case Report

    PubMed Central

    Leonardou, Polytimi; Pappas, Paris

    2011-01-01

    A 39-year-old patient presented with poorly controlled hypertension, and she was referred to renal angiogram and potential renal angioplasty. Renal angiogram showed a bifurcation lesion of the right renal artery. A guide wire was used to cross the upper branch, while the lower branch was protected by another same-type guide wire through the same introducer. Two thin monorail balloons were used to dilate the two branches; however, despite balloon dilatation, the stenosis of the vessels persisted. The “kissing balloon” technique was then attempted by simultaneously inflating both branches using the same balloons, but more than a 70% residual stenosis persisted in each branch. Two stents were finally placed in a “kissing” way through the main renal artery. The imaging and clinical results were good, without any procedure-related complications. Three years clinical followup was also good, without any reason for further interventional approach. PMID:21789043

  1. Live Cell Imaging and Measurements of Molecular Dynamics

    PubMed Central

    Frigault, M.; Lacoste, J.; Swift, J.; Brown, C.

    2010-01-01

    w3-2 Live cell microscopy is becoming widespread across all fields of the life sciences, as well as, many areas of the physical sciences. In order to accurately obtain live cell microscopy data, the live specimens must be properly maintained on the imaging platform. In addition, the fluorescence light path must be optimized for efficient light transmission in order to reduce the intensity of excitation light impacting the living sample. With low incident light intensities the processes under study should not be altered due to phototoxic effects from the light allowing for the long term visualization of viable living samples. Aspects for maintaining a suitable environment for the living sample, minimizing incident light and maximizing detection efficiency will be presented for various fluorescence based live cell instruments. Raster Image Correlation Spectroscopy (RICS) is a technique that uses the intensity fluctuations within laser scanning confocal images, as well as the well characterized scanning dynamics of the laser beam, to extract the dynamics, concentrations and clustering of fluorescent molecules within the cell. In addition, two color cross-correlation RICS can be used to determine protein-protein interactions in living cells without the many technical difficulties encountered in FRET based measurements. RICS is an ideal live cell technique for measuring cellular dynamics because the potentially damaging high intensity laser bursts required for photobleaching recovery measurements are not required, rather low laser powers, suitable for imaging, can be used. The RICS theory will be presented along with examples of live cell applications.

  2. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor †

    PubMed Central

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes. PMID:29510599

  3. Dynamical Modeling of NGC 6397: Simulated HST Imaging

    NASA Astrophysics Data System (ADS)

    Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Slavin, S. D.; Murphy, B. W.

    1994-12-01

    The proximity of NGC 6397 (2.2 kpc) provides an ideal opportunity to test current dynamical models for globular clusters with the HST Wide-Field/Planetary Camera (WFPC2)\\@. We have used a Monte Carlo algorithm to generate ensembles of simulated Planetary Camera (PC) U-band images of NGC 6397 from evolving, multi-mass Fokker-Planck models. These images, which are based on the post-repair HST-PC point-spread function, are used to develop and test analysis methods for recovering structural information from actual HST imaging. We have considered a range of exposure times up to 2.4times 10(4) s, based on our proposed HST Cycle 5 observations. Our Fokker-Planck models include energy input from dynamically-formed binaries. We have adopted a 20-group mass spectrum extending from 0.16 to 1.4 M_sun. We use theoretical luminosity functions for red giants and main sequence stars. Horizontal branch stars, blue stragglers, white dwarfs, and cataclysmic variables are also included. Simulated images are generated for cluster models at both maximal core collapse and at a post-collapse bounce. We are carrying out stellar photometry on these images using ``DAOPHOT-assisted aperture photometry'' software that we have developed. We are testing several techniques for analyzing the resulting star counts, to determine the underlying cluster structure, including parametric model fits and the nonparametric density estimation methods. Our simulated images also allow us to investigate the accuracy and completeness of methods for carrying out stellar photometry in HST Planetary Camera images of dense cluster cores.

  4. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  5. Persistent Increase in Blood Pressure After Renal Nerve Stimulation in Accessory Renal Arteries After Sympathetic Renal Denervation.

    PubMed

    de Jong, Mark R; Hoogerwaard, Annemiek F; Gal, Pim; Adiyaman, Ahmet; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Ramdat Misier, Anand R; van Hasselt, Boudewijn A A M; Heeg, Jan-Evert; le Polain de Waroux, Jean-Benoit; Lau, Elizabeth O Y; Staessen, Jan A; Persu, Alexandre; Elvan, Arif

    2016-06-01

    Blood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation. The objective of the current study was to assess renal nerve stimulation-induced blood pressure increase before and after renal sympathetic denervation in main and accessory renal arteries of anaesthetized patients with drug-resistant hypertension. The study included 21 patients. Nine patients had at least 1 accessory renal artery in which renal denervation was not feasible. Renal nerve stimulation was performed in the main arteries of all patients and in accessory renal arteries of 6 of 9 patients with accessory arteries, both before and after renal sympathetic denervation. Renal nerve stimulation before renal denervation elicited a substantial increase in systolic blood pressure, both in main (25.6±2.9 mm Hg; P<0.001) and accessory (24.3±7.4 mm Hg; P=0.047) renal arteries. After renal denervation, renal nerve stimulation-induced systolic blood pressure increase was blunted in the main renal arteries (Δ systolic blood pressure, 8.6±3.7 mm Hg; P=0.020), but not in the nondenervated renal accessory renal arteries (Δ systolic blood pressure, 27.1±7.6 mm Hg; P=0.917). This residual source of renal sympathetic tone may result in persistent hypertension after ablation and partly account for the large response variability. © 2016 American Heart Association, Inc.

  6. Renal Atrophy Secondary to Chemoradiotherapy of Abdominal Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Gary Y., E-mail: Gary.Yang@RoswellPark.or; May, Kilian Salerno; Iyer, Renuka V.

    2010-10-01

    Purpose: To identify factors predictive of renal atrophy after chemoradiotherapy of gastrointestinal malignancies. Methods and Materials: Patients who received chemotherapy and abdominal radiotherapy (RT) between 2002 and 2008 were identified for this study evaluating change in kidney size and function after RT. Imaging and biochemical data were obtained before and after RT in 6-month intervals. Kidney size was defined by craniocaudal measurement on CT images. The primarily irradiated kidney (PK) was defined as the kidney that received the greater mean kidney dose. Receiver operating characteristic (ROC) curves were generated to predict risk for renal atrophy. Results: Of 130 patients, medianmore » age was 64 years, and 51.5% were male. Most primary disease sites were pancreas and periampullary tumors (77.7%). Median follow-up was 9.4 months. Creatinine clearance declined 20.89%, and size of the PK decreased 4.67% 1 year after completion of chemoradiation. Compensatory hypertrophy of the non-PK was not seen. Percentage volumes of the PK receiving {>=}10 Gy (V{sub 10}), 15 Gy (V{sub 15}), and 20 Gy (V{sub 20}) were significantly associated with renal atrophy 1 year after RT (p = 0.0030, 0.0029, and 0.0028, respectively). Areas under the ROC curves for V{sub 10}, V{sub 15}, and V{sub 20} to predict >5% decrease in PK size were 0.760, 0.760, and 0.762, respectively. Conclusions: Significant detriments in PK size and renal function were seen after abdominal RT. The V{sub 10}, V{sub 15}, and V{sub 20} were predictive of risk for PK atrophy 1 year after RT. Analyses suggest the association of lower-dose renal irradiation with subsequent development of renal atrophy.« less

  7. Quantitative imaging of heterogeneous dynamics in drying and aging paints

    PubMed Central

    van der Kooij, Hanne M.; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-01-01

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail. PMID:27682840

  8. Regularized Reconstruction of Dynamic Contrast-Enhanced MR Images for Evaluation of Breast Lesions

    DTIC Science & Technology

    2010-09-01

    resonance imaging . We focus specifically on dynamic contrast-enhanced (DCE) imaging of breast cancer patients. The fundamental challenge in dynamic MRI is...Venkatesan, Magnetic resonance imaging : Physical principles and sequence design, Wiley, New York, 1999. 14 [7] P. S. Tofts and A. G. Kermode, “Measurement...10, no. 3, pp. 223–32, Sept. 1999. [12] D. C. Noll, D. G. Nishimura, and A. Macovski, “Homodyne detection in magnetic resonance imaging ,” IEEE Trans

  9. Multidetector Computed Tomography Features in Differentiating Exophytic Renal Angiomyolipoma from Retroperitoneal Liposarcoma

    PubMed Central

    Wang, Qiushi; Juan, Yu-Hsiang; Li, Yong; Xie, Jia-Jun; Liu, Hui; Huang, Hongfei; Liu, Zaiyi; Zheng, Junhui; Saboo, Ujwala S.; Saboo, Sachin S.; Liang, Changhong

    2015-01-01

    Abstract This study aims to evaluate the multidetector computed tomography (CT) imaging features in differentiating exophytic renal angiomyolipoma (AML) from retroperitoneal liposarcoma. We retrospectively enrolled 42 patients with confirmed exophytic renal AML (31 patients) or retroperitoneal liposarcoma (11 patients) during 8 years period to assess: renal parenchymal defect at site of tumor contact, supply from branches of renal artery, tumoral vessel extending through the renal parenchyma, dilated intratumoral vessels, hemorrhage, non–fat-containing intratumoral nodules with postcontrast enhancement, calcification, renal sinus enlargement, anterior displacement of kidneys, and other associated AML. Renal parenchymal defect, renal arterial blood supply, tumoral vessel through the renal parenchyma, dilated intratumoral vessels, intratumoral/perirenal hemorrhage, renal sinus enlargement, and associated AML were seen only or mainly in exophytic renal AML (all P value < 0.05); however, non–fat-attenuating enhancing intratumoral nodules, intratumoral calcification, and anterior displacement of the kidney were more common in liposarcoma (all P value < 0.05). AMLs reveal renal parenchymal defect at the site of tumor contact, supply from renal artery, tumoral vessel extending through the renal parenchyma, dilated intratumoral vessels, intratumoral and/or perirenal hemorrhage, renal sinus enlargement, and associated AML. Non–fat-attenuating enhancing intratumoral nodules, intratumoral calcifications, and anterior displacement of kidney were more commonly seen in liposarcoma. PMID:26376398

  10. Ferumoxytol MRA for transcatheter aortic valve replacement planning with renal insufficiency.

    PubMed

    Kallianos, Kimberly; Henry, Travis S; Yeghiazarians, Yerem; Zimmet, Jeffrey; Shunk, Kendrick A; Tseng, Elaine E; Mahadevan, Vaikom; Hope, Michael D

    2017-03-15

    Computed tomography angiography (CTA) is the test of choice for pre-procedure imaging of transcatheter aortic valve replacement (TAVR) candidates. The iodinated contrast required, however, increases the risk of renal dysfunction in patients with pre-existing renal failure. Ferumoxytol is a magnetic resonance imaging (MRI) contrast agent that can be used with renal failure. Its long vascular resonance time allows gated MRA sequences that approach CTA in image quality. We present respiratory and cardiac gated MRA enabled by ferumoxytol that can be post-processed in an analogous fashion to CTA. Seven patients with renal failure presenting for TAVR were imaged with respiratory and cardiac gated MRA at 3T using ferumoxtyol for contrast. Aortic annulus, root and peripheral access dimensions were calculated in a fashion identical to that used for CTA. Of these, 6 patients underwent a TAVR procedure and 5 had intraoperative valve assessment with transesophageal echocardiograph (TEE) using standard clinical protocols that employed both two- and three-dimensional techniques. Good correlation between MRA aortic annulus measurements and those from TEE were shown in 5 patients with mean annulus area of 392.4mm 2 (290-470 range) versus 374.1mm 2 (285-440 range), with a pairwise correlation coefficient of 0.92, p=0.029. All patients received Sapien valve implants (one 20mm, three 23mm, and two 26mm valves). Access decisions were guided by MRA with no complications. Annulus sizing resulted in no greater than trace/mild aortic regurgitation in all patients. Ferumoxytol MRA is a safe alternative to CTA in patients with renal failure for pre-TAVR analysis of the aortic root and peripheral access. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A Review of Digital Image Correlation Applied to Structura Dynamics

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Avitabile, Peter; Warren, Christopher; Pingle, Pawan; Helfrick, Mark

    2010-05-01

    A significant amount of interest exists in performing non-contacting, full-field surface velocity measurement. For many years traditional non-contacting surface velocity measurements have been made by using scanning Doppler laser vibrometry, shearography, pulsed laser interferometry, pulsed holography, or an electronic speckle pattern interferometer (ESPI). Three dimensional (3D) digital image correlation (DIC) methods utilize the alignment of a stereo pair of images to obtain full-field geometry data, in three dimensions. Information about the change in geometry of an object over time can be found by comparing a sequence of images and virtual strain gages (or position sensors) can be created over the entire visible surface of the object of interest. Digital imaging techniques were first developed in the 1980s but the technology has only recently been exploited in industry and research due to the advances of digital cameras and personal computers. The use of DIC for structural dynamic measurement has only very recently been investigated. Within this paper, the advantages and limits of using DIC for dynamic measurement are reviewed. Several examples of using DIC for dynamic measurement are presented on several vibrating and rotating structures.

  12. [Managing focal incidental renal lesions].

    PubMed

    Nicolau, C; Paño, B; Sebastià, C

    2016-01-01

    Incidental renal lesions are relatively common in daily radiological practice. It is important to know the different diagnostic possibilities for incidentally detected lesions, depending on whether they are cystic or solid. The management of cystic lesions is guided by the Bosniak classification. In solid lesions, the goal is to differentiate between renal cancer and benign tumors such as fat-poor angiomyolipoma and oncocytoma. Radiologists need to know the recommendations for the management of these lesions and the usefulness of the different imaging techniques and interventional procedures in function of the characteristics of the incidental lesion and the patient's life expectancy. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  13. Disappearance of Renal Cysts Included in Ice Ball During Cryoablation of Renal-Cell Carcinoma: A Potential Therapy for Symptomatic Renal Cysts?

    PubMed

    Yodoya, Mitsuko; Hiraki, Takao; Iguchi, Toshihiro; Fujiwara, Hiroyasu; Matsui, Yusuke; Masaoka, Yoshihisa; Sakurai, Jun; Mitsuhashi, Toshiharu; Gobara, Hideo; Kanazawa, Susumu

    2017-06-01

    To retrospectively evaluate the effect of cryoablation of renal-cell carcinoma on nearby renal cysts with the goal to investigate the potential for an alternative therapy to treat symptomatic renal cysts. The study population comprised 46 cysts (mean size, 12 mm; range, 5-43 mm) that were within or near the ice ball during cryoablation in 22 patients. Size change of each cyst was evaluated via enhanced CT or MR imaging before and 1, 3, 6, and 12 months after cryoablation. Forty-one cysts were also followed after 12 months. Variables including positional relationship between the cyst and the ice ball were evaluated via linear regression analysis using generalized estimating equation models to determine which factors affected cyst shrinkage rate at 12 months. Fifteen, 12, and 19 cysts were completely included in, partially included in, or excluded from the ice ball, respectively. The overall shrinkage rate was 62%, and 57% of cysts (26 of 46) had disappeared at 12 months. Only the relationship between the cyst and the ice ball was significantly (P < .001) associated with cyst shrinkage rate. Cyst disappearance rates at 12 months were 100% (15 of 15), 67% (8 of 12), and 16% (3 of 19) for cysts completely included, partially included, and excluded from the ice ball, respectively. Among the 22 cysts that disappeared at 12 months and continued to be followed, none recurred after 12 months. All renal cysts that were completely included in the ice ball disappeared after cryoablation, demonstrating the potential utility of cryoablation as an alternative therapy for symptomatic renal cysts. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  14. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats

    PubMed Central

    Mulder, Jan; Hökfelt, Tomas; Knuepfer, Mark M.

