Sample records for renal protein synthesis

  1. Choline pathways during normal and stimulated renal growth in rats.

    PubMed Central

    Bean, G H; Lowenstein, L M

    1978-01-01

    Cellular membrane synthesis occurs during normal and stimulated renal growth. Choline in the kidney is utilized as a precursor for membrane synthesis via the choline kinase reaction. We investigated choline phosphorylation during normal and stimulated renal growth. Rapidly growing neonatal rat kidneys contained relatively high levels of choline kinase activity (61 pmol phosphorylcholine/min per mg protein). Choline kinase activity and phosphorylcholine production then fell gradually over the 1st mo of life; by 1 mo phosphorylcholine production was 34 pmol phosphorylcholine/min per mg protein. Choline kinase activity increased by 27% (P less than 0.001) in 28-day-old rats when renal growth was stimulated by contralateral nephrectomy; the increase occurred within 2 h after surgery. Thus, changes in the activity of this important enzyme in the initiation of membrane synthesis is associated both with normal renal development and with adaptation to nephron loss. The findings further suggest that the cell membrane may be involved in the initiation of compensatory renal growth. PMID:659614

  2. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  3. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  4. Protein supplementation with sports protein bars in renal patients.

    PubMed

    Meade, Anthony

    2007-05-01

    Malnutrition prevalence in patients on dialysis is well established. The protein requirements for both hemodialysis and peritoneal dialysis have been documented elsewhere, including the Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Nutrition in Chronic Renal Failure. The clinical challenge is to assist patients in meeting these targets, especially in those with anorexia. Traditional supplements have included fluid, which is an issue for patients who are fluid restricted. The study objectives were to (1) investigate the range of sports protein supplements that may be suitable for patients on hemodialysis to use and (2) trial nonfluid protein supplements in patients on hemodialysis. Known manufacturers of sports protein bars and other sports supplements available in Australia were contacted for the nutrient breakdown of high-protein products, specifically potassium, protein, and phosphorus contents. As a result, selected high-protein sports bars (Protein FX, Aussie Bodies, Port Melbourne, Victoria, Australia) were used as an alternative to the more commonly used renal-specific fluid supplements (Nepro, Abbott Laboratories, Abbott Park, IL; Novasource Renal, Novartis Nutrition Corporation, Fremont, MI; and Renilon, Nutricia, Wiltshire, UK) in patients with poor nutritional status requiring supplementation. Patient satisfaction and clinical nutrition markers were investigated. The study took place at inpatient, in-center, and satellite hemodialysis settings in Adelaide, South Australia. A total of 32 patients (16 females and 16 males) with an average age of 62.9 years (range 32-86 years) undergoing hemodialysis (acute and maintenance) were included. Subjects were selected by the author as part of routine clinical nutrition care. Patients trialed sports protein bars as a protein supplement alone or in conjunction with other supplementary products. All patients were in favor of the trial, with 22 of 32 patients continuing with the protein

  5. Enhancement of RNA Synthesis, Protein Synthesis, and Abscission by Ethylene

    PubMed Central

    Abeles, F. B.; Holm, R. E.

    1966-01-01

    Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed. PMID:16656405

  6. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system.

    PubMed

    Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya

    2014-11-01

    In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Tubulointerstitial nephritis antigen: an extracellular matrix protein that selectively regulates tubulogenesis vs. glomerulogenesis during mammalian renal development.

    PubMed

    Kanwar, Y S; Kumar, A; Yang, Q; Tian, Y; Wada, J; Kashihara, N; Wallner, E I

    1999-09-28

    Tubulointerstitial nephritis antigen (TIN-ag) is an extracellular matrix protein and is expressed in the renal tubular basement membranes. Its role in metanephric development was investigated. TIN-ag cDNA, isolated from the newborn mouse library, had an ORF of 1,425 nucleotides, a putative signal sequence, and an ATP/GTP-binding site. The translated sequence had approximately 80% identity with rabbit TIN-ag. Among various tissues, TIN-ag mRNA was primarily expressed in the newborn kidney. In the embryonic metanephros, TIN-ag expression was confined to the distal convolution or pole of the S-shaped body, the segment of the nascent nephron that is the progenitor of renal tubules. Treatment with TIN-ag antisense oligodeoxynucleotide induced dysmorphogenesis of the embryonic metanephroi, malformation of the S-shaped body, and a decrease in the tubular population, whereas the glomeruli were unaffected. Treatment also led to a decrease of TIN-Ag mRNA, de novo synthesis of TIN-ag protein, and its antibody reactivity. The mRNA expression of glomerular epithelial protein 1 (a marker for renal podocytes), anti-heparan-sulfate-proteoglycan antibody reactivity, and wheat germ agglutinin lectin staining of the metanephros were unaffected. The anti-TIN-ag antibody treatment also caused deformation of the S-shaped body and a reduction in the tubular population, whereas the glomeruli were unchanged. The data suggest that the TIN-ag, unlike other basement membrane proteins, selectively regulates tubulogenesis, whereas glomerulogenesis is largely unaffected.

  8. Whey versus soy protein diets and renal status in rats.

    PubMed

    Aparicio, Virginia A; Nebot, Elena; Tassi, Mohamed; Camiletti-Moirón, Daniel; Sanchez-Gonzalez, Cristina; Porres, Jesús M; Aranda, Pilar

    2014-09-01

    Different dietary protein sources can promote different renal statuses. We examined the effects of whey protein (WP) and soy protein (SP) intake on plasma, urinary, and morphological renal parameters in rats. One hundred and twenty Wistar rats were randomly distributed into 2 experimental groups fed with either WP or SP diets over 12 weeks. These diets were based on commercial WP or SP isolates. The urinary calcium content was higher in the WP diet compared to the SP diet group (P<.001) whereas the urinary citrate level was lower (P<.001). The urinary pH was more acidic in the WP diet group compared to the SP diet group (P<.001); however, no differences were observed between the groups for any of the renal morphological parameters analyzed (all, P>.05) or other plasma renal markers such as albumin or urea concentrations. The increase of acid and urinary calcium and the lower urinary citrate level observed in the WP diet group could increase the incidence of nephrolithiasis compared to the SP diet group. Despite the WP showed poorer acid-base profile, no significant morphological renal changes were observed. These results suggest that the use of SP instead of WP appears to promote a more alkaline plasma and urinary profile, with their consequent renal advantages.

  9. Modulation of protein synthesis by polyamines.

    PubMed

    Igarashi, Kazuei; Kashiwagi, Keiko

    2015-03-01

    Polyamines are ubiquitous small basic molecules that play important roles in cell growth and viability. Since polyamines mainly exist as a polyamine-RNA complex, we looked for proteins whose synthesis is preferentially stimulated by polyamines at the level of translation, and thus far identified 17 proteins in Escherichia coli and 6 proteins in eukaryotes. The mechanisms of polyamine stimulation of synthesis of these proteins were investigated. In addition, the role of eIF5A, containing hypusine formed from spermidine, on protein synthesis is described. These results clearly indicate that polyamines and eIF5A contribute to cell growth and viability through modulation of protein synthesis. © 2015 International Union of Biochemistry and Molecular Biology.

  10. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  11. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis.

    PubMed

    Yi, Dan; Hou, Yongqing; Wang, Lei; Long, Minhui; Hu, Shengdi; Mei, Huimin; Yan, Liqiong; Hu, Chien-An Andy; Wu, Guoyao

    2016-02-01

    Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

  12. Changes in tissue protein synthesis are involved in regulating urea synthesis in rats given proteins of different quality.

    PubMed

    Tujioka, Kazuyo; Lyou, Sunok; Sano, Atushi; Hayase, Kazutoshi; Yokogoshi, Hidehiko

    2004-10-01

    The purpose of present study was to determine whether the regulation of urea synthesis is mediated through changes in supply of amino acids by protein synthesis and whether the concentration of ammonia, or activities of amino acid catabolizing enzymes, regulate urea synthesis when the dietary protein quality is manipulated. Experiments were done on three groups of rats given diets containing 10 g gluten, 10 g casein or 10 g whole egg protein/100 g for 10 d. The urinary excretion of urea, and the liver concentrations of glutamate, serine and alanine increased with a decrease in quality of dietary protein. The fractional and absolute rates of protein synthesis in tissues declined with the decrease in quality of dietary protein quality. The ammonia concentration in plasma and liver, and activities of hepatic amino acid catabolizing enzymes was not related to urea excretion under these conditions. These results suggest that the lower protein synthesis seen in tissues of rats given the lower quality of protein is likely to be one of the factors to increasing the supply of amino acids and stimulating urea synthesis.

  13. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    PubMed Central

    Levitt, David G; Levitt, Michael D

    2016-01-01

    Serum albumin concentration (CP) is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%), gastrointestinal (≈10%), and catabolic (≈84%) clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon) or enhanced loss of albumin into the urine (nephrosis) or intestine (protein-losing enteropathy). The latter may occur with subtle intestinal pathology and hence may be more prevalent than commonly appreciated. Clinically, reduced CP appears to be a result rather than a cause of ill-health, and therapy designed to increase CP has limited benefit. The ubiquitous occurrence of

  14. Renal Angiotensin-Converting Enzyme Is Essential for the Hypertension Induced by Nitric Oxide Synthesis Inhibition

    PubMed Central

    Giani, Jorge F.; Janjulia, Tea; Kamat, Nikhil; Seth, Dale M.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Shen, Xiao Z.; Fuchs, Sebastien; Delpire, Eric; Toblli, Jorge E.; Bernstein, Kenneth E.; McDonough, Alicia A.

    2014-01-01

    The kidney is an important source of angiotensin-converting enzyme (ACE) in many species, including humans. However, the specific effects of local ACE on renal function and, by extension, BP control are not completely understood. We previously showed that mice lacking renal ACE, are resistant to the hypertension induced by angiotensin II infusion. Here, we examined the responses of these mice to the low-systemic angiotensin II hypertensive model of nitric oxide synthesis inhibition with L-NAME. In contrast to wild-type mice, mice without renal ACE did not develop hypertension, had lower renal angiotensin II levels, and enhanced natriuresis in response to L-NAME. During L-NAME treatment, the absence of renal ACE was associated with blunted GFR responses; greater reductions in abundance of proximal tubule Na+/H+ exchanger 3, Na+/Pi co-transporter 2, phosphorylated Na+/K+/Cl− cotransporter, and phosphorylated Na+/Cl− cotransporter; and greater reductions in abundance and processing of the γ isoform of the epithelial Na+ channel. In summary, the presence of ACE in renal tissue facilitates angiotensin II accumulation, GFR reductions, and changes in the expression levels and post-translational modification of sodium transporters that are obligatory for sodium retention and hypertension in response to nitric oxide synthesis inhibition. PMID:25012170

  15. Aldosterone mediates metastatic spread of renal cancer via the G protein-coupled estrogen receptor (GPER).

    PubMed

    Feldman, Ross D; Ding, Qingming; Hussain, Yasin; Limbird, Lee E; Pickering, J Geoffrey; Gros, Robert

    2016-06-01

    Although aldosterone is a known regulator of renal and cardiovascular function, its role as a regulator of cancer growth and spread has not been widely considered. This study tested the hypothesis that aldosterone regulates cancer cell growth/spread via G protein-coupled estrogen receptor (GPER) activation. In vitro in murine renal cortical adenocarcinoma (RENCA) cells, a widely used murine in vitro model for the study of renal cell adenocarcinoma, aldosterone increased RENCA cell proliferation to a maximum of 125 ± 3% of control at a concentration of 10 nM, an effect blocked by the GPER antagonist G15 or by GPER knockdown using short interfering (sh) RNA techniques. Further, aldosterone increased RENCA cell migration to a maximum of 170 ± 20% of control at a concentration of 100 nM, an effect also blocked by G15 or by GPER down-regulation. In vivo, after orthotopic RENCA cell renal transplantation, pulmonary tumor spread was inhibited by pharmacologic blockade of aldosterone effects with spironolactone (percentage of lung occupied by metastasis: control = 68 ± 13, spironolactone = 26 ± 8, P < 0.05) or inhibition of aldosterone synthesis with a high dietary salt diet (percentage of lung: control = 44 ± 6, high salt = 12 ± 3, P < 0.05), without reducing primary tumor size. Additionally, adrenalectomy significantly reduced the extent of pulmonary tumor spread, whereas aldosterone infusion recovered pulmonary metastatic spread toward baseline levels. Finally, inhibition of GPER either with the GPER antagonist G15 or by GPER knockdown comparably inhibited RENCA cell pulmonary metastatic cancer spread. Taken together, these findings provide strong evidence for aldosterone serving a causal role in renal cell cancer regulation via its GPER receptor; thus, antagonism of GPER represents a potential new target for treatment to reduce metastatic spread.-Feldman, R. D., Ding, Q., Hussain, Y., Limbird, L. E., Pickering, J. G., Gros, R. Aldosterone mediates metastatic

  16. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig

    USDA-ARS?s Scientific Manuscript database

    The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for argin...

  17. Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells

    PubMed Central

    Rogers, NM; Stephenson, MD; Kitching, AR; Horowitz, JD; Coates, PTH

    2012-01-01

    BACKGROUND AND PURPOSE Renal ischaemia–reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. PMID:21745189

  18. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  19. Protein synthesis controls phosphate homeostasis.

    PubMed

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  20. Chronological protein synthesis in regenerating rat liver.

    PubMed

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Protein and calorie prescription for children and young adults receiving continuous renal replacement therapy: a report from the Prospective Pediatric Continuous Renal Replacement Therapy Registry Group.

    PubMed

    Zappitelli, Michael; Goldstein, Stuart L; Symons, Jordan M; Somers, Michael J G; Baum, Michelle A; Brophy, Patrick D; Blowey, Douglas; Fortenberry, James D; Chua, Annabelle N; Flores, Francisco X; Benfield, Mark R; Alexander, Steven R; Askenazi, David; Hackbarth, Richard; Bunchman, Timothy E

    2008-12-01

    Few published reports describe nutrition provision for critically ill children and young adults with acute kidney injury receiving continuous renal replacement therapy. The goals of this study were to describe feeding practices in pediatric continuous renal replacement therapy and to evaluate factors associated with over- and under-prescription of protein and calories. Retrospective database study. Multicenter study in pediatric critical care units. Patients with acute kidney injury (estimated glomerular filtration rate < 75 mL/min/1.73 m at continuous renal replacement therapy initiation) enrolled in the Prospective Pediatric Continuous Renal Replacement Therapy Registry. None. Nutrition variables: initial and maximal protein (g/kg/day) and caloric (kcal/kg/day) prescription and predicted resting energy expenditure (kcal/kg/day). We determined factors predicting initial and maximal protein and caloric prescription by multivariate analysis. One hundred ninety-five patients (median [interquartile range] age = 8.1 [12.8] yrs, 56.9% men) were studied. Mean protein and caloric prescriptions at continuous renal replacement therapy initiation were 1.3 +/- 1.5 g/kg/day (median, 1.0; range, 0-10) and 37 +/- 27 kcal/kg/day (median, 32; range, 0-107). Mean maximal protein and caloric prescriptions during continuous renal replacement therapy were 2.0 +/- 1.5 g/kg/day (median, 1.7; range, 0-12) and 48 +/- 32 kcal/kg/day (median, 43; range, 0-117). Thirty-four percent of patients were initially prescribed < 1 g/kg/day protein; 23% never attained > 1 g/kg/day protein prescription. By continuous renal replacement therapy day 5, median protein prescribed was > 2 g/kg/day. Protein prescription practices differed substantially between medical centers with 5 of 10 centers achieving maximal protein prescription of > 2 g/kg/day in > or = 40% of patients. Caloric prescription exceeded predicted resting energy expenditure by 30%-100%. Factors independently associated with maximal protein

  2. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  3. Synthesis of Lipidated Proteins.

    PubMed

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  4. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    PubMed

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Intravenous glutamine supplementation enhances renal de novo arginine synthesis in humans: a stable isotope study.

    PubMed

    Buijs, Nikki; Brinkmann, Saskia J H; Oosterink, J Efraim; Luttikhold, Joanna; Schierbeek, Henk; Wisselink, Willem; Beishuizen, Albertus; van Goudoever, Johannes B; Houdijk, Alexander P J; van Leeuwen, Paul A M; Vermeulen, Mechteld A R

    2014-11-01

    Arginine plays a role in many different pathways in multiple cell types. Consequently, a shortage of arginine, caused by pathologic conditions such as cancer or injury, has the potential to disturb many cellular and organ functions. Glutamine is the ultimate source for de novo synthesis of arginine in humans via the intestinal-renal axis. Therefore, we hypothesized that parenteral glutamine supplementation may stimulate the interorgan pathway of arginine production. The objectives were to quantify arginine production from its precursor glutamine and to establish the contribution of the kidneys to de novo synthesis of arginine in patients receiving intravenous supplementation of glutamine dipeptide during major abdominal surgery. Whole-body and renal metabolism of glutamine, citrulline, and arginine was assessed by stable isotope techniques in 7 patients receiving a perioperative supplement of intravenous alanyl-glutamine (0.5 g · kg(-1) · d(-1)). Plasma glutamine, citrulline, and arginine concentrations increased significantly in patients receiving intravenous glutamine dipeptide. At whole-body level, 91% of total citrulline turnover was derived from glutamine, whereas 49% of whole-body citrulline turnover was used for de novo synthesis of arginine. The kidneys were responsible for 75% of whole-body arginine production from citrulline. Glutamine and citrulline are important sources for de novo arginine synthesis. The kidneys are the main production site for endogenous arginine. After comparison of these results with previous similar studies, our data suggest that an intravenous glutamine supplement doubles renal arginine production from citrulline. This trial was registered at www.trialregister.nl as NTR2914. © 2014 American Society for Nutrition.

  6. Arraying proteins by cell-free synthesis.

    PubMed

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  7. Protein disulfide isomerase regulates renal AT1 receptor function and blood pressure in rats.

    PubMed

    Wang, Xitao; Asghar, Mohammad

    2017-08-01

    The role and mechanism of renal protein disulfide isomerase (PDI) in blood pressure regulation has not been tested before. Here, we test this possibility in Sprague-Dawley rats. Rats were treated with PDI inhibitor bacitracin (100 mg·kg -1 ip·day -1 for 14 days), and then blood pressure and renal angiotensin II type 1 (AT 1 ) receptor function were determined in anesthetized rats. Renal AT 1 receptor function was determined as the ability of candesartan (an AT 1 receptor blocker) to increase diuresis and natriuresis. A second set of vehicle- and bacitracin-treated rats was used to determine biochemical parameters. Systolic blood pressure as well as diastolic blood pressure increased in bacitracin-treated compared with vehicle-treated rats. Compared with vehicle, bacitracin-treated rats showed increased diuresis and natriuresis in response to candesartan (10-µg iv bolus dose) suggesting higher AT 1 receptor function in these rats. These were associated with higher renin activities in the plasma and renal tissues. Furthermore, urinary 8-isoprostane and kidney injury molecule-1 levels were higher and urinary antioxidant capacity was lower in bacitracin-treated rats. Renal protein carbonyl and nitrotyrosine levels also were higher in bacitracin- compared with vehicle-treated rats, suggesting oxidative stress burden in bacitracin-treated rats. Moreover, PDI activity decreased and its protein levels increased in renal tissues of bacitracin-treated rats. Also, nuclear levels of Nrf2 transcription factor, which regulates redox homeostasis, were decreased in bacitracin-treated rats. Furthermore, tissue levels of Keap1, an Nrf2 inhibitory molecule, and tyrosine 216-phosphorylated GSK3β protein, an Nrf2 nuclear export protein, were increased in bacitracin-treated rats. These results suggest that renal PDI by regulating Keap1-Nrf2 pathway acts as an antioxidant, maintaining redox balance, renal AT 1 receptor function, and blood pressure in rats. Copyright © 2017 the

  8. RNA turnover and protein synthesis in fish cells.

    PubMed

    Smith, R W; Palmer, R M; Houlihan, D F

    2000-03-01

    Protein synthesis in fish has been previously correlated with RNA content. The present study investigates whether protein and RNA synthesis rates are similarly related. Protein and RNA synthesis rates were determined from 3H-phenylalanine and 3H-uridine incorporation, respectively, and expressed as % x day(-1) and half-lives, respectively. Three fibroblast cell lines were used: BF-2, RTP, CHSE 214, which are derived from the bluegill, rainbow trout and Chinook salmon, respectively. These cells contained similar RNA concentrations (approximately 175 microg RNA x mg(-1) cell protein). Therefore differences in protein synthesis rates, BF-2 (31.3 +/- 1.8)>RTP (25.1 +/- 1.7)>CHSE 214 (17.6 +/-1.1), were attributable to RNA translational efficiency. The most translationally efficient RNA (BF-2 cells), 1.8 mg protein synthesised x microg(-1) RNA x day(-1), corresponded to the lowest RNA half-life, 75.4 +/- 6.4 h. Translationally efficient RNA was also energetically efficient with BF-2 cells exploiting the least costly route of nucleotide supply (i.e. exogenous salvage) 3.5-6.0 times more than the least translationally efficient RNA (CHSE 214 cells). These data suggest that differential nucleotide supply, between intracellular synthesis and exogenous salvage, constitutes the area of pre-translational flexibility exploited to maintain RNA synthesis as a fixed energetic cost component of protein synthesis.

  9. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    PubMed

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  10. Effect of dietary protein restriction on renal ammonia metabolism

    PubMed Central

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  11. Role of bone morphogenetic protein-7 in renal fibrosis

    PubMed Central

    Li, Rui Xi; Yiu, Wai Han; Tang, Sydney C. W.

    2015-01-01

    Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application. PMID:25954203

  12. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  13. Cell-free protein synthesis: the state of the art.

    PubMed

    Whittaker, James W

    2013-02-01

    Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.

  14. Liver protein synthesis stays elevated after chemotherapy in tumour-bearing mice.

    PubMed

    Samuels, Sue E; McLaren, Teresa A; Knowles, Andrew L; Stewart, Sarah A; Madelmont, Jean-Claude; Attaix, Didier

    2006-07-28

    We studied the effect of chemotherapy on liver protein synthesis in mice bearing colon 26 adenocarcinoma (C26). Liver protein mass decreased (-32%; P<0.05) in cachectic mice, but protein synthesis increased (20-35%; P<0.05) in cachectic mice, which is consistent with increased export protein synthesis. Increased protein synthesis in tumour-bearing mice was primarily mediated by increasing ( approximately 15%; P<0.05) the RNA concentration, i.e. the capacity for protein synthesis (Cs; mg RNA/g protein). Cystemustine, a nitrosourea chemotherapy that cures C26 with 100% efficacy, rapidly restored liver protein mass; protein synthesis however stayed higher than in healthy mice ( approximately 15%) throughout the initial and later stages of recovery. Chemotherapy had no significant effect on liver protein mass and synthesis in healthy mice. Reduced food intake was not a factor in this model. These data suggest a high priority for liver protein synthesis during cancer cachexia and recovery.

  15. Protein chemical synthesis by α-ketoacid-hydroxylamine ligation.

    PubMed

    Harmand, Thibault J; Murar, Claudia E; Bode, Jeffrey W

    2016-06-01

    Total chemical synthesis of proteins allows researchers to custom design proteins without the complex molecular biology that is required to insert non-natural amino acids or the biocontamination that arises from methods relying on overexpression in cells. We describe a detailed procedure for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA ligation), using (S)-5-oxaproline (Opr) as a key building block. This protocol comprises two main parts: (i) the synthesis of peptide fragments by standard fluorenylmethoxycarbonyl (Fmoc) chemistry and (ii) the KAHA ligation between fragments containing Opr and a C-terminal peptide α-ketoacid. This procedure provides an alternative to native chemical ligation (NCL) that could be valuable for the synthesis of proteins, particularly targets that do not contain cysteine residues. The ligation conditions-acidic DMSO/H2O or N-methyl-2-pyrrolidinone (NMP)/H2O-are ideally suited for solubilizing peptide segments, including many hydrophobic examples. The utility and efficiency of the protocol is demonstrated by the total chemical synthesis of the mature betatrophin (also called ANGPTL8), a 177-residue protein that contains no cysteine residues. With this protocol, the total synthesis of the betatrophin protein has been achieved in around 35 working days on a multimilligram scale.

  16. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  17. Renal synthesis of leukaemia inhibitory factor (LIF), under normal and inflammatory conditions.

    PubMed

    Morel, D S; Taupin, J L; Potier, M; Deminière, C; Potaux, L; Gualde, N; Moreau, J F

    2000-03-01

    Leukaemia inhibitory factor (LIF) is a pleiotropic cytokine that is particularly involved in nephrogenesis and repair of the extracellular matrix. Transgenic mice overexpressing LIF have mesangial proliferative glomerulonephritis. Also, during local inflammatory reactions, such as kidney graft rejection or urinary tract infections, urinary LIF excretion is enhanced. The aim of the study therefore was to study LIF production by normal and inflammatory diseased kidneys (glomerulonephritis or graft rejection), maintained in short cultures. To determine the responsibility of the kidney itself in LIF synthesis, we measured LIF secretion into the culture supernatants of human mesangial or renal tubular epithelial cells. Fragments from diseased kidneys, whether grafts or not, released more LIF than normal human kidney fragments, mesangial or renal tubular epithelial cells. However, LIF production was delayed in renal transplants compared to glomerulonephritic samples taken from untreated patients. In every case, LIF production was enhanced by interleukin 1beta (IL-1beta) and inhibited by IL-4 or dexamethasone, except in two severe rejection episodes. So, LIF appeared to respond to pro- and anti-inflammatory stimuli, in vitro and in vivo. Considering its biological effects, LIF could play a role in inflammatory renal diseases. Copyright 2000 Academic Press.

  18. Protein synthesis and the recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. I. Nuclear-directed protein synthesis.

    PubMed

    Heude, M; Chanet, R; Moustacchi, E

    1975-04-01

    The contribution of nuclear-directed protein synthesis in the repair of lethal and mitochondrial genetic damage after UV-irradiation of exponential and stationary phage haploid yeast cells was examined. This was carried out using cycloheximide (CH), a specific inhibitor of nuclear protein synthesis. It appears that nuclear protein synthesis is required for the increase in survival seen after the liquid holding of cells at both stages, as well as for the "petite" recovery seen after the liquid holding of exponential phase cells. The characteristic negative liquid holding effect observed for the UV induction of "petites" in stationary phase cells (increase of the frequency of "petites" during storage) remained following all the treatments which inhibited nuclear protein synthesis. However, the application of photoreactivating light following dark holding with cycloheximide indicates that some steps of the repair of both nuclear and mitochondrial damage are performed in the absence of a synthesis of proteins.

  19. Renal Diet for Vegetarians: Which Protein Sources Are Best?

    MedlinePlus

    ... for calories and other important nutrients. Type of vegetarian diet Protein sources Vegan — allows only plant-based foods ... vegan_renal_patients.php. Accessed April 6, 2016. Vegetarian diets in chronic kidney disease. Vegetarian Nutrition, Academy of ...

  20. A mechanism regulating proteolysis of specific proteins during renal tubular cell growth.

    PubMed

    Franch, H A; Sooparb, S; Du, J; Brown, N S

    2001-06-01

    Growth factors suppress the degradation of cellular proteins in lysosomes in renal epithelial cells. Whether this process also involves specific classes of proteins that influence growth processes is unknown. We investigated chaperone-mediated autophagy, a lysosomal import pathway that depends on the 73-kDa heat shock cognate protein and allows the degradation of proteins containing a specific lysosomal import consensus sequence (KFERQ motif). Epidermal growth factor (EGF) or ammonia, but not transforming growth factor beta1, suppresses total protein breakdown in cultured NRK-52E renal epithelial cells. EGF or ammonia prolonged the half-life of glyceraldehyde-3-phosphate dehydrogenase, a classic substrate for chaperone-mediated autophagy, by more than 90%, whereas transforming growth factor beta1 did not. EGF caused a similar increase in the half-life of the KFERQ-containing paired box-related transcription factor, Pax2. The increase in half-life was accompanied by an increased accumulation of proteins with a KFERQ motif including glyceraldehyde-3-phosphate dehydrogenase and Pax2. Ammonia also increased the level of the Pax2 protein. Lysosomal import of KFERQ proteins depends on the abundance of the 96-kDa lysosomal glycoprotein protein (lgp96), and we found that EGF caused a significant decrease in lgp96 in cellular homogenates and associated with lysosomes. We conclude that EGF in cultured renal cells regulates the breakdown of proteins targeted for destruction by chaperone-mediated autophagy. Because suppression of this pathway results in an increase in Pax2, these results suggest a novel mechanism for the regulation of cell growth.

  1. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    PubMed

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  2. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma

    PubMed Central

    Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551

  3. Attenuation of the activated mammalian target of rapamycin pathway might be associated with renal function reserve by a low-protein diet in the rat remnant kidney model.

    PubMed

    Ohkawa, Sakae; Yanagida, Momoko; Uchikawa, Tsuyoshi; Yoshida, Takuya; Ikegaya, Naoki; Kumagai, Hiromichi

    2013-09-01

    The mammalian target of rapamycin (mTOR), a regulator of cellular protein synthesis and cell growth, plays an important role in the progression of renal hypertrophy and renal dysfunction in experimental chronic kidney disease models. Because the mTOR activity is regulated by nutrients including amino acids, we tested the hypothesis that the renoprotective effect of a low-protein diet (LPD) might be associated with the attenuation of the renal mTOR pathway. In this study, 5/6 nephrectomized rats were fed an LPD or a normal protein diet (NPD), and a number of rats that were fed an NPD received rapamycin (1.0 mg kg⁻¹ d⁻¹), a specific inhibitor of mTOR. After 6 weeks, renal tissue was collected to evaluate the activity of the mTOR pathway and histologic changes. The phosphorylation of p70S6k, a kinase in the downstream of mTOR, was significantly higher in the NPD-fed rats that showed progressive renal dysfunction than in the sham-operated rats (NPD). The LPD attenuated the excessive phosphorylation of p70S6k concomitant with reduced proteinuria and improved renal histologic changes in the 5/6 nephrectomized rats. The effects of the LPD were similar to the effects of rapamycin. The expression of phosphorylated p70S6k was significantly correlated with proteinuria (r² = 0.63, P < .001), the glomerular area (r² = 0.60, P < .001), and the number of phosphorylated Smad2-positive cells in the glomerulus (r² = 0.26, P < .05) of these rats. These results suggest that the preventive effect of an LPD on the progression of renal failure is associated with attenuation of the activated mTOR/p70S6k pathway in the rat remnant kidney model. © 2013.

  4. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  5. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1

    PubMed Central

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins. PMID:26885277

  6. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation.

    PubMed

    Wang, Xin; Feng, Shaozhen; Fan, Jinjin; Li, Xiaoyan; Wen, Qiong; Luo, Ning

    2016-09-15

    Smad3 is a critical signaling protein in renal fibrosis. Proteolysis targeting chimeric molecules (PROTACs) are small molecules designed to degrade target proteins via ubiquitination. They have three components: (1) a recognition motif for E3 ligase; (2) a linker; and (3) a ligand for the target protein. We aimed to design a new PROTAC to prevent renal fibrosis by targeting Smad3 proteins and using hydroxylated pentapeptide of hypoxia-inducible factor-1α as the recognition motif for von Hippel-Lindau (VHL) ubiquitin ligase (E3). Computer-aided drug design was used to find a specific ligand targeting Smad3. Surface plasmon resonance (SPR) was used to verify and optimize screening results. Synthesized PROTAC was validated by two-stage mass spectrometry. The PROTAC's specificity for VHL (E3 ligase) was proved with two human renal carcinoma cell lines, 786-0 (VHL(-)) and ACHN (VHL(+)), and its anti-fibrosis effect was tested in renal fibrosis cell models. Thirteen small molecular compounds (SMCs) were obtained from the Enamine library using GLIDE molecular docking program. SPR results showed that #8 SMC (EN300-72284) combined best with Smad3 (KD=4.547×10(-5)M). Mass spectrometry showed that synthesized PROTAC had the correct peptide molecular weights. Western blot showed Smad3 was degraded by PROTAC with whole-cell lysate of ACHN but not 786-0. Degradation, but not ubiquitination, of Smad3 was inhibited by proteasome inhibitor MG132. The upregulation of fibronectin and Collagen I induced by TGF-β1 in both renal fibroblast and mesangial cells were inhibited by PROTAC. The new PROTAC might prevent renal fibrosis by targeting Smad3 for ubiquitination and degradation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Nutritional status, functional capacity and exercise rehabilitation in end-stage renal disease.

    PubMed

    Mercer, T H; Koufaki, P; Naish, P F

    2004-05-01

    A significant percentage of patients with end-stage renal disease are malnourished and/or muscle wasted. Uremia is associated with decreased protein synthesis and increased protein degradation. Fortunately, nutritional status has been shown to be a modifiable risk factor in the dialysis population. It has long been proposed that exercise could positively alter the protein synthesis-degradation balance. Resistance training had been considered as the only form of exercise likely to induce anabolism in renal failure patients. However, a small, but growing, body of evidence indicates that for some dialysis patients, favourable improvements in muscle atrophy and fibre hypertrophy can be achieved via predominantly aerobic exercise training. Moreover, some studies tentatively suggest that nutritional status, as measured by SGA, can also be modestly improved by modes and patterns of exercise training that have been shown to also increase muscle fibre cross-sectional area and improve functional capacity. Functional capacity tests can augment the information content of basic nutritional status assessments of dialysis patients and as such are recommended for routine inclusion as a feature of all nutritional status assessments.

  8. Plant cellulose synthesis: CESA proteins crossing kingdoms.

    PubMed

    Kumar, Manoj; Turner, Simon

    2015-04-01

    Cellulose is a biopolymer of considerable economic importance. It is synthesised by the cellulose synthase complex (CSC) in species ranging from bacteria to higher plants. Enormous progress in our understanding of bacterial cellulose synthesis has come with the recent publication of both the crystal structure and biochemical characterisation of a purified complex able to synthesis cellulose in vitro. A model structure of a plant CESA protein suggests considerable similarity between the bacterial and plant cellulose synthesis. In this review article we will cover current knowledge of how plant CESA proteins synthesise cellulose. In particular the focus will be on the lessons learned from the recent work on the catalytic mechanism and the implications that new data on cellulose structure has for the assembly of CESA proteins into the large complex that synthesis plant cellulose microfibrils. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  10. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig.

    PubMed

    Marini, Juan C; Agarwal, Umang; Robinson, Jason L; Yuan, Yang; Didelija, Inka C; Stoll, Barbara; Burrin, Douglas G

    2017-08-01

    The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for arginine synthesis argininosuccinate synthase (ASS1) and lyase (ASL) are present in the gut. However, evidence of high plasma citrulline concentrations in neonates suggests otherwise. We quantified in vivo citrulline production in premature (10 days preterm), neonatal (7 days old), and young pigs (35 days old) using citrulline tracers. Neonatal pigs had higher fluxes (69 µmol·kg -1 ·h -1 , P < 0.001) than premature and young pigs (43 and 45 µmol·kg -1 ·h -1 , respectively). Plasma citrulline concentration was also greater in neonatal pigs than in the other age groups. We also determined the site of synthesis and utilization of citrulline in neonatal and young pigs by measuring organ balances across the gut and the kidney. Citrulline was released from the gut and utilized by the kidney in both neonatal and young pigs. The abundance and localization of the enzymes involved in the synthesis and utilization were determined in intestinal and kidney tissue. Despite the presence of ASS1 and ASL in the neonatal small intestine, the lack of colocalization with the enzymes that produce citrulline results in the release of citrulline by the PDV and its utilization by the kidney to produce arginine. In conclusion, the intestinal-renal axis for arginine synthesis is present in the neonatal pig. Copyright © 2017 the American Physiological Society.

  11. Roles of mitogen-activated protein kinases and angiotensin II in renal development.

    PubMed

    Balbi, A P C; Francescato, H D C; Marin, E C S; Costa, R S; Coimbra, T M

    2009-01-01

    Experimental and clinical evidence suggests that angiotensin II (AII) participates in renal development. Renal AII content is several-fold higher in newborn rats and mice than in adult animals. AII receptors are also expressed in higher amounts in the kidneys of newborn rats. The kidneys of fetuses whose mother received a type 1 AII receptor (AT1) antagonist during gestation present several morphological alterations. Mutations in genes that encode components of the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Morphological changes were detected in the kidneys of 3-week-old angiotensin-deficient mice. Mitogen-activated protein kinases (MAPKs) are important mediators that transduce extracellular stimuli to intracellular responses. The MAPK family comprises three major subgroups, namely extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinases (JNK), and p38 MAPK (p38). Important events in renal growth during nephrogenesis such as cellular proliferation and differentiation accompanied by apoptosis on a large scale can be mediated by MAPK pathways. A decrease in glomerulus number was observed in embryos cultured for 48 and 120 h with ERK or p38 inhibitors. Many effects of AII are mediated by MAPK pathways. Treatment with losartan during lactation provoked changes in renal function and structure associated with alterations in AT1 and type 2 AII (AT2) receptors and p-JNK and p-p38 expression in the kidney. Several studies have shown that AII and MAPKs play an important role in renal development. However, the relationship between the effects of AII and MAPK activation on renal development is still unclear.

  12. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    PubMed

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  13. Externalization of phosphatidylserine via multidrug resistance 1 (MDR1)/P-glycoprotein in oxalate-treated renal epithelial cells: implications for calcium oxalate urolithiasis.

    PubMed

    Li, Yu-Hang; Yu, Shi-Liang; Gan, Xiu-Guo; Pan, Shang-Ha; Teng, Yue-Qiu; An, Rui-Hua

    2016-02-01

    We investigated the possible involvement of multidrug resistance protein 1 P-glycoprotein (MDR1 P-gp) in the oxalate-induced redistribution of phosphatidylserine in renal epithelial cell membranes. Real-time PCR and western blotting were used to examine MDR1 expression in Madin-Darby canine kidney cells at the mRNA and protein levels, respectively, whereas surface-expressed phosphatidylserine was detected by the annexin V-binding assay. Oxalate treatment resulted in increased synthesis of MDR1, which resulted in phosphatidylserine (PS) externalization in the renal epithelial cell membrane. Treatment with the MDR1 inhibitor PSC833 significantly attenuated phosphatidylserine externalization. Transfection of the human MDR1 gene into renal epithelial cells significantly increased PS externalization. To our knowledge, this study is the first to show that oxalate increases the synthesis of MDR1 P-gp, which plays a key role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.

  14. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise

    PubMed Central

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  15. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  16. Adeno-associated virus rep protein synthesis during productive infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-02-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with (/sup 35/S)methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing tomore » a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.« less

  17. Dendritic protein synthesis in the normal and diseased brain

    PubMed Central

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  18. 9-Fluorenylmethyloxycarbonyl/ tbutyl-based convergent protein synthesis.

    PubMed

    Barlos, K; Gatos, D

    1999-01-01

    Besides linear solid phase peptide synthesis, segment condensation in solution and chemical ligation, convergent peptide synthesis (CPS) was developed in order to enable the efficient preparation of complex peptides and small proteins. According to this synthetic strategy, solid phase synthesized and suitably protected peptide fragments corresponding to the entire peptide/protein-sequence are condensed on a solid support or in solution, to the target protein. This review summarizes CPS performed utilizing the mild 9-fluorenylmethyloxycarbonyl/tbutyloxycarbonyl-based protecting scheme for the amino acids. Copyright 1999 John Wiley & Sons, Inc.

  19. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.

    PubMed

    Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun

    2012-12-27

    L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.

  20. Understanding Protein Synthesis: An Interactive Card Game Discussion

    ERIC Educational Resources Information Center

    Lewis, Alison; Peat, Mary; Franklin, Sue

    2005-01-01

    Protein synthesis is a complex process and students find it difficult to understand. This article describes an interactive discussion "game" used by first year biology students at the University of Sydney. The students, in small groups, use the game in which the processes of protein synthesis are actioned by the students during a…

  1. Acute myotube protein synthesis regulation by IL-6-related cytokines.

    PubMed

    Gao, Song; Durstine, J Larry; Koh, Ho-Jin; Carver, Wayne E; Frizzell, Norma; Carson, James A

    2017-11-01

    IL-6 and leukemia inhibitory factor (LIF), members of the IL-6 family of cytokines, play recognized paradoxical roles in skeletal muscle mass regulation, being associated with both growth and atrophy. Overload or muscle contractions can induce a transient increase in muscle IL-6 and LIF expression, which has a regulatory role in muscle hypertrophy. However, the cellular mechanisms involved in this regulation have not been completely identified. The induction of mammalian target of rapamycin complex 1 (mTORC1)-dependent myofiber protein synthesis is an established regulator of muscle hypertrophy, but the involvement of the IL-6 family of cytokines in this process is poorly understood. Therefore, we investigated the acute effects of IL-6 and LIF administration on mTORC1 signaling and protein synthesis in C2C12 myotubes. The role of glycoprotein 130 (gp130) receptor and downstream signaling pathways, including phosphoinositide 3-kinase (PI3K)-Akt-mTORC1 and signal transducer and activator of transcription 3 (STAT3)-suppressor of cytokine signaling 3 (SOCS3), was investigated by administration of specific siRNA or pharmaceutical inhibitors. Acute administration of IL-6 and LIF induced protein synthesis, which was accompanied by STAT3 activation, Akt-mTORC1 activation, and increased SOCS3 expression. This induction of protein synthesis was blocked by both gp130 siRNA knockdown and Akt inhibition. Interestingly, STAT3 inhibition or Akt downstream mTORC1 signaling inhibition did not fully block the IL-6 or LIF induction of protein synthesis. SOCS3 siRNA knockdown increased basal protein synthesis and extended the duration of the protein synthesis induction by IL-6 and LIF. These results demonstrate that either IL-6 or LIF can activate gp130-Akt signaling axis, which induces protein synthesis via mTORC1-independent mechanisms in cultured myotubes. However, IL-6- or LIF-induced SOCS3 negatively regulates the activation of myotube protein synthesis. Copyright © 2017 the

  2. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  3. The origin of polynucleotide-directed protein synthesis

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  4. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  5. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis

    PubMed Central

    Liu, Han-Hsuan

    2016-01-01

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual

  6. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    NASA Technical Reports Server (NTRS)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  7. The energetic cost of protein synthesis in isolated hepatocytes of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pannevis, M C; Houlihan, D F

    1992-01-01

    To establish the energetic cost of protein synthesis, isolated trout hepatocytes were used to measure protein synthesis and respiration simultaneously at a variety of temperatures. The presence of bovine serum albumin was essential for the viability of isolated hepatocytes during isolation, but, in order to measure protein synthesis rates, oxygen consumption rates and RNA-to-protein ratios, BSA had to be washed from the cells. Isolated hepatocytes were found to be capable of protein synthesis and oxygen consumption at constant rates over a wide range of oxygen tension. Cycloheximide was used to inhibit protein synthesis. Isolated hepatocytes used on average 79.7 +/- 9.5% of their total oxygen consumption on cycloheximide-sensitive protein synthesis and 2.8 +/- 2.8% on maintaining ouabain-sensitive Na+/K(+)-ATPase activity. The energetic cost of protein synthesis in terms of moles of adenosine triphosphate per gram of protein synthesis decreased with increasing rates of protein synthesis at higher temperatures. It is suggested that the energetic cost consists of a fixed (independent of synthesis rate) and a variable component (dependent on synthesis rate).

  8. Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis.

    PubMed

    Pain, Debkumar; Dancis, Andrew

    2016-06-01

    Fe-S cluster assembly is an essential process for all cells. Impairment of Fe-S cluster assembly creates diseases in diverse and surprising ways. In one scenario, the loss of function of lipoic acid synthase, an enzyme with Fe-S cluster cofactor in mitochondria, impairs activity of various lipoamide-dependent enzymes with drastic consequences for metabolism. In a second scenario, the heme biosynthetic pathway in red cell precursors is specifically targeted, and iron homeostasis is perturbed, but lipoic acid synthesis is unaffected. In a third scenario, tRNA modifications arising from action of the cysteine desulfurase and/or Fe-S cluster proteins are lost, which may lead to impaired protein synthesis. These defects can then result in cancer, neurologic dysfunction or type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Peptide-induced prostaglandin biosynthesis in the renal-vein-constricted kidney

    PubMed Central

    Myers, Stuart I.; Zipser, Robert; Needleman, Philip

    1981-01-01

    The ipsilateral kidney was removed from a rabbit 48h after unilateral partial renal-vein-constriction and was perfused with Krebs–Henseleit media at 37°C. Hourly administration of a fixed dose of bradykinin to the renal-vein-constricted kidney demonstrated a marked time-dependent increase in the release of bioassayable prostaglandin E2 and thromboxane A2 into the venous effluent as compared with the response of the contralateral control kidney. The renal-vein-constricted kidney produced up to 60 times more prostaglandin E2 in response to bradykinin after 6h of perfusion as compared with the contralateral kidney; thromboxane A2 was not demonstratable in the contralateral kidney. Inhibition of protein synthesis de novo in the perfused renal-vein-constricted kidney with cycloheximide lessened the hormone-stimulated increase in prostaglandin E2 by 94% and in thromboxane A2 by 90% at 6h of perfusion. Covalent acetylation of the renal cyclo-oxygenase by prior oral administration of aspirin to the rabbit inhibited initial bradykinin-stimulated prostaglandin E2 biosynthesis 71% at 1h of perfusion. However, there was total recovery from aspirin in the renal-vein-constricted kidney by 2h of perfusion after bradykinin stimulation. Total cyclo-oxygenase activity as measured by [14C]arachidonate metabolism to labelled prostaglandins by renal cortical and renal medullary microsomal fractions prepared from 6h-perfused kidneys demonstrated that renal-vein-constricted kidney-cortical cyclo-oxygenase activity was significantly greater than the contralateral-kidney-cortical conversion, whereas medullary arachidonate metabolism was comparable in both the renal-vein-constricted kidney and contralateral kidney. These data suggest that perfusion of a renal-vein-constricted kidney initiates a time-dependent induction of synthesis of prostaglandin-producing enzymes, which appear to be primarily localized in the renal cortex. The presence of the synthetic capacity to generate very potent

  10. Neural Protein Synthesis during Aging: Effects on Plasticity and Memory

    PubMed Central

    Schimanski, Lesley A.; Barnes, Carol A.

    2010-01-01

    During aging, many experience a decline in cognitive function that includes memory loss. The encoding of long-term memories depends on new protein synthesis, and this is also reduced during aging. Thus, it is possible that changes in the regulation of protein synthesis contribute to the memory impairments observed in older animals. Several lines of evidence support this hypothesis. For instance, protein synthesis is required for a longer period following learning to establish long-term memory in aged rodents. Also, under some conditions, synaptic activity or pharmacological activation can induce de novo protein synthesis and lasting changes in synaptic transmission in aged, but not young, rodents; the opposite results can be observed in other conditions. These changes in plasticity likely play a role in manifesting the altered place field properties observed in awake and behaving aged rats. The collective evidence suggests a link between memory loss and the regulation of protein synthesis in senescence. In fact, pharmaceuticals that target the signaling pathways required for induction of protein synthesis have improved memory, synaptic plasticity, and place cell properties in aged animals. We suggest that a better understanding of the mechanisms that lead to different protein expression patterns in the neural circuits that change as a function of age will enable the development of more effective therapeutic treatments for memory loss. PMID:20802800

  11. The Putative Role of the Antiageing Protein Klotho in Cardiovascular and Renal Disease

    PubMed Central

    Maltese, Giuseppe; Karalliedde, Janaka

    2012-01-01

    Ageing is a multifactorial process often characterized by a progressive decline in physiological function(s). Ageing can and is often associated with an increased incidence of cardiovascular and renal disease. Klotho is a novel antiageing gene that encodes a protein with multiple pleiotropic functions including an emerging role in cardiorenal disease. Mice deficient for this gene display a phenotype of premature human ageing characterized by diffuse vascular calcification, altered calcium/phosphate metabolism, and shortened lifespan. Klotho is mainly expressed in the renal tubules but it also exists as circulating soluble form detectable in the blood, with systemic effects. Reduction in soluble Klotho has been associated with renal disease, hyperphosphataemia, increased oxidative stress, endothelial dysfunction, and diffuse vascular calcification. Conversely, overexpression of Klotho promotes cardiovascular-renal protection. The majority of the research on Klotho has been conducted in vitro and in animal studies but there is emerging data from human studies which suggest that Klotho may be a modifiable factor involved in the pathogenesis of cardiovascular and renal disease in at-risk populations. Further data is required to confirm if this novel protein can emerge as therapeutic tool that may be used to prevent or slow progression of cardiorenal disease. PMID:22121479

  12. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    PubMed

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning

  13. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Dever, Thomas E.; Kinzy, Terri Goss; Pavitt, Graham D.

    2016-01-01

    In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae. The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs. PMID:27183566

  14. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    PubMed

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  15. Different expression patterns of renal Na+/K+-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    PubMed

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na + /K + -ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Energizing Eukaryotic Cell-Free Protein Synthesis With Glucose Metabolism

    PubMed Central

    Hodgman, C. Eric; Jewett, Michael C.

    2015-01-01

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL−1 active luciferase in batch reactions with 16mM glucose and 25mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. PMID:26054976

  17. Enhanced renal prostaglandin production in the dog. I. Effects on renal function.

    PubMed

    Tannenbaum, J; Splawinski, J A; Oates, J A; Nies, A S

    1975-01-01

    The changes in renal function produced by endogenous synthesis of prostaglandins by the kidney were evaluated by infusing sodium arachidonate, the prescursor of the prostaglandins, into one renal artery of the dog. These changes were compared with those produced by similar infusions on performed prostaglandin (PG) E2 and F2alpha.PGE2given at 0.01-0.3 mug/kg min--1 produced dose-related increases in urine flow, sodium and potassium excretion, free water clearance, and renal blood flow. The glomerular filtration rage increased only at the lowest dose and the calculated filtration fraction fell. Arachidonic acid at 1.0-30.0 mug/kg min--1 similarly produced dose-related increases in electrolyte excretion, but the increase in renal blood flow was much less than that produced by PGE2 and there were no changes in glomerular filtration rate, filtration fraction, or free water clearances. PGF2alpha had essentially no effects at infusion rates of 0.03-1.0 mug/kg min--1. All renal effects of arachidonic acid were inhibited by simultaneous infusions of an inhibitor of prostaglandin synthetase, 5, 8, 11,14-eicosatetraynoic acid (20:4). None of the effects produced by PGE2 were inhibited by 20:4. These results indicate that enhanced endogenous renal prostaglandin synthesis, which can be produced by arachidonate infusion, results in significant alterations of renal function. This finding strengthens the hypothesis that renal prostaglandins formed in vivo have physiological importance as regulators of renal function.

  18. Regulation of protein synthesis by amino acids in muscle of neonates

    PubMed Central

    Suryawan, Agus; Davis, Teresa A.

    2011-01-01

    The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed. PMID:21196241

  19. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet.

    PubMed

    Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M

    2000-10-27

    The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p < 0.02), isoleucine (p < 0.03), and valine (p < 0.02) while their renal fractional excretion declined (p < 0.02, p < 0.01 resp.). Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p < 0.05) and a hyperbolic relationship between inulin clearance and fractional excretion of BCAA (p < 0.01) were seen. Moreover, a significant decrease in proteinuria (p < 0.02), plasma urea concentration and renal urea excretion and a rise in albumin level (p < 0.03) were noted. We conclude that in patients with CRI on a low protein diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.

