Science.gov

Sample records for repeat protein involved

  1. TMTC1 and TMTC2 Are Novel Endoplasmic Reticulum Tetratricopeptide Repeat-containing Adapter Proteins Involved in Calcium Homeostasis*

    PubMed Central

    Sunryd, Johan C.; Cheon, Banyoon; Graham, Jill B.; Giorda, Kristina M.; Fissore, Rafael A.; Hebert, Daniel N.

    2014-01-01

    The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway. A variety of cell biological and biochemical assays was employed to demonstrate that TMTC1 and TMTC2 are both ER resident integral membrane proteins with multiple clusters of TPR domains oriented within the ER lumen. Proteomic analysis followed by co-immunoprecipitation verification found that both proteins associated with the ER calcium uptake pump SERCA2B, and TMTC2 also bound to the carbohydrate-binding chaperone calnexin. Live cell calcium measurements revealed that overexpression of either TMTC1 or TMTC2 caused a reduction of calcium released from the ER following stimulation, whereas the knockdown of TMTC1 or TMTC2 increased the stimulated calcium released. Together, these results implicate TMTC1 and TMTC2 as ER proteins involved in ER calcium homeostasis. PMID:24764305

  2. The Pentapeptide Repeat Proteins

    SciTech Connect

    Vetting,M.; Hegde, S.; Fajardo, J.; Fiser, A.; Roderick, S.; Takiff, H.; Blanchard, J.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S, T,A, V][D, N][L, F]-[S, T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral {beta}-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable size, shape and electrostatic similarity to DNA.

  3. Novel SLC7A7 large rearrangements in lysinuric protein intolerance patients involving the same AluY repeat

    PubMed Central

    Font-Llitjós, Mariona; Rodríguez-Santiago, Benjamín; Espino, Meritxell; Sillué, Ruth; Mañas, Sandra; Gómez, Laia; Pérez-Jurado, Luis A; Palacín, Manuel; Nunes, Virginia

    2009-01-01

    Lysinuric protein intolerance (LPI) is a rare autosomal inherited disease caused by defective cationic aminoacid transport 4F2hc/y+LAT-1 at the basolateral membrane of epithelial cells in the intestine and kidney. LPI is a multisystemic disease with a variety of clinical symptoms such as hepatosplenomegaly, osteoporosis, hypotonia, developmental delay, pulmonary insufficiency or end-stage renal disease. The SLC7A7 gene, which encodes the y+LAT-1 protein, is mutated in LPI patients. Mutation analysis of the promoter localized in intron 1 and all exons of the SLC7A7 gene was performed in 11 patients from 9 unrelated LPI families. Point mutation screening was performed by exon direct sequencing and a new multiplex ligation probe amplification (MLPA) assay was set up for large rearrangement analysis. Eleven SLC7A7-specific mutations were identified, seven of them were novel: p.L124P, p.C425R, p.R468X, p.Y274fsX21, c.625+1G>C, DelE4-E11 and DelE6-E11. The novel large deletions originated by the recombination of Alu repeats at introns 3 and 5, respectively, with the same AluY sequence localized at the SLC7A7 3′ region. The novel MLPA assay is robust and valuable for LPI molecular diagnosis. Our results suggest that genomic rearrangements of SLC7A7 play a more important role in LPI than has been reported, increasing the detection rate from 5.1 to 21.4%. Moreover, the 3′ region AluY repeat could be a recombination hot spot as it is involved in 38% of all SLC7A7 rearranged chromosomes described so far. PMID:18716612

  4. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  5. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  6. Protein Repeats from First Principles

    NASA Astrophysics Data System (ADS)

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-04-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  7. Sequence repeats and protein structure

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos

    2012-11-01

    Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.

  8. The EDGE Hypothesis: Epigenetically Directed Genetic Errors in Repeat-Containing Proteins (RCPs) Involved in Evolution, Neuroendocrine Signaling, and Cancer

    PubMed Central

    Ruden, Douglas M.; Jamison, D. Curtis; Zeeberg, Barry R.; Garfinkel, Mark D.; Weinstein, John N.; Rasouli, Parsa; Lu, Xiangyi

    2009-01-01

    Trans-generational epigenetic phenomena, such as endocrine-disrupting chemicals (EDCs) that decrease fertility and the global methylation status of DNA in the offspring, are of great concern because they may affect the health of our children. However, of even greater concern is the possibility that trans-generational changes in the methylation status of the DNA might lead to permanent changes in the DNA sequence itself. By contaminating the environment with EDCs, mankind might be permanently affecting the health of future generations. In this chapter, we present evidence from our laboratory and others that trans-generational epigenetic changes in DNA might lead to mutations directed to genes encoding amino acid repeat-containing proteins (RCPs) that are important for adaptive evolution or cancer progression. Such epigenetic changes can be induced “naturally” by hormones or “unnaturally” by EDCs or environmental stress. To illustrate the phenomenon, we present new bioinformatic evidence that the only RCP ontological categories conserved from Drosophila to humans are “regulation of splicing,” “regulation of transcription,” and “regulation of synaptogenesis,” which are precisely the classes of genes that are important for evolutionary processes. Based on that and other evidence, we propose a model for evolution that we call the EDGE (Epigenetically Directed Genetic Errors) hypothesis for the mechanism by which mutations are targeted at epigenetically-modified “contingency genes” encoding RCPs. In the model, “epigenetic assimilation” of metastable epialleles of RCPs over many generations can lead to mutations directed to those genes, thereby permanently stabilizing the adaptive phenotype. PMID:18295320

  9. The cpc-2 gene of Neurospora crassa encodes a protein entirely composed of WD-repeat segments that is involved in general amino acid control and female fertility.

    PubMed

    Müller, F; Krüger, D; Sattlegger, E; Hoffmann, B; Ballario, P; Kanaan, M; Barthelmess, I B

    1995-07-28

    Phenotypic and molecular studies of the mutation U142 indicate that the cpc-2+ gene is required to activate general amino acid control under conditions of amino acid limitation in the vegetative growth phase, and for formation of protoperithecia in preparation for the sexual phase of the life cycle of Neurospora crassa. The cpc-2 gene was cloned by complementation of the cpc-2 mutation in a his-2ts bradytrophic background. Genomic and cDNA sequence analysis indicated a 1636 bp long open reading frame interrupted by four introns. The deduced 316 amino acid polypeptide reveals 70% positional identity over its full length with G-protein beta-subunit-related polypeptides found in humans, rat (RACK1), chicken, tobacco and Chlamydomonas. With the exception of RACK1 the function of these proteins is obscure. All are entirely made up of seven WD-repeats. Expression studies of cpc-2 revealed one abundant transcript in the wild type; in the mutant its level is drastically reduced. In mutant cells transformed with the complementing sequence, the transcript level, enzyme regulation and female fertility are restored. In the wild type the cpc-2 transcript is down-regulated under conditions of amino acid limitation. With cpc-2 a new element involved in general amino acid control has been identified, indicating a function for a WD-repeat protein that belongs to a class that is conserved throughout the evolution of eukaryotes. PMID:7651339

  10. Pentapeptide Repeat Proteins and Cyanobacteria

    SciTech Connect

    Buchko, Garry W.

    2009-10-16

    Cyanobacteria are unique in many ways and one unusual feature is the presence of a suite of proteins that contain at least one domain with a minimum of eight tandem repeated five-residues (Rfr) of the general consensus sequence A[N/D]LXX. The function of such pentapeptide repeat proteins (PRPs) are still unknown, however, their prevalence in cyanobacteria suggests that they may play some role in the unique biological activities of cyanobacteria. As part of an inter-disciplinary Membrane Biology Grand Challenge at the Environmental Molecular Sciences Laboratory (Pacific Northwest National Laboratory) and Washington University in St. Louis, the genome of Cyanothece 51142 was sequenced and its molecular biology studied with relation to circadian rhythms. The genome of Cyanothece encodes for 35 proteins that contain at least one PRP domain. These proteins range in size from 105 (Cce_3102) to 930 (Cce_2929) kDa with the PRP domains ranging in predicted size from 12 (Cce_1545) to 62 (cce_3979) tandem pentapeptide repeats. Transcriptomic studies with 29 out of the 35 genes showed that at least three of the PRPs in Cyanothece 51142 (cce_0029, cce_3083, and cce_3272) oscillated with repeated periods of light and dark, further supporting a biological function for PRPs. Using X-ray diffraction crystallography, the structure for two pentapeptide repeat proteins from Cyanothece 51142 were determined, cce_1272 (aka Rfr32) and cce_4529 (aka Rfr23). Analysis of their molecular structures suggests that all PRP may share the same structural motif, a novel type of right-handed quadrilateral β-helix, or Rfr-fold, reminiscent of a square tower with four distinct faces. Each pentapeptide repeat occupies one face of the Rfr-fold with four consecutive pentapeptide repeats completing a coil that, in turn, stack upon each other to form “protein skyscrapers”. Details of the structural features of the Rfr-fold are reviewed here together with a discussion for the possible role of end

  11. Genetic Screen of a Mutant Poxvirus Library Identifies an Ankyrin Repeat Protein Involved in Blocking Induction of Avian Type I Interferon

    PubMed Central

    Laidlaw, Stephen M.; Robey, Rebecca; Davies, Marc; Giotis, Efstathios S.; Ross, Craig; Buttigieg, Karen; Goodbourn, Stephen

    2013-01-01

    Mammalian poxviruses, including vaccinia virus (VACV), have evolved multiple mechanisms to evade the host type I interferon (IFN) responses at different levels, with viral proteins targeting IFN induction, signaling, and antiviral effector functions. Avian poxviruses (avipoxviruses), which have been developed as recombinant vaccine vectors for permissive (i.e., poultry) and nonpermissive (i.e., mammals, including humans) species, encode no obvious equivalents of any of these proteins. We show that fowlpox virus (FWPV) fails to induce chicken beta IFN (ChIFN2) and is able to block its induction by transfected poly(I·C), an analog of cytoplasmic double-stranded RNA (dsRNA). A broad-scale loss-of-function genetic screen was used to find FWPV-encoded modulators of poly(I·C)-mediated ChIFN2 induction. It identified fpv012, a member of a family of poxvirus genes highly expanded in the avipoxviruses (31 in FWPV; 51 in canarypox virus [CNPV], representing 15% of the total gene complement), encoding proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. Under ectopic expression, the first ANK of fpv012 is dispensable for inhibitory activity and the CNPV ortholog is also able to inhibit induction of ChIFN2. FWPV defective in fpv012 replicates well in culture and barely induces ChIFN2 during infection, suggesting that other factors are involved in blocking IFN induction and resisting the antiviral effectors. Nevertheless, unlike parental and revertant viruses, the mutants induce moderate levels of expression of interferon-stimulated genes (ISGs), suggesting either that there is sufficient ChIFN2 expression to partially induce the ISGs or the involvement of alternative, IFN-independent pathways that are also normally blocked by fpv012. PMID:23427153

  12. Genetic screen of a mutant poxvirus library identifies an ankyrin repeat protein involved in blocking induction of avian type I interferon.

    PubMed

    Laidlaw, Stephen M; Robey, Rebecca; Davies, Marc; Giotis, Efstathios S; Ross, Craig; Buttigieg, Karen; Goodbourn, Stephen; Skinner, Michael A

    2013-05-01

    Mammalian poxviruses, including vaccinia virus (VACV), have evolved multiple mechanisms to evade the host type I interferon (IFN) responses at different levels, with viral proteins targeting IFN induction, signaling, and antiviral effector functions. Avian poxviruses (avipoxviruses), which have been developed as recombinant vaccine vectors for permissive (i.e., poultry) and nonpermissive (i.e., mammals, including humans) species, encode no obvious equivalents of any of these proteins. We show that fowlpox virus (FWPV) fails to induce chicken beta IFN (ChIFN2) and is able to block its induction by transfected poly(I·C), an analog of cytoplasmic double-stranded RNA (dsRNA). A broad-scale loss-of-function genetic screen was used to find FWPV-encoded modulators of poly(I·C)-mediated ChIFN2 induction. It identified fpv012, a member of a family of poxvirus genes highly expanded in the avipoxviruses (31 in FWPV; 51 in canarypox virus [CNPV], representing 15% of the total gene complement), encoding proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. Under ectopic expression, the first ANK of fpv012 is dispensable for inhibitory activity and the CNPV ortholog is also able to inhibit induction of ChIFN2. FWPV defective in fpv012 replicates well in culture and barely induces ChIFN2 during infection, suggesting that other factors are involved in blocking IFN induction and resisting the antiviral effectors. Nevertheless, unlike parental and revertant viruses, the mutants induce moderate levels of expression of interferon-stimulated genes (ISGs), suggesting either that there is sufficient ChIFN2 expression to partially induce the ISGs or the involvement of alternative, IFN-independent pathways that are also normally blocked by fpv012. PMID:23427153

  13. RepeatsDB: a database of tandem repeat protein structures

    PubMed Central

    Di Domenico, Tomás; Potenza, Emilio; Walsh, Ian; Gonzalo Parra, R.; Giollo, Manuel; Minervini, Giovanni; Piovesan, Damiano; Ihsan, Awais; Ferrari, Carlo; Kajava, Andrey V.; Tosatto, Silvio C.E.

    2014-01-01

    RepeatsDB (http://repeatsdb.bio.unipd.it/) is a database of annotated tandem repeat protein structures. Tandem repeats pose a difficult problem for the analysis of protein structures, as the underlying sequence can be highly degenerate. Several repeat types haven been studied over the years, but their annotation was done in a case-by-case basis, thus making large-scale analysis difficult. We developed RepeatsDB to fill this gap. Using state-of-the-art repeat detection methods and manual curation, we systematically annotated the Protein Data Bank, predicting 10 745 repeat structures. In all, 2797 structures were classified according to a recently proposed classification schema, which was expanded to accommodate new findings. In addition, detailed annotations were performed in a subset of 321 proteins. These annotations feature information on start and end positions for the repeat regions and units. RepeatsDB is an ongoing effort to systematically classify and annotate structural protein repeats in a consistent way. It provides users with the possibility to access and download high-quality datasets either interactively or programmatically through web services. PMID:24311564

  14. The N-terminal repeat and the ligand binding domain A of SdrI protein is involved in hydrophobicity of S. saprophyticus.

    PubMed

    Kleine, Britta; Ali, Liaqat; Wobser, Dominique; Sakιnç, Türkân

    2015-03-01

    Staphylococcus saprophyticus is an important cause of urinary tract infection, and its cell surface hydrophobicity may contribute to virulence by facilitating adherence of the organism to uroepithelia. S. saprophyticus expresses the surface protein SdrI, a member of the serine-aspartate repeat (SD) protein family, which has multifunctional properties. The SdrI knock out mutant has a reduced hydrophobicity index (HPI) of 25%, and expressed in the non-hydrophobic Staphylococcus carnosus strain TM300 causes hydrophobicity. Using hydrophobic interaction chromatography (HIC), we confined the hydrophobic site of SdrI to the N-terminal repeat region. S. saprophyticus strains carrying different plasmid constructs lacking either the N-terminal repeats, both B or SD-repeats were less hydrophobic than wild type and fully complemented SdrI mutant (HPI: 51%). The surface hydrophobicity and HPI of both wild type and the complemented strain were also influenced by calcium (Ca(2+)) and were reduced from 81.3% and 82.4% to 10.9% and 12.3%, respectively. This study confirms that the SdrI protein of S. saprophyticus is a crucial factor for surface hydrophobicity and also gives a first significant functional description of the N-terminal repeats, which in conjunction with the B-repeats form an optimal hydrophobic conformation. PMID:25497915

  15. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.

    PubMed

    Brower, Christopher S; Rosen, Connor E; Jones, Richard H; Wadas, Brandon C; Piatkov, Konstantin I; Varshavsky, Alexander

    2014-11-18

    The arginyltransferase Ate1 is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. At least six isoforms of mouse Ate1 are produced through alternative splicing of Ate1 pre-mRNA. We identified a previously uncharacterized mouse protein, termed Liat1 (ligand of Ate1), that interacts with Ate1 but does not appear to be its arginylation substrate. Liat1 has a higher affinity for the isoforms Ate1(1A7A) and Ate1(1B7A). Liat1 stimulated the in vitro N-terminal arginylation of a model substrate by Ate1. All examined vertebrate and some invertebrate genomes encode proteins sequelogous (similar in sequence) to mouse Liat1. Sequelogs of Liat1 share a highly conserved ∼30-residue region that is shown here to be required for the binding of Liat1 to Ate1. We also identified non-Ate1 proteins that interact with Liat1. In contrast to Liat1 genes of nonprimate mammals, Liat1 genes of primates are subtelomeric, a location that tends to confer evolutionary instability on a gene. Remarkably, Liat1 proteins of some primates, from macaques to humans, contain tandem repeats of a 10-residue sequence, whereas Liat1 proteins of other mammals contain a single copy of this motif. Quantities of these repeats are, in general, different in Liat1 of different primates. For example, there are 1, 4, 13, 13, 17, and 17 repeats in the gibbon, gorilla, orangutan, bonobo, neanderthal, and human Liat1, respectively, suggesting that repeat number changes in this previously uncharacterized protein may contribute to evolution of primates. PMID:25369936

  16. Multifunctional protein: cardiac ankyrin repeat protein*

    PubMed Central

    Zhang, Na; Xie, Xiao-jie; Wang, Jian-an

    2016-01-01

    Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases. PMID:27143260

  17. The Pentatricopeptide Repeat Proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 Are Involved in the Splicing of the Multipartite nad5 Transcript Encoding a Subunit of Mitochondrial Complex I1[W][OPEN

    PubMed Central

    Colas des Francs-Small, Catherine; Falcon de Longevialle, Andéol; Li, Yunhai; Lowe, Elizabeth; Tanz, Sandra K.; Smith, Caroline; Bevan, Michael W.; Small, Ian

    2014-01-01

    Pentatricopeptide repeat proteins constitute a large family of RNA-binding proteins in higher plants (around 450 genes in Arabidopsis [Arabidopsis thaliana]), mostly targeted to chloroplasts and mitochondria. Many of them are involved in organelle posttranscriptional processes, in a very specific manner. Splicing is necessary to remove the group II introns, which interrupt the coding sequences of several genes encoding components of the mitochondrial respiratory chain. The nad5 gene is fragmented in five exons, belonging to three distinct transcription units. Its maturation requires two cis- and two trans-splicing events. These steps need to be performed in a very precise order to generate a functional transcript. Here, we characterize two pentatricopeptide repeat proteins, ORGANELLE TRANSCRIPT PROCESSING439 and TANG2, and show that they are involved in the removal of nad5 introns 2 and 3, respectively. To our knowledge, they are the first two specific nad5 splicing factors found in plants so far. PMID:24958715

  18. The Pentatricopeptide Repeat Proteins TANG2 and ORGANELLE TRANSCRIPT PROCESSING439 Are Involved in the Splicing of the Multipartite nad5 Transcript Encoding a Subunit of Mitochondrial Complex I.

    PubMed

    Colas des Francs-Small, Catherine; Falcon de Longevialle, Andéol; Li, Yunhai; Lowe, Elizabeth; Tanz, Sandra K; Smith, Caroline; Bevan, Michael W; Small, Ian

    2014-06-23

    Pentatricopeptide repeat proteins constitute a large family of RNA-binding proteins in higher plants (around 450 genes in Arabidopsis [Arabidopsis thaliana]), mostly targeted to chloroplasts and mitochondria. Many of them are involved in organelle posttranscriptional processes, in a very specific manner. Splicing is necessary to remove the group II introns, which interrupt the coding sequences of several genes encoding components of the mitochondrial respiratory chain. The nad5 gene is fragmented in five exons, belonging to three distinct transcription units. Its maturation requires two cis- and two trans-splicing events. These steps need to be performed in a very precise order to generate a functional transcript. Here, we characterize two pentatricopeptide repeat proteins, ORGANELLE TRANSCRIPT PROCESSING439 and TANG2, and show that they are involved in the removal of nad5 introns 2 and 3, respectively. To our knowledge, they are the first two specific nad5 splicing factors found in plants so far. PMID:24958715

  19. Protein Interactions Involved in tRNA Gene-Specific Integration of Dictyostelium discoideum Non-Long Terminal Repeat Retrotransposon TRE5-A▿

    PubMed Central

    Chung, Thanh; Siol, Oliver; Dingermann, Theodor; Winckler, Thomas

    2007-01-01

    Mobile genetic elements that reside in gene-dense genomes face the problem of avoiding devastating insertional mutagenesis of genes in their host cell genomes. To meet this challenge, some Saccharomyces cerevisiae long terminal repeat (LTR) retrotransposons have evolved targeted integration at safe sites in the immediate vicinity of tRNA genes. Integration of yeast Ty3 is mediated by interactions of retrotransposon protein with the tRNA gene-specific transcription factor IIIB (TFIIIB). In the genome of the social amoeba Dictyostelium discoideum, the non-LTR retrotransposon TRE5-A integrates ∼48 bp upstream of tRNA genes, yet little is known about how the retrotransposon identifies integration sites. Here, we show direct protein interactions of the TRE5-A ORF1 protein with subunits of TFIIIB, suggesting that ORF1p is a component of the TRE5-A preintegration complex that determines integration sites. Our results demonstrate that evolution has put forth similar solutions to prevent damage of diverse, compact genomes by different classes of mobile elements. PMID:17923679

  20. Identification of amino acid residues of a designed ankyrin repeat protein potentially involved in intermolecular interactions with CD4: analysis by molecular dynamics simulations.

    PubMed

    Nimmanpipug, Piyarat; Khampa, Chalermpon; Lee, Vannajan Sanghiran; Nangola, Sawitree; Tayapiwatana, Chatchai

    2011-11-01

    We applied molecular dynamics simulations to investigate the binding properties of a designed ankyrin repeat protein, the DARPin-CD4 complex. DARPin 23.2 has been reported to disturb the human immunodeficiency virus (HIV) viral entry process by Schweizer et al. The protein docking simulation was analysed by comparing the specific ankyrin binder (DARPin 23.2) to an irrelevant control (2JAB) in forming a composite with CD4. To determine the binding free energy of both ankyrins, the MM/PBSA and MM/GBSA protocols were used. The free energy decomposition of both complexes were analysed to explore the role of certain amino acid residues in complex configuration. Interestingly, the molecular docking analysis of DARPin 23.2 revealed a similar CD4 interaction regarding the gp120 theoretical anchoring motif. In contrast, the binding of control ankyrin to CD4 occurred at a different location. This observation suggests that there is an advantage to the molecular modification of DARPin 23.2, an enhanced affinity for CD4. PMID:21962990

  1. Genetic Screen of a Library of Chimeric Poxviruses Identifies an Ankyrin Repeat Protein Involved in Resistance to the Avian Type I Interferon Response

    PubMed Central

    Buttigieg, Karen; Laidlaw, Stephen M.; Ross, Craig; Davies, Marc; Goodbourn, Stephen

    2013-01-01

    Viruses must be able to resist host innate responses, especially the type I interferon (IFN) response. They do so by preventing the induction or activity of IFN and/or by resisting the antiviral effectors that it induces. Poxviruses are no exception, with many mechanisms identified whereby mammalian poxviruses, notably, vaccinia virus (VACV), but also cowpox and myxoma viruses, are able to evade host IFN responses. Similar mechanisms have not been described for avian poxviruses (avipoxviruses). Restricted for permissive replication to avian hosts, they have received less attention; moreover, the avian host responses are less well characterized. We show that the prototypic avipoxvirus, fowlpox virus (FWPV), is highly resistant to the antiviral effects of avian IFN. A gain-of-function genetic screen identified fpv014 to contribute to increased resistance to exogenous recombinant chicken alpha IFN (ChIFN1). fpv014 is a member of the large family of poxvirus (especially avipoxvirus) genes that encode proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. By binding the Skp1/cullin-1 complex, the F box in such proteins appears to target ligands bound by the ANKs for ubiquitination. Mass spectrometry and immunoblotting demonstrated that tandem affinity-purified, tagged fpv014 was complexed with chicken cullin-1 and Skp1. Prior infection with an fpv014-knockout mutant of FWPV still blocked transfected poly(I·C)-mediated induction of the beta IFN (ChIFN2) promoter as effectively as parental FWPV, but the mutant was more sensitive to exogenous ChIFN1. Therefore, unlike the related protein fpv012, fpv014 does not contribute to the FWPV block to induction of ChIFN2 but does confer resistance to an established antiviral state. PMID:23427151

  2. Genetic screen of a library of chimeric poxviruses identifies an ankyrin repeat protein involved in resistance to the avian type I interferon response.

    PubMed

    Buttigieg, Karen; Laidlaw, Stephen M; Ross, Craig; Davies, Marc; Goodbourn, Stephen; Skinner, Michael A

    2013-05-01

    Viruses must be able to resist host innate responses, especially the type I interferon (IFN) response. They do so by preventing the induction or activity of IFN and/or by resisting the antiviral effectors that it induces. Poxviruses are no exception, with many mechanisms identified whereby mammalian poxviruses, notably, vaccinia virus (VACV), but also cowpox and myxoma viruses, are able to evade host IFN responses. Similar mechanisms have not been described for avian poxviruses (avipoxviruses). Restricted for permissive replication to avian hosts, they have received less attention; moreover, the avian host responses are less well characterized. We show that the prototypic avipoxvirus, fowlpox virus (FWPV), is highly resistant to the antiviral effects of avian IFN. A gain-of-function genetic screen identified fpv014 to contribute to increased resistance to exogenous recombinant chicken alpha IFN (ChIFN1). fpv014 is a member of the large family of poxvirus (especially avipoxvirus) genes that encode proteins containing N-terminal ankyrin repeats (ANKs) and C-terminal F-box-like motifs. By binding the Skp1/cullin-1 complex, the F box in such proteins appears to target ligands bound by the ANKs for ubiquitination. Mass spectrometry and immunoblotting demonstrated that tandem affinity-purified, tagged fpv014 was complexed with chicken cullin-1 and Skp1. Prior infection with an fpv014-knockout mutant of FWPV still blocked transfected poly(I·C)-mediated induction of the beta IFN (ChIFN2) promoter as effectively as parental FWPV, but the mutant was more sensitive to exogenous ChIFN1. Therefore, unlike the related protein fpv012, fpv014 does not contribute to the FWPV block to induction of ChIFN2 but does confer resistance to an established antiviral state. PMID:23427151

  3. Rapid automatic detection and alignment of repeats in protein sequences.

    PubMed

    Heger, A; Holm, L

    2000-11-01

    Many large proteins have evolved by internal duplication and many internal sequence repeats correspond to functional and structural units. We have developed an automatic algorithm, RADAR, for segmenting a query sequence into repeats. The segmentation procedure has three steps: (i) repeat length is determined by the spacing between suboptimal self-alignment traces; (ii) repeat borders are optimized to yield a maximal integer number of repeats, and (iii) distant repeats are validated by iterative profile alignment. The method identifies short composition biased as well as gapped approximate repeats and complex repeat architectures involving many different types of repeats in the query sequence. No manual intervention and no prior assumptions on the number and length of repeats are required. Comparison to the Pfam-A database indicates good coverage, accurate alignments, and reasonable repeat borders. Screening the Swissprot database revealed 3,000 repeats not annotated in existing domain databases. A number of these repeats had been described in the literature but most were novel. This illustrates how in times when curated databases grapple with ever increasing backlogs, automatic (re)analysis of sequences provides an efficient way to capture this important information. PMID:10966575

  4. U-box protein carboxyl terminus of Hsc70-interacting protein (CHIP) mediates poly-ubiquitylation preferentially on four-repeat Tau and is involved in neurodegeneration of tauopathy.