    2013-01-01

    Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R2 > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation. PMID:23408032

  15. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, far right, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Pictured from left of Dr. Guhathakurta's are: Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  16. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. Pictured right to left are: Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  17. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching

    PubMed Central

    Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Zhang, Peng

    2017-01-01

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images. PMID:28885547

  18. In vivo optical imaging and dynamic contrast methods for biomedical research

    PubMed Central

    Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.

    2011-01-01

    This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910

  19. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  20. Evaluation of the CT Parameters to Suppress Renal Cysts Pseudoenhancement Effect: Influence of the Virtual Monochromatic Spectral Images, the Model-based Iterative Reconstruction Algorithm and the Aperture Size in Phantom Model.

    PubMed

    Sugisawa, Koichi; Ichikawa, Katsuhiro; Minamishima, Kazuya; Hasegawa, Masakazu; Yamada, Yoshitake; Jinzaki, Masahiro

    2017-01-01

    The purpose of this study was to evaluate the effect of the virtual monochromatic spectral images (VMSI) and the model-based iterative reconstruction (MBIR) images, to evaluate the influence of the aperture size (40- and 20-mm beam) on renal pseudoenhancement (PE) compared with the filtered back projection (FBP) images. The renal compartment-CT phantom was filled with iodinated contrast material diluted to the attenuation of 180 Hounsfield units (HU) at 120 kV. The water-filled spherical structures, which simulate cyst, were inserted into the renal compartment. Those diameters were 7, 15 and 25 mm. These were scanned by conventional mode (helical scan, 120 kV-FBP) and dual energy mode. 70 keV-VMSI were reconstructed from the dual energy mode, and MBIR images were reconstructed from conventional mode at 40- and 20-mm aperture. Additionally, the phantom was scanned using non-helical mode with 20-mm aperture, and FBP images were reconstructed. The CT value of the PE for cyst areas was measured for these images. The CT values of the cysts were 20.0-14.3 HU on the FBP images, 12.8-12.7 HU on the 70 keV-VMSI (PE-inhibition ratio was 36.0-11.2%) and 16.2-14.0 HU on the MBIR images (19.0-2.1%), respectively, at 40-mm aperture. The PE-inhibition ratio scanned by 20-mm aperture was improved by 28.0% with FBP, 32.8% with 70 keV-VMSI and 29.6% with MBIR compared with 40-mm aperture. One of the FBP images with non-helical mode was 11.6 HU. The best CT technique to minimize PE was the combination of 70 keV-VMSI and 20-mm aperture.

  1. Neural control of renal function: role of renal alpha adrenoceptors.

    PubMed

    DiBona, G F

    1985-01-01

    Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.

  2. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.

  3. Research on hyperspectral dynamic scene and image sequence simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.

  4. Solitary kidney with renal artery aneurysm repaired by ex vivo reconstruction.

    PubMed

    Palcau, Laura; Gouicem, Djelloul; Joguet, Etienne; Cameliere, Lucie; Berger, Ludovic

    2014-01-01

    A 22-year-old pregnant female with pyelonephritis was found to have a 26-mm left renal artery aneurysm with unknown right kidney agenesis diagnosed by magnetic resonance imaging. Computed tomographic angiography with 3-dimensional reconstructions confirmed a saccular aneurysm localized at the bifurcation of the left posterior segmental artery. The patient ultimately underwent successful ex vivo left renal artery aneurysm repair with autotransplantation. Pathologic evaluation of the resected aneurysm confirmed the diagnosis of fibromuscular dysplasia. Fibromuscular dysplasia is the most common cause of renal artery stenosis and renovascular hypertension and can, in rare cases, be associated with the development of renal artery aneurysms. © The Author(s) 2014.

  5. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    PubMed

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging.

    PubMed

    Briat, Arnaud; Wenk, Christiane H F; Ahmadi, Mitra; Claron, Michael; Boturyn, Didier; Josserand, Véronique; Dumy, Pascal; Fagret, Daniel; Coll, Jean-Luc; Ghezzi, Catherine; Sancey, Lucie; Vuillez, Jean-Philippe

    2012-06-01

    Integrin α(v)β(3) expression is upregulated during tumor growth and invasion in newly formed endothelial cells in tumor neovasculature and in some tumor cells. A tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets integrin α(v)β(3) in vitro and in vivo. When labeled with indium-111, the RAFT-RGD is partially reabsorbed and trapped in the kidneys, limiting its use for further internal targeted radiotherapy and imaging investigations. We studied the effect of Gelofusine on RAFT-RGD renal retention in tumor-bearing mice. Mice were imaged using single photon emission computed tomography and optical imaging 1 and 24 h following tracer injection. Distribution of RAFT-RGD was further investigated by tissue removal and direct counting of the tracer. Kidney sections were analyzed by confocal microscopy. Gelofusine significantly induced a >50% reduction of the renal reabsorption of (111)In-DOTA-RAFT-RGD and A700-RAFT-RGD, without affecting tumor uptake. Injection of Gelofusine significantly reduced the renal retention of labeled RAFT-RGD, while increasing the tumor over healthy tissue ratio. These results will lead to the development of future therapeutic approaches. © 2012 Japanese Cancer Association.

  7. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance

    NASA Astrophysics Data System (ADS)

    Mahadevan, Kalpana; Patthipati, Venkata Suresh; Han, Sangbum; Swanson, R. James; Whelan, Eoin C.; Osgood, Christopher; Balasubramanian, Ramjee

    2016-08-01

    Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 109 M-1 cm-1 and 1.5 × 108 M-1 cm-1 respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.

  8. An anisotropic diffusion method for denoising dynamic susceptibility contrast-enhanced magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki; Kawakami, Kazunori; Kikuchi, Keiichi; Miki, Hitoshi; Mochizuki, Teruhito; Ikezoe, Junpei

    2001-10-01

    The purpose of this study was to present an application of a novel denoising technique for improving the accuracy of cerebral blood flow (CBF) images generated from dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI). The method presented in this study was based on anisotropic diffusion (AD). The usefulness of this method was firstly investigated using computer simulations. We applied this method to patient data acquired using a 1.5 T MR system. After a bolus injection of Gd-DTPA, we obtained 40-50 dynamic images with a 1.32-2.08 s time resolution in 4-6 slices. The dynamic images were processed using the AD method, and then the CBF images were generated using pixel-by-pixel deconvolution analysis. For comparison, the CBF images were also generated with or without processing the dynamic images using a median or Gaussian filter. In simulation studies, the standard deviation of the CBF values obtained after processing by the AD method was smaller than that of the CBF values obtained without any processing, while the mean value agreed well with the true CBF value. Although the median and Gaussian filters also reduced image noise, the mean CBF values were considerably underestimated compared with the true values. Clinical studies also suggested that the AD method was capable of reducing the image noise while preserving the quantitative accuracy of CBF images. In conclusion, the AD method appears useful for denoising DSC-MRI, which will make the CBF images generated from DSC-MRI more reliable.

  9. The radiologist's role in the management of papillary renal cell carcinoma.

    PubMed

    Corral de la Calle, M Á; Encinas de la Iglesia, J; Martín López, M R; Fernández Pérez, G C; Águeda Del Bas, D S

    Papillary carcinoma is the second most common renal cell carcinoma. It has a better prognosis than the more frequent clear cell carcinoma, although this does not hold true for advanced cases, because no specific treatment exists. It presents as a circumscribed peripheral tumor (small and homogeneously solid or larger and cystic/hemorrhagic) or as an infiltrating lesion that invades the veins, which has a worse prognosis. Due to their low vascular density, papillary renal cell carcinomas enhance less than other renal tumors, and this facilitates their characterization. On computed tomography, they might not enhance conclusively, and in these cases they are impossible to distinguish from hyperattenuating cysts. Contrast-enhanced ultrasonography and magnetic resonance imaging are more sensitive for detecting vascularization. Other characteristics include a specific vascular pattern, hypointensity on T2-weighted images, restricted water diffusion, and increased signal intensity in opposed phase images. We discuss the genetic, histologic, clinical, and radiological aspects of these tumors in which radiologists play a fundamental role in management. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Geocoronal imaging with Dynamics Explorer

    NASA Technical Reports Server (NTRS)

    Rairden, R. L.; Frank, L. A.; Craven, J. D.

    1986-01-01

    The ultraviolet photometer of the University of Iowa spin-scan auroral imaging instrumentation on board Dynamics Explorer-1 has returned numerous hydrogen Lyman alpha images of the geocorona from altitudes of 570 km to 23,300 km (1.09 R sub E to 4.66 R sub E geocentric radial distance). The hydrogen density gradient is shown by a plot of the zenith intensities throughout this range, which decrease to near celestial background values as the spacecraft approaches apogee. Characterizing the upper geocorona as optically thin (single-scattering), the zenith intensity is converted directly to vertical column density. This approximation loses its validity deeper in the geocorona, where the hydrogen is demonstrated to be optically thick in that there is no Lyman alpha limb brightening. Further study of the geocoronal hydrogen distribution will require computer modeling of the radiative transfer.

  11. Reproducibility of dynamically represented acoustic lung images from healthy individuals

    PubMed Central

    Maher, T M; Gat, M; Allen, D; Devaraj, A; Wells, A U; Geddes, D M

    2008-01-01

    Background and aim: Acoustic lung imaging offers a unique method for visualising the lung. This study was designed to demonstrate reproducibility of acoustic lung images recorded from healthy individuals at different time points and to assess intra- and inter-rater agreement in the assessment of dynamically represented acoustic lung images. Methods: Recordings from 29 healthy volunteers were made on three separate occasions using vibration response imaging. Reproducibility was measured using quantitative, computerised assessment of vibration energy. Dynamically represented acoustic lung images were scored by six blinded raters. Results: Quantitative measurement of acoustic recordings was highly reproducible with an intraclass correlation score of 0.86 (very good agreement). Intraclass correlations for inter-rater agreement and reproducibility were 0.61 (good agreement) and 0.86 (very good agreement), respectively. There was no significant difference found between the six raters at any time point. Raters ranged from 88% to 95% in their ability to identically evaluate the different features of the same image presented to them blinded on two separate occasions. Conclusion: Acoustic lung imaging is reproducible in healthy individuals. Graphic representation of lung images can be interpreted with a high degree of accuracy by the same and by different reviewers. PMID:18024534

  12. Evaluation of a novel laparoscopic camera for characterization of renal ischemia in a porcine model using digital light processing (DLP) hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Olweny, Ephrem O.; Tan, Yung K.; Faddegon, Stephen; Jackson, Neil; Wehner, Eleanor F.; Best, Sara L.; Park, Samuel K.; Thapa, Abhas; Cadeddu, Jeffrey A.; Zuzak, Karel J.

    2012-03-01

    Digital light processing hyperspectral imaging (DLP® HSI) was adapted for use during laparoscopic surgery by coupling a conventional laparoscopic light guide with a DLP-based Agile Light source (OL 490, Optronic Laboratories, Orlando, FL), incorporating a 0° laparoscope, and a customized digital CCD camera (DVC, Austin, TX). The system was used to characterize renal ischemia in a porcine model.

  13. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Here, scientists are showing an animation from Walt Feimer, lead animator for the Heliophysics team. Credit: NASA/GSFC

  14. Metastatic Renal Cell Carcinoma Masquerading as Jugular Foramen Paraganglioma: A Role for Novel Magnetic Resonance Imaging.

    PubMed

    Thomas, Andrew J; Wiggins, Richard H; Gurgel, Richard K

    2017-08-01

    To describe a case of metastatic renal cell carcinoma (RCC) masquerading as a jugular foramen paraganglioma (JP). To compare imaging findings between skull base metastatic RCC and histologically proven paraganglioma. A case of unexpected metastatic skull base RCC is reviewed. Computed tomography (CT) and magnetic resonance imaging (MRI) were compared between 3 confirmed cases of JP and our case of metastatic RCC. Diffusion-weighted MRI (DW-MRI) sequences and computed apparent diffusion coefficient (ADC) values were compared between these entities. A 55-year-old man presents with what appears clinically and radiographically to be JP. The tumor was resected, then discovered on postoperative pathology to be metastatic RCC. Imaging was retrospectively compared between 3 histologically confirmed cases of JP and our case of skull base RCC. The RCC metastasis was indistinguishable from JP on CT and traditional MRI but distinct by ADC values calculated from DW-MRI. Metastatic RCC at the skull base may mimic the clinical presentation and radiographic appearance of JP. The MRI finding of flow voids is seen in both paraganglioma and metastatic RCC. Diffusion-weighted MRI is able to distinguish these entities, highlighting its potential utility in distinguishing skull base lesions.

  15. Laparoscopic radical nephrectomy for a right renal tumor with renal vein tumor thrombus in a patient with situs inversus totalis.

    PubMed

    Ito, Jun; Kaiho, Yasuhiro; Iwamura, Hiromichi; Anan, Go; Sato, Makoto

    2018-05-23

    Situs inversus totalis (SIT) is a rare congenital anomaly characterized by complete inversion of the thoracic and abdominal organs. Many intra-abdominal and vessel anomalies have been reported in association with SIT. However, there have been no reports on the use of laparoscopic radical nephrectomy with thrombectomy for renal vein thrombus, which is considered as a safe and feasible procedure, in patients with SIT. We herein present the case of an 80-year-old man with SIT who was preoperatively diagnosed with a right renal tumor and renal vein tumor thrombus. The patient underwent laparoscopic right nephrectomy and tumor thrombectomy with no intraoperative complications. To ensure a safe procedure, the anatomy and vessels were carefully evaluated preoperatively using 3-D multiplanar reconstructed CT imaging. Assessing anatomical structures leads to safer laparoscopic radical nephrectomy for renal cell carcinoma with venous tumor thrombus in patients with SIT. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  16. High-frame-rate full-vocal-tract 3D dynamic speech imaging.

    PubMed

    Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P

    2017-04-01

    To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Predicting postnatal renal function of prenatally detected posterior urethral valves using fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient determination.

    PubMed

    Faure, Alice; Panait, Nicoleta; Panuel, Michel; Alessandrini, Pierre; D'Ercole, Claude; Chaumoitre, Kathia; Merrot, Thierry

    2017-07-01

    The objective of this study was to evaluate the accuracy of fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination to predict postnatal renal function (nadir creatinine at 1 year and eGFR) of men with posterior urethral valves (PUV). Between 2003 and 2014, 11 MRI were performed on fetuses (between 28 and 32 weeks) in whom second trimester sonography suggested severe bilateral urinary tract anomalies, suspected of PUV. The ADC of the 11 fetuses ranged from 1.3 to 2.86 mm 2  s -1 (median = 1.79 mm 2  s -1 , normal range for fetal kidney: 1.1-1.8). Two pregnancies with ADC > 2.6 mm 2  s -1 were interrupted; the autopsy confirmed PUV and Potter syndrome. For the remaining nine babies, the follow-up was 5.4 years (0.8-10). Four children with abnormal ADC (1.8-2.3) had chronic kidney disease. The remaining five cases with normal nadir creatinine and eGFR had normal ADC. One case with unilateral elevated ADC had a poor ipsilateral renal function on dimercaptosuccinic acid scan. Here, it seems that diffusion-weighted magnetic resonance imaging with ADC determination could be useful in accurately evaluating fetal kidneys in PUV and predicting renal function. It may be an additional, non-invasive method when biologic and sonographic findings are inconclusive, especially in the case of oligohydramnios. Further studies are needed to confirm our data. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  18. Incidental renal tumours on low-dose CT lung cancer screening exams.

    PubMed

    Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S

    2017-06-01

    Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P < 0.001). Cases with abnormalities below the diaphragms had shorter median time to diagnosis than those without (71 vs. 160 days, P = 0.004). In the reader study, 64% of renal cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P < 0.001). Conclusion Low-dose computed tomography screens can potentially detect renal cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.

  19. Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging

    PubMed Central

    Ravishankar, Saiprasad; Moore, Brian E.; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery from undersampled measurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method. PMID:28092528

  20. Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.

    PubMed

    Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio

    2009-12-01

    Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.

  1. Renal involvement in Gaucher's disease.

    PubMed Central

    Siegal, A.; Gutman, A.; Shapiro, M. S.; Griffel, B.