  20. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    PubMed

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  1. Advanced Glycation End-Products Induce Connective Tissue Growth Factor-Mediated Renal Fibrosis Predominantly through Transforming Growth Factor β-Independent Pathway

    PubMed Central

    Zhou, Guihua; Li, Cai; Cai, Lu

    2004-01-01

    Advanced glycation end-products (AGEs) play a critical role in diabetic nephropathy by stimulating extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) is a potent inducer of ECM synthesis and increases in the diabetic kidneys. To determine the critical role of CTGF in AGE-induced ECM accumulation leading to diabetic nephropathy, rats were given AGEs by intravenous injection for 6 weeks. AGE treatment induced a significant renal ECM accumulation, as shown by increases in periodic acid-Schiff-positive materials, fibronectin, and type IV collagen (Col IV) accumulation in glomeruli, and a mild renal dysfunction, as shown by increases in urinary volume and protein content. AGE treatment also caused significant increases in renal CTGF and transforming growth factor (TGF)-β1 mRNA and protein expression. Direct exposure of rat mesangial cells to AGEs in vitro significantly induced increases in fibronectin and Col IV production, which could be completely prevented by pretreatment with anti-CTGF antibody. AGE treatment also significantly increased both TGF-β1 and CTGF mRNA expression; however, inhibition of TGF-β1 mRNA expression by shRNA or neutralization of TGF-β1 protein by anti-TGF-β1 antibody did not significantly prevent AGE-increased expression of CTGF mRNA and protein. These results suggest that AGE-induced CTGF expression, predominantly through a TGF-β1-independent pathway, plays a critical role in renal ECM accumulation leading to diabetic nephropathy. PMID:15579446

  2. The role of Myc-induced protein synthesis in cancer

    PubMed Central

    Ruggero, Davide

    2009-01-01

    Deregulation in different steps of translational control is an emerging mechanism for cancer formation. One example of an oncogene with a direct role in control of translation is the Myc transcription factor. Myc directly increases protein synthesis rates by controlling the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III and rDNA. However, the contribution of Myc-dependent increases in protein synthesis towards the multi-step process leading to cancer has remained unknown. Recent evidence strongly suggests that Myc oncogenic signaling may monopolize the translational machinery to elicit cooperative effects on cell growth, cell cycle progression, and genome instability as a mechanism for cancer initiation. Moreover, new genetic tools to restore aberrant increases in protein synthesis control are now available, which should enable the dissection of important mechanisms in cancer that rely on the translational machinery. PMID:19934336

  3. Prostaglandins and nonsteroidal anti-inflammatory drugs. Effects on renal hemodynamics.

    PubMed

    DiBona, G F

    1986-01-17

    Renal prostaglandins are important modulators of renal hemodynamic function. Their synthesis from arachidonic acid precursor is regulated by neurohumoral vasoactive substances as well as by intrarenal factors. Endogenous renal prostaglandins exert little influence on renal blood flow and glomerular filtration rate in the basal state. In contrast, inhibition of cyclooxygenase-dependent arachidonic acid metabolism with nonsteroidal anti-inflammatory drugs in states of decreased renal perfusion causes marked alterations in these variables. Thus, clinical states characterized by decreased intravascular volume (decreased effective blood volume) with decreased renal perfusion augment the activity of various neurohumoral vasoactive systems and result in an increased dependence of renal hemodynamics on endogenous renal prostaglandin synthesis, which is stimulated, in a compensatory manner, by these same systems. The development of newer drugs that undergo biotransformation in the kidney between active and inactive forms may permit a lesser degree of renal cyclooxygenase inhibition, with the possibility of a reduction in the adverse effects on renal blood flow and glomerular filtration rate. Appropriate clinical use of nonsteroidal anti-inflammatory drugs requires careful consideration of the potential deleterious consequences of prostaglandin synthesis inhibition. Prostaglandins are considered to be autacoids and, as such, they exert their physiologic actions close to or at the site of synthesis. Therefore, production of prostaglandins, thromboxanes, and, possibly, leukotrienes in the renal cortex by the constituent cells of the glomeruli and the arterioles would be anticipated to influence their hemodynamic functions, that is, glomerular filtration rate, renal blood flow, renal vascular resistance, and juxtaglomerular granular cell renin release.

  4. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.

    PubMed

    Kent, Stephen Bh

    2018-04-04

    A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Chemical protein synthesis: Inventing synthetic methods to decipher how proteins work.

    PubMed

    Kent, Stephen

    2017-09-15

    Total chemical synthesis of proteins has been rendered practical by the chemical ligation principle: chemoselective condensation of unprotected peptide segments equipped with unique, mutually reactive functional groups, enabled by formation of a non-native replacement for the peptide bond. Ligation chemistries are briefly described, including native chemical ligation - thioester-mediated, amide-forming reaction at Xaa-Cys sites - and its extensions. Case studies from the author's own works are used to illustrate the utility and applications of chemical protein synthesis. Selected recent developments in the field are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Cell-free protein synthesis and assembly on a biochip

    NASA Astrophysics Data System (ADS)

    Heyman, Yael; Buxboim, Amnon; Wolf, Sharon G.; Daube, Shirley S.; Bar-Ziv, Roy H.

    2012-06-01

    Biologically active complexes such as ribosomes and bacteriophages are formed through the self-assembly of proteins and nucleic acids. Recapitulating these biological self-assembly processes in a cell-free environment offers a way to develop synthetic biodevices. To visualize and understand the assembly process, a platform is required that enables simultaneous synthesis, assembly and imaging at the nanoscale. Here, we show that a silicon dioxide grid, used to support samples in transmission electron microscopy, can be modified into a biochip to combine in situ protein synthesis, assembly and imaging. Light is used to pattern the biochip surface with genes that encode specific proteins, and antibody traps that bind and assemble the nascent proteins. Using transmission electron microscopy imaging we show that protein nanotubes synthesized on the biochip surface in the presence of antibody traps efficiently assembled on these traps, but pre-assembled nanotubes were not effectively captured. Moreover, synthesis of green fluorescent protein from its immobilized gene generated a gradient of captured proteins decreasing in concentration away from the gene source. This biochip could be used to create spatial patterns of proteins assembled on surfaces.

  7. Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release.

    PubMed

    Younts, Thomas J; Monday, Hannah R; Dudok, Barna; Klein, Matthew E; Jordan, Bryen A; Katona, István; Castillo, Pablo E

    2016-10-19

    Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB 1 )-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB 1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB 1 -expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Insulin-stimulated Na/sup +/ transport in a model renal epithelium: protein synthesis dependence and receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazer-Yost, B.L.; Cox, M.

    1987-05-01

    The urinary bladder of the toad, Bufo marinus, is a well characterized model of the mammalian distal nephron. Porcine insulin (approx. 0.5-5.0 ..mu..M) stimulates net mucosal to serosal Na/sup +/ flux within 10 minutes of hormone addition. The response is maintained for at least 5 hr and is completely abolished by low doses (10..mu..M) of the epithelial Na/sup +/ channel blocker amiloride. Insulin-stimulated Na/sup +/ transport does not require new protein synthesis since it is actinomycin-D (10..mu..g/ml) insensitive. Also in 3 separate experiments in which epithelial cell proteins were examined by /sup 35/S-methionine labeling, 2-dimensional polyacrylamide gel electrophoresis/autoradiography, no insulinmore » induced proteins were observed. Equimolar concentrations of purified porcine proinsulin and insulin (0.64..mu..M) stimulate Na/sup +/ transport to the same extent. Thus, the putative toad insulin receptor may have different affinity characteristics than those demonstrated for insulin and proinsulin in mammalian tissues. Alternatively, the natriferic action of insulin in toad urinary bladders may be mediated by occupancy of another receptor. Preliminary experiments indicating that nanomolar concentrations of IGF/sub 1/ stimulate Na/sup +/ transport in this tissue support the latter contention.« less

  9. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    PubMed

    Marini, Juan C; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  10. Energizing eukaryotic cell-free protein synthesis with glucose metabolism.

    PubMed

    Anderson, Mark J; Stark, Jessica C; Hodgman, C Eric; Jewett, Michael C

    2015-07-08

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    PubMed Central

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  12. Bicarbonate dependency of betaine synthesis in cultured LLC-PK1 cells.

    PubMed

    Moeckel, G W; Lien, Y H

    1994-03-01

    Betaine, one of the major renal organic osmolytes, is synthesized from choline by choline dehydrogenase (EC 1.1.99.1) and betaine-aldehyde dehydrogenase (EC 1.2.1.8) in the kidney. A recent in vitro study has shown that betaine synthesis by renal cortical homogenate is dependent on millimolar amounts of bicarbonate. The present study was aimed to investigate the bicarbonate dependency of betaine formation in cultured LLC-PK1 cells. The data show that betaine formation increases in accordance with a rise in extracellular bicarbonate levels. The measured quantities of [14C]betaine synthesis ranged from 13.4 +/- 1.5 (4.6 mM HCO3-) to 38.0 +/- 1.4 pmol.micrograms protein-1.h-1 (24 mM HCO3-). The carbonic anhydrase inhibitor acetazolamide, added to the incubation medium to block bicarbonate transport, reduced betaine synthesis from choline by 41-49%. We conclude that betaine synthesis in LLC-PK1 cells is dependent on extracellular bicarbonate levels and is reduced by the inhibition of carbonic anhydrase. Because betaine accumulates in renal medulla during antidiuresis, our observations suggest a possible link between acid-base homeostasis and concentration mechanisms in the kidney.

  13. Rewiring protein synthesis: From natural to synthetic amino acids.

    PubMed

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampson, D.A.; Jansen, G.R.

    1985-04-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of (3-/sup 3/H)phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary glandmore » protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis.« less

  15. Phosphorylation of ribosomal protein S6 mediates compensatory renal hypertrophy

    PubMed Central

    Xu, Jinxian; Chen, Jianchun; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2014-01-01

    The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of uninephrectomy-induced kidney growth. PMID:25229342

  16. Myocardin-Related Transcription Factor A Epigenetically Regulates Renal Fibrosis in Diabetic Nephropathy

    PubMed Central

    Xu, Huihui; Wu, Xiaoyan; Qin, Hao; Tian, Wenfang; Chen, Junliang; Sun, Lina; Fang, Mingming

    2015-01-01

    Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and characterized by renal microvascular injury along with accelerated synthesis of extracellular matrix proteins causing tubulointerstitial fibrosis. Production of type I collagen, the major component of extracellular matrix, is augmented during renal fibrosis after chronic exposure to hyperglycemia. However, the transcriptional modulator responsible for the epigenetic manipulation leading to induction of type I collagen genes is not clearly defined. We show here that tubulointerstitial fibrosis as a result of DN was diminished in myocardin-related transcription factor A (MRTF-A) -deficient mice. In cultured renal tubular epithelial cells and the kidneys of mice with DN, MRTF-A was induced by glucose and synergized with glucose to activate collagen transcription. Notably, MRTF-A silencing led to the disappearance of prominent histone modifications indicative of transcriptional activation, including acetylated histone H3K18/K27 and trimethylated histone H3K4. Detailed analysis revealed that MRTF-A recruited p300, a histone acetyltransferase, and WD repeat-containing protein 5 (WDR5), a key component of the histone H3K4 methyltransferase complex, to the collagen promoters and engaged these proteins in transcriptional activation. Estradiol suppressed collagen production by dampening the expression and binding activity of MRTF-A and interfering with the interaction between p300 and WDR5 in renal epithelial cells. Therefore, targeting the MRTF-A–associated epigenetic machinery might yield interventional strategies against DN-associated renal fibrosis. PMID:25349198

  17. The relationship between protein synthesis and heat shock proteins levels in rabbit reticulocyte lysates.

    PubMed

    Matts, R L; Hurst, R

    1992-09-05

    Besides heme deficiency, protein synthesis in rabbit reticulocyte lysates becomes inhibited upon exposure to a variety of agents that mimic conditions which induce the heat shock response in cells. This inhibition has been demonstrated to be due primarily to the activation of the heme-regulated eIF-2 alpha kinase (HRI) which causes an arrest in the initiation of translation. In this report, the sensitivity of protein synthesis in hemin-supplemented lysates to inhibition by Hg2+, GSSG, methylene blue, and heat shock was examined in six different reticulocyte lysate preparations. The extent to which translation was inhibited in response to Hg2+, GSSG, methylene blue, and heat shock correlated inversely with the relative levels of the 70-kDa heat shock proteins (hsp 70) and a 56-kDa protein (p56) present in the lysates determined by Western blotting. The ability of hemin to restore protein synthesis upon addition to heme-deficient lysates was also examined. While the restoration of protein synthesis correlated roughly with the levels of hsp 90 present, the results also suggest that the heme regulation of HRI probably involves the interaction of HRI with several factors present in the lysate besides hsp 90. A comparison of two lysate preparations, which had a 2-fold difference in their protein synthesis rates, indicated that the slower translational rate of the one lysate could be accounted for by its low level of constitutive eIF-2 alpha phosphorylation, with its accompanying decrease in the eIF-2B activity and lower level of polyribosome loading. The present study supports the notion that the previously demonstrated interaction of HRI with hsp 90, hsp 70, and p56 in reticulocyte lysates may play a direct role in regulating HRI activation or activity. We hypothesize that the competition of denatured protein and HRI for the binding of hsp 70 may be a molecular signal that triggers the activation of HRI in reticulocyte lysates in response to stress. Possible functions

  18. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    PubMed

    Leventhal, J M; Chambliss, G H

    1982-12-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.

  19. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, P.D.; Dimmock, N.J.

    1977-05-15

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and ..cap alpha..-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at highmore » concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent.« less

  20. Silica Nanoparticles for Intracellular Protein Delivery: a Novel Synthesis Approach Using Green Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette

    2017-09-01

    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.

  1. THE INTRACELLULAR SITE OF SYNTHESIS OF MITOCHONDRIAL RIBOSOMAL PROTEINS IN NEUROSPORA CRASSA

    PubMed Central

    Lizardi, Paul M.; Luck, David J. L.

    1972-01-01

    The intracellular site of synthesis of mitochondrial ribosomal proteins (MRP) in Neurospora crassa has been investigated using three complementary approaches. (a) Mitochondrial protein synthesis in vitro: Tritium-labeled proteins made by isolated mitochondria were compared to 14C-labeled marker MRP by cofractionation in a two-step procedure involving isoelectric focusing and polyacrylamide gel electrophoresis. Examination of the electrophoretic profiles showed that essentially none of the peaks of in vitro product corresponded exactly to any of the MRP marker peaks. (b) Sensitivity of in vivo MRP synthesis to chloramphenicol: Cells were labeled with leucine-3H in the presence of chloramphenicol, mitochondrial ribosomal subunits were subsequently isolated, and their proteins fractionated by isoelectric focusing followed by gel electrophoresis. The labeling of every single MRP was found to be insensitive to chloramphenicol, a selective inhibitor of mitochondrial protein synthesis. (c) Sensitivity of in vivo MRP synthesis to anisomycin: We have found this antibiotic to be a good selective inhibitor of cytoplasmic protein synthesis in Neurospora. In the presence of anisomycin the labeling of virtually all MRP is inhibited to the same extent as the labeling of cytoplasmic ribosomal proteins. On the basis of these three types of studies we conclude that most if not all 53 structural proteins of mitochondrial ribosomal subunits in Neurospora are synthesized by cytoplasmic ribosomes. PMID:4261038

  2. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  3. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet - A pilot study.

    PubMed

    Jourdan, Marion; Nair, K Sreekumaran; Carter, Rickey E; Schimke, Jill; Ford, G Charles; Marc, Julie; Aussel, Christian; Cynober, Luc

    2015-06-01

    Amino acid (AA) availability is critical to maintain protein homeostasis and reduced protein intake causes a decline in protein synthesis. Citrulline, an amino acid metabolite, has been reported to stimulate muscle protein synthesis in malnourished rats. To determine whether citrulline stimulates muscle protein synthesis in healthy adults while on a low-protein diet, we studied 8 healthy participants twice in a cross-over study design. Following a 3-days of low-protein intake, either citrulline or a non-essential AA mixture (NEAA) was given orally as small boluses over the course of 8 h. [ring-(13)C6] phenylalanine and [(15)N] tyrosine were administered as tracers to assess protein metabolism. Fractional synthesis rates (FSR) of muscle proteins were measured using phenylalanine enrichment in muscle tissue fluid as the precursor pool. FSR of mixed muscle protein was higher during the administration of citrulline than during NEAA (NEAA: 0.049 ± 0.005; citrulline: 0.060 ± 0.006; P = 0.03), while muscle mitochondrial protein FSR and whole-body protein turnover were not different between the studies. Citrulline administration increased arginine and ornithine plasma concentrations without any effect on glucose, insulin, C-peptide, and IGF-1 levels. Citrulline administration did not promote mitochondria protein synthesis, transcripts, or citrate synthesis. Citrulline ingestion enhances mixed muscle protein synthesis in healthy participants on 3-day low-protein intake. This anabolic action of citrulline appears to be independent of insulin action and may offer potential clinical application in conditions involving low amino acid intake. Copyright © 2014. Published by Elsevier Ltd.

  4. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    PubMed

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1- 13 C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1- 13 C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1- 13 C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P < 0.05). During overnight sleep, myofibrillar protein-bound l-[1- 13 C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P < 0.01), representing 18 ± 6% greater incorporation of presleep protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older

  5. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    PubMed

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  6. Dietary protein restriction for renal patients: don't forget protein-free foods.

    PubMed

    D'Alessandro, Claudia; Rossi, Andrea; Innocenti, Maurizio; Ricchiuti, Guido; Bozzoli, Laura; Sbragia, Giulietta; Meola, Mario; Cupisti, Adamasco

    2013-09-01

    The treatment of chronic kidney disease (CKD) consists of pharmacological, nutritional, and psychological-social approaches. The dietary therapy of CKD, namely a low-protein low-phosphorus diet, plays a crucial role in contributing to delay the onset of end-stage renal disease (ESRD) and to protect cardiovascular and nutritional status. The protein-free food products represent a very important tool for the implementation of a low-protein diet to ensure adequate energy supply, reducing the production of nitrogenous waste products. This survey included 100 consecutive CKD patients who were asked their opinion about the use of protein-free foods. Ninety-eight patients (98%) reported a regular daily intake of protein-free pasta (as macaroni, spaghetti, etc.), which was the preferred product consumed. Actually, the taste and texture of protein-free pasta were considered as "good" or "very good" by 70% of patients. Conversely, 43% of CKD patients perceived the taste and texture of protein-free bread as "bad" or "very bad", and 30% found it "acceptable". Therefore, the main concern for the implementation of low-protein diets is the use and palatability of the protein-free products, bread in particular. The use of these products may help in reducing protein, phosphorus, and sodium intake while supplying an adequate energy intake, which represents the basis for a nutritionally safe and successful dietary treatment of advanced CKD patients. Manufacturers and food technology should make more efforts to finding new solutions to improve the taste and texture of protein-free products. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  7. [The effect of low-protein diet supplemented with ketoacids in patients with chronic renal failure].

    PubMed

    Molnár, Márta; Szekeresné Izsák, Margit; Nagy, Judit; Figler, Mária

    2009-02-01

    It is known that dietary protein restriction slows the progression of chronic renal disease. If daily protein intake is less than 0.5-0.6 g/kgbw, the diet has to be supplemented with essential aminoacids/ketoacids. In this study the authors evaluate the long-term effect of low-protein diet supplemented with ketoacids on the progression of chronic renal failure, calcium and phosphorus metabolism, nutritional status, the compliance of patients and the permanent dietary education for the compliance. 51 predialysis patients have been treated with ketoacids supplemented low-protein diet during 12-57 months (mean treatment period: 26 months). Serum creatinine raised from 349.72+/-78.04 micromol/l to 460.66+/-206.66 micromol/l (27 micromol/l/year or 2.3 micromol/l/month), glomerular filtration rate (GFR) decreased from 21.52+/-7.84 ml/min to 18.22+/-7.76 ml/min (0.83 ml/min/year or 0.07 ml/min/month). The slope of 1/serum creatinine versus time was 0.0018 by linear regression analysis. Serum parathormon decreased significantly, but serum calcium and phosphorus did not change. Nutritional status of patients did not change significantly during the follow-up period. Protein intake decreased significantly and remained at this lower level during the treatment period. According to results: low-protein diet supplemented with ketoacids was effective in slowing progression of chronic renal failure, decreased PTH, did not change nutritional status. With permanently and good education it was possible to keep patients on low-protein diet for a long period.

  8. Synthesis and Turnover of Embryonic Sea Urchin Ciliary Proteins during Selective Inhibition of Tubulin Synthesis and Assembly

    PubMed Central

    Stephens, Raymond E.

    1997-01-01

    When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state. PMID:9362062

  9. Peptide o-aminoanilides as crypto-thioesters for protein chemical synthesis.

    PubMed

    Wang, Jia-Xing; Fang, Ge-Min; He, Yao; Qu, Da-Liang; Yu, Min; Hong, Zhang-Yong; Liu, Lei

    2015-02-09

    Fully unprotected peptide o-aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o-aminoanilides as a new type of crypto-thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o-aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Erythrophagocytosis induces heat shock protein synthesis by human monocytes-macrophages.

    PubMed

    Clerget, M; Polla, B S

    1990-02-01

    Exposure of cells to elevated temperatures and other environmental stresses results in the expression of specific genes encoding the so-called heat shock proteins (HSPs). Since exogenous H2O2 induces in human monocytes the synthesis of HSPs, and previous induction of HSPs protects these cells from oxidative injury, we investigated whether HSP synthesis was also induced during generation of reactive oxygen species by the phagocyte itself during phagocytosis. As a model system, we analyzed the effects of erythrophagocytosis on protein synthesis by the human premonocytic line U937, in which phagocytosis is induced during differentiation with 1,25-dihydroxyvitamin D3. Exposure to whole erythrocytes, but not to erythrocyte ghosts, induced in the phagocytic cells only the synthesis of the 70- and 83- to 90-kDa HSPs and a 32-kDa oxidation-related stress protein identical by partial peptide mapping to heme oxygenase. The radioprotective aminothiol N-(2'-mercaptoethyl)-1,3-propanediamine (WR-1065), which can substitute for glutathione as hydrogen donor, prevented this induction. These results suggest that oxygen free radicals generated in the presence of hemoglobin-derived iron and consecutive glutathione depletion are involved in induction of stress protein synthesis during erythrophagocytosis. HSPs synthesized during phagocytosis may play a role in the phagocyte's defense mechanisms and in protective immunity.

  11. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  12. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  13. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    PubMed

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  14. [Studies of urinary proteins, FDP (fibrinogen degradation products), and NAG (N-acetyl-beta-D-glucosaminidase) in renal transplanted patients].

    PubMed

    Kunikata, S; Ikegami, M; Imanishi, M; Nishioka, T; Ishii, T; Uemura, T; Kanda, H; Matsuura, T; Akiyama, T; Kurita, T

    1989-08-01

    The urinary proteins, FDP (fibrinogen degradation products), and NAG (N-acetyl-beta-D-glucosaminidase) in renal transplanted patients were studied. SDS (sodium dodecyl sulphate) electrophoresis was used for the differentiation of urinary proteins according to their molecular size. In the azathioprine-treated patients with stable renal function, most of the urinary proteins were albumin. However, the low molecular weight (LMW) proteins, which were suggestive of tubular proteins, appeared in the urine of the ciclosporin-treated patients with stable renal function. During the rejection episodes of the ciclosporin-treated patients, the fraction of LMW proteins increased. The elevation of urinary FDP and NAG index (urinary NAG/urinary Cr) were detected in association with rejection episodes. Urinary NAG index increased in proportion to the elevation of serum Cr. However, the elevation of urinary NAG index was found in some ciclosporin-treated patients with normal serum Cr. The elevation of NAG index without the elevation of urinary FDP occurred in ciclosporin nephrotoxicity. The SDS electrophoresis of urinary proteins, urinary FDP, and urinary NAG index can be useful parameters for monitoring ciclosporin nephrotoxicity.

  15. Drug Design Relating Amebicides to Inhibition of Protein Synthesis.

    DTIC Science & Technology

    1977-09-01

    A study of the effect of emetine on protein synthesis in E. histolytica was made on log phase amebas as compared to stationary phase amebas ...Sensitivity to emetine was maintained independently of the rate of protein synthesis. Furthermore, both stages of amebas had the same capacity to bind emetine...elongation site. Finally, evidence was obtained that the capacity to bind emetine provides a basis for conferring drug resistance in amebas . A direct

  16. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  17. Mannose Receptor 2 Attenuates Renal Fibrosis

    PubMed Central

    López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.

    2012-01-01

    Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946

  18. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial.

    PubMed

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Crombag, Julie Jr; Langer, Henning; Bierau, Jörgen; Respondek, Frederique; van Loon, Luc Jc

    2016-09-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount, source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention. We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein. Sixty healthy older men [mean ± SEM age: 71 ± 1 y; body mass index (in kg/m(2)): 25.3 ± 0.3] received a primed continuous infusion of l-[ring-(13)C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate (WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals. The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35 (2.23 ± 0.07 mM) than after MCas-35 (1.53 ± 0.08 mM) and WPH-35 (1.50 ± 0.04 mM) (P < 0.01). Myofibrillar protein synthesis rates increased after ingesting MCas-35 (P < 0.01) and were higher after ingesting MCas-35 (0.050% ± 0.005%/h) than after WPH-35 (0.032% ± 0.004%/h) (P = 0.03). The postprandial increase in plasma leucine concentrations was greater after ingesting Whey-35 than after WPH-60 (peak value: 580 ± 18 compared with 378 ± 10 μM, respectively; P < 0.01), despite similar leucine contents (4.4 g leucine). Nevertheless, the ingestion of WPH-60 increased myofibrillar protein synthesis rates above basal rates (0.049% ± 0.007%/h; P = 0.02). The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an

  19. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.

    PubMed

    Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela

    2017-09-06

    In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.

  20. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet – A pilot study

    PubMed Central

    Jourdan, Marion; Nair, K. Sreekumaran; Carter, Rickey E.; Schimke, Jill; Ford, G. Charles; Marc, Julie; Aussel, Christian; Cynober, Luc

    2015-01-01

    Background and Aims Amino acid (AA) availability is critical to maintain protein homeostasis and reduced protein intake causes a decline in protein synthesis. Citrulline, an amino acid metabolite, has been reported to stimulate muscle protein synthesis in malnourished rats. Methods To determine whether citrulline stimulates muscle protein synthesis in healthy adults while on a low-protein diet, we studied 8 healthy participants twice in a cross-over study design. Following a 3-days of low-protein intake, either citrulline or a non-essential AA mixture (NEAA) was given orally as small boluses over the course of 8 hours. [ring-13C6] phenylalanine and [15N] tyrosine were administered as tracers to assess protein metabolism. Fractional synthesis rates (FSR) of muscle proteins were measured using phenylalanine enrichment in muscle tissue fluid as the precursor pool. Results FSR of mixed muscle protein was higher during the administration of citrulline than during NEAA (NEAA: 0.049 ± 0.005; citrulline: 0.060 ± 0.006; p=0.03), while muscle mitochondrial protein FSR and whole-body protein turnover were not different between the studies. Citrulline administration increased arginine and ornithine plasma concentrations without any effect on glucose, insulin, C-peptide, and IGF-1 levels. Citrulline administration did not promote mitochondria protein synthesis, transcripts, or citrate synthesis. Conclusions Citrulline ingestion enhances mixed muscle protein synthesis in healthy participants on 3-day low-protein intake. This anabolic action of citrulline appears to be independent of insulin action and may offer potential clinical application in conditions involving low amino acid intake. PMID:24972455

  1. Prolonged leucine infusion differentially affects tissue protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Leucine (Leu) acutely stimulates protein synthesis by activating the mammalian target of rapamycin complex 1 (mTORC1) pathway. To determine whether Leu can stimulate protein synthesis in muscles of different fiber types and visceral tissues of the neonate for a prolonged period and to determine the ...

  2. The effects of glutathione depletion on thermotolerance and heat stress protein synthesis.

    PubMed Central

    Russo, A.; Mitchell, J. B.; McPherson, S.

    1984-01-01

    The effects of cellular glutathione depletion by buthionine sulfoximine on the development of thermotolerance and synthesis of heat stress protein was studied. Cellular glutathione levels were found to increase rapidly following an acute heat treatment of either 12 min at 45.5 degrees C or 1 h at 43 degrees C and remain elevated for prolonged periods. Glutathione depletion and prevention of glutathione synthesis by buthionine sulfoximine resulted in inhibition of the development of thermotolerance and a decrease in total protein as well as specific heat stress proteins. While the degree of inhibition of thermotolerance was similar for both glutathione depletion protocols, inhibition in heat stress protein synthesis was greater when glutathione was depleted to low levels prior to heating. The possible role of glutathione and the cellular redox state to thermotolerance and synthesis of heat stress protein is discussed. Images Figure 2 PMID:6733022

  3. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    PubMed

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  5. Variable effects of dexamethasone on protein synthesis in clonal rat osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B.O.; Kream, B.E.

    1988-05-01

    We examined the effects of dexamethasone on protein synthesis in clonal rat osteoblastic osteosarcoma (ROS) cell lines by measuring the incorporation of (/sup 3/H)proline into collagenase-digestible and noncollagen protein in the cell layer and medium of the cultures. In ROS 17/2 and subclone C12 of ROS 17/2.8, dexamethasone decreased collagen synthesis with no change in DNA content of the cultures. In ROS 17/2.8 and its subclone G2, dexamethasone stimulated collagen and noncollagen protein synthesis, with a concomitant decrease in the DNA content of the cells. These data indicate that ROS cell lines are phenotypically heterogeneous and suggest that in normalmore » bone there may be distinct subpopulations of osteoblasts with varying phenotypic traits with respect to the regulation of protein synthesis.« less

  6. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    PubMed

    Hursel, Rick; Martens, Eveline A P; Gonnissen, Hanne K J; Hamer, Henrike M; Senden, Joan M G; van Loon, Luc J C; Westerterp-Plantenga, Margriet S

    2015-01-01

    Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0

  7. Adaptive changes in translation initiation activities for rat pancreatic protein synthesis with feeding of a high-protein diet.

    PubMed

    Hashi, Masaru; Yoshizawa, Fumiaki; Onozuka, Emi; Ogata, Momoko; Hara, Hiroshi

    2005-08-01

    We have previously demonstrated that dietary protein induced pancreatic hypergrowth in pancreaticobiliary diverted (PBD) rats. Dietary protein and dietary amino acids stimulate protein synthesis by regulating translation initiation in the rat skeletal muscle and liver. The aim of the present study was to determine whether feeding a high-protein diet induces activation of translation initiation for protein synthesis in the rat pancreas. In PBD rats in which the bile-pancreatic juice was surgically diverted to the upper ileum for 11-13 days, pancreatic dry weight and protein content were doubled compared with those in sham rats and further increased with feeding of a high-protein diet (60% casein diet) for 2 days. These pancreatic growth parameters were maintained at high levels for the next 5 days and were much higher than those of sham rats fed a high-protein diet. In both sham and PBD rats, feeding of a high-protein diet for 2 days induced phosphorylation of eukaryotic initiation factor 4E-binding protein 1 and 70-kDa ribosomal protein S6 kinase, indicating the activation of the initiation phase of translation for pancreatic protein synthesis. However, this increased phosphorylation returned to normal levels on Day 7 in PBD but not in sham rats. We concluded that feeding a high-protein diet induced pancreatic growth with increases in the translation initiation activities for pancreatic protein synthesis within 2 days and that prolonged feeding of a high-protein diet changed the initiation activities differently in sham and PBD rats.

  8. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  9. Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both.

    PubMed

    Mo, Lan; Liaw, Lucy; Evan, Andrew P; Sommer, Andre J; Lieske, John C; Wu, Xue-Ru

    2007-12-01

    Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% of the mice lacking osteopontin (OPN) and 14.3% of the mice lacking Tamm-Horsfall protein (THP) spontaneously form interstitial deposits of calcium phosphate within the renal papillae, events never seen in wild-type mice. Lack of both proteins causes renal crystallization in 39.3% of the double-null mice. Urinalysis revealed elevated concentrations of urine phosphorus and brushite (calcium phosphate) supersaturation in THP-null and OPN/THP-double null mice, suggesting that impaired phosphorus handling may be linked to interstitial papillary calcinosis in THP- but not in OPN-null mice. In contrast, experimentally induced hyperoxaluria provokes widespread intratubular calcium oxalate crystallization and stone formation in OPN/THP-double null mice, while completely sparing the wild-type controls. Whole urine from OPN-, THP-, or double-null mice all possessed a dramatically reduced ability to inhibit the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. These data establish OPN and THP as powerful and functionally synergistic inhibitors of calcium phosphate and calcium oxalate crystallization in vivo and suggest that defects in either molecule may contribute to renal calcinosis and stone formation, an exceedingly common condition that afflicts up to 12% males and 5% females.

  10. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein

    PubMed Central

    Liu, Yan; Mo, Lan; Goldfarb, David S.; Evan, Andrew P.; Liang, Fengxia; Khan, Saeed R.; Lieske, John C.

    2010-01-01

    Mammalian urine contains a range of macromolecule proteins that play critical roles in renal stone formation, among which Tamm-Horsfall protein (THP) is by far the most abundant. While THP is a potent inhibitor of crystal aggregation in vitro and its ablation in vivo predisposes one of the two existing mouse models to spontaneous intrarenal calcium crystallization, key controversies remain regarding the role of THP in nephrolithiasis. By carrying out a long-range follow-up of more than 250 THP-null mice and their wild-type controls, we demonstrate here that renal calcification is a highly consistent phenotype of the THP-null mice that is age and partially gene dosage dependent, but is gender and genetic background independent. Renal calcification in THP-null mice is progressive, and by 15 mo over 85% of all the THP-null mice develop spontaneous intrarenal crystals. The crystals consist primarily of calcium phosphate in the form of hydroxyapatite, are located more frequently in the interstitial space of the renal papillae than intratubularly, particularly in older animals, and lack accompanying inflammatory cell infiltration. The interstitial deposits of hydroxyapatite observed in THP-null mice bear strong resemblances to the renal crystals found in human kidneys bearing idiopathic calcium oxalate stones. Compared with 24-h urine from the wild-type mice, that of THP-null mice is supersaturated with brushite (calcium phosphate), a stone precursor, and has reduced urinary excretion of citrate, a stone inhibitor. While less frequent than renal calcinosis, renal pelvic and ureteral stones and hydronephrosis occur in the aged THP-null mice. These results provide direct in vivo evidence indicating that normal THP plays an important role in defending the urinary system against calcification and suggest that reduced expression and/or decreased function of THP could contribute to nephrolithiasis. PMID:20591941

  11. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    PubMed

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  12. mTORC1-Independent Reduction of Retinal Protein Synthesis in Type 1 Diabetes

    PubMed Central

    Losiewicz, Mandy K.; Pennathur, Subramaniam; Jefferson, Leonard S.; Kimball, Scot R.; Abcouwer, Steven F.; Gardner, Thomas W.

    2014-01-01

    Poorly controlled diabetes has long been known as a catabolic disorder with profound loss of muscle and fat body mass resulting from a simultaneous reduction in protein synthesis and enhanced protein degradation. By contrast, retinal structure is largely maintained during diabetes despite reduced Akt activity and increased rate of cell death. Therefore, we hypothesized that retinal protein turnover is regulated differently than in other insulin-sensitive tissues, such as skeletal muscle. Ins2Akita diabetic mice and streptozotocin-induced diabetic rats exhibited marked reductions in retinal protein synthesis matched by a concomitant reduction in retinal protein degradation associated with preserved retinal mass and protein content. The reduction in protein synthesis depended on both hyperglycemia and insulin deficiency, but protein degradation was only reversed by normalization of hyperglycemia. The reduction in protein synthesis was associated with diminished protein translation efficiency but, surprisingly, not with reduced activity of the mTORC1/S6K1/4E-BP1 pathway. Instead, diabetes induced a specific reduction of mTORC2 complex activity. These findings reveal distinctive responses of diabetes-induced retinal protein turnover compared with muscle and liver that may provide a new means to ameliorate diabetic retinopathy. PMID:24740573

  13. PERK Regulates Working Memory and Protein Synthesis-Dependent Memory Flexibility

    PubMed Central

    Zhu, Siying; Henninger, Keely; McGrath, Barbara C.; Cavener, Douglas R.

    2016-01-01

    PERK (EIF2AK3) is an ER-resident eIF2α kinase required for memory flexibility and metabotropic glutamate receptor-dependent long-term depression, processes known to be dependent on new protein synthesis. Here we investigated PERK’s role in working memory, a cognitive ability that is independent of new protein synthesis, but instead is dependent on cellular Ca2+ dynamics. We found that working memory is impaired in forebrain-specific Perk knockout and pharmacologically PERK-inhibited mice. Moreover, inhibition of PERK in wild-type mice mimics the fear extinction impairment observed in forebrain-specific Perk knockout mice. Our findings reveal a novel role of PERK in cognitive functions and suggest that PERK regulates both Ca2+ -dependent working memory and protein synthesis-dependent memory flexibility. PMID:27627766

  14. Chemical synthesis of membrane proteins by the removable backbone modification method.

    PubMed

    Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei

    2017-12-01

    Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.

  15. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  16. G Protein-Coupled Receptor-G-Protein βγ-Subunit Signaling Mediates Renal Dysfunction and Fibrosis in Heart Failure.

    PubMed

    Kamal, Fadia A; Travers, Joshua G; Schafer, Allison E; Ma, Qing; Devarajan, Prasad; Blaxall, Burns C

    2017-01-01

    Development of CKD secondary to chronic heart failure (CHF), known as cardiorenal syndrome type 2 (CRS2), clinically associates with organ failure and reduced survival. Heart and kidney damage in CRS2 results predominantly from chronic stimulation of G protein-coupled receptors (GPCRs), including adrenergic and endothelin (ET) receptors, after elevated neurohormonal signaling of the sympathetic nervous system and the downstream ET system, respectively. Although we and others have shown that chronic GPCR stimulation and the consequent upregulated interaction between the G-protein βγ-subunit (Gβγ), GPCR-kinase 2, and β-arrestin are central to various cardiovascular diseases, the role of such alterations in kidney diseases remains largely unknown. We investigated the possible salutary effect of renal GPCR-Gβγ inhibition in CKD developed in a clinically relevant murine model of nonischemic hypertrophic CHF, transverse aortic constriction (TAC). By 12 weeks after TAC, mice developed CKD secondary to CHF associated with elevated renal GPCR-Gβγ signaling and ET system expression. Notably, systemic pharmacologic Gβγ inhibition by gallein, which we previously showed alleviates CHF in this model, attenuated these pathologic renal changes. To investigate a direct effect of gallein on the kidney, we used a bilateral ischemia-reperfusion AKI mouse model, in which gallein attenuated renal dysfunction, tissue damage, fibrosis, inflammation, and ET system activation. Furthermore, in vitro studies showed a key role for ET receptor-Gβγ signaling in pathologic fibroblast activation. Overall, our data support a direct role for GPCR-Gβγ in AKI and suggest GPCR-Gβγ inhibition as a novel therapeutic approach for treating CRS2 and AKI. Copyright © 2016 by the American Society of Nephrology.

  17. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway

    PubMed Central

    Domínguez-Calderón, Alaide; Ávila-Flores, Antonia; Ponce, Arturo; López-Bayghen, Esther; Calderón-Salinas, José-Víctor; Luis Reyes, José; Chávez-Munguía, Bibiana; Segovia, José; Angulo, Carla; Ramírez, Leticia; Gallego-Gutiérrez, Helios; Alarcón, Lourdes; Martín-Tapia, Dolores; Bautista-García, Pablo; González-Mariscal, Lorenza

    2016-01-01

    Renal compensatory hypertrophy (RCH) restores normal kidney function after disease or loss of kidney tissue and is characterized by an increase in organ size due to cell enlargement and not to cell proliferation. In MDCK renal epithelial cells, silencing of the tight junction protein zona occludens 2 (ZO-2 KD) induces cell hypertrophy by two mechanisms: prolonging the time that cells spend at the G1 phase of the cell cycle due to an increase in cyclin D1 level, and augmenting the rate of protein synthesis. The latter is triggered by the nuclear accumulation and increased transcriptional activity of Yes-associated protein (YAP), the main target of the Hippo pathway, which results in decreased expression of phosphatase and tensin homologue. This in turn increased the level of phosphatidylinositol (3,4,5)-triphosphate, which transactivates the Akt/mammalian target of rapamycin pathway, leading to activation of the kinase S6K1 and increased synthesis of proteins and cell size. In agreement, in a rat model of uninephrectomy, RCH is accompanied by decreased expression of ZO-2 and nuclear expression of YAP. Our results reveal a novel role of ZO-2 as a modulator of cell size. PMID:27009203

  18. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats

    PubMed Central

    Baehr, Leslie M.; West, Daniel W. D.; Marshall, Andrea G.; Marcotte, George R.; Baar, Keith

    2017-01-01

    Disuse is a potent inducer of muscle atrophy, but the molecular mechanisms driving this loss of muscle mass are highly debated. In particular, the extent to which disuse triggers decreases in protein synthesis or increases in protein degradation, and whether these changes are uniform across muscles or influenced by age, is unclear. We aimed to determine the impact of disuse on protein synthesis and protein degradation in lower limb muscles of varied function and fiber type in adult and old rats. Alterations in protein synthesis and degradation were measured in the soleus, medial gastrocnemius, and tibialis anterior (TA) muscles of adult and old rats subjected to hindlimb unloading (HU) for 3, 7, or 14 days. Loss of muscle mass was progressive during the unloading period, but highly variable (−9 to −38%) across muscle types and between ages. Protein synthesis decreased significantly in all muscles, except for the old TA. Atrophy-associated gene expression was only loosely associated with protein degradation as muscle RING finger-1, muscle atrophy F-box (MAFbx), and Forkhead box O1 expression significantly increased in all muscles, but an increase in proteasome activity was only observed in the adult soleus. MAFbx protein levels were significantly higher in the old muscles compared with adult muscles, despite the old having higher expression of microRNA-23a. These results indicate that adult and old muscles respond similarly to HU, and the greatest loss in muscle mass occurs in predominantly slow-twitch extensor muscles due to a concomitant decrease in protein synthesis and increase in protein degradation. NEW & NOTEWORTHY In this study, we showed that age did not intensify the atrophy response to unloading in rats, but rather that the degree of atrophy was highly variable across muscles, indicating that changes in protein synthesis and protein degradation occur in a muscle-specific manner. Our data emphasize the importance of studying muscles of varying fiber

  19. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    PubMed Central

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866

  20. DECOUPLING OF PROTEIN AND RNA SYNTHESIS DURING DEUTERIUM PARTHENOGENESIS IN SEA URCHIN EGGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, P.R.; Spindel, W.; Cousineau, G.H.

    1963-10-29

    The parthenogenetic activation of cell division and suppression of nucleic acid synthesis by deuterium in eggs of sea urchins was investigated. D/ sub 2/O treatment was found to evoke a high rate of protein synthesis in the eggs that was maintained for several hours. However, eggs whose protein synthesis was activated and that were making labeled cytasters showed no increment in RNA synthesis over controls. (P.C.H.)

  1. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    PubMed

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Protein synthesis and the recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. II. Mitochondrial protein synthesis.

    PubMed

    Heude, M; Chanet, R

    1975-04-01

    The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin (ER) anc chloramphenicol (CAP). It was shown that mitochondrial proteins are involved in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the (see article) genotype in UV-irradiated dark liquid held exponential phase cells. Here again, in stationary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid holding (NLH) process for the (see article) induction, as shown by inhibiting mitochondrial protein synthesis or both mitochondrial and nuclear protein synthesis. When cells are grown in glycerol, the response after dark liquid holding of UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage, in particular, is not correlated with the repressed or derepressed state of the mitochondria.

  3. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    PubMed

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  4. Solid-phase synthesis of protein-polymers on reversible immobilization supports.

    PubMed

    Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J

    2018-02-27

    Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.

  5. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates – A Substudy

    PubMed Central

    Hursel, Rick; Martens, Eveline A. P.; Gonnissen, Hanne K. J.; Hamer, Henrike M.; Senden, Joan M. G.; van Loon, Luc J. C.; Westerterp-Plantenga, Margriet S.

    2015-01-01

    Background Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. Objective To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. Methods A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. Results After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001). Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03), synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01) and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001) were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low

  6. A statistical view of protein chemical synthesis using NCL and extended methodologies.

    PubMed

    Agouridas, Vangelis; El Mahdi, Ouafâa; Cargoët, Marine; Melnyk, Oleg

    2017-09-15

    Native chemical ligation and extended methodologies are the most popular chemoselective reactions for protein chemical synthesis. Their combination with desulfurization techniques can give access to small or challenging proteins that are exploited in a large variety of research areas. In this report, we have conducted a statistical review of their use for protein chemical synthesis in order to provide a flavor of the recent trends and identify the most popular chemical tools used by protein chemists. To this end, a protein chemical synthesis (PCS) database (http://pcs-db.fr) was created by collecting a set of relevant data from more than 450 publications covering the period 1994-2017. A preliminary account of what this database tells us is presented in this report. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horst, M.N.

    1990-12-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated;more » a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.« less

  8. Changes in the pattern of protein synthesis during zoospore germination in Blastocladiella emersonii.

    PubMed Central

    Silva, A M; Maia, J C; Juliani, M H

    1987-01-01

    Using two-dimensional gel electrophoresis, we analyzed the pattern of proteins synthesized during Blastocladiella emersonii zoospore germination in an inorganic solution, in both the presence and absence of actinomycin D. During the transition from zoospore to round cells (the first 25 min), essentially no qualitative differences were noticeable, indicating that the earliest stages of germination are entirely preprogrammed with stored RNA. Later in germination (after 25 min), however, changes in the pattern of protein synthesis were found. Some of these proteins (a total of 6 polypeptides) correspond possibly to a selective translation of stored messages, whereas the majority of the changed proteins (22 polypeptides) corresponds to newly synthesized mRNA. Thus, multiple levels of protein synthesis regulation seem to occur during zoospore germination, involving both transcriptional and translational controls. We also analyzed the pattern of protein synthesis during germination in a nutrient medium; synthesis of specific polypeptides occurred during late germination. During early germination posttranslational control was also observed, several labeled proteins from zoospores being specifically degraded or charge modified. Images PMID:3571161

  9. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems

    PubMed Central

    Zemella, Anne; Thoring, Lena; Hoffmeister, Christian; Kubick, Stefan

    2015-01-01

    From its start as a small-scale in vitro system to study fundamental translation processes, cell-free protein synthesis quickly rose to become a potent platform for the high-yield production of proteins. In contrast to classical in vivo protein expression, cell-free systems do not need time-consuming cloning steps, and the open nature provides easy manipulation of reaction conditions as well as high-throughput potential. Especially for the synthesis of difficult to express proteins, such as toxic and transmembrane proteins, cell-free systems are of enormous interest. The modification of the genetic code to incorporate non-canonical amino acids into the target protein in particular provides enormous potential in biotechnology and pharmaceutical research and is in the focus of many cell-free projects. Many sophisticated cell-free systems for manifold applications have been established. This review describes the recent advances in cell-free protein synthesis and details the expanding applications in this field. PMID:26478227

  10. Renal Carcinogenesis After Uninephrectomy1

    PubMed Central

    Sui, Yi; Zhao, Hai-Lu; Lee, Heung Man; Guan, Jing; He, Lan; Lai, Fernand MM; Tong, Peter CY; Chan, Juliana CN

    2009-01-01

    Nephrectomized rats have widely been used to study chronic renal failure. Interestingly, renal cell carcinoma occurred in the remnant kidney after uninephrectomy (UNX). In this study, we probed insulin-like growth factor (IGF)-1 signaling pathway in UNX-induced renal cancer. Adult male Sprague-Dawley rats were randomized into two groups: UNX rats (n = 22) and sham-operated rats (n = 12). Rats were killed at 3, 7, and 10 months. After 7 months after nephrectomy, the UNX rats developed renal cell carcinoma with increased expression of proliferating cell nuclear antigen, and 68.2% (15/22) of the animals exhibited invasive carcinoma. Western blot demonstrated significant down-regulation of IGF binding protein 3 contrasting with the up-regulation of protein kinase Cζ and Akt/protein kinase B in the renal cancer tissues. These findings indicate a unique rat model of UNX-induced renal cancer associated with enhanced IGF-1 signaling pathway. PMID:19956387

  11. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells.

    PubMed

    Stech, Marlitt; Quast, Robert B; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.

  12. A Continuous-Exchange Cell-Free Protein Synthesis System Based on Extracts from Cultured Insect Cells

    PubMed Central

    Stech, Marlitt; Quast, Robert B.; Sachse, Rita; Schulze, Corina; Wüstenhagen, Doreen A.; Kubick, Stefan

    2014-01-01

    In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds. PMID:24804975

  13. Improved synthesis of (S)-N-Boc-5-oxaproline for protein synthesis with the α-ketoacid-hydroxylamine (KAHA) ligation.

    PubMed

    Murar, Claudia E; Harmand, Thibault J; Bode, Jeffrey W

    2017-09-15

    We describe a new route for the synthesis of (S)-N-Boc-5-oxaproline. This building block is a key element for the chemical synthesis of proteins with the α-ketoacid-hydroxylamine (KAHA) ligation. The new synthetic pathway to the enantiopure oxaproline is based on a chiral amine mediated enantioselective conjugate addition of a hydroxylamine to trans-4-oxo-2-butenoate. This route is practical, scalable and economical and provides decagram amounts of material for protein synthesis and conversion to other protected forms of (S)-oxaproline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    PubMed Central

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  15. Assessment of protein synthesis in highly aerobic canine species at the onset and during exercise training.

    PubMed

    Miller, Benjamin F; Ehrlicher, Sarah E; Drake, Joshua C; Peelor, Frederick F; Biela, Laurie M; Pratt-Phillips, Shannon; Davis, Michael; Hamilton, Karyn L

    2015-04-01

    Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program. We hypothesized that both at the onset and during an exercise training program there would be greater mitochondrial protein synthesis rates compared with sedentary control with no difference in mixed or cytoplasmic protein synthesis rates. Protein synthetic rates of three protein fractions and DNA synthesis were determined over 1 wk using (2)H2O in competitive Alaskan Huskies and Labrador Retrievers trained for explosive device detection. Both groups of dogs had very high rates of skeletal muscle protein synthesis in the sedentary state [Alaskan Huskies: Mixed = 2.28 ± 0.12, cytoplasmic (Cyto) = 2.91 ± 0.10, and mitochondrial (Mito) = 2.62 ± 0.07; Labrador Retrievers: Mixed = 3.88 ± 0.37, Cyto = 3.85 ± 0.06, and Mito = 2.92 ± 0.20%/day]. Mitochondrial (Mito) protein synthesis rates did not increase at the onset of an exercise training program. Exercise-trained dogs maintained Mito protein synthesis during exercise training when mixed (Mixed) and cytosolic (Cyto) fractions decreased, and this coincided with a decrease in p-RpS6 but also a decrease in p-ACC signaling. Contrary to our hypothesis, canines did not have large increases in mitochondrial protein synthesis at the onset or during an exercise training program. However, dogs have a high rate of protein synthesis compared with humans that perhaps does not necessitate an extra increase in protein synthesis at the onset of aerobic exercise training. Copyright © 2015 the American Physiological Society.

  16. Selective memory generalization by spatial patterning of protein synthesis

    PubMed Central

    O’Donnell, Cian; Sejnowski, Terrence J.

    2014-01-01

    Summary Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings we proposed a novel two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. PMID:24742462

  17. Selective memory generalization by spatial patterning of protein synthesis.

    PubMed

    O'Donnell, Cian; Sejnowski, Terrence J

    2014-04-16

    Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. mTORC1 Coordinates Protein Synthesis and Immunoproteasome Formation via PRAS40 to Prevent Accumulation of Protein Stress.

    PubMed

    Yun, Young Sung; Kim, Kwan Hyun; Tschida, Barbara; Sachs, Zohar; Noble-Orcutt, Klara E; Moriarity, Branden S; Ai, Teng; Ding, Rui; Williams, Jessica; Chen, Liqiang; Largaespada, David; Kim, Do-Hyung

    2016-02-18

    Reduction of translational fidelity often occurs in cells with high rates of protein synthesis, generating defective ribosomal products. If not removed, such aberrant proteins can be a major source of cellular stress causing human diseases. Here, we demonstrate that mTORC1 promotes the formation of immunoproteasomes for efficient turnover of defective proteins and cell survival. mTORC1 sequesters precursors of immunoproteasome β subunits via PRAS40. When activated, mTORC1 phosphorylates PRAS40 to enhance protein synthesis and simultaneously to facilitate the assembly of the β subunits for forming immunoproteasomes. Consequently, the PRAS40 phosphorylations play crucial roles in clearing aberrant proteins that accumulate due to mTORC1 activation. Mutations of RAS, PTEN, and TSC1, which cause mTORC1 hyperactivation, enhance immunoproteasome formation in cells and tissues. Those mutations increase cellular dependence on immunoproteasomes for stress response and survival. These results define a mechanism by which mTORC1 couples elevated protein synthesis with immunoproteasome biogenesis to protect cells against protein stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The heat shock protein 60 promotes progesterone synthesis in mitochondria of JEG-3 cells.