    PubMed

    Hatakeyama, Shigetsugu; Matsumoto, Masaki; Kamura, Takumi; Murayama, Miyuki; Chui, Du-Hua; Planel, Emmanuel; Takahashi, Ryosuke; Nakayama, Keiichi I; Takashima, Akihiko

    2004-10-01

    Neurofibrillary tangles (NFTs), which are composed of hyperphosphorylated and ubiquitylated tau, are exhibited at regions where neuronal loss occurs in neurodegenerative diseases; however, the mechanisms of NFT formation remain unknown. Molecular studies of frontotemporal dementia with parkinsonism-17 demonstrated that increasing the ratio of tau with exon 10 insertion induced fibrillar tau accumulation. Here, we show that carboxyl terminus of Hsc70-interacting protein (CHIP), a U-box protein, recognizes the microtubule-binding repeat region of tau and preferentially ubiquitylates four-repeat tau compared with three-repeat tau. Overexpression of CHIP induced the prompt degradation of tau, reduced the formation of detergent-insoluble tau and inhibited proteasome inhibitor-induced cell death. NFT bearing neurons in progressive supranuclear palsy, in which four-repeat tau is a component, showed the accumulation of CHIP. Thus, CHIP is a ubiquitin ligase for four-repeat tau and maintains neuronal survival by regulating the quality control of tau in neurons. PMID:15447663

  5. The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1.

    PubMed

    Bustos, Victor H; Ferrarese, Anna; Venerando, Andrea; Marin, Oriano; Allende, Jorge E; Pinna, Lorenzo A

    2006-12-26

    Multiple phosphorylation of beta-catenin by glycogen synthase kinase 3 (GSK3) in the Wnt pathway is primed by CK1 through phosphorylation of Ser-45, which lacks a typical CK1 canonical sequence. Synthetic peptides encompassing amino acids 38-64 of beta-catenin are phosphorylated by CK1 on Ser-45 with low affinity (K(m) approximately 1 mM), whereas intact beta-catenin is phosphorylated at Ser-45 with very high affinity (K(m) approximately 200 nM). Peptides extended to include a putative CK1 docking motif (FXXXF) at 70-74 positions or a F74AA mutation in full-length beta-catenin had no significant effect on CK1 phosphorylation efficiency. beta-Catenin C-terminal deletion mutants up to residue 181 maintained their high affinity, whereas removal of the 131-181 fragment, corresponding to the first armadillo repeat, was deleterious, resulting in a 50-fold increase in K(m) value. Implication of the first armadillo repeat in beta-catenin targeting by CK1 is supported in that the Y142E mutation, which mimics phosphorylation of Tyr-142 by tyrosine kinases and promotes dissociation of beta-catenin from alpha-catenin, further improves CK1 phosphorylation efficiency, lowering the K(m) value to <50 nM, approximating the physiological concentration of beta-catenin. In contrast, alpha-catenin, which interacts with the N-terminal region of beta-catenin, prevents Ser-45 phosphorylation of CK1 in a dose-dependent manner. Our data show that the integrity of the N-terminal region and the first armadillo repeat are necessary and sufficient for high-affinity phosphorylation by CK1 of Ser-45. They also suggest that beta-catenin association with alpha-catenin and beta-catenin phosphorylation by CK1 at Ser-45 are mutually exclusive. PMID:17172446

  6. Control of repeat protein curvature by computational protein design

    PubMed Central

    Park, Keunwan; Shen, Betty W.; Parmeggiani, Fabio; Huang, Po-Ssu; Stoddard, Barry L.; Baker, David

    2014-01-01

    Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat protein scaffolds, and apply it to leucine rich repeat proteins. First, a set of self-compatible building block modules are designed that when polymerized each generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom designed shapes are generated by appropriately combining building block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat protein curvature. PMID:25580576

  7. Nanostructured functional films from engineered repeat proteins

    PubMed Central

    Grove, Tijana Z.; Regan, Lynne; Cortajarena, Aitziber L.

    2013-01-01

    Fundamental advances in biotechnology, medicine, environment, electronics and energy require methods for precise control of spatial organization at the nanoscale. Assemblies that rely on highly specific biomolecular interactions are an attractive approach to form materials that display novel and useful properties. Here, we report on assembly of films from the designed, rod-shaped, superhelical, consensus tetratricopeptide repeat protein (CTPR). We have designed three peptide-binding sites into the 18 repeat CTPR to allow for further specific and non-covalent functionalization of films through binding of fluorescein labelled peptides. The fluorescence signal from the peptide ligand bound to the protein in the solid film is anisotropic, demonstrating that CTPR films can impose order on otherwise isotropic moieties. Circular dichroism measurements show that the individual protein molecules retain their secondary structure in the film, and X-ray scattering, birefringence and atomic force microscopy experiments confirm macroscopic alignment of CTPR molecules within the film. This work opens the door to the generation of innovative biomaterials with tailored structure and function. PMID:23594813

  8. Repeating covalent structure of streptococcal M protein.

    PubMed Central

    Beachey, E H; Seyer, J M; Kang, A H

    1978-01-01

    We have attempted to identify the covalent structure of the M protein molecule of group A streptococci that is responsible for inducing type-specific, protective immunity. M protein was extracted from type 24 streptococci, purified, and cleaved with cyanogen bromide. Seven cyanogen bromide peptides were purified and further characterized. Together, the peptides account for the entire amino acid content of the M protein molecule. Each of the purified peptides possessed the type-specific determinant that inhibits opsonic antibodies for group A streptococci. The primary structures of the amino-terminal regions of each of the purified peptides was studied by automated Edman degradation. The partial sequences of two of the peptides were found to be identical to each other and to that of the uncleaved M protein molecule through at least the first 27 residues. The amino-terminal sequences of the remaining five peptides were identical to each other through the twentieth residue but completely different from the amino-terminal region of the other two peptides. However, the type-specific immunoreactivity and the incomplete analysis of the primary structure of the seven peptides suggest that the antiphagocytic determinant resides in a repeating amino acid sequence in the M protein molecule. PMID:80011

  9. All Repeats are Not Equal: A Module-Based Approach to Guide Repeat Protein Design

    PubMed Central

    Regan, Lynne

    2013-01-01

    Repeat proteins composed of tandem arrays of a short structural motif often mediate protein-protein interactions. Past efforts to design repeat protein-based molecular recognition tools have focused on the creation of templates from the consensus of individual repeats, regardless of their natural context. Such an approach assumes that all repeats are essentially equivalent. In this study we present the results of a ‘module-based’ approach, in which modules composed of tandem repeats are aligned to identify repeat-specific features. Using this approach to analyze tetratricopeptide repeat modules that contain 3 tandem repeats (3TPRs), we identify two classes of 3TPR modules with distinct structural signatures that are correlated with different sets of functional residues. Our analyses also reveal a high degree of correlation between positions across the entire ligand-binding surface, indicative of a coordinated, coevolving binding surface. Extension of our analyses to different repeat protein modules reveals more examples of repeat-specific features, especially in armadillio repeat (ARM) modules. In summary, the module-based analyses that we present effectively capture key repeat-specific features that will be important to include in future repeat protein design templates. PMID:23434848

  10. Structural and Energetic Characterization of the Ankyrin Repeat Protein Family

    PubMed Central

    Parra, R. Gonzalo; Espada, Rocío; Verstraete, Nina; Ferreiro, Diego U.

    2015-01-01

    Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins. PMID:26691182

  11. Downregulation of a barley (Hordeum vulgare) leucine-rich repeat, non-arginine-aspartate receptor-like protein kinase reduces expression of numerous genes involved in plant pathogen defense.

    PubMed

    Parrott, David L; Huang, Li; Fischer, Andreas M

    2016-03-01

    Pattern recognition receptors represent a first line of plant defense against pathogens. Comparing the flag leaf transcriptomes of barley (Hordeum vulgare L.) near-isogenic lines varying in the allelic state of a locus controlling senescence, we have previously identified a leucine-rich repeat receptor-like protein kinase gene (LRR-RLK; GenBank accession: AK249842), which was strongly upregulated in leaves of early-as compared to late-senescing germplasm. Bioinformatic analysis indicated that this gene codes for a subfamily XII, non-arginine-aspartate (non-RD) LRR-RLK. Virus-induced gene silencing resulted in a two-fold reduction of transcript levels as compared to controls. Transcriptomic comparison of leaves from untreated plants, from plants treated with virus only without any plant sequences (referred to as 'empty virus' control), and from plants in which AK249842 expression was knocked down identified numerous genes involved in pathogen defense. These genes were strongly induced in 'empty virus' as compared to untreated controls, but their expression was significantly reduced (again compared to 'empty virus' controls) when AK249842 was knocked down, indicating that their expression partially depends on the LRR-RLK investigated here. Expression analysis, using datasets from BarleyBase/PLEXdb, demonstrated that AK249842 transcript levels are heavily influenced by the allelic state of the well-characterized mildew resistance a (Mla) locus, and that the gene is induced after powdery mildew and stem rust infection. Together, our data suggest that AK249842 is a barley pattern recognition receptor with a tentative role in defense against fungal pathogens, setting the stage for its full functional characterization. PMID:26820571

  12. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.

    PubMed

    Millership, C; Phillips, J J; Main, E R G

    2016-05-01

    Repeat proteins are formed from units of 20-40 aa that stack together into quasi one-dimensional non-globular structures. This modular repetitive construction means that, unlike globular proteins, a repeat protein's equilibrium folding and thus thermodynamic stability can be analysed using linear Ising models. Typically, homozipper Ising models have been used. These treat the repeat protein as a series of identical interacting subunits (the repeated motifs) that couple together to form the folded protein. However, they cannot describe subunits of differing stabilities. Here we show that a more sophisticated heteropolymer Ising model can be constructed and fitted to two new helix deletion series of consensus tetratricopeptide repeat proteins (CTPRs). This analysis, showing an asymmetric spread of stability between helices within CTPR ensembles, coupled with the Ising model's predictive qualities was then used to guide reprogramming of the unfolding pathway of a variant CTPR protein. The designed behaviour was engineered by introducing destabilising mutations that increased the thermodynamic asymmetry within a CTPR ensemble. The asymmetry caused the terminal α-helix to thermodynamically uncouple from the rest of the protein and preferentially unfold. This produced a specific, highly populated stable intermediate with a putative dimerisation interface. As such it is the first step in designing repeat proteins with function regulated by a conformational switch. PMID:26947150

  13. Tandem-repeat protein domains across the tree of life

    PubMed Central

    Jernigan, Kristin K.

    2015-01-01

    Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20–40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM) and tetratricopeptide (TPR) repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK) repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species. PMID:25653910

  14. A general computational approach for repeat protein design.

    PubMed

    Parmeggiani, Fabio; Huang, Po-Ssu; Vorobiev, Sergey; Xiao, Rong; Park, Keunwan; Caprari, Silvia; Su, Min; Seetharaman, Jayaraman; Mao, Lei; Janjua, Haleema; Montelione, Gaetano T; Hunt, John; Baker, David

    2015-01-30

    Repeat proteins have considerable potential for use as modular binding reagents or biomaterials in biomedical and nanotechnology applications. Here we describe a general computational method for building idealized repeats that integrates available family sequences and structural information with Rosetta de novo protein design calculations. Idealized designs from six different repeat families were generated and experimentally characterized; 80% of the proteins were expressed and soluble and more than 40% were folded and monomeric with high thermal stability. Crystal structures determined for members of three families are within 1Å root-mean-square deviation to the design models. The method provides a general approach for fast and reliable generation of stable modular repeat protein scaffolds. PMID:25451037

  15. A General Computational Approach for Repeat Protein Design

    PubMed Central

    Parmeggiani, Fabio; Huang, Po-Ssu; Vorobiev, Sergey; Xiao, Rong; Park, Keunwan; Caprari, Silvia; Su, Min; Jayaraman, Seetharaman; Mao, Lei; Janjua, Haleema; Montelione, Gaetano T.; Hunt, John; Baker, David

    2014-01-01

    Repeat proteins have considerable potential for use as modular binding reagents or biomaterials in biomedical and nanotechnology applications. Here we describe a general computational method for building idealized repeats that integrates available family sequences and structural information with Rosetta de novo protein design calculations. Idealized designs from six different repeat families were generated and experimentally characterized; 80% of the proteins were expressed and soluble and more than 40% were folded and monomeric with high thermal stability. Crystal structures determined for members of three families are within 1 Å root-mean-square deviation to the design models. The method provides a general approach for fast and reliable generation of stable modular repeat protein scaffolds. PMID:25451037

  16. Structures of designed armadillo-repeat proteins show propagation of inter-repeat interface effects

    PubMed Central

    Reichen, Christian; Madhurantakam, Chaithanya; Hansen, Simon; Grütter, Markus G.; Plückthun, Andreas; Mittl, Peer R. E.

    2016-01-01

    The armadillo repeat serves as a scaffold for the development of modular peptide-recognition modules. In order to develop such a system, three crystal structures of designed armadillo-repeat proteins with third-generation N-caps (YIII-type), four or five internal repeats (M-type) and second-generation C-caps (AII-type) were determined at 1.8 Å (His-YIIIM4AII), 2.0 Å (His-YIIIM5AII) and 1.95 Å (YIIIM5AII) resolution and compared with those of variants with third-generation C-caps. All constructs are full consensus designs in which the internal repeats have exactly the same sequence, and hence identical conformations of the internal repeats are expected. The N-cap and internal repeats M1 to M3 are indeed extremely similar, but the comparison reveals structural differences in internal repeats M4 and M5 and the C-cap. These differences are caused by long-range effects of the C-cap, contacting molecules in the crystal, and the intrinsic design of the repeat. Unfortunately, the rigid-body movement of the C-terminal part impairs the regular arrangement of internal repeats that forms the putative peptide-binding site. The second-generation C-cap improves the packing of buried residues and thereby the stability of the protein. These considerations are useful for future improvements of an armadillo-repeat-based peptide-recognition system. PMID:26894544

  17. Structures of designed armadillo-repeat proteins show propagation of inter-repeat interface effects.

    PubMed

    Reichen, Christian; Madhurantakam, Chaithanya; Hansen, Simon; Grütter, Markus G; Plückthun, Andreas; Mittl, Peer R E

    2016-01-01

    The armadillo repeat serves as a scaffold for the development of modular peptide-recognition modules. In order to develop such a system, three crystal structures of designed armadillo-repeat proteins with third-generation N-caps (YIII-type), four or five internal repeats (M-type) and second-generation C-caps (AII-type) were determined at 1.8 Å (His-YIIIM4AII), 2.0 Å (His-YIIIM5AII) and 1.95 Å (YIIIM5AII) resolution and compared with those of variants with third-generation C-caps. All constructs are full consensus designs in which the internal repeats have exactly the same sequence, and hence identical conformations of the internal repeats are expected. The N-cap and internal repeats M1 to M3 are indeed extremely similar, but the comparison reveals structural differences in internal repeats M4 and M5 and the C-cap. These differences are caused by long-range effects of the C-cap, contacting molecules in the crystal, and the intrinsic design of the repeat. Unfortunately, the rigid-body movement of the C-terminal part impairs the regular arrangement of internal repeats that forms the putative peptide-binding site. The second-generation C-cap improves the packing of buried residues and thereby the stability of the protein. These considerations are useful for future improvements of an armadillo-repeat-based peptide-recognition system. PMID:26894544

  18. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins.

    PubMed

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P; Zhao, Zhendong; Wang, Yejun

    2016-08-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  19. WDSPdb: a database for WD40-repeat proteins

    PubMed Central

    Wang, Yang; Hu, Xue-Jia; Zou, Xu-Dong; Wu, Xian-Hui; Ye, Zhi-Qiang; Wu, Yun-Dong

    2015-01-01

    WD40-repeat proteins, as one of the largest protein families, often serve as platforms to assemble functional complexes through the hotspot residues on their domain surfaces, and thus play vital roles in many biological processes. Consequently, it is highly required for researchers who study WD40 proteins and protein–protein interactions to obtain structural information of WD40 domains. Systematic identification of WD40-repeat proteins, including prediction of their secondary structures, tertiary structures and potential hotspot residues responsible for protein–protein interactions, may constitute a valuable resource upon this request. To achieve this goal, we developed a specialized database WDSPdb (http://wu.scbb.pkusz.edu.cn/wdsp/) to provide these details of WD40-repeat proteins based on our recently published method WDSP. The WDSPdb contains 63 211 WD40-repeat proteins identified from 3383 species, including most well-known model organisms. To better serve the community, we implemented a user-friendly interactive web interface to browse, search and download the secondary structures, 3D structure models and potential hotspot residues provided by WDSPdb. PMID:25348404

  20. Capping motifs stabilize the leucine-rich repeat protein PP32 and rigidify adjacent repeats.

    PubMed

    Dao, Thuy P; Majumdar, Ananya; Barrick, Doug

    2014-06-01

    Capping motifs are found to flank most β-strand-containing repeat proteins. To better understand the roles of these capping motifs in organizing structure and stability, we carried out folding and solution NMR studies on the leucine-rich repeat (LRR) domain of PP32, which is composed of five tandem LRR, capped by α-helical and β-hairpin motifs on the N- and C-termini. We were able to purify PP32 constructs lacking either cap and containing destabilizing substitutions. Removing the C-cap results in complete unfolding of PP32. Removing the N-cap has a much less severe effect, decreasing stability but retaining much of its secondary structure. In contrast, the dynamics and tertiary structure of the first two repeats are significantly perturbed, based on (1)H-(15)N relaxation studies, chemical shift perturbations, and residual dipolar couplings. However, more distal repeats (3 to C-cap) retain their native tertiary structure. In this regard, the N-cap drives the folding of adjacent repeats from what appears to be a molten-globule-like state. This interpretation is supported by extensive analysis using core packing substitutions in the full-length and N-cap-truncated PP32. This work highlights the importance of caps to the stability and structural integrity of β-strand-containing LRR proteins, and emphasizes the different contributions of the N- and C-terminal caps. PMID:24659532

  1. Amino acid repeats and the structure and evolution of proteins.

    PubMed

    Albà, M M; Tompa, P; Veitia, R A

    2007-01-01

    Many proteins have repeats or runs of single amino acids. The pathogenicity of some repeat expansions has fueled proteomic, genomic and structural explorations of homopolymeric runs not only in human but in a wide variety of other organisms. Other types of amino acid repetitive structures exhibit more complex patterns than homopeptides. Irrespective of their precise organization, repetitive sequences are defined as low complexity or simple sequences, as one or a few residues are particularly abundant. Prokaryotes show a relatively low frequency of simple sequences compared to eukaryotes. In the latter the percentage of proteins containing homopolymeric runs varies greatly from one group to another. For instance, within vertebrates, amino acid repeat frequency is much higher in mammals than in amphibians, birds or fishes. For some repeats, this is correlated with the GC-richness of the regions containing the corresponding genes. Homopeptides tend to occur in disordered regions of transcription factors or developmental proteins. They can trigger the formation of protein aggregates, particularly in 'disease' proteins. Simple sequences seem to evolve more rapidly than the rest of the protein/gene and may have a functional impact. Therefore, they are good candidates to promote rapid evolutionary changes. All these diverse facets of homopolymeric runs are explored in this review. PMID:18753788

  2. The first crystal structure of an archaeal helical repeat protein

    PubMed Central

    Yoneda, Kazunari; Sakuraba, Haruhiko; Tsuge, Hideaki; Katunuma, Nobuhiko; Kuramitsu, Seiki; Kawabata, Takeshi; Ohshima, Toshihisa

    2005-01-01

    The crystal structure of ST1625p, a protein encoded by a hypothetical open reading frame ST1625 in the genome of the hyperthermophilic archaeon Sulfolobus tokodaii, was determined at 2.2 Å resolution. The only sequence similarity exhibited by the amino-acid sequence of ST1625p was a 33% identity with the sequence of SSO0983p from S. solfataricus. The 19 kDa monomeric protein was observed to consist of a right-handed superhelix assembled from a tandem repeat of ten α-­helices. A structural homology search using the DALI and MATRAS algorithms indicates that this protein can be classified as a helical repeat protein. PMID:16511116

  3. Structural Studies of a Four-MBT Repeat Protein MBTD1

    SciTech Connect

    Eryilmaz, Jitka; Pan, Patricia; Amaya, Maria F.; Allali-Hassani, Abdellah; Dong, Aiping; Adams-Cioaba, Melanie A.; MacKenzie, Farrell; Vedadi, Masoud; Min, Jinrong

    2010-08-17

    The Polycomb group (PcG) of proteins is a family of important developmental regulators. The respective members function as large protein complexes involved in establishment and maintenance of transcriptional repression of developmental control genes. MBTD1, Malignant Brain Tumor domain-containing protein 1, is one such PcG protein. MBTD1 contains four MBT repeats. We have determined the crystal structure of MBTD1 (residues 130-566aa covering the 4 MBT repeats) at 2.5 {angstrom} resolution by X-ray crystallography. The crystal structure of MBTD1 reveals its similarity to another four-MBT-repeat protein L3MBTL2, which binds lower methylated lysine histones. Fluorescence polarization experiments confirmed that MBTD1 preferentially binds mono- and di-methyllysine histone peptides, like L3MBTL1 and L3MBTL2. All known MBT-peptide complex structures characterized to date do not exhibit strong histone peptide sequence selectivity, and use a 'cavity insertion recognition mode' to recognize the methylated lysine with the deeply buried methyl-lysine forming extensive interactions with the protein while the peptide residues flanking methyl-lysine forming very few contacts. Nevertheless, our mutagenesis data based on L3MBTL1 suggested that the histone peptides could not bind to MBT repeats in any orientation. The four MBT repeats in MBTD1 exhibits an asymmetric rhomboid architecture. Like other MBT repeat proteins characterized so far, MBTD1 binds mono- or dimethylated lysine histones through one of its four MBT repeats utilizing a semi-aromatic cage.

  4. Protein landscape at Drosophila melanogaster telomere-associated sequence repeats.

    PubMed

    Antão, José M; Mason, James M; Déjardin, Jérôme; Kingston, Robert E

    2012-06-01

    The specific set of proteins bound at each genomic locus contributes decisively to regulatory processes and to the identity of a cell. Understanding of the function of a particular locus requires the knowledge of what factors interact with that locus and how the protein composition changes in different cell types or during the response to internal and external signals. Proteomic analysis of isolated chromatin segments (PICh) was developed as a tool to target, purify, and identify proteins associated with a defined locus and was shown to allow the purification of human telomeric chromatin. Here we have developed this method to identify proteins that interact with the Drosophila telomere-associated sequence (TAS) repeats. Several of the purified factors were validated as novel TAS-bound proteins by chromatin immunoprecipitation, and the Brahma complex was confirmed as a dominant modifier of telomeric position effect through the use of a genetic test. These results offer information on the efficacy of applying the PICh protocol to loci with sequence more complex than that found at human telomeres and identify proteins that bind to the TAS repeats, which might contribute to TAS biology and chromatin silencing. PMID:22493064

  5. A designed repeat protein as an affinity capture reagent.

    PubMed

    Speltz, Elizabeth B; Brown, Rebecca S H; Hajare, Holly S; Schlieker, Christian; Regan, Lynne

    2015-10-01

    Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class: tetratricopeptide repeat (TPR) proteins. In previous work, we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena (2011) Prot. Sci. 20: , 1042-1047; Main (2003) Structure 11: , 497-508]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena (2009) ACS Chem. Biol. 5: , 545-552; Cortajarena (2008) ACS Chem. Biol. 3: , 161-166; Jackrel (2009) Prot. Sci. 18: , 762-774; Kajander (2007) Acta Crystallogr. D Biol. Crystallogr. 63: , 800-811]. Here we focus on the development of one such TPR-peptide interaction for a practical application, affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications. PMID:26517897

  6. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  7. PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression.

    PubMed

    Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M A

    2008-11-15

    Genes encoding PPR (pentatricopeptide repeat)-containing proteins constitute one of the largest gene families in plants. The majority of these proteins are predicted to target organelles and to bind to RNA. Strikingly, there is a dearth of these proteins in mammals, although genomic searches reveal six candidates, all of which are also predicted to target the mitochondrion. Two of these proteins, POLRMT (the mitochondrial RNA polymerase) and MRPS27, a mitoribosomal protein, are involved in transcription and translation respectively. PTCD1 (pentatricopeptide repeat domain protein 1) and PTCD3 are predicted to be involved in the assembly of respiratory chain complexes, whereas mutations in one other protein, LRPPRC (leucine-rich pentatricopeptide repeat cassette), have been shown to cause defects in the levels of cytochrome c oxidase, the terminal member of the respiratory chain. In this issue of the Biochemical Journal, Xu et al. turn their attention to the remaining candidate, PTCD2. Depletion in a mouse model led to deficiencies of the third complex of the respiratory chain that caused profound ultrastructural changes in the heart. The exact molecular function of PTCD2 remains unclear, but depletion leads to an apparent lack of processing of the mitochondrial transcript encoding apocytochrome b, a critical member of complex III. These data are consistent with PTCD2 playing an important role in the post-transcriptional expression of the mitochondrial genome. PMID:18939947

  8. Analysis of genomic rearrangements associated with EGRFvIII expression suggests involvement of Alu repeat elements.

    PubMed Central

    Frederick, L.; Eley, G.; Wang, X. Y.; James, C. D.

    2000-01-01

    We have developed a polymerase chain reaction (PCR)-based strategy for the synthesis and analysis of rearranged epidermal growth factor receptor (EGFR) fragments associated with the vIII mutant receptor expressed in glioblastomas with EGFR amplification. The sequencing of aberrant tumor fragments showed that intragenic deletion rearrangements consistently involve an approximately 600-bp region in intron 7 of EGFR and several rearrangement sites interspersed throughout the large (>100 kb) first intron of this gene. Examination of the intron 7 breakpoint region revealed an Alu repeat element, and all intron 7 rearrangement sites were located within or downstream of this repeat sequence. Analysis of intron 1 for similar sequences resulted in the identification of 11 sites containing >80% homology with parts of the Alu element in intron 7. Reverse transcriptase-PCR and/or Western analysis of the tumors showed the presence of EGFRvIII cDNAs and/or proteins, respectively, in all cases for which a rearranged genomic fragment was generated by long-range PCR. Collectively, these data suggest that EGFR rearrangements, associated with the synthesis of the most common EGFR mutant, are mediated by a specific sequence element. PMID:11302336

  9. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  10. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins

    PubMed Central

    Ridler, Charlotte E.; Clayton, Emma L.; Devoy, Anny; Moens, Thomas; Norona, Frances E.; Woollacott, Ione O.C.; Pietrzyk, Julian; Cleverley, Karen; Nicoll, Andrew J.; Pickering-Brown, Stuart; Dols, Jacqueline; Cabecinha, Melissa; Hendrich, Oliver; Fratta, Pietro; Fisher, Elizabeth M.C.; Partridge, Linda; Isaacs, Adrian M.

    2016-01-01

    An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats in Drosophila caused adult-onset neurodegeneration attributable to poly-(glycine-arginine) proteins. Thus expanded repeats promoted neurodegeneration through neurotoxic proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence showed both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration. PMID:25103406

  11. Tandem Repeats in Proteins: Prediction Algorithms and Biological Role.

    PubMed

    Pellegrini, Marco

    2015-01-01

    Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR. PMID:26442257

  12. Tandem Repeats in Proteins: Prediction Algorithms and Biological Role

    PubMed Central

    Pellegrini, Marco

    2015-01-01

    Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR. PMID:26442257

  13. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants.

    PubMed

    Sharma, Manisha; Pandey, Girdhar K

    2015-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  14. Analyses of Physcomitrella patens Ankyrin Repeat Proteins by Computational Approach

    PubMed Central

    Mahmood, Niaz; Tamanna, Nahid

    2016-01-01

    Ankyrin (ANK) repeat containing proteins are evolutionary conserved and have functions in crucial cellular processes like cell cycle regulation and signal transduction. In this study, through an entirely in silico approach using the first release of the moss genome annotation, we found that at least 54 ANK proteins are present in P. patens. Based on their differential domain composition, the identified ANK proteins were classified into nine subfamilies. Comparative analysis of the different subfamilies of ANK proteins revealed that P. patens contains almost all the known subgroups of ANK proteins found in the other angiosperm species except for the ones having the TPR domain. Phylogenetic analysis using full length protein sequences supported the subfamily classification where the members of the same subfamily almost always clustered together. Synonymous divergence (dS) and nonsynonymous divergence (dN) ratios showed positive selection for the ANK genes of P. patens which probably helped them to attain significant functional diversity during the course of evolution. Taken together, the data provided here can provide useful insights for future functional studies of the proteins from this superfamily as well as comparative studies of ANK proteins. PMID:27429806

  15. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions.