    1981-01-01

    A patient with chronic Gaucher's disease is described who developed glomerulopathy 24 years after splenectomy terminating in renal failure. The pathological changes of this very rare complication of Gaucher's disease are described. The few similar cases reported in the literature are reviewed and the possible pathogenetic pathways discussed. Images Fig. 1 Fig. 2 Fig. 3 PMID:7301691

  2. Renal Cell Carcinoma: Comparison of RENAL Nephrometry and PADUA Scores with Maximum Tumor Diameter for Prediction of Local Recurrence after Thermal Ablation.

    PubMed

    Maxwell, Aaron W P; Baird, Grayson L; Iannuccilli, Jason D; Mayo-Smith, William W; Dupuy, Damian E

    2017-05-01

    Purpose To evaluate the performance of the radius, exophytic or endophytic, nearness to collecting system or sinus, anterior or posterior, and location relative to polar lines (RENAL) nephrometry and preoperative aspects and dimensions used for anatomic classification (PADUA) scoring systems and other tumor biometrics for prediction of local tumor recurrence in patients with renal cell carcinoma after thermal ablation. Materials and Methods This HIPAA-compliant study was performed with a waiver of informed consent after institutional review board approval was obtained. A retrospective evaluation of 207 consecutive patients (131 men, 76 women; mean age, 71.9 years ± 10.9) with 217 biopsy-proven renal cell carcinoma tumors treated with thermal ablation was conducted. Serial postablation computed tomography (CT) or magnetic resonance (MR) imaging was used to evaluate for local tumor recurrence. For each tumor, RENAL nephrometry and PADUA scores were calculated by using imaging-derived tumor morphologic data. Several additional tumor biometrics and combinations thereof were also measured, including maximum tumor diameter. The Harrell C index and hazard regression techniques were used to quantify associations with local tumor recurrence. Results The RENAL (hazard ratio, 1.43; P = .003) and PADUA (hazard ratio, 1.80; P < .0001) scores were found to be significantly associated with recurrence when regression techniques were used but demonstrated only poor to fair discrimination according to Harrell C index results (C, 0.68 and 0.75, respectively). Maximum tumor diameter showed the highest discriminatory strength of any individual variable evaluated (C, 0.81) and was also significantly predictive when regression techniques were used (hazard ratio, 2.98; P < .0001). For every 1-cm increase in diameter, the estimated rate of recurrence risk increased by 198%. Conclusion Maximum tumor diameter demonstrates superior performance relative to existing tumor scoring systems and

  3. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2001-10-25

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  4. The Clinical Spectrum of Renal Insufficiency During Acute Glomerulonephritis in the Adult

    PubMed Central

    Lemieux, Guy; Cuvelier, Amedee A.; Lefebvre, Rene

    1967-01-01

    Twenty-seven adults with acute poststreptococcal glomerulonephritis were divided into two groups according to the severity of reduction in renal function: (1) 14 patients with mild depression of renal function, and (2) 13 patients with more severe renal insufficiency. In the first group the outcome was favourable, with complete clinical recovery in 11 patients. Only two patients in the second group have recovered. Five have died of renal failure and in six the chronic stage has developed. The most notable histopathological lesion observed in this group of patients was severe proliferative glomerulonephritis with a large number of epithelial crescents. According to the mode of development and time of onset of renal failure, these 13 patients could be divided into three sub-groups: (1) early renal failure without oliguria (three patients), (2) early renal failure with severe oliguria or anuria (three patients) and (3) delayed renal failure (seven patients). Although there are exceptions, the development of renal insufficiency in an adult patient suffering from acute glomerulonephritis is usually associated with a guarded prognosis. ImagesFig. 2 PMID:6021561

  5. Molecular Imaging of the Kidneys

    PubMed Central

    Szabo, Zsolt; Alachkar, Nada; Xia, Jinsong; Mathews, William B.; Rabb, Hamid

    2010-01-01

    Radionuclide imaging of the kidneys with gamma cameras involves the use of labeled molecules seeking functionally critical molecular mechanisms in order to detect the pathophysiology of the diseased kidneys and achieve an early, sensitive and accurate diagnosis. The most recent imaging technology, PET, permits quantitative imaging of the kidney at a spatial resolution appropriate for the organ. H215O, 82RbCl, and [64Cu] ETS are the most important radiopharmaceuticals for measuring renal blood flow. The renin angiotensin system is the most important regulator of renal blood flow; this role is being interrogated by detecting angiotensin receptor subtype AT1R using in vivo PET imaging. Membrane organic anion transporters are important for the function of the tubular epithelium; therefore, Tc-99m MAG3 as well as some novel radiopharmaceuticals such as copper-64 labeled mono oxo-tetraazamacrocyclic ligands have been utilized for molecular renal imaging. Additionally, other radioligands that interact with the organic cation transporters or peptide transporters have developed. Focusing on early detection of kidney injury at the molecular level is an evolving field of great significance. Potential imaging targets are the kidney injury molecule- 1 (KIM-1) that is highly expressed in kidney injury and renal cancer but not in normal kidneys. While pelvic clearance, in addition to parenchymal transport, is an important measure in obstructive nephropathy, techniques that focus on upregulated molecules in response to tissue stress resulted from obstruction will be of great implication. Monocyte chemoattractant protein -1 (MCP-1) is a well-suited molecule in this case. The greatest advances in molecular imaging of the kidneys have been recently achieved in detecting renal cancer. In addition to the ubiquitous [18F]FDG, other radioligands such as [11C]acetate and anti-[18F]FACBC have emerged. Radioimmuno-imaging with [124I]G250 could lead to radioimmunotherapy for renal cancer

  6. Renal oxygen content is increased in healthy subjects after angiotensin-converting enzyme inhibition.

    PubMed

    Stein, Anna; Goldmeier, Silvia; Voltolini, Sarah; Setogutti, Enio; Feldman, Carlos; Figueiredo, Eduardo; Eick, Renato; Irigoyen, Maria; Rigatto, Katya

    2012-07-01

    The association between renal hypoxia and the development of renal injury is well established. However, no adequate method currently exists to non-invasively measure functional changes in renal oxygenation in normal and injured patients. R2* quantification was performed using renal blood oxygen level-dependent properties. Five healthy normotensive women (50 ± 5.3 years) underwent magnetic resonance imaging in a 1.5T Signa Excite HDx scanner (GE Healthcare, Waukesha, WI). A multiple fast gradient-echo sequence was used to acquire R2*/T2* images (sixteen echoes from 2.1 ms/slice to 49.6 ms/slice in a single breath hold per location). The images were post-processed to generate R2* maps for quantification. Data were recorded before and at 30 minutes after the oral administration of an angiotensin II-converting enzyme inhibitor (captopril, 25 mg). The results were compared using an ANOVA for repeated measurements (mean + standard deviation) followed by the Tukey test. ClinicalTrials.gov: NCT01545479. A significant difference (p<0.001) in renal oxygenation (R2*) was observed in the cortex and medulla before and after captopril administration: right kidney, cortex = 11.08 ± 0.56 ms, medulla = 17.21 ± 1.47 ms and cortex = 10.30 ± 0.44 ms, medulla = 16.06 ± 1.74 ms, respectively; and left kidney, cortex= 11.79 ± 1.85 ms, medulla = 17.03 ± 0.88 ms and cortex = 10.89 ± 0.91 ms, medulla = 16.43 ± 1.49 ms, respectively. This result suggests that the technique efficiently measured alterations in renal blood oxygenation after angiotensin II-converting enzyme inhibition and that it may provide a new strategy for identifying the early stages of renal disease and perhaps new therapeutic targets.

  7. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.

    PubMed

    Lin, C D; Xu, Junliang

    2012-10-14

    We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.

  8. Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häggström, Ida, E-mail: haeggsti@mskcc.org; Beattie, Bradley J.; Schmidtlein, C. Ross

    2016-06-15

    Purpose: To develop and evaluate a fast and simple tool called dPETSTEP (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. Methods: The tool was developed in MATLAB using both new and previously reported modules of PETSTEP (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuationmore » are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). Results: dPETSTEP was 8000 times faster than MC. Dynamic images from dPETSTEP had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dPETSTEP and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dPETSTEP images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dPETSTEP images and noise properties agreed better with MC. Conclusions: The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dPETSTEP to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable

  9. Dynamic PET simulator via tomographic emission projection for kinetic modeling and parametric image studies.

    PubMed

    Häggström, Ida; Beattie, Bradley J; Schmidtlein, C Ross

    2016-06-01

    To develop and evaluate a fast and simple tool called dpetstep (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. The tool was developed in matlab using both new and previously reported modules of petstep (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). dpetstep was 8000 times faster than MC. Dynamic images from dpetstep had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dpetstep and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dpetstep images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dpetstep images and noise properties agreed better with MC. The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dpetstep to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for studies investigating these phenomena

  10. Generative technique for dynamic infrared image sequences

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cao, Zhiguo; Zhang, Tianxu

    2001-09-01

    The generative technique of the dynamic infrared image was discussed in this paper. Because infrared sensor differs from CCD camera in imaging mechanism, it generates the infrared image by incepting the infrared radiation of scene (including target and background). The infrared imaging sensor is affected deeply by the atmospheric radiation, the environmental radiation and the attenuation of atmospheric radiation transfers. Therefore at first in this paper the imaging influence of all kinds of the radiations was analyzed and the calculation formula of radiation was provided, in addition, the passive scene and the active scene were analyzed separately. Then the methods of calculation in the passive scene were provided, and the functions of the scene model, the atmospheric transmission model and the material physical attribute databases were explained. Secondly based on the infrared imaging model, the design idea, the achievable way and the software frame for the simulation software of the infrared image sequence were introduced in SGI workstation. Under the guidance of the idea above, in the third segment of the paper an example of simulative infrared image sequences was presented, which used the sea and sky as background and used the warship as target and used the aircraft as eye point. At last the simulation synthetically was evaluated and the betterment scheme was presented.

  11. Ultrasound evaluation of valsartan therapy for renal cortical perfusion.

    PubMed

    Kishimoto, Noriko; Mori, Yasukiyo; Nishiue, Takashi; Nose, Atsuko; Kijima, Yasuaki; Tokoro, Toshiko; Yamahara, Hideki; Okigaki, Mitsuhiko; Kosaki, Atsushi; Iwasaka, Toshiji

    2004-05-01

    An increase in renal blood flow with a concomitant decrease in filtration fraction at the onset of angiotensin II receptor blocker treatment has been shown to predict a long-term renoprotective effect. However, no studies are available regarding angiotensin receptor blocker-induced changes in renal cortical perfusion observed in the clinical setting. We have recently developed a convenient method of evaluating human renal cortical blood flow with contrast-enhanced harmonic ultrasonography. The goal of this study was to use this method to examine the effect of valsartan, an angiotensin II receptor blocker, on renal cortical perfusion. We performed intermittent second harmonic imaging with venous infusion of a microbubble contrast agent in 7 healthy volunteers. Contrast-enhanced harmonic ultrasonography performed after oral administration of valsartan (80mg) showed a significant increase in microbubble velocity, which correlated well with the increase in total renal blood flow determined by p-aminohippurate clearance (r=0.950, p < 0.001). Although fractional vascular volume was not significantly increased, alterations in renal cortical blood flow calculated by the product of microbubble velocity and fractional volume were also correlated with the change in total renal blood flow (r=0.756, p < 0.05). These results indicate that valsartan increases the renal cortical blood flow in normal kidneys, mainly by increasing blood flow velocity. Contrast-enhanced harmonic ultrasonography is a promising technique for evaluating the precise effect on renal cortical perfusion and optimal dose of valsartan in diseased kidneys.

  12. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    PubMed

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  13. Heterogeneity of renal cortical oxygenation: seeing is believing.

    PubMed

    Evans, Roger G; Ow, Connie P C

    2018-06-01

    The limited spatial and temporal resolution of available methods for quantifying renal tissue oxygen tension is a major impediment to identification of the roles of renal hypoxia in kidney diseases. Intravital phosphorescence lifetime imaging microscopy allows cellular oxygen tension in the renal cortex of live animals to be resolved to the level of individual tubular cross-sections. This paves the way for future investigations of the spatial relationships between cellular hypoxia and pathophysiological events in kidney disease. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Renal denervation by intravascular ultrasound: Preliminary in vivo study

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Yegor; McClain, Steve; Zou, Yong; Smith, David; Warnking, Reinhard

    2012-10-01

    Ultrasound denervation has recently become a subject of intense research in connection with the treatment of complex medical conditions including neurological conditions, development of pain management, reproduction of skin sensation, neuropathic pain and spasticity. The objective of this study is to investigate the use of intravascular ultrasound to produce nerve damage in renal sympathetic nerves without significant injury to the renal artery. This technique may potentially be used to treat various medical conditions, such as hypertension. The study was approved by the Institutional Animal Care and Use Committee. Ultrasound was applied to renal nerves of the swine model for histopathological evaluation. Therapeutic ultrasound energy was delivered circumferentially by an intravascular catheter maneuvered into the renal arteries. Fluoroscopic imaging was conducted pre-and post-ultrasound treatment. Animals were recovered and euthanized up to 30 hours post procedure, followed by necropsy and tissue sample collection. Histopathological examination showed evidence of extensive damage to renal nerves, characterized by nuclear pyknosis, hyalinization of stroma and multifocal hemorrhages, with little or no damage to renal arteries. This study demonstrates the feasibility of intravascular ultrasound as a minimally invasive renal denervation technique. Further studies are necessary to evaluate the long-term safety and efficacy of this technique and its related clinical significance.

  15. Imaging nanoclusters in the constant height mode of the dynamic SFM.

    PubMed

    Barth, Clemens; Pakarinen, Olli H; Foster, Adam S; Henry, Claude R

    2006-04-14

    For the first time, high quality images of metal nanoclusters which were recorded in the constant height mode of a dynamic scanning force microscope (dynamic SFM) are shown. Surfaces of highly ordered pyrolytic graphite (HOPG) were used as a test substrate since metal nanoclusters with well defined and symmetric shapes can be created by epitaxial growth. We performed imaging of gold clusters with sizes between 5 and 15 nm in both scanning modes, constant Δf mode and constant height mode, and compared the image contrast. We notice that clusters in constant height images appear much sharper, and exhibit more reasonable lateral shapes and sizes in comparison to images recorded in the constant Δf mode. With the help of numerical simulations we show that only a microscopically small part of the tip apex (nanotip) is probably the main contributor for the image contrast formation. In principle, the constant height mode can be used for imaging surfaces of any material, e.g. ionic crystals, as shown for the system Au/NaCl(001).

  16. Whole-body PET/CT evaluation of tumor perfusion using generator-based 62Cu-ethylglyoxal bis(thiosemicarbazonato)copper(II): validation by direct comparison to 15O-water in metastatic renal cell carcinoma.