    PubMed

    Monreal-Flores, Jessica; Espinosa-García, María Teresa; García-Regalado, Alejandro; Arechavaleta-Velasco, Fabian; Martínez, Federico

    2017-06-01

    Progesterone synthesis in human placenta is essential to maintain pregnancy. The limiting step in placental progesterone synthesis is cholesterol transport from the cytoplasm to the inner mitochondrial membrane. Multiple proteins located in mitochondrial contact sites seem to play a key role in this process. Previously, our group identified the heat shock protein 60 (HSP60) as part of mitochondrial contact sites in human placenta, suggesting its participation in progesterone synthesis. Here, we examined the role of HSP60 in progesterone synthesis. Our results show that over-expression of HSP60 in human placental choriocarcinoma cells (JEG-3) and human embryonic kidney 293 cells (HEK293) promotes progesterone synthesis. Furthermore, incubation of the HSP60 recombinant protein with intact isolated mitochondria from JEG-3 cells also promotes progesterone synthesis in a dose-related fashion. We also show that HSP60 interacts with STARD3 and P450scc proteins from mitochondrial membrane contact sites. Finally, we show that the HSP60 recombinant protein binds cholesterol. Ours results demonstrate that HSP60 participates in mitochondrial progesterone synthesis. These findings provide novel insights into progesterone synthesis in the human placenta and its role in maintaining pregnancy. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. Energetic costs of protein synthesis do not differ between red- and white-blooded Antarctic notothenioid fishes.

    PubMed

    Lewis, Johanne M; Grove, Theresa J; O'Brien, Kristin M

    2015-09-01

    Antarctic icefishes (Family Channichthyidae) within the suborder Notothenioidei lack the oxygen-binding protein hemoglobin (Hb), and six of the 16 species of icefishes lack myoglobin (Mb) in heart ventricle. As iron-centered proteins, Hb and Mb can promote the formation of reactive oxygen species (ROS) that damage biological macromolecules. Consistent with this, our previous studies have shown that icefishes have lower levels of oxidized proteins and lipids in oxidative muscle compared to red-blooded notothenioids. Because oxidized proteins are usually degraded by the 20S proteasome and must be resynthesized, we hypothesized that rates of protein synthesis would be lower in icefishes compared to red-blooded notothenioids, thereby reducing the energetic costs of protein synthesis and conferring a benefit to the loss of Hb and Mb. Rates of protein synthesis were quantified in hearts, and the fraction of oxygen consumption devoted to protein synthesis was measured in isolated hepatocytes and cardiomyocytes of notothenioids differing in the expression of Hb and cardiac Mb. Neither rates of protein synthesis nor the energetic costs of protein synthesis differed among species, suggesting that red-blooded species do not degrade and replace oxidatively modified proteins at a higher rate compared to icefishes but rather, persist with higher levels of oxidized proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hyperhomocysteinemia and protein damage in chronic renal failure and kidney transplant pediatric patients--Italian initiative on uremic hyperhomocysteinemia (IIUH).

    PubMed

    Perna, Alessandra F; Ingrosso, Diego; Molino, Daniela; Galletti, Patrizia; Montini, Giovanni; Zacchello, Graziella; Bellantuono, Rosa; Caringella, Angela; Fede, Carmelo; Chimenz, Roberto; De Santo, Natale G

    2003-01-01

    Plasma homocysteine, a new cardiovascular risk factor in both children and adults, is higher in chronic renal failure or kidney transplant patients. This alteration has been linked, in chronic renal failure, to plasma protein damage, represented by increased L-isoaspartyl residues. We measured plasma homocysteine levels and plasma protein damage in pediatric patients from four different Italian regions with conservatively treated renal failure; hemodialysis, continuous ambulatory peritoneal dialysis (CAPD), or transplants, to establish the presence of protein damage and the relative role of hyperhomocysteinemia. High performance liquid chromatography (HPLC) separation measured total plasma homocysteine levels, using precolumn derivatization with ammonium 7-fluorobenzo-2-oxa-1, 3-diazole-4-sulphonate (SBD-F). Plasma protein L-isoaspartyl residues were quantitated using human recombinant protein carboxyl methyl transferase (PCMT). In all patient groups, homocysteine levels were significantly higher with respect to the control (Control: 6.87 +/- 0.73 microM) conservatively treated, 14.19 +/- 1.73 microM; hemodialysis, 27.03 +/- 4.32 microM; CAPD, 22.38 +/- 3.73 microM; transplanted, 20.22 +/- 2.27 microM, p < 0.001 vs. control]. Plasma protein damage was significantly higher in conservatively treated, hemodialysis (HD) and CAPD patients, while in transplant patients it was no different from the control. We concluded that in pediatric patients of different Italian geographical origin, plasma homocysteine levels were significantly higher in all groups with respect to healthy children; therefore contributing to the elevated cardiovascular risk present in these patients. Plasma protein L-isoaspartyl content was higher in renal failure patients, but kidney transplant patients had normal levels, indicating that this kind of protein damage relates more to the toxic action of uremic retention solutes, than to plasma homocysteine levels.

  2. Cell-free protein synthesis energized by slowly-metabolized maltodextrin

    PubMed Central

    Wang, Yiran; Zhang, Y-H Percival

    2009-01-01

    Background Cell-free protein synthesis (CFPS) is a rapid and high throughput technology for obtaining proteins from their genes. The primary energy source ATP is regenerated from the secondary energy source through substrate phosphorylation in CFPS. Results Distinct from common secondary energy sources (e.g., phosphoenolpyruvate – PEP, glucose-6-phosphate), maltodextrin was used for energizing CFPS through substrate phosphorylation and the glycolytic pathway because (i) maltodextrin can be slowly catabolized by maltodextrin phosphorylase for continuous ATP regeneration, (ii) maltodextrin phosphorylation can recycle one phosphate per reaction for glucose-1-phosphate generation, and (iii) the maltodextrin chain-shortening reaction can produce one ATP per glucose equivalent more than glucose can. Three model proteins, esterase 2 from Alicyclobacillus acidocaldarius, green fluorescent protein, and xylose reductase from Neurospora crassa were synthesized for demonstration. Conclusion Slowly-metabolized maltodextrin as a low-cost secondary energy compound for CFPS produced higher levels of proteins than PEP, glucose, and glucose-6-phospahte. The enhancement of protein synthesis was largely attributed to better-controlled phosphate levels (recycling of inorganic phosphate) and a more homeostatic reaction environment. PMID:19558718

  3. Inhibition of protein synthesis by N-methyl-N-nitrosourea in vivo

    PubMed Central

    Kleihues, P.; Magee, P. N.

    1973-01-01

    1. The intraperitoneal injection of N-methyl-N-nitrosourea (100mg/kg) caused a partial inhibition of protein synthesis in several organs of the rat, the maximum effect occurring after 2–3h. 2. In the liver the inhibition of protein synthesis was paralleled by a marked disaggregation of polyribosomes and an increase in ribosome monomers and ribosomal subunits. No significant breakdown of polyribosomes was found in adult rat brains although N-methyl-N-nitrosourea inhibited cerebral and hepatic protein synthesis to a similar extent. In weanling rats N-methyl-N-nitrosourea caused a shift in the cerebral polyribosome profile similar to but less marked than that in rat liver. 3. Reaction of polyribosomal RNA with N-[14C]methyl-N-nitrosourea in vitro did not lead to a disaggregation of polyribosomes although the amounts of 7-methylguanine produced were up to twenty times higher than those found after administration of sublethal doses in vivo. 4. It was concluded that changes in the polyribosome profile induced by N-methyl-N-nitrosourea may reflect the mechanism of inhibition of protein synthesis rather than being a direct consequence of the methylation of polyribosomal mRNA. PMID:4774397

  4. Dietary Methyl Donors Contribute to Whole-Body Protein Turnover and Protein Synthesis in Skeletal Muscle and the Jejunum in Neonatal Piglets.

    PubMed

    Robinson, Jason L; Harding, Scott V; Brunton, Janet A; Bertolo, Robert F

    2016-10-01

    The neonatal methionine requirement must consider not only the high demand for rapid tissue protein expansion but also the demands as the precursor for a suite of critical transmethylation reactions. However, methionine metabolism is inherently complex because upon transferring its methyl group during transmethylation, methionine can be reformed by the dietary methyl donors choline (via betaine) and folate. We sought to determine whether dietary methyl donors contribute to methionine availability for protein synthesis in neonatal piglets. Yucatan miniature piglets aged 4-8 d were fed a diet that provided 38 μg folate/(kg·d), 60 mg choline/(kg·d), and 238 mg betaine/(kg·d) [methyl-sufficient (MS); n = 8] or a diet devoid of these methyl precursors [methyl-deficient (MD); n = 8]. After 5 d, dietary methionine was reduced from 0.30 to 0.20 g/(kg·d) in both groups. On day 6, piglets received a constant [1- 13 C]phenylalanine infusion to measure whole-body protein kinetics, and on day 8 they received a constant [ 3 H-methyl]methionine infusion to measure tissue-specific protein synthesis in skeletal muscle, the liver, and the jejunum. Whole-body phenylalanine flux, protein synthesis, and protein breakdown were 13%, 12%, and 22% lower, respectively, in the MD group than in the MS group (P < 0.05). Reduced whole-body protein synthesis in the MD piglets was attributed to 50% lower protein synthesis in skeletal muscle and the jejunum than in the MS piglets (P < 0.05). Furthermore, methionine availability in skeletal muscle was halved in piglets fed the MD diet (P < 0.05), and the specific radioactivity of methionine was doubled in the jejunum of MD piglets (P < 0.05), suggesting lower intestinal remethylation. Liver protein synthesis did not significantly differ between the groups, but secreted proteins were not measured. Dietary methyl donors can affect whole-body and tissue-specific protein synthesis in neonatal piglets and should be considered when determining the

  5. Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion.

    PubMed

    da Silva, Laura S; Taylor, Janet; Taylor, John R N

    2011-09-14

    Transgenic sorghum (TG) lines with altered kafirin synthesis, particularly suppression of γ-kafirin synthesis, and improved protein quality have been developed. The proportion of kafirin extracted with 60% tert-butyl alcohol alone was greatly increased in the TG lines. However, the total amount of kafirin remained unchanged. Further, in the TG lines, the kafirin was much less polymerized by disulfide bonding. There was also evidence of compensatory synthesis of other kafirin proteins. Cooked protein digestibility was increased in the TG form, even after removal of interfering starch. The TG protein bodies were intermediate in appearance between the normal type and the invaginated high digestibility mutants. Hence, the increased protein digestibility of these TG lines is probably related to their lower levels of disulfide-bonded kafirin polymerization, allowing better access of proteases. This work appears to confirm that disulfide bond formation in kafirin is responsible for the reduced protein digestibility of cooked sorghum.

  6. mTORC1-independent reduction of retinal protein synthesis in type 1 diabetes.

    PubMed

    Fort, Patrice E; Losiewicz, Mandy K; Pennathur, Subramaniam; Jefferson, Leonard S; Kimball, Scot R; Abcouwer, Steven F; Gardner, Thomas W

    2014-09-01

    Poorly controlled diabetes has long been known as a catabolic disorder with profound loss of muscle and fat body mass resulting from a simultaneous reduction in protein synthesis and enhanced protein degradation. By contrast, retinal structure is largely maintained during diabetes despite reduced Akt activity and increased rate of cell death. Therefore, we hypothesized that retinal protein turnover is regulated differently than in other insulin-sensitive tissues, such as skeletal muscle. Ins2(Akita) diabetic mice and streptozotocin-induced diabetic rats exhibited marked reductions in retinal protein synthesis matched by a concomitant reduction in retinal protein degradation associated with preserved retinal mass and protein content. The reduction in protein synthesis depended on both hyperglycemia and insulin deficiency, but protein degradation was only reversed by normalization of hyperglycemia. The reduction in protein synthesis was associated with diminished protein translation efficiency but, surprisingly, not with reduced activity of the mTORC1/S6K1/4E-BP1 pathway. Instead, diabetes induced a specific reduction of mTORC2 complex activity. These findings reveal distinctive responses of diabetes-induced retinal protein turnover compared with muscle and liver that may provide a new means to ameliorate diabetic retinopathy. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. The measurement of Protein Synthesis for Assessing Proteostasis in Studies of Slowed Aging

    PubMed Central

    Miller, Benjamin F.; Drake, Joshua C.; Naylor, Bradley; Price, John C.; Hamilton, Karyn L.

    2014-01-01

    Slowing the aging process can reduce the risk for multiple chronic diseases simultaneously. It is increasingly recognized that maintaining protein homeostasis (or proteostasis) is important for slowing the aging process. Since proteostasis is a dynamic process, monitoring it is not a simple task and requires use of appropriate methods. This review will introduce methods to assess protein and DNA synthesis using deuterium oxide (D2O), and how protein and DNA synthesis outcomes provide insight into proteostatic mechanisms. Finally, we provide a discussion on how these assessments of protein and DNA synthesis are “mechanistic” investigations and provide an appropriate framework for the further development of slowed aging treatments. PMID:25283966

  8. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial.

    PubMed

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Kouw, Imre Wk; Wall, Benjamin T; Burd, Nicholas A; de Groot, Lisette Cpgm; van Loon, Luc Jc

    2017-02-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m 2 ): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg -1 · d -1 ; n = 12) or a HIGH PRO diet (1.5 g · kg -1 · d -1 ; n = 12) for 14 d. On day 15, participants received primed continuous l-[ring- 2 H 5 ]-phenylalanine and l-[1- 13 C]-leucine infusions and ingested 25 g intrinsically l-[1- 13 C]-phenylalanine- and l-[1- 13 C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P < 0.01) with no differences between treatments (P > 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P < 0.05). Muscle protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P < 0.01), with no differences between treatments (P = 0.25). Habituation to LOW PRO (0.7 g · kg -1 · d -1 ) compared with HIGH PRO (1.5 g · kg -1 · d -1 ) augments the postprandial availability

  9. Development of injury in a rat model of chronic renal allograft rejection: effect of dietary protein restriction.

    PubMed

    Bombas, A; Stein-Oakley, A N; Baxter, K; Thomson, N M; Jablonski, P

    1999-01-01

    Non-allogeneic factors such as increased nephron "workload" may contribute to chronic renal allograft rejection. Reducing dietary protein from 20% to 8% was tested in a model of chronic rejection: Dark Agouti kidney to Albino Surgery recipient, "tolerised" by previous donor blood transfusions. Survival, weight gain, serum creatinine concentration and creatinine clearance were similar for both groups at all times. Urinary protein was significantly (P < 0.05) lower in the low-protein (LP) group 1 month after transplantation. After 3 and 6 months, both groups demonstrated mild chronic rejection. After 6 months, tubular atrophy was significantly (P < 0.05) less in the LP group and interstitial fibrosis was marginally reduced. Glomerular hypertrophy, glomerular sclerosis, tubular dilatation, leucocyte infiltration, adhesion molecule expression and TGF-beta1 mRNA expression were similarly increased in both groups. Thus, reducing dietary protein to 8% lowered urinary protein, but did not significantly affect the development of chronic rejection in renal allografts beyond affording a degree of protection from tubulointerstitial damage.

  10. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    USDA-ARS?s Scientific Manuscript database

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  11. Neonatal high protein intake enhances neonatal growth without significant adverse renal effects in spontaneous IUGR piglets.

    PubMed

    Boubred, Farid; Jamin, Agnes; Buffat, Christophe; Daniel, Laurent; Borel, Patrick; Boudry, Gaëlle; Le Huëron-Luron, Isabelle; Simeoni, Umberto

    2017-05-01

    In humans, early high protein (HP) intake has been recommended to prevent postnatal growth restriction and complications of intrauterine growth restriction (IUGR). However, the impact of such a strategy on the kidneys remains unknown, while significant renal hypertrophy, proteinuria, and glomerular sclerosis have been demonstrated in few experimental studies. The objective of this study was to evaluate the effects of a neonatal HP formula on renal structure in IUGR piglets. Spontaneous IUGR piglets were randomly allocated to normal protein (NP, n  = 10) formula or to HP formula (+50% protein content, n  = 10) up to day 28 after birth. Body weight, body composition, renal functions, and structure were assessed at the end of the neonatal period. While birth weights were similar, 28-day-old HP piglets were 18% heavier than NP piglets ( P  <   0.01). Carcass protein content was 22% higher in HP than in NP offspring ( P  <   0.01). Despite a HP intake, kidney weight and glomerular fibrosis were unaltered in HP piglets. Only a 20% increase in glomerular volume was noted in HP piglets ( P  < 0.05) and restricted to the inner cortical area nephrons ( P  =   0.03). Plasma urea/creatinine ratio and proteinuria were unchanged in HP piglets. In conclusion, neonatal HP feeding in IUGR piglets significantly enhanced neonatal growth and tissue protein deposition but mildly affected glomerular volume. It can be speculated that a sustained tissue protein anabolism in response to HP intake have limited single nephron glomerular hyperfiltration. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Enhanced skeletal muscle protein synthesis rates in pigs treated with somatotropin requires fed amino acids levels

    USDA-ARS?s Scientific Manuscript database

    Chronic somatotropin (pST) treatment in pigs increases skeletal muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin alone could not account for the pST-induced increase in protein synthesis. This study...

  13. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goena, M.; Santidrian, S.; Cuevillas, F.

    1986-03-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-//sup 14/C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesizedmore » protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects.« less

  14. Predictors of muscle protein synthesis after severe pediatric burns

    USDA-ARS?s Scientific Manuscript database

    Objectives: Following a major burn, muscle protein synthesis rate increases but in most patients, this response is not sufficient to compensate the also elevated protein breakdown. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that skeletal muscle prot...

  15. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    USDA-ARS?s Scientific Manuscript database

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were...

  16. Somatotropin enhanced muscle protein synthesis in growing pigs is not modulated by insulin

    USDA-ARS?s Scientific Manuscript database

    Chronic, 7-day treatment of growing pigs with porcine somatotropin (ST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that enhances translation initiation. This study aimed to determine whether the ST-induced increase in skeletal muscle protein synthesis was media...

  17. The Endoplasmic Reticulum: A Central Player in Cell Signalling and Protein Synthesis

    NASA Astrophysics Data System (ADS)

    Llewelyn Roderick, H.; Berridge, Michael J.; Bootman, Martin D.

    In addition to being the principle intracellular Ca 2+ store, the endoplasmic reticulum (ER) is the initial site of synthesis and folding of membrane and secretory proteins. These two roles of the ER are intimately linked. First, the function of many proteins involved in Ca 2+ handling are modulated by Ca 2+ and second, ER lumenal Ca 2+ modulates protein synthesis and folding. Within the ER, Ca 2+ is stored by low affinity high capacity Ca 2+ binding proteins and is maintained at a free concentration between 0.1 and 1 μM relative to 0.1 μM cytosolic Ca 2+. This concentration gradient is maintained by the action of the Sarco-Endoplasmic Reticulum ATPases (SERCa) which hydrolyse ATP to pump Ca 2+ into the ER. Following stimulation Ca 2+ is released from the ER through several classes of ligand gated channels. The most well characterized of these being the inositol 1,4,5-trisphosphate receptor ( IP 3 R) and the Ryanodine receptor (RyR) families of proteins. This release of Ca 2+ results in a drop of ER free Ca 2+ to levels as low as 10 μM. This decrease in lumenal Ca 2+ inhibits further release through the channels and increases the rate of re-sequestration of Ca 2+ into the ER by the SERCa pumps. Under these conditions, in addition to effects on Ca 2+ handling proteins, protein synthesis is inhibited, chaperones dissociate from their substrates, secondary modifications of proteins are inhibited and the retention of many proteins within the ER is lost. Furthermore, a signalling cascade resulting in the up-regulation of many proteins involved in protein folding and Ca 2+ homeostasis is initiated. This review will focus on the proteins involved in the regulation ER lumenal Ca 2+ and the role of ER lumenal Ca 2+ in cell signalling and protein synthesis.

  18. Content of intrinsic disorder influences the outcome of cell-free protein synthesis.

    PubMed

    Tokmakov, Alexander A; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; Sakurai, Tetsuya; Yokoyama, Shigeyuki

    2015-09-11

    Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

  19. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  20. Total amino acid stabilization during cell-free protein synthesis reactions.

    PubMed

    Calhoun, Kara A; Swartz, James R

    2006-05-17

    Limitations in amino acid supply have been recognized as a substantial problem in cell-free protein synthesis reactions. Although enzymatic inhibitors and fed-batch techniques have been beneficial, the most robust way to stabilize amino acids is to remove the responsible enzymatic activities by genetically modifying the source strain used for cell extract preparation. Previous work showed this was possible for arginine, serine, and tryptophan, but cysteine degradation remained a major limitation in obtaining high protein synthesis yields. Through radiolabel techniques, we confirmed that cysteine degradation was caused by the activity of glutamate-cysteine ligase (gene gshA) in the cell extract. Next, we created Escherichia coli strain KC6 that combines a gshA deletion with previously described deletions for arginine, serine, and tryptophan stabilization. Strain KC6 grows well, and active cell extract can be produced from it for cell-free protein synthesis reactions. The extract from strain KC6 maintains stable amino acid concentrations of all 20 amino acids in a 3-h batch reaction. Yields for three different proteins improved 75-250% relative to cell-free expression using the control extract.

  1. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients.

    PubMed

    Kontessis, P A; Bossinakou, I; Sarika, L; Iliopoulou, E; Papantoniou, A; Trevisan, R; Roussi, D; Stipsanelli, K; Grigorakis, S; Souvatzoglou, A

    1995-09-01

    Whether the differences in renal function found in vegetarian compared with omnivorous subjects are related to quantity or quality of the protein is unknown. We have studied the renal function of nine normotensive, nonproteinuric type I diabetic patients who were fed in random order for 4 weeks either an animal protein diet (APD) (protein intake 1.1 g . kg-1 . day-1) or a vegetable protein diet VPD (protein intake 0.95 g . kg-1 . day-1). The two diets were isocaloric. In a crossover study, we measured glomerular filtration rate (GFR) (inulin clearance), renal plasma flow (RPF) (p-aminohippurate clearance), plasma amino acids, growth hormone, glucagon, insulin-like growth factor I-(IGF-I), and microalbuminuria. GFR and RPF were lower with the VPD than with the APD (89.9 +/- 4.1 vs. 105.6 +/- 5.1 ml . min-1 . 1.73 m-2, P < 0.05, and 425.7 +/- 22.2 vs. 477.8 +/- 32.2 ml . min-1 1.73m-2, P < 0.05, respectively). Renal vascular resistance (RVR) was higher with the VPD than with the APD (101 +/- 25 vs. 91 +/- 10 mmHg . min-1 . ml-1, P < 0.05). Filtration fraction (FF) remained unchanged after either diet. Fractional clearance of albumin fell with the VPD to 2.0 +/- 0.65 from 3.4 +/- 1.15 x 10-6 (P < 0.05). At the end of the APD and VPD, the plasma levels of growth hormone and glucagon did not differ significantly. Plasma levels of IGF-I were higher with the APD than with the VPD (1.1 +/- 0.6 vs. 0.9 +/- 0.13 U/ml, P < 0.05). Plasma concentrations of valine and lysine were significantly higher with the APD than with the VPD (234.6 +/- 30.3 vs. 164.5 +/- 25.4 mm1/1, P < 0.05, and 565 +/- 45.1 vs. 430 +/- 56.1 mmol/l, P < 0.05, respectively), whereas plasma valine was strongly correlated to the GFR (r = 0.832, P < 0.01). No differences were found in other amino acids. A VPD has significantly different renal effects from an APD equal in protein intake in normotensive type I diabetic patients. This could be explained partly by differences in plasma concentrations of amino

  2. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    PubMed

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  3. Expression of EphA2 protein is positively associated with age, tumor size and Fuhrman nuclear grade in clear cell renal cell carcinomas.

    PubMed

    Wang, Longxin; Hu, Haibing; Tian, Feng; Zhou, Wenquan; Zhou, Shuigen; Wang, Jiandong

    2015-01-01

    The receptor tyrosine kinase of EphA2 has been shown frequently overexpressed in various types of human carcinomas, which implicated that it plays important roles in carcinogenesis. Although EphA2 protein expression has been investigated in many types of human carcinomas, the relationship between the expression of EphA2 protein in clear cell renal cell carcinoma was not well documented. In the present study, using specific anit-EphA2 polyclonal antibody and immunohistochemistry, we evaluated EphA2 protein expression levels in clear cell RCC specimens surgically resected from 90 patients. Our results shows that EphA2 protein was positively expressed in all normal renal tubes of 90 samples (100%, 3+), which was expressed at low levels in renal cortex but high levels in the collecting ducts of the renal medulla and papilla. EphA2 was negatively or weakly expressed in 30 out of 90 samples (33.3%, 0/1+), moderately expressed in 24 samples (26.7%, 2+) and strongly expressed in 36 samples (40%, 3+). Expression of EphA2 was positively associated with age (P=0.029), tumor diameters (P<0.001) and Fuhrman nuclear grade (P<0.001). Our results indicate that EphA2 variably expressed in clear cell renal cell carcinomas. High expression of EphA2 was more often found in big size and high nuclear grade tumors, which indicated EphA2 protein may be used as a new marker for the prognosis of clear cell renal cell carcinoma.

  4. Longitudinal Associations among Renal Urea Clearance-Corrected Normalized Protein Catabolic Rate, Serum Albumin, and Mortality in Patients on Hemodialysis.

    PubMed

    Eriguchi, Rieko; Obi, Yoshitsugu; Streja, Elani; Tortorici, Amanda R; Rhee, Connie M; Soohoo, Melissa; Kim, Taehee; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2017-07-07

    There are inconsistent reports on the association of dietary protein intake with serum albumin and outcomes among patients on hemodialysis. Using a new normalized protein catabolic rate (nPCR) variable accounting for residual renal urea clearance, we hypothesized that higher baseline nPCR and rise in nPCR would be associated with higher serum albumin and better survival among incident hemodialysis patients. Among 36,757 incident hemodialysis patients in a large United States dialysis organization, we examined baseline and change in renal urea clearance-corrected nPCR as a protein intake surrogate and modeled their associations with serum albumin and mortality over 5 years (1/2007-12/2011). Median nPCRs with and without accounting for renal urea clearance at baseline were 0.94 and 0.78 g/kg per day, respectively (median within-patient difference, 0.14 [interquartile range, 0.07-0.23] g/kg per day). During a median follow-up period of 1.4 years, 8481 deaths were observed. Baseline renal urea clearance-corrected nPCR was associated with higher serum albumin and lower mortality in the fully adjusted model ( P trend <0.001). Among 13,895 patients with available data, greater rise in renal urea clearance-corrected nPCR during the first 6 months was also associated with attaining high serum albumin (≥3.8 g/dl) and lower mortality ( P trend <0.001); compared with the reference group (a change of 0.1-0.2 g/kg per day), odds and hazard ratios were 0.53 (95% confidence interval, 0.44 to 0.63) and 1.32 (95% confidence interval, 1.14 to 1.54), respectively, among patients with a change of <-0.2 g/kg per day and 1.62 (95% confidence interval, 1.35 to 1.96) and 0.76 (95% confidence interval, 0.64 to 0.90), respectively, among those with a change of ≥0.5 g/kg per day. Within a given category of nPCR without accounting for renal urea clearance, higher levels of renal urea clearance-corrected nPCR consistently showed lower mortality risk. Among incident hemodialysis patients

  5. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    PubMed

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  6. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  7. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    PubMed

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  8. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis.

    PubMed

    Cherubin, Patrick; Quiñones, Beatriz; Teter, Ken

    2018-02-06

    Ricin, Shiga toxin, exotoxin A, and diphtheria toxin are AB-type protein toxins that act within the host cytosol and kill the host cell through pathways involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. Intoxication is therefore viewed as an irreversible process. Using flow cytometry and a fluorescent reporter system to monitor protein synthesis, we show a single molecule of cytosolic toxin is not sufficient for complete inhibition of protein synthesis or cell death. Furthermore, cells can recover from intoxication: cells with a partial loss of protein synthesis will, upon removal of the toxin, increase the level of protein production and survive the toxin challenge. Thus, in contrast to the prevailing model, ongoing toxin delivery to the cytosol appears to be required for the death of cells exposed to sub-optimal toxin concentrations.

  9. Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs

    PubMed Central

    Suryawan, Agus; O’Connor, Pamela M. J.; Bush, Jill A.; Nguyen, Hanh V.

    2009-01-01

    The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. In the current study, we examined the individual roles of amino acids and insulin in the regulation of protein synthesis in peripheral and visceral tissues of the neonate by performing pancreatic glucose–amino acid clamps in overnight-fasted 7-day-old pigs. We infused pigs (n = 8–12/group) with insulin at 0, 10, 22, and 110 ng kg−0.66 min−1 to achieve ~0, 2, 6 and 30 μU ml−1 insulin so as to simulate below fasting, fasting, intermediate, and fed insulin levels, respectively. At each insulin dose, amino acids were maintained at the fasting or fed level. In conjunction with the highest insulin dose, amino acids were also allowed to fall below the fasting level. Tissue protein synthesis was measured using a flooding dose of L-[4-3H] phenylalanine. Both insulin and amino acids increased fractional rates of protein synthesis in longissimus dorsi, gastrocnemius, masseter, and diaphragm muscles. Insulin, but not amino acids, increased protein synthesis in the skin. Amino acids, but not insulin, increased protein synthesis in the liver, pancreas, spleen, and lung and tended to increase protein synthesis in the jejunum and kidney. Neither insulin nor amino acids altered protein synthesis in the stomach. The results suggest that the stimulation of protein synthesis by feeding in most tissues of the neonate is regulated by the post-prandial rise in amino acids. However, the feeding-induced stimulation of protein synthesis in skeletal muscles is independently mediated by insulin as well as amino acids. PMID:18683020

  10. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    PubMed

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session.

  12. Immobilization methods for the rapid total chemical synthesis of proteins on microtiter plates.

    PubMed

    Zitterbart, Robert; Krumrey, Michael; Seitz, Oliver

    2017-07-01

    The chemical synthesis of proteins typically involves the solid-phase peptide synthesis of unprotected peptide fragments that are stitched together in solution by native chemical ligation (NCL). The process is slow, and throughput is limited because of the need for repeated high performance liquid chromatography purification steps after both solid-phase peptide synthesis and NCL. With an aim to provide faster access to functional proteins and to accelerate the functional analysis of synthetic proteins by parallelization, we developed a method for the high performance liquid chromatography-free synthesis of proteins on the surface of microtiter plates. The method relies on solid-phase synthesis of unprotected peptide fragments, immobilization of the C-terminal fragment and on-surface NCL with an unprotected peptide thioester in crude form. Herein, we describe the development of a suitable immobilization chemistry. We compared (i) formation of nickel(II)-oligohistidine complexes, (ii) Cu-based [2 + 3] alkine-azide cycloaddition and (iii) hydrazone ligation. The comparative study identified the hydrazone ligation as most suitable. The sequence of immobilization via hydrazone ligation, on-surface NCL and radical desulfurization furnished the targeted SH3 domains in near quantitative yield. The synthetic proteins were functional as demonstrated by an on-surface fluorescence-based saturation binding analysis. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  13. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    PubMed

    Hudson, Matthew B; Smuder, Ashley J; Nelson, W Bradley; Wiggs, Michael P; Shimkus, Kevin L; Fluckey, James D; Szeto, Hazel H; Powers, Scott K

    2015-01-01

    Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  14. Disruption of methicillin-resistant Staphylococcus aureus protein synthesis by tannins

    PubMed Central

    Adnan, Siti-Noor-Adnalizawati; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2017-01-01

    Introduction Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide public health threat, displaying multiple antibiotic resistance that causes morbidity and mortality. Management of multidrug-resistant (MDR) MRSA infections is extremely difficult due to their inherent resistance to currently used antibiotics. New antibiotics are needed to combat the emergence of antimicrobial resistance. Methods The in vitro effect of tannins was studied against MRSA reference strain (ATCC 43300) and MRSA clinical strains utilizing antimicrobial assays in conjunction with both scanning and transmission electron microscopy. To reveal the influence of tannins in MRSA protein synthesis disruption, we utilized next-generation sequencing (NGS) to provide further insight into the novel protein synthesis transcriptional response of MRSA exposed to these compounds. Results Tannins possessed both bacteriostatic and bactericidal activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 0.78 and 1.56 mg/mL, respectively, against all tested MRSA. Scanning and transmission electron microscopy of MRSA treated with tannins showed decrease in cellular volume, indicating disruption of protein synthesis. Conclusion Analysis of a genome-wide transcriptional profile of the reference strain ATCC 43300 MRSA in response to tannins has led to the finding that tannins induced significant modulation in essential ribosome pathways, which caused a reduction in the translation processes that lead to inhibition of protein synthesis and obviation of bacterial growth. These findings highlight the potential of tannins as new promising anti-MRSA agents in clinical application such as body wash and topical cream or ointments. PMID:29264356

  15. Cell-free protein synthesis in PDMS-glass hybrid microreactor

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takatoki; Fujii, Teruo; Nojima, Takahiko; Hong, Jong W.; Endo, Isao

    2000-08-01

    A living cell has numerous kinds of proteins while only thousands of that have been identified as of now. In order to discover and produce various proteins that are applicable to biotechnological, pharmaceutical and medical applications, cell-free protein synthesis is one of the most useful and promising techniques. In this study, we developed an inexpensive microreactor with temperature control capability for protein synthesis. The microreactor consists of a sandwich of glass-based chip and PDMS(polydimethylsiloxane) chip. The thermo control system, which is composed of a heater and a temperature sensor, is fabricated with an ITO (Indium Tin Oxide) resistive material on a glass substrate by ordinary microfabrication method based on photolithography and etching techniques. The reactor chamber and flow channels are fabricated by injection micromolding of PDMS. Since one can use thermo control system on a glass substrate repeatedly by replacing only the easily-fabricated and low-cost PDMS reactor chamber, this microreactor is quite cost effective. As a demonstration, a DNA template of a GFP (Green Fluorescent Protein) is transcribed and translated using cell-free extract prepared from Escherichia coli. As a result, GFP was successfully synthesized in the present microreactor.

  16. Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults.

    PubMed

    Konopka, Adam R; Laurin, Jaime L; Musci, Robert V; Wolff, Christopher A; Reid, Justin J; Biela, Laurie M; Zhang, Qian; Peelor, Fredrick F; Melby, Christopher L; Hamilton, Karyn L; Miller, Benjamin F

    2017-04-01

    In older adults, chronic oxidative and inflammatory stresses are associated with an impaired increase in skeletal muscle protein synthesis after acute anabolic stimuli. Conjugated linoleic acid (CLA) and Protandim have been shown to activate nuclear factor erythroid-derived 2-like 2 (Nrf2), a transcription factor for the antioxidant response element and anti-inflammatory pathways. This study tested the hypothesis that compared to a placebo control (CON), CLA and Protandim would increase skeletal muscle subcellular protein (myofibrillar, mitochondrial, cytoplasmic) and DNA synthesis in older adults after 6 weeks of milk protein feeding. CLA decreased oxidative stress and skeletal muscle oxidative damage with a trend to increase messenger RNA (mRNA) expression of a Nrf2 target, NAD(P)H dehydrogenase quinone 1 (NQO1). However, CLA did not influence other Nrf2 targets (heme oxygenase-1 (HO-1), glutathione peroxidase 1 (Gpx1)) or protein or DNA synthesis. Conversely, Protandim increased HO-1 protein content but not the mRNA expression of downstream Nrf2 targets, oxidative stress, or skeletal muscle oxidative damage. Rates of myofibrillar protein synthesis were maintained despite lower mitochondrial and cytoplasmic protein syntheses after Protandim versus CON. Similarly, DNA synthesis was non-significantly lower after Protandim compared to CON. After Protandim, the ratio of protein to DNA synthesis tended to be greater in the myofibrillar fraction and maintained in the mitochondrial and cytoplasmic fractions, emphasizing the importance of measuring both protein and DNA synthesis to gain insight into proteostasis. Overall, these data suggest that Protandim may enhance proteostatic mechanisms of skeletal muscle contractile proteins after 6 weeks of milk protein feeding in older adults.

  17. Origins of tmRNA: the missing link in the birth of protein synthesis?

    PubMed

    Macé, Kevin; Gillet, Reynald

    2016-09-30

    The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Human Tamm-Horsfall protein, a renal specific protein, serves as a cofactor in complement 3b degradation

    PubMed Central

    2017-01-01

    Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8 m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement. PMID:28742158

  19. Microbeads display of proteins using emulsion PCR and cell-free protein synthesis.

    PubMed

    Gan, Rui; Yamanaka, Yumiko; Kojima, Takaaki; Nakano, Hideo

    2008-01-01

    We developed a method for coupling protein to its coding DNA on magnetic microbeads using emulsion PCR and cell-free protein synthesis in emulsion. A PCR mixture containing streptavidin-coated microbeads was compartmentalized by water-in-oil (w/o) emulsion with estimated 0.5 template molecules per droplet. The template molecules were amplified and immobilized on beads via bead-linked reverse primers and biotinylated forward primers. After amplification, the templates were sequentially labeled with streptavidin and biotinylated anti-glutathione S-transferase (GST) antibody. The pool of beads was then subjected to cell-free protein synthesis compartmentalized in another w/o emulsion, in which templates were coupled to their coding proteins. We mixed two types of DNA templates of Histidine6 tag (His6)-fused and FLAG tag-fused GST in a ratio of 1:1,000 (His6: FLAG) for use as a model DNA library. After incubation with fluorescein isothiocyanate (FITC)-labeled anti-His6 (C-term) antibody, the beads with the His6 gene were enriched 917-fold in a single-round screening by using flow cytometry. A library with a theoretical diversity of 10(6) was constructed by randomizing the middle four residues of the His6 tag. After a two-round screening, the randomized sequences were substantially converged to peptide-encoding sequences recognized by the anti-His6 antibody.

  20. Cell-free protein synthesis: applications in proteomics and biotechnology.

    PubMed

    He, Mingyue

    2008-01-01

    Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.

  1. A novel role of cytosolic protein synthesis inhibition in aminoglycoside ototoxicity

    PubMed Central

    Francis, Shimon P.; Katz, Joshua; Fanning, Kathryn D.; Harris, Kimberly A.; Nicholas, Brian D.; Lacy, Michael; Pagana, James; Agris, Paul F.; Shin, Jung-Bum

    2013-01-01

    Ototoxicity is a main dose-limiting factor in the clinical application of aminoglycoside antibiotics. Despite longstanding research efforts, our understanding of the mechanisms underlying aminoglycoside ototoxicity remains limited. Here we report the discovery of a novel stress pathway that contributes to aminoglycoside-induced hair cell degeneration. Modifying the recently developed bioorthogonal noncanonical amino acid tagging (BONCAT) method, we used click-chemistry to study the role of protein synthesis activity in aminoglycoside-induced hair cell stress. We demonstrate that aminoglycosides inhibit protein synthesis in hair cells and activate a signaling pathway similar to ribotoxic stress response, contributing to hair cell degeneration. The ability of a particular aminoglycoside to inhibit protein synthesis and to activate the c-Jun N-terminal kinase (JNK) pathway correlated well with its ototoxic potential. Finally, we report that a FDA-approved drug known to inhibit ribotoxic stress response also prevents JNK activation and improves hair cell survival, opening up novel strategies to prevent and treat aminoglycoside ototoxicity. PMID:23407963

  2. Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR.

    PubMed

    Figueira, Miriam F; Castiglione, Raquel C; de Lemos Barbosa, Carolina M; Ornellas, Felipe M; da Silva Feltran, Geórgia; Morales, Marcelo M; da Fonseca, Rodrigo N; de Souza-Menezes, Jackson

    2017-07-01

    Diabetic nephropathy (DN) occurs in around 40% of those with diabetes. Proteinuria is the main characteristic of DN and develops as a result of increased permeability of the glomerulus capillary wall and/or decreased proximal tubule endocytosis. The goal of this work was to evaluate renal function and the expression of megalin, cubilin, CFTR (cystic fibrosis transmembrane conductance regulator), and ClC-5 in the proximal tubule and renal cortex of rats with type 1 diabetes. Male Wistar rats were randomly assigned to control (CTRL) and diabetic (DM) groups for 4 weeks. Renal function was assessed in 24-h urine sample by calculating clearance and fractional excretion of solutes. The RNA and protein contents of ClC-5, CFTR, megalin, and cubilin were determined in the renal proximal tubule and cortex using real-time polymerase chain reaction and western blotting techniques, respectively. The results showed higher creatinine clearance and higher urinary excretion of proteins, albumin, and transferrin in the DM group than in the CTRL group. Furthermore, the renal cortex and proximal tubule of diabetic animals showed downregulation of megalin, cubilin, ClC-5, and CFTR, critical components of the endocytic apparatus. These data suggest dysfunction in proximal tubule low-molecular-weight endocytosis and protein glomerulus filtration in the kidney of diabetic rats. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Urea synthesis in patients with chronic pancreatitis: relation to glucagon secretion and dietary protein intake.

    PubMed

    Hamberg, O; Andersen, V; Sonne, J; Larsen, S; Vilstrup, H

    2001-12-01

    Up-regulation of urea synthesis by amino acids and dietary protein intake may be impaired in patients with chronic pancreatitis (CP) due to the reduced glucagon secretion. Conversely, urea synthesis may be increased as a result of the chronic inflammation. The aims of the study were to determine urea synthesis kinetics in CP patients in relation to glucagon secretion (study I) and during an increase in protein intake (study II). In study I, urea synthesis rate, calculated as urinary excretion rate corrected for accumulation in total body water and intestinal loss, was measured during infusion of alanine in 7 CP patients and 5 control subjects on spontaneous protein intake. The functional hepatic nitrogen clearance (FHNC), i.e. urea synthesis expressed independent of changes in plasma amino acid concentration, was calculated as the slope of the linear relation between urea synthesis rate and plasma alpha -amino nitrogen concentration. In study II, 6 of the patients of study I had urea synthesis and FHNC determined before and after a period of 14 days of supplementation with a protein-enriched liquid (dietary sequence randomized). Study I: Alanine infusion increased urea synthesis rate by a factor of 10 in the control subjects, and by a factor of 5 in the CP patients (P<0.01). FHNC was 31.9+/-2.4 l/h in the control subjects and 16.5+/-2.0 l/h (P<0.05) in the CP patients. The glucagon response to alanine infusion (AUC) was reduced by 75 % in the CP patients. The reduction in FHNC paralleled the reduced glucagon response (r(2)=0.55, P<0.01). Study II: The spontaneous protein intake was 0.75+/-0.14 g/(kg x day) and increased during the high protein period to 1.77+/-0.12 g/(kg x day). This increased alanine stimulated urea synthesis by a factor of 1.3 (P<0.05), FHNC from 13.5+/-2.6 l/h to 19.4+/-3.1 l/h (P<0.01), and the glucagon response to alanine infusion (AUC) by a factor of 1.8 (P<0.05). Urea synthesis rate and FHNC are markedly reduced in CP patients. This is

  4. Atrogin-1 affects muscle protein synthesis and degradation when energy metabolism is impaired by the antidiabetes drug berberine.

    PubMed

    Wang, Huiling; Liu, Dajun; Cao, Peirang; Lecker, Stewart; Hu, Zhaoyong

    2010-08-01

    Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in muscles of normal and db/db mice treated with or without berberine. We also examined mechanisms for berberine-induced changes in muscle protein metabolism. Berberine administration decreased protein synthesis and increased degradation in muscles of normal and db/db mice. The protein catabolic mechanism depended on berberine-stimulated expression of the E3 ubiquitin ligase, atrogin-1. Atrogin-1 not only increased proteolysis but also reduced protein synthesis by mechanisms that were independent of decreased phosphorylation of Akt or forkhead transcription factors. Impaired protein synthesis was dependent on a reduction in eIF3-f, an essential regulator of protein synthesis. Berberine impaired energy metabolism, activating AMP-activated protein kinase and providing an alternative mechanism for the stimulation of atrogin-1 expression. When we increased mitochondrial biogenesis by expressing peroxisome proliferator-activated receptor gamma coactivator-1alpha, berberine-induced changes in muscle protein metabolism were prevented. Berberine impairs muscle metabolism by two novel mechanisms. It impairs mitochonidrial function stimulating the expression of atrogin-1 without affecting phosphorylation of forkhead transcription factors. The increase in atrogin-1 not only stimulated protein degradation but also suppressed protein synthesis, causing muscle atrophy.

  5. Is carbohydrate needed to further stimulate muscle protein synthesis/hypertrophy following resistance exercise?

    PubMed Central

    2013-01-01

    It is now well established that protein supplementation after resistance exercise promotes increased muscle protein synthesis, which ultimately results in greater net muscle accretion, relative to exercise alone or exercise with supplementary carbohydrate ingestion. However, it is not known whether combining carbohydrate with protein produces a greater anabolic response than protein alone. Recent recommendations have been made that the composition of the ideal supplement post-exercise would be a combination of a protein source with a high glycemic index carbohydrate. This is based on the hypothesis that insulin promotes protein synthesis, thus maximising insulin secretion will maximally potentiate this action. However, it is still controversial as to whether raising insulin level, within the physiological range, has any effect to further stimulate muscle protein synthesis. The present commentary will review the evidence underpinning the recommendation to consume carbohydrates in addition to a protein supplementation after resistance exercise for the specific purpose of increasing muscle mass. The paucity of data will be discussed, thus our conclusions are that further studies are necessary prior to any conclusions that enable evidence-based recommendations to be made. PMID:24066806

  6. Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Leucine is unique among the amino acids in its ability to promote protein synthesis by activating translation initiation via the mammalian target of rapamycin (mTOR) pathway. Previously, we showed that leucine infusion acutely stimulates protein synthesis in fast-twitch glycolytic muscle of neonatal...

  7. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival

    PubMed Central

    Wang, Yubao; Begley, Michael; Li, Qing; Huang, Hai-Tsang; Lako, Ana; Eck, Michael J.; Gray, Nathanael S.; Mitchison, Timothy J.; Cantley, Lewis C.; Zhao, Jean J.

    2016-01-01

    The protein kinase maternal and embryonic leucine zipper kinase (MELK) is critical for mitotic progression of cancer cells; however, its mechanisms of action remain largely unknown. By combined approaches of immunoprecipitation/mass spectrometry and peptide library profiling, we identified the eukaryotic translation initiation factor 4B (eIF4B) as a MELK-interacting protein during mitosis and a bona fide substrate of MELK. MELK phosphorylates eIF4B at Ser406, a modification found to be most robust in the mitotic phase of the cell cycle. We further show that the MELK–eIF4B signaling axis regulates protein synthesis during mitosis. Specifically, synthesis of myeloid cell leukemia 1 (MCL1), an antiapoptotic protein known to play a role in cancer cell survival during cell division, depends on the function of MELK-elF4B. Inactivation of MELK or eIF4B results in reduced protein synthesis of MCL1, which, in turn, induces apoptotic cell death of cancer cells. Our study thus defines a MELK–eIF4B signaling axis that regulates protein synthesis during mitosis, and consequently influences cancer cell survival. PMID:27528663

  8. Pyrogenic renal hyperemia: the role of prostaglandins.

    PubMed

    Gagnon, J A; Ramwell, P W; Flamenbaum, W

    1978-01-01

    The intravenous administration of triple typhoid vaccine to anesthetized dogs resulted in a significant increase in renal blood flow accompanied by a modest decline in systemic blood pressure. This renal hyperemia was associated with elevated renal secretory rates of renin and prostaglandin E and F. Measurements of the intracortical distribution of radiolabeled microspheres revealed a progressive decrease in outer cortical blood flow rates and a progressive increase in inner cortical flow rates. When meclofenamate, an inhibitor of prostaglandin synthetase, was administered concomitantly with triple typhoid vaccine renal hyperemia did not develop. The renal renin secretory rate increased modestly and intracortical renal blood flow was not redistributed. The increased renal blood flow after triple typhoid vaccine administration to unanesthetized dogs was also reversed by meclofenamate. The marked increase in prostaglandin secretion by the kidney during renal hyperemia following triple typhoid vaccine administration (pyrogen), and the effect of meclofenamate, is consonant with a role for increased renal synthesis and release of prostaglandins.

  9. Quantifying protein synthesis and degradation in Arabidopsis by dynamic 13CO2 labeling and analysis of enrichment in individual amino acids in their free pools and in protein.

    PubMed

    Ishihara, Hirofumi; Obata, Toshihiro; Sulpice, Ronan; Fernie, Alisdair R; Stitt, Mark

    2015-05-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied (13)CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%-4% d(-1)), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    PubMed

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    PubMed

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  12. [Effect of metalaxyl on the synthesis of RNA, DNA and protein in Phytophthora nicotianae].

    PubMed

    Wollgiehn, R; Bräutigam, E; Schumann, B; Erge, D

    1984-01-01

    Metalaxyl is used to control diseases caused by fungi of the order of the Perenosporales. We investigated the action of this fungicid eon nucleic acid and protein synthesis in liquid cultures of Phytophthora nicotianae. The uptake of 32P, 3H-uridine, 3H-thymidine and 14C-leucine as precursors of nuclei acid and protein synthesis by the mycelium was not inhibited by metalaxyl. RNA synthesis as indicated by 3H-uridine incorporation was strongly inhibited (about 80%) by 0.5 micrograms/ml of metalaxyl. The inhibition was visible already few minutes after addition of the toxicant. Since the inhibition of incorporation of 3H-thymidine into DNA and of 14C-leucine into protein became significant 2-3 hours later, we conclude that metalaxyl primarily interfers with RNA synthesis. Synthesis of ribosomal RNA is more affected (more than 90%) than that of tRNA (about 55%) and poly(A)-containing RNA. Since in the presence of actinomycin, in contrast to metalaxyl, protein synthesis is inhibited immediately as a consequence of complete inhibition of RNA synthesis and of the short life-time of mRNA, it is also evident that mRNA synthesis is less strongly inhibited, at least during the early period of metalaxyl action. The molecular mechanism of metalaxyl inhibition of the transcription process remains open. The fungicide did not inhibit the activity of a partially purified RNA polymerase isolated from the fungus. On the other hand, the RNA synthesis (14C-UTP-incorporation) by a cell homogenate and by isolated nuclear fractions was inhibited significantly. Possibilities of the molecular action of metalaxyl are discussed. The RNA synthesis of some plant systems (cell cultures of Lycopersicon peruvianum, isolated nuclei from the same cell cultures, purified RNA polymerase from Spinacia oleracea chloroplasts) was not inhibited by metalaxyl, not even at high concentrations.

  13. Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).

    PubMed Central

    Gatehouse, J A; Evans, I M; Bown, D; Croy, R R; Boulter, D

    1982-01-01

    The tissue-specific syntheses of seed storage proteins in the cotyledons of developing pea (Pisum sativum L.) seeds have been demonstrated by estimates of their qualitative and quantitative accumulation by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and rocket immunoelectrophoresis respectively. Vicilin-fraction proteins initially accumulated faster than legumin, but whereas legumin was accumulated throughout development, different components of the vicilin fraction had their predominant periods of synthesis at different stages of development. The translation products in vitro of polysomes isolated from cotyledons at different stages of development reflected the synthesis in vivo of storage-protein polypeptides at corresponding times. The levels of storage-protein mRNA species during development were estimated by 'Northern' hybridization using cloned complementary-DNA probes. This technique showed that the levels of legumin and vicilin (47000-Mr precursors) mRNA species increased and decreased in agreement with estimated rates of synthesis of the respective polypeptides. The relative amounts of these messages, estimated by kinetic hybridization were also consistent. Legumin mRNA was present in leaf poly(A)+ RNA at less than one-thousandth of the level in cotyledon poly(A)+ (polyadenylated) RNA, demonstrating tissue-specific expression. Evidence is presented that storage-protein mRNA species are relatively long-lived, and it is suggested that storage-protein synthesis is regulated primarily at the transcriptional level. Images Fig. 2. Fig. 3. PMID:6897609

  14. MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review.

    PubMed

    Trommelen, Jorn; Groen, Bart B L; Hamer, Henrike M; de Groot, Lisette C P G M; van Loon, Luc J C

    2015-07-01

    Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000  pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults. © 2015 European Society of Endocrinology.

  15. Sepsis-induced alterations in protein-protein interactions within mTOR complex 1 and the modulating effect of leucine on muscle protein synthesis.

    PubMed

    Kazi, Abid A; Pruznak, Anne M; Frost, Robert A; Lang, Charles H

    2011-02-01

    Sepsis-induced muscle atrophy is produced in part by decreased protein synthesis mediated by inhibition of mTOR (mammalian target of rapamycin). The present study tests the hypothesis that alteration of specific protein-protein interactions within the mTORC1 (mTOR complex 1) contributes to the decreased mTOR activity observed after cecal ligation and puncture in rats. Sepsis decreased in vivo translational efficiency in gastrocnemius and reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein (BP) 1, S6 kinase (S6K) 1, and mTOR, compared with time-matched pair-fed controls. Sepsis decreased T246-phosphorylated PRAS40 (proline-rich Akt substrate 40) and reciprocally increased S792-phosphorylated raptor (regulatory associated protein of mTOR). Despite these phosphorylation changes, sepsis did not alter PRAS40 binding to raptor. The amount of the mTOR-raptor complex did not differ between groups. In contrast, the binding and retention of both 4E-BP1 and S6K1 to raptor were increased, and, conversely, the binding of raptor with eIF3 was decreased in sepsis. These changes in mTORC1 in the basal state were associated with enhanced 5'-AMP activated kinase activity. Acute in vivo leucine stimulation increased muscle protein synthesis in control, but not septic rats. This muscle leucine resistance was associated with coordinated changes in raptor-eIF3 binding and 4E-BP1 phosphorylation. Overall, our data suggest the sepsis-induced decrease in muscle protein synthesis may be mediated by the inability of 4E-BP1 and S6K1 to be phosphorylated and released from mTORC1 as well as the decreased recruitment of eIF3 necessary for a functional 48S complex. These data provide additional mechanistic insight into the molecular mechanisms by which sepsis impairs both basal protein synthesis and the anabolic response to the nutrient signal leucine in skeletal muscle.