    PubMed

    Cooper-Knock, Johnathan; Walsh, Matthew J; Higginbottom, Adrian; Robin Highley, J; Dickman, Mark J; Edbauer, Dieter; Ince, Paul G; Wharton, Stephen B; Wilson, Stuart A; Kirby, Janine; Hautbergue, Guillaume M; Shaw, Pamela J

    2014-07-01

    GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyotrophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72+), but not from those patients without a repeat expansion of C9orf72 (C9orf72-) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated with the clinical phenotype (t-test P < 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified foci in fibroblasts from an asymptomatic C9orf72+ carrier. We next performed pulldown assays, with GGGGCC5, in conjunction with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched. Immunohistochemistry in central nervous system tissue from C9orf72+ patients with amyotrophic lateral sclerosis demonstrated co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry

  16. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

    PubMed Central

    Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  17. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals

    PubMed Central

    Prag, Soren; Adams, Josephine C

    2003-01-01

    Background The kelch motif is an ancient and evolutionarily-widespread sequence motif of 44–56 amino acids in length. It occurs as five to seven repeats that form a β-propeller tertiary structure. Over 28 kelch-repeat proteins have been sequenced and functionally characterised from diverse organisms spanning from viruses, plants and fungi to mammals and it is evident from expressed sequence tag, domain and genome databases that many additional hypothetical proteins contain kelch-repeats. In general, kelch-repeat β-propellers are involved in protein-protein interactions, however the modest sequence identity between kelch motifs, the diversity of domain architectures, and the partial information on this protein family in any single species, all present difficulties to developing a coherent view of the kelch-repeat domain and the kelch-repeat protein superfamily. To understand the complexity of this superfamily of proteins, we have analysed by bioinformatics the complement of kelch-repeat proteins encoded in the human genome and have made comparisons to the kelch-repeat proteins encoded in other sequenced genomes. Results We identified 71 kelch-repeat proteins encoded in the human genome, whereas 5 or 8 members were identified in yeasts and around 18 in C. elegans, D. melanogaster and A. gambiae. Multiple domain architectures were identified in each organism, including previously unrecognised forms. The vast majority of kelch-repeat domains are predicted to form six-bladed β-propellers. The most prevalent domain architecture in the metazoan animal genomes studied was the BTB/kelch domain organisation and we uncovered 3 subgroups of human BTB/kelch proteins. Sequence analysis of the kelch-repeat domains of the most robustly-related subgroups identified differences in β-propeller organisation that could provide direction for experimental study of protein-binding characteristics. Conclusion The kelch-repeat superfamily constitutes a distinct and evolutionarily

  18. Helical repeats modular proteins are major players for organelle gene expression.

    PubMed

    Hammani, Kamel; Bonnard, Géraldine; Bouchoucha, Ayoub; Gobert, Anthony; Pinker, Franziska; Salinas, Thalia; Giegé, Philippe

    2014-05-01

    Mitochondria and chloroplasts are often described as semi-autonomous organelles because they have retained a genome. They thus require fully functional gene expression machineries. Many of the required processes going all the way from transcription to translation have specificities in organelles and arose during eukaryote history. Most factors involved in these RNA maturation steps have remained elusive for a long time. The recent identification of a number of novel protein families including pentatricopeptide repeat proteins, half-a-tetratricopeptide proteins, octotricopeptide repeat proteins and mitochondrial transcription termination factors has helped to settle long-standing questions regarding organelle gene expression. In particular, their functions have been related to replication, transcription, RNA processing, RNA editing, splicing, the control of RNA turnover and translation throughout eukaryotes. These families of proteins, although evolutionary independent, seem to share a common overall architecture. For all of them, proteins contain tandem arrays of repeated motifs. Each module is composed of two to three α-helices and their succession forms a super-helix. Here, we review the features characterising these protein families, in particular, their distribution, the identified functions and mode of action and propose that they might share similar substrate recognition mechanisms. PMID:24021622

  19. The evolution and function of protein tandem repeats in plants.

    PubMed

    Schaper, Elke; Anisimova, Maria

    2015-04-01

    Sequence tandem repeats (TRs) are abundant in proteomes across all domains of life. For plants, little is known about their distribution or contribution to protein function. We exhaustively annotated TRs and studied the evolution of TR unit variations for all Ensembl plants. Using phylogenetic patterns of TR units, we detected conserved TRs with unit number and order preserved during evolution, and those TRs that have diverged via recent TR unit gains/losses. We correlated the mode of evolution of TRs to protein function. TR number was strongly correlated with proteome size, with about one-half of all TRs recognized as common protein domains. The majority of TRs have been highly conserved over long evolutionary distances, some since the separation of red algae and green plants c. 1.6 billion yr ago. Conversely, recurrent recent TR unit mutations were rare. Our results suggest that the first TRs by far predate the first plants, and that TR appearance is an ongoing process with similar rates across the plant kingdom. Interestingly, the few detected highly mutable TRs might provide a source of variation for rapid adaptation. In particular, such TRs are enriched in leucine-rich repeats (LRRs) commonly found in R genes, where TR unit gain/loss may facilitate resistance to emerging pathogens. PMID:25420631

  20. Deep Conservation of Human Protein Tandem Repeats within the Eukaryotes

    PubMed Central

    Schaper, Elke; Gascuel, Olivier; Anisimova, Maria

    2014-01-01

    Tandem repeats (TRs) are a major element of protein sequences in all domains of life. They are particularly abundant in mammals, where by conservative estimates one in three proteins contain a TR. High generation-scale duplication and deletion rates were reported for nucleic TR units. However, it is not known whether protein TR units can also be frequently lost or gained providing a source of variation for rapid adaptation of protein function, or alternatively, tend to have conserved TR unit configurations over long evolutionary times. To obtain a systematic picture, we performed a proteome-wide analysis of the mode of evolution for human protein TRs. For this purpose, we propose a novel method for the detection of orthologous TRs based on circular profile hidden Markov models. For all detected TRs, we reconstructed bispecies TR unit phylogenies across 61 eukaryotes ranging from human to yeast. Moreover, we performed additional analyses to correlate functional and structural annotations of human TRs with their mode of evolution. Surprisingly, we find that the vast majority of human TRs are ancient, with TR unit number and order preserved intact since distant speciation events. For example, ≥61% of all human TRs have been strongly conserved at least since the root of all mammals, approximately 300 Ma. Further, we find no human protein TR that shows evidence for strong recent duplications and deletions. The results are in contrast to the high generation-scale mutability of nucleic TRs. Presumably, most protein TRs fold into stable and conserved structures that are indispensable for the function of the TR-containing protein. All of our data and results are available for download from http://www.atgc-montpellier.fr/TRE. PMID:24497029

  1. The impact of CRISPR repeat sequence on structures of a Cas6 protein-RNA complex

    SciTech Connect

    Wang, Ruiying; Zheng, Han; Preamplume, Gan; Shao, Yaming; Li, Hong

    2012-03-15

    The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of a noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.

  2. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae

    PubMed Central

    2012-01-01

    Background Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. Conclusions We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the

  3. Chlorovirus Skp1-Binding Ankyrin Repeat Protein Interplay and Mimicry of Cellular Ubiquitin Ligase Machinery

    PubMed Central

    Noel, Eric A.; Kang, Ming; Adamec, Jiri; Oyler, George A.

    2014-01-01

    ABSTRACT The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. IMPORTANCE Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their

  4. Characterization of Idealized Helical Repeat Proteins in Silicon Nitride Nanopores

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Ledden, Bradley; Talaga, David; Cortajarena, Aitziber; Regan, Lynne

    2012-02-01

    In this work, we report the measurement of consensus tetratricopeptide repeat (CTPR) proteins with single silicon nitride nanopores. The CTPR proteins were measured in KCl solution at pH below and above its isoelectric point (pI), as well as with and without denaturing agent, Guanidine HCl. When a CTPR protein molecule transits through a nanopore driven by an applied voltage, it partially blocks the ions (K^+ and Cl^-) flow in the nanopore and generates a characteristic electric current blockage signal. The current blockage signal reveals information about the size, conformation, and primary sequence of the CTPR protein molecule. Previous translocation studies carried out with DNA have established that higher bias voltages result in shorter duration current blockages indicating that DNA translocates faster at a stronger electric field. However, our CTPR translocation studies show that longer duration current blockades were observed at higher bias voltages. We discuss how the inhomogeneous distribution of the primary charge sequence of the CTPR proteins predicts translocation barriers that are proportional to the bias voltage. Larger barriers at higher bias voltages will result in longer translocation times, consistent with our experimental results.

  5. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins.

    PubMed

    Mori, Kohji; Arzberger, Thomas; Grässer, Friedrich A; Gijselinck, Ilse; May, Stephanie; Rentzsch, Kristin; Weng, Shih-Ming; Schludi, Martin H; van der Zee, Julie; Cruts, Marc; Van Broeckhoven, Christine; Kremmer, Elisabeth; Kretzschmar, Hans A; Haass, Christian; Edbauer, Dieter

    2013-12-01

    Massive GGGGCC repeat expansion in the first intron of the gene C9orf72 is the most common known cause of familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Despite its intronic localization and lack of an ATG start codon, the repeat region is translated in all three reading frames into aggregating dipeptide-repeat (DPR) proteins, poly-(Gly-Ala), poly-(Gly-Pro) and poly-(Gly-Arg). We took an antibody-based approach to further validate the translation of DPR proteins. To test whether the antisense repeat RNA transcript is also translated, we raised antibodies against the predicted products, poly-(Ala-Pro) and poly-(Pro-Arg). Both antibodies stained p62-positive neuronal cytoplasmic inclusions throughout the cerebellum and hippocampus indicating that not only sense but also antisense strand repeats are translated into DPR proteins in the absence of ATG start codons. Protein products of both strands co-aggregate suggesting concurrent translation of both strands. Moreover, an antibody targeting the putative carboxyl terminus of DPR proteins can detect inclusion pathology in C9orf72 repeat expansion carriers suggesting that the non-ATG translation continues through the entire repeat and beyond. A highly sensitive monoclonal antibody against poly-(Gly-Arg), visualized abundant inclusion pathology in all cortical regions and some inclusions also in motoneurons. Together, our data show that the GGGGCC repeat is bidirectionally translated into five distinct DPR proteins that co-aggregate in the characteristic p62-positive TDP-43 negative inclusions found in FTLD/ALS cases with C9orf72 repeat expansion. Novel monoclonal antibodies against poly-(Gly-Arg) will facilitate pathological diagnosis of C9orf72 FTLD/ALS. PMID:24132570

  6. Protein phosphorylation is involved in bacterial chemotaxis.

    PubMed Central

    Hess, J F; Oosawa, K; Matsumura, P; Simon, M I

    1987-01-01

    The nature of the biochemical signal that is involved in the excitation response in bacterial chemotaxis is not known. However, ATP is required for chemotaxis. We have purified all of the proteins involved in signal transduction and show that the product of the cheA gene is rapidly autophosphorylated, while some mutant CheA proteins cannot be phosphorylated. The presence of stoichiometric levels of two other purified components in the chemotaxis system, the CheY and CheZ proteins, induces dephosphorylation. We suggest that the phosphorylation of CheA by ATP plays a central role in signal transduction in chemotaxis. Images PMID:3313398

  7. Reduced hnRNPA3 increases C9orf72 repeat RNA levels and dipeptide-repeat protein deposition.

    PubMed

    Mori, Kohji; Nihei, Yoshihiro; Arzberger, Thomas; Zhou, Qihui; Mackenzie, Ian R; Hermann, Andreas; Hanisch, Frank; Kamp, Frits; Nuscher, Brigitte; Orozco, Denise; Edbauer, Dieter; Haass, Christian

    2016-09-01

    Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat-dependent toxicity may affect nuclear import. hnRNPA3 is a heterogeneous nuclear ribonucleoprotein, which specifically binds to the G4C2 repeat RNA We now report that a reduction of nuclear hnRNPA3 leads to an increase of the repeat RNA as well as DPR production and deposition in primary neurons and a novel tissue culture model that reproduces features of the C9orf72 pathology. In fibroblasts derived from patients carrying extended C9orf72 repeats, nuclear RNA foci accumulated upon reduction of hnRNPA3. Neurons in the hippocampus of C9orf72 patients are frequently devoid of hnRNPA3. Reduced nuclear hnRNPA3 in the hippocampus of patients with extended C9orf72 repeats correlates with increased DPR deposition. Thus, reduced hnRNPA3 expression in C9orf72 cases leads to increased levels of the repeat RNA as well as enhanced production and deposition of DPR proteins and RNA foci. PMID:27461252

  8. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins.

    PubMed

    Ledda, Fernanda; Paratcha, Gustavo

    2016-01-01

    Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders. PMID:27555809

  9. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins

    PubMed Central

    Ledda, Fernanda; Paratcha, Gustavo

    2016-01-01

    Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders. PMID:27555809

  10. A WD-repeat protein stabilizes ORC binding to chromatin.

    PubMed

    Shen, Zhen; Sathyan, Kizhakke M; Geng, Yijie; Zheng, Ruiping; Chakraborty, Arindam; Freeman, Brian; Wang, Fei; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2010-10-01

    Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells. PMID:20932478

  11. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    SciTech Connect

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  12. Structural and Functional Insights into Small, Glutamine-Rich, Tetratricopeptide Repeat Protein Alpha

    PubMed Central

    Roberts, Joanna D.; Thapaliya, Arjun; Martínez-Lumbreras, Santiago; Krysztofinska, Ewelina M.; Isaacson, Rivka L.

    2015-01-01

    The small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA) is an emerging player in the quality control of secretory and membrane proteins mislocalized to the cytosol, with established roles in tail-anchored (TA) membrane protein biogenesis. SGTA consists of three structural domains with individual functions, an N-terminal dimerization domain that assists protein sorting pathways, a central tetratricopeptide repeat (TPR) domain that mediates interactions with heat-shock proteins, proteasomal, and hormonal receptors, and viral proteins, and a C-terminal glutamine rich region that binds hydrophobic substrates. SGTA has been linked to viral lifecycles and hormone receptor signaling, with implications in the pathogenesis of various disease states. Thus far, a range of biophysical techniques have been employed to characterize SGTA structure in some detail, and to investigate its interactions with binding partners in different biological contexts. A complete description of SGTA structure, together with further investigation into its function as a co-chaperone involved quality control, could provide us with useful insights into its role in maintaining cellular proteostasis, and broaden our understanding of mechanisms underlying associated pathologies. This review describes how some structural features of SGTA have been elucidated, and what this has uncovered about its cellular functions. A brief background on the structure and function of SGTA is given, highlighting its importance to biomedicine and related fields. The current level of knowledge and what remains to be understood about the structure and function of SGTA is summarized, discussing the potential direction of future research. PMID:26734616

  13. Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM

    PubMed Central

    Barrick, Doug

    2011-01-01

    Mapping the stability distributions of proteins in their native folded states provides a critical link between structure, thermodynamics, and function. Linear repeat proteins have proven more amenable to this kind of mapping than globular proteins. C-terminal deletion studies of YopM, a large, linear leucine-rich repeat (LRR) protein, show that stability is distributed quite heterogeneously, yet a high level of cooperativity is maintained [1]. Key components of this distribution are three interfaces that strongly stabilize adjacent sequences, thereby maintaining structural integrity and promoting cooperativity. To better understand the distribution of interaction energy around these critical interfaces, we studied internal (rather than terminal) deletions of three LRRs in this region, including one of these stabilizing interfaces. Contrary to our expectation that deletion of structured repeats should be destabilizing, we find that internal deletion of folded repeats can actually stabilize the native state, suggesting that these repeats are destabilizing, although paradoxically, they are folded in the native state. We identified two residues within this destabilizing segment that deviate from the consensus sequence at a position that normally forms a stacked leucine ladder in the hydrophobic core. Replacement of these nonconsensus residues with leucine is stabilizing. This stability enhancement can be reproduced in the context of nonnative interfaces, but it requires an extended hydrophobic core. Our results demonstrate that different LRRs vary widely in their contribution to stability, and that this variation is context-dependent. These two factors are likely to determine the types of rearrangements that lead to folded, functional proteins, and in turn, are likely to restrict the pathways available for the evolution of linear repeat proteins. PMID:21764506

  14. Altered surfactant protein A gene expression and protein metabolism associated with repeat exposure to inhaled endotoxin.

    PubMed

    George, Caroline L S; White, Misty L; O'Neill, Marsha E; Thorne, Peter S; Schwartz, David A; Snyder, Jeanne M

    2003-12-01

    Chronically inhaled endotoxin, which is ubiquitous in many occupational and domestic environments, can adversely affect the respiratory system resulting in an inflammatory response and decreased lung function. Surfactant-associated protein A (SP-A) is part of the lung innate immune system and may attenuate the inflammatory response in various types of lung injury. Using a murine model to mimic occupational exposures to endotoxin, we hypothesized that SP-A gene expression and protein would be elevated in response to repeat exposure to inhaled grain dust and to purified lipopolysaccharide (LPS). Our results demonstrate that repeat exposure to inhaled endotoxin, either in the form of grain dust or purified LPS, results in increased whole lung SP-A gene expression and type II alveolar epithelial cell hyperplasia, whereas SP-A protein levels in lung lavage fluid are decreased. Furthermore, these alterations in SP-A gene activity and protein metabolism are dependent on an intact endotoxin signaling system. PMID:12922979

  15. TolC-Dependent Secretion of an Ankyrin Repeat-Containing Protein of Rickettsia typhi

    PubMed Central

    Rahman, M. Sayeedur; Ammerman, Nicole C.; Beier-Sexton, Magda; Ceraul, Shane M.; Gillespie, Joseph J.; Azad, Abdu F.

    2012-01-01

    Rickettsia typhi, the causative agent of murine (endemic) typhus, is an obligate intracellular pathogen with a life cycle involving both vertebrate and invertebrate hosts. In this study, we characterized a gene (RT0218) encoding a C-terminal ankyrin repeat domain-containing protein, named Rickettsia ankyrin repeat protein 1 (RARP-1), and identified it as a secreted effector protein of R. typhi. RT0218 showed differential transcript abundance at various phases of R. typhi intracellular growth. RARP-1 was secreted by R. typhi into the host cytoplasm during in vitro infection of mammalian cells. Transcriptional analysis revealed that RT0218 was cotranscribed with adjacent genes RT0217 (hypothetical protein) and RT0216 (TolC) as a single polycistronic mRNA. Given one of its functions as a facilitator of extracellular protein secretion in some Gram-negative bacterial pathogens, we tested the possible role of TolC in the secretion of RARP-1. Using Escherichia coli C600 and an isogenic tolC insertion mutant as surrogate hosts, our data demonstrate that RARP-1 is secreted in a TolC-dependent manner. Deletion of either the N-terminal signal peptide or the C-terminal ankyrin repeats abolished RARP-1 secretion by wild-type E. coli. Importantly, expression of R. typhi tolC in the E. coli tolC mutant restored the secretion of RARP-1, suggesting that TolC has a role in RARP-1 translocation across the outer membrane. This work implies that the TolC component of the putative type 1 secretion system of R. typhi is involved in the secretion process of RARP-1. PMID:22773786

  16. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    SciTech Connect

    Sakamoto, Hikaru; Sakata, Keiko; Kusumi, Kensuke; Kojima, Mikiko; Sakakibara, Hitoshi; Iba, Koh

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  17. Autophagy and proteins involved in vesicular trafficking.

    PubMed

    Amaya, Celina; Fader, Claudio Marcelo; Colombo, María Isabel

    2015-11-14

    Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway. PMID:26450776

  18. Structural and functional dissection of Toxoplasma gondii armadillo repeats only protein.

    PubMed

    Mueller, Christina; Samoo, Atta; Hammoudi, Pierre-Mehdi; Klages, Natacha; Kallio, Juha Pekka; Kursula, Inari; Soldati-Favre, Dominique

    2016-03-01

    Rhoptries are club-shaped, regulated secretory organelles that cluster at the apical pole of apicomplexan parasites. Their discharge is essential for invasion and the establishment of an intracellular lifestyle. Little is known about rhoptry biogenesis and recycling during parasite division. In Toxoplasma gondii, positioning of rhoptries involves the armadillo repeats only protein (ARO) and myosin F (MyoF). Here, we show that two ARO partners, ARO-interacting protein (AIP) and adenylate cyclase β (ACβ) localize to a rhoptry subcompartment. In absence of AIP, ACβ disappears from the rhoptries. By assessing the contribution of each ARO armadillo (ARM) repeat, we provide evidence that ARO is multifunctional, participating not only in positioning but also in clustering of rhoptries. Structural analyses show that ARO resembles the myosin-binding domain of the Caenorhabditis elegans myosin chaperone UNC-45. A conserved patch of aromatic and acidic residues denotes the putative MyoF-binding site, and the overall arrangement of the ARM repeats explains the dramatic consequences of deleting each of them. Finally, Plasmodium falciparum ARO functionally complements ARO depletion and interacts with the same partners, highlighting the conservation of rhoptry biogenesis in Apicomplexa. PMID:26769898

  19. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  20. Rational design of α-helical tandem repeat proteins with closed architectures.

    PubMed

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L; Bradley, Philip

    2015-12-24

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks. The overall architecture of tandem repeat protein structures--which is dictated by the internal geometry and local packing of the repeat building blocks--is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed α-solenoid repeat structures (α-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the amino (N) and carboxy (C) termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed α-solenoid repeats with a left-handed helical architecture that--to our knowledge--is not yet present in the protein structure database. PMID:26675735

  1. Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models

    PubMed Central

    Aksel, Tural; Barrick, Doug

    2010-01-01

    The linear “Ising” model, which has been around for nearly a century, treats the behavior of linear arrays of repetitive, interacting subunits. Linear “repeat-proteins” have only been described in the last decade or so, and their folding energies have only been characterized very recently. Owing to their repetitive structures, linear repeat-proteins are particularly well suited for analysis by the nearest-neighbor Ising formalism. After briefly describing the historical origins and applications of the Ising model to biopolymers, and introducing repeat protein structure, this chapter will focus on the application of the linear Ising model to repeat proteins. When applied to homopolymers, the model can be represented and applied in a fairly simplified form. When applied to heteropolymers, where differences in energies among individual subunits (i.e. repeats) must be included, some (but not all) of this simplicity is lost. Derivations of the linear Ising model for both homopolymer and heteropolymer repeat-proteins will be presented. With the increased complexity required for analysis of heteropolymeric repeat proteins, the ability to resolve different energy terms from experimental data can be compromised. Thus, a simple matrix approach will be developed to help inform on the degree to which different thermodynamic parameters can be extracted from a particular set of unfolding curves. Finally, we will describe the application of these models to analyze repeat-protein folding equilibria, focusing on simplified repeat proteins based on “consensus” sequence information. PMID:19289204

  2. Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein

    PubMed Central

    Kobayashi, Keiko; Kawabata, Masuyo; Hisano, Keizo; Kazama, Tomohiko; Matsuoka, Ken; Sugita, Mamoru; Nakamura, Takahiro

    2012-01-01

    The expressions of chloroplast and mitochondria genes are tightly controlled by numerous nuclear-encoded proteins, mainly at the post-transcriptional level. Recent analyses have identified a large, plant-specific family of pentatricopeptide repeat (PPR) motif-containing proteins that are exclusively involved in RNA metabolism of organelle genes via sequence-specific RNA binding. A tandem array of PPR motifs within the protein is believed to facilitate the RNA interaction, although little is known of the mechanism. Here, we describe the RNA interacting framework of a PPR protein, Arabidopsis HCF152. First, we demonstrated that a Pfam model could be relevant to the PPR motif function. A series of proteins with two PPR motifs showed significant differences in their RNA binding affinities, indicating functional differences among PPR motifs. Mutagenesis and informatics analysis putatively identified five amino acids organizing its RNA binding surface [the 1st, 4th, 8th, 12th and ‘ii’(-2nd) amino acids] and their complex connections. SELEX (Systematic evolution of ligands by exponential enrichment) and nucleobase preference assays determined the nucleobases with high affinity for HCF152 and suggested several characteristic amino acids that may be involved in determining specificity and/or affinity of the PPR/RNA interaction. PMID:22127869

  3. Involvement of the eye in protein malnutrition*

    PubMed Central

    McLaren, D. S.

    1958-01-01

    An extensive review of the literature on protein malnutrition, with special reference to the frequency of involvement of the eyes, has been made by the author. Consideration of accounts from all parts of the world and in many different languages, including early as well as more recent descriptions of the syndrome, indicates that this important complication has not received sufficient attention hitherto. The evidence available suggests that it is nearly always an accompanying deficiency of vitamin A that is responsible. Less commonly reported—and producing less severe effects—is deficiency of the B-complex vitamins, and there is no clear evidence to date that protein deficiency itself damages the eyes in these cases. The ways in which protein lack might interfere with various aspects of vitamin-A metabolism are discussed, but it is pointed out that their actual significance in human disease is not yet known. A low dietary intake of vitamin A is regarded by the author as being the prime factor in the causation of eye complications, and attention is drawn to the necessity to correct this as part of any prophylactic or therapeutic programme aimed primarily at combating protein malnutrition. PMID:13585077

  4. Yeast ABC proteins involved in multidrug resistance.

    PubMed

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects. PMID:24297686

  5. WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects

    PubMed Central

    Guerriero, Gea; Hausman, Jean-Francois; Ezcurra, Inés

    2015-01-01

    The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR) proteins often function as molecular “hubs” mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico approaches, such as analyses of co-expression, interactome and conserved gene neighborhood. Notably, some WDR genes are frequently genomic neighbors of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CesAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed. PMID:26734023

  6. RRW: repeated random walks on genome-scale protein networks for local cluster discovery

    PubMed Central

    Macropol, Kathy; Can, Tolga; Singh, Ambuj K

    2009-01-01

    Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW) for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL), and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters. PMID:19740439

  7. A combined NMR and computational approach to investigate peptide binding to a designed Armadillo repeat protein.

    PubMed

    Ewald, Christina; Christen, Martin T; Watson, Randall P; Mihajlovic, Maja; Zhou, Ting; Honegger, Annemarie; Plückthun, Andreas; Caflisch, Amedeo; Zerbe, Oliver

    2015-05-22

    The specific recognition of peptide sequences by proteins plays an important role both in biology and in diagnostic applications. Here we characterize the relatively weak binding of the peptide neurotensin (NT) to the previously developed Armadillo repeat protein VG_328 by a multidisciplinary approach based on solution NMR spectroscopy, mutational studies, and molecular dynamics (MD) simulations, totaling 20μs for all MD runs. We describe assignment challenges arising from the repetitive nature of the protein sequence, and we present novel approaches to address them. Partial assignments obtained for VG_328 in combination with chemical shift perturbations allowed us to identify the repeats not involved in binding. Their subsequent elimination resulted in a reduced-size binder with very similar affinity for NT, for which near-complete backbone assignments were achieved. A binding mode suggested by automatic docking and further validated by explicit solvent MD simulations is consistent with paramagnetic relaxation enhancement data collected using spin-labeled NT. Favorable intermolecular interactions are observed in the MD simulations for the residues that were previously shown to contribute to binding in an Ala scan of NT. We further characterized the role of residues within the N-cap for protein stability and peptide binding. Our multidisciplinary approach demonstrates that an initial low-resolution picture for a low-micromolar-peptide binder can be refined through the combination of NMR, protein design, docking, and MD simulations to establish its binding mode, even in the absence of crystallographic data, thereby providing valuable information for further design. PMID:25816772

  8. Repeat-protein folding: new insights into origins of cooperativity, stability, and topology

    PubMed Central

    Kloss, Ellen; Courtemanche, Naomi; Barrick, Doug

    2008-01-01

    Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings. PMID:17963718

  9. Role of extracytoplasmic leucine rich repeat proteins in plant defence mechanisms.

    PubMed

    Shanmugam, V

    2005-01-01

    Plant-pathogen interactions involve highly complex series of reactions in disease development. Plants are endowed with both, resistance and defence genes. The activation of defence genes after contact with avirulence gene products of pathogens depends on signals transduced by leucine-rich repeats (LRRs) contained in resistance genes. Additionally, LRRs play roles for various actions following ligand recognition. Polygalacturonase inhibiting proteins (PGIPs), the only plant LRR protein with known ligands, are pectinase inhibitors, bound by ionic interactions to the extracellular matrix (ECM) of plant cells. They have a high affinity for fungal endopolygalacturonases (endoPGs). PGIP genes are organised in families encoding proteins with similar physical characteristics but different specificities. They are induced by infection and stress related signals. The molecular basis of PG-PGIP interaction serves as a model to understand the evolution of plant LRR proteins in recognising non-self-molecules. Extensins form a different class of structural proteins with repetitive sequences. They are also regulated by wounding and pathogen infection. Linkage of extensins with LRR motifs is highly significant in defending host tissues against pathogen invasion. Overexpression of PGIPs or expression of several PGIPs in a plant tissue, and perhaps manipulation of extensin expression could be possible strategies for disease management. PMID:15782942

  10. Characterization of Tetratricopeptide Repeat-Containing Proteins Critical for Cilia Formation and Function

    PubMed Central

    Xu, Yanan; Cao, Jingli; Huang, Shan; Feng, Di; Zhang, Wei; Zhu, Xueliang; Yan, Xiumin

    2015-01-01

    Cilia formation and function require a special set of trafficking machinery termed intraflagellar transport (IFT), consisting mainly of protein complexes IFT-A, IFT-B, BBSome, and microtubule-dependent molecular motors. Tetratricopeptide repeat-containing (TTC) proteins are widely involved in protein complex formation. Nine of them are known to serve as components of the IFT or BBSome complexes. How many TTC proteins are cilia-related and how they function, however, remain unclear. Here we show that twenty TTC genes were upregulated by at least 2-fold during the differentiation of cultured mouse tracheal epithelial cells (MTECs) into multiciliated cells. Our systematic screen in zebrafish identified four novel TTC genes, ttc4, -9c, -36, and -39c, that are critical for cilia formation and motility. Accordingly, their zebrafish morphants displayed typical ciliopathy-related phenotypes, including curved body, abnormal otolith, hydrocephalus, and defective left-right patterning. The morphants of ttc4 and ttc25, a known cilia-related gene, additionally showed pronephric cyst formation. Immunoprecipitation indicated associations of TTC4, -9c, -25, -36, and -39c with components or entire complexes of IFT-A, IFT-B, or BBSome, implying their participations in IFT or IFT-related activities. Our results provide a global view for the relationship between TTC proteins and cilia. PMID:25860617

  11. Life under tension: Computational studies of proteins involved in mechanotransduction

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos Manuel

    Living organisms rely on macroscopic and microscopic structures that produce and transform force: from mechanical motion of our muscles and bones to sound transduction and cell volume regulation, handling of forces is essential to life. Investigation of the microscopic machinery behind force generation and transduction in the cell has only become possible with recent advances in x-ray crystallography, nuclear magnetic resonance spectroscopy, single-molecule force spectroscopy, and computer modeling. In this thesis, molecular dynamics simulations have been used to study proteins that transform forces into biochemical signals (mechanotransduction). The first protein studied is the mechanosensitive channel of small conductance MscS. This membrane channel has been proposed to act as a safety valve during osmotic shock, facilitating the release of ions and small solutes upon increase in membrane tension, thereby preventing bacterial cells from bursting. The second set of proteins studied are ankyrin and cadherin repeats, likely forming part of the transduction apparatus in hearing and other mechanical senses. Simulations of all these proteins went beyond the standard approach in which only equilibrium properties are monitored; we adopted and developed strategies in which external electric fields and forces are used to probe their response and function and at the same time produce verifiable predictions. The outcome of the simulations performed on MscS, in close collaborations with experimentalists, allowed us to establish conduction properties of different conformations and propose structural models of MscS's open and closed states. Simulations of ankyrin and cadherin repeats focused on their elastic properties, resulting in the discovery and prediction of ankyrin's tertiary and secondary structure elasticity (later on corroborated by atomic force microscopy experiments), and the discovery of a novel form of secondary structure elasticity mediated by calcium ions in

  12. Yeast telomere repeat sequence (TRS) improves circular plasmid segregation, and TRS plasmid segregation involves the RAP1 gene product.