    PubMed

    Fletcher, James W; Logan, Theodore F; Eitel, Jacob A; Mathias, Carla J; Ng, Yen; Lacy, Jeffrey L; Hutchins, Gary D; Green, Mark A

    2015-01-01

    This study was undertaken to demonstrate the feasibility of whole-body (62)Cu-ethylglyoxal bis(thiosemicarbazonato)copper(II) ((62)Cu-ETS) PET/CT tumor perfusion imaging in patients with metastatic renal carcinoma and to validate (62)Cu-ETS as a quantitative marker of tumor perfusion by direct comparison with (15)O-water perfusion imaging. PET/CT imaging of 10 subjects with stage IV renal cell cancer was performed after intravenous administration of (15)O-water (10-min dynamic list-mode study) with the heart and at least 1 tumor in the PET field of view, followed 10 min later by intravenous (62)Cu-ETS (6-min list-mode study). Whole-body (62)Cu imaging was then performed from 6 to 20 min at 2-3 min/bed position. Blood flow (K1) was quantified with both agents for normal and malignant tissues in the 21.7-cm dynamic field of view. The required arterial input functions were derived from the left atrium and, in the case of (62)Cu-ETS, corrected for partial decomposition of the agent by blood with data from an in vitro analysis using a sample of each patient's blood. This imaging protocol was repeated at an interval of 3-4 wk after initiation of a standard clinical treatment course of the antiangiogenic agent sunitinib. All subjects received the scheduled (62)Cu-ETS doses for the dynamic and subsequent whole-body PET/CT scans, but technical issues resulted in no baseline (15)O-water data for 2 subjects. Direct comparisons of the perfusion estimates for normal tissues and tumor metastases were made in 18 paired baseline and treatment studies (10 subjects; 8 baseline studies, 10 repeated studies during treatment). There was an excellent correlation between the blood flow estimates made with (62)Cu-ETS and (15)O-water for normal tissues (muscle, thyroid, myocardium) and malignant lesions (pulmonary nodules, bone lesions); the regression line was y = 0.85x + 0.15, R(2) = 0.83, for the 88 regions analyzed. (62)Cu-ETS provided high-quality whole-body PET/CT images, and (62)Cu

  17. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user. Copyright © 2014

  18. Live-cell CRISPR imaging in plants reveals dynamic telomere movements.

    PubMed

    Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F; Puchta, Holger; Houben, Andreas

    2017-08-01

    Elucidating the spatiotemporal organization of the genome inside the nucleus is imperative to our understanding of the regulation of genes and non-coding sequences during development and environmental changes. Emerging techniques of chromatin imaging promise to bridge the long-standing gap between sequencing studies, which reveal genomic information, and imaging studies that provide spatial and temporal information of defined genomic regions. Here, we demonstrate such an imaging technique based on two orthologues of the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9). By fusing eGFP/mRuby2 to catalytically inactive versions of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking the dynamics of telomeres visualized by CRISPR-dCas9, we reveal dynamic telomere movements of up to 2 μm over 30 min during interphase. Furthermore, we show that CRISPR-dCas9 can be combined with fluorescence-labelled proteins to visualize DNA-protein interactions in vivo. By simultaneously using two dCas9 orthologues, we pave the way for the imaging of multiple genomic loci in live plants cells. CRISPR imaging bears the potential to significantly improve our understanding of the dynamics of chromosomes in live plant cells. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  19. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Tom Woods, (second from right), principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  20. Insights into nuclear dynamics using live-cell imaging approaches.

    PubMed

    Bigley, Rachel B; Payumo, Alexander Y; Alexander, Jeffrey M; Huang, Guo N

    2017-03-01

    The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  1. X-ray phase imaging-From static observation to dynamic observation-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, A.; Yashiro, W.; Olbinado, M. P.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase imagesmore » and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.« less

  2. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalisedcross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  3. Acquisition and Analysis of Dynamic Responses of a Historic Pedestrian Bridge using Video Image Processing

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; O'Donnell, Deirdre; Wright, Robert; Pakrashi, Vikram

    2015-07-01

    Video based tracking is capable of analysing bridge vibrations that are characterised by large amplitudes and low frequencies. This paper presents the use of video images and associated image processing techniques to obtain the dynamic response of a pedestrian suspension bridge in Cork, Ireland. This historic structure is one of the four suspension bridges in Ireland and is notable for its dynamic nature. A video camera is mounted on the river-bank and the dynamic responses of the bridge have been measured from the video images. The dynamic response is assessed without the need of a reflector on the bridge and in the presence of various forms of luminous complexities in the video image scenes. Vertical deformations of the bridge were measured in this regard. The video image tracking for the measurement of dynamic responses of the bridge were based on correlating patches in time-lagged scenes in video images and utilisinga zero mean normalised cross correlation (ZNCC) metric. The bridge was excited by designed pedestrian movement and by individual cyclists traversing the bridge. The time series data of dynamic displacement responses of the bridge were analysedto obtain the frequency domain response. Frequencies obtained from video analysis were checked against accelerometer data from the bridge obtained while carrying out the same set of experiments used for video image based recognition.

  4. Raman imaging of molecular dynamics during cellular events

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa

    2017-07-01

    To overcome the speed limitation in Raman imaging, we have developed a microscope system that detects Raman spectra from hundreds of points in a sample simultaneously. The sample was illuminated by a line-shaped focus, and Raman scattering from the illuminated positions was measured simultaneously by an imaging spectrophotometer. We applied the line-illumination technique to observe the dynamics of intracellular molecules during cellular events. We found that intracellular cytochrome c can be clearly imaged by resonant Raman scattering. We demonstrated label-free imaging of redistribution of cytochrome c during apoptosis and osteoblastic mineralization. We also proposed alkyne-tagged Raman imaging to observe small molecules in living cells. Due to its small size and the unique Raman band, alkyne can tag molecules without strong perturbation to molecular functions and with the capability to be detected separately from endogenous molecules.

  5. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications

    NASA Astrophysics Data System (ADS)

    Liu, Fuyao; He, Xiuxia; Chen, Hongda; Zhang, Junping; Zhang, Huimao; Wang, Zhenxin

    2015-08-01

    An ultrasmall hydrodynamic diameter is a critical factor for the renal clearance of nanoparticles from the body within a reasonable timescale. However, the integration of diagnostic and therapeutic components into a single ultrasmall nanoparticle remains challenging. In this study, pH-activated nanodots (termed Fe-CPNDs) composed of coordination polymers were synthesized via a simple and scalable method based on coordination reactions among Fe3+, gallic acid and poly(vinylpyrrolidone) at ambient conditions. The Fe-CPNDs exhibited ultrasmall (5.3 nm) hydrodynamic diameters and electrically neutral surfaces. The Fe-CPNDs also exhibited pH-activatable magnetic resonance imaging contrast and outstanding photothermal performance. The features of Fe-CPNDs greatly increased the tumour-imaging sensitivity and facilitated renal clearance after injection in animal models in vivo. Magnetic resonance imaging-guided photothermal therapy using Fe-CPNDs completely suppressed tumour growth. These findings demonstrate that Fe-CPNDs constitute a new class of renal clearable nanomedicine for photothermal therapy and molecular imaging.

  6. [Investigation of renal corticomedullary differentiation with age-related change on non-contrast-enhanced MRI].

    PubMed

    Shang, J N; Ren, K; Wu, W S; Lu, T; Sun, W G; Zhang, H G; Li, X D; Liu, Y

    2016-05-24

    To evaluate the relationship between renal corticomedullary differentiation, renal cortical thickness and age-related changes with non-contrast-enhanced steady-state free precession(SSFP) magnetic resonance imaging (MRI) and spatially selective inversion recovery(IR) pulse technology as well as its applied value . A total of 76 healthy volunteers had been recruited from August 2014 to June 2015 in First Hospital of China Medical University.All volunteers were divided into three groups: 2-40 years old, 41-60 years old, 61-80 years old. All 76 volunteers underwent non-contrast-enhanced steady-state free precession(SSFP) 3.0 T MRI scan using variable inversion times (TIs)(TI=1 000, 1 100, 1 200, 1 300, 1 400, 1 500, 1 600, 1 700 ms). The renal corticomedullary differentiation was observed and the signal intensity of renal cortex and medulla were measured respectively as well in order to calculate renal corticomedullary contrast ratio. Besides, renal cortical thickness and renal size were measured. All 76 volunteers were successfully performed all the sequences of MRI scan, including 152 useful imaging of kidney in total. The renal corticomedullary differentiation was clearly shown in all subjects. There was negative correlation between the optimal inversion time(TI) and age(r=-0.65, P<0.01). Similarly, negative correlation was observed between renal corticomedullary contrast ratio and age(r=-0.35, P<0.01). The mean renal cortical thickness of all subjects was (5.33±0.71)mm and there were statistically significant difference among those different groups, which was negative-related with age(r=-0.79, P<0.01). There was no statistically significant difference between sexuality and renal cortical thickness.Additionally, renal cortical thickness had no statistically significant difference in both sides of kidneys. The renal corticomedullary differentiation is depicted clearly by means of non-contrast-enhanced steady-state free precession MRI with spatially selective

  7. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  9. Low enhancement on multiphase contrast-enhanced CT images: an independent predictor of the presence of high tumor grade of clear cell renal cell carcinoma.

    PubMed

    Zhu, Ye-Hua; Wang, Xun; Zhang, Jin; Chen, Yong-Hui; Kong, Wen; Huang, Yi-Ran

    2014-09-01

    The purpose of this study was to assess the relation between tumor enhancement on multiphase contrast-enhanced CT images and Fuhrman grade of clear cell renal cell carcinoma. A single-institution retrospective review was conducted on the records of 255 patients who underwent radical or partial nephrectomy and received a histologic diagnosis of clear cell renal cell carcinoma. Two radiologists recorded the radiographic features of each patient, including the attenuation value of the lesion, lesion size, calcification within the lesion, cystic versus solid appearance, and margin regularity. Parameters representing the extent of tumor enhancement were defined and calculated. The association between tumor enhancement and Fuhrman grade was analyzed, and multivariate analysis was performed to find independent predictors of high tumor grade. Significant differences existed in tumor enhancement among different Fuhrman grades (p < 0.001). High-grade tumors had significantly lower enhancement (p < 0.001). The enhancement parameter had a sensitivity of 0.84 and specificity of 0.93 in prediction of high tumor grade. In the multivariate analysis, more advanced age, irregular margin, and low tumor enhancement were the three independent predictors of high tumor grade. Tumor enhancement of clear cell renal cell carcinoma on multiphase contrast-enhanced CT images is associated with Fuhrman grade. Low tumor enhancement in the corticomedullary phase is an independent predictor of high tumor grade. This system may be helpful in clinical decision making about the care of patients treated by nonsurgical approaches.

  10. TH-A-18C-10: Dynamic Intensity Weighted Region of Interest Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, E; Pan, X; Pelizzari, C

    2014-06-15

    Purpose: For image guidance tasks full image quality is not required throughout the entire image. With dynamic filtration of the kV imaging beam the noise properties of the CT image can be locally controlled, providing a high quality image around the target volume with a lower quality surrounding region while providing substantial dose sparing to the patient as well as reduced scatter fluence on the detector. Methods: A dynamic collimation device with 3mm copper blades has been designed to mount in place of the bowtie filter on the On-Board Imager (Varian Medical Systems). The beam intensity is reduced by 95%more » behind the copper filters and the aperture is controlled dynamically to conformally illuminate a given ROI during a standard cone-beam CT scan. A data correction framework to account for the physical effects of the collimator prior to reconstruction was developed. Furthermore, to determine the dose savings and scatter reduction a monte carlo model was built in BEAMnrc with specifics from the Varian Monte Carlo Data Package. The MC model was validated with Gafchromic film. Results: The reconstructed image shows image quality comparable to a standard scan in the specified ROI, with higher noise and streaks in the outer region but still sufficient information for alignment to high contrast structures. The monte carlo modeling showed that the scatter-to-primary ratio was reduced from 1.26 for an unfiltered scan to 0.45 for an intensity weighted scan, suggesting that image quality may be improved in the inner ROI. Dose in the inner region was reduced 10–15% due to reduced scatter and by as much as 75% in the outer region. Conclusion: Dynamic intensity-weighted ROI imaging allows reduction of imaging dose to sensitive organs away from the target region while providing images that retain their utility for patient setup and procedure guidance. Funding was provided in part by Varian Medical Systems and NIH Grants 1RO1CA120540, T32EB002103, S10 RR021039 and P

  11. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    PubMed Central

    Persoons, Tim; O’Donovan, Tadhg S.

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564

  12. Renal Trauma from Recreational Accidents Manifests Different Injury Patterns than Urban Renal Trauma

    PubMed Central

    Lloyd, Granville L.; Slack, Sean; McWilliams, Kelly L.; Black, Aaron; Nicholson, Tristan M.

    2013-01-01

    Purpose The majority of blunt renal trauma is a consequence of motor vehicle collisions and falls. Prior publications based on urban series have shown that significant renal injuries are almost always accompanied by gross hematuria alone or microscopic hematuria with concomitant hypotension. We present a series of blunt renal trauma sustained during recreational pursuits, and describe the mechanisms, injury patterns and management. Materials and Methods Database review from 1996 to 2009 identified 145 renal injuries. Children younger than age 16 years, and trauma involving licensable motor vehicles, penetrating injuries and work related injuries were excluded from analysis. Grade, hematuria, hypotension, age, gender, laterality, mechanism, management, injury severity score and associated injuries were recorded. Results We identified 106 patients meeting the criteria and 85% of the injuries were snow sport related. Age range was 16 to 76 years and 92.5% of patients were male. There were 39 grade 1 injuries, 30 grade 2, 22 grade 3, 12 grade 4 and 3 grade 5 injuries. Gross hematuria was present in 56.7%, 77.2% and 83.3% of grade 2, grade 3 and grade 4 injuries, respectively. None of the patients with grade 2 or greater injuries and microscopic hematuria had hypotension except 1 grade 5 pedicle injury. The nephrectomy and renorrhaphy rate for grade 1 to grade 4 injuries was 0%. Conclusions Compared to urban series of blunt renal trauma, recreationally acquired injuries appear to follow different patterns, including a paucity of associated injuries or hypotension. If imaging were limited to the presence of gross hematuria, or microscopic hematuria with hypotension, 23% of grade 2 to grade 4 injuries would be missed. Men are at higher risk than women. However, operative intervention is rarely helpful. PMID:22591969

  13. Spiral blood flow in aorta-renal bifurcation models.

    PubMed

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  14. Solar Flare Dynamic Microwave Imaging with EOVSA

    NASA Astrophysics Data System (ADS)

    Gary, D. E.; Chen, B.; Nita, G. M.; Fleishman, G. D.; Yu, S.; White, S. M.; Hurford, G. J.; McTiernan, J. M.

    2017-12-01

    The Expanded Owens Valley Solar Array (EOVSA) is both an expansion of our existing solar array and serves as a prototype for a much larger future project, the Frequency Agile Solar Radiotelescope (FASR). EOVSA is now complete, and is producing daily imaging of the full solar disk, including active regions and solar radio bursts at hundreds of frequencies in the range 2.8-18 GHz. We present highlights of the 1-s-cadence dynamic imaging spectroscropy of radio bursts we have obtained to date, along with deeper analysis of multi-wavelength observations and modeling of a well-observed burst. These observations are revealing the full life-cycle of the trapped population of high-energy electrons, from their initial acceleration and subsequent energy-evolution to their eventual decay through escape and thermalization. All of our data are being made available for download in both quick-look image form and in the form of the community-standard CASA measurement sets for subsequent imaging and analysis.