  16. Direct measurement of the rates of synthesis of plasma proteins in control subjects and patients with gastrointestinal protein loss

    PubMed Central

    Wochner, R. Dean; Weissman, Sherman M.; Waldmann, Thomas A.; Houston, Delores; Berlin, Nathaniel I.

    1968-01-01

    The guanido carbon of hepatic arginine is the common precursor of urea and of the arginine of plasma proteins synthesized in the liver. It is possible to measure the momentary synthetic rates of plasma proteins by “pulse labeling” this arginine pool with bicarbonate-14C. In the current study, this method has been adapted in order to use urinary urea data and was applied to control subjects and patients with gastrointestinal protein loss. The assumptions required for this determination are discussed. There was close agreement between albumin synthetic rates measured by this method and albumin catabolic rates derived from simultaneous albumin-131I studies, supporting the validity of the method and suggesting that there is relatively little fluctuation in the rate of albumin synthesis from time to time. The albumin synthetic rates in six control subjects averaged 5.8 mg/kg per hr, while those of five patients with gastrointestinal protein loss averaged 7.2 mg/kg per hr. Thus in these patients, there was relatively little acceleration of albumin synthesis in response to continued loss of plasma proteins into the gastrointestinal tract. Fibrinogen synthetic rates averaged 1.9 mg/kg per hr in five control subjects and 3.2 mg/kg per hr in five patients with gastrointestinal protein loss. Transferrin synthetic rates exhibited considerable individual variation in both groups and averaged 0.24 mg/kg per hr in four control subjects and 0.31 mg/kg per hr in five patients with gastrointestinal protein loss. The method employed in this study offers several advantages in studying plasma protein metabolism. It provides a direct measurement of protein synthesis, applicable to several proteins simultaneously, does not require a long-term steady state in the metabolism of the proteins, and is capable of measuring short-term fluctuations in synthetic rates. Therefore, this approach is applicable to the investigation of the physiological factors controlling the rates of synthesis

  17. Mitochondrial Protein Synthesis, Import, and Assembly

    PubMed Central

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  18. The effect of hyperglycemic hyperinsulinemia on small-intestinal mucosal protein synthesis in patients after surgical stress.

    PubMed

    Rittler, Peter; Schiefer, Beatrice; Demmelmair, Hans; Koletzko, Berthold; Vogeser, Michael; Alpers, David H; Jauch, Karl-Walter; Hartl, Wolfgang H

    2006-01-01

    Hyperglycemic hyperinsulinemia cannot stimulate intestinal protein synthesis in healthy individuals but does so in conditions characterized by an altered somatotropic axis such as diabetes. Only in a state of growth hormone resistance (high growth hormone but low insulin like growth factor [IGF-1] concentrations), extra insulin may acutely reverse the impaired, growth-hormone-induced IGF-1 release, thereby exerting anabolic actions at the intestinal tract. Growth hormone resistance can be also found in patients after surgical stress. Therefore, we wanted to test the hypothesis whether hyperglycemic hyperinsulinemia would stimulate ileal protein synthesis in the latter condition. Mass spectrometry techniques (capillary gas chromatography/combustion isotope ratio mass spectrometry) were used to directly determine the incorporation rate of 1-[(13)C]-leucine into ileal mucosal protein. All subjects had an ileostomy, which allowed easy access to the ileal mucosa, and consecutive sampling from the same tissue was performed during continuous isotope infusion (0.16 mumol/kg min). Isotopic enrichments and fractional protein synthesis were determined at baseline (period I) and after a 4-hour glucose infusion (170 mg/kg/h) or after infusion of saline (control group) (period II). In controls, ileal protein synthesis declined significantly during prolonged isotope infusion (period I: 1.11 +/- 0.14%/h, period II: 0.39 +/- 0.13%/h, p < .01). In contrast, ileal protein synthesis remained constant during glucose infusion (period I: 1.32 +/- 0.35%/h, period II: 1.33 +/- 0.21%/h, n.s. vs period I, but p < .005 vs the corresponding value at the end of period II in the control group). Using the continuous tracer infusion technique, ileal protein synthesis seemingly declines over a short time in control subjects. We found evidence that this artificial decline was due to mass effects of a rapidly turning over mucosa protein pool in which an isotopic plateau was reached during the

  19. Peeping into Human Renal Calcium Oxalate Stone Matrix: Characterization of Novel Proteins Involved in the Intricate Mechanism of Urolithiasis

    PubMed Central

    Tandon, Chanderdeep

    2013-01-01

    Background The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal–membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. Methods Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin–Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. Results Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. Conclusions We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these

  20. Automated renal histopathology: digital extraction and quantification of renal pathology

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.

    2016-03-01

    The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.

  1. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system

    PubMed Central

    Li, Jun; Zhang, Chi; Huang, Poyi; Kuru, Erkin; Forster-Benson, Eliot T. C.; Church, George M.

    2017-01-01

    ABSTRACT Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion. PMID:28702280

  2. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Zhang, Chi; Huang, Poyi

    Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less

  3. Dissecting limiting factors of the Protein synthesis Using Recombinant Elements (PURE) system

    DOE PAGES

    Li, Jun; Zhang, Chi; Huang, Poyi; ...

    2017-05-09

    Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ~6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ~2/3 rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batchmore » systems suffer from low ribosome recycling efficiency when translating proteins from 82 k D to 224 k D. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ~1.5 to ~2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.« less

  4. New advances in renal amyloidosis.

    PubMed

    Nishi, Shinichi; Alchi, Bassam; Imai, Nofumi; Gejyo, Fumitake

    2008-04-01

    Renal amyloidosis is a rare and intractable disease that accounts for 0.2% of the original kidney diseases of dialysis patients in Japan. However, the number of patients with renal amyloidosis seems to be increasing in recent years. There have been some new concepts focusing on the mechanism of amyloidogenesis, such as molecular chaperones, seeding mechanism, and genetic polymorphisms of precursor protein. Clinical and histological features of renal amyloidosis vary according to the type. Significantly higher levels of urinary protein excretion are seen in the AL type, whereas microscopic haematuria is more prominent in the AA type. Histologically, amyloid deposition of AL type has stronger predilection for GBM than mesangium, and spicule formation is more frequently observed. In contrast, AA type has a higher affinity to TBM and interstitial area. For the histological diagnosis of renal amyloidosis, plural staining methods including Congo-red, Daylon and thioflavin-T stains are available. Combinations of these staining methods are necessary for establishing the precise diagnosis. The more recent and intensive treatments for renal amyloidosis are expected to improve patient outcome. For AL amyloidosis, high-dose melphalan plus high-dose dexamethasone or VAD, in conjunction with bone marrow stem cells transplantation, have shown a definitive effect on reducing urinary protein excretion. The biological agent, tumor necrosis factor (TNF alpha) blocker, improves the renal function in AA-type renal amyloidosis, as well as suppresses the inflammatory reactions in patients with rheumatoid arthritis. Clinical advances have been made in various aspects of renal amyloidosis.

  5. ROLE OF NEUROTRANSMITTERS AND PROTEIN SYNTHESIS IN SHORT- AND LONG-TERM MEMORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.L.; Rosenzweig, M.R.; Flood, J.F.

    1978-10-01

    Anisomycin is an effective inhibitor of cerebral protein synthesis in mice and is also an effective amnestic agent for both passive and active behavioral tasks. From use of anisomycin in combination with a variety of stimulant and depressant drugs, we conclude that the level of arousal following acquisition plays an important role in determining the duration and the rate of the biosynthetic phase of memory formation. While we have interpreted the experiments with anisomycin as evidence for an essential role of protein in memory storage, others have suggested that side effects of inhibitors of protein synthesis on catecholamine metabolism aremore » the main cause of amnesia. Several experiments were therefore done to compare the effects of anisemycin and catecholamine inhibitors on memory. We conclude that anisomycin's principal amnestic mechanism does not involve inhibition of the catecholamine system. The results strengthen our conclusion that protein synthesis is an essential component for longterm memory trace formation. Also, it is suggested that proteins synthesized in the neuronal cell body are used, in conjunction with other molecules, to produce permanent and semi-permanent anatomical changes.« less

  6. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    PubMed

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.

    PubMed

    Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J

    2017-01-01

    Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.

  8. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function

    PubMed Central

    Herzog, Christian; Yang, Cheng; Holmes, Alexandrea

    2012-01-01

    Cisplatin injury to renal tubular epithelial cells (RTEC) is accompanied by autophagy and caspase activation. However, autophagy gradually decreases during the course of cisplatin injury. The role of autophagy and the mechanism of its decrease during cisplatin injury are not well understood. This study demonstrated that autophagy proteins beclin-1, Atg5, and Atg12 were cleaved and degraded during the course of cisplatin injury in RTEC and the kidney. zVAD-fmk, a widely used pancaspase inhibitor, blocked cleavage of autophagy proteins suggesting that zVAD-fmk would promote the autophagy pathway. Unexpectedly, zVAD-fmk blocked clearance of the autophagosomal cargo, indicating lysosomal dysfunction. zVAD-fmk markedly inhibited cisplatin-induced lysosomal cathepsin B and calpain activities and therefore impaired autophagic flux. In a mouse model of cisplatin nephrotoxicity, zVAD-fmk impaired autophagic flux by blocking autophagosomal clearance as revealed by accumulation of key autophagic substrates p62 and LC3-II. Furthermore, zVAD-fmk worsened cisplatin-induced renal dysfunction. Chloroquine, a lysomotropic agent that is known to impair autophagic flux, also exacerbated cisplatin-induced decline in renal function. These findings demonstrate that impaired autophagic flux induced by zVAD-fmk or a lysomotropic agent worsened renal function in cisplatin acute kidney injury (AKI) and support a protective role of autophagy in AKI. These studies also highlight that the widely used antiapoptotic agent zVAD-fmk may be contraindicated as a therapeutic agent for preserving renal function in AKI. PMID:22896037

  9. Chronic leucine supplementation of a low protein diet increases protein synthesis in skeletal muscle and visceral tissues of neonatal pigs through mTOR signaling

    USDA-ARS?s Scientific Manuscript database

    Leucine acutely stimulates protein synthesis by activating the mammalian target of rapamycin (mTOR) signaling pathway. We hypothesized that leucine supplementation of a low protein diet will enhance protein synthesis and mTOR signaling in the neonate for prolonged periods. Fasted 5-d-old pigs (n=6–8...

  10. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice.

    PubMed

    Welle, Stephen; Burgess, Kerri; Mehta, Sangeeta

    2009-03-01

    Knocking out myostatin activity during development increases the rate of muscle protein synthesis. The present study was done to determine whether postdevelopmental loss of myostatin activity stimulates myofibrillar protein synthesis and the phosphorylation of some of the proteins involved in regulation of protein synthesis rate. Myostatin activity was inhibited for 4 days, in 4- to 5-mo-old male mice, with injections of an anti-myostatin antibody (JA16). The mean myofibrillar synthesis rate increased 19% (P < 0.01) relative to the mean rate in saline-treated mice, as determined by incorporation of deuterium-labeled phenylalanine. JA16 increased phosphorylation of p70 S6 kinase (S6K) and ribosomal protein S6 (rpS6) 1.9-fold (P < 0.05). It did not affect phosphorylation of eukaryotic initiation factor 4E-binding protein-1 or Akt. Microarrays and real-time PCR analyses indicated that JA16 administration did not selectively enrich levels of mRNAs encoding myofibrillar proteins, ribosomal proteins, or translation initiation and elongation factors. Rapamycin treatment did not affect the rate of myofibrillar protein synthesis whether or not the mice received JA16 injections, although it eliminated the phosphorylation of S6K and rpS6. We conclude that the normal level of myostatin activity in mature muscle is sufficient to inhibit myofibrillar synthesis rate and phosphorylation of S6K and rpS6. Reversal of the inhibition of myofibrillar synthesis with an anti-myostatin antibody is not dependent on mTOR activation.

  11. A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...

  12. Protein Synthesis in Mucin-Producing Tissues Is Conserved When Dietary Threonine Is Limiting in Piglets.

    PubMed

    Munasinghe, Lalani L; Robinson, Jason L; Harding, Scott V; Brunton, Janet A; Bertolo, Robert F

    2017-02-01

    The neonatal gastrointestinal tract extracts the majority of dietary threonine on the first pass to maintain synthesis of threonine-rich mucins in mucus. As dietary threonine becomes limiting, this extraction must limit protein synthesis in extraintestinal tissues at the expense of maintaining protein synthesis in mucin-producing tissues. The objective was to determine the dietary threonine concentration at which protein synthesis is reduced in various tissues. Twenty Yucatan miniature piglets (10 females; mean ± SD age, 15 ± 1 d; mean ± SD weight, 3.14 ± 0.30 kg) were fed 20 test diets with different threonine concentrations, from 0.5 to 6.0 g/100 g total amino acids (AAs; i.e., 20-220% of requirement), and various tissues were analyzed for protein synthesis by administering a flooding dose of [ 3 H]phenylalanine. The whole-body requirement was determined by [1- 14 C]phenylalanine oxidation and plasma threonine concentrations. Breakpoint analysis indicated a whole-body requirement of 2.8-3.0 g threonine/100 g total AAs. For all of the non-mucin-producing tissues as well as lung and colon, breakpoint analyses indicated decreasing protein synthesis rates below the following concentrations (expressed in g threonine/100 g total AAs; mean ± SE): gastrocnemius muscle, 1.76 ± 0.23; longissimus dorsi muscle, 2.99 ± 0.50; liver, 2.45 ± 0.60; kidney, 3.81 ± 0.97; lung, 1.95 ± 0.14; and colon, 1.36 ± 0.29. Protein synthesis in the other mucin-producing tissues (i.e., stomach, proximal jejunum, midjejunum, and ileum) did not change with decreasing threonine concentrations, but mucin synthesis in the ileum and colon decreased over threonine concentrations <4.54 ± 1.50 and <3.20 ± 4.70 g/100 g total AAs, respectively. The results of this study illustrate that dietary threonine is preferentially used for protein synthesis in gastrointestinal tissues in piglets. If dietary threonine intake is deficient, then muscle growth and the functions of other tissues are likely

  13. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis.

    PubMed

    Katsura, Kazushige; Matsuda, Takayoshi; Tomabechi, Yuri; Yonemochi, Mayumi; Hanada, Kazuharu; Ohsawa, Noboru; Sakamoto, Kensaku; Takemoto, Chie; Shirouzu, Mikako

    2017-11-01

    Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  14. Effects of anaerobiosis on in vivo protein synthesis in the roots of a marine angiosperm zostera marina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.D.; Alberte, R.S.

    1989-04-01

    The roots of the temperate seagrass Zostera marina undergo daily periods of anaerobiosis at night. These diurnal periods of anoxia alter many metabolic processes in the roots including carbon and nitrogen metabolism, amino acid synthesis, and synthesis and levels of ATP, ADP and AMP. To further characterize the effects of anaerobiosis, we determined in vivo rates of protein synthesis by measuring the relative incorporation of {sup 35}S-MET in TCA precipitated protein samples. Results from these studies show that in vivo protein synthesis decreases continuously during 12 h of anaerobiosis and correlates with changes in ATP levels under similar conditions. Furthermore,more » polypeptide patterns obtained by SDS-PAGE and 2D-SDSPAGE indicate that anaerobiosis leads to differential protein synthesis in the roots.« less

  15. Effect of experimentally increased protein supply to postpartum dairy cows on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis.

    PubMed

    Larsen, M; Røntved, C M; Theil, P K; Khatun, M; Lauridsen, C; Kristensen, N B

    2017-05-01

    The effect of experimentally increasing the postpartum protein supply on plasma protein synthesis, rumen tissue proliferation, and immune homeostasis was studied using 8 periparturient Holstein cows in a complete randomized design. At calving, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS) in addition to a lactation diet. Casein infusion was gradually decreased from 696 ± 1 g/d at +2 d relative to calving (DRTC) to 212 ± 10 g/d at +29 DRTC to avoid excessive supply. Synthesis rate of plasma proteins was measured at -14, +4, +15, and +29 DRTC by measuring [C]Phe isotopic enrichment in arterial plasma free Phe, total plasma proteins, and albumin after 3, 5, and 7 h of jugular ring[C]Phe infusion. Plasma volume was determined at +4 and +29 DRTC by dilution of a [I]BSA dose. Synthesis rate of tissue protein in biopsied rumen papillae was determined by measuring [C]Phe isotopic enrichment, and mRNA expression of selected genes was measured by real-time qPCR. Total and differential leukocyte counts were performed and immune responsiveness of monocytes was evaluated by tumor necrosis factor ɑ (TNFɑ) concentration on ex vivo whole blood stimulation with Escherichia coli lipopolysaccharide (LPS) and responsiveness of T-lymphocytes by interferon γ (IFNγ) concentration on stimulation with Staphylococcus aureus enterotoxin β (SEB). Further, ELISA plasma concentrations of IgM, IgA, and IgG were determined. The DRTC affected the majority of investigated parameters as expected. The CAS treatment increased milk protein yield (P = 0.04), and tended to lower TNFɑ (P = 0.06), and lowered IFNγ (P = 0.03) responsiveness per monocyte and lymphocyte, respectively, compared with CTRL. Further, fractional synthesis rate of albumin was greater at +4 DRTC for CAS compared with CTRL but did not differ by +29 DRTC (interaction: P = 0.01). In rumen papillae, synthesis rate of tissue protein was greater for CAS compared with CTRL (P < 0.01) and mRNA expression

  16. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis.

    PubMed

    Wilson, Fiona A; Suryawan, Agus; Orellana, Renán A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Gazzaneo, Maria C; Davis, Teresa A

    2008-10-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.

  17. Quantifying Protein Synthesis and Degradation in Arabidopsis by Dynamic 13CO2 Labeling and Analysis of Enrichment in Individual Amino Acids in Their Free Pools and in Protein1[OPEN

    PubMed Central

    Fernie, Alisdair R.; Stitt, Mark

    2015-01-01

    Protein synthesis and degradation represent substantial costs during plant growth. To obtain a quantitative measure of the rate of protein synthesis and degradation, we supplied 13CO2 to intact Arabidopsis (Arabidopsis thaliana) Columbia-0 plants and analyzed enrichment in free amino acids and in amino acid residues in protein during a 24-h pulse and 4-d chase. While many free amino acids labeled slowly and incompletely, alanine showed a rapid rise in enrichment in the pulse and a decrease in the chase. Enrichment in free alanine was used to correct enrichment in alanine residues in protein and calculate the rate of protein synthesis. The latter was compared with the relative growth rate to estimate the rate of protein degradation. The relative growth rate was estimated from sequential determination of fresh weight, sequential images of rosette area, and labeling of glucose in the cell wall. In an 8-h photoperiod, protein synthesis and cell wall synthesis were 3-fold faster in the day than at night, protein degradation was slow (3%–4% d−1), and flux to growth and degradation resulted in a protein half-life of 3.5 d. In the starchless phosphoglucomutase mutant at night, protein synthesis was further decreased and protein degradation increased, while cell wall synthesis was totally inhibited, quantitatively accounting for the inhibition of growth in this mutant. We also investigated the rates of protein synthesis and degradation during leaf development, during growth at high temperature, and compared synthesis rates of Rubisco large and small subunits of in the light and dark. PMID:25810096

  18. Nucleic acid and protein synthesis during lateral root initiation in Marsilea quadrifolia (Marsileaceae)

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    The pattern of DNA, RNA, and protein synthesis during lateral root initiation in Marsilea quadrifolia L. was monitored by autoradiography of incorporated of 3H-thymidine, 3H-uridine, and 3H-leucine, respectively. DNA synthesis was associated with the enlargement of the lateral root initial prior to its division. Consistent with histological studies, derivatives of the lateral root initial as well as the cells of the adjacent inner cortex and pericycle of the parent root also continued to synthesize DNA. RNA and protein synthetic activities were found to be higher in the lateral root initials than in the endodermal initials of the same longitudinal layer. The data suggest a role for nucleic acid and protein synthesis during cytodifferentiation of a potential endodermal cell into a lateral root initial.

  19. Extremophilic Enzymatic Response: Role of Proteins in Controlling Selenium Nanoparticle Synthesis

    DTIC Science & Technology

    2014-11-28

    Thermophiles ; Regensburg, Germany. September 2013. 2.- “Identification of one enzyme Involved in selenium nanoparticles Biosynthesis in Geobacillus...Objective To study the role of at least one protein ( enzyme ) from E1 (GWE1) on the synthesis of nano-Se particles. Note: This project...To identify protein(s) or enzyme (s) involved in nanoparticles formation. To identify the proteins or enzyme (s) involved in nanoparticles formation

  20. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension.

    PubMed

    Drummond, Heather A; Stec, David E

    2015-06-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.

  1. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into themore » coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.« less

  2. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation ofmore » [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.« less

  3. Evidence that intracellular magnesium is present in cells at a regulatory concentration for protein synthesis.

    PubMed Central

    Terasaki, M; Rubin, H

    1985-01-01

    When extracellular magnesium is reduced by a factor of 50 (from 1.0 to 0.02 mM), the total intracellular magnesium of a spontaneously transformed clone of 3T3 cells decreases by 30-50%. Protein synthesis rates in these cells were measured as the intracellular magnesium decreased. Protein synthesis rates and magnesium content were found to decrease in parallel with each other. At 3 hr, a decrease to 84% of control values of magnesium content was accompanied by a decrease to 85% of control values of leucine incorporation rates. A larger inhibition had occurred by 12 hr, when the magnesium had decreased to 67% and leucine incorporation rates had decreased to 57%. When magnesium was restored to magnesium-deprived cells, both magnesium content and leucine incorporation increased about 2-fold by 1 hr. In the experiments reported here, initial small changes in magnesium content are associated with changes in protein synthesis rates. This strongly suggests that magnesium is present at a regulatory rather than excess concentration for protein synthesis. The results are consistent with a role for intracellular magnesium in the regulation of protein synthesis and support the hypothesis that magnesium has a central role in the regulation of metabolism and growth. PMID:2997785

  4. Light-stimulated Production of a Chloroplast-localized System for Protein Synthesis in Euglena gracilis1

    PubMed Central

    Reger, Bonnie J.; Smillie, R. M.; Fuller, R. C.

    1972-01-01

    Chloroplasts and proplastids isolated respectively from autotrophic and dark-adapted cells of Euglena gracilis strain Z incorporated 14C-l-leucine into protein. In each case the incorporation was inhibited by chloramphenicol (50% inhibition at about 5 μg/ml for chloroplasts and 30 μg/ml for proplastids), but not appreciably by cycloheximide at concentrations up to 200 μg/ml. Chloroplasts from autotrophic cells incorporated leucine into protein at rates of about 10 pg leucine per mg RNA in one minute, but isolated proplastids were only 5 to 10% as active. When dark-adapted cells were illuminated there was little increase in the activity of the chloroplast fraction during the first 12 hr. Between 12 and 24 hr, when there was a rapid increase in the rate of synthesis of chlorophyll, the capacity of the chloroplast fraction for protein synthesis increased markedly. Suppression of the formation of a chloroplast-localized system for protein synthesis by treating the cells with chloramphenicol and the lack of such an effect with cycloheximide suggests that certain of the proteins which form part of a functional chloroplast system for protein synthesis are themselves synthesized within the chloroplasts. PMID:16658126

  5. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  7. Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics.

    PubMed

    Russell, B A; Jachimska, B; Komorek, P; Mulheran, P A; Chen, Y

    2017-03-08

    The study of gold nanoclusters (AuNCs) has seen much interest in recent history due to their unique fluorescence properties and environmentally friendly synthesis method using proteins as a growth scaffold. The differences in the physicochemical properties of lysozyme encapsulated AuNCs in comparison to natural lysozyme are characterised in order to determine the effects AuNCs have on natural protein behaviour. The hydrodynamic radius (dynamic light scattering), light absorbance (UV-Vis), electrophoretic mobility, relative density, dynamic viscosity, adsorption (quartz crystal microbalance) and circular dichroism (CD) characteristics of the molecules were studied. It was found that lysozyme forms small dimer/trimer aggregates upon the synthesis of AuNCs within the protein. The diameter of Ly-AuNCs was found to be 8.0 nm across a pH range of 2-11 indicating dimer formation, but larger aggregates with diameters >20 nm were formed between pH 3 and 6. The formation of larger aggregates limits the use of Ly-AuNCs as a fluorescent probe in this pH range. A large shift in the protein's isoelectric point was also observed, shifting from 11.0 to 4.0 upon AuNC synthesis. This resulted in major changes to the adsorption characteristics of lysozyme, observed using a QCM. A monolayer of 8 nm was seen for Ly-AuNCs at pH 4, offering further evidence that the proteins form small aggregates, unlike the natural monomer form of lysozyme. The adsorption of Ly-AuNCs was seen to decrease as pH was increased; this is in major contrast to the lysozyme adsorption behaviour. A decrease in the α-helix content was observed from 25% in natural lysozyme to 1% in Ly-AuNCs. This coincided with an increase in the β-sheet content after AuNC synthesis indicating that the natural structure of lysozyme was lost. The formation of protein dimers, the change in the protein surface charge from positive to negative, and secondary structure alteration caused by the AuNC synthesis must be considered before

  8. The differential role of cortical protein synthesis in taste memory formation and persistence

    NASA Astrophysics Data System (ADS)

    Levitan, David; Gal-Ben-Ari, Shunit; Heise, Christopher; Rosenberg, Tali; Elkobi, Alina; Inberg, Sharon; Sala, Carlo; Rosenblum, Kobi

    2016-05-01

    The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n⩾5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA). We found that local anisomycin infusion to the GC before memory acquisition impaired LTM formation (P=8.9E-5), but had no effect on LTM persistence when infused 3 days post acquisition (P=0.94). However, when we extended the time interval between treatment with anisomycin and testing from 3 days to 14 days, LTM persistence was enhanced (P=0.01). The enhancement was on the background of stable and non-declining memory, and was not recapitulated by another amnesic agent, APV (10 μg, 1 μl), an N-methyl-D-aspartate receptor antagonist (P=0.54). In conclusion, CTA LTM remains sensitive to the action of PSIs in the GC even 3 days following memory acquisition. This sensitivity is differentially expressed between the formation and persistence of LTM, suggesting that increased cortical protein synthesis promotes LTM formation, whereas decreased protein synthesis promotes LTM persistence.

  9. Distal Renal Tubules Are Deficient in Aggresome Formation and Autophagy upon Aldosterone Administration

    PubMed Central

    Cheema, Muhammad Umar; Damkier, Helle Hasager; Nielsen, Jakob; Poulsen, Ebbe Toftgaard; Enghild, Jan J.; Fenton, Robert A.; Praetorius, Jeppe

    2014-01-01

    Prolonged elevations of plasma aldosterone levels are associated with renal pathogenesis. We hypothesized that renal distress could be imposed by an augmented aldosterone-induced protein turnover challenging cellular protein degradation systems of the renal tubular cells. Cellular accumulation of specific protein aggregates in rat kidneys was assessed after 7 days of aldosterone administration. Aldosterone induced intracellular accumulation of 60 s ribosomal protein L22 in protein aggregates, specifically in the distal convoluted tubules. The mineralocorticoid receptor inhibitor spironolactone abolished aldosterone-induced accumulation of these aggregates. The aldosterone-induced protein aggregates also contained proteasome 20 s subunits. The partial de-ubiquitinase ataxin-3 was not localized to the distal renal tubule protein aggregates, and the aggregates only modestly colocalized with aggresome transfer proteins dynactin p62 and histone deacetylase 6. Intracellular protein aggregation in distal renal tubules did not lead to development of classical juxta-nuclear aggresomes or to autophagosome formation. Finally, aldosterone treatment induced foci in renal cortex of epithelial vimentin expression and a loss of E-cadherin expression, as signs of cellular stress. The cellular changes occurred within high, but physiological aldosterone concentrations. We conclude that aldosterone induces protein accumulation in distal renal tubules; these aggregates are not cleared by autophagy that may lead to early renal tubular damage. PMID:25000288

  10. Effect of resistance training and protein intake pattern on myofibrillar protein synthesis and proteome kinetics in older men in energy restriction.

    PubMed

    Murphy, Caoileann H; Shankaran, Mahalakshmi; Churchward-Venne, Tyler A; Mitchell, Cameron J; Kolar, Nathan M; Burke, Louise M; Hawley, John A; Kassis, Amira; Karagounis, Leonidas G; Li, Kelvin; King, Chelsea; Hellerstein, Marc; Phillips, Stuart M

    2018-06-01

    Strategies to enhance the loss of fat while preserving muscle mass during energy restriction are of great importance to prevent sarcopenia in overweight older adults. We show for the first time that the integrated rate of synthesis of numerous individual contractile, cytosolic and mitochondrial skeletal muscle proteins was increased by resistance training (RT) and unaffected by dietary protein intake pattern during energy restriction in free-living, obese older men. We observed a correlation between the synthetic rates of skeletal muscle-derived proteins obtained in serum (creatine kinase M-type, carbonic anhydrase 3) and the synthetic rates of proteins obtained via muscle sampling; and that the synthesis rates of these proteins in serum revealed the stimulatory effects of RT. These results have ramifications for understanding the influence of RT on skeletal muscle and are consistent with the role of RT in maintaining muscle protein synthesis and potentially supporting muscle mass preservation during weight loss. We determined how the pattern of protein intake and resistance training (RT) influenced longer-term (2 weeks) integrated myofibrillar protein synthesis (MyoPS) during energy restriction (ER). MyoPS and proteome kinetics were measured during 2 weeks of ER alone and 2 weeks of ER plus RT (ER + RT) in overweight/obese older men. Participants were randomized to consume dietary protein in a balanced (BAL: 25% daily protein per meal × 4 meals) or skewed (SKEW: 7:17:72:4% daily protein per meal) pattern (n = 10 per group). Participants ingested deuterated water during the consecutive 2-week periods, and skeletal muscle biopsies and serum were obtained at the beginning and conclusion of ER and ER + RT. Bulk MyoPS (i.e. synthesis of the myofibrillar protein sub-fraction) and the synthetic rates of numerous individual skeletal muscle proteins were quantified. Bulk MyoPS was not affected by protein distribution during ER or ER + RT (ER: BAL = 1.24

  11. L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis.

    PubMed

    Ma, Qingquan; Hu, Shengdi; Bannai, Makoto; Wu, Guoyao

    2018-05-01

    Milk is an important food for mammalian neonates, but its insufficient production is a nutritional problem for humans and other animals. Recent studies indicate that dietary supplementation with L-arginine (Arg) increases milk production in mammals, including sows, rabbits, and cows. However, the underlying molecular mechanisms remain largely unknown. The present study was conducted with porcine mammary epithelial cells (PMECs) to test the hypothesis that Arg enhances milk protein synthesis via activation of the mechanistic target of rapamycin (mTOR) cell signaling. PMECs were cultured for 4 days in Arg-free basal medium supplemented with 10, 50, 200, or 500 μmol/L Arg. Rates of protein synthesis and degradation in cells were determined with the use of L-[ring-2,4- 3 H]phenylalanine. Cell medium was analyzed for β-casein and α-lactalbumin, whereas cells were used for quantifying total and phosphorylated levels of mTOR, ribosomal protein S6 kinase (p70S6K), 4E-binding protein 1 (4EBP1), ubiquitin, and proteasome. Addition of 50-500 μmol/L Arg to culture medium increased (P < 0.05) the proliferation of PMECs and the synthesis of proteins (including β-casein and α-lactalbumin), while reducing the rates of proteolysis, in a dose-dependent manner. The phosphorylated levels of mTOR, p70S6K and 4EBP1 were elevated (P < 0.05), but the abundances of ubiquitin and proteasome were lower (P < 0.05), in PMECs supplemented with 200-500 μmol/L Arg, compared with 10-50 μmol/L Arg. These results provide a biochemical basis for the use of Arg to enhance milk production by sows and have important implications for improving lactation in other mammals (including humans and cows).

  12. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure.

    PubMed

    Mesquita, Flávia Fernandes; Gontijo, José Antonio Rocha; Boer, Patrícia Aline

    2010-02-01

    Intrauterine growth restriction due to low maternal dietary protein during pregnancy is associated with retardation of foetal growth, renal alterations and adult hypertension. The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. In the kidney, all the components of the renin-angiotensin system including angiotensin II type 1 (AT1) and type 2 (AT2) receptors are expressed locally during nephrogenesis. Hence, we investigated whether low protein diet intake during pregnancy altered kidney and adrenal expression of AT1(R) and AT2(R) receptors, their pathways and if the modified expression of the RAS compounds occurs associated with changes in urinary sodium and in arterial blood pressure in sixteen-week-old males' offspring of the underfed group. The pregnancy dams were divided in two groups: with normal protein diet (pups named NP) (17% protein) or low protein diet (pups LP) (6% protein) during all pregnancy. The present data confirm a significant enhancement in arterial pressure in the LP group. Furthermore, the study showed a significantly decreased expression of RAS pathway protein and Ang II receptors in the kidney and an increased expression in the adrenal of LP rats. The detailed immunohistochemical analysis of RAS signalling proteins in the kidney confirm the immunoblotting results for both groups. The present investigation also showed a pronounced decrease in fractional urinary sodium excretion in maternal protein-restricted offspring, compared with the NP age-matched group. This occurred despite unchanged creatinine clearance. The current data led us to hypothesize that foetal undernutrition could be associated with decreased kidney expression of AT(R) resulting in the inability of renal tubules to handle the hydro-electrolyte balance, consequently causing arterial hypertension.

  13. Recalling an Aversive Experience by Day-Old Chicks Is Not Dependent on Somatic Protein Synthesis

    ERIC Educational Resources Information Center

    Mileusnic, Radmila; Lancashire, Christine L.; Rose, Steven P. R.

    2005-01-01

    Long-term memory is dependent on protein synthesis and inhibiting such synthesis following training results in amnesia for the task. Proteins synthesized during training must be transported to the synapse and disrupting microtubules with Colchicines, and hence, blocking transport, results in transient amnesia. Reactivating memory for a previously…

  14. Problem-Solving Test: The Mechanism of Protein Synthesis

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: protein synthesis, ribosomes, amino acids, peptides, peptide bond, polypeptide chain, N- and C-terminus, hemoglobin, [alpha]- and [beta]-globin chains, radioactive labeling, [[to the third power]H] and [[to the fourteenth power]C]leucine, cytosol, differential centrifugation, density…

  15. Total chemical synthesis of human matrix Gla protein

    PubMed Central

    Hackeng, Tilman M.; Rosing, Jan; Spronk, Henri M.H.; Vermeer, Cees

    2001-01-01

    Human matrix Gla protein (MGP) is a vitamin K–dependent extracellular matrix protein that binds Ca2+ ions and that is involved in the prevention of vascular calcification. MGP is a 10.6-kD protein (84 amino acids) containing five γ-carboxyglutamic acid (Gla) residues and one disulfide bond. Studies of the mechanism by which MGP prevents calcification of the arterial media are hampered by the low solubility of the protein (<10 μg/mL). Because of solubility problems, processing of a recombinantly expressed MGP-fusion protein chimera to obtain MGP was unsuccessful. Here we describe the total chemical synthesis of MGP by tBoc solid-phase peptide synthesis (SPPS) and native chemical ligation. Peptide Tyr1-Ala53 was synthesized on a derivatized resin yielding a C-terminal thioester group. Peptide Cys54-Lys84 was synthesized on Lys-PAM resin yielding a C-terminal carboxylic acid. Subsequent native chemical ligation of the two peptides resulted in the formation of a native peptide bond between Ala53 and Cys54. Folding of the 1–84-polypeptide chain in 3 M guanidine (pH 8) resulted in a decrease of molecular mass from 10,605 to 10,603 (ESI-MS), representing the loss of two protons because of the formation of the Cys54-Cys60 internal disulfide bond. Like native MGP, synthetic MGP had the same low solubility when brought into aqueous buffer solutions with physiological salt concentrations, confirming its native like structure. However, the solubility of MGP markedly increased in borate buffer at pH 7.4 in the absence of sodium chloride. Ca2+-binding to MGP was confirmed by analytical HPLC, on which the retention time of MGP was reduced in the presence of CaCl2. Circular dichroism studies revealed a sharp increase in α-helicity at 0.2 mM CaCl2 that may explain the Ca2+-dependent shift in high-pressure liquid chromatography (HPLC)-retention time of MGP. In conclusion, facile and efficient chemical synthesis in combination with native chemical ligation yielded MGP

  16. Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice.

    PubMed

    Samuels, S E; Knowles, A L; Tilignac, T; Debiton, E; Madelmont, J C; Attaix, D

    2001-07-01

    The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C(6)H(12)CIN(3)O(4)S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower (P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (-38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (~-54 to -69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (-80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.

  17. Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria

    PubMed Central

    Dabkowski, Erinne R.; Shekar, Kadambari Chandra; Li, Ling; Ribeiro, Rogerio F.; Walsh, Kenneth; Previs, Stephen F.; Sadygov, Rovshan G.; Willard, Belinda; Stanley, William C.

    2013-01-01

    Traditional proteomics provides static assessment of protein content, but not synthetic rates. Recently, proteome dynamics with heavy water (2H2O) was introduced, where 2H labels amino acids that are incorporated into proteins, and the synthesis rate of individual proteins is calculated using mass isotopomer distribution analysis. We refine this approach with a novel algorithm and rigorous selection criteria that improve the accuracy and precision of the calculation of synthesis rates and use it to measure protein kinetics in spatially distinct cardiac mitochondrial subpopulations. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated from adult rats, which were given 2H2O in the drinking water for up to 60 days. Plasma 2H2O and myocardial 2H-enrichment of amino acids were stable throughout the experimental protocol. Multiple tryptic peptides were identified from 28 proteins in both SSM and IFM and showed a time-dependent increase in heavy mass isotopomers that was consistent within a given protein. Mitochondrial protein synthesis was relatively slow (average half-life of 30 days, 2.4% per day). Although the synthesis rates for individual proteins were correlated between IFM and SSM (R2 = 0.84; P < 0.0001), values in IFM were 15% less than SSM (P < 0.001). In conclusion, administration of 2H2O results in stable enrichment of the cardiac precursor amino acid pool, with the use of refined analytical and computational methods coupled with cell fractionation one can measure synthesis rates for cardiac proteins in subcellular compartments in vivo, and protein synthesis is slower in mitochondria located among the myofibrils than in the subsarcolemmal region. PMID:23457012

  18. Renal denervation prevents long-term sequelae of ischemic renal injury

    PubMed Central

    Kim, Jinu; Padanilam, Babu J.

    2014-01-01

    Signals that drive interstitial fibrogenesis after renal ischemia reperfusion injury remain undefined. Sympathetic activation is manifest even in the early clinical stages of chronic kidney disease and is directly related to disease severity. A role for renal nerves in renal interstitial fibrogenesis in the setting of ischemia reperfusion injury has not been studied. In male 129S1/SvImJ mice, ischemia reperfusion injury induced tubulointerstitial fibrosis as indicated by collagen deposition and profibrotic protein expression 4 to 16 days after the injury.. Leukocyte influx, proinflammatory protein expression, oxidative stress, apoptosis, and cell cycle arrest at G2/M phase were enhanced after ischemia reperfusion injury. Renal denervation at the time of injury or up to 1 day post-injury improved histology, decreased proinflammatory/profibrotic responses and apoptosis, and prevented G2/M cell cycle arrest in the kidney. Treatment with afferent nerve-derived calcitonin gene-related peptide (CGRP) or efferent nerve-derived norepinephrine in denervated and ischemia reperfusion injury-induced kidneys mimicked innervation, restored inflammation and fibrosis, induced G2/M arrest, and enhanced TGF-β1 activation. Blocking norepinephrine or CGRP function using respective receptor blockers prevented these effects. Consistent with the in vivo study, treatment with either norepinephrine or CGRP induced G2/M cell cycle arrest in HK-2 proximal tubule cells, whereas antagonists against their respective receptors prevented G2/M arrest. Thus, renal nerve stimulation is a primary mechanism and renal nerve-derived factors drive epithelial cell cycle arrest and the inflammatory cascade causing interstitial fibrogenesis after ischemia reperfusion injury. PMID:25207878

  19. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    PubMed

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1. Copyright © 2015 the American Physiological Society.

  20. Deregulation of E2-EPF Ubiquitin Carrier Protein in Papillary Renal Cell Carcinoma

    PubMed Central

    Roos, Frederik C.; Evans, Andrew J.; Brenner, Walburgis; Wondergem, Bill; Klomp, Jeffery; Heir, Pardeep; Roche, Olga; Thomas, Christian; Schimmel, Heiko; Furge, Kyle A.; Teh, Bin T.; Thüroff, Joachim W.; Hampel, Christian; Ohh, Michael

    2011-01-01

    Molecular pathways associated with pathogenesis of sporadic papillary renal cell carcinoma (PRCC), the second most common form of kidney cancer, are poorly understood. We analyzed primary tumor specimens from 35 PRCC patients treated by nephrectomy via gene expression analysis and tissue microarrays constructed from an additional 57 paraffin-embedded PRCC samples via immunohistochemistry. Gene products were validated and further studied by Western blot analyses using primary PRCC tumor samples and established renal cell carcinoma cell lines, and potential associations with pathologic variables and survival in 27 patients with follow-up information were determined. We show that the expression of E2-EPF ubiquitin carrier protein, which targets the principal negative regulator of hypoxia-inducible factor (HIF), von Hippel-Lindau protein, for proteasome-dependent degradation, is markedly elevated in the majority of PRCC tumors exhibiting increased HIF1α expression, and is associated with poor prognosis. In addition, we identified multiple hypoxia-responsive elements within the E2-EPF promoter, and for the first time we demonstrated that E2-EPF is a hypoxia-inducible gene directly regulated via HIF1. These findings reveal deregulation of the oxygen-sensing pathway impinging on the positive feedback mechanism of HIF1-mediated regulation of E2-EPF in PRCC. PMID:21281817

  1. Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process.

    PubMed

    Jeyapalan, Asumthia S; Orellana, Renan A; Suryawan, Agus; O'Connor, Pamela M J; Nguyen, Hanh V; Escobar, Jeffery; Frank, Jason W; Davis, Teresa A

    2007-08-01

    Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.

  2. Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione.

    PubMed

    Kürschner, Gerrit; Zhang, Qingzhou; Clima, Rosanna; Xiao, Yi; Busch, Jonas Felix; Kilic, Ergin; Jung, Klaus; Berndt, Nikolaus; Bulik, Sascha; Holzhütter, Hermann-Georg; Gasparre, Giuseppe; Attimonelli, Marcella; Babu, Mohan; Meierhofer, David

    2017-12-01

    Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. The abundance of proteins localized to mitochondria increased more than 2-fold, the only exception was a strong decrease in the abundance for CI subunits that revealed several pathogenic heteroplasmic mtDNA mutations by WES. We also observed renal oncocytomas to dysregulate main metabolic pathways, shunting away from gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier molecules such as NAD + , NADH, NADP, ATP, and ADP were significantly higher in renal oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate ATP consuming processes to ensure a sufficient energy supply for the tumor.

  3. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

    PubMed

    Burgos, Hector L; O'Connor, Kevin; Sanchez-Vazquez, Patricia; Gourse, Richard L

    2017-11-01

    Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In

  4. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    PubMed

    Sørensen, Brita Singers; Busk, Morten; Overgaard, Jens; Horsman, Michael R; Alsner, Jan

    2015-01-01

    The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis. Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein. Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined. We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de novo

  5. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    PubMed Central

    Wilson, Fiona A.; Suryawan, Agus; Orellana, Renán A.; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Gazzaneo, Maria C.; Davis, Teresa A.

    2008-01-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 μg·kg−1·day−1) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P < 0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P < 0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1·eIF4E complex association, and increased active eIF4E·eIF4G complex formation (P < 0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex. PMID:18682537

  6. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10.

    PubMed

    Lin, Yuan; Li, Yan; Zhu, Ningyu; Han, Yanxing; Jiang, Wei; Wang, Yanchang; Si, Shuyi; Jiang, Jiandong

    2014-01-01

    Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.

  7. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.

  8. [Control of RNA biosynthesis in rat liver. Some features of RNA biosynthesis during prolonged protein synthesis inhibition].

    PubMed

    Todorov, I N; Shen, R A; Zheliabovskaia, S M; Galkin, A P

    1976-10-01

    A drastic inhibition of protein biosynthesis in rat liver in vivo by cycloheximide (CHI) (0.3 mg/100 g of body weight) first caused an increase of RNA synthesis (after 1 hour), which was then followed by its decrease. Partial gradual restoration of the protein synthesis level was shown to be accompanied by a repeated increase of RNA synthesis (12 hs) and its normalisation after 24 hs. The first maximum of RNA synthesis increase in the isolated nuclei system was AU-type RNA synthesis (sensitive to alpha-amanitine), the second one was due to GC-type RNA synthesis (resistant to this toxin). Purified chromatine template activity in the system with E. coli RNA polymerase (by 14%) an hour after CHI treatment, but 3 hrs later was decreased and subsequently restored (12 hrs after CHI injection). The changes of RNA biosynthesis induced by prolonged protein synthesis inhibition suggest the existence of continuous RNA synthesis control in nuclei. This control is realized by translation system using the feed back principle.

  9. Extrarenal citrulline disposal in mice with impaired renal function

    USDA-ARS?s Scientific Manuscript database

    The endogenous synthesis of arginine, a semiessential amino acid, relies on the production of citrulline by the gut and its conversion into arginine by the kidney in what has been called the "intestinal-renal axis" for arginine synthesis. Although the kidney is the main site for citrulline disposal,...

  10. Oxygen Supplementation Improves Protein Milieu Supportive of Protein Synthesis and Antioxidant Function in the Cortex of Alzheimer's Disease Model Mice-a Quantitative Proteomic Study.

    PubMed

    Wang, Hao; Hong, Xiaoyu; Li, Shuiming; Wang, Yong

    2017-10-01

    Protein synthesis has been reported to be impaired in early-stage Alzheimer's disease (AD). Previously, we found that oxygen supplementation improved cognitive function and reduced mitochondrial damage in AD model mice. In the present study, we examined the effects of supplemental oxygen treatment on protein synthesis and oxidative damage. The synthesis of numerous proteins involved in mRNA splicing, transcription regulation, and translation was found to be significantly upregulated in cortex tissues of AD model mice given a supplemental oxygen treatment (OT group), relative to those of non-treated control AD model mice (Ctrl group), suggesting that impairment in protein synthesis may be alleviated by increased oxygen inhalation. Methionine oxidation and oxidation levels in general were similar between the OT and Ctrl groups, indicating that the oxygen supplementation treatment did not cause increases in peptide oxidation levels. On the contrary, the OT group exhibited upregulation of several proteins associated with antioxidant defense. These results support further exploration into the development of supplementary oxygen treatment as a potential therapy for AD.

  11. The pharmacokinetics of etanercept in patients with end-stage renal disease on haemodialysis.

    PubMed

    Don, Burl R; Spin, Gregory; Nestorov, Ivan; Hutmacher, Matt; Rose, Aubri; Kaysen, George A

    2005-11-01

    Inflammation is strongly associated with malnutrition and cardiovascular risk in patients with chronic renal failure on haemodialysis (HD). The acute-phase inflammatory response, defined by the increased synthesis of positive acute-phase proteins, is stimulated by the production of such cytokines as interleukin 6 (IL-6), interleukin 1 (IL-1) and tumour necrosis factor-alpha TNF-alpha The availability of cytokine antagonists allows testing of the hypothesis that suppression of inflammation reverses the malnutrition-inflammation syndrome in HD patients. Etanercept is a soluble TNF-alpha receptor fusion protein used to suppress inflammation in rheumatoid and psoriatic arthritis. Its metabolism in HD patients is unknown. In a study designed to test the safety and pharmacokinetics of etanercept in HD patients, etanercept was administered to six HD patients with albumin levels above 4.2 g dL(-1) and C-reactive protein levels <5 mg L(-1) (five men, one woman, age range 34-59 years). Etanercept (25 mg) was administered subcutaneously twice weekly immediately after dialysis for 13-16 weeks. Etanercept concentrations were measured pre- and post-dialysis by ELISA. Concentrations were compared graphically to assess whether, firstly, dialysis affects etanercept apparent clearance and, secondly, etanercept kinetics were similar between HD patients and the more extensively studied psoriasis population with normal renal function (PS). The second stage examined model-based parameter predictions of the terminal elimination rate constant (k) for HD patients. Steady-state etanercept levels were comparable between HD and PS patients. Treatment with HD had no effect on etanercept levels. When etanercept was discontinued, the terminal rate constant for HD patients was not significantly different from that observed in PS patients. No adverse effects were noted during the 3-month treatment phase and subsequent 6-month follow-up. Albumin and C-reactive protein levels did not change in these

  12. Pediatric renal cell carcinomas with Xp11.2 rearrangements are immunoreactive for hMLH1 and hMSH2 proteins.

    PubMed

    Rakheja, Dinesh; Kapur, Payal; Tomlinson, Gail E; Margraf, Linda R

    2005-01-01

    Alveolar soft part sarcoma and pediatric renal cell carcinoma share a similar chromosomal abnormality, t(X;17)(p11.2;q25). Recently, it has been suggested that the inactivation of DNA mismatch repair genes hMLH1 and hMSH2 may play an additional role in the pathogenesis of alveolar soft part sarcoma. Immunohistochemical expression of the proteins hMLH1 and hMSH2 is indicative of the activation status of the corresponding genes. We performed immunohistochemistry for hMLH1 and hMSH2 in 4 cases of pediatric renal cell carcinomas with Xp11.2 rearrangements. All cases showed nuclear immunoreactivity for both proteins, although the staining was patchy. Our study demonstrates that inactivation of the DNA mismatch repair genes hMLH1 and hMSH2 does not appear to play a role in the tumorigenesis of pediatric renal cell carcinomas with Xp11.2 rearrangements.

  13. Long-term outcome on renal replacement therapy in patients who previously received a keto acid-supplemented very-low-protein diet.

    PubMed

    Chauveau, Philippe; Couzi, Lionel; Vendrely, Benoit; de Précigout, Valérie; Combe, Christian; Fouque, Denis; Aparicio, Michel

    2009-10-01

    The consequences of a supplemented very-low-protein diet remain a matter of debate with regard to patient outcome before or after the onset of renal replacement therapy. We evaluated the long-term clinical outcome during maintenance dialysis and/or transplantation in patients who previously received a supplemented very-low-protein diet. We assessed the outcome of 203 patients who received a supplemented very-low-protein diet for >3 mo (inclusion period: 1985-2000) and started dialysis after a mean diet duration of 33.1 mo (4-230 mo). The survival rate in the whole cohort was 79% and 63% at 5 and 10 y, respectively. One hundred two patients continued with chronic dialysis during the entire follow-up, and 101 patients were grafted at least once. Patient outcomes were similar to those of the French Dialysis Registry patients for the dialysis group and similar to the 865 patients who were transplanted in Bordeaux during the same period for the transplant group. There was no correlation between death rate and duration of diet. The lack of correlation between death rate and duration of diet and the moderate mortality rate observed during the first 10 y of renal replacement therapy confirm that a supplemented very-low-protein diet has no detrimental effect on the outcome of patients with chronic kidney disease who receive renal replacement therapy.

  14. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    PubMed

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  15. Long-Term Memory for Instrumental Responses Does Not Undergo Protein Synthesis-Dependent Reconsolidation upon Retrieval

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Kelley, Ann E.