    PubMed Central

    Longtine, M S; Enomoto, S; Finstad, S L; Berman, J

    1992-01-01

    Telomere repeat sequences (TRSs) can dramatically improve the segregation of unstable circular autonomously replicating sequence (ARS) plasmids in Saccharomyces cerevisiae. Deletion analysis demonstrated that yeast TRSs, which conform to the general sequence (C(1-3)A)n, are able to stabilize circular ARS plasmids. A number of TRS clones of different primary sequence and C(1-3)A tract length confer the plasmid stabilization phenotype. TRS sequences do not appear to improve plasmid replication efficiency, as determined by plasmid copy number analysis and functional assays for ARS activity. Pedigree analysis confirms that TRS-containing plasmids are missegregated at low frequency and that missegregated TRS-containing plasmids, like ARS plasmids, are preferentially retained by the mother cell. Plasmids stabilized by TRSs have properties that distinguish them from centromere-containing plasmids and 2 microns-based recombinant plasmids. Linear ARS plasmids, which include two TRS tracts at their termini, segregate inefficiently, while circular plasmids with one or two TRS tracts segregate efficiently, suggesting that plasmid topology or TRS accessibility interferes with TRS segregation function on linear plasmids. In strains carrying the temperature-sensitive mutant alleles rap1grc4 and rap1-5, TRS plasmids are not stable at the semipermissive temperature, suggesting that RAP1 protein is involved in TRS plasmid stability. In Schizosaccharomyces pombe, an ARS plasmid was stabilized by the addition of S. pombe telomere sequence, suggesting that the ability to improve the segregation of ARS plasmids is a general property of telomere repeats. PMID:1569937

  13. Label-free detection repeatability of protein microarrays by oblique-incidence reflectivity difference method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Li, Lin; Wang, JingYi; He, LiPing; Lu, HuiBin; Ruan, KangCheng; Jin, KuiJuan; Yang, GuoZhen

    2012-12-01

    We examine the repeatabilities of oblique-incidence reflectivity difference (OIRD) method for label-free detecting biological molecular interaction using protein microarrays. The experimental results show that the repeatabilities are the same in a given microarray or microarray-microarray and are consistent, indicating that OIRD is a promising label-free detection technique for biological microarrays.

  14. The Protein Synthesis Inhibitor Blasticidin S Enters Mammalian Cells via Leucine-rich Repeat-containing Protein 8D

    PubMed Central

    Lee, Clarissa C.; Freinkman, Elizaveta; Sabatini, David M.; Ploegh, Hidde L.

    2014-01-01

    Leucine-rich repeat-containing 8 (LRRC8) proteins have been identified as putative receptors involved in lymphocyte development and adipocyte differentiation. They remain poorly characterized, and no specific function has been assigned to them. There is no consensus on how this family of proteins might function because homology searches suggest that members of the LRRC8 family act not as plasma membrane receptors, but rather as channels that mediate cell-cell signaling. Here we provide experimental evidence that supports a role for LRRC8s in the transport of small molecules. We show that LRRC8D is a mammalian protein required for the import of the antibiotic blasticidin S. We characterize localization and topology of LRRC8A and LRRC8D and demonstrate that LRRC8D interacts with LRRC8A, LRRC8B, and LRRC8C. Given the suggested involvement in solute transport, our results support a model in which LRRC8s form one or more complexes that may mediate cell-cell communication by transporting small solutes. PMID:24782309

  15. De-coding and re-coding RNA recognition by PUF and PPR repeat proteins.

    PubMed

    Hall, Traci M Tanaka

    2016-02-01

    PUF and PPR proteins are two families of α-helical repeat proteins that recognize single-stranded RNA sequences. Both protein families hold promise as scaffolds for designed RNA-binding domains. A modular protein RNA recognition code was apparent from the first crystal structures of a PUF protein in complex with RNA, and recent studies continue to advance our understanding of natural PUF protein recognition (de-coding) and our ability to engineer specificity (re-coding). Degenerate recognition motifs make de-coding specificity of individual PPR proteins challenging. Nevertheless, re-coding PPR protein specificity using a consensus recognition code has been successful. PMID:26874972

  16. Neural circuitry involved in quitting after repeated failures: role of the cingulate and temporal parietal junction.

    PubMed

    Zhao, Weihua; Kendrick, Keith M; Chen, Fei; Li, Hong; Feng, Tingyong

    2016-01-01

    The more times people fail the more likely they are to give up, however little is known about the neural mechanisms underlying this impact of repeated failure on decision making. Here we have used a visual shape discrimination task with computer-controlled feedback combined with functional magnetic resonance imaging (fMRI) to investigate the neural circuits involved. The behavioral task confirmed that the more times subjects experienced failure the more likely they were to give up, with three successive failures being the key threshold and the majority of subjects reaching the point where they decided to quit and try a new stimulus set after three or four failures. The fMRI analysis revealed activity changes in frontal, parietal, temporal, limbic and striatal regions, especially anterior cingulate cortex (ACC), posterior cingulate cortex (PCC) and temporal parietal junction (TPJ) associated with the number of previous failures experienced. Furthermore, their parameter estimates were predictive of subjects' quitting rate. Thus, subjects reach the point where they decide to quit after three/four failures and this is associated with differential changes in brain regions involved in error monitoring and reward which regulate both failure detection and changes in decision-making strategy. PMID:27097529

  17. Neural circuitry involved in quitting after repeated failures: role of the cingulate and temporal parietal junction

    PubMed Central

    Zhao, Weihua; Kendrick, Keith M; Chen, Fei; Li, Hong; Feng, Tingyong

    2016-01-01

    The more times people fail the more likely they are to give up, however little is known about the neural mechanisms underlying this impact of repeated failure on decision making. Here we have used a visual shape discrimination task with computer-controlled feedback combined with functional magnetic resonance imaging (fMRI) to investigate the neural circuits involved. The behavioral task confirmed that the more times subjects experienced failure the more likely they were to give up, with three successive failures being the key threshold and the majority of subjects reaching the point where they decided to quit and try a new stimulus set after three or four failures. The fMRI analysis revealed activity changes in frontal, parietal, temporal, limbic and striatal regions, especially anterior cingulate cortex (ACC), posterior cingulate cortex (PCC) and temporal parietal junction (TPJ) associated with the number of previous failures experienced. Furthermore, their parameter estimates were predictive of subjects’ quitting rate. Thus, subjects reach the point where they decide to quit after three/four failures and this is associated with differential changes in brain regions involved in error monitoring and reward which regulate both failure detection and changes in decision-making strategy. PMID:27097529

  18. Examination of the dimerization states of the single-stranded RNA recognition protein pentatricopeptide repeat 10 (PPR10).

    PubMed

    Li, Quanxiu; Yan, Chuangye; Xu, Huisha; Wang, Zheng; Long, Jiafu; Li, Wenqi; Wu, Jianping; Yin, Ping; Yan, Nieng

    2014-11-01

    Pentatricopeptide repeat (PPR) proteins, particularly abundant in plastids and mitochrondria of angiosperms, include a large number of sequence-specific RNA binding proteins that are involved in diverse aspects of organelle RNA metabolisms. PPR proteins contain multiple tandom repeats, and each repeat can specifically recognize a RNA base through residues 2, 5, and 35 in a modular fashion. The crystal structure of PPR10 from maize chloroplast exhibits dimeric existence both in the absence and presence of the 18-nucleotide psaJ RNA element. However, previous biochemical analysis suggested a monomeric shift of PPR10 upon RNA binding. In this report, we show that the amino-terminal segments of PPR10 determine the dimerization state of PPR10. A single amino acid alteration of cysteine to serine within repeat 10 of PPR10 further drives dimerization of PPR10. The biochemical elucidation of the determinants for PPR10 dimerization may provide an important foundation to understand the working mechanisms of PPR proteins underlying their diverse physiological functions. PMID:25231995

  19. Examination of the Dimerization States of the Single-stranded RNA Recognition Protein Pentatricopeptide Repeat 10 (PPR10)*

    PubMed Central

    Li, Quanxiu; Yan, Chuangye; Xu, Huisha; Wang, Zheng; Long, Jiafu; Li, Wenqi; Wu, Jianping; Yin, Ping; Yan, Nieng

    2014-01-01

    Pentatricopeptide repeat (PPR) proteins, particularly abundant in plastids and mitochrondria of angiosperms, include a large number of sequence-specific RNA binding proteins that are involved in diverse aspects of organelle RNA metabolisms. PPR proteins contain multiple tandom repeats, and each repeat can specifically recognize a RNA base through residues 2, 5, and 35 in a modular fashion. The crystal structure of PPR10 from maize chloroplast exhibits dimeric existence both in the absence and presence of the 18-nucleotide psaJ RNA element. However, previous biochemical analysis suggested a monomeric shift of PPR10 upon RNA binding. In this report, we show that the amino-terminal segments of PPR10 determine the dimerization state of PPR10. A single amino acid alteration of cysteine to serine within repeat 10 of PPR10 further drives dimerization of PPR10. The biochemical elucidation of the determinants for PPR10 dimerization may provide an important foundation to understand the working mechanisms of PPR proteins underlying their diverse physiological functions. PMID:25231995

  20. The major clotting protein from guinea pig seminal vesicle contains eight repeats of a 24-amino acid domain.

    PubMed Central

    Moore, J T; Hagstrom, J; McCormick, D J; Harvey, S; Madden, B; Holicky, E; Stanford, D R; Wieben, E D

    1987-01-01

    The complete amino acid sequence of the major clotting protein from the guinea pig seminal vesicle (SVP-1) has been determined by nucleotide sequencing of cDNA clones corresponding to the 3' terminus of an mRNA that codes for a protein precursor to SVP-1. The first 40 amino acids of the derived protein sequence are identical to those determined by N-terminal sequencing of SVP-1 isolated from the lumen of the seminal vesicle. This finding confirms that SVP-1 is cleaved from the C terminus of a larger precursor protein. The portion of the nucleotide sequence that codes for SVP-1 contains eight highly homologous but imperfect repeats of a 72-nucleotide domain. This repeated structure is also evident at the amino acid level. The consensus 24-amino acid repeat unit contains two lysine and three glutamine residues. Since the clotting of SVP-1 is known to involve the formation of gamma-glutamyl-epsilon-lysine crosslinks, it is likely that the 24-amino acid repeating unit is the unit of function of SVP-1. PMID:3477802

  1. Ab initio detection of fuzzy amino acid tandem repeats in protein sequences

    PubMed Central

    2012-01-01

    Background Tandem repetitions within protein amino acid sequences often correspond to regular secondary structures and form multi-repeat 3D assemblies of varied size and function. Developing internal repetitions is one of the evolutionary mechanisms that proteins employ to adapt their structure and function under evolutionary pressure. While there is keen interest in understanding such phenomena, detection of repeating structures based only on sequence analysis is considered an arduous task, since structure and function is often preserved even under considerable sequence divergence (fuzzy tandem repeats). Results In this paper we present PTRStalker, a new algorithm for ab-initio detection of fuzzy tandem repeats in protein amino acid sequences. In the reported results we show that by feeding PTRStalker with amino acid sequences from the UniProtKB/Swiss-Prot database we detect novel tandemly repeated structures not captured by other state-of-the-art tools. Experiments with membrane proteins indicate that PTRStalker can detect global symmetries in the primary structure which are then reflected in the tertiary structure. Conclusions PTRStalker is able to detect fuzzy tandem repeating structures in protein sequences, with performance beyond the current state-of-the art. Such a tool may be a valuable support to investigating protein structural properties when tertiary X-ray data is not available. PMID:22536906

  2. Detection of alpha-rod protein repeats using a neural network and application to huntingtin.

    PubMed

    Palidwor, Gareth A; Shcherbinin, Sergey; Huska, Matthew R; Rasko, Tamas; Stelzl, Ulrich; Arumughan, Anup; Foulle, Raphaele; Porras, Pablo; Sanchez-Pulido, Luis; Wanker, Erich E; Andrade-Navarro, Miguel A

    2009-03-01

    A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments. PMID:19282972

  3. Wound induced Beta vulgaris polygalacturonase-inhibiting protein genes encode a longer leucine-rich repeat domain and inhibit fungal polygalacturonases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defense. Sugar beet (Beta vulgaris L.) PGIP genes, BvPGIP1, BvPGIP2 and BvPGIP3, were isolated from two breeding lines, F1016 and F1010. Full-length cDNA sequences of the three BvPGIP genes encod...

  4. Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin.

    PubMed

    Ahmad, Shoeb; Pecqueur, Ludovic; Dreier, Birgit; Hamdane, Djemel; Aumont-Nicaise, Magali; Plückthun, Andreas; Knossow, Marcel; Gigant, Benoît

    2016-01-01

    Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-specific designed ankyrin repeat protein (DARPin). Structural analysis indicated that in the progenitor DARPin the C-terminal capping repeat (C-cap) undergoes a 25° rotation to avoid a clash with tubulin upon binding. Additionally, the C-cap appears to be involved in electrostatic repulsion with tubulin. Biochemical and structural characterizations demonstrated that the evolved mutants achieved a gain in affinity through destabilization of the C-cap, which relieves the need of a DARPin conformational change upon tubulin binding and removes unfavorable interactions in the complex. Therefore, this specific case of an order-to-disorder transition led to a 100-fold tighter complex with a subnanomolar equilibrium dissociation constant, remarkably associated with a 30% decrease of the binding surface. PMID:27380724

  5. Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin

    PubMed Central

    Ahmad, Shoeb; Pecqueur, Ludovic; Dreier, Birgit; Hamdane, Djemel; Aumont-Nicaise, Magali; Plückthun, Andreas; Knossow, Marcel; Gigant, Benoît

    2016-01-01

    Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-specific designed ankyrin repeat protein (DARPin). Structural analysis indicated that in the progenitor DARPin the C-terminal capping repeat (C-cap) undergoes a 25° rotation to avoid a clash with tubulin upon binding. Additionally, the C-cap appears to be involved in electrostatic repulsion with tubulin. Biochemical and structural characterizations demonstrated that the evolved mutants achieved a gain in affinity through destabilization of the C-cap, which relieves the need of a DARPin conformational change upon tubulin binding and removes unfavorable interactions in the complex. Therefore, this specific case of an order-to-disorder transition led to a 100-fold tighter complex with a subnanomolar equilibrium dissociation constant, remarkably associated with a 30% decrease of the binding surface. PMID:27380724

  6. Spontaneous self-assembly of engineered armadillo repeat protein fragments into a folded structure.

    PubMed

    Watson, Randall P; Christen, Martin T; Ewald, Christina; Bumbak, Fabian; Reichen, Christian; Mihajlovic, Maja; Schmidt, Elena; Güntert, Peter; Caflisch, Amedeo; Plückthun, Andreas; Zerbe, Oliver

    2014-07-01

    Repeat proteins are built of modules, each of which constitutes a structural motif. We have investigated whether fragments of a designed consensus armadillo repeat protein (ArmRP) recognize each other. We examined a split ArmRP consisting of an N-capping repeat (denoted Y), three internal repeats (M), and a C-capping repeat (A). We demonstrate that the C-terminal MA fragment adopts a fold similar to the corresponding part of the entire protein. In contrast, the N-terminal YM2 fragment constitutes a molten globule. The two fragments form a 1:1 YM2:MA complex with a nanomolar dissociation constant essentially identical to the crystal structure of the continuous YM3A protein. Molecular dynamics simulations show that the complex is structurally stable over a 1 μs timescale and reveal the importance of hydrophobic contacts across the interface. We propose that the existence of a stable complex recapitulates possible intermediates in the early evolution of these repeat proteins. PMID:24931467

  7. A MORN Repeat Protein Facilitates Protein Entry into the Flagellar Pocket of Trypanosoma brucei

    PubMed Central

    2015-01-01

    The parasite Trypanosoma brucei lives in the bloodstream of infected mammalian hosts, fully exposed to the adaptive immune system. It relies on a very high rate of endocytosis to clear bound antibodies from its cell surface. All endo- and exocytosis occurs at a single site on its plasma membrane, an intracellular invagination termed the flagellar pocket. Coiled around the neck of the flagellar pocket is a multiprotein complex containing the repeat motif protein T. brucei MORN1 (TbMORN1). In this study, the phenotypic effects of TbMORN1 depletion in the mammalian-infective form of T. brucei were analyzed. Depletion of TbMORN1 resulted in a rapid enlargement of the flagellar pocket. Dextran, a polysaccharide marker for fluid phase endocytosis, accumulated inside the enlarged flagellar pocket. Unexpectedly, however, the proteins concanavalin A and bovine serum albumin did not do so, and concanavalin A was instead found to concentrate outside it. This suggests that TbMORN1 may have a role in facilitating the entry of proteins into the flagellar pocket. PMID:26318396

  8. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats.

    PubMed

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping

  9. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  10. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  11. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins.

    PubMed

    Jung, Huihun; Pena-Francesch, Abdon; Saadat, Alham; Sebastian, Aswathy; Kim, Dong Hwan; Hamilton, Reginald F; Albert, Istvan; Allen, Benjamin D; Demirel, Melik C

    2016-06-01

    Many globular and structural proteins have repetitions in their sequences or structures. However, a clear relationship between these repeats and their contribution to the mechanical properties remains elusive. We propose a new approach for the design and production of synthetic polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions. Our designed sequences are based on a structural protein produced in squid suction cups that has a segmented copolymer structure with amorphous and crystalline domains. We produced segmented polypeptides with varying repeat number, while keeping the lengths and compositions of the amorphous and crystalline regions fixed. We showed that mechanical properties of these synthetic proteins could be tuned by modulating their molecular weights. Specifically, the toughness and extensibility of synthetic polypeptides increase as a function of the number of tandem repeats. This result suggests that the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility. PMID:27222581

  12. Conformational modulation mediated by polyglutamine expansion in CAG repeat expansion disease-associated proteins.

    PubMed

    Verani, Margherita; Bustamante, Maria; Martufi, Paola; Daldin, Manuel; Cariulo, Cristina; Azzollini, Lucia; Fodale, Valentina; Puglisi, Francesca; Weiss, Andreas; Macdonald, Douglas; Petricca, Lara; Caricasole, Andrea

    2016-09-16

    We have previously reported TR-FRET based immunoassays to detect a conformational change imparted on huntingtin protein by the polyglutamine expansion, which we confirmed using biophysical methodologies. Using these immunoassays, we now report that polyglutamine expansion influences the conformational properties of other polyglutamine disease proteins, exemplified by the androgen receptor (associated with spinal bulbar muscular atrophy) and TATA binding protein (associated with spinocerebellar ataxia 17). Using artificial constructs bearing short or long polyglutamine expansions or a multimerized, unrelated epitope (mimicking the increase in anti-polyglutamine antibody epitopes present in polyglutamine repeats of increasing length) we confirmed that the conformational TR-FRET based immunoassay detects an intrinsic conformational property of polyglutamine repeats. The TR-FRET based conformational immunoassay may represent a rapid, scalable tool to identify modulators of polyglutamine-mediated conformational change in different proteins associated with CAG triplet repeat disorders. PMID:27520369

  13. Structural characterization of a novel subfamily of leucine-rich repeat proteins from the human pathogen Leptospira interrogans.

    PubMed

    Miras, Isabelle; Saul, Frederick; Nowakowski, Mireille; Weber, Patrick; Haouz, Ahmed; Shepard, William; Picardeau, Mathieu

    2015-06-01

    Pathogenic Leptospira spp. are the agents of leptospirosis, an emerging zoonotic disease. Analyses of Leptospira genomes have shown that the pathogenic leptospires (but not the saprophytes) possess a large number of genes encoding proteins containing leucine-rich repeat (LRR) domains. In other pathogenic bacteria, proteins with LRR domains have been shown to be involved in mediating host-cell attachment and invasion, but their functions remain unknown in Leptospira. To gain insight into the potential function of leptospiral LRR proteins, the crystal structures of four LRR proteins that represent a novel subfamily with consecutive stretches of a 23-amino-acid LRR repeat motif have been solved. The four proteins analyzed adopt the characteristic α/β-solenoid horseshoe fold. The exposed residues of the inner concave surfaces of the solenoid, which constitute a putative functional binding site, are not conserved. The various leptospiral LRR proteins could therefore recognize distinct structural motifs of different host proteins and thus serve separate and complementary functions in the physiology of these bacteria. PMID:26057675

  14. Biomimetic repeat protein derived from Xenopus tropicalis for fibrous scaffold fabrication.

    PubMed

    Kwon, Yunkyeoung; Yang, Yun Jung; Jung, Dooyup; Hwang, Byeong Hee; Cha, Hyung Joon

    2015-12-01

    Collagen, silk, and elastin are the fibrous proteins consist of representative amino acid repeats. Because these proteins exhibited distinguishing mechanical properties, they have been utilized in diverse applications, such as fiber-based sensors, filtration membranes, supporting materials, and tissue engineering scaffolds. Despite their infinite prevalence and potential, most studies have only focused on a few repeat proteins. In this work, the hypothetical protein with a repeat motif derived from the frog Xenopus tropicalis was obtained and characterized for its potential as a novel protein-based material. The codon-optimized recombinant frog repeat protein, referred to as 'xetro', was produced at a high rate in a bacterial system, and an acid extraction-based purified xetro protein was successfully fabricated into microfibers and nanofibers using wet spinning and electrospinning, respectively. Specifically, the wet-spun xetro microfibers demonstrated about 2- and 1.5-fold higher tensile strength compared with synthetic polymer polylactic acid and cross-linked collagen, respectively. In addition, the wet-spun xetro microfibers showed about sevenfold greater stiffness than collagen. Therefore, the mass production potential and greater mechanical properties of the xetro fiber may result in these fibers becoming a new promising fiber-based material for biomedical engineering. PMID:26297878

  15. Preferentially Expressed Antigen in Melanoma (PRAME) and the PRAME Family of Leucine-Rich Repeat Proteins.

    PubMed

    Hermes, Nora; Kewitz, Stefanie; Staege, Martin S

    2016-01-01

    Preferentially expressed antigen in melanoma (PRAME) is the best characterized member of the PRAME family of leucine-rich repeat (LRR) proteins. Mammalian genomes contain multiple members of the PRAME family whereas in other vertebrate genomes only one PRAME-like LRR protein was identified. PRAME is a cancer/testis antigen that is expressed at very low levels in normal adult tissues except testis but at high levels in a variety of cancer cells. In contrast to most other cancer/testis antigens, PRAME is expressed not only in solid tumors but also in leukemia cells. Expression of PRAME and other members of the PRAME family is regulated epigenetically. PRAME interacts with varying pathways that might be directly involved in the malignant phenotype of cancer cells. For instance, PRAME is able to dominantly repress retinoic acid signaling in these cells. On the other hand, PRAME-derived peptides can be recognized as epitopes by cytotoxic T cells and PRAME represents an attractive target for immunological treatment strategies. PMID:26694250

  16. DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes

    NASA Technical Reports Server (NTRS)

    Smith, G. K.; Jie, J.; Fox, G. E.; Gao, X.

    1995-01-01

    DNA triplet repeats, 5'-d(CTG)n and 5'-d(CAG)n, are present in genes which have been implicated in several neurodegenerative disorders. To investigate possible stable structures formed by these repeating sequences, we have examined d(CTG)n, d(CAG)n and d(CTG).d(CAG)n (n = 2 and 3) using NMR and UV optical spectroscopy. These studies reveal that single stranded (CTG)n (n > 2) forms stable, antiparallel helical duplexes, while the single stranded (CAG)n requires at least three repeating units to form a duplex. NMR and UV melting experiments show that the Tm increases in the order of [(CAG)3]2 < [(CTG)3]2 << (CAG)3.(CTG)3. The (CTG)3 duplex is stable and exhibits similar NMR spectra in solutions containing 0.1-4 M NaCl and at a pH range from 4.6 to 8.8. The (CTG)3 duplex, which contains multiple-T.T mismatches, displays many NMR spectral characteristics similar to those of B-form DNA. However, unique NOE and 1H-31P coupling patterns associated with the repetitive T.T mismatches in the CTG repeats are discerned. These results, in conjunction with recent in vitro studies suggest that longer CTG repeats may form hairpin structures, which can potentially cause interruption in replication, leading to dynamic expansion or deletion of triplet repeats.

  17. Gonosomal mosaicism in myotonic dystrophy patients: Involvement of mitotic events in (CTG)[sub n] repeat variation and selection against extreme expansion in sperm

    SciTech Connect

    Jansen, G.; Coerwinkel, M.; Wieringa, B.; Nillesen, W.; Smeets, H.; Brunner, H.; Wieringa, B. ); Willems, P.; Vits, L. ); Hoeweler, C. )

    1994-04-01

    Myotonic dystrophy (DM) is caused by abnormal expansion of a polymorphic (CTG)[sub n] repeat, located in the DM protein kinase gene. The authors determined the (CTG)[sub n] repeat lengths in a broad range of tissue DNAs from patients with mild, classical, or congenital manifestation of DM. Differences in the repeat length were seen in somatic tissues from single DM individuals and twins. Repeats appeared to expand to a similar extent in tissues originating from the same embryonal origin. In most male patients carrying intermediate- or small-sized expansions in blood, the repeat lengths covered a markedly wider range in sperm. In contrast, male patients with large allele expansions in blood (>700 CTGs) had similar or smaller repeats in sperm, when detectable. Sperm alleles with >1,000 CTGs were not seen. The authors conclude that DM patients can be considered gonosomal mosaics, i.e., combined somatic and germ-line tissue mosaics. Most remarkably, they observed multiple cases where the length distributions of intermediate- or small-sized alleles in fathers' sperm were significantly different from that in their offspring's blood. The combined findings indicate that intergenerational length changes in the unstable CTG repeat are most likely to occur during early embryonic mitotic divisions in both somatic and germ-line tissue formation. Both the initial CTG length, the overall number of cell divisions involved in tissue formation, and perhaps a specific selection process in spermatogenesis may influence the dynamics of this process. A model explaining mitotic instability and sex-dependent segregation phenomena in DM manifestation is discussed. 59 refs., 5 figs.

  18. A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2012-12-01

    Matricellular proteins interact with the extracellular matrix (ECM) and modulate cellular processes by binding to cell surface receptors and initiating intracellular signal transduction. Their association with the ECM and the ability of some members of this protein family to regulate cell motility have opened up new avenues of research to investigate their functions in normal and diseased cells. In this review, we summarize the research on CyrA, an ECM calmodulin-binding protein in Dictyostelium. CyrA is proteolytically cleaved into smaller EGF-like (EGFL) repeat containing cleavage products during development. The first EGFL repeat of CyrA binds to the cell surface and activates a novel signalling pathway that modulates cell motility in this model organism. The similarity of CyrA to the most well-characterized matricellular proteins in mammals allows it to be designated as the first matricellular protein identified in Dictyostelium. PMID:22782112

  19. A tandem-repeat galectin-9 involved in immune response of yellow catfish, Pelteobagrus fulvidraco, against Aeromonas hydrophila.