  15. A systematic review of clinical value of three-dimensional printing in renal disease.

    PubMed

    Sun, Zhonghua; Liu, Dongting

    2018-04-01

    The aim of this systematic review is to analyse current literature related to the clinical value of three-dimensional (3D) printed models in renal disease. A literature search of PubMed and Scopus databases was performed to identify studies reporting the clinical application and usefulness of 3D printed models in renal disease. Fifteen studies were found to meet the selection criteria and were included in the analysis. Eight of them provided quantitative assessments with five studies focusing on dimensional accuracy of 3D printed models in replicating renal anatomy and tumour, and on measuring tumour volume between 3D printed models and original source images and surgical specimens, with mean difference less than 10%. The other three studies reported that the use of 3D printed models significantly enhanced medical students and specialists' ability to identify anatomical structures when compared to two-dimensional (2D) images alone; and significantly shortened intraoperative ultrasound duration compared to without use of 3D printed models. Seven studies provided qualitative assessments of the usefulness of 3D printed kidney models with findings showing that 3D printed models improved patient's understanding of renal anatomy and pathology; improved medical trainees' understanding of renal malignant tumours when compared to viewing medical images alone; and assisted surgical planning and simulation of renal surgical procedures with significant reductions of intraoperative complications. The cost and time associated with 3D printed kidney model production was reported in 10 studies, with costs ranging from USD$100 to USD$1,000, and duration of 3D printing production up to 31 h. The entire process of 3D printing could take up to a few days. This review shows that 3D printed kidney models are accurate in delineating renal anatomical structures and renal tumours with high accuracy. Patient-specific 3D printed models serve as a useful tool in preoperative planning and

  16. A systematic review of clinical value of three-dimensional printing in renal disease

    PubMed Central

    2018-01-01

    The aim of this systematic review is to analyse current literature related to the clinical value of three-dimensional (3D) printed models in renal disease. A literature search of PubMed and Scopus databases was performed to identify studies reporting the clinical application and usefulness of 3D printed models in renal disease. Fifteen studies were found to meet the selection criteria and were included in the analysis. Eight of them provided quantitative assessments with five studies focusing on dimensional accuracy of 3D printed models in replicating renal anatomy and tumour, and on measuring tumour volume between 3D printed models and original source images and surgical specimens, with mean difference less than 10%. The other three studies reported that the use of 3D printed models significantly enhanced medical students and specialists’ ability to identify anatomical structures when compared to two-dimensional (2D) images alone; and significantly shortened intraoperative ultrasound duration compared to without use of 3D printed models. Seven studies provided qualitative assessments of the usefulness of 3D printed kidney models with findings showing that 3D printed models improved patient’s understanding of renal anatomy and pathology; improved medical trainees’ understanding of renal malignant tumours when compared to viewing medical images alone; and assisted surgical planning and simulation of renal surgical procedures with significant reductions of intraoperative complications. The cost and time associated with 3D printed kidney model production was reported in 10 studies, with costs ranging from USD$100 to USD$1,000, and duration of 3D printing production up to 31 h. The entire process of 3D printing could take up to a few days. This review shows that 3D printed kidney models are accurate in delineating renal anatomical structures and renal tumours with high accuracy. Patient-specific 3D printed models serve as a useful tool in preoperative planning

  17. CT-Guided Microwave Ablation of 45 Renal Tumors: Analysis of Procedure Complexity Utilizing a Percutaneous Renal Ablation Complexity Scoring System.

    PubMed

    Mansilla, Alberto V; Bivins, Eugene E; Contreras, Francisco; Hernandez, Manuel A; Kohler, Nathan; Pepe, Julie W

    2017-02-01

    To develop a scoring system that stratifies complexity of percutaneous ablation of renal tumors. Analysis was performed of 36 consecutive patients (mean age, 64 y; range, 30-89 y) who underwent CT-guided microwave (MW) ablation of 45 renal tumors (mean tumor diameter, 2.4 cm; range, 1.2-4.0 cm). Technical success and effectiveness were determined based on intraprocedural and follow-up imaging studies. The RENAL score and the proposed percutaneous renal ablation complexity (P-RAC) score were calculated for each tumor. Technical success was 93.3% (n = 42). Biopsy of 38 of 45 renal tumors revealed 23 renal cell carcinomas. Median follow-up period was 9.7 months (range, 2.9-46.8 months). There were no tumor recurrences. One major complication, ureteropelvic junction stricture, occurred (2.6%). The P-RAC score was found to differ statistically from the RENAL score (t = 3.754, df = 44, P = .001). A positive correlation was found between the P-RAC score and number of antenna insertions (r = .378, n = 45, P = .011) and procedure duration (r = .328, n = 45, P = .028). No correlation was found between the RENAL score and number of MW antenna insertions (r = .110, n = 45, P = .472) or procedure duration (r = .263, n = 45, P = .081). Hydrodissection was significantly more common in the P-RAC high-complexity category than in low-complexity category (χ 2 = 12.073, df = 2, P = .002). The P-RAC score may be useful in stratifying percutaneous renal ablation complexity. Further studies with larger sample sizes are necessary to validate the P-RAC score and to determine if it can predict risk of complications. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  18. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors.

    PubMed

    Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-06-01

    Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.

  19. Incidental Findings in Abdominal Dual-Energy Computed Tomography: Correlation Between True Noncontrast and Virtual Noncontrast Images Considering Renal and Liver Cysts and Adrenal Masses.

    PubMed

    Slebocki, Karin; Kraus, Bastian; Chang, De-Hua; Hellmich, Martin; Maintz, David; Bangard, Christopher

    To assess correlation between attenuation measurements of incidental findings in abdominal second generation dual-energy computed tomography (CT) on true noncontrast (TNC) and virtual noncontrast (VNC) images. Sixty-three patients underwent arterial dual-energy CT (Somatom Definition Flash, Siemens; pitch factor, 0.75-1.0; gantry rotation time, 0.28 seconds) after endovascular aneurysm repair, consisting of a TNC single energy CT scan (collimation, 128 × 0.6 mm; 120 kVp) and a dual-energy arterial phase scan (collimation, 32 × 0.6 mm, 140 and 100 kVp; blended, 120 kVp data set). Attenuation measurements in Hounsfield units (HU) of liver parenchyma and incidental findings like renal and hepatic cysts and adrenal masses on TNC and VNC images were done by drawing regions of interest. Statistical analysis was performed by paired t test and Pearson correlation. Incidental findings were detected in 56 (89%) patients. There was excellent correlation for both renal (n = 40) and hepatic cysts (n = 12) as well as adrenal masses (n = 6) with a Pearson correlation of 0.896, 0.800, and 0.945, respectively, and mean attenuation values on TNC and VNC images of 10.6 HU ± 12.8 versus 5.1 HU ± 17.5 (attenuation value range from -8.8 to 59.1 HU vs -11.8 to 73.4 HU), 6.4 HU ± 5.8 versus 6.3 HU ± 4.6 (attenuation value range from 2.0 to 16.2 HU vs -3.0 to 15.9 HU), and 12.8 HU ± 11.2 versus 12.4 HU ± 10.2 (attenuation value range from -2.3 to 27.5 HU vs -2.2 to 23.6 HU), respectively. As proof of principle, liver parenchyma measurements also showed excellent correlation between TNC and VNC (n = 40) images with a Pearson correlation of 0.839 and mean attenuation values on TNC and VNC images of 47.2 HU ± 10.5 versus 43.8 HU ± 8.7 (attenuation value range from 21.9 to 60.2 HU vs 4.5 to 65.3 HU). In conclusion, attenuation measurements of incidental findings like renal cysts or adrenal masses on TNC and VNC images derived from second generation dual-energy CT scans show excellent

  20. Multi-frame X-ray Phase Contrast Imaging (MPCI) for Dynamic Experiments

    NASA Astrophysics Data System (ADS)

    Iverson, Adam; Carlson, Carl; Sanchez, Nathaniel; Jensen, Brian

    2017-06-01

    Recent advances in coupling synchrotron X-ray diagnostics to dynamic experiments are providing new information about the response of materials at extremes. For example, propagation based X-ray Phase Contrast Imaging (PCI) which is sensitive to differences in density has been successfully used to study a wide range of phenomena, e.g. jet-formation, compression of additive manufactured (AM) materials, and detonator dynamics. In this talk, we describe the current multi-frame X-ray phase contrast imaging (MPCI) system which allows up to eight frames per experiment, remote optimization, and an improved optical design that increases optical efficiency and accommodates dual-magnification during a dynamic event. Data will be presented that used the dual-magnification feature to obtain multiple images of an exploding foil initiator. In addition, results from static testing will be presented that used a multiple scintillator configuration required to extend the density retrieval to multi-constituent, or heterogeneous systems. The continued development of this diagnostic is fundamentally important to capabilities at the APS including IMPULSE and the Dynamic Compression Sector (DCS), and will benefit future facilities such as MaRIE at Los Alamos National Laboratory.

  1. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.

    PubMed

    Lee, Hansang; Hong, Helen; Kim, Junmo; Jung, Dae Chul

    2018-04-01

    To develop an automatic deep feature classification (DFC) method for distinguishing benign angiomyolipoma without visible fat (AMLwvf) from malignant clear cell renal cell carcinoma (ccRCC) from abdominal contrast-enhanced computer tomography (CE CT) images. A dataset including 80 abdominal CT images of 39 AMLwvf and 41 ccRCC patients was used. We proposed a DFC method for differentiating the small renal masses (SRM) into AMLwvf and ccRCC using the combination of hand-crafted and deep features, and machine learning classifiers. First, 71-dimensional hand-crafted features (HCF) of texture and shape were extracted from the SRM contours. Second, 1000-4000-dimensional deep features (DF) were extracted from the ImageNet pretrained deep learning model with the SRM image patches. In DF extraction, we proposed the texture image patches (TIP) to emphasize the texture information inside the mass in DFs and reduce the mass size variability. Finally, the two features were concatenated and the random forest (RF) classifier was trained on these concatenated features to classify the types of SRMs. The proposed method was tested on our dataset using leave-one-out cross-validation and evaluated using accuracy, sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), and area under receiver operating characteristics curve (AUC). In experiments, the combinations of four deep learning models, AlexNet, VGGNet, GoogleNet, and ResNet, and four input image patches, including original, masked, mass-size, and texture image patches, were compared and analyzed. In qualitative evaluation, we observed the change in feature distributions between the proposed and comparative methods using tSNE method. In quantitative evaluation, we evaluated and compared the classification results, and observed that (a) the proposed HCF + DF outperformed HCF-only and DF-only, (b) AlexNet showed generally the best performances among the CNN models, and (c) the proposed TIPs

  2. Dynamic "inline" images: context-sensitive retrieval and integration of images into Web documents.

    PubMed

    Kahn, Charles E

    2008-09-01

    Integrating relevant images into web-based information resources adds value for research and education. This work sought to evaluate the feasibility of using "Web 2.0" technologies to dynamically retrieve and integrate pertinent images into a radiology web site. An online radiology reference of 1,178 textual web documents was selected as the set of target documents. The ARRS GoldMiner image search engine, which incorporated 176,386 images from 228 peer-reviewed journals, retrieved images on demand and integrated them into the documents. At least one image was retrieved in real-time for display as an "inline" image gallery for 87% of the web documents. Each thumbnail image was linked to the full-size image at its original web site. Review of 20 randomly selected Collaborative Hypertext of Radiology documents found that 69 of 72 displayed images (96%) were relevant to the target document. Users could click on the "More" link to search the image collection more comprehensively and, from there, link to the full text of the article. A gallery of relevant radiology images can be inserted easily into web pages on any web server. Indexing by concepts and keywords allows context-aware image retrieval, and searching by document title and subject metadata yields excellent results. These techniques allow web developers to incorporate easily a context-sensitive image gallery into their documents.

  3. Adaptive foveated single-pixel imaging with dynamic supersampling

    PubMed Central

    Phillips, David B.; Sun, Ming-Jie; Taylor, Jonathan M.; Edgar, Matthew P.; Barnett, Stephen M.; Gibson, Graham M.; Padgett, Miles J.

    2017-01-01

    In contrast to conventional multipixel cameras, single-pixel cameras capture images using a single detector that measures the correlations between the scene and a set of patterns. However, these systems typically exhibit low frame rates, because to fully sample a scene in this way requires at least the same number of correlation measurements as the number of pixels in the reconstructed image. To mitigate this, a range of compressive sensing techniques have been developed which use a priori knowledge to reconstruct images from an undersampled measurement set. Here, we take a different approach and adopt a strategy inspired by the foveated vision found in the animal kingdom—a framework that exploits the spatiotemporal redundancy of many dynamic scenes. In our system, a high-resolution foveal region tracks motion within the scene, yet unlike a simple zoom, every frame delivers new spatial information from across the entire field of view. This strategy rapidly records the detail of quickly changing features in the scene while simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This architecture provides video streams in which both the resolution and exposure time spatially vary and adapt dynamically in response to the evolution of the scene. The degree of local frame rate enhancement is scene-dependent, but here, we demonstrate a factor of 4, thereby helping to mitigate one of the main drawbacks of single-pixel imaging techniques. The methods described here complement existing compressive sensing approaches and may be applied to enhance computational imagers that rely on sequential correlation measurements. PMID:28439538

  4. Arteriovenous fistula and prolonged hematuria after renal biopsy: treatment with epsilon aminocaproic acid

    PubMed Central

    Silverberg, D. S.; Dossetor, J. B.; Eid, T. C.; Mant, M. J.; Miller, J. D. R.

    1974-01-01

    A patient with membranoproliferative glomerulonephritis and mild hypertension is described who, after a renal biopsy, developed an arteriovenous fistula and then severe continuous hematuria from the seventh to the 38th postbiopsy day. Treatment with epsilon aminocaproic acid was associated with rapid and permanent cessation of bleeding, gradual improvement in renal function, and disappearance of the renal artery bruit. No complications were encountered. ImagesFIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:4817213

  5. Dynamic optical imaging of vascular and metabolic reactivity in rheumatoid joints.

    PubMed

    Lasker, Joseph M; Fong, Christopher J; Ginat, Daniel T; Dwyer, Edward; Hielscher, Andreas H

    2007-01-01

    Dynamic optical imaging is increasingly applied to clinically relevant areas such as brain and cancer imaging. In this approach, some external stimulus is applied and changes in relevant physiological parameters (e.g., oxy- or deoxyhemoglobin concentrations) are determined. The advantage of this approach is that the prestimulus state can be used as a reference or baseline against which the changes can be calibrated. Here we present the first application of this method to the problem of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system together with previously implemented model-based iterative image reconstruction schemes, we have performed initial dynamic imaging case studies on a limited number of healthy volunteers and patients diagnosed with RA. Focusing on three cases studies, we illustrated our major finds. These studies support our hypothesis that differences in the vascular reactivity exist between affected and unaffected joints.

  6. Variations in Branching Pattern of Renal Artery in Kidney Donors Using CT Angiography.

    PubMed

    Munnusamy, Kumaresan; Kasirajan, Sankaran Ponnusamy; Gurusamy, Karthikeyan; Raghunath, Gunapriya; Bolshetty, Shilpakala Leshappa; Chakrabarti, Sudakshina; Annadurai, Priyadarshini; Miyajan, Zareena Begum

    2016-03-01

    Each kidney is supplied by a single renal artery originating from abdominal aorta. Since there are lots of renal surgeries happening now-a-days, it becomes mandatory for the surgeons to understand the abnormality and variations in the renal vasculature. To study the variations in the branching pattern of renal artery for the presence of early division and accessory renal artery in Indian kidney donors using CT angiography. The CT angiogram images of 100 normal individuals willing for kidney donation were analysed for early divisions and occurrence of accessory renal artery. A 51% of kidney donors showed variation in the renal artery. Out of 51% variations 38 individuals had accessory renal artery and 13 individuals had early division of renal artery. The distribution of accessory renal artery was equal on both sides (13% on right and left) and 12% of individuals had accessory renal artery on both sides. Out of 13% earlier divisions, 5% was on right side, 7% was on left side and 1% was on both sides. This study concludes that 51% of kidney donors had renal artery variations. Hence, awareness of variations by evaluating the donors is a must before renal transplantation, urological procedures and angiographic interventions.

  7. Variations in Branching Pattern of Renal Artery in Kidney Donors Using CT Angiography

    PubMed Central

    Munnusamy, Kumaresan; Gurusamy, Karthikeyan; Raghunath, Gunapriya; Bolshetty, Shilpakala Leshappa; Chakrabarti, Sudakshina; Annadurai, Priyadarshini; Miyajan, Zareena Begum

    2016-01-01

    Introduction Each kidney is supplied by a single renal artery originating from abdominal aorta. Since there are lots of renal surgeries happening now-a-days, it becomes mandatory for the surgeons to understand the abnormality and variations in the renal vasculature. Aim To study the variations in the branching pattern of renal artery for the presence of early division and accessory renal artery in Indian kidney donors using CT angiography. Materials and Methods The CT angiogram images of 100 normal individuals willing for kidney donation were analysed for early divisions and occurrence of accessory renal artery. Results A 51% of kidney donors showed variation in the renal artery. Out of 51% variations 38 individuals had accessory renal artery and 13 individuals had early division of renal artery. The distribution of accessory renal artery was equal on both sides (13% on right and left) and 12% of individuals had accessory renal artery on both sides. Out of 13% earlier divisions, 5% was on right side, 7% was on left side and 1% was on both sides. Conclusion This study concludes that 51% of kidney donors had renal artery variations. Hence, awareness of variations by evaluating the donors is a must before renal transplantation, urological procedures and angiographic interventions. PMID:27134847

  8. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  9. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    PubMed

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Digital optical tomography system for dynamic breast imaging

    NASA Astrophysics Data System (ADS)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  11. Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform.