    2004-01-01

    Recent evidence indicates that certain forms of memory, upon recall, may return to a labile state requiring the synthesis of new proteins in order to preserve or reconsolidate the original memory trace. While the initial consolidation of "instrumental memories" has been shown to require de novo protein synthesis in the nucleus accumbens, it is not…

  16. Kluyveromyces marxianus as a host for heterologous protein synthesis.

    PubMed

    Gombert, Andreas K; Madeira, José Valdo; Cerdán, María-Esperanza; González-Siso, María-Isabel

    2016-07-01

    The preferentially respiring and thermotolerant yeast Kluyveromyces marxianus is an emerging host for heterologous protein synthesis, surpassing the traditional preferentially fermenting yeast Saccharomyces cerevisiae in some important aspects: K . marxianus can grow at temperatures 10 °C higher than S. cerevisiae, which may result in decreased costs for cooling bioreactors and reduced contamination risk; has ability to metabolize a wider variety of sugars, such as lactose and xylose; is the fastest growing eukaryote described so far; and does not require special cultivation techniques (such as fed-batch) to avoid fermentative metabolism. All these advantages exist together with a high secretory capacity, performance of eukaryotic post-translational modifications, and with a generally regarded as safe (GRAS) status. In the last years, replication origins from several Kluyveromyces spp. have been used for the construction of episomal vectors, and also integrative strategies have been developed based on the tendency for non-homologous recombination displayed by K. marxianus. The recessive URA3 auxotrophic marker and the dominant Kan(R) are mostly used for selection of transformed cells, but other markers have been made available. Homologous and heterologous promoters and secretion signals have been characterized, with the K. marxianus INU1 expression and secretion system being of remarkable functionality. The efficient synthesis of roughly 50 heterologous proteins has been demonstrated, including one thermophilic enzyme. In this mini-review, we summarize the physiological characteristics of K. marxianus relevant for its use in the efficient synthesis of heterologous proteins, the efforts performed hitherto in the development of a molecular toolbox for this purpose, and some successful examples.

  17. Frequent alteration of the protein synthesis of enzymes for glucose metabolism in hepatocellular carcinomas.

    PubMed

    Shimizu, Takayuki; Inoue, Ken-ichi; Hachiya, Hiroyuki; Shibuya, Norisuke; Shimoda, Mitsugi; Kubota, Keiichi

    2014-09-01

    Cancer cells show enhanced glycolysis and inhibition of oxidative phosphorylation, even in the presence of sufficient oxygen (aerobic glycolysis). Glycolysis is much less efficient for energy production than oxidative phosphorylation, and the reason why cancer cells selectively use glycolysis remains unclear. Biospecimens were collected from 45 hepatocellular carcinoma patients. Protein samples were prepared through subcellular localization or whole-cell lysis. Protein synthesis was measured by SDS-PAGE and immunoblotting. mRNA transcription was measured using quantitative RT-PCR. Statistical correlation among immunoblotting data and clinicolaboratory factors were analyzed using SPSS. Enzymes for oxidative phosphorylation (SDHA and SDHB) were frequently decreased (56 and 48 % of patients, respectively) in hepatocellular carcinomas. The lowered amount of the SDH protein complex was rarely accompanied by stabilization of HIF1α and subsequent activation of the hypoxia response. On the other hand, protein synthesis of G6PD and TKT, enzymes critical for pentose phosphate pathway (PPP), was increased (in 45 and 55 % of patients, respectively), while that of ALDOA, an enzyme for mainstream glycolysis, was eliminated (in 55 % of patients). Alteration of protein synthesis was correlated with gene expression for G6PD and TKT, but not for TKTL1, ALDOA, SDHA or SDHB. Augmented transcription and synthesis of PPP enzymes were accompanied by nuclear accumulation of NRF2. Hepatocellular carcinomas divert glucose metabolism to the anabolic shunt by activating transcription factor NRF2.

  18. Effects of Renal Denervation from the Intima and the Adventitia of Renal Arteries on Renal Sympathetic Nerve Activity in Dogs: A Comparative Study.

    PubMed

    Bai, Minfu; Yang, Chaokuan; Gao, Chuanyu; Wang, Xianpei; Liu, Hongzhi; Zhang, You; Liu, Jun; Wu, Jintao; Jian, Dongdong; Zhu, Lijie; Zhao, Wenli; Ma, Peiyao; Han, Yaqi

    2015-01-01

    This study was designed to observe the efficacy and safety of renal denervation from the inside and outside of renal arteries. Fourteen beagles were randomly divided into a control group (n = 4) and treatment group (n = 10). One renal artery in every beagle of the treatment group was randomly assigned to an intimal group (10 renal arteries) which underwent percutaneous renal denervation from the inside, and another renal artery was assigned to an adventitial group (10 renal arteries) which underwent renal denervation from the outside by laparotomy. Compared with the intimal group, the renal norepinephrine (NE) concentration in the adventitial group had significantly decreased (p = 0.003) at 3 months postsurgery. Renal artery HE staining showed that the perineurium from the adventitial group appeared thickened. Western blotting showed that renal tissue tyrosine hydroxylase (TH) protein expression in the adventitial group was significantly lower than that in the intimal group (p < 0.01) at 3 months postsurgery. There was a renal artery stenosis and a renal atrophy in the intimal group after 1 month of follow-up. The inhibitory effect on renal sympathetic nerve activity was more effective in the adventitial group than the intimal group, and renal denervation in the former group was safe. © 2015 S. Karger AG, Basel.

  19. Growth, oxygen consumption, and protein and RNA synthesis rates in the yolk sac larvae of the African catfish (Clarias gariepinus).

    PubMed

    Smith, Richard W; Ottema, Colin

    2006-03-01

    Rapidly growing African catfish yolk sac larvae were investigated during the first 22 h after hatching. Body compartment protein concentration increased fourfold yet oxygen consumption remained constant (mean=21.3 +/- 3.2 nmol O2 mg(-1) protein h(-1)), suggesting fast growth results mainly from yolk sac protein absorption. The protein synthesis rates at 1-2 and 5-6 h also equaled the highest conceivable rates of muscle protein synthesis; 11.6-11.9% and 7.4-7.9% day(-1), respectively. Therefore the corresponding energetic costs of protein synthesis were almost the theoretical minimum; 13.0 +/- 1.7-16.3 +/- 2.8 micromol O2 mg(-1) protein synthesised. Total protein synthesis expenditure (74.5-77.7 micromol O2 g(-1) protein h(-1)) was also less than other yolk sac larvae. These protein synthesis rates resulted from high RNA concentrations (113.2 +/- 3.4 microg RNA mg(-1) protein) and were also correlated with RNA translational efficiency. High translational efficiency (1 h; 1.2+/-0.1 mg protein synthesised microg(-1) RNA day(-1)) equaled high synthesis rate (36.8 +/- 5.4 microg RNA microg(-1) DNA day(-1)) and both declined over 22 h. This investigation suggests rapid growth combines growth efficiency and compensatory energy partitioning. This accommodates the ontogenetic and phylogenetic standpoints imposed by energy budget limitations.

  20. Mechanistic insights of intestinal absorption and renal conservation of folate in chronic alcoholism.

    PubMed

    Wani, Nissar Ahmad; Thakur, Shilpa; Najar, Rauf Ahmad; Nada, Ritambhara; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2013-03-01

    Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects of Valine on Protein Synthesis and Turnover in Pseudomonas saccharophila under “Nongratuitous” Inducing Conditions

    PubMed Central

    Young, H. L.; Klein, H. P.

    1967-01-01

    Under “nongratuitous” inducing conditions, in Pseudomonas saccharophila, d-and l-valine and l-isoleucine inhibit net protein synthesis. At a concentration of 0.5 μmole or greater of valine per mg of bacterial protein, net protein synthesis declined approximately 70%. The inhibitory effect of valine is proportional to the exogenous valine concentration. Studies of 14C amino acid incorporation and 14C amino acid release from prelabeled cells indicate that valine stimulates protein turnover. PMID:6025429

  2. Functional G-Protein-Coupled Receptor (GPCR) Synthesis: The Pharmacological Analysis of Human Histamine H1 Receptor (HRH1) Synthesized by a Wheat Germ Cell-Free Protein Synthesis System Combined with Asolectin Glycerosomes

    PubMed Central

    Suzuki, Yasuyuki; Ogasawara, Tomio; Tanaka, Yuki; Takeda, Hiroyuki; Sawasaki, Tatsuya; Mogi, Masaki; Liu, Shuang; Maeyama, Kazutaka

    2018-01-01

    G-protein-coupled receptors (GPCRs) are membrane proteins distributed on the cell surface, and they may be potential drug targets. However, synthesizing GPCRs in vitro can be challenging. Recently, some cell-free protein synthesis systems have been shown to produce a large amount of membrane protein combined with chemical chaperones that include liposomes and glycerol. Liposomes containing high concentrations of glycerol are known as glycerosomes, which are used in new drug delivery systems. Glycerosomes have greater morphological stability than liposomes. Proteoglycerosomes are defined as glycerosomes that contain membrane proteins. Human histamine H1 receptor (HRH1) is one of the most studied GPCRs. In this study, we synthesized wild-type HRH1 (WT-HRH1) proteoglycerosomes and D107A-HRH1, (in which Asp107 was replaced by Ala) in a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes. The mutant HRH1 has been reported to have low affinity for the H1 antagonist. In this study, the amount of synthesized WT-HRH1 in one synthesis reaction was 434 ± 66.6 μg (7.75 ± 1.19 × 103pmol). The specific binding of [3H]pyrilamine to the WT-HRH1 proteoglycerosomes became saturated as the concentration of the radioligand increased. The dissociation constant (Kd) and maximum density (Bmax) of the synthesized WT-HRH1 were 9.76 ± 1.25 nM and 21.4 ± 0.936 pmol/mg protein, respectively. However, specific binding to D107A-HRH1 was reduced compared with WT-HRH1 and the binding did not become saturated. The findings of this study highlight that HRH1 synthesized using a wheat germ cell-free protein synthesis system combined with glycerosomes has the ability to bind to H1 antagonists. PMID:29467651

  3. The Teaching of Protein Synthesis--A Microcomputer Based Method.

    ERIC Educational Resources Information Center

    Goodridge, Frank

    1983-01-01

    Describes two computer programs (BASIC for 32K Commodore PET) for teaching protein synthesis. The first is an interactive test of base-pairing knowledge, and the second generates random DNA nucleotide sequences, with instructions for substitution, insertion, and deletion printed out for each student. (JN)

  4. Effects of immunosuppressive treatment on protein expression in rat kidney

    PubMed Central

    Kędzierska, Karolina; Sporniak-Tutak, Katarzyna; Sindrewicz, Krzysztof; Bober, Joanna; Domański, Leszek; Parafiniuk, Mirosław; Urasińska, Elżbieta; Ciechanowicz, Andrzej; Domański, Maciej; Smektała, Tomasz; Masiuk, Marek; Skrzypczak, Wiesław; Ożgo, Małgorzata; Kabat-Koperska, Joanna; Ciechanowski, Kazimierz

    2014-01-01

    The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents’ toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins’ synthesis. Very slight differences were observed between the group receiving cyclosporine, mycophenolate mofetil, and glucocorticoids (CMG) and the control group. In contrast, compared to the control group, animals receiving tacrolimus, mycophenolate mofetil, and glucocorticoids (TMG) exhibited higher expression of proteins responsible for renal drug metabolism and lower expression levels of cytoplasmic actin and the major urinary protein. In the TMG group, we observed higher expression of proteins responsible for drug metabolism and a decrease in the expression of respiratory chain enzymes (thioredoxin-2) and markers of distal renal tubular damage (heart fatty acid-binding protein) compared to expression in the CMG

  5. MRP-1 and BCRP Promote the Externalization of Phosphatidylserine in Oxalate-treated Renal Epithelial Cells: Implications for Calcium Oxalate Urolithiasis.

    PubMed

    Li, YiFu; Yu, ShiLiang; Gan, XiuGuo; Zhang, Ze; Wang, Yan; Wang, YingWei; An, RuiHua

    2017-09-01

    To investigate the possible involvement of multidrug resistance-associated protein 1 (MRP-1) and breast cancer resistance protein (BCRP) in the oxalate-induced redistribution of phosphatidylserine (PS) in renal epithelial cell membranes. A western blot analysis was used to examine the MRP-1 and BCRP expression levels. Surface-expressed PS was detected by the annexin V-binding assay. The cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate was used to measure the intracellular reactive oxygen species (ROS) level. A rat model of hyperoxaluria was obtained using 0.5% ethylene glycol and 1.0% ammonium chloride. In addition, certain animals received verapamil (50 mg/kg body weight), which is a common inhibitor of MRP-1 and BCRP. The degree of nephrolithiasis was assessed histomorphometrically using sections stained by Pizzolato method and by measuring the calcium oxalate crystal content in the renal tissue. Oxalate produced a concentration-dependent increase in the synthesis of MRP-1 and BCRP. Treatment with MK571 and Ko143 (MRP-1- and BCRP-specific inhibitors, respectively) significantly attenuated the oxalate-induced PS externalization. Adding the antioxidant N-acetyl-l-cysteine significantly reduced MRP-1 and BCRP expression. In vivo, markedly decreased nephrocalcinosis was observed compared with that in the rat model of hyperoxaluria without verapamil treatment. Oxalate induces the upregulation of MRP-1 and BCRP, which act as phospholipid floppases causing PS externalization in the renal epithelial cell membrane. The process is mediated by intracellular ROS production. The ROS-mediated increase in the synthesis of MRP-1 and BCRP can play an important role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature.

    PubMed

    Yamamori, T; Ito, K; Nakamura, Y; Yura, T

    1978-06-01

    Synthesis of total cellular proteins of Escherichia coli was studied upon transfer of a log-phase culture from 30 (or 37) to 42 degrees C. Cells were pulse-labeled with [3H]leucine, and the labeled proteins were analyzed by gel electrophoresis in the presence of sodium dodecyl sulfate. The rates of synthesis of at least five protein chains were found to increase markedly (5- to 10-fold) within 5 min after temperature shift-up and gradually decrease to the new steady-state levels, in contrast to the majority of proteins which gradually increase to the steady-state levels (about 1.5-fold the rate at 30 degrees C). Temperature shift-down did not cause any appreciable changes in the pattern of protein synthesis as detected by the present method. Among the proteins greatly affected by the temperature shift-up were those with apparent molecular weights fo 87,000 (87K), 76K, 73K, 64K, and 61K. Two of them (64K and 61K) were found to be precipitated with specific antiserum against proteins that had previously been shown to have an adenosine triphosphatase activity. The bearings of these findings on bacterial adaptation to variation in growth temperature are discussed.

  7. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA.

    PubMed Central

    de la Cruz, J; Vioque, A

    2001-01-01

    tmRNA (also known as SsrA or 10Sa RNA) is involved in a trans-translation reaction that contributes to the recycling of stalled ribosomes at the 3' end of an mRNA lacking a stop codon or at an internal mRNA cluster of rare codons. Inactivation of the ssrA gene in most bacteria results in viable cells bearing subtle phenotypes, such as temperature-sensitive growth. Herein, we report on the functional characterization of the ssrA gene in the cyanobacterium Synechocystis sp. strain PCC6803. Deletion of the ssrA gene in Synechocystis resulted in viable cells with a growth rate identical to wild-type cells. However, null ssrA cells (deltassrA) were not viable in the presence of the protein synthesis inhibitors chloramphenicol, lincomycin, spiramycin, tylosin, erythromycin, and spectinomycin at low doses that do not significantly affect the growth of wild-type cells. Sensitivity of deltassrA cells similar to wild-type cells was observed with kasugamycin, fusidic acid, thiostrepton, and puromycin. Antibiotics unrelated to protein synthesis, such as ampicillin or rifampicin, had no differential effect on the deltassrA strain. Furthermore, deletion of the ssrA gene is sufficient to impair global protein synthesis when chloramphenicol is added at sublethal concentrations for the wild-type strain. These results indicate that ribosomes stalled by some protein synthesis inhibitors can be recycled by tmRNA. In addition, this suggests that the first elongation cycle with tmRNA, which incorporates a noncoded alanine on the growing peptide chain, may have mechanistic differences with the normal elongation cycles that bypasses the block produced by these specific antibiotics. tmRNA inactivation could be an useful therapeutic target to increase the sensitivity of pathogenic bacteria against antibiotics. PMID:11780628

  8. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    PubMed Central

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  9. Sensitivity of whole body protein synthesis to amino acid administration during short-term bed rest.

    PubMed

    Biolo, Gianni; Ciocchi, Beniamino; Lebenstedt, Marion; Heer, Martina; Guarnieri, Gianfranco

    2002-07-01

    We tested the hypothesis that a reduced stimulation of whole-body protein synthesis by amino acid administration represents a major mechanism for the bed rest-induced loss of lean body mass. Healthy young subjects and matched controls were studied on the last day of a 14-day bed rest or ambulatory period, as part of the overall protocol "Short-term Bed Rest - Integrated Physiology" set up by the German Aerospace Centre (DLR) in co-operation with the European Space Agency. A balanced mixture of essential and non-essential amino acids was intravenously infused in the postabsorptive state for 3 hours at the rate of 0.1 g/kg/hour. The oxidative and non-oxidative (i.e., to protein synthesis) disposal of the infused leucine was determined by stable isotope and mass spectrometry techniques. The clearance of total infused amino acids tended to be greater (P=0.07) in the ambulatory group than in the bed rest group. When leucine clearance was partitioned between its oxidative and non-oxidative (i.e., to protein synthesis) components, the results indicated that the oxidative disposal was not statistically different in the bed rest and in the ambulatory groups. In contrast, the non-oxidative leucine disposal (i.e., to protein synthesis) was about 20% greater (P<0.01) in the ambulatory group than in the bed rest group. In conclusion, these preliminary data suggest that 14-day bed rest impairs the ability to utilise exogenous amino acids for protein synthesis.

  10. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease.

    PubMed

    Ansoleaga, Belén; Garcia-Esparcia, Paula; Llorens, Franc; Hernández-Ortega, Karina; Carmona Tech, Margarita; Antonio Del Rio, José; Zerr, Inga; Ferrer, Isidro

    2016-06-12

    Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  11. Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension

    PubMed Central

    Picard, Nicolas; Trompf, Katja; Yang, Chao-Ling; Miller, R. Lance; Carrel, Monique; Loffing-Cueni, Dominique; Fenton, Robert A.; Ellison, David H.

    2014-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na+ uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1−/−) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1−/− mice. Compared with WT mice, I-1−/− mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity. PMID:24231659

  12. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations

    NASA Astrophysics Data System (ADS)

    Pusterla, Ivano; Bode, Jeffrey W.

    2015-08-01

    Amide-forming ligation reactions allow the chemical synthesis of proteins by the union of unprotected peptide segments, and enable the preparation of protein derivatives not accessible by expression or bioengineering approaches. The native chemical ligation (NCL) of thioesters and N-terminal cysteines is unquestionably the most successful approach, but is not ideal for all synthetic targets. Here we describe the synthesis of an Fmoc-protected oxazetidine amino acid for use in the α-ketoacid-hydroxylamine (KAHA) amide ligation. When incorporated at the N-terminus of a peptide segment, this four-membered cyclic hydroxylamine can be used for rapid serine-forming ligations with peptide α-ketoacids. This ligation operates at low concentration (100 μM-5 mM) and mild temperatures (20-25 °C). The utility of the reaction was demonstrated by the synthesis of S100A4, a 12 kDa calcium-binding protein not easily accessible by NCL or other amide-forming reactions due to its primary sequence and properties.

  13. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids.

    PubMed

    Martin, Rey W; Des Soye, Benjamin J; Kwon, Yong-Chan; Kay, Jennifer; Davis, Roderick G; Thomas, Paul M; Majewska, Natalia I; Chen, Cindy X; Marcum, Ryan D; Weiss, Mary Grace; Stoddart, Ashleigh E; Amiram, Miriam; Ranji Charna, Arnaz K; Patel, Jaymin R; Isaacs, Farren J; Kelleher, Neil L; Hong, Seok Hoon; Jewett, Michael C

    2018-03-23

    Cell-free protein synthesis has emerged as a powerful approach for expanding the range of genetically encoded chemistry into proteins. Unfortunately, efforts to site-specifically incorporate multiple non-canonical amino acids into proteins using crude extract-based cell-free systems have been limited by release factor 1 competition. Here we address this limitation by establishing a bacterial cell-free protein synthesis platform based on genomically recoded Escherichia coli lacking release factor 1. This platform was developed by exploiting multiplex genome engineering to enhance extract performance by functionally inactivating negative effectors. Our most productive cell extracts enabled synthesis of 1,780 ± 30 mg/L superfolder green fluorescent protein. Using an optimized platform, we demonstrated the ability to introduce 40 identical p-acetyl-L-phenylalanine residues site specifically into an elastin-like polypeptide with high accuracy of incorporation ( ≥ 98%) and yield (96 ± 3 mg/L). We expect this cell-free platform to facilitate fundamental understanding and enable manufacturing paradigms for proteins with new and diverse chemistries.

  14. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  15. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis.

    PubMed

    Pillai, Ramesh S; Artus, Caroline G; Filipowicz, Witold

    2004-10-01

    MicroRNAs (miRNAs) are approximately 21-nt-long RNAs involved in regulating development, differentiation, and other processes in eukaryotes. In metazoa, nearly all miRNAs control gene expression by imperfectly base-pairing with the 3'-untranslated region (3'-UTR) of target mRNAs and repressing protein synthesis by an unknown mechanism. It is also unknown whether miRNA-mRNA duplexes containing mismatches and bulges provide specific features that are recognized by factors mediating the repression. miRNAs form part of ribonucleoprotein complexes, miRNPs, that contain Argonaute (Ago) and other proteins. Here we demonstrate that effects of miRNAs on translation can be mimicked in human HeLa cells by the miRNA-independent tethering of Ago proteins to the 3'-UTR of a reporter mRNA. Inhibition of protein synthesis occurred without a change in the reporter mRNA level and was dependent on the number, but not the position, of the hairpins tethering hAgo2 to the 3'-UTR. These findings indicate that a primary function of miRNAs is to guide their associated proteins to the mRNA. Copyright 2004 RNA Society

  16. Growth and Synthesis of Nucleic Acid and Protein by Excised Radish Cotyledons 1

    PubMed Central

    Nieman, R. H.; Poulsen, L. L.

    1967-01-01

    Nutritional and light requirements for growth and synthesis of RNA, DNA, and protein by cotyledons excised from 5-day-old seedlings of Raphanus sativus L. were investigated, and the course of synthesis was followed through the cell cycle. The minimum requirements for a net increase in nucleic acid and protein were sugar, nitrate, and light. The cotyledons used nitrite at low concentration, but not ammonium ion. Light was required for preliminary steps in synthesis of RNA, DNA, and protein, but the actual polymerization reactions occurred in the dark. The cotyledons contained sufficient endogenous growth factors for about half of the cells to complete 1 cycle on a medium of 1% sucrose, 80 mm KNO3. The increase in DNA was limited to about 50% and was accompanied by a comparable increase in cell number. Fresh weight, RNA, and protein tended to increase in proportion to DNA. Growth of the isolated cotyledons commenced with cell enlargement. RNA began to increase after about 4 hours, DNA after about 12. The major increase in protein also began at about 12 hours. The maximum rate of increase for all 3 occurred between 12 and 16 hours. Cell counts indicated that by 28 hours most of the cells which had replicated DNA had also completed cell division. PMID:16656601

  17. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas C.; Chilkoti, Ashutosh

    2016-04-01

    Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.

  18. Renal oncocytoma characterized by the defective complex I of the respiratory chain boosts the synthesis of the ROS scavenger glutathione

    PubMed Central

    Clima, Rosanna; Xiao, Yi; Busch, Jonas Felix; Kilic, Ergin; Jung, Klaus; Berndt, Nikolaus; Bulik, Sascha; Holzhütter, Hermann-Georg; Gasparre, Giuseppe; Attimonelli, Marcella; Babu, Mohan; Meierhofer, David

    2017-01-01

    Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation. The abundance of proteins localized to mitochondria increased more than 2-fold, the only exception was a strong decrease in the abundance for CI subunits that revealed several pathogenic heteroplasmic mtDNA mutations by WES. We also observed renal oncocytomas to dysregulate main metabolic pathways, shunting away from gluconeogenesis and lipid metabolism. Nevertheless, the abundance of energy carrier molecules such as NAD+, NADH, NADP, ATP, and ADP were significantly higher in renal oncocytomas. Finally, a substantial 5000-fold increase of the reactive oxygen species scavenger glutathione can be regarded as a new hallmark of renal oncocytoma. Our findings demonstrate that renal oncocytomas undergo a metabolic switch to eliminate ATP consuming processes to ensure a sufficient energy supply for the tumor. PMID:29285300

  19. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    PubMed

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  20. Insig Proteins Mediate Feedback Inhibition of Cholesterol Synthesis in the Intestine*

    PubMed Central

    McFarlane, Matthew R.; Liang, Guosheng; Engelking, Luke J.

    2014-01-01

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes. PMID:24337570

  1. Protein synthesis and specific dynamic action in crustaceans: effects of temperature.

    PubMed

    Whiteley, N M; Robertson, R F; Meagor, J; El Haj, A J; Taylor, E W

    2001-03-01

    Temperature influences the specific dynamic action (SDA), or rise in oxygen uptake rate after feeding, in eurythermal and stenothermal crustaceans by changing the timing and the magnitude of the response. Intra-specific studies on the eurythermal crab, Carcinus maenas, show that a reduction in acclimation temperature is associated with a decrease in SDA magnitude, resulting from an increase in SDA duration but a decrease in peak factorial scope (the factorial rise in peak SDA over prefeeding values). Inter-specific feeding studies on stenothermal polar isopods revealed marked differences in SDA response between the Antarctic species, Glyptonotus antarcticus and the Arctic species, Saduria entomon. Compared to S. entomon held at 4 and 13 degrees C, the SDA response in G. antarcticus held at 1 degrees C was characterised by a lower absolute oxygen uptake rate at peak SDA and an extended SDA duration. At peak SDA, whole animal rates of protein synthesis increased in proportion to the postprandial increase in oxygen uptake rate in the Antarctic and the Arctic species. Rates of oxygen uptake plotted against whole animal rates of protein synthesis gave similar relationships in both isopod species, indicating similar costs of protein synthesis after a meal, despite their differences in SDA response and thermal habitat.

  2. mTOR signaling regulates myotube hypertrophy by modulating protein synthesis, rDNA transcription, and chromatin remodeling.

    PubMed

    von Walden, Ferdinand; Liu, Chang; Aurigemma, Nicole; Nader, Gustavo A

    2016-10-01

    Ribosome production is an early event during skeletal muscle hypertrophy and precedes muscle protein accretion. Signaling via mTOR is crucial for ribosome production and hypertrophy; however, the mechanisms by which it regulates these processes remain to be identified. Herein, we investigated the activation of mTOR signaling in hypertrophying myotubes and determined that mTOR coordinates various aspects of gene expression important for ribosome production. First, inhibition of translation with cycloheximide had a more potent effect on protein synthesis than rapamycin indicating that mTOR function during hypertrophy is not on general, but rather on specific protein synthesis. Second, blocking Pol II transcription had a similar effect as Rapamycin and, unexpectedly, revealed the necessity of Pol II transcription for Pol I transcription, suggesting that mTOR may regulate ribosome production also by controlling Class II genes at the transcriptional level. Third, Pol I activity is essential for rDNA transcription and, surprisingly, for protein synthesis as selective Pol I inhibition blunted rDNA transcription, protein synthesis, and the hypertrophic response of myotubes. Finally, mTOR has nuclear localization in muscle, which is not sensitive to rapamycin. Inhibition of mTOR signaling by rapamycin disrupted mTOR-rDNA promoter interaction and resulted in altered histone marks indicative of repressed transcription and formation of higher-order chromatin structure. Thus mTOR signaling appears to regulate muscle hypertrophy by affecting protein synthesis, Class I and II gene expression, and chromatin remodeling. Copyright © 2016 the American Physiological Society.

  3. Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation.

    PubMed

    Priddy, Colleen M O'Kelly; Kajimoto, Masaki; Ledee, Dolena R; Bouchard, Bertrand; Isern, Nancy; Olson, Aaron K; Des Rosiers, Christine; Portman, Michael A

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides essential mechanical circulatory support necessary for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur, which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative metabolism and protein synthesis. We focused on the amino acid leucine and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart 1) the fractional contribution of leucine (FcLeucine) and pyruvate to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and 2) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 h of normal circulation or ECMO) and intracoronary infusion [(13)C(6),(15)N]-L-leucine (3.7 mM) alone or with [2-(13)C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (∼40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining 1) metabolic flexibility indicated by ability to respond to pyruvate and 2) a normal or increased capacity for global protein synthesis.

  4. Deregulation of E2-EPF ubiquitin carrier protein in papillary renal cell carcinoma.

    PubMed

    Roos, Frederik C; Evans, Andrew J; Brenner, Walburgis; Wondergem, Bill; Klomp, Jeffery; Heir, Pardeep; Roche, Olga; Thomas, Christian; Schimmel, Heiko; Furge, Kyle A; Teh, Bin T; Thüroff, Joachim W; Hampel, Christian; Ohh, Michael

    2011-02-01

    Molecular pathways associated with pathogenesis of sporadic papillary renal cell carcinoma (PRCC), the second most common form of kidney cancer, are poorly understood. We analyzed primary tumor specimens from 35 PRCC patients treated by nephrectomy via gene expression analysis and tissue microarrays constructed from an additional 57 paraffin-embedded PRCC samples via immunohistochemistry. Gene products were validated and further studied by Western blot analyses using primary PRCC tumor samples and established renal cell carcinoma cell lines, and potential associations with pathologic variables and survival in 27 patients with follow-up information were determined. We show that the expression of E2-EPF ubiquitin carrier protein, which targets the principal negative regulator of hypoxia-inducible factor (HIF), von Hippel-Lindau protein, for proteasome-dependent degradation, is markedly elevated in the majority of PRCC tumors exhibiting increased HIF1α expression, and is associated with poor prognosis. In addition, we identified multiple hypoxia-responsive elements within the E2-EPF promoter, and for the first time we demonstrated that E2-EPF is a hypoxia-inducible gene directly regulated via HIF1. These findings reveal deregulation of the oxygen-sensing pathway impinging on the positive feedback mechanism of HIF1-mediated regulation of E2-EPF in PRCC. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-κB signaling pathway.

    PubMed

    Huang, Junying; Chen, Zhiquan; Li, Jie; Chen, Qiuhong; Li, Jingyan; Gong, Wenyan; Huang, Jiani; Liu, Peiqing; Huang, Heqing

    2017-05-15

    Activation of casein kinase 2 (CK2) is closely linked to the body disturbance of carbohydrate metabolism and inflammatory reaction. The renal chronic inflammatory reaction in the setting of diabetes is one of the important hallmarks of diabetic renal fibrosis. However, it remains unknown whether CK2 influences the process of diabetic renal fibrosis. The current study is aimed to investigate if CK2α ameliorates renal inflammatory fibrosis in diabetes via NF-κB pathway. To explore potential regulatory mechanism of CK2α, the expression and activity of CK2α, which were studied by plasmid transfection, selective inhibitor, small-interfering RNA (siRNA) and adenovirus infection in vitro or in vivo, were analyzed by means of western blotting (WB), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The following findings were observed: (1) Expression of CK2α was upregulated in kidneys of db/db and KKAy diabetic mice; (2) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed high glucose-induced expressions of FN and ICAM-1 in glomerular mesangial cells (GMCs); (3) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression not only restrained IκB degradation, but also suppressed HG-induced nuclear accumulation, transcriptional activity and DNA binding activity of NF-κB in GMCs; (4) Treatment of TBB or CK2α RNAi adenovirus infection ameliorated renal fibrosis in diabetic animals; (5) Treatment of TBB or CK2α RNAi adenovirus infection suppressed IκB degradation and NF-κB nuclear accumulation in glomeruli of diabetic animals. This study indicates the essential role of CK2α in regulating the diabetic renal pathological process of inflammatory fibrosis via NF-κB pathway, and inhibition of CK2α may serve as a promising therapeutic strategy for diabetic nephropathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro

    PubMed Central

    Sørensen, Brita Singers; Busk, Morten; Overgaard, Jens; Horsman, Michael R.; Alsner, Jan

    2015-01-01

    Background The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis. Methods Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein. Results Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined. Conclusions We demonstrate here that the influence of hypoxia and acidosis causes different responses, both

  7. Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs.

    PubMed

    Manjarín, Rodrigo; Columbus, Daniel A; Suryawan, Agus; Nguyen, Hanh V; Hernandez-García, Adriana D; Hoang, Nguyet-Minh; Fiorotto, Marta L; Davis, Teresa

    2016-01-01

    Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P < 0.001), whereas insulin, isoleucine and valine were lower in RL and R compared to CON (P < 0.001). Compared to RL and R, the CON diet increased (P < 0.01) body weight, protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.

  8. Downregulation of the c-Fes protein-tyrosine kinase inhibits the proliferation of human renal carcinoma cells

    PubMed Central

    Kanda, Shigeru; Miyata, Yasuyoshi; Kanetake, Hiroshi; Smithgall, Thomas E.

    2009-01-01

    The c-Fes protein-tyrosine kinase is associated with growth and differentiation of hematopoietic, neuronal, vascular endothelial and epithelial cell types. In this study, we investigated whether small interfering RNA (siRNA)-mediated knockdown of c-Fes expression affected proliferation of the human renal carcinoma cell lines, ACHN and VMRC-RCW. Immunofluorescence microscopy showed that c-Fes was expressed in both the cytosol and nuclei of these cells, and siRNA treatment preferentially downregulated c-Fes expression in the cytosol. Knock-down of c-Fes inhibited cellular proliferation in a dose-dependent manner with minimal increase in cell death. c-Fes siRNA treatment also downregulated the phosphorylation of Akt1 on S473 and IKKα on T23, and cyclin D1 expression, enhanced the expression of IκBα, and prevented the nuclear localization of NFκB. Treatment with an NFκB inhibitory peptide (SN50) also blocked the proliferation and nuclear localization of NFκB in these cells. The effect of SN50 treatment was not enhanced by c-Fes siRNA, suggesting that downregulation of c-Fes expression inhibited cell cycle progression through the Akt1/NFκB pathway. In contrast to siRNA-mediated knockdown, ectopic expression of either wild-type or kinase-inactive c-Fes in renal carcinoma cells failed to alter their proliferation in vitro and in vivo. Thus, suppression of proliferation resulting from siRNA-mediated knockdown may depend upon an expression of c-Fes protein rather than its kinase activity. Taken together, our results indicate that downregulation of c-Fes expression may be a potential therapeutic strategy for advanced human renal cell carcinoma and inhibition of its kinase activity as an antiangiogenic therapy does not seem to induce the growth of human renal carcinoma cells. PMID:19082481

  9. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    PubMed

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  10. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P < 0.03) during the 2nd wk of bed rest. Leg and whole body lean mass decreased after bed rest (P < 0.05). Serum cortisol, insulin, insulin-like growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P < 0.03). Fractional PS by tracer incorporation into muscle protein also decreased by 46% (P < 0.05). The decrease in PS was related to a corresponding decrease in the sum of intracellular amino acid appearance from protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P < 0.01). Neither model-derived nor whole body values for protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  11. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells.

    PubMed

    Almomani, Ensaf Y; Touret, Nicolas; Cordat, Emmanuelle

    2018-04-13

    Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.

  12. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    PubMed

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.

  13. On the Role of Hippocampal Protein Synthesis in the Consolidation and Reconsolidation of Object Recognition Memory

    ERIC Educational Resources Information Center

    Rossato, Janine I.; Bevilaqua, Lia R. M.; Myskiw, Jociane C.; Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin

    2007-01-01

    Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in…

  14. Quantitating protein synthesis, degradation, and endogenous antigen processing.

    PubMed

    Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W

    2003-03-01

    Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate.

  15. The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity

    NASA Technical Reports Server (NTRS)

    Fedorov, I. V.; Chernyy, A. V.; Fedorov, A. I.

    1978-01-01

    During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity.

  16. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis.

    PubMed

    Mardirossian, Mario; Grzela, Renata; Giglione, Carmela; Meinnel, Thierry; Gennaro, Renato; Mergaert, Peter; Scocchi, Marco

    2014-12-18

    Antimicrobial peptides (AMPs) are molecules from innate immunity with high potential as novel anti-infective agents. Most of them inactivate bacteria through pore formation or membrane barrier disruption, but others cross the membrane without damages and act inside the cells, affecting vital processes. However, little is known about their intracellular bacterial targets. Here we report that Bac71-35, a proline-rich AMP belonging to the cathelicidin family, can reach high concentrations (up to 340 μM) inside the E. coli cytoplasm. The peptide specifically and completely inhibits in vitro translation in the micromolar concentration range. Experiments of incorporation of radioactive precursors in macromolecules with E. coli cells confirmed that Bac71-35 affects specifically protein synthesis. Ribosome coprecipitation and crosslinking assays showed that the peptide interacts with ribosomes, binding to a limited subset of ribosomal proteins. Overall, these results indicate that the killing mechanism of Bac71-35 is based on a specific block of protein synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    PubMed

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).

  18. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction.

    PubMed

    Hamamura, Kengo; Matsunaga, Naoya; Ikeda, Eriko; Kondo, Hideaki; Ikeyama, Hisako; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Yoshida, Yuya; Matsuda, Masaki; Yasuda, Kaori; Doi, Atsushi; Yokota, Yoshifumi; Amamoto, Toshiaki; Aramaki, Hironori; Irino, Yasuhiro; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-03-04

    Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The mammalian iris-ciliary complex affects organization and synthesis of cytoskeletal proteins of organ and tissue cultured lens epithelial cells.

    PubMed

    Banerjee, A; Emanuel, K; Parafina, J; Bagchi, M

    1992-10-01

    A water soluble growth inhibitor was isolated from the mammalian ocular iris-ciliary complex. The molecular weight of this protein is 10 kD or lower as determined by ultrafiltration fractionation. The iris-ciliary (IC) complex water soluble protein(s) significantly inhibits synthesis of lower molecular weight proteins of the epithelial cells of the organ cultured mammalian ocular lens. It was also found that this inhibitory effect of IC is mediated via the structural organization of the lens. Monolayer cultures of the lens epithelial cells exposed to IC did not manifest any inhibition of their protein synthesis. Moreover, these tissue cultured lens epithelial (TCLE) cells showed a significant increase in their protein synthetic activities in response to the presence of IC factors in the culture medium. It is postulated that the IC activity is modulated via either the lens capsule, an extracellular matrix, or due to the specific organization of the intact lens. The specific effects of IC on the cytoskeletal organization and synthesis in the organ cultured lens epithelial (OCLE) and TCLE cells were also examined. Both groups, treated with IC factors, manifested significant alterations in their protein synthetic activities and cytoskeletal architecture. The 3H-leucine incorporation experiments showed that alpha-actin and alpha-tubulin synthesis is partially inhibited by IC factors in OCLE cells but vimentin synthesis is not, whereas in TCLE cells all of them showed increased synthesis in response to IC factors. Turnover rates of these proteins in both OCLE and TCLE cells were also computed. The immunofluorescence and microscopic evaluation of OCLE and TCLE cells exposed to IC factors illustrated significant alteration in the cytoarchitecture of the filaments. We demonstrate that an inhibitor(s) molecule of 10 kD or lower size isolated from IC inhibited protein synthesis of OCLE cells and stimulated protein synthesis in TCLE cells. The IC factor also affects the

  20. [Rhythm of protein synthesis in cultures of hepatocytes from rats of different ages. Norm and effect of the peptide livagen].

    PubMed

    Brodskiĭ, V Ia; Khavinson, V Kh; Zolotarev, Iu A; Nechaeva, N V; Malinin, V V; Novikova, T E; Gvazava, I G; Fateeva, V I

    2001-01-01

    The circumhoralian rhythm of protein synthesis was determined in a monolayer culture of hepatocytes from rats at the age of 1 to 24 months and weighing from 45 to 480 g, respectively. The peptide lyvagen (Lys-Glu-Asp-Ala) obtained by directed chemical synthesis on the basis of amino acid analysis of the liver polypeptide preparations increased the level of protein synthesis in the hepatocytes from rats of different ages; the highest effect was observed in the cells of old animals. In old rats, lyvagen increased the amplitude of protein synthesis fluctuations. The peptide epitalon (Ala-Glu-Asp-Gly) constructed on the basis of analysis of the epiphysis peptides did not change the intensity of protein synthesis in the cultured hepatocytes.

  1. Role of G protein-coupled estrogen receptor-1 in estradiol 17β-induced alterations in protein synthesis and protein degradation rates in fused bovine satellite cell cultures.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2017-01-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters in several countries. Treatment with E2 stimulates protein synthesis rate and suppresses protein degradation rate in fused bovine satellite cell (BSC) cultures; however, the mechanisms involved in these effects are not known with certainty. Although the genomic effects of E2 mediated through the classical estrogen receptors have been characterized, recent studies indicate that binding of E2 to the G protein-coupled estrogen receptor (GPER)-1 mediates nongenomic effects of E2 on cellular function. Our current data show that inhibition of GPER-1, matrix metalloproteinases 2 and 9 (MMP2/9), or heparin binding epidermal growth factor-like growth factor (hbEGF) suppresses E2 stimulate protein synthesis rate in cultured BSCs (P < 0.001) suggesting that all of these are required in order for E2 to stimulate protein synthesis in these cultures. In contrast, inhibition of GPER-1, MMP2/9, or hbEGF has no effect on the ability of E2 to suppress protein degradation rates in fused BSC cultures indicating that these factors are not required in order for E2 to suppress protein degradation rate in these cells. Furthermore, treatment of fused BSC cultures with E2 increased (P < 0.05) pAKT levels indicating that the pAKT pathway may play a role in E2-stimulated effects on cultured BSC. In summary, our current data show that active GPER-1, MMP2/9, and hbEGF are necessary for E2-stimulated protein synthesis but not for E2-simulated suppression of protein degradation in cultured BSC. In addition, E2 treatment increases pAKT levels in cultured BSC. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Renal patient's diet: Can fish be included?].

    PubMed

    Castro González, M I; Maafs Rodríguez, A G; Galindo Gómez, C

    2012-01-01

    Medical and nutritional treatment for renal disease, now a major public health issue, is highly complicated. Nutritional therapy must seek to retard renal dysfunction, maintain an optimal nutritional status and prevent the development of underlying pathologies. To analyze ten fish species to identify those that, because of their low phosphorus content, high biological value protein and elevated n-3 fatty acids EPA and DHA, could be included in renal patient's diet. The following fish species (Litte tunny, Red drum, Spotted eagleray, Escolar, Swordfish, Big-scale pomfret, Cortez flounder, Largemouth blackbass, Periche mojarra, Florida Pompano) were analyzed according to the AOAC and Keller techniques to determine their protein, phosphorus, sodium, potassium, cholesterol, vitamins D(3) and E, and n-3 EPA+DHA content. These results were used to calculate relations between nutrients. The protein in the analyzed species ranged from 16.5 g/100 g of fillet (Largemouth black bass) to 27.2 g/100 g (Red drum); the lowest phosphorus value was 28.6 mg/100 g (Periche mojarra) and the highest 216.3 mg/100 g (Spotted eagle ray). 80% of the fish presented > 100 mg EPA + DHA in 100 g of fillet. By its Phosphorus/gProtein ratio, Escolar and Swordfish could not be included in the renal diet; Little tunny, Escolar, Big-scale pomfret, Largemouth black-bass, Periche mojarra and Florida Pompano presented a lower Phosphorus/EPA + DHA ratio. Florida pompano is the most recommended specie for renal patients, due to its optimal nutrient relations. However, all analyzed species, except Escolar and Swordfish, could be included in renal diets.

  3. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4.

    PubMed

    Perry, Ben D; Rahnert, Jill A; Xie, Yang; Zheng, Bin; Woodworth-Hobbs, Myra E; Price, S Russ

    2018-01-01

    Saturated fatty acids, such as palmitate, are elevated in metabolically dysfunctional conditions like type 2 diabetes mellitus. Palmitate has been shown to impair insulin sensitivity and suppress protein synthesis while upregulating proteolytic systems in skeletal muscle. Increased sarco/endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response may contribute to the palmitate-induced impairment of muscle protein synthesis. In some cell types, ER stress occurs through activation of the Toll-like receptor 4 (TLR4). Given the link between ER stress and suppression of protein synthesis, we investigated whether palmitate induces markers of ER stress and protein synthesis by activating TLR4 in cultured mouse C2C12 myotubes. Myotubes were treated with vehicle, a TLR4-specific ligand (lipopolysaccharides), palmitate, or a combination of palmitate plus a TLR4-specific inhibitor (TAK-242). Inflammatory indicators of TLR4 activation (IL-6 and TNFα) and markers of ER stress were measured, and protein synthesis was assessed using puromycin incorporation. Palmitate substantially increased the levels of IL-6, TNF-α, CHOP, XBP1s, and ATF 4 mRNAs and augmented the levels of CHOP, XBP1s, phospho-PERK and phospho-eIF2α proteins. The TLR4 antagonist attenuated both acute palmitate and LPS-induced increases in IL-6 and TNFα, but did not reduce ER stress signaling with either 6 h or 24 h palmitate treatment. Similarly, treating myotubes with palmitate for 6 h caused a 43% decline in protein synthesis consistent with an increase in phospho-eIF2α, and the TLR4 antagonist did not alter these responses. These results suggest that palmitate does not induce ER stress through TLR4 in muscle, and that palmitate impairs protein synthesis in skeletal muscle in part by induction of ER stress.

  4. Prostaglandin control of renal circulation in the unanesthetized dog and baboon

    NASA Technical Reports Server (NTRS)

    Swain, J. A.; Vatner, S. F.; Heyndrickx, G. R.; Boettcher, D. H.

    1975-01-01

    Effects of indomethacin and meclofenamate, inhibitors of prostaglandin synthesis, were evaluated in the regulation of renal blood flow in conscious and anesthetized dogs and in tranquilized baboons, instrumented with arterial pressure catheters and renal blood flow probes. Indomethacin, 10 mg/kg, did not alter renal blood flow or resistance significantly in the conscious dog. In the anesthetized dog, however, indomethacin caused a reduction in renal blood flow and an elevation of renal vascular resistance. Meclofenamate, 4 mg/kg, reduced renal flow and increased renal vascular resistance in conscious dogs. In conscious dogs and tranquilized primates, indomethacin and meclofenamate reduced the reactive hyperemia in the renal bed. Methoxamine and angiotensin II infused in graded doses induced significantly greater renal vasoconstriction in conscious dogs in the presence of indomethacin. Thus, in the conscious animal, prostaglandins appear to play only a minor part in the control of renal circulation at rest, but they are of greater importance in mediating the renal responses to reactive hyperemia and to vasoconstriction.

  5. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of Beta-hydroxy-Beta-methylbutyrate

    USDA-ARS?s Scientific Manuscript database

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite Beta-hydroxy-Beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...

  6. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate

    USDA-ARS?s Scientific Manuscript database

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...

  7. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    PubMed

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  8. Acute phase proteins in dogs naturally infected with the Giant Kidney Worm (Dioctophyme renale).

    PubMed

    Schmidt, Elizabeth M S; Kjelgaard-Hansen, Mads; Thomas, Funmilola; Tvarijonaviciute, Asta; Cerón, José J; Eckersall, P David

    2016-12-01

    Dioctophyme renale is a nematode parasite of dogs, usually found in the right kidney, causing severe damage to the renal parenchyma. The objective was to evaluate the acute phase response in dogs naturally infected with this Giant Kidney Worm and the possible effects of nephrectomy on circulating concentrations of select acute phase proteins (APP) such as serum amyloid A (SAA), C-reactive protein (CRP), and haptoglobin (HP). Nephrectomy was performed in infected dogs and the worms were collected for identification. Blood samples were taken 24 hours before surgery, and 4, 8, and 12 hours postoperatively on the following 10 consecutive days, and 28 days after surgery. Acute phase protein concentrations were determined at all time points. Cortisol concentrations were determined 24 hours before surgery and at recovery (28 days after surgery). One-way ANOVA and Friedman test were used for multiple comparisons; the Wilcoxon-signed rank test was used to compare variables, and Spearman's rho rank test was used to assess the correlation between the number of parasites recovered from the dogs and the APP concentration. Forty-five parasites were recovered from the 12 dogs evaluated in this study. Dogs showed significantly increased HP concentrations (P < .05) but lower CRP and SAA concentrations before surgery, and cortisol concentrations were significantly higher at admission when compared to recovery. No significant correlations were found between the number of parasites and APP concentrations. There is a particular acute phase response profile in dogs with kidney worm infection. Nephrectomy induced a short-term inflammatory process. © 2016 American Society for Veterinary Clinical Pathology.

  9. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model.

    PubMed

    Zheng, Liufeng; Wei, Hongkui; He, Pingli; Zhao, Shengjun; Xiang, Quanhang; Pang, Jiaman; Peng, Jian

    2016-12-28

    Supplementation of branched-chain amino acids (BCAA) has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses-fed gains) in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1) and 28-day-old (Experiment 2) piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH 13 CO₃ for 2 h, followed by a 6-h infusion of [1- 13 C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC) and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle mass in

  10. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes

    PubMed Central

    Ohta, Naoki; Kato, Yasuhiko; Watanabe, Hajime; Mori, Hirotada; Matsuura, Tomoaki

    2016-01-01

    Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach. PMID:27808179

  11. Lopinavir Impairs Protein Synthesis and Induces eEF2 Phosphorylation via the Activation of AMP-Activated Protein Kinase

    PubMed Central

    Hong-Brown, Ly Q.; Brown, C. Randell; Huber, Danuta S.; Lang, Charles H.

    2008-01-01

    HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K. PMID:18712774

  12. Interactions between late acting proteins required for peptidoglycan synthesis during sporulation

    PubMed Central

    Fay, Allison; Meyer, Pablo; Dworkin, Jonathan

    2010-01-01

    The requirement of peptidoglycan synthesis for growth complicates the analysis of interactions between proteins involved in this pathway. In particular, the later steps that involve membrane-linked substrates have proven largely recalcitrant to in vivo analysis. Here we have taken advantage of the peptidoglycan synthesis that occurs during sporulation in Bacillus subtilis to examine the interactions between SpoVE, a non-essential, sporulation-specific homolog of the well-conserved and essential SEDS proteins, and SpoVD, a non-essential class B penicillin binding protein (PBP). We found that localization of SpoVD is dependent on SpoVE and that SpoVD protects SpoVE from in vivo proteolysis. Co-immunoprecipitations and Fluorescence Resonance Energy Transfer experiments indicated that SpoVE and SpoVD interact and co-affinity purification in E. coli demonstrated that this interaction is direct. Finally, we generated a functional protein consisting of a SpoVE-SpoVD fusion and found that a loss-of-function point mutation in either part of the fusion resulted in a loss of function of the entire fusion that was not complemented by a wild type protein. Thus, SpoVE has a direct and functional interaction with SpoVD and this conclusion will facilitate understanding the essential function SpoVE and related SEDS proteins such as FtsW and RodA play in bacterial growth and division. PMID:20417640

  13. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate

    USDA-ARS?s Scientific Manuscript database

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite ß-hydroxy-ß-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and ...

  14. Conversion to Sirolimus Ameliorates Cyclosporine-Induced Nephropathy in the Rat: Focus on Serum, Urine, Gene, and Protein Renal Expression Biomarkers

    PubMed Central

    Sereno, José; Nunes, Sara; Rodrigues-Santos, Paulo; Rocha-Pereira, Petronila; Fernandes, João; Teixeira, Frederico; Reis, Flávio

    2014-01-01

    Protocols of conversion from cyclosporin A (CsA) to sirolimus (SRL) have been widely used in immunotherapy after transplantation to prevent CsA-induced nephropathy, but the molecular mechanisms underlying these protocols remain nuclear. This study aimed to identify the molecular pathways and putative biomarkers of CsA-to-SRL conversion in a rat model. Four animal groups (n = 6) were tested during 9 weeks: control, CsA, SRL, and conversion (CsA for 3 weeks followed by SRL for 6 weeks). Classical and emergent serum, urinary, and kidney tissue (gene and protein expression) markers were assessed. Renal lesions were analyzed in hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome stains. SRL-treated rats presented proteinuria and NGAL (serum and urinary) as the best markers of renal impairment. Short CsA treatment presented slight or even absent kidney lesions and TGF-β, NF-κ β, mTOR, PCNA, TP53, KIM-1, and CTGF as relevant gene and protein changes. Prolonged CsA exposure aggravated renal damage, without clear changes on the traditional markers, but with changes in serums TGF-β and IL-7, TBARs clearance, and kidney TGF-β and mTOR. Conversion to SRL prevented CsA-induced renal damage evolution (absent/mild grade lesions), while NGAL (serum versus urine) seems to be a feasible biomarker of CsA replacement to SRL. PMID:24971338

  15. BSC-1 growth inhibitor transforms a mitogenic stimulus into a hypertrophic stimulus for renal proximal tubular cells: relationship to Na/sup +//H/sup +/ antiport activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, L.G.; Holley, R.W.; Nasri, H.