    PubMed

    Wang, Yun; Ke, Fei; Ma, Jingjing; Zhou, Shuaibang

    2016-04-01

    Galectins exclusively recognize and bind β-galactoside on cell surface by carbohydrate recognition domain (CRD). In spite of extensive study of mammalian galectin importance in immune system, little is known about that of fish. To study the immune response of yellow catfish to pathogens, a tandem-repeat galectin-9 from yellow catfish was identified and named PfGAL9. Its full-length cDNA was 1314 bp, including a 117 bp of 5' untranslated region (UTR), a 951 bp of open reading frame (ORF), and a 246 bp of 3' UTR. The ORF encoded 316 amino acids (35.12 KDa), shared the highest 78% identity with the predicted galectin-9 of Ictalurus punctatus. This protein possessed two distinct CRDs with two highly conserved sugar binding motifs. Quantitative PCR showed that PfGAL9 was lowly expressed in skin, gill, fin, muscle, heart, and intestine, highly expressed in tested immune tissues (head kidney, trunk kidney, liver, spleen, and blood) in normal body. After inactivated Aeromonas hydrophila challenge, PfGAL9 was remarkably increased in head kidney and liver in a time-dependent manner. The recombinant protein was expressed in Escherichia coli, which not only agglutinated but also bond all examined bacteria. The binding activities are consistent with the size of aggregates formed by agglutinated bacteria. The agglutination must depend on its direct interaction with bacteria. These results suggested that PfGAL9 was involved in the innate immune response against bacterial infection and clearance of pathogens in yellow catfish. PMID:26892795

  20. Reversible and Irreversible Aggregation of Proteins from the FET Family: Influence of Repeats in Protein Chain on Its Aggregation Capacity.

    PubMed

    Galzitskaya, Oxana V

    2016-01-01

    The discovery of protein chain regions responsible for protein aggregation is an important result of studying of the molecular mechanisms of prion diseases and different proteinopathies associated with the formation of pathological aggregations through the prion mechanism. The ability to control aggregation of proteins could be an important tool in the arsenal of the drug development. Here we demonstrate, on an example of RNA-binding proteins of the FET family from six animal species (human, gorilla, pig, mouse, chicken, zebra fish), the possible role of repeats within the disordered regions. For these proteins, different repeats are revealed in the prion-like (N-terminal disordered) domains, and in the C-terminal disordered regions, predicted using bioinformatics methods. Moreover, we have found that in more complex organisms the number of repeats is increased. It can be hypothesized that the presence of a large number of repeats in the disordered regions in the proteins of the FET-family could both modulate and accelerate the formation of a dynamic cross-beta structure, and pathological aggregates. PMID:26100283

  1. Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates

    SciTech Connect

    Novelli, G.; Sineo, L.; Pontieri, E. ||

    1994-09-01

    Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PK gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.

  2. The Repeat Region of the Circumsporozoite Protein is Critical for Sporozoite Formation and Maturation in Plasmodium

    PubMed Central

    Patzewitz, Eva-Maria; Wall, Richard J.; Hopp, Christine S.; Poulin, Benoit; Mohmmed, Asif; Malhotra, Pawan; Coppi, Alida; Sinnis, Photini; Tewari, Rita

    2014-01-01

    The circumsporozoite protein (CSP) is the major surface protein of the sporozoite stage of malaria parasites and has multiple functions as the parasite develops and then migrates from the mosquito midgut to the mammalian liver. The overall structure of CSP is conserved among Plasmodium species, consisting of a species-specific central tandem repeat region flanked by two conserved domains: the NH2-terminus and the thrombospondin repeat (TSR) at the COOH-terminus. Although the central repeat region is an immunodominant B-cell epitope and the basis of the only candidate malaria vaccine in Phase III clinical trials, little is known about its functional role(s). We used the rodent malaria model Plasmodium berghei to investigate the role of the CSP tandem repeat region during sporozoite development. Here we describe two mutant parasite lines, one lacking the tandem repeat region (ΔRep) and the other lacking the NH2-terminus as well as the repeat region (ΔNΔRep). We show that in both mutant lines oocyst formation is unaffected but sporozoite development is defective. PMID:25438048

  3. The Octatricopeptide Repeat Protein Raa8 Is Required for Chloroplast trans Splicing

    PubMed Central

    Marx, Christina; Wünsch, Christiane

    2015-01-01

    The mRNA maturation of the tripartite chloroplast psaA gene from the green alga Chlamydomonas reinhardtii depends on various nucleus-encoded factors that participate in trans splicing of two group II introns. Recently, a multiprotein complex was identified that is involved in processing the psaA precursor mRNA. Using coupled tandem affinity purification (TAP) and mass spectrometry analyses with the trans-splicing factor Raa4 as a bait protein, we recently identified a multisubunit ribonucleoprotein (RNP) complex comprising the previously characterized trans-splicing factors Raa1, Raa3, Raa4, and Rat2 plus novel components. Raa1 and Rat2 share a structural motif, an octatricopeptide repeat (OPR), that presumably functions as an RNA interaction module. Two of the novel RNP complex components also exhibit a predicted OPR motif and were therefore considered potential trans-splicing factors. In this study, we selected bacterial artificial chromosome (BAC) clones encoding these OPR proteins and conducted functional complementation assays using previously generated trans-splicing mutants. Our assay revealed that the trans-splicing defect of mutant F19 was restored by a new factor we named RAA8; molecular characterization of complemented strains verified that Raa8 participates in splicing of the first psaA group II intron. Three of six OPR motifs are located in the C-terminal end of Raa8, which was shown to be essential for restoring psaA mRNA trans splicing. Our results support the important role played by OPR proteins in chloroplast RNA metabolism and also demonstrate that combining TAP and mass spectrometry with functional complementation studies represents a vigorous tool for identifying trans-splicing factors. PMID:26209695

  4. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module.

    PubMed

    Zeytuni, Natalie; Zarivach, Raz

    2012-03-01

    Tetra-trico-peptide repeat (TPR) domains are found in numerous proteins, where they serve as interaction modules and multiprotein complex mediators. TPRs can be found in all kingdoms of life and regulate diverse biological processes, such as organelle targeting and protein import, vesicle fusion, and biomineralization. This review considers the structural features of TPR domains that permit the great ligand-binding diversity of this motif, given that TPR-interacting partners display variations in both sequence and secondary structure. In addition, tools for predicting TPR-interacting partners are discussed, as are the abilities of TPR domains to serve as protein-protein interaction scaffolds in biotechnology and therapeutics. PMID:22404999

  5. The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding

    PubMed Central

    Aksel, Tural; Majumdar, Ananya; Barrick, Doug

    2011-01-01

    Summary Cooperativity is a defining feature of protein folding, but its thermodynamic and structural origins are not completely understood. By constructing consensus ankyrin repeat protein arrays that have nearly identical sequences, we quantify cooperativity by resolving stability into intrinsic and interfacial components. Heteronuclear NMR and CD spectroscopy show that these constructs adopt ankyrin repeat structures. Applying a one-dimensional Ising model to a series of constructs chosen to maximize information content in unfolding transitions, we quantify stabilities of the terminal capping repeats, and resolve the effects of denaturant into intrinsic and interfacial components. Reversible thermal denaturation resolves interfacial and intrinsic free energies into enthalpic, entropic, and heat capacity terms. Intrinsic folding is entropically disfavored, whereas interfacial interaction is entropically favored and attends a decrease in heat capacity. These results suggest that helix formation and backbone ordering occurs upon intrinsic folding, whereas hydrophobic desolvation occurs upon interfacial interaction, contributing to cooperativity. PMID:21397186

  6. FUNCTIONAL ANALYSIS OF A RING DOMAIN ANKYRIN REPEAT PROTEIN THAT IS HIGHLY EXPRESSED DURING FLOWER SENESCENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene encoding a RING zinc finger ankyrin repeat protein (MjXB3), a putative E3 ubiquitin ligase, is highly expressed in petals of senescing four o'clock (Mirabilis jalapa) flowers, increasing >40 000-fold during the onset of visible senescence. The gene has homologues in many other species, and t...

  7. Analysis of protein binding to the Sma/Cla DNA repeat in pathogenic Neisseriae.

    PubMed Central

    Wainwright, L A; Frangipane, J V; Seifert, H S

    1997-01-01

    Antigenic variation of the pilus is an essential component of Neisseria gonorrhoeae pathogenesis. Unidirectional recombination of silent pilin DNA into an expressed pilin gene allows for substantial sequence variation of this highly immunogenic surface structure. While the RecA protein is required for pilin gene recombination, the factors which maintain the silent reservoir of pilin sequences and/or allow unidirectional recombination from silent to expression loci remain undefined. We have previously shown that a conserved sequence at the 3'end of all pilin loci (the Sma/Cla repeat) is required to be present at the expression locus for efficient recombination from the silent loci. In this study, the binding of gonococcal proteins to this DNA sequence was investigated. Gel mobility shift assays and competition experiments using deletion derivatives of the repeat, show that multiple activities bind to different regions of the Sma/Cla repeat and define the boundaries of the binding sequences. Moreover, only the pathogenic Neisseria harbor proteins which specifically bind to this repeat, suggesting a correlation between the expression of these DNA binding proteins and the potential to cause disease. PMID:9060430

  8. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells.

    PubMed Central

    Talay, S R; Valentin-Weigand, P; Jerlström, P G; Timmis, K N; Chhatwal, G S

    1992-01-01

    The sequence of the fibronectin-binding domain of the fibronectin-binding protein of Streptococcus pyogenes (Sfb protein) was determined, and its role in streptococcal adherence was investigated by use of an Sfb fusion protein in adherence studies. A 1-kb DNA fragment coding for the binding domain of Sfb protein was cloned into the expression vector pEX31 to produce an Sfb fusion protein consisting of the N-terminal part of MS2 polymerase and a C-terminal fragment of the streptococcal protein. Induction of the vector promoter resulted in hyperexpression of fibronectin-binding fusion protein in the cytoplasm of the recombinant Escherichia coli cells. Sequence determination of the cloned 1-kb fragment revealed an in-frame reading frame for a 268-amino-acid peptide composed of a 37-amino-acid sequence which is completely repeated three times and incompletely repeated a fourth time. Cloning of one repeat into pEX31 resulted in expression of small fusion peptides that show fibronectin-binding activity, indicating that one repeat contains at least one binding domain. Each repeat exhibits two charged domains and shows high homology with the 38-amino-acid D3 repeat of the fibronectin-binding protein of Staphylococcus aureus. Sequence comparison with other streptococcal ligand-binding surface proteins, including M protein, failed to reveal significant homology, which suggests that Sfb protein represents a novel type of functional protein in S. pyogenes. The Sfb fusion protein isolated from the cytoplasm of recombinant cells was purified by fast protein liquid chromatography. It showed a strong competitive inhibition of fibronectin binding to S. pyogenes and of the adherence of bacteria to cultured epithelial cells. In contrast, purified streptococcal lipoteichoic acid showed only a weak inhibition of fibronectin binding and streptococcal adherence. These results demonstrate that Sfb protein is directly involved in the fibronectin-mediated adherence of S. pyogenes to

  9. Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity

    PubMed Central

    Al-Khodor, Souhaila; Price, Christopher T.; Kalia, Awdhesh; Kwaik, Yousef Abu

    2009-01-01

    Summary The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature and predominantly found in eukaryotic proteins. The genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses identified numerous genes encoding ANK-containing proteins that were proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells where they mimic or manipulate various host functions. Understanding the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions. PMID:19962898

  10. Molecular Effects of the CTG Repeats in Mutant Dystrophia Myotonica Protein Kinase Gene

    PubMed Central

    Llamusí, Beatriz; Artero, Ruben

    2008-01-01

    Myotonic Dystrophy type 1 (DM1) is a multi-system disorder characterized by muscle wasting, myotonia, cardiac conduction defects, cataracts, and neuropsychological dysfunction. DM1 is caused by expansion of a CTG repeat in the 3´untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene. A body of work demonstrates that DMPK mRNAs containing abnormally expanded CUG repeats are toxic to several cell types. A core mechanism underlying symptoms of DM1 is that mutant DMPK RNA interferes with the developmentally regulated alternative splicing of defined pre-mRNAs. Expanded CUG repeats fold into ds(CUG) hairpins that sequester nuclear proteins including human Muscleblind-like (MBNL) and hnRNP H alternative splicing factors. DM1 cells activate CELF family member CUG-BP1 protein through hyperphosphorylation and stabilization in the cell nucleus. CUG-BP1 and MBNL1 proteins act antagonistically in exon selection in several pre-mRNA transcripts, thus MBNL1 sequestration and increase in nuclear activity of CUG-BP1 both act synergistically to missplice defined transcripts. Mutant DMPK-mediated effect on subcellular localization, and defective phosphorylation of cytoplasmic CUG-BP1, have additionally been linked to defective translation of p21 and MEF2A in DM1, possibly explaining delayed differentiation of DM1 muscle cells. Mutant DMPK transcripts bind and sequester transcription factors such as Specificity protein 1 leading to reduced transcription of selected genes. Recently, transcripts containing long hairpin structures of CUG repeats have been shown to be a Dicer ribonuclease target and Dicer-induced downregulation of the mutant DMPK transcripts triggers silencing effects on RNAs containing long complementary repeats. In summary, mutant DMPK transcripts alter gene transcription, alternative splicing, and translation of specific gene transcripts, and have the ability to trigger gene-specific silencing effects in DM1 cells. Therapies aimed at reversing

  11. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain.

    PubMed

    Taipale, Mikko; Kaminen, Nina; Nopola-Hemmi, Jaana; Haltia, Tuomas; Myllyluoma, Birgitta; Lyytinen, Heikki; Muller, Kurt; Kaaranen, Minna; Lindsberg, Perttu J; Hannula-Jouppi, Katariina; Kere, Juha

    2003-09-30

    Approximately 3-10% of people have specific difficulties in reading, despite adequate intelligence, education, and social environment. We report here the characterization of a gene, DYX1C1 near the DYX1 locus in chromosome 15q21, that is disrupted by a translocation t(2;15)(q11;q21) segregating coincidentally with dyslexia. Two sequence changes in DYX1C1, one involving the translation initiation sequence and an Elk-1 transcription factor binding site (-3G --> A) and a codon (1249G --> T), introducing a premature stop codon and truncating the predicted protein by 4 aa, associate alone and in combination with dyslexia. DYX1C1 encodes a 420-aa protein with three tetratricopeptide repeat (TPR) domains, thought to be protein interaction modules, but otherwise with no homology to known proteins. The mouse Dyx1c1 protein is 78% identical to the human protein, and the nonhuman primates differ at 0.5-1.4% of residues. DYX1C1 is expressed in several tissues, including the brain, and the protein resides in the nucleus. In human brain, DYX1C1 protein localizes to a fraction of cortical neurons and white matter glial cells. We conclude that DYX1C1 should be regarded as a candidate gene for developmental dyslexia. Detailed study of its function may open a path to understanding a complex process of development and maturation of the human brain. PMID:12954984

  12. Effect of repeated contact on adhesion measurements involving polydimethylsiloxane structural material

    NASA Astrophysics Data System (ADS)

    Kroner, E.; Maboudian, R.; Arzt, E.

    2009-09-01

    During the last few years several research groups have focused on the fabrication of artificial gecko inspired adhesives. For mimicking these structures, different polymers are used as structure material, such as polydimethylsiloxanes (PDMS), polyurethanes (PU), and polypropylene (PP). While these polymers can be structured easily and used for artificial adhesion systems, the effects of repeated adhesion testing have never been investigated closely. In this paper we report on the effect of repeated adhesion measurements on the commercially available poly(dimethylsiloxane) polymer kit Sylgard 184 (Dow Corning). We show that the adhesion force decreases as a function of contact cycles. The rate of change and the final value of adhesion are found to depend on the details of the PDMS synthesis and structuring.

  13. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins

    SciTech Connect

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-06-15

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

  14. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology.

    PubMed

    Tee, Jin-Ming; Peppelenbosch, Maikel P

    2010-08-01

    The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies. PMID:20515317

  15. Characterization of human proteins that bind the repeated sequences in the squirrel monkey retrovirus enhancer.

    PubMed

    Ikeda, S; Watanabe, T; Ohmatsu, M; Oda, T

    1995-12-01

    We have recently identified two different human DNA-binding proteins, SMBP1 (35 kDa) and SMBP2 (17 kDa), that specifically interact with the direct repeats of the enhancer sequence in the squirrel monkey retrovirus long terminal repeat. Herein, we report several biochemical properties of the human DNA-binding proteins. SMBP1 and 2 recognized an overlapped sequence of the 5' region of the repeat which contains a palindrome of CCAATGG. Both proteins required divalent cations such as Mg2+ and Ca2+ for their specific DNA binding at the optimum concentration of 1 mM. SMBP2 is a thermostable protein that binds tightly to the DNA sequence even by treatment at 80 degrees C for 15 min. The SMBP2-DNA complex was also stable in the presence of 300 mM NaCl. The resistance of SMBP2 to heat and salt treatment is a prominent character distinguishable from SMBP1 and other known transcriptional factors. SMBP1 and 2 can be easily separated by heparin-agarose chromatography. These DNA-binding proteins were found to be present in nuclear extracts from several human cell lines including T cell, B cell, and epithelial cell. PMID:8747092

  16. Shifting transition states in the unfolding of a large ankyrin repeat protein

    PubMed Central

    Werbeck, Nicolas D.; Rowling, Pamela J. E.; Chellamuthu, Vasuki R.; Itzhaki, Laura S.

    2008-01-01

    The 33-amino-acid ankyrin motif comprises a β-turn followed by two anti-parallel α-helices and a loop and tandem arrays of the motif pack in a linear fashion to produce elongated structures characterized by short-range interactions. In this article we use site-directed mutagenesis to investigate the kinetic unfolding mechanism of D34, a 426-residue, 12-ankyrin repeat fragment of the protein ankyrinR. The data are consistent with a model in which the N-terminal half of the protein unfolds first by unraveling progressively from the start of the polypeptide chain to form an intermediate; in the next step, the C-terminal half of the protein unfolds via two pathways whose transition states have either the early or the late C-terminal ankyrin repeats folded. We conclude that the two halves of the protein unfold by different mechanisms because the N-terminal moiety folds and unfolds in the context of a folded C-terminal moiety, which therefore acts as a “seed” and confers a unique directionality on the process, whereas the C-terminal moiety folds and unfolds in the context of an unfolded N-terminal moiety and therefore behaves like a single-domain ankyrin repeat protein, having a high degree of symmetry and consequently more than one unfolding pathway accessible to it. PMID:18632570

  17. LRR Conservation Mapping to Predict Functional Sites within Protein Leucine-Rich Repeat Domains

    PubMed Central

    Helft, Laura; Reddy, Vignyan; Chen, Xiyang; Koller, Teresa; Federici, Luca; Fernández-Recio, Juan; Gupta, Rishabh; Bent, Andrew

    2011-01-01

    Computational prediction of protein functional sites can be a critical first step for analysis of large or complex proteins. Contemporary methods often require several homologous sequences and/or a known protein structure, but these resources are not available for many proteins. Leucine-rich repeats (LRRs) are ligand interaction domains found in numerous proteins across all taxonomic kingdoms, including immune system receptors in plants and animals. We devised Repeat Conservation Mapping (RCM), a computational method that predicts functional sites of LRR domains. RCM utilizes two or more homologous sequences and a generic representation of the LRR structure to identify conserved or diversified patches of amino acids on the predicted surface of the LRR. RCM was validated using solved LRR+ligand structures from multiple taxa, identifying ligand interaction sites. RCM was then used for de novo dissection of two plant microbe-associated molecular pattern (MAMP) receptors, EF-TU RECEPTOR (EFR) and FLAGELLIN-SENSING 2 (FLS2). In vivo testing of Arabidopsis thaliana EFR and FLS2 receptors mutagenized at sites identified by RCM demonstrated previously unknown functional sites. The RCM predictions for EFR, FLS2 and a third plant LRR protein, PGIP, compared favorably to predictions from ODA (optimal docking area), Consurf, and PAML (positive selection) analyses, but RCM also made valid functional site predictions not available from these other bioinformatic approaches. RCM analyses can be conducted with any LRR-containing proteins at www.plantpath.wisc.edu/RCM, and the approach should be modifiable for use with other types of repeat protein domains. PMID:21789174

  18. Functional analysis of the Arabidopsis thaliana CHLOROPLAST BIOGENESIS 19 pentatricopeptide repeat editing protein.

    PubMed

    Ramos-Vega, Maricela; Guevara-García, Arturo; Llamas, Ernesto; Sánchez-León, Nidia; Olmedo-Monfil, Vianey; Vielle-Calzada, Jean Philippe; León, Patricia

    2015-10-01

    The Arabidopsis thaliana pentatricopeptide repeat (PPR) family of proteins contains several degenerate 35-aa motifs named PPR repeats. These proteins control diverse post-transcriptional regulatory mechanisms, including RNA editing. CLB19 belongs to the PLS subfamily of PPR proteins and is essential for the editing and functionality of the subunit A of plastid-encoded RNA polymerase (RpoA) and the catalytic subunit of the Clp protease (ClpP1). We demonstrate in vitro that CLB19 has a specific interaction with these two targets, in spite of their modest sequence similarity. Using site-directed mutagenesis of the rpoA target, we analyzed the essential nucleotides required for CLB19-rpoA interactions. We verified that, similar to other editing proteins, the C-terminal E domain of CLB19 is essential for editing but not for RNA binding. Using biomolecular fluorescence complementation, we demonstrated that the E domain of CLB19 interacts with the RNA-interacting protein MORF2/RIP2 but not with MORF9/RIP9. An interesting finding from this analysis was that overexpression of a truncated CLB19 protein lacking the E domain interferes with cell fate during megasporogenesis and the subsequent establishment of a female gametophyte, supporting an important role of plastids in female gametogenesis. Together these analyses provide important clues about the particularities of the CLB19 editing protein. PMID:25980341

  19. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase

    PubMed Central

    Procházková Schrumpfová, Petra; Vychodilová, Ivona; Dvořáčková, Martina; Majerská, Jana; Dokládal, Ladislav; Schořová, Šárka; Fajkus, Jiří

    2014-01-01

    Although telomere-binding proteins constitute an essential part of telomeres, in vivo data indicating the existence of a structure similar to mammalian shelterin complex in plants are limited. Partial characterization of a number of candidate proteins has not identified true components of plant shelterin or elucidated their functional mechanisms. Telomere repeat binding (TRB) proteins from Arabidopsis thaliana bind plant telomeric repeats through a Myb domain of the telobox type in vitro, and have been shown to interact with POT1b (Protection of telomeres 1). Here we demonstrate co-localization of TRB1 protein with telomeres in situ using fluorescence microscopy, as well as in vivo interaction using chromatin immunoprecipitation. Classification of the TRB1 protein as a component of plant telomeres is further confirmed by the observation of shortening of telomeres in knockout mutants of the trb1 gene. Moreover, TRB proteins physically interact with plant telomerase catalytic subunits. These findings integrate TRB proteins into the telomeric interactome of A. thaliana. PMID:24397874

  20. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins

    PubMed Central

    Shen, Cuicui; Zhang, Delin; Guan, Zeyuan; Liu, Yexing; Yang, Zhao; Yang, Yan; Wang, Xiang; Wang, Qiang; Zhang, QunXia; Fan, Shilong; Zou, Tingting; Yin, Ping

    2016-01-01

    As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex with their respective ssRNA targets. The dPPR repeats are assembled into a right-handed superhelical spiral shell that embraces the ssRNA. Interactions between different PPR codes and RNA bases are observed at the atomic level, revealing the molecular basis for the modular and specific recognition patterns of the RNA bases U, C, A and G. These structures not only provide insights into the functional study of PPR proteins but also open a path towards the potential design of synthetic sequence-specific RNA-binding proteins. PMID:27088764

  1. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins.

    PubMed

    Shen, Cuicui; Zhang, Delin; Guan, Zeyuan; Liu, Yexing; Yang, Zhao; Yang, Yan; Wang, Xiang; Wang, Qiang; Zhang, QunXia; Fan, Shilong; Zou, Tingting; Yin, Ping

    2016-01-01

    As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex with their respective ssRNA targets. The dPPR repeats are assembled into a right-handed superhelical spiral shell that embraces the ssRNA. Interactions between different PPR codes and RNA bases are observed at the atomic level, revealing the molecular basis for the modular and specific recognition patterns of the RNA bases U, C, A and G. These structures not only provide insights into the functional study of PPR proteins but also open a path towards the potential design of synthetic sequence-specific RNA-binding proteins. PMID:27088764

  2. An essential yeast gene encoding a TTAGGG repeat-binding protein

    SciTech Connect

    Brigati, C. Istituto Nazionale per la Ricerca sul Cancro, Genoa ); Kurtz, S.; Balderes, D.; Shore, D. ); Vidali, G. )

    1993-02-01

    Among all eukaryotes examined to date, telomere is a highly conserved structure. It is designed to protect chromosomes from degradation and fusion. Telomeres are composed of multiple repeats of short sequence elements and range in length from a few repeat units to > kb. The repeated sequence TTAGGG is found at telomeres in all vertebrates, certain slime molds, and trypanosomes. Because sequence TTAGGG is present at the telomere of all of these divergent organisms, it is likely that it constitutes a binding site for highly conserved proteins with important roles in chromosomal structure and function. The occurrence of a TTAGGG-binding activity in Saccharomyces cerevisiae and the presence of TTAGGG sequences at telomere junctions raise the possibility that there is a related factor with a functional role at telomeres in S. cervisiae. The research in this paper tests this hypothesis. 33 refs., 6 figs., 1 tab.

  3. Isolation, characterization, and bioinformatic analysis of calmodulin-binding protein cmbB reveals a novel tandem IP22 repeat common to many Dictyostelium and Mimivirus proteins.

    PubMed

    O'Day, Danton H; Suhre, Karsten; Myre, Michael A; Chatterjee-Chakraborty, Munmun; Chavez, Sara E

    2006-08-01

    A novel calmodulin-binding protein cmbB from Dictyostelium discoideum is encoded in a single gene. Northern analysis reveals two cmbB transcripts first detectable at 4 h during multicellular development. Western blotting detects an approximately 46.6 kDa protein. Sequence analysis and calmodulin-agarose binding studies identified a "classic" calcium-dependent calmodulin-binding domain (179IPKSLRSLFLGKGYNQPLEF198) but structural analyses suggest binding may not involve classic alpha-helical calmodulin-binding. The cmbB protein is comprised of tandem repeats of a newly identified IP22 motif ([I,L]Pxxhxxhxhxxxhxxxhxxxx; where h = any hydrophobic amino acid) that is highly conserved and a more precise representation of the FNIP repeat. At least eight Acanthamoeba polyphaga Mimivirus proteins and over 100 Dictyostelium proteins contain tandem arrays of the IP22 motif and its variants. cmbB also shares structural homology to YopM, from the plague bacterium Yersenia pestis. PMID:16777069

  4. History Repeats Itself: Parental Involvement in Children's Career Exploration

    ERIC Educational Resources Information Center

    Levine, Kathryn A.; Sutherland, Dawn

    2013-01-01

    Parent involvement in children's education remains one of the most significant predictors for children's academic achievement. This finding generally holds across the range of social group categories including race, culture, class, and family structure. However, relatively little research has been conducted on parental involvement in…

  5. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  6. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  7. Telomeric Repeats Facilitate CENP-ACnp1 Incorporation via Telomere Binding Proteins

    PubMed Central

    Castillo, Araceli G.; Pidoux, Alison L.; Catania, Sandra; Durand-Dubief, Mickaël; Choi, Eun Shik; Hamilton, Georgina; Ekwall, Karl; Allshire, Robin C.

    2013-01-01

    The histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-ACnp1 is present in fission yeast cells. Our analyses show that additional CENP-ACnp1 accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-ACnp1 deposition. However, chromosome ends are not required as CENP-ACnp1 deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-ACnp1 near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and, thus, potentially the location of centromeres. PMID:23936074

  8. Telomeric repeats facilitate CENP-A(Cnp1) incorporation via telomere binding proteins.

    PubMed

    Castillo, Araceli G; Pidoux, Alison L; Catania, Sandra; Durand-Dubief, Mickaël; Choi, Eun Shik; Hamilton, Georgina; Ekwall, Karl; Allshire, Robin C

    2013-01-01

    The histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-A(Cnp1) is present in fission yeast cells. Our analyses show that additional CENP-A(Cnp1) accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-A(Cnp1) deposition. However, chromosome ends are not required as CENP-A(Cnp1) deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-A(Cnp1) near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and, thus, potentially the location of centromeres. PMID:23936074

  9. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants. PMID:26260516

  10. Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts.