    PubMed

    Jerome, Neil P; Boult, Jessica K R; Orton, Matthew R; d'Arcy, James; Collins, David J; Leach, Martin O; Koh, Dow-Mu; Robinson, Simon P

    2016-10-03

    To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform. Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T 2 *, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min. Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T 2 * measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T 2 *, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T 2 *. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T 2 * established. Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.

  12. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE PAGES

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.; ...

    2015-04-22

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  13. Imaging of dynamic magnetic fields with spin-polarized neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Kardjilov, N.; Strobl, M.

    Precession of neutron spin in a magnetic field can be used for mapping of a magnetic field distribution, as demonstrated previously for static magnetic fields at neutron beamline facilities. The fringing in the observed neutron images depends on both the magnetic field strength and the neutron energy. In this paper we demonstrate the feasibility of imaging periodic dynamic magnetic fields using a spin-polarized cold neutron beam. Our position-sensitive neutron counting detector, providing with high precision both the arrival time and position for each detected neutron, enables simultaneous imaging of multiple phases of a periodic dynamic process with microsecond timing resolution.more » The magnetic fields produced by 5- and 15-loop solenoid coils of 1 cm diameter, are imaged in our experiments with ~100 μm resolution for both dc and 3 kHz ac currents. Our measurements agree well with theoretical predictions of fringe patterns formed by neutron spin precession. We also discuss the wavelength dependence and magnetic field quantification options using a pulsed neutron beamline. Furthermore, the ability to remotely map dynamic magnetic fields combined with the unique capability of neutrons to penetrate various materials (e.g., metals), enables studies of fast periodically changing magnetic processes, such as formation of magnetic domains within metals due to the presence of ac magnetic fields.« less

  14. The coexistence of renal artery stenosis and pheochromocytoma.

    PubMed Central

    Hill, F S; Jander, H P; Murad, T; Diethelm, A G

    1983-01-01

    The coexistence of renal artery stenosis and pheochromocytoma has been recognized since 1958 and a total of 36 patients reported. This article provides an additional patient with an extra adrenal pheochromocytoma and fibrous bands constricting the left renal artery. Hypertension was confirmed to occur from both excess catecholamine production and hyperreninemia from the left kidney. Surgical removal of the functioning paraganglioma and correction of the renal artery stenosis restored the postoperative plasma catecholamine, renin, and blood pressure to normal. A literature review confirmed the coexistence of these two lesions but failed to provide a common etiology to explain the pathophysiology encountered. However, when the two diseases occur simultaneously, both must be diagnosed accurately and treated in a definitive manner. Images Figs. 1a and b. Figs. 2a and b. PMID:6830355

  15. Utility of 16-MDCT angiography for comprehensive preoperative vascular evaluation of laparoscopic renal donors.

    PubMed

    Raman, Steven S; Pojchamarnwiputh, Suwalee; Muangsomboon, Kobkun; Schulam, Peter G; Gritsch, H Albin; Lu, David S K

    2006-06-01

    Our objective was to determine the efficacy of 16-MDCT angiography in preoperative evaluation of vascular anatomy of laparoscopic renal donors. Fifty-five consecutive renal donors (25 men and 30 women) underwent 16-MDCT angiography followed by donor nephrectomy. In the arterial and nephrographic phases, images were acquired with 60% overlap and 0.6-mm reconstruction in both phases after 120 mL of iohexol was injected at 4 mL/sec. On a 3D workstation, images were evaluated retrospectively by two abdominal imagers blinded to surgical results with respect to number and branching pattern of renal arteries and major and minor renal veins. These CT angiography results were compared with surgical findings. The surgically confirmed sensitivity of both reviewers (1 and 2) using the MDCT data for detection of renal arteries was 98.5% (65 of 66), and accuracies were 97.0% for reviewer 1 and 95.5% for reviewer 2. Sensitivity and accuracy detection of renal veins was 97% (61 of 63) and 98% (62 of 63) for reviewer 1 and reviewer 2, respectively. Sensitivity and accuracy detection of early arterial bifurcation (< 2 cm from aorta) was 100% (14 of 14), and sensitivity in detection of late venous confluence (< 1.5 cm from aorta) was 100% (8 of 8). All major renal venous variants were identified; reviewer 1 identified 78% (18 of 23) minor venous variants, and reviewer 2 identified 83% (19 of 23) minor venous variants. There were no hemorrhagic complications at surgery. Excellent agreement between reviewers (kappa = 0.92-0.97) was achieved for detection of normal and variant anatomy. 16-MDCT angiography enabled excellent preoperative detection of arterial anatomy and venous laparoscopic donor nephrectomy.

  16. Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging.

    PubMed

    Findlay, Anne M; Ambrose, Josiah B; Cahn-Weiner, Deborah A; Houde, John F; Honma, Susanne; Hinkley, Leighton B N; Berger, Mitchel S; Nagarajan, Srikantan S; Kirsch, Heidi E

    2012-05-01

    The goal of the current study was to examine the dynamics of language lateralization using magnetoencephalographic (MEG) imaging, to determine the sensitivity and specificity of MEG imaging, and to determine whether MEG imaging can become a viable alternative to the intracarotid amobarbital procedure (IAP), the current gold standard for preoperative language lateralization in neurosurgical candidates. MEG was recorded during an auditory verb generation task and imaging analysis of oscillatory activity was initially performed in 21 subjects with epilepsy, brain tumor, or arteriovenous malformation who had undergone IAP and MEG. Time windows and brain regions of interest that best discriminated between IAP-determined left or right dominance for language were identified. Parameters derived in the retrospective analysis were applied to a prospective cohort of 14 patients and healthy controls. Power decreases in the beta frequency band were consistently observed following auditory stimulation in inferior frontal, superior temporal, and parietal cortices; similar power decreases were also seen in inferior frontal cortex prior to and during overt verb generation. Language lateralization was clearly observed to be a dynamic process that is bilateral for several hundred milliseconds during periods of auditory perception and overt speech production. Correlation with the IAP was seen in 13 of 14 (93%) prospective patients, with the test demonstrating a sensitivity of 100% and specificity of 92%. Our results demonstrate excellent correlation between MEG imaging findings and the IAP for language lateralization, and provide new insights into the spatiotemporal dynamics of cortical speech processing. Copyright © 2012 American Neurological Association.

  17. 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA.

    PubMed

    Hofman, Michael; Binns, David; Johnston, Val; Siva, Shankar; Thompson, Mick; Eu, Peter; Collins, Marnie; Hicks, Rodney J

    2015-03-01

    Glomerular filtration rate (GFR) can accurately be determined using (51)Cr-ethylenediaminetetraacetic acid (EDTA) plasma clearance counting but is time-consuming and requires technical skills and equipment not always available in imaging departments. (68)Ga-EDTA can be readily available using an onsite generator, and PET/CT enables both imaging of renal function and accurate camera-based quantitation of clearance of activity from blood and its appearance in the urine. This study aimed to assess agreement between (68)Ga-EDTA GFR ((68)Ga-GFR) and (51)Cr-EDTA GFR ((51)Cr-GFR), using serial plasma sampling and PET imaging. (68)Ga-EDTA and (51)Cr-EDTA were injected concurrently in 31 patients. Dynamic PET/CT encompassing the kidneys was acquired for 10 min followed by 3 sequential 3-min multibed step acquisitions from kidneys to bladder. PET quantification was performed using renal activity at 1-2 min (PETinitial), renal excretion at 2-10 min (PETearly), and, subsequently, urinary excretion into the collecting system and bladder (PETlate). Plasma sampling at 2, 3, and 4 h was performed, with (68)Ga followed by (51)Cr counting after positron decay. The level of agreement for GFR determination was calculated using a Bland-Altman plot and Pearson correlation coefficient (PCC). (51)Cr-GFR ranged from 10 to 220 mL/min (mean, 85 mL/min). There was good agreement between (68)Ga-GFR and (51)Cr-GFR using serial plasma sampling, with a Bland-Altman bias of -14 ± 20 mL/min and a PCC of 0.94 (95% confidence interval, 0.88-0.97). Of the 3 methods used for camera-based quantification, the strongest correlation was for plasma sampling-derived GFR with PETlate (PCC of 0.90; 95% confidence interval, 0.80-0.95). (68)Ga-GFR agreed well with (51)Cr-GFR for estimation of GFR using serial plasma counting. PET dynamic imaging provides a method to estimate GFR without plasma sampling, with the additional advantage of enabling renal imaging in a single study. Additional validation in a larger

  18. Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.

    2007-03-01

    In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.

  19. A Case Report of Human Infection with Dioctophyma Renale from Iran.

    PubMed

    Norouzi, Roghayeh; Manochehri, Arman; Hanifi, Mustafa

    2017-03-16

    A 75-year-old man from Kurdistan province, western part of Iran was diagnosed with a mass in the right kidney by ultrasound and computed tomography. In operation, a parasitic helminth, 30 cm long and 1.2 cm in diameter consistent with D. renale was found in the right kidney. Microscopic examination revealed that the male Dioctophyma renale. Following removal of worm, the symptoms completely resolved within a few hours. Generally, parasitism by D. renale in human is a necropsy finding, nevertheless imaging techniques as ultrasound and computed tomography have been proven to be important tool to achieve diagnosis.

  20. Context-dependent JPEG backward-compatible high-dynamic range image compression

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  1. Renal blood flow measurement with contrast-enhanced harmonic ultrasonography: evaluation of dopamine-induced changes in renal cortical perfusion in humans.

    PubMed

    Kishimoto, N; Mori, Y; Nishiue, T; Shibasaki, Y; Iba, O; Nose, A; Uchiyama-Tanaka, Y; Masaki, H; Matsubara, H; Iwasaka, T

    2003-06-01

    An accessible non-invasive method for evaluating renal regional blood flow in real time is highly desirable in the clinical setting. Recent progress in ultrasonography with microbubble contrast has allowed quantification of regional blood flow in animal models. Goal ofthis study was to establish a convenient contrast--enhanced harmonic ultrasonography (CEHU) method for evaluating renal cortical blood flow in humans. We carried out intermittent second harmonic imaging in 9 healthy volunteers. Pulse interval was progressively decreased from 4 s - 0.2 s during continuous venous infusion of the microbubble contrast agent. Pulse interval versus CEHU-derived acoustic intensity plots provided microbubble velocity (MV) and fractional vascular volume (FVV) during renal cortical perfusion in humans. Low-dose dopamine infusion (2 microg/min/kg) resulted in a significant increase in MV which correlated well with the increase in total renal blood flow (RBF) determined by a conventional study of p-aminohippurate clearance (C(PAH)) (r = 0.956, p < 0.0001). Although FVV was not significantly increased, alterations in CEHU-derived renal cortical blood flow calculated by the products of MV and FVV were also correlated with alterations in total RBF (r = 0.969, p < 0.0001). Thus, low-dose dopamine infusion increases renal cortical blood flow observed in CEHU, mainly by increasing MV. The present study shows that renal cortical blood flow in humans can be measured non-invasively by CEHU and that CEHU can be used for quantitatively evaluating changes induced by a therapeutic agent such as dopamine in flow velocity and in FVV.

  2. 3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics

    NASA Astrophysics Data System (ADS)

    Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jérôme; Nahas, Amir; James Marchand, Paul; Lopez, Antonio; Weil, Tanja; Lasser, Theo

    2017-02-01

    We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.

  3. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  4. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.

    PubMed

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-09

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  5. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    NASA Astrophysics Data System (ADS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  6. Effects of exercise and excitement on mesenteric and renal dynamics in conscious, unrestrained baboons

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.

    1978-01-01

    Radiotelemetry was used to measure arterial pressure and mesenteric and renal blood flows from nine unrestrained, conscious baboons during periods of rest, moderate exercise, and extreme excitement. A description of the experiments hardware is presented, including artificial depressants phenylcyclidine hydrochloride, 0.5-1.0 mg/kg, and pentobarbital sodium, 15 mg/kg, and an ultrasonic telemetry flow meter. Results showed rising heart rate and arterial pressure coupled with a reduction of mesenteric and renal flows as the level of exercise was increased. These findings are compared with mesenteric and renal flows somewhat above control level, but relatively stable heart rate and arterial pressure, postprandially. Attention is given to a quantitative analysis of the experimental results.

  7. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. On Feb. 11, 2010, NASA launched the SDO spacecraft, which is the most advanced spacecraft ever designed to study the sun. Seated left to right are: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md.; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment Instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  8. Transesophageal Doppler measurement of renal arterial blood flow velocities and indices in children.

    PubMed

    Zabala, Luis; Ullah, Sana; Pierce, Carol D'Ann; Gautam, Nischal K; Schmitz, Michael L; Sachdeva, Ritu; Craychee, Judith A; Harrison, Dale; Killebrew, Pamela; Bornemeier, Renee A; Prodhan, Parthak

    2012-06-01

    Doppler-derived renal blood flow indices have been used to assess renal pathologies. However, transesophageal ultrasonography (TEE) has not been previously used to assess these renal variables in pediatric patients. In this study, we (a) assessed whether TEE allows adequate visualization of the renal parenchyma and renal artery, and (b) evaluated the concordance of TEE Doppler-derived renal blood flow measurements/indices compared with a standard transabdominal renal ultrasound (TAU) in children. This prospective cohort study enrolled 28 healthy children between the ages of 1 and 17 years without known renal dysfunction who were undergoing atrial septal defect device closure in the cardiac catheterization laboratory. TEE was used to obtain Doppler renal artery blood velocities (peak systolic velocity, end-diastolic velocity, mean diastolic velocity, resistive index, and pulsatility index), and these values were compared with measurements obtained by TAU. Concordance correlation coefficient (CCC) was used to determine clinically significant agreement between the 2 methods. The Bland-Altman plots were used to determine whether these 2 methods agree sufficiently to be used interchangeably. Statistical significance was accepted at P ≤ 0.05. Obtaining 2-dimensional images of kidney parenchyma and Doppler-derived measurements using TEE in children is feasible. There was statistically significant agreement between the 2 methods for all measurements. The CCC between the 2 imaging techniques was 0.91 for the pulsatility index and 0.66 for the resistive index. These coefficients were sensitive to outliers. When the highest and lowest data points were removed from the analysis, the CCC between the 2 imaging techniques was 0.62 for the pulsatility index and 0.50 for the resistive index. The 95% confidence interval (CI) for pulsatility index was 0.35 to 0.98 and for resistive index was 0.21 to 0.89. The Bland-Altman plots indicate good agreement between the 2 methods; for the

  9. Aggressive Renal Angiomyolipoma in a Patient with Tuberous Sclerosis Resulting in Pulmonary Tumor Embolus and Pulmonary Infarction.

    PubMed

    Mettler, John; Al-Katib, Sayf

    2018-06-07

    Renal angiomyolipoma (AML) is the most commonly encountered mesenchymal tumor of the kidney which can present spontaneously or in association with tuberous sclerosis complex. Rarely, renal AMLs may demonstrate aggressive features such as renal vein invasion. This common entity and its uncommon complications are diagnosed based on physical examination and computed tomography results. Here we report imaging findings of a renal AML with renal vein and inferior vena cava invasion resulting in pulmonary tumor embolus and pulmonary infarction. Copyright © 2018. Published by Elsevier Inc.

  10. Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats.