    Renal hypertrophy is characterized by an increase in cell size and protein content with minimal hyperplasia. The mechanisms of control of this pattern of cell growth have not been determined. The present studies examined whether the growth inhibitor elaborated by BSC-1 kidney epilethal cells (GI), which has nearly identical biological properties to transforming growth factor ..beta.. (TGF-..beta..), could transform a mitogenic stimulus into a hypertrophic stimulus for rabbit renal proximal tubular cells in primary culture. Insulin plus hydrocortisone increased the amount of protein per cell, cell volume, and (/sup 3/H)thymidine incorporation at 24 and 48 hr in these cells. Whenmore » added together with insulin plus hydrocortisone, GI/TGF-..beta.. inhibited the stimulatory effect of these mitogens on (/sup 3/H)thymidine incorporation but did not block the increase in protein per cell and cell volume - i.e., the cells underwent hypertrophy. The fact that this pattern persisted for 48 hr indicated that GI/TGF-..beta.. exerted a prolonged inhibitory effect on mitogenic-stimulated DNA synthesis rather than delaying its onset. Amiloride-sensitive Na/sup +/ uptake using /sup 22/Na/sup +/ as a tracer, correlated with protein per cell and cell volume rather than with DNA synthesis. These studies indicate that the control of cell size may be regulated by autocrine mechanisms mediated by the elaboration of growth inhibitory factors that alter the pattern of the growth response to mitogens.« less

  16. Serum human epididymis secretory protein 4 as a potential biomarker of renal fibrosis in kidney transplantation recipients.

    PubMed

    Luo, Jinmei; Wang, Fen; Wan, Jianxin; Ye, Zhuangjian; Huang, Chumei; Cai, Yuesu; Liu, Min; Wu, Ben-Quan; Li, Laisheng

    2018-05-05

    Renal fibrosis remains an important cause of kidney allograft failure. The objective of this study was to evaluate the performance of serum human epididymis secretory protein 4 (HE4) as a biomarker for renal fibrosis in kidney transplant recipients. A total of 103 kidney transplantation patients were enrolled in this study, and serum HE4 concentrations were detected using the chemiluminescent microparticle immunoassay. Renal biopsy was carried out, and histological findings were assessed by immunohistochemistry. Median serum HE4 concentrations were significantly increased in kidney transplant recipients (186.2 pmol/l, interquartile range [IQR] 125.6-300.2) compared with control subjects (34.3 pmol/l, IQR 30.4-42.3, p < 0.0001). Meanwhile, serum HE4 concentrations were significantly increased along with disease severity (p < 0.0001). In addition, we found serum HE4 concentrations to be strongly correlated with the severity of fibrosis (IF/TA 0, 1, 2, and 3: 114.3, 179.0, 197.8, and 467.8 pmol/l, respectively; p < 0.0001) and serum HE4 concentrations significantly correlated with HE4 tissue expression concentrations in renal biopsy. Serum HE4 was increased in kidney transplant recipients with decreased kidney function and renal fibrosis and was correlated with the severity of the disease, suggesting that HE4 has the potential to be used as a novel clinical biomarker for evaluating kidney function and predicting renal fibrosis in kidney transplant recipients. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Renal accumulation of pentosidine in non-diabetic proteinuria-induced renal damage in rats.

    PubMed

    Waanders, Femke; Greven, Wendela L; Baynes, John W; Thorpe, Suzanne R; Kramer, Andrea B; Nagai, Ryoji; Sakata, Noriyuki; van Goor, Harry; Navis, Gerjan

    2005-10-01

    Advanced glycation end-products (AGEs) contribute to the pathogenesis of diabetic glomerulopathy. The role of AGEs in non-diabetic renal damage is not well characterized. First, we studied whether renal AGE accumulation occurs in non-diabetic proteinuria-induced renal damage and whether this is ameliorated by renoprotective treatment. Secondly, we investigated whether renal AGE accumulation was due to intrarenal effects of local protein trafficking. Pentosidine was measured (by high-performance liquid chromatography) in rats with chronic bilateral adriamycin nephropathy (AN), untreated and treated with lisinopril. Age-matched healthy rats served as negative controls. Secondly, we compared renal pentosidine in mild proteinuric and non-proteinuric kidneys of unilateral AN and in age-matched controls at 12 and 30 weeks. Intrarenal localization of pentosidine was studied by immunohistochemistry. Renal pentosidine was elevated in untreated AN (0.14+/-0.04 micromol/mol valine) vs healthy controls (0.04+/-0.01 micromol/mol valine, P<0.01). In lisinopril-treated AN, pentosidine was lower (0.09+/-0.02 micromol/mol valine) than in untreated AN (P<0.05). In unilateral proteinuria, pentosidine was similar in non-proteinuric and proteinuric kidneys. After 30 weeks of unilateral proteinuria, pentosidine was increased in both kidneys (0.26+/-0.10 micromol/mol valine) compared with controls (0.18+/-0.06 micromol/mol valine, P<0.05). Pentosidine (AN, week 30) was also increased compared with AN at week 12 (0.16+/-0.06 micromol/mol valine, P<0.01). In control and diseased kidneys, pentosidine was present in the collecting ducts. In proteinuric kidneys, in addition, pentosidine was present in the brush border and cytoplasm of dilated tubular structures, i.e. at sites of proteinuria-induced tubular damage. Pentosidine accumulates in non-diabetic proteinuric kidneys in damaged tubules, and renoprotective treatment by angiotensin-converting enzyme (ACE) inhibitors inhibits AGE

  18. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of β-hydroxy-β-methylbutyrate

    PubMed Central

    Wheatley, Scott M.; El-Kadi, Samer W.; Suryawan, Agus; Boutry, Claire; Orellana, Renán A.; Nguyen, Hanh V.; Davis, Steven R.

    2013-01-01

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were infused with HMB at 0, 20, 100, or 400 μmol·kg body wt−1·h−1 for 1 h (HMB 0, HMB 20, HMB 100, or HMB 400). Plasma HMB concentrations increased with infusion and were 10, 98, 316, and 1,400 nmol/ml in the HMB 0, HMB 20, HMB 100, and HMB 400 pigs. Protein synthesis rates in the longissimus dorsi (LD), gastrocnemius, soleus, and diaphragm muscles, lung, and spleen were greater in HMB 20 than in HMB 0, and in the LD were greater in HMB 100 than in HMB 0. HMB 400 had no effect on protein synthesis. Eukaryotic initiation factor (eIF)4E·eIF4G complex formation and ribosomal protein S6 kinase-1 and 4E-binding protein-1 phosphorylation increased in LD, gastrocnemius, and soleus muscles with HMB 20 and HMB 100 and in diaphragm with HMB 20. Phosphorylation of eIF2α and elongation factor 2 and expression of system A transporter (SNAT2), system L transporter (LAT1), muscle RING finger 1 protein (MuRF1), muscle atrophy F-box (atrogin-1), and microtubule-associated protein light chain 3 (LC3-II) were unchanged. Results suggest that supplemental HMB enhances protein synthesis in skeletal muscle of neonates by stimulating translation initiation. PMID:24192287

  19. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    PubMed

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells

  20. Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis.

    PubMed

    Molinas, Sara M; Trumper, Laura; Marinelli, Raúl A

    2012-08-01

    Mitochondrial ammonia synthesis in proximal tubules and its urinary excretion are key components of the renal response to maintain acid-base balance during metabolic acidosis. Since aquaporin-8 (AQP8) facilitates transport of ammonia and is localized in inner mitochondrial membrane (IMM) of renal proximal cells, we hypothesized that AQP8-facilitated mitochondrial ammonia transport in these cells plays a role in the response to acidosis. We evaluated whether mitochondrial AQP8 (mtAQP8) knockdown by RNA interference is able to impair ammonia excretion in the human renal proximal tubule cell line, HK-2. By RT-PCR and immunoblotting, we found that AQP8 is expressed in these cells and is localized in IMM. HK-2 cells were transfected with short-interfering RNA targeting human AQP8. After 48 h, the levels of mtAQP8 protein decreased by 53% (P < 0.05). mtAQP8 knockdown decreased the rate of ammonia released into culture medium in cells grown at pH 7.4 (-31%, P < 0.05) as well as in cells exposed to acid (-90%, P < 0.05). We also evaluated mtAQP8 protein expression in HK-2 cells exposed to acidic medium. After 48 h, upregulation of mtAQP8 (+74%, P < 0.05) was observed, together with higher ammonia excretion rate (+73%, P < 0.05). In vivo studies in NH(4)Cl-loaded rats showed that mtAQP8 protein expression was also upregulated after 7 days of acidosis in renal cortex (+51%, P < 0.05). These data suggest that mtAQP8 plays an important role in the adaptive response of proximal tubule to acidosis possibly facilitating mitochondrial ammonia transport.

  1. Enteral β-hydroxy-β-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs

    PubMed Central

    Kao, Michelle; Columbus, Daniel A.; Suryawan, Agus; Steinhoff-Wagner, Julia; Hernandez-Garcia, Adriana; Nguyen, Hanh V.; Fiorotto, Marta L.

    2016-01-01

    Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were studied immediately (F) or fed one of five diets for 24 h: low-protein (LP), high-protein (HP), or LP diet supplemented with 4 (HMB4), 40 (HMB40), or 80 (HMB80) μmol HMB·kg body wt−1·day−1. Cell replication was assessed from nuclear incorporation of BrdU in the longissimus dorsi (LD) muscle and jejunum crypt cells. Protein synthesis rates in LD, gastrocnemius, rhomboideus, and diaphragm muscles, lung, and brain were greater in HMB80 and HP and in brain were greater in HMB40 compared with LP and F groups. Formation of the eIF4E·eIF4G complex and S6K1 and 4E-BP1 phosphorylation in LD, gastrocnemius, and rhomboideus muscles were greater in HMB80 and HP than in LP and F groups. Phosphorylation of eIF2α and eEF2 and expression of SNAT2, LAT1, MuRF1, atrogin-1, and LC3-II were unchanged. Numbers of BrdU-positive myonuclei in the LD were greater in HMB80 and HP than in the LP and F groups; there were no differences in jejunum. The results suggest that enteral supplementation with HMB increases skeletal muscle protein anabolism in neonates by stimulation of protein synthesis and satellite cell proliferation. PMID:27143558

  2. Cell-free protein synthesis for structure determination by X-ray crystallography.

    PubMed

    Watanabe, Miki; Miyazono, Ken-ichi; Tanokura, Masaru; Sawasaki, Tatsuya; Endo, Yaeta; Kobayashi, Ichizo

    2010-01-01

    Structure determination has been difficult for those proteins that are toxic to the cells and cannot be prepared in a large amount in vivo. These proteins, even when biologically very interesting, tend to be left uncharacterized in the structural genomics projects. Their cell-free synthesis can bypass the toxicity problem. Among the various cell-free systems, the wheat-germ-based system is of special interest due to the following points: (1) Because the gene is placed under a plant translational signal, its toxic expression in a bacterial host is reduced. (2) It has only little codon preference and, especially, little discrimination between methionine and selenomethionine (SeMet), which allows easy preparation of selenomethionylated proteins for crystal structure determination by SAD and MAD methods. (3) Translation is uncoupled from transcription, so that the toxicity of the translation product on DNA and its transcription, if any, can be bypassed. We have shown that the wheat-germ-based cell-free protein synthesis is useful for X-ray crystallography of one of the 4-bp cutter restriction enzymes, which are expected to be very toxic to all forms of cells retaining the genome. Our report on its structure represents the first report of structure determination by X-ray crystallography using protein overexpressed with the wheat-germ-based cell-free protein expression system. This will be a method of choice for cytotoxic proteins when its cost is not a problem. Its use will become popular when the crystal structure determination technology has evolved to require only a tiny amount of protein.

  3. The role of mTOR signaling in the regulation of protein synthesis and muscle mass during immobilization in mice

    PubMed Central

    You, Jae-Sung; Anderson, Garrett B.; Dooley, Matthew S.; Hornberger, Troy A.

    2015-01-01

    ABSTRACT The maintenance of skeletal muscle mass contributes substantially to health and to issues associated with the quality of life. It has been well recognized that skeletal muscle mass is regulated by mechanically induced changes in protein synthesis, and that signaling by mTOR is necessary for an increase in protein synthesis and the hypertrophy that occurs in response to increased mechanical loading. However, the role of mTOR signaling in the regulation of protein synthesis and muscle mass during decreased mechanical loading remains largely undefined. In order to define the role of mTOR signaling, we employed a mouse model of hindlimb immobilization along with pharmacological, mechanical and genetic means to modulate mTOR signaling. The results first showed that immobilization induced a decrease in the global rates of protein synthesis and muscle mass. Interestingly, immobilization also induced an increase in mTOR signaling, eIF4F complex formation and cap-dependent translation. Blocking mTOR signaling during immobilization with rapamycin not only impaired the increase in eIF4F complex formation, but also augmented the decreases in global protein synthesis and muscle mass. On the other hand, stimulating immobilized muscles with isometric contractions enhanced mTOR signaling and rescued the immobilization-induced decrease in global protein synthesis through a rapamycin-sensitive mechanism that was independent of ribosome biogenesis. Unexpectedly, the effects of isometric contractions were also independent of eIF4F complex formation. Similar to isometric contractions, overexpression of Rheb in immobilized muscles enhanced mTOR signaling, cap-dependent translation and global protein synthesis, and prevented the reduction in fiber size. Therefore, we conclude that the activation of mTOR signaling is both necessary and sufficient to alleviate the decreases in protein synthesis and muscle mass that occur during immobilization. Furthermore, these results indicate

  4. Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-κB signaling pathways in diabetic nephropathy.

    PubMed

    Zhang, Mingyan; Yan, Zhibin; Bu, Lili; An, Chunmei; Wang, Dan; Liu, Xin; Zhang, Jianfeng; Yang, Wenle; Deng, Bochuan; Xie, Junqiu; Zhang, Bangzhi

    2018-01-01

    Kidney fibrosis is the main pathologic change in diabetic nephropathy (DN), which is the major cause of end-stage renal disease. Current therapeutic strategies slow down but cannot reverse the progression of renal dysfunction in DN. Plant-derived bioactive peptides in foodstuffs are widely used in many fields because of their potential pharmaceutical and nutraceutical benefits. However, this type of peptide has not yet been studied in renal fibrosis of DN. Previous studies have indicated that the peptide YWDHNNPQIR (named RAP), a natural peptide derived from rapeseed protein, has an antioxidative stress effect. The oxidative stress is believed to be associated with DN. The aim of this study was to evaluate the pharmacologic effects of RAP against renal fibrosis of DN and high glucose (HG)-induced mesangial dysfunction. Diabetes was induced by streptozotocin and high-fat diet in C57BL/6 mice and these mice were treated by subcutaneous injection of different doses of RAP (0.1 mg/kg and 0.5 mg/kg, every other day) or PBS for 12 weeks. Later, functional and histopathologic analyses were performed. Parallel experiments verifying the molecular mechanism by which RAP alleviates DN were carried out in HG-induced mesangial cells (MCs). RAP improved the renal function indices, including 24-h albuminuria, triglyceride, serum creatinine, and blood urea nitrogen levels, but did not lower blood glucose levels in DN mice. RAP also simultaneously attenuated extracellular matrix accumulation in DN mice and HG-induced MCs. Furthermore, RAP reduced HG-induced cell proliferation, but it showed no toxicity in MCs. Additionally, RAP inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. RAP can attenuate fibrosis in vivo and in vitro by antagonizing the MAPK and NF-κB pathways.

  5. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus.

    PubMed

    Sreekutty, M S; Mini, S

    2016-01-01

    Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus.

  6. Leucine pulses enhance skeletal muscle protein synthesis during continuous feeding in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Infants unable to maintain oral feeding can be nourished by orogastric tube. We have shown that orogastric continuous feeding restricts muscle protein synthesis compared with intermittent bolus feeding in neonatal pigs. To determine whether leucine leu infusion can be used to enhance protein synthes...

  7. Ion pump sorting in polarized renal epithelial cells.

    PubMed

    Caplan, M J

    2001-08-01

    The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.

  8. Nutrient-induced stimulation of protein synthesis in mouse skeletal muscle is limited by the mTORC1 repressor REDD1.

    PubMed

    Gordon, Bradley S; Williamson, David L; Lang, Charles H; Jefferson, Leonard S; Kimball, Scot R

    2015-04-01

    In skeletal muscle, the nutrient-induced stimulation of protein synthesis requires signaling through the mechanistic target of rapamycin complex 1 (mTORC1). Expression of the repressor of mTORC1 signaling, regulated in development and DNA damage 1 (REDD1), is elevated in muscle during various atrophic conditions and diminished under hypertrophic conditions. The question arises as to what extent REDD1 limits the nutrient-induced stimulation of protein synthesis. The objective was to examine the role of REDD1 in limiting the response of muscle protein synthesis and mTORC1 signaling to a nutrient stimulus. Wild type REDD1 gene (REDD1(+/+)) and disruption in the REDD1 gene (REDD1(-/-)) mice were feed deprived for 16 h and randomized to remain feed deprived or refed for 15 or 60 min. The tibialis anterior was then removed for analysis of protein synthesis and mTORC1 signaling. In feed-deprived mice, protein synthesis and mTORC1 signaling were significantly lower in REDD1(+/+) than in REDD1(-/-) mice. Thirty minutes after the start of refeeding, protein synthesis in REDD1(+/+) mice was stimulated by 28%, reaching a value similar to that observed in feed-deprived REDD1(-/-) mice, and was accompanied by increased phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) by 81%, 167%, and 207%, respectively. In refed REDD1(-/-) mice, phosphorylation of mTOR (Ser2448), p70S6K1 (Thr389), and 4E-BP1 (Ser65) were significantly augmented above the values observed in refed REDD1(+/+) mice by 258%, 405%, and 401%, respectively, although protein synthesis was not coordinately increased. Seventy-five minutes after refeeding, REDD1 expression in REDD1(+/+) mice was reduced (∼15% of feed-deprived REDD1(+/+) values), and protein synthesis and mTORC1 signaling were not different between refed REDD1(+/+) mice and REDD1(-/-) mice. The results show that REDD1 expression limits protein synthesis in mouse skeletal muscle by inhibiting mTORC1 signaling during periods of feed

  9. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    PubMed Central

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  10. Leucine acts as a nutrient signal to stimulate protein synthesis

    USDA-ARS?s Scientific Manuscript database

    The postprandial rise in amino acids and insulin independently stimulates protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to amino acids. We have shown that the postprandial rise in leucine, but not isoleucine or valine, acutely stimulates muscle pro...

  11. Chemical Synthesis of Circular Proteins*

    PubMed Central

    Tam, James P.; Wong, Clarence T. T.

    2012-01-01

    Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ligation in end-to-end cyclization. Key elements of an entropic chemical ligation consist of a chemoselective capture step merging the N and C termini as a covalently linked O/S-ester intermediate to permit the subsequent step of an intramolecular O/S-N acyl shift to form an amide. Many ligation methods exploit the supernucleophilicity of a thiol side chain at the N terminus for the capture reaction, which makes cysteine-rich peptides ideal candidates for the entropy-driven macrocyclization. Advances in desulfurization and modification of the thiol-containing amino acids at the ligation sites to other amino acids add extra dimensions to the entropy-driven ligation methods. This minireview describes recent advances of entropy-driven ligation to prepare circular proteins with or without a cysteinyl side chain. PMID:22700959

  12. Identification of three proteins in the eye of Aplysia, whose synthesis is altered by serotonin (5-HT). Possible involvement of these proteins in the ocular circadian system.

    PubMed

    Koumenis, C; Nunez-Regueiro, M; Raju, U; Cook, R; Eskin, A

    1995-06-16

    Previous results using translation inhibitors in the ocular circadian system of Aplysia suggest that protein synthesis may be involved in the light and serotonin (5-HT) entrainment pathways or perhaps in the circadian oscillator. Proteins have been previously identified whose synthesis was altered by treatments of light capable of perturbing the phase of the circadian rhythm in the eye of Aplysia. We extended these studies by investigating the effects of other treatments that perturb the ocular circadian rhythm on protein synthesis. 5-HT altered the synthesis of nine proteins. Interestingly, five of the proteins affected by treatments with 5-HT were previously shown to be affected by treatments with light. Four of the proteins affected by treatments with 5-HT were also affected by treatments with analogs of cAMP, a treatment which mimics the effects of 5-HT on the ocular circadian rhythm. To identify the cellular function of some of these proteins, we obtained their partial amino acid sequences. Based on these sequences and additional characterizations, a 78-kDa, pI 5.6 Aplysia protein appears to be glucose-regulated protein 78/binding protein, and a 36-kDa, pI 5.7 Aplysia protein appears to be porin/voltage-dependent anion channel. Heat shock experiments on Aplysia eyes revealed that yet another one of the Aplysia proteins (70 kDa) affected by 5-HT appears to be a heat-inducible member (heat shock protein 70) of the family of heat shock proteins. These findings suggest that these three identified proteins, together or individually, may be involved in some way in the regulation of the timing of the circadian oscillator in the eye of Aplysia.

  13. Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance

    NASA Astrophysics Data System (ADS)

    Mahadevan, Kalpana; Patthipati, Venkata Suresh; Han, Sangbum; Swanson, R. James; Whelan, Eoin C.; Osgood, Christopher; Balasubramanian, Ramjee

    2016-08-01

    Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 109 M-1 cm-1 and 1.5 × 108 M-1 cm-1 respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.

  14. Induction of hepatic protein synthesis by a peptide in blood plasma of patients with sepsis and trauma.

    PubMed

    Loda, M; Clowes, G H; Dinarello, C A; George, B C; Lane, B; Richardson, W

    1984-08-01

    Accelerated release of amino acids from muscle and their uptake for protein synthesis by liver and other visceral tissues are characteristic of trauma or sepsis. Experimentally, this response is induced by interleukin-1 (IL-1) generated by activated macrophages in vitro. However, IL-1 has not been demonstrated in human blood. A small 4000-dalton peptide recently isolated from plasma of patients with sepsis and trauma induces muscle proteolysis and is called "proteolysis-inducing factor" (PIF). To test whether this agent has the ability also to induce hepatic protein synthesis, a series of animal experiments and clinical observations were undertaken. The structural and secretory (acute-phase reactants) in vitro protein synthesis in livers of normal rats injected intraperitoneally with IL-1 or PIF was significantly greater than that of normal rats or those injected with Ringer's lactate (p less than 0.01). In patients with sepsis and trauma the central plasma clearance rate of amino acids, a measure of visceral (principally hepatic) amino acid uptake, was elevated and correlated with the rates of protein synthesis in incubated liver slices obtained by biopsy at operation from the same patients (p less than 0.05). Both in vivo measured central plasma clearance rate of amino acids and in vitro measured hepatic protein synthesis correlated with plasma levels of PIF in the same patients (p less than 0.01 and p less than 0.05, respectively). We conclude that since PIF, and not IL-1, is present in human plasma and both are produced by activated macrophages, PIF seems to be the stable circulating cleavage product of IL-1, which induces not only muscle proteolysis but also hepatic protein synthesis, principally in the form of acute-phase reactants during infection and other states in which inflammation is present.

  15. The additive effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 function in diabetic rats.

    PubMed

    Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2017-10-19

    Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.

  16. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis.

    PubMed

    Munoz, L; Sadaie, Y; Doi, R H

    1978-10-10

    The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.

  17. Dissociation of tsl-tif-Induced Filamentation and recA Protein Synthesis in Escherichia coli K-12

    PubMed Central

    Huisman, Olivier; D'Ari, Richard; George, Jacqueline

    1980-01-01

    In Escherichia coli, expression of the tif-1 mutation (in the recA gene) induces the “SOS response” at 40°C, including massive synthesis of the recA(tif) protein, cell filamentation, appearance of new repair and mutagenic activities, and prophage induction. Expression of the tsl-1 mutation (in the lexA gene) induces massive synthesis of the recA protein and cell filamentation at 42°C, although other SOS functions are not induced. In this paper we show that the septation inhibition induced in tif and tsl strains at 42°C is not due to the presence of a high concentration of recA protein since (i) no recA mutants (≤10−8) were isolated among thermoresistant nonfilamenting revertants of a tif-1 tsl-1 strain, (ii) in a tsl-1 zab-53 strain, only the low basal level of recA protein was synthesized at 42°C, yet cell division was inhibited, and (iii) in a tsl-1 recA99 (amber) strain, no recA protein could be detected at 42°C, yet cell division was inhibited. Among suppressors of tsl-tif-induced lethality are mutations at a locus which we call infB, located in the 66- to 83-min region. The infB1 mutation confers a highly pleiotropic phenotype, which is suggestive of a regulatory defect; it suppressed tsl-tif-induced filamentation but not recA protein synthesis, it did not suppress ultraviolet-induced filamentation (in a lon derivative), and it reduced but did not abolish tif-mediated induction of λ prophage and bacterial mutagenesis. The dissociation of tsl-tif-induced septation inhibition and recA protein synthesis in the tif-1 tsl-1 infB1 strain suggests that the control of SOS filamentation may not be strictly identical to the control of recA protein synthesis. Images PMID:6445897

  18. p97/DAP5 is a ribosome-associated factor that facilitates protein synthesis and cell proliferation by modulating the synthesis of cell cycle proteins

    PubMed Central

    Lee, Sang Hyun; McCormick, Frank

    2006-01-01

    p97 (also referred to as DAP5, NAT1 or eIF4G2) has been proposed to act as a repressor of protein synthesis. However, we found that p97 is abundantly expressed in proliferating cells and p97 is recruited to ribosomes following growth factor stimulation. We also report that p97 binds eIF2β through its C-terminal domain and localizes to ribosome through its N-terminal MIF4G domain. When overexpressed, p97 increases reporter luciferase activity. In contrast, overexpression of the C-terminal two-thirds of eukaryotic initiation factor 4GI (eIF4GI), a region that shares significant homology with p97, or the N-terminal MIF4G domain of p97 markedly inhibits reporter activity, the rate of global translation and cell proliferation. Conversely, downregulation of p97 levels by RNA interference also decreases the rate of global translation and inhibits cell proliferation. This coincides with an increase in p27/Kip1 protein levels and a marked decrease in CDK2 kinase activity. Taken together, our results demonstrate that p97 is functionally different from the closely related C-terminal two-thirds of eIF4GI and it can positively promote protein synthesis and cell proliferation. PMID:16932749

  19. Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidogenesis in MA-10 mouse Leydig tumor cells.

    PubMed

    Clark, B J; Combs, R; Hales, K H; Hales, D B; Stocco, D M

    1997-11-01

    Hormonal induction of steroidogenesis in the adrenal and gonads is dependent on the synthesis and function of the steroidogenic acute regulatory protein (StAR). As a first approach to investigate the role of translation in the control of StAR expression, we examined StAR protein synthesis and steroid production in MA-10 mouse Leydig tumor cells in the presence of the transcriptional inhibitor, actinomycin D. We show that human CG (hCG)-induced StAR synthesis, as determined by radiolabeling MA-10 cells with [35S]methionine and immunoprecipitation of StAR, is blocked by actinomycin D. The rate of hCG-stimulated progesterone production is also decreased, but not completely blocked, suggesting a possible StAR-independent mechanism that may contribute approximately 10-20% of the acute steroidogenic potential of the cells. When MA-10 cells were pretreated with hCG to increase StAR messenger RNA levels and then the proteins radiolabeled in the presence of hCG or hCG plus actinomycin D, no difference was observed in the amount of the 30-kDa StAR protein synthesized. However, a 50% increase in the precursor form of StAR protein was detected with hCG treatment alone. These data suggest that ongoing StAR protein synthesis is not inhibited by actinomycin D, but that continued synthesis requires transcriptional activity. Progesterone production was inhibited by actinomycin D in the hCG-pretreated cells, supporting the proposal that maintaining StAR protein synthesis is required for optimal steroid production in MA-10 mouse Leydig tumor cells.

  20. Differential expression of the intermediate filament protein nestin during renal development and its localization in adult podocytes.

    PubMed

    Chen, Jing; Boyle, Scott; Zhao, Min; Su, Wei; Takahashi, Keiko; Davis, Linda; Decaestecker, Mark; Takahashi, Takamune; Breyer, Matthew D; Hao, Chuan-Ming

    2006-05-01

    Nestin, an intermediate filament protein, is widely used as stem cell marker. Nestin has been shown to interact with other cytoskeleton proteins, suggesting a role in regulating cellular cytoskeletal structure. These studies examined renal nestin localization and developmental expression in mice. In developing kidney, anti-nestin antibody revealed strong immunoreactivity in vascular cleft of the S-shaped body and vascular tuft of capillary loop-stage glomerulus. The nestin-positive structures also were labeled by endothelial cell markers FLK1 and CD31 in immature glomeruli. Nestin was not detected in epithelial cells of immature glomeruli. In contrast, in mature glomerular, nestin immunoreactivity was observed only outside laminin-positive glomerular basement membrane, and co-localized with nephrin, consistent with podocyte nestin expression. In adult kidney, podocytes were the only cells that exhibited persistent nestin expression. Nestin was not detected in ureteric bud and its derivatives throughout renal development. Cell lineage studies, using a nestin promoter-driven Cre mouse and a ROSA26 reporter mouse, showed a strong beta-galactosidase activity in intermediate mesoderm in an embryonic day 10 embryo and all of the structures except those that were derived from ureteric bud in embryonic kidney through adult kidney. These studies show that nestin is expressed in progenitors of glomerular endothelial cells and renal progenitors that are derived from metanephric mesenchyme. In the adult kidney, nestin expression is restricted to differentiated podocytes, suggesting that nestin could play an important role in maintaining the structural integrity of the podocytes.

  1. Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of “Difficult-to-Express” Proteins and Future Perspectives

    PubMed Central

    Thoring, Lena; Wüstenhagen, Doreen A.; Borowiak, Maria; Stech, Marlitt; Sonnabend, Andrei; Kubick, Stefan

    2016-01-01

    Nowadays, biotechnological processes play a pivotal role in target protein production. In this context, Chinese Hamster Ovary (CHO) cells are one of the most prominent cell lines for the expression of recombinant proteins and revealed as a safe host for nearly 40 years. Nevertheless, the major bottleneck of common in vivo protein expression platforms becomes obvious when looking at the production of so called “difficult-to-express” proteins. This class of proteins comprises in particular several ion channels and multipass membrane proteins as well as cytotoxic proteins. To enhance the production of “difficult-to-express” proteins, alternative technologies were developed, mainly based on translationally active cell lysates. These so called “cell-free” protein synthesis systems enable an efficient production of different classes of proteins. Eukaryotic cell-free systems harboring endogenous microsomal structures for the synthesis of functional membrane proteins and posttranslationally modified proteins are of particular interest for future applications. Therefore, we present current developments in cell-free protein synthesis based on translationally active CHO cell extracts, underlining the high potential of this platform. We present novel results highlighting the optimization of protein yields, the synthesis of various “difficult-to-express” proteins and the cotranslational incorporation of non-standard amino acids, which was exemplarily demonstrated by residue specific labeling of the glycoprotein Erythropoietin and the multimeric membrane protein KCSA. PMID:27684475

  2. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    PubMed

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Role for tryptophan in regulation of protein synthesis in porcine muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, F.D.; Smith, T.K.; Bayley, H.S.

    1988-04-01

    Experiments were conducted to determine the effect of varying concentrations of dietary tryptophan on growth rate and protein synthesis in edible muscle tissues of growing swine. A total of 45 immature swine (initial weight approximately 24 kg) were fed corn-gelatin diets containing 0.5 (n = 8), 0.8 (n = 10), 1.3 (n = 10), 1.5 (n = 7) or 2.0 (n = 10) g tryptophan/kg diet for 35 d. Animals fed 0.5 and 0.8 g tryptophan/kg grew more slowly, consumed less feed and had a lower efficiency of feed utilization than animals fed higher concentrations of tryptophan. Thirty similar animalsmore » were used in a second experiment. Diets containing 0.5, 0.8, 1.0, 1.5 or 2.0 g tryptophan/kg diet (n = 6) were fed for 14 d, after which all animals were killed and samples were taken of longissimus dorsi, triceps brachii and biceps femoris. Protein synthetic activity was determined by monitoring the incorporation of (/sup 14/C)phenylalanine into protein in vitro. There was no significant difference in synthetic activity between different muscle types. There was no effect of diet on the activity of the muscle soluble protein fraction. The activity of the muscle ribosomal fraction, however, was positively correlated with increasing concentrations of dietary tryptophan. It was concluded that tryptophan has the potential to regulate muscle protein synthesis in a manner beyond serving simply as a component of protein.« less

  4. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury.

    PubMed

    Nowak, Grazyna; Takacsova-Bakajsova, Diana; Megyesi, Judit

    2017-01-01

    Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. Copyright © 2017 the American Physiological Society.

  5. Deletion of protein kinase C-ε attenuates mitochondrial dysfunction and ameliorates ischemic renal injury

    PubMed Central

    Takacsova-Bakajsova, Diana; Megyesi, Judit

    2016-01-01

    Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. PMID:27760765

  6. Accelerated Growth Rate Induced by Neonatal High-Protein Milk Formula Is Not Supported by Increased Tissue Protein Synthesis in Low-Birth-Weight Piglets

    PubMed Central

    Jamin, Agnès; Sève, Bernard; Thibault, Jean-Noël; Floc'h, Nathalie

    2012-01-01

    Low-birth-weight neonates are routinely fed a high-protein formula to promote catch-up growth and antibiotics are usually associated to prevent infection. Yet the effects of such practices on tissue protein metabolism are unknown. Baby pigs were fed from age 2 to 7 or 28 d with high protein formula with or without amoxicillin supplementation, in parallel with normal protein formula, to determine tissue protein metabolism modifications. Feeding high protein formula increased growth rate between 2 and 28 days of age when antibiotic was administered early in the first week of life. This could be explained by the occurrence of diarrhea when piglets were fed the high protein formula alone. Higher growth rate was associated with higher feed conversion and reduced protein synthesis rate in the small intestine, muscle and carcass, whereas proteolytic enzyme activities measured in these tissues were unchanged. In conclusion, accelerated growth rate caused by high protein formula and antibiotics was not supported by increased protein synthesis in muscle and carcass. PMID:22315674

  7. Comparative Studies of Effect of Auxin and Ethylene on Permeability and Synthesis of RNA and Protein 1

    PubMed Central

    Sacher, Joseph A.; Salminen, Seppo O.

    1969-01-01

    The effects of ethylene on permeability and RNA and protein synthesis were assayed over a 6 to 26 hr period in tissue sections from avocado (Persea gratissima Gaertn. F., var. Fuerte), both pulp and peel of banana (Musa sapientum L., var. Gros Michel), bean endocarp (Phaseolus vulgaris L., var. Kentucky Wonder Pole beans) and leaves of Rhoeo discolor. Ethylene had no effect on permeability in 4 of the 5 tissues, but sometimes enhanced solute uptake in banana peel; it had either no effect or an inhibitory effect on synthesis of RNA and protein in sections from fruits of avocado and banana. Auxin (α-naphthalene acetic acid) stimulated synthesis of RNA and protein in bean endocarp and Rhoeo leaf sections, whereas ethylene inhibited both basal and auxin-induced synthesis. It is concluded that in these tissues the auxin effect is not an ethylene effect. PMID:16657212

  8. [Evaluation of ten fish species to be included as part of renal diet, due to their protein, phosphorus and fatty acids content].

    PubMed

    Castro-González, Maria Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando

    2012-06-01

    Because renal disease is highly complex, its nutritional treatment is complicated and many foods are restricted, including fish because its phosphorus content. The aim of the present study was to analyze ten fillet fish species, commonly consumed in Mexico (Cyprinus carpio carpio, Ophichthus rex, Symphurus elongatus, Eucinostomus entomelas, Chirostoma patzcuaro, Bairdiella chrysoura, Salmo salar Oreochromis urolepis hornorum, Sphyraena guachancho, Istiophorus albicans), to determine their phosphorus (P), protein (Pr), cholesterol, sodium, potassium, vitamins D3 and E, and n-3 PUFA (EPA+DHA) according to the AOAC techniques, in order to identify which species could be included in renal diet; particularly because of their risk:benefit relations (calculated with those results). Protein values ranged from 16.5 to 33.5g/100 g of fillet; the specie with the highest phosphorus contest was Salmo salar, and with the lowest, Symphurus elongatus. EPA+DHA quantity ranged from 79.64 mg/100 g to 1,381.53 mg/100 g. Considering de P/Pr relation recommended to renal patients, all analyzed species (except Salmo salar, Ophichthus rex and Istiophorus albicans) could be included in their diet. As for the P/EPA+DHA relation, the species most recommended to renal patients are Symphurus elongatus, Bairdiella chrysoura and Sphyraena guachancho.

  9. Metabolic Cost of Protein Synthesis in Larvae of the Pacific Oyster (Crassostrea gigas) Is Fixed Across Genotype, Phenotype, and Environmental Temperature.

    PubMed

    Lee, Jimmy W; Applebaum, Scott L; Manahan, Donal T

    2016-06-01

    The energy made available through catabolism of specific biochemical reserves is constant using standard thermodynamic conversion equivalents (e.g., 24.0 J mg protein(-1)). In contrast, measurements reported for the energy cost of synthesis of specific biochemical constituents are highly variable. In this study, we measured the metabolic cost of protein synthesis and determined whether this cost was influenced by genotype, phenotype, or environment. We focused on larval stages of the Pacific oyster Crassostrea gigas, a species that offers several experimental advantages: availability of genetically pedigreed lines, manipulation of ploidy, and tractability of larval forms for in vivo studies of physiological processes. The cost of protein synthesis was measured in larvae of C. gigas for 1) multiple genotypes, 2) phenotypes with different growth rates, and 3) different environmental temperatures. For all treatments, the cost of protein synthesis was within a narrow range--near the theoretical minimum--with a fixed cost (mean ± one standard error, n = 21) of 2.1 ± 0.2 J (mg protein synthesized)(-1) We conclude that there is no genetic variation in the metabolic cost of protein synthesis, thereby simplifying bioenergetic models. Protein synthesis is a major component of larval metabolism in C. gigas, accounting for more than half the metabolic rate in diploid (59%) and triploid larvae (54%). These results provide measurements of metabolic cost of protein synthesis in larvae of C. gigas, an indicator species for impacts of ocean change, and provide a quantitative basis for evaluating the cost of resilience. © 2016 Marine Biological Laboratory.

  10. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  11. Jatropha curcas Protein Concentrate Stimulates Insulin Signaling, Lipogenesis, Protein Synthesis and the PKCα Pathway in Rat Liver.

    PubMed

    León-López, Liliana; Márquez-Mota, Claudia C; Velázquez-Villegas, Laura A; Gálvez-Mariscal, Amanda; Arrieta-Báez, Daniel; Dávila-Ortiz, Gloria; Tovar, Armando R; Torres, Nimbe

    2015-09-01

    Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition.

  12. Protein synthesis in sperm: dialog between mitochondria and cytoplasm.

    PubMed

    Gur, Yael; Breitbart, Haim

    2008-01-30

    Ejaculated sperm are capable of using mRNAs transcripts for protein translation during the final maturation steps before fertilization. In a capacitation-dependent process, nuclear-encoded mRNAs are translated by mitochondrial-type ribosomes while the cytoplasmic translation machinery is not involved. Our findings suggest that new proteins are synthesized to replace degraded proteins while swimming and waiting in the female reproductive tract before fertilization, or produced due to the specific needs of the capacitating spermatozoa. In addition, a growing number of articles have reported evidence for the correlation of nuclear-encoded mRNA and protein synthesis in somatic mitochondria. It is known that all of the proteins necessary for the replication, transcription and translation of the genes encoded in mtDNA are now encoded in the nuclear genome. This genetic investment is far out of proportion to the number of proteins involved, as there have been multiple movements and duplications of genes. However, the evolutionary retention (or secondary uptake) of the mitochondrial machinery for translation of nuclear-encoded mRNAs may shed light on this paradox.

  13. Alcohol intoxication following muscle contraction in mice decreases muscle protein synthesis but not mTOR signal transduction.

    PubMed

    Steiner, Jennifer L; Lang, Charles H

    2015-01-01

    Alcohol (ethanol [EtOH]) intoxication antagonizes stimulation of muscle protein synthesis and mammalian target of rapamycin (mTOR) signaling. However, whether the anabolic response can be reversed when alcohol is consumed after the stimulus is unknown. A single bout of electrically stimulated muscle contractions (10 sets of 6 contractions) was induced in fasted male C57BL/6 mice 2 hours prior to alcohol intoxication. EtOH was injected intraperitoneally (3 g/kg), and the gastrocnemius/plantaris muscle complex was collected 2 hours later from the stimulated and contralateral unstimulated control leg. Muscle contraction increased protein synthesis 28% in control mice, while EtOH abolished this stimulation-induced increase. Further, EtOH suppressed the rate of synthesis ~75% compared to control muscle irrespective of stimulation. This decrease was associated with impaired protein elongation as EtOH increased the phosphorylation of eEF2 Thr(56) . In contrast, stimulation-induced increases in mTOR protein complex-1 (mTORC1) (S6K1 Thr(421) /Ser(424) , S6K1 Thr(389) , rpS6 Ser(240/244) , and 4E-BP1 Thr(37/46) ) and mitogen-activated protein kinase (MAPK) (JNK Thr(183) /Tyr(185) , p38 Thr(180) /Tyr(182) , and rpS6S(235/236) ) signaling were not reversed by acute EtOH. These data suggest that EtOH-induced decreases in protein synthesis in fasted mice may be independent of mTORC1 and MAPK signaling following muscle contraction and instead due to the antagonistic actions of EtOH on mRNA translation elongation. Therefore, EtOH suppresses the contraction-induced increase in protein synthesis, and over time has the potential to prevent skeletal muscle hypertrophy induced by repeated muscle contraction. Copyright © 2015 by the Research Society on Alcoholism.

  14. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation

    USDA-ARS?s Scientific Manuscript database

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study...

  15. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin

    USDA-ARS?s Scientific Manuscript database

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated ...

  16. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.

    PubMed

    Weiner, I David; Mitch, William E; Sands, Jeff M

    2015-08-07

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. Copyright © 2015 by the American Society of Nephrology.

  17. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes.

    PubMed

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L

    2017-04-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  18. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    PubMed

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  19. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

    PubMed Central

    Suryawan, Agus; Jeyapalan, Asumthia S.; Orellana, Renan A.; Wilson, Fiona A.; Nguyen, Hanh V.; Davis, Teresa A.

    2008-01-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E·eIF4G complex and increased eIF4E·4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein β-subunit-like protein (GβL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors. PMID:18682538

  20. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  1. Energetics of Polymerization: A Contribution to an Understanding of Protein Synthesis.

    ERIC Educational Resources Information Center

    Friedmann, Herbert C.

    1986-01-01

    Discusses the various ways that textbooks treat the energetics of protein synthesis. Offers an approach to explaining the phenomenon by emphasizing the ordering aspects of the process. Describes the participation of compounds such as ATP and GTP in the ordering process. (TW)

  2. Effect of medium chain triglycerides (MCT) on jejunal mucosa mass and protein synthesis.

    PubMed Central

    Schwartz, S; Farriol, M; Garcia-Arumi, E; Andreu, A L; López Hellín, J; Arbós, M A

    1994-01-01

    The effects of medium chain triglycerides (MCT) on jejunal mucosa mass and protein synthesis were compared with results from previous experiments with rats fed by parenteral nutrition or enteral nutrition. Other published studies have also been analysed. Three experimental models were studied. In the traumatic model, production of a femoral fracture was followed by Kirschner pin insertion into the medullary canal of both fragments at reduction. (Forty ras were fed enteral nutrition and 93 were given parenteral nutrition.) A second model entailed resection under ether anaesthesia using the technique described by Higgins. (Fifty five rats were fed enteral nutrition and 28 with parenteral nutrition.) A third model entailed a terminolateral portocaval shunt under anaesthesia with pentobarbital. (Sixty nine rats were treated this way and then given enteral nutrition.) Proportions of medium chain/long chain triglycerides (LCT) were as follows: 0/100, 20/80, 40/60, 50/50, and 92/8 for enteral nutrition and 0/100, 30/70, 50/50, and 70/30 for parenteral nutrition. Faecal losses of alpha amino nitrogen, protein, total fats, and free fatty acids were analysed together with the quantitative intake, weight gain of the rats, jejunal mucosal mass, and protein synthesis in relation to the MCT proportion ingested or given by enteral nutrition or parenteral nutrition. From analysis of our results and those of others, several conclusions could be drawn. Firstly, the route of administration of MCT is extremely important and enterocytes might be considered one of the main target sites. Secondly, a high proportion of MCT (more than 80%) offers no advantage for jejunal mucosa and produces undesirable side effects. Thirdly, the effect of MCT on jejunal mucosal protein synthesis depends on the metabolic state. Finally, an increase in jejunal mucosal mass directly correlated with MCT concentrations, but no correlation was found between mass and protein synthesis. A positive correlation

  3. Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5

    PubMed Central

    Yang, Yang; Zengel, James; Sun, Minghao; Sleeman, Katrina; Timani, Khalid Amine; Aligo, Jason; Rota, Paul

    2015-01-01

    ABSTRACT Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the

  4. Myocardial reloading after extracorporeal membrane oxygenation alters substrate metabolism while promoting protein synthesis.

    PubMed

    Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Des Rosiers, Christine; Portman, Michael A

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8-hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2-(13)C]-pyruvate as an oxidative substrate and [(13)C6]-L-leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near-baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl-CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve

  5. Accessibility of selenomethionine proteins by total chemical synthesis: structural studies of human herpesvirus-8 MIP-II.

    PubMed

    Shao, W; Fernandez, E; Wilken, J; Thompson, D A; Siani, M A; West, J; Lolis, E; Schweitzer, B I

    1998-12-11

    The determination of high resolution three-dimensional structures by X-ray crystallography or nuclear magnetic resonance (NMR) is a time-consuming process. Here we describe an approach to circumvent the cloning and expression of a recombinant protein as well as screening for heavy atom derivatives. The selenomethionine-modified chemokine macrophage inflammatory protein-II (MIP-II) from human herpesvirus-8 has been produced by total chemical synthesis, crystallized, and characterized by NMR. The protein has a secondary structure typical of other chemokines and forms a monomer in solution. These results indicate that total chemical synthesis can be used to accelerate the determination of three-dimensional structures of new proteins identified in genome programs.

  6. Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon

    PubMed Central

    Jacinto-Loeza, Eva; Vivanco-Domínguez, Serafín; Guarneros, Gabriel; Hernández-Sánchez, Javier

    2008-01-01

    Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3–8 codon minigenes containing AGAAGA codons before the stop codon. β-Galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, β-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 μg/μl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of β-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNAArg4. These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA. PMID:18583364

  7. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.

    PubMed

    Wu, Peng; Zhao, Ting; Tian, Yunfei; Wu, Lan; Hou, Xiandeng

    2013-06-03

    Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle-protein hybrids with tailored functionality, water solubility, and tunable frameworks with well-defined structure. In this work, we report a protein-templated synthesis of Mn-doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn-doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual-channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn-doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn-doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM, respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual-channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA-lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn-doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Renal Liver-Type Fatty Acid Binding Protein (L-FABP) Attenuates Acute Kidney Injury in Aristolochic Acid Nephrotoxicity

    PubMed Central

    Matsui, Katsuomi; Kamijo-Ikemorif, Atsuko; Sugaya, Takeshi; Yasuda, Takashi; Kimura, Kenjiro

    2011-01-01

    Injection of aristolochic acid (AA) in mice causes AA-induced nephrotoxicity, in which oxidative stress contributes to development of tubulointerstitial damage (TID). Liver-type fatty acid binding protein (L-FABP) is expressed in human proximal tubules and has an endogenous antioxidative function. The renoprotection of renal L-FABP was examined in a model of AA-induced nephrotoxicity. Established human L-FABP (hL-FABP) transgenic (Tg) mice and wild-type (WT) mice were treated with AA for up to 5 days. Mice were sacrificed on days 1, 3, and 5 after the start of AA injection. Although mouse L-FABP was not expressed in proximal tubules of WT mice, hL-FABP was expressed in proximal tubules of Tg mice. The expression of renal hL-FABP was significantly increased in Tg mice administered AA (Tg-AA), compared with the control (saline-treated Tg mice). In WT-AA mice, there was high urinary excretion of Nε-(hexanoyl)-lysine, the production of heme oxygenase-1 and receptor for advanced glycation end products increased, and TID was provoked. In contrast, renal hL-FABP in Tg-AA mice suppressed production of Nε-(hexanoyl)lysine, heme oxygenase-1, and receptor for advanced glycation end products. Renal dysfunction was significantly milder in Tg-AA mice than in WT-AA mice. The degree of TID was significantly attenuated in Tg-AA mice, compared with WT-AA. In conclusion, renal hL-FABP reduced the oxidative stress in AA-induced nephrotoxicity and attenuated TID. PMID:21356355

  9. Myocardial Oxidative Metabolism and Protein Synthesis during Mechanical Circulatory Support by Extracorporeal Membrane Oxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine)more » and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.« less

  10. Uromodulin: a new biomarker of fetal renal function?

    PubMed

    Botelho, Thais Emanuelle Faria; Pereira, Alamanda Kfoury; Teixeira, Patrícia Gonçalves; Lage, Eura Martins; Osanan, Gabriel Costa; Silva, Ana Cristina Simões E

    2016-12-01

    Obstructive uropathies are main diseases affecting the fetus. Early diagnosis allows to establish the appropriate therapy to minimize the risk of damage to kidney function at birth. Biochemical markers have been used to predict the prognosis of renal function in fetuses. Uromodulin, also known by Tamm-Horsfall protein (THP) is exclusively produced in the kidneys and in normal conditions is the protein excreted in larger amounts in human urine. It plays important roles in kidneys and urinary tract. Also it participates in ion transport processes, interact with various components of the immune system and has a role in defense against urinary tract infections. Moreover, this protein was proved to be a good marker of renal function in adult patients with several renal diseases. To evaluate if uromodulin is produced and eliminated by the kidneys during fetal life by analyzing fetal urine and amniotic fluid and to establish correlation with biochemical parameter of renal function already used in Fetal Medicine Center at the Clinic Hospital of UFMG (CEMEFE/HC). Between 2013 and 2015, were selected 29 fetuses with indication of invasive tests for fetal diagnosis in monitoring at the CEMEFE/HC. The determination of uromodulin was possible and measurable in all samples and showed statistically significant correlation with the osmolarity. There was a tendency of lower levels of Uromodulin values in fetuses with severe renal impairment prenatally. Thus, high levels of this protein in fetal amniotic fluid or fetal urine dosages possibly mean kidney function preserved.

  11. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    PubMed

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  12. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovrinovic, Marina; Niemeyer, Christof M.

    2005-09-30

    We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter weremore » ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.« less

  13. Experimental studies related to the origin of the genetic code and the process of protein synthesis - A review

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.

    1983-01-01

    A survey is presented of the literature on the experimental evidence for the genetic code assignments and the chemical reactions involved in the process of protein synthesis. In view of the enormous number of theoretical models that have been advanced to explain the origin of the genetic code, attention is confined to experimental studies. Since genetic coding has significance only within the context of protein synthesis, it is believed that the problem of the origin of the code must be dealt with in terms of the origin of the process of protein synthesis. It is contended that the answers must lie in the nature of the molecules, amino acids and nucleotides, the affinities they might have for one another, and the effect that those affinities must have on the chemical reactions that are related to primitive protein synthesis. The survey establishes that for the bulk of amino acids, there is a direct and significant correlation between the hydrophobicity rank of the amino acids and the hydrophobicity rank of their anticodonic dinucleotides.

  14. Sepsis and development impede muscle protein synthesis in neonatal pigs by different ribosomal mechanisms

    USDA-ARS?s Scientific Manuscript database

    In muscle, sepsis reduces protein synthesis (MPS) by restraining translation in neonates and adults. Even though protein accretion decreases with development as neonatal MPS rapidly declines by maturation, the changes imposed by development on the sepsis-associated decrease in MPS have not been desc...

  15. Protein synthesis is defended in the mitochondrial fraction of gill but not heart in cunner (Tautogolabrus adspersus) exposed to acute hypoxia and hypothermia.