    PubMed

    Koprivova, Anna; des Francs-Small, Catherine Colas; Calder, Grant; Mugford, Sam T; Tanz, Sandra; Lee, Bok-Rye; Zechmann, Bernd; Small, Ian; Kopriva, Stanislav

    2010-10-15

    Splicing of plant organellar transcripts is facilitated by members of a large protein family, the pentatricopeptide repeat proteins. We have identified a pentatricopeptide repeat protein in a genetic screen for mutants resistant to inhibition of root growth by buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis and consequently named BIR6 (BSO-insensitive roots 6). BIR6 is involved in splicing of intron 1 of the mitochondrial nad7 transcript. Loss-of-function mutations in BIR6 result in a strongly reduced accumulation of fully processed nad7 transcript. This affects assembly of Complex I and results in moderate growth retardation. In agreement with disruption of Complex I function, the genes encoding alternative NADH oxidizing enzymes are induced in the mutant, and the mutant plants are less sensitive to mannitol and salt stress. Mutation in the BIR6 gene allowed normal root growth in presence of BSO and strongly attenuated depletion of glutathione content at these conditions. The same phenotype was observed with other mutants affected in function of Complex I, thus reinforcing the importance of Complex I function for cellular redox homeostasis. PMID:20682769

  11. Identification of a Pentatricopeptide Repeat Protein Implicated in Splicing of Intron 1 of Mitochondrial nad7 Transcripts

    PubMed Central

    Koprivova, Anna; des Francs-Small, Catherine Colas; Calder, Grant; Mugford, Sam T.; Tanz, Sandra; Lee, Bok-Rye; Zechmann, Bernd; Small, Ian; Kopriva, Stanislav

    2010-01-01

    Splicing of plant organellar transcripts is facilitated by members of a large protein family, the pentatricopeptide repeat proteins. We have identified a pentatricopeptide repeat protein in a genetic screen for mutants resistant to inhibition of root growth by buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis and consequently named BIR6 (BSO-insensitive roots 6). BIR6 is involved in splicing of intron 1 of the mitochondrial nad7 transcript. Loss-of-function mutations in BIR6 result in a strongly reduced accumulation of fully processed nad7 transcript. This affects assembly of Complex I and results in moderate growth retardation. In agreement with disruption of Complex I function, the genes encoding alternative NADH oxidizing enzymes are induced in the mutant, and the mutant plants are less sensitive to mannitol and salt stress. Mutation in the BIR6 gene allowed normal root growth in presence of BSO and strongly attenuated depletion of glutathione content at these conditions. The same phenotype was observed with other mutants affected in function of Complex I, thus reinforcing the importance of Complex I function for cellular redox homeostasis. PMID:20682769

  12. Characterization of Tetratricopeptide Repeat-Like Proteins in Francisella tularensis and Identification of a Novel Locus Required for Virulence

    PubMed Central

    Dankova, Vera; Balonova, Lucie; Straskova, Adela; Spidlova, Petra; Putzova, Daniela; Kijek, Todd; Bozue, Joel; Cote, Christopher; Mou, Sherry; Worsham, Patricia; Szotakova, Barbora; Stulik, Jiri

    2014-01-01

    Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis. PMID:25245806

  13. Leucine-rich Repeats of Bacterial Surface Proteins Serve as Common Pattern Recognition Motifs of Human Scavenger Receptor gp340*

    PubMed Central

    Loimaranta, Vuokko; Hytönen, Jukka; Pulliainen, Arto T.; Sharma, Ashu; Tenovuo, Jorma; Strömberg, Nicklas; Finne, Jukka

    2009-01-01

    Scavenger receptors are innate immune molecules recognizing and inducing the clearance of non-host as well as modified host molecules. To recognize a wide pattern of invading microbes, many scavenger receptors bind to common pathogen-associated molecular patterns, such as lipopolysaccharides and lipoteichoic acids. Similarly, the gp340/DMBT1 protein, a member of the human scavenger receptor cysteine-rich protein family, displays a wide ligand repertoire. The peptide motif VEVLXXXXW derived from its scavenger receptor cysteine-rich domains is involved in some of these interactions, but most of the recognition mechanisms are unknown. In this study, we used mass spectrometry sequencing, gene inactivation, and recombinant proteins to identify Streptococcus pyogenes protein Spy0843 as a recognition receptor of gp340. Antibodies against Spy0843 are shown to protect against S. pyogenes infection, but no function or host receptor have been identified for the protein. Spy0843 belongs to the leucine-rich repeat (Lrr) family of eukaryotic and prokaryotic proteins. Experiments with truncated forms of the recombinant proteins confirmed that the Lrr region is needed in the binding of Spy0843 to gp340. The same motif of two other Lrr proteins, LrrG from the Gram-positive S. agalactiae and BspA from the Gram-negative Tannerella forsythia, also mediated binding to gp340. Moreover, inhibition of Spy0843 binding occurred with peptides containing the VEVLXXXXW motif, but also peptides devoid of the XXXXW motif inhibited binding of Lrr proteins. These results thus suggest that the conserved Lrr motif in bacterial proteins serves as a novel pattern recognition motif for unique core peptides of human scavenger receptor gp340. PMID:19465482

  14. Gudu, an Armadillo repeat-containing protein, is required for spermatogenesis in Drosophila

    PubMed Central

    Cheng, Wei

    2013-01-01

    The Drosophila annotated gene CG5155 encodes a protein that contains 10 Armadillo-repeats and has an unknown function. To fill this gap, we performed loss-of-function studies using RNAi. By analysis of four independent Drosophila RNAi lines targeting two non-overlapping regions of the CG5155 transcript, we demonstrate that this gene is required for male fertility. Therefore, we have named this gene Gudu. The transcript of Gudu is highly enriched in adult testes. Knockdown of Gudu by a ubiquitous driver leads to defects in the formation of the individualization complex that is required for spermatid maturation, thereby impairing spermatogenesis. Furthermore, testis-specific knockdown of Gudu by crossing the RNAi lines with the bam-Gal4 driver is sufficient to cause the infertility and defective spermatogenesis. Since Gudu is highly homologous to vertebrate ARMC4, also an Armadillo-repeat-containing protein enriched in testes, our results suggest that Gudu and ARMC4 is a subfamily of Armadillo-repeat containing proteins that may have an evolutionarily conserved function in spermatogenesis. PMID:24055424

  15. Generation of Fluorogen-Activating Designed Ankyrin Repeat Proteins (FADAs) as Versatile Sensor Tools.

    PubMed

    Schütz, Marco; Batyuk, Alexander; Klenk, Christoph; Kummer, Lutz; de Picciotto, Seymour; Gülbakan, Basri; Wu, Yufan; Newby, Gregory A; Zosel, Franziska; Schöppe, Jendrik; Sedlák, Erik; Mittl, Peer R E; Zenobi, Renato; Wittrup, K Dane; Plückthun, Andreas

    2016-03-27

    Fluorescent probes constitute a valuable toolbox to address a variety of biological questions and they have become irreplaceable for imaging methods. Commonly, such probes consist of fluorescent proteins or small organic fluorophores coupled to biological molecules of interest. Recently, a novel class of fluorescence-based probes, fluorogen-activating proteins (FAPs), has been reported. These binding proteins are based on antibody single-chain variable fragments and activate fluorogenic dyes, which only become fluorescent upon activation and do not fluoresce when free in solution. Here we present a novel class of fluorogen activators, termed FADAs, based on the very robust designed ankyrin repeat protein scaffold, which also readily folds in the reducing environment of the cytoplasm. The FADA generated in this study was obtained by combined selections with ribosome display and yeast surface display. It enhances the fluorescence of malachite green (MG) dyes by a factor of more than 11,000 and thus activates MG to a similar extent as FAPs based on single-chain variable fragments. As shown by structure determination and in vitro measurements, this FADA was evolved to form a homodimer for the activation of MG dyes. Exploiting the favorable properties of the designed ankyrin repeat protein scaffold, we created a FADA biosensor suitable for imaging of proteins on the cell surface, as well as in the cytosol. Moreover, based on the requirement of dimerization for strong fluorogen activation, a prototype FADA biosensor for in situ detection of a target protein and protein-protein interactions was developed. Therefore, FADAs are versatile fluorescent probes that are easily produced and suitable for diverse applications and thus extend the FAP technology. PMID:26812208

  16. Repeated small bowel resection in a patient with Buerger's disease and intestinal involvement.

    PubMed

    Enshaei, Ali; Hajipour, Babak; Masoudi, Naser

    2016-04-01

    Buerger's disease, also called thromboangiitis obliterans, is a recurrent and an uncommon vaso-occlusive inflammatory disease, which typically affects small and medium-sized arteries, veins and nerves of the upper and lower extremities. Mesenteric and multisystem involvement of two or more organs is extremely rare. Here we report the case of a 39-year-old male heavy smoker who had undergone four repetitive laparotomies and multiple small bowel resections for ischaemic involvement of Buerger's disease. He had below-the-knee amputation of the right leg and finger of the left hand because of that disease before bowel involvement. Histopathological findings revealed that the arteries and veins of the resected small intestine were occluded with organised thrombi. Inflammatory cell infiltration was recognised mainly in the intima of distal branches of mesenteric artery. These findings were compatible with previous findings in histopathological examinations of amputated extremities. PMID:27122278

  17. The solution structure of the pentatricopeptide repeat protein PPR10 upon binding atpH RNA

    PubMed Central

    Gully, Benjamin S.; Cowieson, Nathan; Stanley, Will A.; Shearston, Kate; Small, Ian D.; Barkan, Alice; Bond, Charles S.

    2015-01-01

    The pentatricopeptide repeat (PPR) protein family is a large family of RNA-binding proteins that is characterized by tandem arrays of a degenerate 35-amino-acid motif which form an α-solenoid structure. PPR proteins influence the editing, splicing, translation and stability of specific RNAs in mitochondria and chloroplasts. Zea mays PPR10 is amongst the best studied PPR proteins, where sequence-specific binding to two RNA transcripts, atpH and psaJ, has been demonstrated to follow a recognition code where the identity of two amino acids per repeat determines the base-specificity. A recently solved ZmPPR10:psaJ complex crystal structure suggested a homodimeric complex with considerably fewer sequence-specific protein–RNA contacts than inferred previously. Here we describe the solution structure of the ZmPPR10:atpH complex using size-exclusion chromatography-coupled synchrotron small-angle X-ray scattering (SEC-SY-SAXS). Our results support prior evidence that PPR10 binds RNA as a monomer, and that it does so in a manner that is commensurate with a canonical and predictable RNA-binding mode across much of the RNA–protein interface. PMID:25609698

  18. Keeping History from Repeating Itself: Involving Parents about Retention Decisions to Support Student Achievement

    ERIC Educational Resources Information Center

    Akmal, Tariq T.; Larsen, Donald E.

    2004-01-01

    Collaborative ventures between families and schools can result in children being successful both academically and in life (Henderson & Berla, 1994; Jackson & Davis, 2000; Mapp, 1997). The most successful predictor of student achievement is an encouraging home environment, high expectations from parents, and parental involvement (Epstein, 2001;…

  19. Statistical characterization of the GxxxG glycine repeats in the flagellar biosynthesis protein FliH and its Type III secretion homologue YscL

    PubMed Central

    2009-01-01

    Background FliH is a protein involved in the export of components of the bacterial flagellum and we herein describe the presence of glycine-rich repeats in FliH of the form AxxxG(xxxG)mxxxA, where the value of m varies considerably in FliH proteins from different bacteria. While GxxxG and AxxxA patterns have previously been described, the long glycine repeat segments in FliH proteins have yet to be characterized. The Type III secretion system homologue to FliH (YscL, AscL, PscL, etc.) also contains a similar GxxxG repeat, and hence the presence of the repeat is evolutionarily conserved in these proteins, suggesting an important structural role or biological function. Results A set of FliH and YscL protein sequences was downloaded from GenBank, and then filtered to reduce redundancy, to ensure the soundness of the sequences, and to eliminate, as much as possible, confounding phylogenetic signal between individual sequences by implementing a pairwise 25% sequence identity cut-off. The general features of the glycine-rich repeats in these proteins were examined, and it was found that the length of these repeat segments varied substantially among FliH proteins but was fairly consistent for the Type III (YscL) homologue sequences, with values of m ranging from 0 to 12 for FliH and 0 to 2 for YscL. The amino acid sequence distribution of each of the three positions in the GxxxG repeats was found to differ significantly from the overall amino acid composition of the FliH/YscL proteins. The high frequency of Glu, Gln, Lys and Ala residues in the repeat positions, which is not likely indicative of any contaminating phylogenetic signal, suggests an α-helical structure for this motif. In addition, we sought to determine whether certain pairs of amino acids, in certain pairs of positions, were found together significantly more often than would be predicted by chance. Several statistically significant correlations were uncovered, which may be important for maintaining helical

  20. A Protein Involved in the Assembly of an Extracellular Calcium Storage Matrix*

    PubMed Central

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-01-01

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBankTM data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate. PMID:20150428

  1. A protein involved in the assembly of an extracellular calcium storage matrix.

    PubMed

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-04-23

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBank data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate. PMID:20150428

  2. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses.

    PubMed

    Zhang, Xinchun; Li, Dayong; Zhang, Huijuan; Wang, Xiaoe; Zheng, Zhong; Song, Fengming

    2010-02-01

    A rice gene, OsBIANK1, encoding a protein containing a typical ankyrin repeat domain, was cloned and identified. The OsBIANK1 protein, consisting of 329 amino acids, contains a conserved ankyrin repeat domain with two ankyrin repeats organized in tandem and was showed to be localized on cytoplasmic membrane during transient expression in onion epidermal cells. Expression of OsBIANK1 was induced by treatment with benzothiadiazole (BTH), a chemical inducer capable of inducing disease resistance response in rice. In BTH-treated rice seedlings, expression of OsBIANK1 was further induced by infection with Magnaporthe grisea, the rice blast fungus, as compared with those in water-treated seedlings. Our preliminary results confirm previous evidences that OsBIANK1 may be involved in regulation of disease resistance response in rice. PMID:19288292

  3. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    PubMed Central

    Marasco, Daniela; Scognamiglio, Pasqualina Liana

    2015-01-01

    Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs) are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs. PMID:25849651

  4. Nanoparticles Self-Assembly Driven by High Affinity Repeat Protein Pairing.

    PubMed

    Gurunatha, Kargal L; Fournier, Agathe C; Urvoas, Agathe; Valerio-Lepiniec, Marie; Marchi, Valérie; Minard, Philippe; Dujardin, Erik

    2016-03-22

    Proteins are the most specific yet versatile biological self-assembling agents with a rich chemistry. Nevertheless, the design of new proteins with recognition capacities is still in its infancy and has seldom been exploited for the self-assembly of functional inorganic nanoparticles. Here, we report on the protein-directed assembly of gold nanoparticles using purpose-designed artificial repeat proteins having a rigid but modular 3D architecture. αRep protein pairs are selected for their high mutual affinity from a library of 10(9) variants. Their conjugation onto gold nanoparticles drives the massive colloidal assembly of free-standing, one-particle thick films. When the average number of proteins per nanoparticle is lowered, the extent of self-assembly is limited to oligomeric particle clusters. Finally, we demonstrate that the aggregates are reversibly disassembled by an excess of one free protein. Our approach could be optimized for applications in biosensing, cell targeting, or functional nanomaterials engineering. PMID:26863288

  5. Psychological impact and recovery after involvement in a patient safety incident: a repeated measures analysis

    PubMed Central

    Van Gerven, Eva; Bruyneel, Luk; Panella, Massimiliano; Euwema, Martin; Sermeus, Walter; Vanhaecht, Kris

    2016-01-01

    Objective To examine individual, situational and organisational aspects that influence psychological impact and recovery of a patient safety incident on physicians, nurses and midwives. Design Cross-sectional, retrospective surveys of physicians, midwives and nurses. Setting 33 Belgian hospitals. Participants 913 clinicians (186 physicians, 682 nurses, 45 midwives) involved in a patient safety incident. Main outcome measures The Impact of Event Scale was used to retrospectively measure psychological impact of the safety incident at the time of the event and compare it with psychological impact at the time of the survey. Results Individual, situational as well as organisational aspects influenced psychological impact and recovery of a patient safety incident. Psychological impact is higher when the degree of harm for the patient is more severe, when healthcare professionals feel responsible for the incident and among female healthcare professionals. Impact of degree of harm differed across clinicians. Psychological impact is lower among more optimistic professionals. Overall, impact decreased significantly over time. This effect was more pronounced for women and for those who feel responsible for the incident. The longer ago the incident took place, the stronger impact had decreased. Also, higher psychological impact is related with the use of a more active coping and planning coping strategy, and is unrelated to support seeking coping strategies. Rendered support and a support culture reduce psychological impact, whereas a blame culture increases psychological impact. No associations were found with job experience and resilience of the health professional, the presence of a second victim support team or guideline and working in a learning culture. Conclusions Healthcare organisations should anticipate on providing their staff appropriate and timely support structures that are tailored to the healthcare professional involved in the incident and to the specific

  6. Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins

    PubMed Central

    Voineagu, Irina; Narayanan, Vidhya; Lobachev, Kirill S.; Mirkin, Sergei M.

    2008-01-01

    DNA inverted repeats (IRs) are hotspots of genomic instability in both prokaryotes and eukaryotes. This feature is commonly attributed to their ability to fold into hairpin- or cruciform-like DNA structures interfering with DNA replication and other genetic processes. However, direct evidence that IRs are replication stall sites in vivo is currently lacking. Here, we show by 2D electrophoretic analysis of replication intermediates that replication forks stall at IRs in bacteria, yeast, and mammalian cells. We found that DNA hairpins, rather than DNA cruciforms, are responsible for the replication stalling by comparing the effects of specifically designed imperfect IRs with varying lengths of their central spacer. Finally, we report that yeast fork-stabilizing proteins, Tof1 and Mrc1, are required to counteract repeat-mediated replication stalling. We show that the function of the Tof1 protein at DNA structure-mediated stall sites is different from its previously described effect on protein-mediated replication fork barriers. PMID:18632578

  7. The Role of Leucine-Rich Repeat Containing Protein 10 (LRRC10) in Dilated Cardiomyopathy

    PubMed Central

    Brody, Matthew J.; Lee, Youngsook

    2016-01-01

    Leucine-rich repeat containing protein 10 (LRRC10) is a cardiomyocyte-specific member of the Leucine-rich repeat containing (LRRC) protein superfamily with critical roles in cardiac function and disease pathogenesis. Recent studies have identified LRRC10 mutations in human idiopathic dilated cardiomyopathy (DCM) and Lrrc10 homozygous knockout mice develop DCM, strongly linking LRRC10 to the molecular etiology of DCM. LRRC10 localizes to the dyad region in cardiomyocytes where it can interact with actin and α-actinin at the Z-disc and associate with T-tubule components. Indeed, this region is becoming increasingly recognized as a signaling center in cardiomyocytes, not only for calcium cycling, excitation-contraction coupling, and calcium-sensitive hypertrophic signaling, but also as a nodal signaling hub where the myocyte can sense and respond to mechanical stress. Disruption of a wide range of critical structural and signaling molecules in cardiomyocytes confers susceptibility to cardiomyopathies in addition to the more classically studied mutations in sarcomeric proteins. However, the molecular mechanisms underlying DCM remain unclear. Here, we review what is known about the cardiomyocyte functions of LRRC10, lessons learned about LRRC10 and DCM from the Lrrc10 knockout mouse model, and discuss ongoing efforts to elucidate molecular mechanisms whereby mutation or absence of LRRC10 mediates cardiac disease. PMID:27536250

  8. The Role of Leucine-Rich Repeat Containing Protein 10 (LRRC10) in Dilated Cardiomyopathy.

    PubMed

    Brody, Matthew J; Lee, Youngsook

    2016-01-01

    Leucine-rich repeat containing protein 10 (LRRC10) is a cardiomyocyte-specific member of the Leucine-rich repeat containing (LRRC) protein superfamily with critical roles in cardiac function and disease pathogenesis. Recent studies have identified LRRC10 mutations in human idiopathic dilated cardiomyopathy (DCM) and Lrrc10 homozygous knockout mice develop DCM, strongly linking LRRC10 to the molecular etiology of DCM. LRRC10 localizes to the dyad region in cardiomyocytes where it can interact with actin and α-actinin at the Z-disc and associate with T-tubule components. Indeed, this region is becoming increasingly recognized as a signaling center in cardiomyocytes, not only for calcium cycling, excitation-contraction coupling, and calcium-sensitive hypertrophic signaling, but also as a nodal signaling hub where the myocyte can sense and respond to mechanical stress. Disruption of a wide range of critical structural and signaling molecules in cardiomyocytes confers susceptibility to cardiomyopathies in addition to the more classically studied mutations in sarcomeric proteins. However, the molecular mechanisms underlying DCM remain unclear. Here, we review what is known about the cardiomyocyte functions of LRRC10, lessons learned about LRRC10 and DCM from the Lrrc10 knockout mouse model, and discuss ongoing efforts to elucidate molecular mechanisms whereby mutation or absence of LRRC10 mediates cardiac disease. PMID:27536250

  9. Identification and characterization of GSRP-56, a novel Golgi-localized spectrin repeat-containing protein

    SciTech Connect

    Kobayashi, Yuko . E-mail: yu-kobayashi@kinran.ac.jp; Katanosaka, Yuki; Iwata, Yuko; Matsuoka, Masayuki; Shigekawa, Munekazu; Wakabayashi, Shigeo . E-mail: wak@ri.ncvc.go.jp

    2006-10-01

    Spectrin repeat (SR)-containing proteins are important for regulation of integrity of biomembranes, not only the plasma membrane but also those of intracellular organelles, such as the Golgi, nucleus, endo/lysosomes, and synaptic vesicles. We identified a novel SR-containing protein, named GSRP-56 (Golgi-localized SR-containing protein-56), by a yeast two-hybrid method, using a member of the transient receptor potential channel family, TRPV2, as bait. GSRP-56 is an isoform derived from a giant SR-containing protein, Syne-1 (synaptic nuclear envelope protein-1, also referred to as Nesprin-1 or Enaptin), predicted to be produced by alternative splicing. Immunological analysis demonstrated that this isoform is a 56-kDa protein, which is localized predominantly in the Golgi apparatus in cardiomyocytes and C2C12 myoblasts/myotubes, and we found that two SR domains were required both for Golgi targeting and for interaction with TRPV2. Interestingly, overexpression of GSRP-56 resulted in a morphological change in the Golgi structure, characterized by its enlargement of cis-Golgi marker antibody-staining area, which would result partly from fragmentation of Golgi membranes. Our findings indicate that GSRP-56 is a novel, particularly small Golgi-localized member of the spectrin family, which possibly play a role in maintenance of the Golgi structure.

  10. Characterization of a novel anther-specific gene encoding a leucine-rich repeat protein in petunia.

    PubMed

    Yue, Y Z; Sun, J; Huang, X; Peng, H; Liu, G F; Hu, H R

    2014-01-01

    In Petunia x hybrida 'Fantasy Red', a leucine-rich repeat (LRR) gene referred to as PhLRR, was identified in a flower bud cDNA library. The open reading frame sequence of PhLRR was 1251 bp, encoding a putative 46.2-kDa protein of 416 amino acids. The PhLRR protein showed high similarity to members of polygalacturonase inhibitor proteins (PGIPs), contained 11 conserved LRR domains, and was an extracellular localization protein. Phylogenetic analysis showed that PhLRR belonged to the same PGIPs subfamily as SHY, indicating that PhLRR may be involved in the development of pollen-like SHY. Expression analysis revealed that PhLRR was abundantly expressed during early stages of flower bud and anther development, while it was not detected in any other examined organs, such as sepals, petals, pistils, roots, stems, leaves, or open flowers. Furthermore, many cis-acting elements (such as AGAAA and GTGA) related to anther-specific gene expression were identified in the PhLRR gene promoter region, indicating that the promoter is also anther-specific. These results suggested that PhLRR is a novel anther-specific gene that may be essential for the early development of anthers. PMID:25501199

  11. The αRep artificial repeat protein scaffold: a new tool for crystallization and live cell applications.

    PubMed

    Valerio-Lepiniec, Marie; Urvoas, Agathe; Chevrel, Anne; Guellouz, Asma; Ferrandez, Yann; Mesneau, Agnès; de la Sierra-Gallay, Ines Li; Aumont-Nicaise, Magali; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe

    2015-10-01

    We have designed a new family of artificial proteins, named αRep, based on HEAT (acronym for Huntingtin, elongation factor 3 (EF3), protein pphosphatase 2A (PP2A), yeast kinase Tor1) repeat proteins containing an α-helical repeated motif. The sequence of the repeated motifs, first identified in a thermostable archae protein was optimized using a consensus design strategy and used for the construction of a library of artificial proteins. All proteins from this library share the same general fold but differ both in the number of repeats and in five highly randomized amino acid positions within each repeat. The randomized side chains altogether provide a hypervariable surface on αRep variants. Sequences from this library are efficiently expressed as soluble, folded and very stable proteins. αRep binders with high affinity for various protein targets were selected by phage display. Low micromolar to nanomolar dissociation constants between partners were measured and the structures of several complexes (specific αRep/protein target) were solved by X-ray crystallography. Using GFP as a model target, it was demonstrated that αReps can be used as bait in pull-down experiments. αReps can be expressed in eukaryotic cells and specifically interact with their target addressed to different cell compartments. PMID:26517888

  12. Viral and host proteins involved in picornavirus life cycle.

    PubMed

    Lin, Jing-Yi; Chen, Tzu-Chun; Weng, Kuo-Feng; Chang, Shih-Cheng; Chen, Li-Lien; Shih, Shin-Ru

    2009-01-01

    Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions. PMID:19925687

  13. Dialysis-related amyloidosis: visceral involvement and protein constituents.

    PubMed

    Campistol, J M; Argilés, A

    1996-01-01

    beta 2-M amyloidosis mainly concerns dialysis patients and typically presents with osteoarticular symptoms. In order to precise the incidence and gravity of visceral involvement, subcutaneous abdominal fat aspirates, skin and rectal biopsies, as well as echocardiograms were performed in 26 patients with severe beta 2-M amyloidosis. Visceral amyloidosis was confirmed in 58% and the numbers were even higher when including heart abnormalities suggestive of amyloidosis (81%). Clinical manifestations of visceral involvement were usually not severe and include odynophagia, gastrointestinal haemorrhage, intestinal obstruction, kidney stones, myocardial dysfunction and subcutaneous tumours. The removal and synthesis rates of beta 2-M were assessed during dialysis. Serum 131I-beta 2-M levels decreased by 5-10% with cuprophane and by 40-45% with polysulfone and polyacrylonitrile membranes. These reduction rates were higher than those found with unlabelled beta 2-M suggesting an increased synthesis or release during dialysis. The protein constituents of amyloid deposits were studied. Two different preparative methods to extract the proteins from amyloid deposits were used. TCA precipitation showed the presence of several proteins which were not observed with PBS homogenizing and resuspending in guanidine. The protein constituents of amyloid fibrils were studied by both, two dimensional gel electrophoresis (2D-gel) as well as protein sequencing after gel filtration. Similarly, the technical approach used for protein analysis greatly influenced the results. It was observed that 2D-gel displayed the presence of proteins which were missed by the gel filtration technique. Some of the proteins contained in amyloid deposits in addition to beta 2-M, were identified as globin chains, kappa and lambda light chains of immunoglobulins, and alpha 2 macroglobulin. A putative participation of these other protein constituents on the pathogenesis of beta 2-microglobulin amyloidosis is

  14. Highly Stable Trypsin-Aggregate Coatings on Polymer Nanofibers for Repeated Protein Digestion

    SciTech Connect

    Kim, Byoung Chan; Lopez-Ferrer, Daniel; Lee, Sang-mok; Ahn, Hye-kyung; Nair, Sujith; Kim, Seong H.; Kim, Beom S.; Petritis, Konstantinos; Camp, David G.; Grate, Jay W.; Smith, Richard D.; Koo, Yoon-mo; Gu, Man Bock; Kim, Jungbae

    2009-04-01

    A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This new process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was also resistant to autolysis, enabling repeated digestions of bovine serum albumin over 40 days and successful peptide identification by LC-MS/MS. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e. chymotrypsin), which makes it suitable for use in “real-world” proteomic applications. Overall, the biocatalytic nanofibers with enzyme aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.

  15. Enhanced immunogenicity of peptide P277 by heat shock protein HSP65 vector carrying tandem repeats of P277 to prevent type 1 diabetes in NOD mice.