    PubMed

    Wible, James H; Galen, Karen P; Wojdyla, Jolette K; Hughes, Michael S; Klibanov, Alexander L; Brandenburger, Gary H

    2002-01-01

    The generation of ultrasound (US) bioeffects using a clinical imaging system is controversial. We tested the hypothesis that the presence of microbubbles in the US field of a medical imager induces biologic effects. Both kidneys of anesthetized rats were insonified for 5 min using a medical imaging system after the administration of microbubbles. One kidney was insonified using a continuous mode (30 Hz) and the opposite kidney was insonified using an intermittent (1 Hz) technique. The microbubbles were exposed to three different transducer frequencies and four transducer output powers. After insonification, the animals were euthanized, the kidneys were removed and their gross appearance scored under "blinded" conditions using a defined scale. After the administration of microbubbles, US imaging of the kidney caused hemorrhage in the renal tissue. The severity and area of hemorrhage increased with an increase in the transducer power and a decrease in the transducer frequency. Intermittent insonification in the presence of microbubbles produced a greater degree of renal hemorrhage than continuous imaging techniques.

  11. Changes in leucocyte migration after renal transplantation

    PubMed Central

    Smith, M. G. M.; Eddleston, A. L. W. F.; Dominguez, J. A.; Evans, D. B.; Bewick, M.; Williams, Roger

    1969-01-01

    The leucocyte migration test, an in-vitro measure of cellular immunity, has been used to follow the changes in cell-mediated hypersensitivity to kidney and histocompatibility antigens in three patients after renal transplantation. Inhibition of leucocyte migration, indicating strong sensitization to the antigens used, occurred in each patient, starting five to seven days after transplantation. Satisfactory renal function had not been established in any of the patients at this time. In one case inhibition of leucocyte migration persisted almost continuously until the 24th day and was associated with poor renal function proved histologically to be due to rejection. Treatment with increased dosage of prednisone was associated with a rapid reversion to normal of the migration index and improvement in renal function. Later, inhibition of migration occurred again, and shortly afterwards the graft ceased to function. In the other two cases the migration index became normal without alteration in immunosuppressive therapy and a satisfactory diuresis followed. It is suggested that this simple test should prove useful in the specific diagnosis of rejection and in control of immunosuppressive therapy. ImagesFig. 3Fig. 4 PMID:4899455

  12. Hierarchical tone mapping for high dynamic range image visualization

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Duan, Jiang

    2005-07-01

    In this paper, we present a computationally efficient, practically easy to use tone mapping techniques for the visualization of high dynamic range (HDR) images in low dynamic range (LDR) reproduction devices. The new method, termed hierarchical nonlinear linear (HNL) tone-mapping operator maps the pixels in two hierarchical steps. The first step allocates appropriate numbers of LDR display levels to different HDR intensity intervals according to the pixel densities of the intervals. The second step linearly maps the HDR intensity intervals to theirs allocated LDR display levels. In the developed HNL scheme, the assignment of LDR display levels to HDR intensity intervals is controlled by a very simple and flexible formula with a single adjustable parameter. We also show that our new operators can be used for the effective enhancement of ordinary images.

  13. Value of diuresis renography in the post-natal period of assumed physiological renal immaturity.

    PubMed

    Eising, E G; Bonzel, K E; Zander, C; Farahati, J; Reiners, C

    1997-11-01

    The aim of this study was to determine if it is possible to exclude renal obstruction using diuresis renography in the first 6 weeks of life (the period of physiological renal immaturity), thus avoiding unnecessary invasive procedures, such as the Whitaker test or surgery. Diuresis renography with 123I-hippuran was performed in 27 patients aged less than 6 weeks and in 50 older children who acted as a reference group (age 6 weeks to 1 year, n = 28; age 1-10 years, n = 22). All 27 patients had significant dilatation of the pelvicalyceal system on ultrasonography. Renal curves were evaluated by mathematical curve characteristics (split renal function, counts, T-max, etc.) as the visual grade of obstruction. Whole-kidney regions of interest were defined on images summed over 30 min; renal parenchyma on images summed over 5 min. The renal curves of 18/27 patients indicated tracer accumulation and led to frusemide administration. Only two patients showed no significant response to frusemide and had to be further investigated by the Whitaker test. The frequency of kidneys with no response to frusemide revealed no significant differences in the three groups. Whole-kidney evaluation resulted in an overestimation of obstruction in 9/150 kidneys, which matches the lower correlation to the DMSA separation values for this method of evaluation. In contrast with the literature, significant post-renal obstruction can be excluded by diuresis renography in most cases in spite of renal immaturity and can help to avoid invasive procedures.

  14. Ansys Fluent versus Sim Vascular for 4-D patient-specific computational hemodynamics in renal arteries

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Avinash; Yu, Huidan (Whitney); Sawchuk, Alan; Dalsing, Michael

    2015-11-01

    The objective of this clinical-need driven research is to investigate the effect of renal artery stenosis (RAS) on the blood flow and wall shear stress in renal arteries through 4-D patient-specific computational hemodynamics (PSCH) and search for possible critical RASs that significantly alter the pressure gradient across the stenosis by manually varying the size of RAS from 50% to 95%. The identification of the critical RAS is important to understand the contribution of RAS to the overall renal resistance thus appropriate clinical therapy can be determined in order to reduce the hypertension. Clinical CT angiographic data together with Doppler Ultra sound images of an anonymous patient are used serving as the required inputs of the PSCH. To validate the PSCH, we use both Ansys Fluent and Sim Vascular and compare velocity, pressure, and wall-shear stress under identical conditions. Renal Imaging Technology Development Program (RITDP) Grant.

  15. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  16. Can a Modified Bosniak Classification System Risk Stratify Pediatric Cystic Renal Masses?

    PubMed

    Saltzman, Amanda F; Carrasco, Alonso; Colvin, Alexandra N; Meyers, Mariana L; Cost, Nicholas G

    2018-03-20

    We characterize and apply the modified Bosniak classification system to a cohort of children with cystic renal lesions and known surgical pathology. We identified all patients at our institution with cystic renal masses who also underwent surgery for these lesions. Patients without available preoperative imaging or pathology were excluded. All radiological imaging was independently reviewed by a pediatric radiologist blinded to pathological findings. Imaging characteristics (size, border, septations, calcifications, solid components, vascularity) were recorded from the most recent preoperative ultrasounds and computerized tomograms. The modified Bosniak classification system was applied to these scans and then correlated with final pathology. A total of 22 patients met study criteria. Median age at surgery was 6.1 years (range 11 months to 16.8 years). Of the patients 12 (54.5%) underwent open nephrectomy, 6 (27.3%) open partial nephrectomy, 2 (9.1%) laparoscopic cyst decortication, 1 (4.5%) open renal biopsy and 1 (4.5%) laparoscopic partial nephrectomy. Final pathology was benign in 9 cases (41%), intermediate in 6 (27%) and malignant in 7 (32%). All malignant lesions were modified Bosniak class 4, all intermediate lesions were modified class 3 or 4 and 8 of 9 benign lesions (89%) were modified class 1 or 2. Cystic renal lesions in children with a modified Bosniak class of 1 or 2 were most often benign, while class 3 or 4 lesions warranted surgical excision since more than 90% of masses harbored intermediate or malignant pathology. The modified Bosniak classification system appears to allow for a reasonable clinical risk stratification of pediatric cystic renal masses. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    NASA Astrophysics Data System (ADS)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing

  18. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.

    PubMed

    Chuong, C J; Zhong, P; Preminger, G M

    1993-12-01

    The acoustic and mechanical properties of renal calculi dictate how a stone interacts with the mechanical forces produced by shock wave lithotripsy; thus, these properties are directly related to the success of the treatment. Using an ultrasound pulse transmission technique, we measured both longitudinal and transverse (or shear) wave propagation speeds in nine groups of renal calculi with different chemical compositions. We also measured stone density using a pycnometer based on Archimedes' principle. From these measurements, we calculated wave impedance and dynamic mechanical properties of the renal stones. Calcium oxalate monohydrate and cystine stones had higher longitudinal and transverse wave speeds, wave impedances, and dynamic moduli (bulk modulus, Young's modulus, and shear modulus), suggesting that these stones are more difficult to fragment. Phosphate stones (carbonate apatite and magnesium ammonium phosphate hydrogen) were found to have lower values of these properties, suggesting they are more amenable to shock wave fragmentation. These data provide a physical explanation for the significant differences in stone fragility observed clinically.

  19. Renal Heme Oxygenase-1 Induction with Hemin Augments Renal Hemodynamics, Renal Autoregulation, and Excretory Function

    PubMed Central

    Botros, Fady T.; Dobrowolski, Leszek; Navar, L. Gabriel

    2012-01-01

    Heme oxygenases (HO-1; HO-2) catalyze conversion of heme to free iron, carbon monoxide, and biliverdin/bilirubin. To determine the effects of renal HO-1 induction on blood pressure and renal function, normal control rats (n = 7) and hemin-treated rats (n = 6) were studied. Renal clearance studies were performed on anesthetized rats to assess renal function; renal blood flow (RBF) was measured using a transonic flow probe placed around the left renal artery. Hemin treatment significantly induced renal HO-1. Mean arterial pressure and heart rate were not different (115 ± 5 mmHg versus 112 ± 4 mmHg and 331 ± 16 versus 346 ± 10 bpm). However, RBF was significantly higher (9.1 ± 0.8 versus 7.0 ± 0.5 mL/min/g, P < 0.05), and renal vascular resistance was significantly lower (13.0 ± 0.9 versus 16.6 ± 1.4 [mmHg/(mL/min/g)], P < 0.05). Likewise, glomerular filtration rate was significantly elevated (1.4 ± 0.2 versus 1.0 ± 0.1 mL/min/g, P < 0.05), and urine flow and sodium excretion were also higher (18.9 ± 3.9 versus 8.2 ± 1.0 μL/min/g, P < 0.05 and 1.9 ± 0.6 versus 0.2 ± 0.1 μmol/min/g, P < 0.05, resp.). The plateau of the autoregulation relationship was elevated, and renal vascular responses to acute angiotensin II infusion were attenuated in hemin-treated rats reflecting the vasodilatory effect of HO-1 induction. We conclude that renal HO-1 induction augments renal function which may contribute to the antihypertensive effects of HO-1 induction observed in hypertension models. PMID:22518281

  20. Diagnostic accuracy of contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging of small renal masses in real practice: sensitivity and specificity according to subjective radiologic interpretation.

    PubMed

    Kim, Jae Heon; Sun, Hwa Yeon; Hwang, Jiyoung; Hong, Seong Sook; Cho, Yong Jin; Doo, Seung Whan; Yang, Won Jae; Song, Yun Seob

    2016-10-12

    The aim of this study was to investigate the diagnostic accuracy of contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of small renal masses in real practice. Contrast-enhanced CT and MRI were performed between February 2008 and February 2013 on 68 patients who had suspected small (≤4 cm) renal cell carcinoma (RCC) based on ultrasonographic measurements. CT and MRI radiographs were reviewed, and the findings of small renal masses were re-categorized into five dichotomized scales by the same two radiologists who had interpreted the original images. Receiver operating characteristics curve analysis was performed, and sensitivity and specificity were determined. Among the 68 patients, 60 (88.2 %) had RCC and eight had benign disease. The diagnostic accuracy rates of contrast-enhanced CT and MRI were 79.41 and 88.23 %, respectively. Diagnostic accuracy was greater when using contrast-enhanced MRI because too many masses (67.6 %) were characterized as "4 (probably solid cancer) or 5 (definitely solid cancer)." The sensitivity of contrast-enhanced CT and MRI for predicting RCC were 79.7 and 88.1 %, respectively. The specificities of contrast-enhanced CT and MRI for predicting RCC were 44.4 and 33.3 %, respectively. Fourteen diagnoses (20.5 %) were missed or inconsistent compared with the final pathological diagnoses. One appropriate nephroureterectomy and five unnecessary percutaneous biopsies were performed for RCC. Seven unnecessary partial nephrectomies were performed for benign disease. Although contrast-enhanced CT and MRI showed high sensitivity for detecting small renal masses, specificity remained low.

  1. Xp11.2 translocation renal cell carcinoma with egg-shell calcification mimicking a benign renal tumour: A case report.

    PubMed

    Liang, Wenjie; Xu, Shunliang

    2015-11-01

    The present study reports the case of a 20-year-old female who was identified to have a left renal angiomyolipoma (AML) with hemorrhage. Following temporary conservative observation, the patient received continuous ultrasonic follow-up. Due to the rapid growth of the lesion, further examinations were performed. Computed tomography (CT) plain scans revealed a partly high-density mass with marginal egg-shell calcification. Enhanced CT revealed a solid tumor with a rich blood supply. Since no fats were detected, the possibility of a typical AML was excluded, but the diagnoses of epithelioid AML or renal cancer were considered. Finally, the left kidney was partially excised laparoscopically. The intraoperative frozen section indicated a diagnosis of renal cell carcinoma (RCC). The left kidney was subsequently radically excised. Routine histopathological and immunohistochemical tests confirmed that the lesion was an RCC with an Xp11.2 translocation. The present study introduces the pitfalls in the diagnosis of Xp11.2 translocation RCC, which is a rare RCC subtype accompanied with uncommon imaging manifestations. The study suggests that when a rapidly-growing AML is detected by ultrasound, renal cancer with marginal calcification should be considered. Moreover, although egg-shell calcification mostly occurs in benign renal lesions, further examinations, such as enhanced CT, are recommended for identifying the nature of the masses and excluding the possibility of malignant tumors.

  2. Xp11.2 translocation renal cell carcinoma with egg-shell calcification mimicking a benign renal tumour: A case report

    PubMed Central

    LIANG, WENJIE; XU, SHUNLIANG

    2015-01-01

    The present study reports the case of a 20-year-old female who was identified to have a left renal angiomyolipoma (AML) with hemorrhage. Following temporary conservative observation, the patient received continuous ultrasonic follow-up. Due to the rapid growth of the lesion, further examinations were performed. Computed tomography (CT) plain scans revealed a partly high-density mass with marginal egg-shell calcification. Enhanced CT revealed a solid tumor with a rich blood supply. Since no fats were detected, the possibility of a typical AML was excluded, but the diagnoses of epithelioid AML or renal cancer were considered. Finally, the left kidney was partially excised laparoscopically. The intraoperative frozen section indicated a diagnosis of renal cell carcinoma (RCC). The left kidney was subsequently radically excised. Routine histopathological and immunohistochemical tests confirmed that the lesion was an RCC with an Xp11.2 translocation. The present study introduces the pitfalls in the diagnosis of Xp11.2 translocation RCC, which is a rare RCC subtype accompanied with uncommon imaging manifestations. The study suggests that when a rapidly-growing AML is detected by ultrasound, renal cancer with marginal calcification should be considered. Moreover, although egg-shell calcification mostly occurs in benign renal lesions, further examinations, such as enhanced CT, are recommended for identifying the nature of the masses and excluding the possibility of malignant tumors. PMID:26722310

  3. High dynamic range hyperspectral imaging for camouflage performance test and evaluation

    NASA Astrophysics Data System (ADS)

    Pearce, D.; Feenan, J.

    2016-10-01

    This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.

  4. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    PubMed

    Muenzel, Daniela; Kabus, Sven; Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A; Rummeny, Ernst J; Huber, Armin; Noël, Peter B

    2013-01-01

    To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  5. Angiomyolipoma with Minimal Fat: Can It Be Differentiated from Clear Cell Renal Cell Carcinoma by Using Standard MR Techniques?

    PubMed Central

    Hindman, Nicole; Ngo, Long; Genega, Elizabeth M.; Melamed, Jonathan; Wei, Jesse; Braza, Julia M.; Rofsky, Neil M.