    PubMed

    Lewis, Johanne M; Driedzic, William R

    2010-02-01

    The cunner, Tautogolabrus adspersus, is a north-temperate teleost which relies upon metabolic depression to survive the extreme low water temperatures of its habitat during the winter. Previous study has demonstrated a decrease in protein synthesis accompanies the metabolic depression observed at the whole animal level during seasonal low temperature exposure. As such, the objective of the current study was to determine: (i) if the response of decreased protein synthesis is conserved across environmental stressors and (ii) if the response of metabolic depression is conserved across levels of cellular organization. This was accomplished through the measurement of in vivo protein synthesis rates in the whole tissue, cytosolic and mitochondrial protein pools (reflective of nuclear encoded proteins imported into mitochondria) of heart and gill in cunner exposed to either acute low temperature (8-4 degrees C) or acute hypoxia (10% O(2) saturation). In both heart and gill, rates of protein synthesis in the whole tissue and cytosolic protein pools were substantially depressed by 80% in response to acute hypothermia. In hypoxic heart, protein synthesis was significantly decreased by 50-60% in the whole tissue, cytosolic and mitochondrial pools; however, in gill there was no significant difference in rates of protein synthesis in any cellular fraction between normoxic and hypoxic groups. Most strikingly the rate of new protein accumulation in the mitochondrial fraction of gill did not change in response to either a decrease in temperature or hypoxia. The defense of protein synthesis in the gill is most likely associated with the importance of maintaining ionic regulation and the oxidative capacity in this front line organ for gas and ion exchange.

  16. Pyroglutamic acid stimulates DNA synthesis in rat primary hepatocytes through the mitogen-activated protein kinase pathway.

    PubMed

    Inoue, Shinjiro; Okita, Yoichi; de Toledo, Andreia; Miyazaki, Hiroyuki; Hirano, Eiichi; Morinaga, Tetsuo

    2015-01-01

    We purified pyroglutamic acid from human placental extract and identified it as a potent stimulator of rat primary hepatocyte DNA synthesis. Pyroglutamic acid dose-dependently stimulated DNA synthesis, and this effect was inhibited by PD98059, a dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) inhibitor. Therefore, pyroglutamic acid stimulated DNA synthesis in rat primary hepatocytes via MAPK signaling.

  17. Remission of proteinuria and preservation of renal function in patients with renal AA amyloidosis secondary to rheumatoid arthritis.

    PubMed

    Ueno, Toshiharu; Takeda, Kazuhito; Nagata, Michio

    2012-02-01

    Renal AA amyloidosis presents as a life-threatening disease in patients with rheumatoid arthritis (RA). Although several newly developed immunosuppressive drugs have been tried, patients often progress to end-stage renal failure with unsatisfactory survival rate. A total of nine consecutive cases of severe nephrotic renal AA amyloidosis presented to us. Complete remission of proteinuria was observed in four cases (responders), and the remaining five reached the end point of haemodialysis or death (non-responders); these groups were retrospectively compared. The patients were treated with immunosuppressants, biological drugs and anti-hypertensive drugs. Levels of serum creatinine (S-Cr), urinary protein-creatinine ratio (UP/UCr), blood pressure (BP) and C-reactive protein (CRP) were measured. Histological characteristics of renal amyloid deposition and extent of kidney injury were also scored. Prior to treatment, clinical data (S-Cr, UP/UCr, BP and CRP) and histological severity (glomerular sclerosis, tubulointerstitial injury and extent of amyloid deposition) observed in the renal biopsy specimen were not significantly different between the groups. Following therapeutic intervention, proteinuria disappeared (UP/UCr <0.3) in responders within 12 ± 5.4 months but persisted in non-responders. Consequently, renal function stabilized in responders, but it deteriorated in all non-responders. Strict inflammatory control along with optimal control of hypertension was achieved in responders during the treatment. Regardless of histological severity, intensive therapeutic intervention that includes strict inflammatory control and optimal control of hypertension may change the histology-predicted prognosis of RA-associated renal AA amyloidosis.

  18. Stimulation of skeletal muscle protein synthesis in neonatal pigs by long-term infusion of leucine is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 hr increases skeletal muscle protein synthesis in neonatal pigs, but this is not sustained for 2 h unless the leucine-induced fall in amino acids is prevented. We aimed to determine whether continuous leucine infusion can stimulate protein synthesis for a prolonged period whe...

  19. Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    PubMed Central

    Holm, Lars; Haslund, Mads Lyhne; Robach, Paul; van Hall, Gerrit; Calbet, Jose A. L.; Saltin, Bengt; Lundby, Carsten

    2010-01-01

    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure. PMID:21187972

  20. Measurement of protein synthesis: in vitro comparison of (68)Ga-DOTA-puromycin, [ (3)H]tyrosine, and 2-fluoro-[ (3)H]tyrosine.

    PubMed

    Eigner, Sebastian; Beckford Vera, Denis R; Fellner, Marco; Loktionova, Natalia S; Piel, Markus; Melichar, Frantisek; Rösch, Frank; Roß, Tobias L; Lebeda, Ondrej; Henke, Katerina Eigner

    2013-01-01

    Puromycin has played an important role in our understanding of the eukaryotic ribosome and protein synthesis. It has been known for more than 40 years that this antibiotic is a universal protein synthesis inhibitor that acts as a structural analog of an aminoacyl-transfer RNA (aa-tRNA) in eukaryotic ribosomes. Due to the role of enzymes and their synthesis in situations of need (DNA damage, e.g., after chemo- or radiation therapy), determination of protein synthesis is important for control of antitumor therapy, to enhance long-term survival of tumor patients, and to minimize side-effects of therapy. Multiple attempts to reach this goal have been made through the last decades, mostly using radiolabeled amino acids, with limited or unsatisfactory success. The aim of this study is to estimate the possibility of determining protein synthesis ratios by using (68)Ga-DOTA-puromycin ((68)Ga-DOTA-Pur), [(3)H]tyrosine, and 2-fluoro-[(3)H]tyrosine and to estimate the possibility of different pathways due to the fluorination of tyrosine. DOTA-puromycin was synthesized using a puromycin-tethered controlled-pore glass (CPG) support by the usual protocol for automated DNA and RNA synthesis following our design. (68)Ga was obtained from a (68)Ge/(68)Ga generator as described previously by Zhernosekov et al. (J Nucl Med 48:1741-1748, 2007). The purified eluate was used for labeling of DOTA-puromycin at 95°C for 20 min. [(3)H]Tyrosine and 2-fluoro-[(3)H]tyrosine of the highest purity available were purchased from Moravek (Bera, USA) or Amersham Biosciences (Hammersmith, UK). In vitro uptake and protein incorporation as well as in vitro inhibition experiments using cycloheximide to inhibit protein synthesis were carried out for all three substances in DU145 prostate carcinoma cells (ATCC, USA). (68)Ga-DOTA-Pur was additionally used for μPET imaging of Walker carcinomas and AT1 tumors in rats. Dynamic scans were performed for 45 min after IV application (tail vein) of 20-25 MBq (68

  1. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise

    PubMed Central

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette; Døssing, Simon; Crameri, Regina M; Welling, Rasmus J; Langberg, Henning; Flyvbjerg, Allan; Kjaer, Michael; Babraj, John A; Smith, Kenneth; Rennie, Michael J

    2005-01-01

    We hypothesized that an acute bout of strenuous, non-damaging exercise would increase rates of protein synthesis of collagen in tendon and skeletal muscle but these would be less than those of muscle myofibrillar and sarcoplasmic proteins. Two groups (n = 8 and 6) of healthy young men were studied over 72 h after 1 h of one-legged kicking exercise at 67% of maximum workload (Wmax). To label tissue proteins in muscle and tendon primed, constant infusions of [1-13C]leucine or [1-13C]valine and flooding doses of [15N] or [13C]proline were given intravenously, with estimation of labelling in target proteins by gas chromatography–mass spectrometry. Patellar tendon and quadriceps biopsies were taken in exercised and rested legs at 6, 24, 42 or 48 and 72 h after exercise. The fractional synthetic rates of all proteins were elevated at 6 h and rose rapidly to peak at 24 h post exercise (tendon collagen (0.077% h−1), muscle collagen (0.054% h−1), myofibrillar protein (0.121% h−1), and sarcoplasmic protein (0.134% h−1)). The rates decreased toward basal values by 72 h although rates of tendon collagen and myofibrillar protein synthesis remained elevated. There was no tissue damage of muscle visible on histological evaluation. Neither tissue microdialysate nor serum concentrations of IGF-I and IGF binding proteins (IGFBP-3 and IGFBP-4) or procollagen type I N-terminal propeptide changed from resting values. Thus, there is a rapid increase in collagen synthesis after strenuous exercise in human tendon and muscle. The similar time course of changes of protein synthetic rates in different cell types supports the idea of coordinated musculotendinous adaptation. PMID:16002437

  2. Epoxyeicosatrienoic Acids Prevent Cisplatin-Induced Renal Apoptosis through a p38 Mitogen-Activated Protein Kinase–Regulated Mitochondrial Pathway

    PubMed Central

    Liu, Yingmei; Lu, Xiaodan; Nguyen, Sinh; Olson, Jean L.; Webb, Heather K.

    2013-01-01

    Soluble epoxide hydrolase (sEH) catalyzes the conversion of epoxyeicosatrienoic acids into less active eicosanoids, and inhibitors of sEH have anti-inflammatory and antiapoptotic properties. Based on previous observations that sEH inhibition attenuates cisplatin-induced nephrotoxicity by modulating nuclear factor-κB signaling, we hypothesized that this strategy would also attenuate cisplatin-induced renal apoptosis. Inhibition of sEH with AR9273 [1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea)] reduced cisplatin-induced apoptosis through mechanisms involving mitochondrial apoptotic pathways and by reducing reactive oxygen species. Renal mitochondrial Bax induction following cisplatin treatment was significantly decreased by treatment of mice with AR9273 and these antiapoptotic effects involved p38 mitogen-activated protein kinase signaling. Similar mechanisms contributed to reduced apoptosis in Ephx2−/− mice treated with cisplatin. Moreover, in pig kidney proximal tubule cells, cisplatin-induced mitochondrial trafficking of Bax and cytochrome c, caspase-3 activation, and oxidative stress are significantly attenuated in the presence of epoxyeicosatrienoic acids (EETs). Collectively, these in vivo and in vitro studies demonstrate a role for EETs in limiting cisplatin-induced renal apoptosis. Inhibition of sEH represents a novel therapeutic strategy for protection against cisplatin-induced renal damage. PMID:24092818

  3. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin.

    PubMed

    Wilson, Fiona A; Orellana, Renán A; Suryawan, Agus; Nguyen, Hanh V; Jeyapalan, Asumthia S; Frank, Jason; Davis, Teresa A

    2008-07-01

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.

  4. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    ERIC Educational Resources Information Center

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  5. Growth hormone stimulates protein synthesis during hypocaloric parenteral nutrition. Role of hormonal-substrate environment.

    PubMed Central

    Manson, J M; Smith, R J; Wilmore, D W

    1988-01-01

    The influence of growth hormone (GH) on protein metabolism and fuel utilization was investigated in eight paired studies of normal volunteers. GH (10 mg) was given daily during one period, and saline was injected during control studies. For 6 days, subjects received parenteral nutrition that provided adequate dietary nitrogen, vitamin, and minerals, but energy intake varied to provide 30-100% of requirements. On Day 7, the feedings were discontinued and an oral glucose load (100 g) was administered. The level of energy intake did not markedly influence the actions of GH. During nutrient infusions, GH caused positive nitrogen balance (1.0 +/- 0.3 g/m2/day vs. -1.2 +/- 0.3 in controls, p less than 0.001) and increased protein synthesis (16.8 +/- 0.7 g N/m2/day vs. 13.9 +/- 0.8, p less than 0.01). No change in the rate of protein breakdown or excretion of 3-methylhistidine occurred. GH was associated with an increase in insulin and insulin-like growth factor-I concentrations (IGF-I, 9.1 +/- 0.6 IU/ml vs. 3.3 +/- 0.5, p less than 0.001). After discontinuation of the parenteral nutrition and administration of the oral glucose load, glucose concentrations tended to be higher after GH; however, despite a two- to threefold increase in insulin response, muscle glucose uptake was attenuated (1.10 +/- 0.19 g/kg forearm vs. 1.64 +/- 0.30 in controls, p less than 0.05). Compared with control conditions, GH appeared to attenuate the increase in amino acid nitrogen efflux from muscle after the administration of oral glucose. These data demonstrate that the protein anabolic effect of GH, which occurs even during hypocaloric feedings, is related to multiple mechanisms that favor protein synthesis. These include the increase in plasma concentrations of GH, insulin IGF-I and fat utilization. GH administration results in a hormonal-substrate environment that favors nitrogen retention and protein synthesis. GH may be beneficial in promoting protein synthesis in surgical patients

  6. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased renal fibrosis in a mouse model of obstructive nephropathy.

    PubMed

    Muñoz-Félix, José M; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-02-01

    Tubulointerstitial fibrosis is characterized by an accumulation of extracellular matrix in the renal interstitium, myofibroblast activation, cell infiltration, and tubular cell apoptosis, leading to chronic renal failure. Activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β1 type I receptor with a pivotal role in endothelial proliferation and migration, but its role in the development of renal fibrosis is unknown. To assess this we used the unilateral ureteral obstruction model of tubulointerstitial fibrosis in ALK1 haploinsufficient (ALK1(+/-)) and wild-type mice. After 15 days, there was an increase in extracellular matrix protein expression in the obstructed kidneys from both ALK1(+/+) and ALK1(+/-) mice, but obstructed kidneys from ALK1(+/-) mice showed significantly higher expression of type I collagen than those from wild-type mice. Ureteral obstruction increased kidney myofibroblasts markers (α-smooth muscle actin and S100A4), without differences between mouse genotypes. ALK1 expression was increased after ureteral obstruction, and this increased expression was located in myofibroblasts. Moreover, cultured renal fibroblasts from ALK1(+/-) mice expressed more collagen type I and fibronectin than fibroblasts derived from wild-type mice. Thus, ALK1 modulates obstruction-induced renal fibrosis by increased extracellular matrix synthesis in myofibroblasts, but without differences in myofibroblast number.

  7. Protein-energy wasting and nutritional supplementation in patients with end-stage renal disease on hemodialysis.

    PubMed

    Sabatino, A; Regolisti, G; Karupaiah, T; Sahathevan, S; Sadu Singh, B K; Khor, B H; Salhab, N; Karavetian, M; Cupisti, A; Fiaccadori, E

    2017-06-01

    Protein-Energy Wasting (PEW) is the depletion of protein/energy stores observed in the most advanced stages of Chronic Kidney Disease (CKD). PEW is highly prevalent among patients on chronic dialysis, and is associated with adverse clinical outcomes, high morbidity/mortality rates and increased healthcare costs. This narrative review was aimed at exploring the pathophysiology of PEW in end-stage renal disease (ESRD) on hemodialysis. The main aspects of nutritional status evaluation, intervention and monitoring in this clinical setting were described, as well as the current approaches for the prevention and treatment of ESRD-related PEW. An exhaustive literature search was performed, in order to identify the relevant studies describing the epidemiology, pathogenesis, nutritional intervention and outcome of PEW in ESRD on hemodialysis. The pathogenesis of PEW is multifactorial. Loss of appetite, reduced intake of nutrients and altered lean body mass anabolism/catabolism play a key role. Nutritional approach to PEW should be based on a careful and periodic assessment of nutritional status and on timely dietary counseling. When protein and energy intakes are reduced, nutritional supplementation by means of specific oral formulations administered during the hemodialysis session may be the first-step intervention, and represents a valid nutritional approach to PEW prevention and treatment since it is easy, effective and safe. Omega-3 fatty acids and fibers, now included in commercially available preparations for renal patients, could lend relevant added value to macronutrient supplementation. When oral supplementation fails, intradialytic parenteral nutrition can be implemented in selected patients. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15.

    PubMed

    Gao, Xiang; Huang, Lianghu; Grosjean, Fabrizio; Esposito, Vittoria; Wu, Jianxiang; Fu, Lili; Hu, Huimin; Tan, Jiangming; He, Cijian; Gray, Susan; Jain, Mukesh K; Zheng, Feng; Mei, Changlin

    2011-05-01

    Dietary protein restriction is an important treatment for chronic kidney disease. Herein, we tested the effect of low-protein or low-protein plus ketoacids (KA) diet in a remnant kidney model. Rats with a remnant kidney were randomized to receive normal protein diet (22%), low-protein (6%) diet (LPD), or low-protein (5%) plus KA (1%) diet for 6 months. Protein restriction prevented proteinuria, decreased blood urea nitrogen levels, and renal lesions; however, the LPD retarded growth and decreased serum albumin levels. Supplementation with KA corrected these abnormalities and provided superior renal protection compared with protein restriction alone. The levels of Kruppel-like factor-15 (KLF15), a transcription factor shown to reduce cardiac fibrosis, were decreased in remnant kidneys. Protein restriction, which increased KLF15 levels in the normal kidney, partially recovered the levels of KLF15 in remnant kidney. The expression of KLF15 in mesangial cells was repressed by oxidative stress, transforming growth factor-β, and tumor necrosis factor (TNF)-α. The suppressive effect of TNF-α on KLF15 expression was mediated by TNF receptor-1 and nuclear factor-κB. Overexpression of KLF15 in mesangial and HEK293 cells significantly decreased fibronectin and type IV collagen mRNA levels. Furthermore, KLF15 knockout mice developed glomerulosclerosis following uninephrectomy. Thus, KLF15 may be an antifibrotic factor in the kidney, and its decreased expression may contribute to the progression of kidney disease.

  9. Gene Expression During the Development of Bacteriophage φ29 III. Analysis of Viral-Specific Protein Synthesis with Suppressible Mutants

    PubMed Central

    McGuire, Jeffrey C.; Pène, Jacques J.; Barrow-Carraway, Joyce

    1974-01-01

    Fifty-four suppressible mutants of bacteriophage φ29 have been isolated with a variety of mutagens and assigned to eight complementation groups. Viral-specific protein synthesis in UV light-irradiated, nonsuppressing Bacillus subtilis 60084 was analyzed with exponential acrylamide gels. Four additional φ29 proteins which were undetected on ordinary acrylamide gels are reported in this paper. Five phage φ29 proteins have been unambiguously assigned to specific cistrons. Two cistrons had pleiotropic effects on viral protein synthesis. Mutants in cistrons I or II were unable to synthesize DNA in nonsuppressing bacteria. Mutants in cistron I were unable to attach viral chromosomes to the host cell membrane, and the protein responsible for this function has been identified. The other viral protein playing a role in phage φ29 DNA synthesis is also identified and assigned to cistron II. Mutants in cistron II can attach viral chromosomes to membrane, but cannot synthesize DNA in nonsuppressing bacteria. Images PMID:4362871

  10. Evolution of Protein Synthesis from an RNA World

    PubMed Central

    Noller, Harry F.

    2012-01-01

    SUMMARY Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric “duplicator RNAs,” resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template. PMID:20610545

  11. Protein synthesis is essential not only for consolidation but also for maintenance and post-retrieval reconsolidation of acrobatic motor skill in rats.

    PubMed

    Peng, Ji-Yun; Li, Bao-Ming

    2009-05-28

    It has been reported that consolidation of motor skill, a type of non-declarative memories, requires protein synthesis, as hippocampus-dependent declarative memory does. However, little is known about the importance of protein synthesis in maintenance and especially post-retrieval reconsolidation of acrobatic motor skill. Here, we show that protein synthesis is essential not only for the consolidation but also for the maintenance and reconsolidation of a rotarod-running skill. Intra-ventricle infusion of the protein synthesis inhibitor anisomycin 0 h but not 2 h post-training caused a severe deficit in the acquisition of the rotarod-running skill. Protein synthesis inhibition (PSI) also caused a deficit in the maintenance of the rotarod-running skill, as well-trained rats demonstrated a deficit in the rotarod-running performance upon treatment with anisomycin. Similarly, PSI impaired the post-retrieval reconsolidation of the rotarod-running skill: well-trained rats treated with anisomycin 0 h but not 0.5, 2 and 4 h after the task performance exhibited amnesia for the running skill later on. Interestingly, rats treated with anisomycin 6 and 12 h post-retrieval exhibited amnesia for the running skill. Thus, protein synthesis is essential not only for the consolidation but also for the maintenance and post-retrieval reconsolidation of rotarod-running acrobatic motor skill.

  12. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  13. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, T.P.; Miceli, M.; Silverman, J.A.

    1985-06-01

    Synthesis of protein by the obligate intracellular parasitic bacteria Chlamydia psittaci (6BC) and Chlamydia trachomatis (serovar L2) isolated from host cells (host-free chlamydiae) was demonstrated for the first time. Incorporation of (/sup 35/S)methionine and (/sup 35/S)cysteine into trichloroacetic acid-precipitable material by reticulate bodies of chlamydiae persisted for 2 h and was dependent upon a exogenous source of ATP, an ATP-regenerating system, and potassium or sodium ions. Magnesium ions and amino acids stimulated synthesis; chloramphenicol, rifampin, oligomycin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (a proton ionophore) inhibited incorporation. Ribonucleoside triphosphates (other than ATP) had little stimulatory effect. The optimum pH for host-free synthesismore » was between 7.0 and 7.5. The molecular weights of proteins synthesized by host-free reticulate bodies closely resembled the molecular weights of proteins synthesized by reticulate bodies in an intracellular environment, and included outer membrane proteins. Elementary bodies of chlamydiae were unable to synthesize protein even when incubated in the presence of 10 mM dithiothreitol, a reducing agent which converted the highly disulfide bond cross-linked major outer membrane protein to monomeric form.« less

  14. Elevated serum concentration of cardiotoxic lipid peroxidation products in chronic renal failure in relation to severity of renal anemia.

    PubMed

    Siems, W; Carluccio, F; Grune, T; Jakstadt, M; Quast, S; Hampl, H; Sommerburg, O

    2002-07-01

    Patients with end-stage renal disease undergoing hemodialysis (HD) are exposed to oxidative stress. Increased levels of malondialdehyde (MDA) and 4-hydroxylnonenal (HNE) were found in plasma of uremic patients indicating accelerated lipid peroxidation (LPO) as a consequence of multiple pathogenetic factors. The catabolism and action of those products was already intensively studied. As highly reactive metabolites they are able to bind to proteins, nucleic acids, and other molecules. Doing so, they exert molecular signal effects in cells and are able to exacerbate tissue and organ damage, e.g. cardiotoxic effects. Since renal anemia was shown to promote oxidative stress as well, the aim of our investigation was to examine its role in HD patients. Therefore, two groups of HD patients were investigated (group I Hb < 10 g/dl, group II Hb > 10 g/dl) and serum concentrations of MDA, HNE, and of protein carbonyls, a marker for protein oxidation, were determined. All HD patients had significantly higher levels of the LPO products MDA and HNE compared with controls. However, group I patients showed higher MDA and HNE concentrations compared to group II patients. The same result could be seen for protein carbonyls. During HD concentration of both LPO products decreased. However, this was not the case for protein carbonyls. These results lead to the conclusion that optimized correction of the renal anemia may result in a significant reduction of oxidative stress and therefore in the reduction of organ tissue damage. In this way correction of renal anemia will reduce the cardiovascular risk and comorbidity of HD patients improving their prognosis.

  15. Salutary effect of Aurintricarboxylic acid (ATA) on endotoxin- and sepsis-induced changes in muscle protein synthesis and inflammation

    PubMed Central

    Laufenberg, Lacee; Kazi, Abid A.; Lang, Charles H.

    2014-01-01

    Small molecule nonpeptidyl molecules are potentially attractive drug candidates as adjunct therapies in the treatment of sepsis-induced metabolic complications. As such, the current study investigates the use of aurintricarboxylic acid (ATA), which stimulates insulin-like growth factor (IGF)-I receptor and AKT signaling, for its ability to ameliorate the protein metabolic effects of endotoxin (LPS) + interferon (IFN)γ in C2C12 myotubes and sepsis in skeletal muscle. ATA dose- and time-dependently increases mTOR-dependent protein synthesis. Pretreatment with ATA prevents the LPS/IFNγ-induced decrease in protein synthesis at least in part by maintaining mTOR kinase activity, while post-treatment with ATA is able to increase protein synthesis when added up to 6 h after LPS/IFNγ. ATA also reverses the amino acid resistance which is detected in response to nutrient deprivation. Conversely, ATA decreases the basal rate of protein degradation and prevents the LPS/IFNγ-increase in proteolysis, and the latter change is associated reduced atrogin-1 and MuRF1 mRNA. The ability of ATA to antagonize LPS/IFNγ-induced changes in protein metabolism were associated with its ability to prevent the increases in IL-6 and NOS2 and decreases in IGF-I. In vivo studies indicate ATA acutely increases skeletal muscle, but not cardiac, protein synthesis, and attenuates the loss of lean body mass over 5 days. These data suggest ATA and other small molecule agonists of endogenous anabolic hormones may prove beneficial in treating sepsis by decreasing the inflammatory response and improving muscle protein balance. PMID:24430547

  16. Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    NASA Astrophysics Data System (ADS)

    Zia, R. K. P.; Dong, J. J.; Schmittmann, B.

    2011-07-01

    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.

  17. Both basal and post-prandial muscle protein synthesis rates, following the ingestion of a leucine-enriched whey protein supplement, are not impaired in sarcopenic older males.

    PubMed

    Kramer, Irene Fleur; Verdijk, Lex B; Hamer, Henrike M; Verlaan, Sjors; Luiking, Yvette C; Kouw, Imre W K; Senden, Joan M; van Kranenburg, Janneau; Gijsen, Annemarie P; Bierau, Jörgen; Poeze, Martijn; van Loon, Luc J C

    2017-10-01

    Studying the muscle protein synthetic response to food intake in elderly is important, as it aids the development of interventions to combat sarcopenia. Although sarcopenic elderly are the target group for many of these nutritional interventions, no studies have assessed basal or post-prandial muscle protein synthesis rates in this population. To assess the basal and post-prandial muscle protein synthesis rates between healthy and sarcopenic older men. A total of 15 healthy (69 ± 1 y) and 15 sarcopenic (81 ± 1 y) older men ingested a leucine-enriched whey protein nutritional supplement containing 21 g of protein, 9 g of carbohydrate, and 3 g of fat. Stable isotope methodology combined with frequent collection of blood and muscle samples was applied to assess basal and post-prandial muscle protein fractional synthetic rates. Handgrip strength, muscle mass, and gait speed were assessed to identify sarcopenia, according to international criteria. Basal mixed muscle protein fractional synthetic rates (FSR) averaged 0.040 ± 0.005 and 0.032 ± 0.003%/h (mean ± SEM) in the sarcopenic and healthy group, respectively (P = 0.14). Following protein ingestion, FSR increased significantly to 0.055 ± 0.004 and 0.053 ± 0.004%/h in the post-prandial period in the sarcopenic (P = 0.003) and healthy groups (P < 0.001), respectively, with no differences between groups (P = 0.45). Furthermore, no differences were observed between groups in muscle protein synthesis rates during the early (0.058 ± 0.007 vs 0.060 ± 0.008%/h, sarcopenic vs healthy, respectively) and late (0.052 ± 0.004 vs 0.048 ± 0.003%/h) stages of the post-prandial period (P = 0.93 and P = 0.34, respectively). Basal muscle protein synthesis rates are not lower in sarcopenic older men compared to healthy older men. The ingestion of 21 g of a leucine-enriched whey protein effectively increases muscle protein synthesis rates in both sarcopenic and healthy older men. Public

  18. Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles.

    PubMed

    Peng, Tao; Paramelle, David; Sana, Barindra; Lee, Chiu Fan; Lim, Sierin

    2014-08-13

    In biomineralization processes, a supramolecular organic structure is often used as a template for inorganic nanomaterial synthesis. The E2 protein cage derived from Geobacillus stearothermophilus pyruvate dehydrogenase and formed by the self-assembly of 60 subunits, has been functionalized with non-native iron-mineralization capability by incorporating two types of iron-binding peptides. The non-native peptides introduced at the interior surface do not affect the self-assembly of E2 protein subunits. In contrast to the wild-type, the engineered E2 protein cages can serve as size- and shape-constrained reactors for the synthesis of iron nanoparticles. Electrostatic interactions between anionic amino acids and cationic iron molecules drive the formation of iron oxide nanoparticles within the engineered E2 protein cages. The work expands the investigations on nanomaterial biosynthesis using engineered host-guest encapsulation properties of protein cages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M.; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H.; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-01-01

    Aims Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein–protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. Methods and results We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. Conclusions This study

  20. A Simple Protein Synthesis Model for the PURE System Operation.

    PubMed

    Mavelli, Fabio; Marangoni, Roberto; Stano, Pasquale

    2015-06-01

    The encapsulation of transcription-translation (TX-TL) cell-free machinery inside lipid vesicles (liposomes) is a key element in synthetic cell technology. The PURE system is a TX-TL kit composed of well-characterized parts, whose concentrations are fine tunable, which works according to a modular architecture. For these reasons, the PURE system perfectly fulfils the requirements of synthetic biology and is widely used for constructing synthetic cells. In this work, we present a simplified mathematical model to simulate the PURE system operations. Based on Michaelis-Menten kinetics and differential equations, the model describes protein synthesis dynamics by using 9 chemical species, 6 reactions and 16 kinetic parameters. The model correctly predicts the time course for messenger RNA and protein production and allows quantitative predictions. By means of this model, it is possible to foresee how the PURE system species affect the mechanism of proteins synthesis and therefore help in understanding scenarios where the concentration of the PURE system components has been modified purposely or as a result of stochastic fluctuations (for example after random encapsulation inside vesicles). The model also makes the determination of response coefficients for all species involved in the TX-TL mechanism possible and allows for scrutiny on how chemical energy is consumed by the three PURE system modules (transcription, translation and aminoacylation).

  1. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    PubMed

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids.

    PubMed

    Dickinson, Jared M; Fry, Christopher S; Drummond, Micah J; Gundermann, David M; Walker, Dillon K; Glynn, Erin L; Timmerman, Kyle L; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B

    2011-05-01

    The relationship between mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis during instances of amino acid surplus in humans is based solely on correlational data. Therefore, the goal of this study was to use a mechanistic approach specifically designed to determine whether increased mTORC1 activation is requisite for the stimulation of muscle protein synthesis following L-essential amino acid (EAA) ingestion in humans. Examination of muscle protein synthesis and signaling were performed on vastus lateralis muscle biopsies obtained from 8 young (25 ± 2 y) individuals who were studied prior to and following ingestion of 10 g of EAA during 2 separate trials in a randomized, counterbalanced design. The trials were identical except during 1 trial, participants were administered a single oral dose of a potent mTORC1 inhibitor (rapamycin) prior to EAA ingestion. In response to EAA ingestion, an ~60% increase in muscle protein synthesis was observed during the control trial, concomitant with increased phosphorylation of mTOR (Ser(2448)), ribosomal S6 kinase 1 (Thr(389)), and eukaryotic initiation factor 4E binding protein 1 (Thr(37/46)). In contrast, prior administration of rapamycin completely blocked the increase in muscle protein synthesis and blocked or attenuated activation of mTORC1-signaling proteins. The inhibition of muscle protein synthesis and signaling was not due to differences in either extracellular or intracellular amino acid availability, because these variables were similar between trials. These data support a fundamental role for mTORC1 activation as a key regulator of human muscle protein synthesis in response to increased EAA availability. This information will be useful in the development of evidence-based nutritional therapies targeting mTORC1 to counteract muscle wasting associated with numerous clinical conditions.

  3. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  4. The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults.

    PubMed

    Kim, Il-Young; Schutzler, Scott; Schrader, Amy; Spencer, Horace J; Azhar, Gohar; Ferrando, Arny A; Wolfe, Robert R

    2016-01-01

    We have determined whole body protein kinetics, i.e., protein synthesis (PS), breakdown (PB), and net balance (NB) in human subjects in the fasted state and following ingestion of ~40 g [moderate protein (MP)], which has been reported to maximize the protein synthetic response or ~70 g [higher protein (HP)] protein, more representative of the amount of protein in the dinner of an average American diet. Twenty-three healthy young adults who had performed prior resistance exercise (X-MP or X-HP) or time-matched resting (R-MP or R-HP) were studied during a primed continuous infusion of l-[(2)H5]phenylalanine and l-[(2)H2]tyrosine. Subjects were randomly assigned into an exercise (X, n = 12) or resting (R, n = 11) group, and each group was studied at the two levels of dietary protein intake in random order. PS, PB, and NB were expressed as increases above the basal, fasting values (mg·kg lean body mass(-1)·min(-1)). Exercise did not significantly affect protein kinetics and blood chemistry. Feeding resulted in positive NB at both levels of protein intake: NB was greater in response to the meal containing HP vs. MP (P < 0.00001). The greater NB with HP was achieved primarily through a greater reduction in PB and to a lesser extent stimulation of protein synthesis (for all, P < 0.0001). HP resulted in greater plasma essential amino acid responses (P < 0.01) vs. MP, with no differences in insulin and glucose responses. In conclusion, whole body net protein balance improves with greater protein intake above that previously suggested to maximally stimulating muscle protein synthesis because of a simultaneous reduction in protein breakdown. Copyright © 2016 the American Physiological Society.

  5. Endoglin regulates renal ischaemia-reperfusion injury.

    PubMed

    Docherty, Neil G; López-Novoa, José M; Arevalo, Miguel; Düwel, Annette; Rodriguez-Peña, Ana; Pérez-Barriocanal, Fernando; Bernabeu, Carmelo; Eleno, Nélida

    2006-08-01

    Renal ischaemia-reperfusion (I-R) can cause acute tubular necrosis and chronic renal deterioration. Endoglin, an accessory receptor for Transforming Growth Factor-beta1 (TGF-beta1), is expressed on activated endothelium during macrophage maturation and implicated in the control of fibrosis, angiogenesis and inflammation. Endoglin expression was monitored over 14 days after renal I-R in rats. As endoglin-null mice are not viable, the role of endoglin in I-R was studied by comparing renal I-R injury in haploinsufficient mice (Eng(+/-)) and their wild-type littermates (Eng(+/+)). Renal function, morphology and molecular markers of acute renal injury and inflammation were compared. Endoglin mRNA up-regulation in the post-ischaemic kidneys of rats occurred at 12 h after I-R; endoglin protein levels were elevated throughout the study period. Expression was initially localized to the vascular endothelium, then extended to fibrotic and inflamed areas of the interstitium. Two days after I-R, plasma creatinine elevation and acute tubular necrosis were less marked in Eng(+/-) than in Eng(+/+) mice. Significant up-regulation of endoglin protein was found only in the post-ischaemic kidneys of Eng(+/+) mice and coincided with an increased mRNA expression of the TGF-beta1 and collagen IV (alpha1) chain genes. Significant increases in vascular cell adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase (iNOS) expression, nitrosative stress, myeloperoxidase activity and CD68 staining for macrophages were evident in post-ischaemic kidneys of Eng(+/+), but not Eng(+/-) mice, suggesting that impaired endothelial activation and macrophage maturation may account for the reduced injury in post-ischaemic kidneys of Eng(+/-) mice. Endoglin is up-regulated in the post-ischaemic kidney and endoglin-haploinsufficient mice are protected from renal I-R injury. Endoglin may play a primary role in promoting inflammatory responses following renal I-R.

  6. Immune and Inflammatory Role in Renal Disease

    PubMed Central

    Ryan, Michael J.

    2013-01-01

    Chronic and acute renal diseases, irrespective of the initiating cause, have inflammation and immune system activation as a common underlying mechanism. The purpose of this review is to provide a broad overview of immune cells and inflammatory proteins that contribute to the pathogenesis of renal disease, and to discuss some of the physiological changes that occur in the kidney as a result of immune system activation. An overview of common forms of acute and chronic renal disease is provided, followed by a discussion of common therapies that have antiinflammatory or immunosuppressive effects in the treatment of renal disease. PMID:23720336

  7. Boldine prevents renal alterations in diabetic rats.

    PubMed

    Hernández-Salinas, Romina; Vielma, Alejandra Z; Arismendi, Marlene N; Boric, Mauricio P; Sáez, Juan C; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.

  8. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.

    1980-01-01

    Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.

  9. Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR.

    PubMed

    Zhou, Xiaoyan; Frohlich, Edward D

    2007-01-01

    Hypertension plays major causative roles in development of cardiac failure and end-stage renal disease (ESRD). Cardiac and renal involvements in hypertension and relevant pharmacological interventions have been extensively studied in our laboratories. Our findings demonstrated that aged spontaneous hypertensive rats (SHR) developed reduced coronary flow reserve, increased coronary vascular resistance and cardiac fibrosis, and impaired cardiac function. Moreover, aged SHR naturally developed glomerular hypertension and ischemia, proteinuria, and glomerular sclerosis and interstitial fibrosis. These naturally-occurring cardiac and renal involvements in aged SHR are very similar to these target organ changes in essential hypertension. Furthermore, we have been able to reproduce similar derangements in younger adult SHR by nitric oxide synthesis inhibition. These changes are identical to the pathophysiological alterations in heart and kidney found in old SHR as well as clinically. Antihypertensive therapeutic interventions provided cardiac and renal protection and, perhaps even prevention in the aged SHR and younger adult SHR with suppressed nitric oxide synthesis. Recent clinical trails have translated these pathophysiological observations demonstrating that angiotensin II inhibition affords remarkable cardiac and renal benefits to patients with essential hypertension. Thus, both the aged SHR as well as younger adult SHR with suppressed nitric oxide synthesis very closely mimic the cardiac and renal outcomes seen in patients with essential hypertension. They accordingly have become extremely useful experimental models of hypertensive heart disease and ESRD seen with severe nephrosclerosis. The latter hypertensive rat model with induced endothelial dysfunction is recommended enthusiastically for its foregoing as well as time-saving and economic values.

  10. Detection of adenovirus type 2-induced early polypeptides using cycloheximide pretreatment to enhance viral protein synthesis.

    PubMed Central

    Harter, M L; Shanmugam, G; Wold, W S; Green, M

    1976-01-01

    (35S) methionine-labeled polypeptides synthesized by adenovirus type 2-infected cells have been analyzed by polyacrylamide gradient gel electrophoresis and autoradiography. Cycloheximide (CH) was added to infected cultures to accumulate early viral mRNA relative to host cell mRNA. This allowed viral proteins to be synthesized in increased amounts relative to host proteins after removal of CH and pulse-labeling with (35S)methionine. During the labeling period arabinosyl cytosine was added to prevent the synthesis of late viral proteins. This procedure facilitated the detection of six early viral-induced polypeptides, designated EP1 through EP6 (early protein), with apparent molecular weights of 75,000 (75K), 42K, 21K, 18K, 15K, and 11K. Supportive data were obtained by coelectrophoresis of (35S)- and (3H)methionine-labeled polypeptides from infected and uninfected cells, respectively. Three of these early polypeptides have not been previously reported. CH pretreatment enhanced the rates of synthesis of EP4 and EP6 20- to 30-fold and enhanced that of the others approximately twofold. The maximal rates of synthesis of the virus-induced proteins varied, in a different manner, with time postinfection and CH pretreatment. Since CH pretreatment appears to increase the levels of early viral proteins, it may be a useful procedure to assist their isolation and functional characterization. Images PMID:950686

  11. Novel protective mechanism of reducing renal cell damage in diabetes: Activation AMPK by AICAR increased NRF2/OGG1 proteins and reduced oxidative DNA damage

    PubMed Central

    Habib, Samy L.; Yadav, Anamika; Kidane, Dawit; Weiss, Robert H.; Liang, Sitai

    2016-01-01

    ABSTRACT Exposure of renal cells to high glucose (HG) during diabetes has been recently proposed to be involved in renal injury. In the present study, we investigated a potential mechanism by which AICAR treatment regulates the DNA repair enzyme, 8-oxoG-DNA glycosylase (OGG1) in renal proximal tubular mouse cells exposed to HG and in kidney of db/db mice. Cells treated with HG for 2 days show inhibition in OGG1 promoter activity as well as OGG1 and Nrf2 protein expression. In addition, activation of AMPK by AICAR resulted in an increase raptor phosphorylation at Ser792 and leads to increase the promoter activity of OGG1 through upregulation of Nrf2. Downregulation of AMPK by DN-AMPK and raptor and Nrf2 by siRNA resulted in significant decease in promoter activity and protein expression of OGG1. On the other hand, downregulation of Akt by DN-Akt and rictor by siRNA resulted in significant increase in promoter activity and protein expression of Nrf2 and OGG1. Moreover, gel shift analysis shows reduction of Nrf2 binding to OGG1 promoter in cells treated with HG while cells treated with AICAR reversed the effect of HG. Furthermore, db/db mice treated with AICAR show significant increased in AMPK and raptor phosphroylation as well as OGG1 and Nrf2 protein expression that associated with significant decrease in oxidative DNA damage (8-oxodG) compared to non-treated mice. In summary, our data provide a novel protective mechanism by which AICAR prevents renal cell damage in diabetes and the consequence complications of hyperglycemia with a specific focus on nephropathy. PMID:27611085

  12. RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice

    PubMed Central

    Khaibullina, Alfia; Adjei, Elena A.; Afangbedji, Nowah; Ivanov, Andrey; Kumari, Namita; Almeida, Luis E.F.; Quezado, Zenaide M.N.; Nekhai, Sergei; Jerebtsova, Marina

    2018-01-01

    Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease. PMID:29519868

  13. Angiotensin II activates collagen type I gene in the renal vasculature of transgenic mice during inhibition of nitric oxide synthesis: evidence for an endothelin-mediated mechanism.

    PubMed

    Boffa, J J; Tharaux, P L; Placier, S; Ardaillou, R; Dussaule, J C; Chatziantoniou, C

    1999-11-02

    Hypertension is frequently associated with renal vascular fibrosis. The purpose of this study was to investigate whether angiotensin II (Ang II) is involved in this fibrogenic process. Experiments were performed on transgenic mice harboring the luciferase gene under the control of the collagen I-alpha(2) chain promoter [procolalpha(2)(I)]. Hypertension was induced by chronic inhibition of NO synthesis (N(G)-nitro-L-arginine methyl ester, L-NAME). Procolalpha(2)(I) activity started to increase in the renal vasculature after 4 weeks of L-NAME treatment (P<0.01) and at 14 weeks reached 3- and 8-fold increases over control in afferent arterioles and glomeruli, respectively (P<0.001). Losartan, an AT(1) receptor antagonist, given simultaneously with L-NAME prevented the increase of procolalpha(2)(I) levels and attenuated the development of renal vascular fibrosis without normalizing systolic pressure increase. Because we found previously that endothelin mediated renal vascular fibrosis in the L-NAME model, the interaction between Ang II, endothelin, and procolalpha(2)(I) was investigated in ex vivo and short-term in vivo experiments. In both conditions, the Ang II-induced activation of procolalpha(2)(I) in renal cortex was blocked by an endothelin receptor antagonist. During chronic inhibition of NO, the collagen I gene becomes activated, leading to the development of renal vascular fibrosis. Ang II is a major player in this fibrogenic process, and its effect on collagen I gene is independent of systemic hemodynamics and is at least partly mediated by the profibrogenic action of endothelin.

  14. Effects of Pharmacological Interventions on Muscle Protein Synthesis and Breakdown in Recovery from Burns

    PubMed Central

    Diaz, Eva C.; Herndon, David N.; Porter, Craig; Sidossis, Labros S.; Suman, Oscar E.; Børsheim, Elisabet

    2014-01-01

    Objective The pathophysiological response to burn injury disturbs the balance between skeletal muscle protein synthesis and breakdown, resulting in severe muscle wasting. Muscle loss after burn injury is related to increased mortality and morbidity. Consequently, mitigation of this catabolic response has become a focus in the management of these patients. The aim of this review is to discuss the literature pertaining to pharmacological interventions aimed at attenuating skeletal muscle catabolism in severely burned patients. Data selection Review of the literature related to skeletal muscle protein metabolism following burn injury was conducted. Emphasis was on studies utilizing stable isotope tracer kinetics to assess the impact of pharmacological interventions on muscle protein metabolism in severely burned patients. Conclusion Data support the efficacy of testosterone, oxandrolone, human recombinant growth hormone, insulin, metformin, and propranolol in improving skeletal muscle protein net balance in patients with severe burns. The mechanisms underlying the improvement of protein net balance differ between types and dosages of drugs, but their main effect is on protein synthesis. Finally, the majority of studies have been conducted during the acute hypermetabolic phase of the injury. Except for oxandrolone, the effects of drugs on muscle protein kinetics following discharge from the hospital are largely unknown. PMID:25468473

  15. Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress.

    PubMed

    Woods, M L; Bonfiglioli, R; McGee, Z A; Georgopoulos, C

    1990-03-01

    We report the thermal conditions that induce the heat shock response in Neisseria gonorrhoeae. Under conditions of thermal stress, Neisseria gonorrhoeae synthesizes heat shock proteins (hsps), which differ quantitatively from conventionally studied gonococcal proteins. Gonococci accelerate the rate of synthesis of the hsps as early as 5 min after the appropriate stimulus is applied, with synthesis continuing for 30 min, as demonstrated by in vivo labeling experiments with L-[35S]methionine. Two of the gonococcal hsps are immunologically cross-reactive with the hsps of Escherichia coli, DnaK and GroEL, as demonstrated by Western blot (immunoblot) analysis. Ten hsps can be identified on two-dimensional autoradiograms of whole gonococci (total protein). Four hsps can be identified on two-dimensional autoradiograms of 1% N-lauroylsarcosine (sodium salt) (Sarkosyl)-insoluble membrane fractions. Two of the hsps from the 1% Sarkosyl-insoluble fraction are found exclusively in this fraction, suggesting that they are membrane proteins. The identification of this group of proteins will facilitate further study of the function of these proteins and provide insight into the possible role of hsps in disease pathogenesis.

  16. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    PubMed

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  17. Sulfur partitioning between glutathione and protein synthesis determines plant growth.

    PubMed

    Speiser, Anna; Silbermann, Marleen; Dong, Yihan; Haberland, Stefan; Uslu, Veli Vural; Wang, Shanshan; Bangash, Sajid A K; Reichelt, Michael; Meyer, Andreas J; Wirtz, Markus; Hell, Ruediger

    2018-05-11

    Photoautotrophic organisms must efficiently allocate their resources between stress-response pathways and growth-promoting pathways to be successful in a constantly changing environment. In this study, we addressed the coordination of sulfur flux between biosynthesis of the reactive oxygen species scavenger glutathione (GSH) and protein translation as one example of a central resource allocation switch. We crossed the Arabidopsis (Arabidopsis thaliana) GSH synthesis depleted cadmium-sensitive cad2-1 mutant, which lacks glutamate Cys ligase, into the sulfite reductase (SiR) sir1-1 mutant, which suffers from a significantly decreased flux of sulfur into cysteine and is consequently retarded in growth. Surprisingly, depletion of GSH synthesis promoted the growth of the sir1-1 cad2-1 double mutant (s1c2) when compared to sir1-1. Determination of GSH levels and in vivo live-cell imaging of the reduction-oxidation sensitive green fluorescent protein (roGFP2)-sensor demonstrated significant oxidation of the plastidic GSH redox-potential in cad2-1 and s1c2. This oxidized GSH redox-potential aligned with significant activation of plastid-localized sulfate reduction and a significantly higher flux of sulfur into proteins. The specific activation of the serine/threonine sensor kinase Target Of Rapamycin (TOR) in cad2-1 and s1c2 was the trigger for reallocation of cysteine from GSH biosynthesis into protein translation. Activation of TOR in s1c2 enhanced ribosome abundance and partially rescued the decreased meristematic activity observed in sir1-1 mutants. Therefore, we found that the coordination of sulfur flux between glutathione biosynthesis and protein translation determines growth via regulation of TOR. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  18. Prevention of renal scarring from pyelonephritis in nonhuman primates by vaccination with a synthetic Escherichia coli serotype O8 oligosaccharide-protein conjugate.

    PubMed Central

    Roberts, J A; Kaack, M B; Baskin, G; Svenson, S B

    1993-01-01

    Rhesus monkeys were vaccinated with a synthetic Escherichia coli serotype O8 oligosaccharide-protein conjugate. Using our experimental pyelonephritis monkey model, we tested whether such immunization was protective against the renal damage from inflammation following experimental infection with a P-fimbriated O-antigenically homologous E. coli strain. The vaccination did not significantly alter the duration of bacteriuria or interfere with the infection. However, the vaccine was efficient in renal protection, as vaccinated animals showed significantly less intratubular infiltration of neutrophils (P < 0.02) and the degree of renal scarring was also significantly less in these animals (P > 0.005) than in the control animals. Total kidney involvement in the vaccinated animals was 16.9%, compared with 32.5% in the control animals (P = 0.07). PMID:8225595

  19. Osthole ameliorates renal ischemia-reperfusion injury by inhibiting inflammatory response.

    PubMed

    Zheng, Yi; Lu, Min; Ma, Lulin; Zhang, Shudong; Qiu, Min; Ma, Xin

    2013-01-01

    Renal ischemia-reperfusion (I/R) injury is a primary cause of acute renal failure that results in high mortality. This study aimed to investigate the effect of osthole, a natural coumarin derivative, on renal I/R injury in a rat model. Rats were randomly allocated to the sham operation + vehicle, I/R + vehicle, and I/R + osthole groups. Renal I/R injury was induced by clamping the left renal artery for 45 min followed by 12 h of reperfusion and a contralateral nephrectomy. Osthole (40 mg/kg) was intraperitoneally injected 30 min before inducing I/R. Renal function and histological damage were determined subsequently. Myeloperoxidase activity, monocyte/macrophage infiltration, as well as tumor necrosis factor-α, IL-1β, and activated p38 mitogen-activated protein kinase expression in kidneys were also assessed. Osthole treatment significantly ameliorated I/R-induced renal functional and morphological injuries. Moreover, osthole treatment attenuated myeloperoxidase activity, monocyte/macrophage infiltration, and tumor necrosis factor-α, IL-1β, and activated p38 mitogen-activated protein kinase expression in kidneys. Osthole treatment ameliorates renal I/R injury by inhibiting inflammatory responses in kidneys. Thus, osthole may represent a novel practical strategy to prevent renal I/R injury. Copyright © 2013 S. Karger AG, Basel.

  20. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation

    PubMed Central

    Matsuda, Morihiro; Korn, Bobby S.; Hammer, Robert E.; Moon, Young-Ah; Komuro, Ryutaro; Horton, Jay D.; Goldstein, Joseph L.; Brown, Michael S.; Shimomura, Iichiro

    2001-01-01

    In liver, the synthesis of cholesterol and fatty acids increases in response to cholesterol deprivation and insulin elevation, respectively. This regulatory mechanism underlies the adaptation to cholesterol synthesis inhibitors (statins) and high calorie diets (insulin). In nonhepatic cells, lipid synthesis is controlled by sterol regulatory element-binding proteins (SREBPs), membrane-bound transcription factors whose active domains are released proteolytically to enter the nucleus and activate genes involved in the synthesis and uptake of cholesterol and fatty acids. SCAP (SREBP cleavage-activating protein) is a sterol-regulated escort protein that transports SREBPs from their site of synthesis in the endoplasmic reticulum to their site of cleavage in the Golgi. Here, we produced a conditional deficiency of SCAP in mouse liver by genomic recombination mediated by inducible Cre recombinase. SCAP-deficient mice showed an 80% reduction in basal rates of cholesterol and fatty acid synthesis in liver, owing to decreases in mRNAs encoding multiple biosynthetic enzymes. Moreover, these mRNAs failed to increase normally in response to cholesterol deprivation produced by a cholesterol synthesis inhibitor and to insulin elevation produced by a fasting–refeeding protocol. These data provide in vivo evidence that SCAP and the SREBPs are required for hepatic lipid synthesis under basal and adaptive conditions. PMID:11358865

  1. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin

    PubMed Central

    Wilson, Fiona A.; Orellana, Renán A.; Suryawan, Agus; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Frank, Jason; Davis, Teresa A.

    2008-01-01

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7–10 days of pST (150 μg·kg−1·day−1) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 μU/ml), 2) fed control (25 μU/ml), and 3) fed pST-treated (50 μU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1·eIF4E complex association and increased active eIF4E·eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation. PMID:18460595

  2. The role of polyester interstitium and aldosterone during structural development of renal tubules in serum-free medium.