    PubMed

    Liang, J; Aihua, Z; Yu, W; Jingjing, L

    2008-10-01

    The peptide P277 contains a target epitope for diabetogenic T cells and it has been used as an ideal target antigen to develop vaccines against type 1 diabetes. A major problem in developing P277 vaccine is its low immunogenicity. Recent applications involving multiple copies of self-peptide in linear alignment and conjugation with carrier proteins appear to increase the immune response. In this study, we designed a method based on isocaudamer technique to repeat tandemly the 24-residue sequence P277, then 6 tandemly repeated copies of the peptide P277 were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-6xP277 as an immunogen. We examined the effect of the tandem repeats of the peptide P277 in eliciting an immune response by comparing the immunogenicity of the three immunogens: P277, HSP65-P277 and HSP65-6xP277. Immunization of mice with the fusion protein HSP65-6xP277 elicited much higher levels of specific anti-P277 antibodies than with P277 and HSP65-P277, which should suggest that multiple tandem repeats of a certain epitope is an efficient method to overcome the low immunogenicity of self-peptide antigens and the immunogen HSP65-6xP277 might be further developed to a vaccine against type 1 diabetes. PMID:18473288

  16. Crystallization of a pentapeptide-repeat protein by reductive cyclic pentylation of free amines with glutaraldehyde

    SciTech Connect

    Vetting, Matthew W. Hegde, Subray S.; Blanchard, John S.

    2009-05-01

    A method to modify proteins with glutaraldehyde under reducing conditions is presented. Treatment with glutaraldehyde and dimethylaminoborane was found to result in cyclic pentylation of free amines and facilitated the structural determination of a protein previously recalcitrant to the formation of diffraction quality crystals. The pentapeptide-repeat protein EfsQnr from Enterococcus faecalis protects DNA gyrase from inhibition by fluoroquinolones. EfsQnr was cloned and purified to homogeneity, but failed to produce diffraction-quality crystals in initial crystallization screens. Treatment of EfsQnr with glutaraldehyde and the strong reducing agent borane–dimethylamine resulted in a derivatized protein which produced crystals that diffracted to 1.6 Å resolution; their structure was subsequently determined by single-wavelength anomalous dispersion. Analysis of the derivatized protein using Fourier transform ion cyclotron resonance mass spectrometry indicated a mass increase of 68 Da per free amino group. Electron-density maps about a limited number of structurally ordered lysines indicated that the modification was a cyclic pentylation of free amines, producing piperidine groups.

  17. Model for the Controlled Synthesis of O-Antigen Repeat Units Involving the WaaL Ligase

    PubMed Central

    2015-01-01

    ABSTRACT The Wzx/Wzy O-antigen pathway involves synthesis of a repeat unit (O unit) consisting of 3 to 8 sugars on an inner-membrane-embedded lipid carrier. These O units are translocated across the membrane to its periplasmic face by Wzx, while retaining linkage to the carrier, and then polymerized by Wzy to O-antigen polymer, which WaaL ligase transfers to a lipopolysaccharide precursor to complete lipopolysaccharide synthesis, concomitantly releasing the lipid carrier. This lipid carrier is also used for peptidoglycan assembly, and sequestration is known to be toxic. Thus, O-unit synthesis must involve precise regulation to meet demand but avoid overproduction. Here we show that loss of WaaL reverses a known growth defect in a Salmonella mutant that otherwise accumulates O-unit intermediates and propose that WaaL is also involved in a novel feedback mechanism to regulate O-unit synthesis, based on the availability of O units on the periplasmic face of the membrane. PMID:27303678

  18. Model for the Controlled Synthesis of O-Antigen Repeat Units Involving the WaaL Ligase.

    PubMed

    Hong, Yaoqin; Reeves, Peter R

    2016-01-01

    The Wzx/Wzy O-antigen pathway involves synthesis of a repeat unit (O unit) consisting of 3 to 8 sugars on an inner-membrane-embedded lipid carrier. These O units are translocated across the membrane to its periplasmic face by Wzx, while retaining linkage to the carrier, and then polymerized by Wzy to O-antigen polymer, which WaaL ligase transfers to a lipopolysaccharide precursor to complete lipopolysaccharide synthesis, concomitantly releasing the lipid carrier. This lipid carrier is also used for peptidoglycan assembly, and sequestration is known to be toxic. Thus, O-unit synthesis must involve precise regulation to meet demand but avoid overproduction. Here we show that loss of WaaL reverses a known growth defect in a Salmonella mutant that otherwise accumulates O-unit intermediates and propose that WaaL is also involved in a novel feedback mechanism to regulate O-unit synthesis, based on the availability of O units on the periplasmic face of the membrane. PMID:27303678

  19. An atypical soybean leucine-rich repeat receptor-like kinase, GmLRK1, may be involved in the regulation of cell elongation.

    PubMed

    Kim, Sunghan; Kim, Su-Jin; Shin, Yun-Jeong; Kang, Ji-Hye; Kim, Mi-Ran; Nam, Kyoung Hee; Lee, Myeong-Sok; Lee, Suk-Ha; Kim, Yul-Ho; Hong, Soon-Kwan; Verma, Desh Pal S; Chun, Jong-Yoon; Cheon, Choong-Ill

    2009-03-01

    A leucine-rich repeat receptor-like kinase (LRR-RLK) encoded by one of the genes highly expressed in a specific stage of soybean seed development, referred to as GmLRK1, was identified and characterized. Examination of its kinase domain indicated that GmLRK1 may be a catalytically inactive atypical receptor kinase. An autophosphorylation assay confirmed that GmLRK1 is incapable of autophosphorylation in vitro. However, the phosphorylation of GmRLK1 could be induced after incubation with plant protein extracts, suggesting that some plant proteins may interact with GmLRK1 and phosphorylate the protein in vivo. Analyses of the expression profiles of GmLRK1 and its Arabidopsis ortholog At2g36570 revealed that they may be involved in regulation of more fundamental metabolic and/or developmental pathways, rather than a specialized developmental program such as seed development. Our results further indicate that the GmLRK1 and At2g36570 may play a role in the regulation of certain cellular processes that lead to cell elongation and expansion. PMID:19115064

  20. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens

    PubMed Central

    Kalunke, Raviraj M.; Tundo, Silvio; Benedetti, Manuel; Cervone, Felice; De Lorenzo, Giulia; D'Ovidio, Renato

    2015-01-01

    Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is strongly conserved in monocot and dicot plants. Previous reviews have summarized the importance of PGIP in plant defense and the structural basis of PG-PGIP interaction; here we update the current knowledge about PGIPs with the recent findings on the composition and evolution of pgip gene families, with a special emphasis on legume and cereal crops. We also update the information about the inhibition properties of single pgip gene products against microbial PGs and the results, including field tests, showing the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial pathogens. PMID:25852708

  1. A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats

    NASA Technical Reports Server (NTRS)

    Safadi, F.; Reddy, V. S.; Reddy, A. S.

    2000-01-01

    Calcium is essential for pollen germination and pollen tube growth. A large body of information has established a link between elevation of cytosolic Ca(2+) at the pollen tube tip and its growth. Since the action of Ca(2+) is primarily mediated by Ca(2+)-binding proteins such as calmodulin (CaM), identification of CaM-binding proteins in pollen should provide insights into the mechanisms by which Ca(2+) regulates pollen germination and tube growth. In this study, a CaM-binding protein from maize pollen (maize pollen calmodulin-binding protein, MPCBP) was isolated in a protein-protein interaction-based screening using (35)S-labeled CaM as a probe. MPCBP has a molecular mass of about 72 kDa and contains three tetratricopeptide repeats (TPR) suggesting that it is a member of the TPR family of proteins. MPCBP protein shares a high sequence identity with two hypothetical TPR-containing proteins from Arabidopsis. Using gel overlay assays and CaM-Sepharose binding, we show that the bacterially expressed MPCBP binds to bovine CaM and three CaM isoforms from Arabidopsis in a Ca(2+)-dependent manner. To map the CaM-binding domain several truncated versions of the MPCBP were expressed in bacteria and tested for their ability to bind CaM. Based on these studies, the CaM-binding domain was mapped to an 18-amino acid stretch between the first and second TPR regions. Gel and fluorescence shift assays performed with CaM and a CaM-binding synthetic peptide further confirmed MPCBP binding to CaM. Western, Northern, and reverse transcriptase-polymerase chain reaction analysis have shown that MPCBP expression is specific to pollen. MPCBP was detected in both soluble and microsomal proteins. Immunoblots showed the presence of MPCBP in mature and germinating pollen. Pollen-specific expression of MPCBP, its CaM-binding properties, and the presence of TPR motifs suggest a role for this protein in Ca(2+)-regulated events during pollen germination and growth.

  2. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana.

    PubMed

    Zeng, C J Tracy; Lee, Y-R Julie; Liu, Bo

    2009-04-01

    Although cells of flowering plants lack a structurally defined microtubule-organizing center like the centrosome, organization of the spindles and phragmoplasts in mitosis is known to involve the evolutionarily conserved gamma-tubulin complex. We have investigated the function of Arabidopsis thaliana NEDD1, a WD40 repeat protein related to the animal NEDD1/GCP-WD protein, which interacts with the gamma-tubulin complex. The NEDD1 protein decorates spindle microtubules (MTs) preferentially toward spindle poles and phragmoplast MTs toward their minus ends. A T-DNA insertional allele of the single NEDD1 gene was isolated and maintained in heterozygous sporophytes, and NEDD1's function in cell division was analyzed in haploid microspores produced by the heterozygote. In approximately half of the dividing microspores exhibiting aberrant MT organization, spindles were no longer restricted to the cell periphery and became abnormally elongated. After mitosis, MTs aggregated between reforming nuclei but failed to appear in a bipolar configuration. Consequently, defective microspores did not form a continuous cell plate, and two identical nuclei were produced with no differentiation into generative and vegetative cells. Our results support the notion that the plant NEDD1 homolog plays a critical role in MT organization during mitosis, and its function is likely linked to that of the gamma-tubulin complex. PMID:19383896

  3. A Wd Repeat Protein, Rec14, Essential for Meiotic Recombination in Schizosaccharomyces Pombe

    PubMed Central

    Evans, D. H.; Li, Y. F.; Fox, M. E.; Smith, C. R.

    1997-01-01

    Mutations in the Schizosaccharomyces pombe rec14 gene reduce meiotic recombination by as much as a factor of 1000 in the three intervals tested on chromosomes I and III. A DNA clone complementing the rec14 mutation was shown by genetic and physical analysis to contain the rec14 gene, which was functional in plasmid-borne inserts as small as 1.4 kb. The rec14 gene contains two exons separated by a 53-bp intron, which was confirmed by analysis of rec14 transcripts. The spliced transcript encodes a protein product of 302 amino acids, which contains six WD repeat motifs found in the G-beta transducin family of proteins and other proteins, including the Saccharomyces cerevisiae Ski8 (Rec103) protein. Although the rec14 transcripts were present in mitotically dividing cells, rec14 mutations had no detectable effect on mitotic recombination. The pattern of expression of rec14 differs from that of previously analyzed S. pombe rec genes. Based upon mutant phenotypes and amino acid sequence similarities, we propose that S. pombe Rec14 is a functional homologue of S. cerevisiae Rec103. PMID:9258671

  4. BB0238, a presumed tetratricopeptide repeat-containing protein, is required during Borrelia burgdorferi mammalian infection.

    PubMed

    Groshong, Ashley M; Fortune, Danielle E; Moore, Brendan P; Spencer, Horace J; Skinner, Robert A; Bellamy, William T; Blevins, Jon S

    2014-10-01

    The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain. PMID:25069985

  5. Pentapeptide-repeat proteins that act as topoisomerase poison resistance factors have a common dimer interface

    PubMed Central

    Vetting, Matthew W.; Hegde, Subray S.; Zhang, Yong; Blanchard, John S.

    2011-01-01

    The protein AlbG is a self-resistance factor against albicidin, a nonribosomally encoded hybrid polyketide-peptide with antibiotic and phytotoxic properties produced by Xanthomonas albilineans. Primary-sequence analysis indicates that AlbG is a member of the pentapeptide-repeat family of proteins (PRP). The structure of AlbG from X. albilineans was determined at 2.0 Å resolution by SAD phasing using data collected from a single trimethyllead acetate derivative on a home source. AlbG folds into a right-handed quadrilateral β-helix composed of approximately eight semi-regular coils. The regularity of the β-­helix is blemished by a large loop/deviation in the β-helix between coils 4 and 5. The C-terminus of the β-helix is capped by a dimerization module, yielding a dimer with a 110 Å semi-collinear β-helical axis. This method of dimer formation appears to be common to all PRP proteins that confer resistance to topoisomerase poisons and contrasts with most PRP proteins, which are typically monomeric. PMID:21393830

  6. BB0238, a Presumed Tetratricopeptide Repeat-Containing Protein, Is Required during Borrelia burgdorferi Mammalian Infection

    PubMed Central

    Groshong, Ashley M.; Fortune, Danielle E.; Moore, Brendan P.; Spencer, Horace J.; Skinner, Robert A.; Bellamy, William T.

    2014-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain. PMID:25069985

  7. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  8. Sustained downregulation of YY1-associated protein-related protein gene expression in rat hippocampus induced by repeated electroconvulsive shock.

    PubMed

    Ohtomo, Takayuki; Kanamatsu, Tomoyuki; Fujita, Mariko; Takagi, Mitsuhiro; Yamada, Junji

    2011-01-01

    YY1AP-related protein (YARP) is a structural homolog of YY1-associated protein (YY1AP), which has a YY1-binding domain. During perinatal development, YARP mRNA expression is increased at a late stage of embryonic neurogenesis. It is not known whether YARP expression is regulated during adult neurogenesis. Electroconvulsive shock (ECS), a model for a highly effective depression treatment, is known to induce hippocampal neurogenesis after repeated treatment, so we employed ECS to measure the expression of YARP mRNA. Northern blots revealed significantly decreased expression of the YARP gene after repeated ECS but not single ECS. In situ hybridization clearly demonstrated a reduction of YARP mRNA expression in the CA (CA1, CA2, and CA3) subfields. Although clonic-tonic seizure was induced not only by ECS but also by injection of kainic acid to the striatum, the regulation of YARP mRNA expression was different between ECS and kainic acid. YARP mRNA was decreased only by the ECS method, suggesting that YARP expression is different at embryonic and adult neurogenic stage. PMID:21415536

  9. Cloning, expression, crystallization and preliminary crystallographic analysis of a pentapeptide-repeat protein (Rfr23) from bacterium Cyanothece 511421

    SciTech Connect

    Buchko, Garry W.; Robinson, Howard; Ni, Shuisong; Pakrasi, Himadri B.; Kennedy, Michael A.

    2006-12-01

    A unique feature of cyanobacteria genomes is the abundance of genes that code for hypothetical proteins containing tandem pentapeptide repeats approximately described by the consensus motif A[N/D]LXX. Too date, structures of two pentapeptide repeat proteins (PRPs) have been determined with the tandem pentapeptide repeat sequences observed to adopt a novel right-handed quadrilateral b-helix, or Rfr-fold, in both structures. One structure, Mycobacterium tuberculosis MfpA, is a 183-residue protein that contains 30 consecutive pentapeptide repeats and appears to offer antibiotic resistance by acting as a DNA mimic. The other structure, Cyanothece Rfr32, is a 167-residue protein that contains 21 consecutive pentapeptide repeats. The function of Rfr32, like the other 35 hypothetical PRPs identified in the genome of Cyanothece, is unknown. In an effort to understand the role of PRPs in cyanobacteria, and to better characterize the structural properties of Rfr-folds with different amino acid sequences, a second PRP from Cyanothece 51142, Rfr23, has been cloned, expressed, and purified. Selenomethione substituted protein was crystallized by vapor diffusion in hanging drops. MAD diffraction data were collected on these crystals to 2.? Å resolution using synchrotron radiation. The crystals belonged to space group I41 with unit-cell parameters a = b = 106.23 Å, c = 52.40 Å. Analysis of the 172-residue protein sequence suggests that Rfr23 contains 26 pentapeptide repeats interrupted by eight residues near the N-terminus. The electron density map suggests that the pentapeptide repeats adopt a similar right-handed quadrilateral b-helix as observed in the other two PRP structures, however, the eight residue interruption in the string of pentapeptide repeats appears to create a distortion in the Rfr-fold.

  10. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    PubMed

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-01-01

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility. PMID:25323771

  11. Proteomic detection of proteins involved in perchlorate and chlorate metabolism.

    PubMed

    Bansal, Reema; Deobald, Lee A; Crawford, Ronald L; Paszczynski, Andrzej J

    2009-09-01

    Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified. PMID:19199051

  12. Albino Leaf1 That Encodes the Sole Octotricopeptide Repeat Protein Is Responsible for Chloroplast Development.

    PubMed

    Zhang, Zemin; Tan, Jianjie; Shi, Zhenying; Xie, Qingjun; Xing, Yi; Liu, Changhong; Chen, Qiaoling; Zhu, Haitao; Wang, Jiang; Zhang, Jingliu; Zhang, Guiquan

    2016-06-01

    Chloroplast, the photosynthetic organelle in plants, plays a crucial role in plant development and growth through manipulating the capacity of photosynthesis. However, the regulatory mechanism of chloroplast development still remains elusive. Here, we characterized a mutant with defective chloroplasts in rice (Oryza sativa), termed albino leaf1 (al1), which exhibits a distinct albino phenotype in leaves, eventually leading to al1 seedling lethality. Electronic microscopy observation demonstrated that the number of thylakoids was reduced and the structure of thylakoids was disrupted in the al1 mutant during rice development, which eventually led to the breakdown of chloroplast. Molecular cloning revealed that AL1 encodes the sole octotricopeptide repeat protein (RAP) in rice. Genetic complementation of Arabidopsis (Arabidopsis thaliana) rap mutants indicated that the AL1 protein is a functional RAP. Further analysis illustrated that three transcript variants were present in the AL1 gene, and the altered splices occurred at the 3' untranslated region of the AL1 transcript. In addition, our results also indicate that disruption of the AL1 gene results in an altered expression of chloroplast-associated genes. Consistently, proteomic analysis demonstrated that the abundance of photosynthesis-associated proteins is altered significantly, as is that of a group of metabolism-associated proteins. More specifically, we found that the loss of AL1 resulted in altered abundances of ribosomal proteins, suggesting that RAP likely also regulates the homeostasis of ribosomal proteins in rice in addition to the ribosomal RNA. Taken together, we propose that AL1, particularly the AL1a and AL1c isoforms, plays an essential role in chloroplast development in rice. PMID:27208287

  13. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I

    PubMed Central

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G.; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D.

    2015-01-01

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprCN and TprCC) orthologous to regions in the major outer sheath protein (MOSPN and MOSPC) of Treponema denticola and that TprCC is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSPC-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSPN-like domains are tethered within the periplasm. TprF, which does not contain a MOSPC-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSPN and MOSPC-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSPN-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP. PMID:25805501

  14. Involvement of Mζ-Like Protein Kinase in the Mechanisms of Conditioned Food Aversion Memory Reconsolidation in the Helix lucorum.

    PubMed

    Solntseva, S V; Kozyrev, S A; Nikitin, V P

    2015-06-01

    We studied the involvement of Mζ-like protein kinase (PKMζ) into mechanisms of conditioned food aversion memory reconsolidation in Helix lucorum. Injections PKMζ inhibitor ZIP in a dose of 5 mg/kg on day 2 or 10 after learning led to memory impairment and amnesia development. Injections of the inhibitor in doses of 1.5 or 2.5 mg/kg had no effect. Repeated training on day 11 after induction of amnesia resulted in the formation of memory on the same type of food aversion similar to first training. The number of combinations of conditional (food) and reinforcing (electrical shock) stimuli was similar during initial and repeated training. We hypothesize that the inhibition of Mζ-like protein kinase erases the memory trace and a new memory is formed during repeated training. PMID:26085351

  15. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    PubMed Central

    Russo, Anna; Manna, Sara La; Novellino, Ettore; Malfitano, Anna Maria; Marasco, Daniela

    2016-01-01

    Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role. PMID:27212129

  16. Molecular signaling involving intrinsically disordered proteins in prostate cancer.

    PubMed

    Russo, Anna; Manna, Sara La; Novellino, Ettore; Malfitano, Anna Maria; Marasco, Daniela

    2016-01-01

    Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role. PMID:27212129

  17. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing

    PubMed Central

    Leu, Kuan-Chieh; Hsieh, Ming-Hsiun; Wang, Huei-Jing; Hsieh, Hsu-Liang

    2016-01-01

    ABSTRACT The mitochondrion is an important power generator in most eukaryotic cells. To preserve its function, many essential nuclear-encoded factors play specific roles in mitochondrial RNA metabolic processes, including RNA editing. RNA editing consists of post-transcriptional deamination, which alters specific nucleotides in transcripts to mediate gene expression. In plant cells, many pentatricopeptide repeat proteins (PPRs) participate in diverse organellar RNA metabolic processes, but only PLS-type PPRs are involved in RNA editing. Here, we report a P-type PPR protein from Arabidopsis thaliana, P-type PPR-Modulating Editing (PPME), which has a distinct role in mitochondrial nad1 RNA editing via RNA binding activity. In the homozygous ppme mutant, cytosine (C)-to-uracil (U) conversions at both the nad1-898 and 937 sites were abolished, disrupting Arg300-to-Trp300 and Pro313-to-Ser313 amino acid changes in the mitochondrial NAD1 protein. NAD1 is a critical component of mitochondrial respiration complex I; its activity is severely reduced in the homozygous ppme mutant, resulting in significantly altered growth and development. Both abolished RNA editing and defective complex I activity were completely rescued by CaMV 35S promoter- and PPME native promoter-driven PPME genomic fragments tagged with GFP in a homozygous ppme background. Our experimental results demonstrate a distinct role of a P-type PPR protein, PPME, in RNA editing in plant organelles. PMID:27149614

  18. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing.

    PubMed

    Leu, Kuan-Chieh; Hsieh, Ming-Hsiun; Wang, Huei-Jing; Hsieh, Hsu-Liang; Jauh, Guang-Yuh

    2016-06-01

    The mitochondrion is an important power generator in most eukaryotic cells. To preserve its function, many essential nuclear-encoded factors play specific roles in mitochondrial RNA metabolic processes, including RNA editing. RNA editing consists of post-transcriptional deamination, which alters specific nucleotides in transcripts to mediate gene expression. In plant cells, many pentatricopeptide repeat proteins (PPRs) participate in diverse organellar RNA metabolic processes, but only PLS-type PPRs are involved in RNA editing. Here, we report a P-type PPR protein from Arabidopsis thaliana, P-type PPR-Modulating Editing (PPME), which has a distinct role in mitochondrial nad1 RNA editing via RNA binding activity. In the homozygous ppme mutant, cytosine (C)-to-uracil (U) conversions at both the nad1-898 and 937 sites were abolished, disrupting Arg(300)-to-Trp(300) and Pro(313)-to-Ser(313) amino acid changes in the mitochondrial NAD1 protein. NAD1 is a critical component of mitochondrial respiration complex I; its activity is severely reduced in the homozygous ppme mutant, resulting in significantly altered growth and development. Both abolished RNA editing and defective complex I activity were completely rescued by CaMV 35S promoter- and PPME native promoter-driven PPME genomic fragments tagged with GFP in a homozygous ppme background. Our experimental results demonstrate a distinct role of a P-type PPR protein, PPME, in RNA editing in plant organelles. PMID:27149614

  19. Expression of Anaplasma marginale ankyrin repeat-containing proteins during infection of the mammalian host and tick vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using searches of the NCBI conserved domain database and SMART genomic architecture analysis, we identified three ankyrin repeat-containing genes in Anaplasma marginale: AM705, AM926 and AM638. Recombinant protein was used to immunize mice and generate fusion hybridomas secreting protein-specific mo...

  20. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  1. Leucine-rich pentatricopeptide-repeat containing protein regulates mitochondrial transcription.

    PubMed

    Sondheimer, Neal; Fang, Ji-Kang; Polyak, Erzsebet; Falk, Marni J; Avadhani, Narayan G

    2010-09-01

    Mitochondrial function depends upon the coordinated expression of the mitochondrial and nuclear genomes. Although the basal factors that carry out the process of mitochondrial transcription are known, the regulation of this process is incompletely understood. To further our understanding of mitochondrial gene regulation, we identified proteins that bound to the previously described point of termination for the major mRNA-coding transcript H2. One was the leucine-rich pentatricopeptide-repeat containing protein (LRPPRC), which has been linked to the French-Canadian variant of Leigh syndrome. Cells with reduced expression of LRPPRC had a reduction in oxygen consumption. The expression of mitochondrial mRNA and tRNA was dependent upon LRPPRC levels, but reductions in LRPPRC did not affect the expression of mitochondrial rRNA. Reduction of LRPPRC levels interfered with mitochondrial transcription in vitro but did not affect the stability of mitochondrial mRNAs or alter the expression of nuclear genes responsible for mitochondrial transcription in vivo. These findings demonstrate the control of mitochondrial mRNA synthesis by a protein that has an established role in regulating nuclear transcription and a link to mitochondrial disease. PMID:20677761

  2. TAPO: A combined method for the identification of tandem repeats in protein structures.

    PubMed

    Do Viet, Phuong; Roche, Daniel B; Kajava, Andrey V

    2015-09-14

    In recent years, there has been an emergence of new 3D structures of proteins containing tandem repeats (TRs), as a result of improved expression and crystallization strategies. Databases focused on structure classifications (PDB, SCOP, CATH) do not provide an easy solution for selection of these structures from PDB. Several approaches have been developed, but no best approach exists to identify the whole range of 3D TRs. Here we describe the TAndem PrOtein detector (TAPO) that uses periodicities of atomic coordinates and other types of structural representation, including strings generated by conformational alphabets, residue contact maps, and arrangements of vectors of secondary structure elements. The benchmarking shows the superior performance of TAPO over the existing programs. In accordance with our analysis of PDB using TAPO, 19% of proteins contain 3D TRs. This analysis allowed us to identify new families of 3D TRs, suggesting that TAPO can be used to regularly update the collection and classification of existing repetitive structures. PMID:26320412

  3. CD4-Specific Designed Ankyrin Repeat Proteins Are Novel Potent HIV Entry Inhibitors with Unique Characteristics

    PubMed Central

    Schweizer, Andreas; Rusert, Peter; Berlinger, Livia; Ruprecht, Claudia R.; Mann, Axel; Corthésy, Stéphanie; Turville, Stuart G.; Aravantinou, Meropi; Fischer, Marek; Robbiani, Melissa; Amstutz, Patrick; Trkola, Alexandra

    2008-01-01

    Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins—high physical stability, specificity and low production costs—with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development. PMID:18654624

  4. Characterization of the Plasmodium Interspersed Repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity.

    PubMed

    Yam, Xue Yan; Brugat, Thibaut; Siau, Anthony; Lawton, Jennifer; Wong, Daniel S; Farah, Abdirahman; Twang, Jing Shun; Gao, Xiaohong; Langhorne, Jean; Preiser, Peter R

    2016-01-01

    Plasmodium multigene families play a central role in the pathogenesis of malaria. The Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium spp. However their function(s) remains unknown. Using the rodent model of malaria, Plasmodium chabaudi, we show that individual CIR proteins have differential localizations within infected red cell (iRBC), suggesting different functional roles in a blood-stage infection. Some CIRs appear to be located on the surface of iRBC and merozoites and are therefore well placed to interact with host molecules. In line with this hypothesis, we show for the first time that a subset of recombinant CIRs bind mouse RBCs suggesting a role for CIR in rosette formation and/or invasion. Together, our results unravel differences in subcellular localization and ability to bind mouse erythrocytes between the members of the cir family, which strongly suggest different functional roles in a blood-stage infection. PMID:26996203

  5. Characterization of the Plasmodium Interspersed Repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity

    PubMed Central

    Yam, Xue Yan; Brugat, Thibaut; Siau, Anthony; Lawton, Jennifer; Wong, Daniel S.; Farah, Abdirahman; Twang, Jing Shun; Gao, Xiaohong; Langhorne, Jean; Preiser, Peter R.

    2016-01-01

    Plasmodium multigene families play a central role in the pathogenesis of malaria. The Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium spp. However their function(s) remains unknown. Using the rodent model of malaria, Plasmodium chabaudi, we show that individual CIR proteins have differential localizations within infected red cell (iRBC), suggesting different functional roles in a blood-stage infection. Some CIRs appear to be located on the surface of iRBC and merozoites and are therefore well placed to interact with host molecules. In line with this hypothesis, we show for the first time that a subset of recombinant CIRs bind mouse RBCs suggesting a role for CIR in rosette formation and/or invasion. Together, our results unravel differences in subcellular localization and ability to bind mouse erythrocytes between the members of the cir family, which strongly suggest different functional roles in a blood-stage infection. PMID:26996203

  6. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-01-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. PMID:24792163

  7. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum.

    PubMed

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  8. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    PubMed Central

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  9. Identification of protein phosphatase 2A as an interacting protein of leucine-rich repeat kinase 2.