    2012-01-01

    Purpose: To retrospectively assess whether magnetic resonance (MR) imaging with opposed-phase and in-phase gradient-echo (GRE) sequences and MR feature analysis can differentiate angiomyolipomas (AMLs) that contain minimal fat from clear cell renal cell carcinomas (RCCs), with particular emphasis on small (<3-cm) masses. Materials and Methods: Institutional review board approval and a waiver of informed consent were obtained for this HIPAA-compliant study. MR images from 108 pathologically proved renal masses (88 clear cell RCCs and 20 minimal fat AMLs from 64 men and 44 women) at two academic institutions were evaluated. The signal intensity (SI) of each renal mass and spleen on opposed-phase and in-phase GRE images was used to calculate an SI index and tumor-to-spleen SI ratio. Two radiologists who were blinded to the pathologic results independently assessed the subjective presence of intravoxel fat (ie, decreased SI on opposed-phase images compared with that on in-phase images), SI on T1-weighted and T2-weighted images, cystic degeneration, necrosis, hemorrhage, retroperitoneal collaterals, and renal vein thrombosis. Results were analyzed by using the Wilcoxon rank sum test, two-tailed Fisher exact test, and multivariate logistic regression analysis for all renal masses and for small masses. A P value of less than .05 was considered to indicate a statistically significant difference. Results: There were no differences between minimal fat AMLs and clear cell RCCs for the SI index (8.05% ± 14.46 vs 14.99% ± 19.9; P = .146) or tumor-to-spleen ratio (−8.96% ± 16.6 and −15.8% ± 22.4; P = .227) when all masses or small masses were analyzed. Diagnostic accuracy (area under receiver operating characteristic curve) for the SI index and tumor-to-spleen ratio was 0.59. Intratumoral necrosis and larger size were predictive of clear cell RCC (P < .001) for all lesions, whereas low SI (relative to renal parenchyma SI) on T2-weighted images, smaller size, and female

  6. Flow Quantification from 2D Phase Contrast MRI in Renal Arteries Using Clustering

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Monnsen, Jan Ankar; Lundervold, Arvid; Rørvik, Jarle

    We present an approach based on clustering to segment renal arteries from 2D PC Cine MR images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percutan transluminal angioplasty. Results show that the renal arteries could be extracted automatically and the corresponding velocity profiles could be calculated. Furthermore, the clustering could detect possible phase wrap effects automatically as well as differences in the blood flow patterns within the vessel.

  7. An algorithm for calculi segmentation on ureteroscopic images.

    PubMed

    Rosa, Benoît; Mozer, Pierre; Szewczyk, Jérôme

    2011-03-01

    The purpose of the study is to develop an algorithm for the segmentation of renal calculi on ureteroscopic images. In fact, renal calculi are common source of urological obstruction, and laser lithotripsy during ureteroscopy is a possible therapy. A laser-based system to sweep the calculus surface and vaporize it was developed to automate a very tedious manual task. The distal tip of the ureteroscope is directed using image guidance, and this operation is not possible without an efficient segmentation of renal calculi on the ureteroscopic images. We proposed and developed a region growing algorithm to segment renal calculi on ureteroscopic images. Using real video images to compute ground truth and compare our segmentation with a reference segmentation, we computed statistics on different image metrics, such as Precision, Recall, and Yasnoff Measure, for comparison with ground truth. The algorithm and its parameters were established for the most likely clinical scenarii. The segmentation results are encouraging: the developed algorithm was able to correctly detect more than 90% of the surface of the calculi, according to an expert observer. Implementation of an algorithm for the segmentation of calculi on ureteroscopic images is feasible. The next step is the integration of our algorithm in the command scheme of a motorized system to build a complete operating prototype.

  8. Improved venous suppression on renal MR angiography with recessed elliptical centric ordering of K-space.

    PubMed

    Ho, Bernard; Chao, Minh; Zhang, Hong Lei; Watts, Richard; Prince, Martin R

    2003-01-01

    To evaluate recessed elliptical centric ordering of k-space in renal magnetic resonance (MR) angiography. All imaging was performed on the same 1.5 T MR imaging system (GE Signa CVi) using the body coil for signal transmission and a phased array coil for reception. Gd, 30 ml, was injected manually at 2 ml/sec timed with automatic triggering (SmartPrep). In thirty patients using standard elliptical centric ordering, the scanner paused 8 seconds between detection of the leading edge of the Gd bolus and initiation of scanning beginning with the center of k-space. For the recessed-elliptical centric ordering in 20 consecutive patients, this delay was reduced to 4 seconds but the absolute center of k-space recessed in by 4 seconds such that in all patients the absolute center of k-space was acquired 8 seconds after detecting the leading edge of the bolus. On the arterial phase images signal-to-noise ratio (SNR) was measured in the aorta, each renal artery and vein and contrast-to-noise ratio (CNR) was measured relative to subcutaneous fat. The standard deviation of signal outside the patient was considered to be "noise" for calculation of SNR and CNR. Incidence of ringing artifact in the aorta and renal veins was noted. Aorta SNR and CNR was significantly higher with the recessed technique (p = 0.02) and the ratio of renal artery signal to renal vein signal was higher with the recessed technique, 4 ± 2, compared to standard elliptical centric, 3 ± 2 (p = 0.03). Ringing artifact was also reduced with the recessed technique in both the aorta and renal veins. Gadolinium-enhanced renal MR angiography is improved by recessing the absolute center of k-space.

  9. Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.

    PubMed

    Ravishankar, Saiprasad; Moore, Brian E; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-05-01

    Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.

  10. Robust low-dose dynamic cerebral perfusion CT image restoration via coupled dictionary learning scheme.

    PubMed

    Tian, Xiumei; Zeng, Dong; Zhang, Shanli; Huang, Jing; Zhang, Hua; He, Ji; Lu, Lijun; Xi, Weiwen; Ma, Jianhua; Bian, Zhaoying

    2016-11-22

    Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.

  11. Imaging and Management of Intrathoracic Renal Cell Carcinoma Metastases.

    PubMed

    Price, Melissa; Wu, Carol C; Genshaft, Scott; Sadow, Peter M; Xie, Ling; Shepard, Jo-Anne O; McDermott, Shaunagh

    2018-06-01

    Renal cell carcinoma (RCC) has a propensity to metastasize to the chest, with the lungs being the most common distant metastatic site. The histologic subtype of RCC has implications for prognosis. Significant advances have been made in the management of metastatic RCC, both in systemic and locoregional therapies. The aim of this article is to review appearances of intrathoracic metastases from RCC and to discuss treatment considerations.

  12. The correlation between effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) with renal scintigraphy 99mTc-DTPA study

    NASA Astrophysics Data System (ADS)

    Ratnasari, D.; Nazir, F.; Toresano, L. O. H. Z.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    The prevalence of chronic renal diseases in Indonesia has an increasing annual trend, because it is frequently unrecognized and often co-exists with other disease. GFR and ERPF are parameters currently utilized to estimate renal function at routine renal scintigraphy 99m-Tc DTPA study. This study used 99m-Tc DTPA to measure GFR and ERPF. The purpose of this study was to find the correlation between ERPF and GFR, for ERPF analysis with Schlegel's method, and GFR analysis with Gate's method, as well as to find correction factor between both variables. Analysis of renal scintigraphy has been performed at Department of Nuclear Medicine Pertamina Center Hospital to thirty patient images acquired from 2014 to 2015 which were analyzed retrospectively data, using gamma camera dual head with counting method from renal scintigraphy 99m-Tc DTPA study. The calculation was executed by means of both display and manual calculation. Pearson's statistical analysis resulted on Positive Correlation for all data, with ERPF and GFR (display) showing Strongly Positive Correlation (r = 0.82; p- value < 0.05). Standard deviation was found to be 27.58 and 107.64 for GFR and ERPF (display), respectively. Our result indicated that the use of 99mTc-DTPA measure ERPF was not recommended.

  13. Imaging of dynamic ion signaling during root gravitropism.

    PubMed

    Monshausen, Gabriele B

    2015-01-01

    Gravitropic signaling is a complex process that requires the coordinated action of multiple cell types and tissues. Ca(2+) and pH signaling are key components of gravitropic signaling cascades and can serve as useful markers to dissect the molecular machinery mediating plant gravitropism. To monitor dynamic ion signaling, imaging approaches combining fluorescent ion sensors and confocal fluorescence microscopy are employed, which allow the visualization of pH and Ca(2+) changes at the level of entire tissues, while also providing high spatiotemporal resolution. Here, I describe procedures to prepare Arabidopsis seedlings for live cell imaging and to convert a microscope for vertical stage fluorescence microscopy. With this imaging system, ion signaling can be monitored during all phases of the root gravitropic response.

  14. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.

    PubMed

    He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming

    2018-06-04

    Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.

  15. Incorporation of physical constraints in optimal surface search for renal cortex segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie

    2012-02-01

    In this paper, we propose a novel approach for multiple surfaces segmentation based on the incorporation of physical constraints in optimal surface searching. We apply our new approach to solve the renal cortex segmentation problem, an important but not sufficiently researched issue. In this study, in order to better restrain the intensity proximity of the renal cortex and renal column, we extend the optimal surface search approach to allow for varying sampling distance and physical separation constraints, instead of the traditional fixed sampling distance and numerical separation constraints. The sampling distance of each vertex-column is computed according to the sparsity of the local triangular mesh. Then the physical constraint learned from a priori renal cortex thickness is applied to the inter-surface arcs as the separation constraints. Appropriate varying sampling distance and separation constraints were learnt from 6 clinical CT images. After training, the proposed approach was tested on a test set of 10 images. The manual segmentation of renal cortex was used as the reference standard. Quantitative analysis of the segmented renal cortex indicates that overall segmentation accuracy was increased after introducing the varying sampling distance and physical separation constraints (the average true positive volume fraction (TPVF) and false positive volume fraction (FPVF) were 83.96% and 2.80%, respectively, by using varying sampling distance and physical separation constraints compared to 74.10% and 0.18%, respectively, by using fixed sampling distance and numerical separation constraints). The experimental results demonstrated the effectiveness of the proposed approach.

  16. Missouri University Multi-Plane Imager (MUMPI): A high sensitivity rapid dynamic ECT brain imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, K.W.; Holmes, R.A.

    1984-01-01

    The authors have designed a unique ECT imaging device that can record rapid dynamic images of brain perfusion. The Missouri University Multi-Plane Imager (MUMPI) uses a single crystal detector that produces four orthogonal two-dimensional images simultaneously. Multiple slice images are reconstructed from counts recorded from stepwise or continuous collimator rotation. Four simultaneous 2-d image fields may also be recorded and reviewed. The cylindrical sodium iodide crystal and the rotating collimator concentrically surround the source volume being imaged with the collimator the only moving part. The design and function parameters of MUMPI have been compared to other competitive tomographic head imagingmore » devices. MUMPI's principal advantages are: 1) simultaneous direct acquisition of four two-dimensional images; 2) extremely rapid project set acquisition for ECT reconstruction; and 3) instrument practicality and economy due to single detector design and the absence of heavy mechanical moving components (only collimator rotation is required). MUMPI should be ideal for imaging neutral lipophilic chelates such as Tc-99m-PnAO which passively diffuses across the intact blood-brain-barrier and rapidly clears from brain tissue.« less

  17. WE-E-BRE-02: BEST IN PHYSICS (THERAPY) - Stereotactic Radiotherapy for Renal Sympathetic Ablation for the Treatment of Refractory Hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxim, P; Wheeler, M; Loo, B

    Purpose: To determine the safety and efficacy of stereotactic radiotherapy as a novel treatment for patients with refractory hypertension in a swine model. Uncontrolled hypertension is a significant contributor to morbidity and mortality, substantially increasing the risk of ischemic stroke, ischemic heart disease, and kidney failure. Methods: High-resolution computed tomography (CT) images of anesthetized pigs were acquired and treatment plans for each renal artery and nerve were developed using our clinically implemented treatment planning system. Stereotactic radiotherapy, 40Gy in single fraction was delivered bilaterally to the renal nerves using a state-of-the-art medical linear accelerator under image guidance utilizing dynamic conformalmore » arcs. Dose to nearby critical organs was evaluated by dosevolume histogram analysis and correlated to toxicity data obtained through follow up pathology analysis. The animals were observed for six months with serial measurements of blood pressure, urine analysis, serum laboratories, and overall clinical and behavioral status. Results: All animals survived to the follow-up point without evidence of renal dysfunction (stable serum creatinine), skin changes, or behavioral changes that might suggest animal discomfort. Plasma norepinephrine levels (ng/ml) were followed monthly for 6 months. The average reduction observed was 63%, with the median reduction at 73.5%. Microscopic evaluation 4–6 weeks after treatment showed evidence of damage to the nerves around treated renal arteries. Considerable attenuation in pan neurofilament expression by immunohistochemistry was observed with some vacuolar changes indicative of injury. There was no histological or immunohistochemical evidence of damage to nearby spinal cord or spinal nerve root structures. Conclusion: Our preclinical studies have shown stereotactic radiotherapy to the renal sympathetic plexus to be safe and effective in reducing blood pressure, thus this approach

  18. From anatomy to function: diagnosis of atherosclerotic renal artery stenosis.

    PubMed

    Odudu, Aghogho; Vassallo, Diana; Kalra, Philip A

    2015-12-01

    Atherosclerotic renal artery stenosis (ARAS) affects 7% of the over 65 s and will be increasingly common with an ageing population. ARAS obstructs normal renal perfusion with adverse renal and cardiovascular consequences. Drug therapy is directed at reducing atherosclerotic risk. Two recent major trials of revascularization for ARAS showed that clinical outcomes were not improved beyond those offered by optimal drug therapy in most patients. This reflects experimental data showing that restoration of blood flow alone may not attenuate a cascade of tissue injury. A shift from anatomic to functional imaging of ARAS coupled to novel therapies might improve clinical outcomes in selected patients. This review outlines the case for separately assessing hemodynamic significance of arterial stenosis and functional reserve of renal parenchymal tissue. The authors consider current and emerging diagnostic techniques for ARAS and their potential to allow individualized and functionally directed treatments.

  19. Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.

    PubMed

    Szpala, Stanislaw; Wierzbicki, Marcin; Guiraudon, Gerard; Peters, Terry M

    2005-09-01

    Minimally invasive robotically assisted cardiac surgical systems currently do not routinely employ 3-D image guidance. However, preoperative magnetic resonance and computed tomography (CT) images have the potential to be used in this role, if appropriately registered with the patient anatomy and animated synchronously with the motion of the actual heart. This paper discusses the fusion of optical images of a beating heart phantom obtained from an optically tracked endoscope, with volumetric images of the phantom created from a dynamic CT dataset. High quality preoperative dynamic CT images are created by first extracting the motion parameters of the heart from the series of temporal frames, and then applying this information to animate a high-quality heart image acquired at end systole. Temporal synchronization of the endoscopic and CT model is achieved by selecting the appropriate CT image from the dynamic set, based on an electrocardiographic trigger signal. The spatial error between the optical and virtual images is 1.4 +/- 1.1 mm, while the time discrepancy is typically 50-100 ms. Index Terms-Image guidance, image warping, minimally invasive cardiac surgery, virtual endoscopy, virtual reality.

  20. The effect of anatomic differences on the relationship between renal artery and diaphragmatic crus.

    PubMed

    Esen, K; Tok, S; Balci, Yuksel; Apaydin, F D; Kara, E; Uzmansel, D

    2018-01-01

    The aim of this study is to investigate the effect of anatomic differences on the relationship between renal artery and diaphragmatic crus via the touch of two structures. The study included dynamic computed tomography (CT) scans of 308 patients performed mainly for characterisation of liver and renal masses. Anatomic differences including the thickness of the diaphragmatic crus, the localisation of renal artery ostium at the wall of aorta, the level of renal artery origin with respect to superior mesenteric artery were evaluated. Statistical relationships between renal artery-diaphragmatic crus contact and the anatomic differences were assessed. Thickness of the diaphragmatic crus at the level of renal artery origin exhibited a statistically significant relationship to renal artery-diaphragmatic crus contact at the left (p < 0.001) and right side (p < 0.001). There was a statistically significant relationship between high renal artery origin and renal artery- -diaphragmatic crus contact at the left (p < 0.001) and right side (p = 0.01). The localisation of renal artery ostium at the wall of aorta (right side, p = 0.436, left side, p = 0.681) did not demonstrate a relationship to renal artery-diaphragmatic crus contact. Thickness of the diaphragmatic crus and high renal artery origin with respect to superior mesenteric artery are crucial anatomic differences determining the relationship of renal artery and diaphragmatic crus. (Folia Morphol 2018; 77, 1: 22-28).