    PubMed

    Minuth, Will W; Denk, Lucia; Hu, Kanghong

    2007-10-01

    Little knowledge is available regarding the development of renal stem/progenitor cells into functional parenchyme. To investigate the environmental mechanisms during this maturation process, we elaborated an advanced culture technique to follow renal tubule development. Embryonic stem/progenitor cells derived from neonatal rabbit kidney were placed in a perfusion culture container at the interphase of an artificial polyester interstitium. Tissue culture was carried out in IMDM without serum or protein supplementation and without coating with extracellular matrix proteins. Development of tubules was registered histochemically on cryosections labeled with soybean agglutinin (SBA) and tissue-specific antibodies. The experiments revealed that the development of renal tubules depends exclusively on the administration of aldosterone. The use of 1x10(-7) M aldosterone for 13 days generated numerous SBA-labeled tubules, while no tubules developed in the absence of the steroid hormone. To obtain further information about the action of the hormone on the cognate receptor, molecular precursors of the aldosterone synthesis pathway were tested. Surprisingly, application of cholesterol, pregnenolone, progesterone, 11-deoxycorticosterone (DOCA) and corticosterone failed to form numerous tubules. Only 11-DOCA and progesterone induced a few tubules, which were barely SBA-labeled. Furthermore, application of aldosterone antagonists such as 1x10(-4) M spironolactone and 1x10(-4) M canrenoate completely inhibited the development of tubules. We conclude that specifically aldosterone promotes the development of tubules via the mineralocorticoid receptor whereas its precursors have no effect.

  3. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  4. Stimulation of muscle protein synthesis by prolonged parenteral infusion of leucine is dependent on amino acid availability in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The postprandial rise in amino acids, particularly leucine, stimulates muscle protein synthesis in neonates. Previously, we showed that a 1-h infusion of leucine increased protein synthesis, but this response was not sustained for 2 h unless the leucine-induced decrease in amino acids was prevented....

  5. Some Uses of Tissue Explants in the Teaching of Protein Synthesis

    ERIC Educational Resources Information Center

    King, B.

    1977-01-01

    Experiments are described in which inhibitors are used to investigate the timing of transcription and translation of the messenger RNA for the enzyme invertase. It is suggested that plant tissue slices provide adaptable material with which to study enzyme induction, protein synthesis, and cell differentiation at sixth-form level. (Author/MA)

  6. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy

    PubMed Central

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-01-01

    ABSTRACT Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQTM). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and

  7. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy.

    PubMed

    Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Koh, Pin-Lang; Ng, Shukie; Bao, Feichao; Lin, Qingsong; Shen, Han-Ming

    2016-10-02

    Autophagy is an intracellular degradation mechanism in response to nutrient starvation. Via autophagy, some nonessential cellular constituents are degraded in a lysosome-dependent manner to generate biomolecules that can be utilized for maintaining the metabolic homeostasis. Although it is known that under starvation the global protein synthesis is significantly reduced mainly due to suppression of MTOR (mechanistic target of rapamycin serine/threonine kinase), emerging evidence demonstrates that de novo protein synthesis is involved in the autophagic process. However, characterizing these de novo proteins has been an issue with current techniques. Here, we developed a novel method to identify newly synthesized proteins during starvation-mediated autophagy by combining bio-orthogonal noncanonical amino acid tagging (BONCAT) and isobaric tags for relative and absolute quantitation (iTRAQ TM ). Using bio-orthogonal metabolic tagging, L-azidohomoalanine (AHA) was incorporated into newly synthesized proteins which were then enriched with avidin beads after a click reaction between alkyne-bearing biotin and AHA's bio-orthogonal azide moiety. The enriched proteins were subjected to iTRAQ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Via the above approach, we identified and quantified a total of 1176 proteins and among them 711 proteins were found to meet our defined criteria as de novo synthesized proteins during starvation-mediated autophagy. The characterized functional profiles of the 711 newly synthesized proteins by bioinformatics analysis suggest their roles in ensuring the prosurvival outcome of autophagy. Finally, we performed validation assays for some selected proteins and found that knockdown of some genes has a significant impact on starvation-induced autophagy. Thus, we think that the BONCAT-iTRAQ approach is effective in the identification of newly synthesized proteins and provides

  8. A genetically encoded fluorescent tRNA is active in live-cell protein synthesis

    PubMed Central

    Masuda, Isao; Igarashi, Takao; Sakaguchi, Reiko; Nitharwal, Ram G.; Takase, Ryuichi; Han, Kyu Young; Leslie, Benjamin J.; Liu, Cuiping; Gamper, Howard; Ha, Taekjip; Sanyal, Suparna

    2017-01-01

    Abstract Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering. PMID:27956502

  9. Effect of tannic acid on the synthesis of protein and nucleic acid by rat liver

    PubMed Central

    Badawy, A. A.-B.; White, Audrey E.; Lathe, G. H.

    1969-01-01

    1. As early as 1hr. after the intraperitoneal administration of tannic acid to rats, it could be demonstrated in the liver. At 3hr. the nuclear fraction contained the largest amount of tannic acid. 2. Nuclear RNA synthesis was inhibited in vivo 2hr. after the administration of tannic acid. Induction by cortisol of tryptophan pyrrolase was 90% inhibited at 24hr. 3. Incorporation of [1-14C]leucine into protein by liver slices from treated rats was decreased by 50% after 24hr. Its incorporation into postmitochondrial supernatant from treated animals was not inhibited. Incorporation into slices and postmitochondrial supernatants were inhibited in vitro by tannic acid. 4. The sequence of events: concentration of tannic acid in nuclei, inhibition of nuclear RNA synthesis, inhibition of protein synthesis and production of necrosis, is discussed. PMID:5808319

  10. Value-based integrated (renal) care: setting a development agenda for research and implementation strategies.

    PubMed

    Valentijn, Pim P; Biermann, Claus; Bruijnzeels, Marc A

    2016-08-02

    Integrated care services are considered a vital strategy for improving the Triple Aim values for people with chronic kidney disease. However, a solid scholarly explanation of how to develop, implement and evaluate such value-based integrated renal care services is limited. The aim of this study was to develop a framework to identify the strategies and outcomes for the implementation of value-based integrated renal care. First, the theoretical foundations of the Rainbow Model of Integrated Care and the Triple Aim were united into one overarching framework through an iterative process of key-informant consultations. Second, a rapid review approach was conducted to identify the published research on integrated renal care, and the Cochrane Library, Medline, Scopus, and Business Source Premier databases were searched for pertinent articles published between 2000 and 2015. Based on the framework, a coding schema was developed to synthesis the included articles. The overarching framework distinguishes the integrated care domains: 1) type of integration, 2) enablers of integration and the interrelated outcome domains, 3) experience of care, 4) population health and 5) costs. The literature synthesis indicated that integrated renal care implementation strategies have particularly focused on micro clinical processes and physical outcomes, while little emphasis has been placed on meso organisational as well as macro system integration processes. In addition, evidence regarding patients' perceived outcomes and economic outcomes has been weak. These results underscore that the future challenge for researchers is to explore which integrated care implementation strategies achieve better health and improved experience of care at a lower cost within a specific context. For this purpose, this study's framework and evidence synthesis have set a developmental agenda for both integrated renal care practice and research. Accordingly, we plan further work to develop an implementation

  11. IgA-kappa type multiple myeloma affecting proximal and distal renal tubules.

    PubMed

    Minemura, K; Ichikawa, K; Itoh, N; Suzuki, N; Hara, M; Shigematsu, S; Kobayashi, H; Hiramatsu, K; Hashizume, K

    2001-09-01

    A 45-year-old male was admitted because of chest pain, lumbago, and bilateral ankle pain. Examination disclosed hypophosphatemic osteomalacia, acquired Fanconi syndrome, and abnormalities in distal nephron such as distal renal tubular acidosis and renal diabetes insipidus. Further exploration revealed IgA kappa multiple myeloma excreting urinary Bence Jones protein (kappa-light chain). Renal biopsy revealed thick basement membranes and elec-tron-dense crystals in proximal tubular epithelial cells. Immunofluorescent studies revealed deposition of kappa-light chain in renal tubular epithelial cells that caused the renal tubular damage. Although the osteomalacia was relieved by medical treatment, the urinary Bence Jones protein and the renal tubular defects were not improved by the chemotherapy for the myeloma. The patient died of exacerbation of multiple myeloma at 50 years of age.

  12. The Sensitivity of Memory Consolidation and Reconsolidation to Inhibitors of Protein Synthesis and Kinases: Computational Analysis

    ERIC Educational Resources Information Center

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2010-01-01

    Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…

  13. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  14. Potential biological process of X-linked inhibitor of apoptosis protein in renal cell carcinoma based upon differential protein expression analysis.

    PubMed

    Chen, Chao; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the IAP family and is a potent inhibitor of the caspase/apoptosis pathway. It has also been revealed that XIAP has additional biological functions that rely on its direct inhibition of apoptosis. In the present study, stably transfected Caki-1 cells with XIAP-knockdown were generated, and an isobaric tag for relative and absolute quantitation-based proteomics approach was employed to investigate the regulatory mechanism of XIAP in renal cell carcinoma (RCC). The results demonstrate that the sensitivity of the RCC cell line to apoptotic stimulation increased markedly with XIAP-knockdown. A number of differentially expressed proteins were detected between the original Caki-1 cell line and the XIAP-knockdown Caki-1 cell line; 87 at 0 h (prior to etoposide treatment), 178 at 0.5 h and 169 at 3 h, while no differentially expressed proteins were detected (ratio >1.5 or <0.5; P<0.05) at 12 h after etoposide treatment. Through analysis of the differentially expressed proteins, it was revealed that XIAP may participate in the tumor protein p53 pathway, the Wnt signaling pathway, glucose metabolism, endoplasmic reticulum stress, cytoskeletal regulation and DNA repair. These results indicate that XIAP may have a number of biological functions and may provide an insight into the biomedical significance of XIAP overexpression in RCC.

  15. Potential biological process of X-linked inhibitor of apoptosis protein in renal cell carcinoma based upon differential protein expression analysis

    PubMed Central

    Chen, Chao; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the IAP family and is a potent inhibitor of the caspase/apoptosis pathway. It has also been revealed that XIAP has additional biological functions that rely on its direct inhibition of apoptosis. In the present study, stably transfected Caki-1 cells with XIAP-knockdown were generated, and an isobaric tag for relative and absolute quantitation-based proteomics approach was employed to investigate the regulatory mechanism of XIAP in renal cell carcinoma (RCC). The results demonstrate that the sensitivity of the RCC cell line to apoptotic stimulation increased markedly with XIAP-knockdown. A number of differentially expressed proteins were detected between the original Caki-1 cell line and the XIAP-knockdown Caki-1 cell line; 87 at 0 h (prior to etoposide treatment), 178 at 0.5 h and 169 at 3 h, while no differentially expressed proteins were detected (ratio >1.5 or <0.5; P<0.05) at 12 h after etoposide treatment. Through analysis of the differentially expressed proteins, it was revealed that XIAP may participate in the tumor protein p53 pathway, the Wnt signaling pathway, glucose metabolism, endoplasmic reticulum stress, cytoskeletal regulation and DNA repair. These results indicate that XIAP may have a number of biological functions and may provide an insight into the biomedical significance of XIAP overexpression in RCC. PMID:29403558

  16. Chronic enteral leucine supplementation of a low protein diet increases skeletal muscle protein synthesis in neonatal pigs by stimulating mTOR-dependent translation initiation

    USDA-ARS?s Scientific Manuscript database

    Leucine appears to be the key amino acid that positively regulates mTOR signalling. We hypothesized that prolonged feeding (24 hours) of a Leu supplemented low protein (LP) diet in neonatal pigs will increase protein synthesis in skeletal muscle to a rate similar to that of a high protein diet (HP)....

  17. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    PubMed

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Management of hyperphosphataemia: practices and perspectives amongst the renal care community.

    PubMed

    Nagel, Christina Johanna Maria; Casal, María Cruz; Lindley, Elizabeth; Rogers, Susan; Pancířová, Jitka; Kernc, Jennifer; Copley, J Brian; Fouque, Denis

    2014-12-01

    Protein-rich foods are a major source of dietary phosphorus; therefore, helping patients to increase their dietary protein intake, while simultaneously managing their hyperphosphataemia, poses a significant challenge for renal care professionals. To examine the clinical recommendations and practice perceptions of renal care professionals providing nutrition and phosphate control advice to patients with chronic kidney disease (CKD). Renal care professionals from four European countries completed an online survey on the clinical management of hyperphosphataemia. The majority of responders recommended a protein intake of less than 1.0 g/kg/day for pre-dialysis patients, 1.2 g/kg/day for patients undergoing peritoneal dialysis (PD) and 1.1-1.2 g/kg/day for patients undergoing haemodialysis (HD). The most common perception was that maintaining dietary protein intake and reducing dietary phosphorus intake are equally important for hyperphosphataemia management. For patients in the pre-dialysis stage, the majority of responders (59%) reported that their first-line management recommendation would be reduction of dietary phosphorus. For patients undergoing PD and HD, the majority of responders (53% and 59%, respectively) reported a first-line management recommendation of both reduction of dietary phosphorus and phosphate binder therapy. More renal nurses than dietitians perceived reducing dietary phosphorus to be more important than maintaining protein intake (for patients undergoing PD, 23% vs. 0%, respectively; for patients undergoing HD, 34% vs. 0%, respectively). This renal care community followed professionally accepted guidelines for patient nutrition and management of hyperphosphataemia. There was disparity in the perceptions and recommendations between nurses and dietitians, highlighting the need to standardise management practices amongst renal care professionals. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  19. Aging is Associated with Impaired Renal Function, INF-gamma Induced Inflammation and with Alterations in Iron Regulatory Proteins Gene Expression.

    PubMed

    Costa, Elísio; Fernandes, João; Ribeiro, Sandra; Sereno, José; Garrido, Patrícia; Rocha-Pereira, Petronila; Coimbra, Susana; Catarino, Cristina; Belo, Luís; Bronze-da-Rocha, Elsa; Vala, Helena; Alves, Rui; Reis, Flávio; Santos-Silva, Alice

    2014-12-01

    Our aim was to contribute to a better understanding of the pathophysiology of anemia in elderly, by studying how aging affects renal function, iron metabolism, erythropoiesis and the inflammatory response, using an experimental animal model. The study was performed in male Wistar, a group of young rats with 2 months age and an old one with 18 months age. Old rats presented a significant higher urea, creatinine, interferon (INF)-gamma, ferritin and soluble transferrin receptor serum levels, as well as increased counts of reticulocytes and RDW. In addition, these rats showed significant lower erythropoietin (EPO) and iron serum levels. Concerning gene expression of iron regulatory proteins, old rats presented significantly higher mRNA levels of hepcidin (Hamp), transferrin (TF), transferrin receptor 2 (TfR2) and hemojuvelin (HJV); divalent metal transporter 1 (DMT1) mRNA levels were significantly higher in duodenal tissue; EPO gene expression was significantly higher in liver and lower in kidney, and the expression of the EPOR was significantly higher in both liver and kidney. Our results showed that aging is associated with impaired renal function, which could be in turn related with the inflammatory process and with a decline in EPO renal production. Moreover, we also propose that aging may be associated with INF-gamma-induced inflammation and with alterations upon iron regulatory proteins gene expression.

  20. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    PubMed

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  1. Protein synthesis inhibition activity by strawberry tissue protein extracts during plant life cycle and under biotic and abiotic stresses.

    PubMed

    Polito, Letizia; Bortolotti, Massimo; Mercatelli, Daniele; Mancuso, Rossella; Baruzzi, Gianluca; Faedi, Walther; Bolognesi, Andrea

    2013-07-25

    Ribosome-inactivating proteins (RIPs), enzymes that are widely distributed in the plant kingdom, inhibit protein synthesis by depurinating rRNA and many other polynucleotidic substrates. Although RIPs show antiviral, antifungal, and insecticidal activities, their biological and physiological roles are not completely understood. Additionally, it has been described that RIP expression is augmented under stressful conditions. In this study, we evaluated protein synthesis inhibition activity in partially purified basic proteins (hereafter referred to as RIP activity) from tissue extracts of Fragaria × ananassa (strawberry) cultivars with low (Dora) and high (Record) tolerance to root pathogens and fructification stress. Association between the presence of RIP activity and the crop management (organic or integrated soil), growth stage (quiescence, flowering, and fructification), and exogenous stress (drought) were investigated. RIP activity was found in every tissue tested (roots, rhizomes, leaves, buds, flowers, and fruits) and under each tested condition. However, significant differences in RIP distribution were observed depending on the soil and growth stage, and an increase in RIP activity was found in the leaves of drought-stressed plants. These results suggest that RIP expression and activity could represent a response mechanism against biotic and abiotic stresses and could be a useful tool in selecting stress-resistant strawberry genotypes.

  2. Alcohol intoxication following muscle contraction in mice decreases muscle protein synthesis but not mTOR signal transduction

    PubMed Central

    Steiner, Jennifer L.; Lang, Charles H.

    2014-01-01

    Background Alcohol [ethanol (EtOH)] intoxication antagonizes stimulation of muscle protein synthesis and mTOR signaling. However, whether the anabolic response can be reversed when alcohol is consumed after the stimulus is unknown. Methods A single bout of electrically stimulated muscle contractions (10 sets of 6 contractions) were induced in fasted male C57BL/6 mice 2 h prior to alcohol intoxication. EtOH was injected IP (3g/kg) and the gastrocnemius/plantaris muscle complex was collected 2 h later from the stimulated and contralateral unstimulated control leg. Results Muscle contraction increased protein synthesis 28% in control mice while EtOH abolished this stimulation-induced increase. Further, EtOH suppressed the rate of synthesis ~75% compared to control muscle irrespective of stimulation. This decrease was associated with impaired protein elongation as EtOH increased the phosphorylation of eEF2 Thr56. In contrast, stimulation-induced increases in mTORC1 (S6K1 Thr421/Ser424, S6K1 Thr389, rpS6 Ser240/244, 4E-BP1 Thr37/46) and MAPK (JNK Thr183/Tyr185, p38 Thr180/Tyr182, and rpS6S235/236) signaling were not reversed by acute EtOH. Conclusion These data suggest that EtOH-induced decreases in protein synthesis in fasted mice may be independent of mTORC1 and MAPK signaling following muscle contraction and instead due to the antagonistic actions of EtOH on mRNA translation elongation. Therefore, EtOH suppresses the contraction-induced increase in protein synthesis and over time has the potential to prevent skeletal muscle hypertrophy induced by repeated muscle contraction. PMID:25623400

  3. Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts

    PubMed Central

    Ahn, Jin-Ho; Hwang, Mi-Yeon; Lee, Kyung-Ho; Choi, Cha-Yong; Kim, Dong-Myung

    2007-01-01

    This study developed a method to boost the expression of recombinant proteins in a cell-free protein synthesis system without leaving additional amino acid residues. It was found that the nucleotide sequences of the signal peptides serve as an efficient downstream box to stimulate protein synthesis when they were fused upstream of the target genes. The extent of stimulation was critically affected by the identity of the second codons of the signal sequences. Moreover, the yield of the synthesized protein was enhanced by as much as 10 times in the presence of an optimal second codon. The signal peptides were in situ cleaved and the target proteins were produced in their native sizes by carrying out the cell-free synthesis reactions in the presence of Triton X-100, most likely through the activation of signal peptidase in the S30 extract. The amplification of the template DNA and the addition of the signal sequences were accomplished by PCR. Hence, elevated levels of recombinant proteins were generated within several hours. PMID:17185295

  4. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    PubMed Central

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  5. Coupling neutron reflectivity with cell-free protein synthesis to probe membrane protein structure in supported bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soranzo, Thomas; Martin, Donald K.; Lenormand, Jean -Luc

    Here, the structure of the p7 viroporin, an oligomeric membrane protein ion channel involved in the assembly and release of the hepatitis C virus, was determined from proteins expressed and inserted directly into supported model lipid membranes using cell-free protein expression. Cell-free protein expression allowed (i) high protein concentration in the membrane, (ii) control of the protein’s isotopic constitution, and (iii) control over the lipid environment available to the protein. Here, we used cell-free protein synthesis to directly incorporate the hepatitis C virus (HCV) p7 protein into supported lipid bilayers formed from physiologically relevant lipids (POPC or asolectin) for bothmore » direct structural measurements using neutron reflectivity (NR) and conductance measurements using electrical impedance spectroscopy (EIS). We report that HCV p7 from genotype 1a strain H77 adopts a conical shape within lipid bilayers and forms a viroporin upon oligomerization, confirmed by EIS conductance measurements. This combination of techniques represents a novel approach to the study of membrane proteins and, through the use of selective deuteration of particular amino acids to enhance neutron scattering contrast, has the promise to become a powerful tool for characterizing the protein conformation in physiologically relevant environments and for the development of biosensor applications.« less

  6. Coupling neutron reflectivity with cell-free protein synthesis to probe membrane protein structure in supported bilayers

    DOE PAGES

    Soranzo, Thomas; Martin, Donald K.; Lenormand, Jean -Luc; ...

    2017-06-13

    Here, the structure of the p7 viroporin, an oligomeric membrane protein ion channel involved in the assembly and release of the hepatitis C virus, was determined from proteins expressed and inserted directly into supported model lipid membranes using cell-free protein expression. Cell-free protein expression allowed (i) high protein concentration in the membrane, (ii) control of the protein’s isotopic constitution, and (iii) control over the lipid environment available to the protein. Here, we used cell-free protein synthesis to directly incorporate the hepatitis C virus (HCV) p7 protein into supported lipid bilayers formed from physiologically relevant lipids (POPC or asolectin) for bothmore » direct structural measurements using neutron reflectivity (NR) and conductance measurements using electrical impedance spectroscopy (EIS). We report that HCV p7 from genotype 1a strain H77 adopts a conical shape within lipid bilayers and forms a viroporin upon oligomerization, confirmed by EIS conductance measurements. This combination of techniques represents a novel approach to the study of membrane proteins and, through the use of selective deuteration of particular amino acids to enhance neutron scattering contrast, has the promise to become a powerful tool for characterizing the protein conformation in physiologically relevant environments and for the development of biosensor applications.« less

  7. Maternal supplementation with citrulline increases renal nitric oxide in young spontaneously hypertensive rats and has long-term antihypertensive effects.

    PubMed

    Koeners, Maarten P; van Faassen, Ernst E; Wesseling, Sebastiaan; de Sain-van der Velden, Monique; Koomans, Hein A; Braam, Branko; Joles, Jaap A

    2007-12-01

    NO deficiency is associated with development of hypertension. Defects in the renal citrulline-arginine pathway or arginine reabsorption potentially reduce renal NO in prehypertensive spontaneously hypertensive rats (SHRs). Hence, we investigated genes related to the citrulline-arginine pathway or arginine reabsorption, amino acid pools, and renal NO in 2-week-old prehypertensive SHRs. In addition, because perinatally supporting NO availability reduces blood pressure in SHRs, we supplemented SHR dams during pregnancy and lactation with citrulline, the rate-limiting amino acid for arginine synthesis. In female offspring, gene expression of argininosuccinate synthase (involved in renal arginine synthesis) and renal cationic amino acid Y-transporter (involved in arginine reabsorption) were both decreased in 2-day and 2-week SHRs compared with normotensive WKY, although no abnormalities in amino acid pools were observed. In addition, 2-week-old female SHRs had much less NO in their kidneys (0.46+/-0.01 versus 0.68+/-0.05 nmol/g of kidney weight, respectively; P<0.001) but not in their heart. Furthermore, perinatal supplementation with citrulline increased renal NO to 0.59+/-0.02 nmol/g of kidney weight (P<0.001) at 2 weeks and persistently ameliorated the development of hypertension in females and until 20 weeks in male SHR offspring. Defects in both the renal citrulline-arginine pathway and in arginine reabsorption precede hypertension in SHRs. We propose that the reduced cationic amino acid transporter disables the developing SHR kidney to use arginine reabsorption to compensate for reduced arginine synthesis, resulting in organ-specific NO deficiency. This early renal deficiency and its adverse sequels can be corrected by perinatal citrulline supplementation persistently in female and transiently in male SHRs.

  8. [Renal risks of dietary complements: a forgotten cause].

    PubMed

    Dori, Olympia; Humbert, Antoine; Burnier, Michel; Teta, Daniel

    2014-02-26

    The use of dietary complements like vitamins, minerals, trace elements, proteins, aminoacids and plant-derived agents is prevalent in the general population, in order to promote health and treat diseases. Dietary complements are considered as safe natural products and are easily available without prescription. However, these can lead to severe renal toxicity, especially in cases of unknown pre-existing chronic kidney disease (CKD). In particular, Chinese herbs including aristolochic acid, high doses of vitamine C, creatine and protein complements may lead to acute and chronic renal failure, sometimes irreversible. Dietary complement toxicity should be suspected in any case of unexplained renal impairement. In the case of pre-existing CKD, the use of potentially nephrotoxic dietary complements should be screened for.

  9. [Tripeptides slow down aging process in renal cell culture].

    PubMed

    Khavinson, V Kh; Tarnovskaia, S I; Lin'kova, N S; Poliakova, V O; Durnova, A O; Nichik, T E; Kvetnoĭ, I M; D'iakonov, M M; Iakutseni, P P

    2014-01-01

    The mechanism of geroprotective effect of peptides AED and EDL was studied in ageing renal cell culture. Peptide AED and EDL increase cell proliferation, decreasing expression of marker of aging p16, p21, p53 and increasing expression of SIRT-6 in young and aged renal cell culture. The reduction of SIRT-6 synthesis in cell is one of the causes of cell senescence. On the basis of experimental data models of interaction of peptides with various sites of DNA were constructed. Both peptides form most energetically favorable complexes with d(ATATATATAT)2 sequences in minor groove of DNA. It is shown that interaction of peptides AED and EDL with DNA is the cause of gene expression, encoded marker of ageing in renal cells.

  10. Effect of monensin on in vitro fermentation of silages and microbial protein synthesis.

    PubMed

    Wischer, Gerald; Boguhn, Jeannette; Steingaß, Herbert; Schollenberger, Margit; Hartung, Karin; Rodehutscord, Markus

    2013-06-01

    The objective of the study was to investigate the effects of monensin on silage fermentation and microbial net protein synthesis. In Experiment 1, monensin (0.5, 1, 2, 4, 6, or 10 µg) was added to syringes that contained 120 mg of grass silage (GS), grass silage and concentrate (GS + C), or maize silage (MS), resulting in concentrations of 4.2, 8.3, 16.7, 33.3, 50.0 and 83.3 mg monensin/kg feed. Samples were incubated for 24 h to determine the monensin concentration that resulted in the maximum reduction in methane production without effects on the total gas production. In Experiment 2, GS and GS + C were incubated in a rumen simulation technique (Rusitec) to assess the monensin effects (133 and 266 mg/kg feed) on the production of total gas, methane and volatile fatty acids (VFA), degradation of nutrients and microbial net protein synthesis. In Experiment 1, methane production was reduced without significant effects on the total gas production; the reductions were 17% (GS), 10% (GS + C) and 13% (MS) with 16.7 (GS), 50.0 (GS + C) and 33.3 (MS) mg monensin/kg feed. Monensin reduced the total gas and methane production in GS and GS + C in Experiment 2. Propionate production was enhanced by monensin, accompanied by a decrease in acetate production. Along with a reduction in crude protein (CP) degradation, monensin reduced the ammonia nitrogen concentration in the effluent of both treatments. While the protein produced by liquid-associated microbes increased with monensin, protein production by solid-associated microbes was reduced. Total microbial net protein synthesis increased in the presence of monensin. Monensin influenced the production of total gas, methane and VFA from the silages without an effect on the degradation of organic matter (OM). Different microbial fractions were affected differently by monensin supplementation. If monensin is used as a tool to reduce methane emission, the supplementation level must be carefully chosen to avoid negative effects on

  11. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  12. Branched chains support postoperative protein synthesis.

    PubMed

    Cerra, F B; Upson, D; Angelico, R; Wiles, C; Lyons, J; Faulkenbach, L; Paysinger, J

    1982-08-01

    A blinded, prospective trial of the effects of branched-chain amino acid (BcAA)-enriched total parenteral nutrition (TPN) versus standard TPN was undertaken in nonseptic noncirrhotic abdominal surgery patients and patients with multiple traumatic injuries. The study reflected data from the immediate 7-day postoperative period. With isocaloric and isonitrogenous input, the BcAA-TPN patients achieved positive nitrogen balance on day 3. Although the urinary nitrogen output was decreased by day 3 in BcAA-TPN, the plasma BcAA levels did not increase until day 6. With no change in 3-methylhistidine urinary excretion, the early nitrogen retention with BcAA-TPN probably reflects a stimulation of protein synthesis. The ability to favorably modulate the metabolic stress response with alternate fuels has become a clinical reality.

  13. Enteral B-hydroxy-B-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite B-hydr...

  14. Chemical synthesis and characterization of peptides and oligomeric proteins designed to form transmembrane ion channels.

    PubMed

    Iwamoto, T; Grove, A; Montal, M O; Montal, M; Tomich, J M

    1994-06-01

    A strategy for the synthesis of peptides and oligomeric proteins designed to form transmembrane ion channels is described. A folding motif that exhibits a functional ionic pore encompasses amphipathic alpha-helices organized as a four-helix bundle around a central hydrophilic pore. The channel-forming activity of monomeric amphipathic peptides may be examined after reconstitution in lipid bilayers in which peptides self-assemble into conductive oligomers. The covalent attachment of channel-forming peptides to the lysine epsilon-amino groups of a template molecule (KKKPGKEKG) specifies oligomeric number and facilitates the study of ionic permeation and channel blockade. Here we describe detailed protocols for the total synthesis of peptides and template-assembled four-helix bundle proteins, exemplified with the sequence of M2 delta (EKM-STAISVLLAQAVFLLLTSQR), considered involved in lining the pore of the nicotinic acetylcholine receptor channel. For comparison, the synthesis of a second four-helix bundle, T4CaIVS3 with the sequence of predicted transmembrane segment S3 (DPWNVFDFLIVIGSIIDVILSE) of the fourth repeat of the L-type voltage-gated calcium channel, is included. Peptides and proteins are synthesized step-wise by solid-phase methods, purified by reversed-phase HPLC, and homogeneity ascertained by analytical HPLC, capillary zone electrophoresis, SDS/PAGE, amino acid analysis and sequencing. Optimization of synthetic procedures for hydrophobic molecules include reducing resin substitution to avoid steric hindrance and aggregation of the final product. Protocols for the preparation of the samples prior to HPLC purification as well as the conditions and columns required for successful purification are presented. The methods developed are generally applicable for the chemical synthesis, purification and characterization of amphipathic peptides and template directed helical bundle proteins.

  15. Chemical Synthesis of the 20 kDa Heme Protein Nitrophorin 4 by α-Ketoacid-Hydroxylamine (KAHA) Ligation.

    PubMed

    He, Chunmao; Kulkarni, Sameer S; Thuaud, Frédéric; Bode, Jeffrey W

    2015-10-26

    The chemical synthesis of the 184-residue ferric heme-binding protein nitrophorin 4 was accomplished by sequential couplings of five unprotected peptide segments using α-ketoacid-hydroxylamine (KAHA) ligation reactions. The fully assembled protein was folded to its native structure and coordinated to the ferric heme b cofactor. The synthetic holoprotein, despite four homoserine residues at the ligation sites, showed identical properties to the wild-type protein in nitric oxide binding and nitrite dismutase reactivity. This work establishes the KAHA ligation as a valuable and viable approach for the chemical synthesis of proteins up to 20 kDa and demonstrates that it is well-suited for the preparation of hydrophobic protein targets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    PubMed

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Expression of Cyt-c-Mediated Mitochondrial Apoptosis-Related Proteins in Rat Renal Proximal Tubules during Development.

    PubMed

    Song, Xiao-Feng; Tian, He; Zhang, Ping; Zhang, Zhen-Xing

    2017-01-01

    Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development. © 2016 S. Karger AG, Basel.

  18. Boldine Prevents Renal Alterations in Diabetic Rats

    PubMed Central

    Hernández-Salinas, Romina; Vielma, Alejandra Z.; Arismendi, Marlene N.; Boric, Mauricio P.; Sáez, Juan C.; Velarde, Victoria

    2013-01-01

    Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects. PMID:24416726

  19. Induction of the high-affinity Na(+)-dependent glutamate transport system XAG- by hypertonic stress in the renal epithelial cell line NBL-1.

    PubMed Central

    Ferrer-Martinez, A; Felipe, A; Nicholson, B; Casado, J; Pastor-Anglada, M; McGivan, J

    1995-01-01

    The high-affinity Na(+)-dependent glutamate transport system XAG- is induced (threefold increase in Vmax. with no change in Km) by hypertonicity in the renal epithelial cell line NBL-1. This effect is dependent on protein synthesis and glycosylation and is accompanied by an increase in EAAC1 mRNA levels. Other Na(+)-dependent transport systems in this cell line do not respond to hypertonic stress. In contrast to recent findings [Ruiz-Montasell, Gomez-Angelats, Casado, Felipe, McGivan and Pastor-Anglada (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 9569-9573] showing that increased system A activity after hyperosmotic shock results from induction of a regulatory protein, this is the first demonstration that hypertonicity may increase the expression of the gene for an amino acid transport protein itself. Images Figure 4 PMID:7654212

  20. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    PubMed

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H 2 O 2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  1. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis

    PubMed Central

    Kaduri, Maya; Shainsky-Roitman, Janna; Goldfeder, Mor; Ivanir, Eran; Benhar, Itai; Shoham, Yuval; Schroeder, Avi

    2016-01-01

    Cell-free protein synthesis (CFPS) systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3) and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa). This system was able to produce 40–150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins. PMID:27768741

  2. Synthesis of a select group of proteins by Neisseria gonorrhoeae in response to thermal stress.

    PubMed Central

    Woods, M L; Bonfiglioli, R; McGee, Z A; Georgopoulos, C

    1990-01-01

    We report the thermal conditions that induce the heat shock response in Neisseria gonorrhoeae. Under conditions of thermal stress, Neisseria gonorrhoeae synthesizes heat shock proteins (hsps), which differ quantitatively from conventionally studied gonococcal proteins. Gonococci accelerate the rate of synthesis of the hsps as early as 5 min after the appropriate stimulus is applied, with synthesis continuing for 30 min, as demonstrated by in vivo labeling experiments with L-[35S]methionine. Two of the gonococcal hsps are immunologically cross-reactive with the hsps of Escherichia coli, DnaK and GroEL, as demonstrated by Western blot (immunoblot) analysis. Ten hsps can be identified on two-dimensional autoradiograms of whole gonococci (total protein). Four hsps can be identified on two-dimensional autoradiograms of 1% N-lauroylsarcosine (sodium salt) (Sarkosyl)-insoluble membrane fractions. Two of the hsps from the 1% Sarkosyl-insoluble fraction are found exclusively in this fraction, suggesting that they are membrane proteins. The identification of this group of proteins will facilitate further study of the function of these proteins and provide insight into the possible role of hsps in disease pathogenesis. Images PMID:2106493

  3. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    PubMed

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. Determining Degradation and Synthesis Rates of Arabidopsis Proteins Using the Kinetics of Progressive 15N Labeling of Two-dimensional Gel-separated Protein Spots*

    PubMed Central

    Li, Lei; Nelson, Clark J.; Solheim, Cory; Whelan, James; Millar, A. Harvey

    2012-01-01

    The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a 15N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (KS) and degradation (KD) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify KS and KD for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. KS and KD correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive 15N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability. PMID:22215636

  5. Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis.

    PubMed

    Gillmor, C Stewart; Lukowitz, Wolfgang; Brininstool, Ginger; Sedbrook, John C; Hamann, Thorsten; Poindexter, Patricia; Somerville, Chris

    2005-04-01

    Mutations at five loci named PEANUT1-5 (PNT) were identified in a genetic screen for radially swollen embryo mutants. pnt1 cell walls showed decreased crystalline cellulose, increased pectins, and irregular and ectopic deposition of pectins, xyloglucans, and callose. Furthermore, pnt1 pollen is less viable than the wild type, and pnt1 embryos were delayed in morphogenesis and showed defects in shoot and root meristems. The PNT1 gene encodes the Arabidopsis thaliana homolog of mammalian PIG-M, an endoplasmic reticulum-localized mannosyltransferase that is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor. All five pnt mutants showed strongly reduced accumulation of GPI-anchored proteins, suggesting that they all have defects in GPI anchor synthesis. Although the mutants are seedling lethal, pnt1 cells are able to proliferate for a limited time as undifferentiated callus and do not show the massive deposition of ectopic cell wall material seen in pnt1 embryos. The different phenotype of pnt1 cells in embryos and callus suggest a differential requirement for GPI-anchored proteins in cell wall synthesis in these two tissues and points to the importance of GPI anchoring in coordinated multicellular growth.

  6. Renal amyloidosis: current views on pathogenesis and impact on diagnosis.

    PubMed

    Herrera, Guillermo A; Teng, Jiamin; Turbat-Herrera, Elba A

    2011-01-01

    The amyloidoses constitute a group of diseases in which misfolding of extracellular proteins plays a fundamental role. The aggregation of normally soluble proteins into insoluble unbranching fibrils is the basic underlying pathology in amyloidosis. The process of amyloid formation generates toxic insoluble (in saline) protein aggregates that are deposited in tissues in the form of β- pleated sheets of fibrillary material. The amyloidoses are considered to be part of the so-called protein storage diseases (protein thesauroses). In addition, due to the unusual protein folding associated with amyloid, this group of diseases has been referred to as conformational and protein folding disorders. For many years amyloidosis was considered an extremely rare, somewhat mysterious disease. However, in recent years its pathogenesis, particularly that of renal amyloidosis, has been carefully dissected in the research laboratory using in vitro and, to a lesser extent, in vivo models. These have provided a molecular understanding of sequential events that take place in the renal mesangium leading to the formation of amyloid fibrils and eventual extrusion into the mesangial matrix, which itself becomes seriously damaged and, in due time, replaced by the fibrillary material. Amyloid, once considered to be an 'inert' substance, has been proven to be involved in crucial biological processes that result in the destruction and eventual replacement of normal renal constituents. Although there are more than two dozen recognized amyloid precursor proteins (and new ones being added to the list) that can be involved in the genesis of amyloid fibrils, the pathophysiologic mechanisms that occur in the renal mesangium are likely to be very similar, if not the same, regardless of the type of amyloidosis. Likewise, the same is true of amyloid formation in the renal vasculature. Mesangial cells are essentially smooth muscle cells and the events that take place in the mesangium and vasculature

  7. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems.

    PubMed Central

    Kirchman, D; K'nees, E; Hodson, R

    1985-01-01

    Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems. PMID:3994368

  8. Inflating bacterial cells by increased protein synthesis

    PubMed Central

    Basan, Markus; Zhu, Manlu; Dai, Xiongfeng; Warren, Mya; Sévin, Daniel; Wang, Yi-Ping; Hwa, Terence

    2015-01-01

    Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ∼8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control. PMID:26519362

  9. RNA metabolism in the regulation of protein synthesis in plants. Progress report, 1975-1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, J L

    1979-01-01

    The major objectives of the research for the contract period covered by this report were (1) to gain an insight into the sequence organization of the DNA of soybean, emphasizing the arrangement of single copy or unique sequences and repetitive sequences of DNA throughout the genome, (2) to characterize soybean RNAs relative to nucleotide sequence complexity and kinetics of synthesis and turnover of poly A/sup +/ mRNA, and (3) to study ribosomal proteins directed to an analysis of possible changes in proteins which relate to the activation of 80S ribosomes and thus mRNA utilization and protein synthesis in response tomore » environmental stimuli. Even with greatly reduced funding compared to that requested, objectives 1 and 2 were substantially accomplished. Because of reduced funding and the 20-month no cost extension, relatively little progress was made on objective 3. Accordingly objectives 1 and 2 will be summarized in some detail; a brief account of progress is presented on objective 3.« less

  10. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability

    PubMed Central

    Bivol, Liliana Monica; Iversen, Bjarne Magnus; Hultström, Michael; Wallace, Paal William; Reed, Rolf Kåre

    2015-01-01

    Key points Transient reduction in renal blood flow results in inflammation and is a primary cause of acute kidney injury, thereby representing a major clinical problem.It is not known whether the inflammatory reaction is local only or part of a systemic response.We accessed the renal microenvironment through isolation of lymph and were in this way able to investigate whether the inflammatory reaction is local or systemic.Transient ischaemia followed by reperfusion resulted in a rapid production of inflammatory mediators locally in the renal interstitium.We moreover showed that the injury response affected the glomerular as well as the non‐glomerular barrier and resulted in a reduced size and charge selectivity of the glomerular capillaries. Abstract A better understanding of the inflammatory process associated with renal ischaemia–reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin‐1β, monocyte chemoattractant protein‐1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor‐α  was the only mediator showing elevated lymph‐to‐plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR‐induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The

  11. Choline transporter-like protein 4 (CTL4) links to non-neuronal acetylcholine synthesis

    PubMed Central

    Song, Pingfang; Rekow, Stephen S.; Singleton, Corey-Ayne; Sekhon, Harmanjatinder S.; Dissen, Gregory A.; Zhou, Minerva; Campling, Barbara; Lindstrom, Jon; Spindel, Eliot R.

    2013-01-01

    Synthesis of acetylcholine (ACh) by non-neuronal cells is now well established and plays diverse physiologic roles. In neurons, the Na+-dependent, high affinity choline transporter (CHT1) is absolutely required for ACh synthesis. By contrast, some non-neuronal cells synthesize ACh in the absence of CHT1 indicating a fundamental difference in ACh synthesis compared to neurons. The aim of this study was to identify choline transporters, other than CHT1, that play a role in non-neuronal ACh synthesis. ACh synthesis was studied in lung and colon cancer cell lines focusing on the choline transporter-like proteins, a five gene family (CTL1-5). Supporting a role for CTLs in choline transport in lung cancer cells, choline transport was Na+-independent and CTL1-5 were expressed in all cells examined. CTL1,2,&5 were expressed at highest levels and knockdown of CTL1,2&5 decreased choline transport in H82 lung cancer cells. Knockdowns of CTL1,2,3&5 had no effect on ACh synthesis in H82 cells. By contrast, knockdown of CTL4 significantly decreased ACh secretion by both lung and colon cancer cells. Conversely, increasing expression of CTL4 increased ACh secretion. These results indicate that CTL4 mediates ACh synthesis in non-neuronal cell lines and presents a mechanism to target non-neuronal ACh synthesis without affecting neuronal ACh synthesis. PMID:23651124

  12. Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia(sen) SUPERGUM (gum arabic)?

    PubMed

    Matsumoto, N; Riley, S; Fraser, D; Al-Assaf, S; Ishimura, E; Wolever, T; Phillips, G O; Phillips, A O

    2006-01-01

    Anecdotal evidence suggests that high fibre supplementation of dietary intake may have health benefits in renal disease related to alterations in circulating levels of short-chain fatty acids. The aim of the study was to examine the hypothesis that dietary manipulation may increase serum butyrate and thus have potential beneficial effects in renal disease. We examined the effect of dietary supplementation with a gum arabic sample of standardized molecular characteristics, Acacia(sen) SUPERGUM EM2 (SUPERGUM), on systemic levels of butyrate in normal human subjects. In an in vitro study, we also examined the potential role of butyrate in modifying the generation of the profibrotic cytokine transforming growth factor-beta (TGF-beta1) by renal epithelial cells. Following 8 weeks of dietary supplementation with 25 g/day of SUPERGUM, there was a two-fold increase in serum butyrate (n=7, P=0.03). In vitro work demonstrated that exposure of renal epithelial cells to elevated concentrations of butyrate suppressed both basal and stimulated TGF-beta1 synthesis. The action of butyrate was mediated by suppression of the extracellular signal-regulated kinase/mitogen-activated protein kinase signalling pathway. In addition, butyrate exposures reduced the response of renal epithelial cells to TGF-beta1 as assessed by luciferase activity of a TGF-beta-responsive reporter construct. Attenuation of TGF-beta1 signalling was associated with reduced phosphorylation of Smad 3 and decreased trafficking of TGF-beta1 receptors into signalling, non-lipid raft-associated membrane fractions. In conclusion, the data demonstrate that dietary supplementation with SUPERGU increased serum butyrate, which at least in vitro has beneficial effects on renal pro-fibrotic cytokine generation.

  13. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation.

    PubMed

    Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A

    2005-01-01

    The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.

  14. A wheat embryo cell-free protein synthesis system not requiring an exogenous supply of GTP.

    PubMed

    Koga, Hirohisa; Misawa, Satoru; Shibui, Tatsuro

    2009-01-01

    Most in vitro protein synthesis systems require a supply of GTP for the formation of translation initiation complexes, with two GTP molecules per amino acid needed as an energy source for a peptide elongation reaction. In order to optimize protein synthesis reactions in a continuous-flow wheat embryo cell-free system, we have examined the influence of adding GTP and found that the system does not require any supply of GTP. We report here the preparation of a wheat embryo extract from which endogenous GTP was removed by gel filtration, and the influence of adding GTP to the system on protein synthesis reactions. Using Green Fluorescent Protein (GFP) as a reporter, higher levels of production were observed at lower concentrations of GTP, with the optimal level of production obtained with no supply of GTP. A HPLC-based analysis of the extract and the translation mixture containing only ATP as an energy source revealed that GTP was not detectable in the extract, however, 35 microM of GTP was found in the translation mixture. This result suggests that GTP could be generated from other compounds, such as GDP and GMP, using ATP. A similar experiment with a C-terminally truncated form of human protein tyrosine phosphatase 1B (hPTP1B(1-320)) gave almost the same result. The wheat embryo cell-free translation system worked most efficiently without exogenous GTP, producing 3.5 mg/mL of translation mixture over a 48-h period at 26 degrees C. 2009 American Institute of Chemical Engineers Biotechnol.

  15. Serum cystatin C is independently associated with renal impairment and high sensitivity C-reactive protein in systemic lupus erythematosus.

    PubMed

    Chew, Christine; Pemberton, Philip W; Husain, Awal Al-M; Haque, Sahena; Bruce, Ian N

    2013-01-01

    In systemic lupus erythematosus (SLE) patients, glomerular filtration rate (GFR) is usually estimated using the modified Cockcroft-Gault (mCG) and Modification of Diet in Renal Disease (MDRD) equations. We aimed to study cystatin C (sCysC) in SLE to assess its agreement with standard renal indices and investigate factors affecting sCysC in SLE. SLE patients (≥4 ACR criteria) and healthy women from Greater Manchester were recruited and clinical assessments were undertaken. SCysC was measured using R & D Systems' ELISA. Agreement between renal measures was assessed using Deming plots and factors associated with sCysC in SLE were examined by multiple linear regression analyses. 178 patients and 68 controls had median (IQR) ages of 53 (46-61) and 50 (39-60) years, respectively. In an age-adjusted analysis, SLE patients had higher sCysC (1.16 [0.98-1.36] vs. 0.950 [0.73-1.13] mg/l; p<0.0001) and within SLE those with a history of lupus nephritis had higher sCysC (1.31 [1.10-1.66] vs. 1.11 [0.95-1.29] mg/l; p<0.005). SCysC correlated positively with serum creatinine, and inversely to renal measures (r=-0.530; p<0.0001 [mCG], and r=-0.620; p<0.0001 [MDRD]). There was closer agreement between the two eGFR measures than between either eGFR measures and sCysC. In addition to age and serum creatinine, a multivariate analysis (β, p) found that high-sensitivity C-reactive protein (hs-CRP) (0.03, 0.026) was also independently associated with sCysC in SLE. In SLE, sCysC may be influenced by low grade inflammation as well as by renal dysfunction. Therefore, SCysC should not supplant current assessment of renal dysfunction in SLE.

  16. Effect of Inhibition of Deoxyribonucleic Acid and Protein Synthesis on the Direction of Cell Wall Growth in Streptococcus faecalis

    PubMed Central

    Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.

    1974-01-01

    Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352

  17. Roux-en-Y Esophagojejunostomy Ameliorates Renal Function Through Reduction of Renal Inflammatory and Fibrotic Markers in Diabetic Nephropathy.

    PubMed

    Wang, Cuifang; He, Bing; Piao, Dongxu; Han, Ping

    2016-07-01

    Roux-en-Y bariatric surgery has been shown to have a remarkable and sustainable improvement in type 2 diabetes. Recent clinical studies have shown that bariatric surgery can improve or halt the development of diabetic microvascular complications such as nephropathy. However, the exact underlying mechanisms of surgical procedures are unknown. Here, we have investigated the effects of Roux-en-Y esophagojejunostomy (RYEJ) on renal function and inflammation and fibrosis biomarkers for renal injury in type 2 diabetic rats. Sprague-Dawley rats with high fat diet and streptozotocin (STZ)-induced diabetes were randomly assigned into four groups: diabetic nephropathy (DN), DN treated with food restriction (DN-FR), DN treated with RYEJ surgery (DN-RYEJ), and DN-RYEJ sham (n = 6/group). Age-matched normal rats were assigned as control group. RYEJ and sham surgeries were performed. Hyperinsulinemic-euglycemic clamps with tracer infusion were completed to assess insulin sensitivity. Twenty-four hour urine albumin excretion rate (UAER) and glomerular filtration rate (GFR) were measured. The renal pathological injury was assessed by hematoxylin and eosin (HE) staining. Kidney messenger RNA (mRNA) and/or protein content/distribution of phospho-c-Jun NH2-terminal kinase (JNK), monocyte chemoattractant protein (MCP)-1, transforming growth factor (TGF)-β1, and mitogen-activated protein kinase phosphatase 5 (MKP5) were evaluated by real-time PCR and/or Western blotting/immunohistochemistry. Roux-en-Y esophagojejunostomy improved insulin sensitivity. RYEJ ameliorated renal function by improving UAER and GFR and attenuated glomerular hypertrophy after surgery. RYEJ also significantly downregulated the levels of JNK-mediated inflammatory response and upregulated the level of the anti-inflammatory mediator MKP5. Roux-en-Y esophagojejunostomy alleviates insulin resistance. RYEJ surgery ameliorated renal function and attenuated glomerular hypertrophy in a DN rat model. The considerable

  18. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus tegula) from different tidal heights.

    PubMed

    Tomanek, L; Somero, G N

    2000-01-01

    The time course and magnitude of the heat-shock response in relation to severity of thermal stress are important, yet poorly understood, aspects of thermotolerance. We examined patterns of protein synthesis in congeneric marine snails (genus Tegula) that occur at different heights along the subtidal to intertidal gradient after a thermal exposure (30 degrees C for 2.5 h, followed by 50 h recovery at 13 degrees C) that induced the heat-shock response. We monitored the kinetics and magnitudes of protein synthesis by quantifying incorporation of 35S-labeled methionine and cysteine into newly synthesized proteins and observed synthesis of putative heat-shock proteins (hsp's) of size classes 90, 77, 70, and 38 kDa. In the low- to mid-intertidal species, Tegula funebralis, whose body temperature frequently exceeds 30 degrees C during emersion, synthesis of hsp's commenced immediately after heat stress, reached maximal levels 1-3 h into recovery, and returned to prestress levels by 6 h, except for hsp90 (14 h). In contrast, in the low-intertidal to subtidal species, Tegula brunnea, for which 2.5 h at 30 degrees C represents a near lethal heat stress, synthesis of hsp's commenced 2-14 h after heat stress; reached maximal levels after 15-30 h, which exceeded magnitudes of synthesis in T. funebralis; and returned to prestress levels in the case of hsp90 (50 h) and hsp77 (30 h) but not in the case of hsp70 and hsp38. Exposures to 30 degrees C under aerial (emersion) and aquatic (immersion) conditions resulted in differences in hsp synthesis in T. brunnea but not in T. funebralis. The different time courses and magnitudes of hsp synthesis in these congeners suggest that the vertical limits of their distributions may be set in part by thermal stress.

  19. RASSF1A protein expression and correlation with clinicopathological parameters in renal cell carcinoma

    PubMed Central

    Tezval, Hossein; Merseburger, Axel S; Matuschek, Ira; Machtens, Stefan; Kuczyk, Markus A; Serth, Jürgen

    2008-01-01

    Background Epigenetic silencing of RAS association family 1A (RASSF1A) tumor suppressor gene occurs in various histological subtypes of renal cell carcinoma (RCC) but RASSF1A protein expression in clear cell RCC as well as a possible correlation with clinicopathological parameters of patients has not been analyzed at yet. Methods 318 primary clear cell carcinomas were analyzed using tissue microarray analysis and immunohistochemistry. Survival analysis was carried out for 187 patients considering a follow-up period of 2–240 month. Results Expression of RASSF1A was found to be significantly decreased in tumoral cells when compared to normal tubular epithelial cells. RASSF1A immunopositivity was significantly associated with pT stage, group stage and histological grade of tumors and showed a tendency for impaired survival in Kaplan-Meier analysis. Conclusion While most tumors demonstrate a loss of RASSF1A protein, a subset of tumors was identified to exhibit substantial RASSF1A protein expression and show increased tumor progression. Thus RCC tumorigenesis without depletion of RASSF1A may be associated with an adverse clinical outcome. PMID:18822131

  20. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage

    PubMed Central

    Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James

    2015-01-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779