    PubMed

    Athanasopoulos, Panagiotis S; Jacob, Wright; Neumann, Sebastian; Kutsch, Miriam; Wolters, Dirk; Tan, Eng K; Bichler, Zoë; Herrmann, Christian; Heumann, Rolf

    2016-06-01

    Mutations in the gene coding for the multi-domain protein leucine-rich repeat kinase 2 (LRRK2) are the leading cause of genetically inherited Parkinson's disease (PD). Two of the common found mutations are the R1441C and G2019S. In this study we identified protein phosphatase 2A (PP2A) as an interacting partner of LRRK2. We were able to demonstrate that the Ras of complex protein (ROC) domain is sufficient to interact with the three subunits of PP2A in human neuroblastoma SH-SY5Y cells and in HeLa cells. The alpha subunit of PP2A is interacting with LRRK2 in the perinuclear region of HeLa cells. Silencing the catalytic subunit of PP2A by shRNA aggravated cellular degeneration induced by the pathogenic R1441C-LRRK2 mutant expressed in neuroblastoma SH-SY5Y cells. A similar enhancement of apoptotic nuclei was observed by downregulation of the catalytic subunit of PP2A in cultured cortical cells derived from neurons overexpressing the pathogenic mutant G2019S-LRRK2. Conversely, pharmacological activation of PP2A by sodium selenate showed a partial neuroprotection from R1441C-LRRK2-induced cellular degeneration. All these data suggest that PP2A is a new interacting partner of LRRK2 and reveal the importance of PP2A as a potential therapeutic target in PD. PMID:26894577

  10. Involvement of heat shock proteins in gluten-sensitive enteropathy

    PubMed Central

    Sziksz, Erna; Pap, Domonkos; Veres, Gábor; Fekete, Andrea; Tulassay, Tivadar; Vannay, Ádám

    2014-01-01

    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier. PMID:24914370

  11. Characterization of TtALV2, an Essential Charged Repeat Motif Protein of the Tetrahymena thermophila Membrane Skeleton

    PubMed Central

    El-Haddad, Houda; Przyborski, Jude M.; Kraft, Lesleigh G. K.; McFadden, Geoffrey I.; Waller, Ross F.

    2013-01-01

    Alveolins are a recently described class of proteins common to all members of the superphylum Alveolata that are characterized by conserved charged repeat motifs (CRMs) but whose exact function remains unknown. We have analyzed the smaller of the two alveolins of Tetrahymena thermophila, TtALV2. The protein localizes to dispersed, broken patches arranged between the rows of the longitudinal microtubules. Macronuclear knockdown of Ttalv2 leads to multinuclear cells with no apparent cell polarity and randomly occurring cell protrusions, either by interrupting pellicle integrity or by disturbing cytokinesis. Correct association of TtALV2 with the alveoli or the pellicle is complex and depends on both the termini as well as the charged repeat motifs of the protein. Proteins containing similar CRMs are a dominant part of the ciliate membrane cytoskeleton, suggesting that these motifs may play a more general role in mediating membrane attachment and/or cytoskeletal association. To better understand their integration into the cytoskeleton, we localized a range of CRM-based fusion proteins, which suggested there is an inherent tendency for proteins with CRMs to be located in the peripheral cytoskeleton, some nucleating as filaments at the basal bodies. Even a synthetic protein, mimicking the charge and repeat pattern of these proteins, directed a reporter protein to a variety of peripheral cytoskeletal structures in Tetrahymena. These motifs might provide a blueprint for membrane and cytoskeleton affiliation in the complex pellicles of Alveolata. PMID:23606287

  12. Characterization of TtALV2, an essential charged repeat motif protein of the Tetrahymena thermophila membrane skeleton.

    PubMed

    El-Haddad, Houda; Przyborski, Jude M; Kraft, Lesleigh G K; McFadden, Geoffrey I; Waller, Ross F; Gould, Sven B

    2013-06-01

    Alveolins are a recently described class of proteins common to all members of the superphylum Alveolata that are characterized by conserved charged repeat motifs (CRMs) but whose exact function remains unknown. We have analyzed the smaller of the two alveolins of Tetrahymena thermophila, TtALV2. The protein localizes to dispersed, broken patches arranged between the rows of the longitudinal microtubules. Macronuclear knockdown of Ttalv2 leads to multinuclear cells with no apparent cell polarity and randomly occurring cell protrusions, either by interrupting pellicle integrity or by disturbing cytokinesis. Correct association of TtALV2 with the alveoli or the pellicle is complex and depends on both the termini as well as the charged repeat motifs of the protein. Proteins containing similar CRMs are a dominant part of the ciliate membrane cytoskeleton, suggesting that these motifs may play a more general role in mediating membrane attachment and/or cytoskeletal association. To better understand their integration into the cytoskeleton, we localized a range of CRM-based fusion proteins, which suggested there is an inherent tendency for proteins with CRMs to be located in the peripheral cytoskeleton, some nucleating as filaments at the basal bodies. Even a synthetic protein, mimicking the charge and repeat pattern of these proteins, directed a reporter protein to a variety of peripheral cytoskeletal structures in Tetrahymena. These motifs might provide a blueprint for membrane and cytoskeleton affiliation in the complex pellicles of Alveolata. PMID:23606287

  13. Collagenous gastroduodenitis coexisting repeated Dieulafoy ulcer: A case report and review of collagenous gastritis and gastroduodenitis without colonic involvement.

    PubMed

    Soeda, Atsuko; Mamiya, Takashi; Hiroshima, Yoshinori; Sugiyama, Hiroaki; Shidara, Sayoko; Dai, Yuichi; Nakahara, Akira; Ikezawa, Kazuto

    2014-10-01

    Collagenous gastritis (CG) is a rare disorder characterized by the thick collagenous subepithelial bands associated with mucosal inflammation. There have been approximately fifty reports in the literature since it was first described in 1989. According to previous reports, CG is heterogeneous and classified into two groups-(1) cases limited to the gastric mucosa in children or young adults, and (2) CG associated with collagenous colitis in elderly adults presenting with chronic watery diarrhea. In Japan, only nine previous cases were reported, and all of them were young adults. We report a case of CG with collagenous duodenitis in a 22-year-old female. She had repeated upper gastrointestinal bleeding from a Dieulafoy lesion of the fornix, but had no symptoms of malabsorption or diarrhea. Endoscopic findings revealed striking nodularity with a smooth islet-shaped normal area in the antrum and the body. The pathological findings of nodular mucosa showed the deposition of collagen bands just under the mucoepithelial lesion. In addition, she had collagenous duodenitis in part of the bulbs, and a colonoscopy showed no abnormalities. We provide a literature review of CG and collagenous gastroduodenitis without colonic involvement. PMID:26184019

  14. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  15. Invertebrate and Vertebrate Class III Myosins Interact with MORN Repeat-Containing Adaptor Proteins

    PubMed Central

    Mecklenburg, Kirk L.; Freed, Stephanie A.; Raval, Manmeet; Quintero, Omar A.; Yengo, Christopher M.; O'Tousa, Joseph. E.

    2015-01-01

    In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP). Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A). In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior. PMID:25822849

  16. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity

    PubMed Central

    Miller, Jimi C.; Chezem, William R.; Clay, Nicole K.

    2016-01-01

    Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect “non-self,” “damaged-self,” and “altered-self”- associated molecular patterns and translate these “danger” signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense. PMID:26779203

  17. The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis

    PubMed Central

    Hu, Zhihong; Xu, Fan; Hou, Suiwen

    2014-01-01

    A new gene, SG1, was identified in a slow-greening mutant (sg1) isolated from an ethylmethanesulphonate-mutagenized population of Arabidopsis thaliana. The newly formed leaves of sg1 were initially albino, but gradually became pale green. After 3 weeks, the leaves of the mutant were as green as those of the wild-type plants. Transmission electron microscopic observations revealed that the mutant displayed delayed proplastid to chloroplast transition. The results of map-based cloning showed that SG1 encodes a chloroplast-localized tetratricopeptide repeat-containing protein. Quantitative real-time reverse transcription–PCR data demonstrated the presence of SG1 gene expression in all tissues, particularly young green tissues. The sg1 mutation disrupted the expression levels of several genes associated with chloroplast development, photosynthesis, and chlorophyll biosynthesis. The results of genetic analysis indicated that gun1 and gun4 partially restored the expression patterns of the previously detected chloroplast-associated genes, thereby ameliorating the slow-greening phenotype of sg1. Taken together, the results suggest that the newly identified protein, SG1, is required for chloroplast development in Arabidopsis. PMID:24420572

  18. WD Repeat-containing Protein 5 (WDR5) Localizes to the Midbody and Regulates Abscission*

    PubMed Central

    Bailey, Jeffrey K.; Fields, Alexander T.; Cheng, Kaijian; Lee, Albert; Wagenaar, Eric; Lagrois, Remy; Schmidt, Bailey; Xia, Bin; Ma, Dzwokai

    2015-01-01

    Cytokinesis partitions the cytoplasm of a parent cell into two daughter cells and is essential for the completion of cell division. The final step of cytokinesis in animal cells is abscission, which is a process leading to the physical separation of two daughter cells. Abscission requires membrane traffic and microtubule disassembly at a specific midbody region called the secondary ingression. Here, we report that WD repeat-containing protein 5 (WDR5), a core subunit of COMPASS/MLL family histone H3 lysine 4 methyltransferase (H3K4MT) complexes, resides at the midbody and associates with a subset of midbody regulatory proteins, including PRC1 and CYK4/MKLP1. Knockdown of WDR5 impairs abscission and increases the incidence of multinucleated cells. Further investigation revealed that the abscission delay is primarily due to slower formation of secondary ingressions in WDR5 knockdown cells. Consistent with these defects, midbody microtubules in WDR5 knockdown cells also display enhanced resistance to depolymerization by nocodazole. Recruitment of WDR5 to the midbody dark zone appears to require integrity of the WDR5 central arginine-binding cavity, as mutations that disrupt histone H3 and MLL1 binding to this pocket also abolish the midbody localization of WDR5. Taken together, these data suggest that WDR5 is specifically targeted to the midbody in the absence of chromatin and that it promotes abscission, perhaps by facilitating midbody microtubule disassembly. PMID:25666610

  19. Ribosome-associated pentatricopeptide repeat proteins function as translational activators in mitochondria of trypanosomes.

    PubMed

    Aphasizheva, Inna; Maslov, Dmitri A; Qian, Yu; Huang, Lan; Wang, Qi; Costello, Catherine E; Aphasizhev, Ruslan

    2016-03-01

    Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial-type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3' adenylation/uridylation factors. The A/U-tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U-tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U-tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U-tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome-associated PPRs may selectively activate mRNAs for translation. PMID:26713541

  20. Ribosome-associated pentatricopeptide repeat proteins function as translational activators in mitochondria of trypanosomes

    PubMed Central

    Aphasizheva, Inna; Maslov, Dmitri A.; Qian, Yu; Huang, Lan; Wang, Qi; Costello, Catherine E.; Aphasizhev, Ruslan

    2016-01-01

    Summary Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial-type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3′ adenylation/uridylation factors. The A/U-tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U-tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U-tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U-tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome-associated PPRs may selectively activate mRNAs for translation. PMID:26713541

  1. Solution structure of a two-repeat fragment of major vault protein.

    PubMed

    Kozlov, Guennadi; Vavelyuk, Olga; Minailiuc, Ovidiu; Banville, Denis; Gehring, Kalle; Ekiel, Irena

    2006-02-17

    Major vault protein (MVP) is the main constituent of vaults, large ribonucleoprotein particles implicated in resistance to cancer therapy and correlated with poor survival prognosis. Here, we report the structure of the main repeat element in human MVP. The approximately 55 amino acid residue MVP domain has a unique, novel fold that consists of a three-stranded antiparallel beta-sheet. The solution NMR structure of a two-domain fragment reveals the interdomain contacts and relative orientations of the two MVP domains. We use these results to model the assembly of 672 MVP domains from 96 MVP molecules into the ribs of the 13MDa vault structure. The unique features include a thin, skin-like structure with polar residues on both the cytoplasmic and internal surface, and a pole-to-pole arrangement of MVP molecules. These studies provide a starting point for understanding the self-assembly of MVP into vaults and their interactions with other proteins. Chemical shift perturbation studies identified the binding site of vault poly(ADP-ribose) polymerase, another component of vault particles, indicating that MVP domains form a new class of interaction-mediating modules. PMID:16373071

  2. Interleukin 2 signaling involves the phosphorylation of Stat proteins.

    PubMed

    Frank, D A; Robertson, M J; Bonni, A; Ritz, J; Greenberg, M E

    1995-08-15

    One of the most important cytokines involved in immune response regulation is interleukin 2 (IL-2), a potent activator of the proliferation and function of T lymphocytes and natural killer cells. The mechanisms by which the effects of IL-2 are propagated within cells are not understood. While the binding of IL-2 to its receptor was recently shown to lead to the activation of two kinases, Jak-1 and Jak-3, subsequent steps in the signaling pathway to the nucleus that lead to the activation of specific genes had not been characterized. Since many cytokines that activate Jak kinases also lead to the tyrosine phosphorylation and activation of members of the Stat family of transcription factors, the ability of IL-2 to trigger Stat phosphorylation was examined. Exposure of activated human T lymphocytes or of a natural killer cell line (NKL) to IL-2 leads to the phosphorylation of Stat1 alpha, Stat1 beta, and Stat3, as well as of two Stat-related proteins, p94 and p95. p94 and p95 share homology with Stat1 at the phosphorylation site and in the Src homology 2 (SH2) domain, but otherwise are immunologically distinct from Stat1. These Stat proteins were found to translocate to the nucleus and to bind to a specific DNA sequence. These findings suggest a mechanism by which IL-2 binding to its receptor may activate specific genes involved in immune cell function. PMID:7544001

  3. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle

    PubMed Central

    Mackinder, Luke C. M.; Meyer, Moritz T.; Mettler-Altmann, Tabea; Chen, Vivian K.; Mitchell, Madeline C.; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S.; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C.

    2016-01-01

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2. Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2. We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1’s four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency. PMID:27166422

  4. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.

    PubMed

    Mackinder, Luke C M; Meyer, Moritz T; Mettler-Altmann, Tabea; Chen, Vivian K; Mitchell, Madeline C; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C

    2016-05-24

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency. PMID:27166422

  5. Structural Insights into Protein-Protein Interactions Involved in Bacterial Cell Wall Biogenesis

    PubMed Central

    Laddomada, Federica; Miyachiro, Mayara M.; Dessen, Andréa

    2016-01-01

    The bacterial cell wall is essential for survival, and proteins that participate in its biosynthesis have been the targets of antibiotic development efforts for decades. The biosynthesis of its main component, the peptidoglycan, involves the coordinated action of proteins that are involved in multi-member complexes which are essential for cell division (the “divisome”) and/or cell wall elongation (the “elongasome”), in the case of rod-shaped cells. Our knowledge regarding these interactions has greatly benefitted from the visualization of different aspects of the bacterial cell wall and its cytoskeleton by cryoelectron microscopy and tomography, as well as genetic and biochemical screens that have complemented information from high resolution crystal structures of protein complexes involved in divisome or elongasome formation. This review summarizes structural and functional aspects of protein complexes involved in the cytoplasmic and membrane-related steps of peptidoglycan biosynthesis, with a particular focus on protein-protein interactions whereby disruption could lead to the development of novel antibacterial strategies. PMID:27136593

  6. Tandem repeat recombinant proteins as potential antigens for the sero-diagnosis of Schistosoma mansoni infection.

    PubMed

    Kalenda, Yombo Dan Justin; Kato, Kentaro; Goto, Yasuyuki; Fujii, Yoshito; Hamano, Shinjiro

    2015-12-01

    The diagnosis of schistosome infection, followed by effective treatment and/or mass drug administration, is crucial to reduce the disease burden. Suitable diagnostic tests and field-applicable tools are required to sustain schistosomiasis control programs. We therefore assessed the potential of tandem repeat (TR) proteins for sero-diagnosis of Schistosoma mansoni infection using an experimental mouse model. TR genes in the genome of S. mansoni were searched in silico and 7 candidates, named SmTR1, 3, 8, 9, 10, 11 and 15, were selected. Total RNA was extracted from S. mansoni adult worms and eggs. Target TR genes were amplified, cloned, and the proteins were expressed in Escherichia coli competent cells. Female BALB/c mice were infected with 100 S. mansoni cercariae and sera were collected each week post-infection for 18 weeks. The levels of IgG antibodies to SmTR antigens were compared to those to soluble egg antigen (SEA) and to soluble worm antigen preparation (SWAP). Sera of infected mice reacted to all the antigens whereas those of naïve mice did not. IgG responses to SmTR1, 3, 9 and 10 were detected at the early stage of infection. Interestingly, antibodies reacting to SmTR3, 9, 10 and 15 dramatically decreased 4 weeks after treatment with praziquantel, while those against SEA and SWAP remained elevated. Our study suggests that TR proteins, especially SmTR10, may be suitable antigens for sero-diagnosis of infection by S. mansoni and are potential markers for monitoring and surveillance of schistosomiasis, including re-infection after treatment with praziquantel. PMID:26148816

  7. Creation and structure determination of an artificial protein with three complete sequence repeats.

    PubMed

    Adachi, Motoyasu; Shimizu, Rumi; Kuroki, Ryota; Blaber, Michael

    2013-11-01

    Symfoil-4P is a de novo protein exhibiting the threefold symmetrical β-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine-glycine sequences of Symfoil-4P are replaced with glutamine-glycine (Symfoil-QG) or serine-glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of Symfoil-II such as molecular stability. PMID:24121347

  8. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract.

    PubMed

    Sheen, Tamsin R; Jimenez, Alyssa; Wang, Nai-Yu; Banerjee, Anirban; van Sorge, Nina M; Doran, Kelly S

    2011-12-01

    Streptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive bacterium found in the female rectovaginal tract and is capable of producing severe disease in susceptible hosts, including newborns and pregnant women. The vaginal tract is considered a major reservoir for GBS, and maternal vaginal colonization poses a significant risk to the newborn; however, little is known about the specific bacterial factors that promote GBS colonization and persistence in the female reproductive tract. We have developed in vitro models of GBS interaction with the human female cervicovaginal tract using human vaginal and cervical epithelial cell lines. Analysis of isogenic mutant GBS strains deficient in cell surface organelles such as pili and serine-rich repeat (Srr) proteins shows that these factors contribute to host cell attachment. As Srr proteins are heavily glycosylated, we confirmed that carbohydrate moieties contribute to the effective interaction of Srr-1 with vaginal epithelial cells. Antibody inhibition assays identified keratin 4 as a possible host receptor for Srr-1. Our findings were further substantiated in an in vivo mouse model of GBS vaginal colonization, where mice inoculated with an Srr-1-deficient mutant exhibited decreased GBS vaginal persistence compared to those inoculated with the wild-type (WT) parental strain. Furthermore, competition experiments in mice showed that WT GBS exhibited a significant survival advantage over the ΔpilA or Δsrr-1 mutant in the vaginal tract. Our results suggest that these GBS surface proteins contribute to vaginal colonization and may offer new insights into the mechanisms of vaginal niche establishment. PMID:21984789

  9. Adenanthin targets proteins involved in the regulation of disulphide bonds.

    PubMed

    Muchowicz, Angelika; Firczuk, Małgorzata; Chlebowska, Justyna; Nowis, Dominika; Stachura, Joanna; Barankiewicz, Joanna; Trzeciecka, Anna; Kłossowski, Szymon; Ostaszewski, Ryszard; Zagożdżon, Radosław; Pu, Jian-Xin; Sun, Han-Dong; Golab, Jakub

    2014-05-15

    Adenanthin has been recently shown to inhibit the enzymatic activities of peroxiredoxins (Prdx) I and II through its functional α,β-unsaturated ketone group serving as a Michael acceptor. A similar group is found in SK053, a compound recently developed by our group to target the thioredoxin-thioredoxin reductase (Trx-TrxR) system. This work provides evidence that next to Prdx I and II adenanthin targets additional proteins including thioredoxin-thioredoxin reductase system as well as protein disulfide isomerase (PDI) that contain a characteristic structural motif, referred to as a thioredoxin fold. Adenanthin inhibits the activity of Trx-TR system and PDI in vitro in the insulin reduction assay and decreases the activity of Trx in cultured cells. Moreover, we identified Trx-1 as an adenanthin binding protein in cells incubated with biotinylated adenanthin as an affinity probe. The results of our studies indicate that adenanthin is a mechanism-selective, rather than an enzyme-specific inhibitor of enzymes containing readily accessible, nucleophilic cysteines. This observation might be of importance in considering potential therapeutic applications of adenanthin to include a range of diseases, where aberrant activity of Prdx, Trx-TrxR and PDI is involved in their pathogenesis. PMID:24630929

  10. A microsomal ATP-binding protein involved in efficient protein transport into the mammalian endoplasmic reticulum.

    PubMed Central

    Dierks, T; Volkmer, J; Schlenstedt, G; Jung, C; Sandholzer, U; Zachmann, K; Schlotterhose, P; Neifer, K; Schmidt, B; Zimmermann, R

    1996-01-01

    Protein transport into the mammalian endoplasmic reticulum depends on nucleoside triphosphates. Photoaffinity labelling of microsomes with azido-ATP prevents protein transport at the level of association of precursor proteins with the components of the transport machinery, Sec61alpha and TRAM proteins. The same phenotype of inactivation was observed after depleting a microsomal detergent extract of ATP-binding proteins by passage through ATP-agarose and subsequent reconstitution of the pass-through into proteoliposomes. Transport was restored by co-reconstitution of the ATP eluate. This eluate showed eight distinct bands in SDS gels. We identified five lumenal proteins (Grp170, Grp94, BiP/Grp78, calreticulin and protein disulfide isomerase), one membrane protein (ribophorin I) and two ribosomal proteins (L4 and L5). In addition to BiP (Grp78), Grp170 was most efficiently retained on ATP-agarose. Purified BiP did not stimulate transport activity. Sequence analysis revealed a striking similarity of Grp170 and the yeast microsomal protein Lhs1p which was recently shown to be involved in protein transport into yeast microsomes. We suggest that Grp170 mediates efficient insertion of polypeptides into the microsomal membrane at the expense of nucleoside triphosphates. Images PMID:9003769

  11. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process. PMID:26906695

  12. Characterization of two potentially universal turn motifs that shape the repeated five-residues fold - Crystal structure of a lumenal pentapeptide repeat protein from Cyanothece 51142

    SciTech Connect

    Buchko, Garry W.; Ni, Shuisong; Robinson, Howard; Welsh, Eric A.; Pakrasi, Himadri B.; Kennedy, Michael A.

    2006-11-01

    The genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 has recently been sequenced and observed to contain 35 pentapeptide repeat proteins (PRPs). These proteins, while present throughout the prokaryotic and eukaryotic kingdoms, are most abundant in cyanobacteria. The sheer number of PRPs in cyanobacteria coupled with their predicted location in all the cyanobacteria cellular compartments argues for important, yet unknown, physiological and biochemical functions. To gain insights into the biochemical function of PRPs in cyanobacteria, the first crystal structure of a PRP from Cyanothece has been determined at 2.1 Å resolution. The native protein, annotated Rfr32 for repeated five-residue, is a 167-residue protein with an N-terminal 29-residue signal peptide. The signal peptide was replaced with a 43-residue tag that was invisible in the electron density maps of two different crystal forms from which essentially identical structures were solved. The structure is dominated by 21 tandem pentapeptide repeats that fold into a right-handed quadrilateral β-helix, or Rfr-fold, reminiscent of a “square” tower with four distinct faces. Four consecutive pentapeptide repeats define a “floor” of the tower with a single repeat occupying a face. The Rfr-fold contains five complete, stacked, ascending floors (coils) that complete a revolution every 20 residues with a ~4.8 Å rise along the helix axis. The main chain backbone of the floors are held together with a narrow parallel β-sheet on one face and stacked parallel The main chain backbone of the floors are held together with a narrow parallel β-sheet on one face and stacked parallel β-bridges (single-residue β-sheets) on the other three faces. The regular shape of the tower is maintained by two distinct types of four-residue turns labeled pseudo type II and pseudo type IV β-turns. The interior of the Rfr-fold is primarily hydrophobic, with all side chains of the i and i-2 residues inserted into the

  13. Thermodynamics, kinetics, and salt-dependence of folding of YopM, a large leucine-rich repeat protein

    PubMed Central

    Kloss, Ellen; Barrick, Doug

    2011-01-01

    Small globular proteins have many contacts between residues that are distant in primary sequence. These contacts create a complex network between sequence-distant segments of secondary structure, which may be expected to promote the cooperative folding of globular proteins. Although repeat proteins, which are made up of tandem modular units, lack sequence-distant contacts, several of considerable length have been shown to undergo cooperative two-state folding. To explore the limits of cooperativity in repeat proteins, we have studied the unfolding of YopM, a leucine-rich repeat (LRR) protein of over 400 residues. Despite its large size and modular architecture (15 repeats), YopM equilibrium unfolding is highly cooperative, and shows a very strong dependence on urea concentration. In contrast, kinetic studies of YopM folding indicate a mechanism that includes one or more transient intermediates. The urea dependence of the folding and unfolding rates suggests a relatively small transition state ensemble. As with the urea dependence, we have found an extreme dependence of the free energy of unfolding on salt concentration. This salt dependence likely results from general screening of a large number of unfavorable columbic interactions in the folded state, rather than from specific cation binding. PMID:18793647

  14. Protein kinase C in pain: Involvement of multiple isoforms

    PubMed Central

    Velázquez, Kandy T.; Mohammad, Husam; Sweitzer, Sarah M.

    2007-01-01

    Pain is the primary reason that people seek medical care. At present chronic unremitting pain is the third greatest health problem after heart disease and cancer. Chronic pain is an economic burden in lost wages, lost productivity, medical expenses, legal fees and compensation. Chronic pain is defined as a pain of greater than two months duration and can be of an inflammatory or neuropathic origin that can arise following nerve injury or in the absence of any apparent injury. Chronic pain is characterized by an altered pain perception that includes allodynia (a response to a normally non-noxious stimuli), and hyperalgesia (an exaggerated response to a normally noxious stimuli). This type of pain is often insensitive to the traditional pain drugs or surgical intervention and thus the study of the cellular and molecular mechanisms that contribute to chronic pain are of the up-most importance for the development of a new generation of analgesic agents. Protein kinase C isozymes are under investigation as potential therapeutics for the treatment of chronic pain conditions. The anatomical localization of protein kinase C isozymes in both peripheral and central nervous system sites that process pain have made them the topic of basic science research for close to two decades. This review will outline the research to date on protein kinase C involvement in pain and analgesia. In addition, this review will try to synthesize these works to begin to develop a comprehensive mechanistic understanding of how protein kinase C may function as the master regulator of peripheral and central sensitization that underlies many chronic pain conditions. PMID:17548207

  15. The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans.

    PubMed Central

    Campbell, H D; Schimansky, T; Claudianos, C; Ozsarac, N; Kasprzak, A B; Cotsell, J N; Young, I G; de Couet, H G; Miklos, G L

    1993-01-01

    Mutations at the flightless-I locus (fliI) of Drosophila melanogaster cause flightlessness or, when severe, incomplete cellularization during early embryogenesis, with subsequent abnormalities in mesoderm invagination and in gastrulation. After chromosome walking, deficiency mapping, and transgenic analysis, we have isolated and characterized flightless-I cDNAs, enabling prediction of the complete amino acid sequence of the 1256-residue protein. Data base searches revealed a homologous gene in Caenorhabditis elegans, and we have isolated and characterized corresponding cDNAs. By using the polymerase chain reaction with nested sets of degenerate oligonucleotide primers based on conserved regions of the C. elegans and D. melanogaster proteins, we have cloned a homologous human cDNA. The predicted C. elegans and human proteins are, respectively, 49% and 58% identical to the D. melanogaster protein. The predicted proteins have significant sequence similarity to the actin-binding protein gelsolin and related proteins and, in addition, have an N-terminal domain consisting of a repetitive amphipathic leucine-rich motif. This repeat is found in D. melanogaster, Saccharomyces cerevisiae, and mammalian proteins known to be involved in cell adhesion and in binding to other proteins. The structure of the maternally expressed flightless-I protein suggests that it may play a key role in embryonic cellularization by interacting with both the cytoskeleton and other cellular components. The presence of a highly conserved homologue in nematodes, flies, and humans is indicative of a fundamental role for this protein in many metazoans. PMID:8248259

  16. Ex vivo identification of protein-protein interactions involving the dopamine transporter.

    PubMed

    Hadlock, Gregory C; Nelson, Chad C; Baucum, Anthony J; Hanson, Glen R; Fleckenstein, Annette E

    2011-03-30

    The dopamine (DA) transporter (DAT) is a key regulator of dopaminergic signaling as it mediates the reuptake of extrasynaptic DA and thereby terminates dopaminergic signaling. Emerging evidence indicates that DAT function is influenced through interactions with other proteins. The current report describes a method to identify such interactions following DAT immunoprecipitation from a rat striatal synaptosomal preparation. This subcellular fraction was selected since DAT function is often determined ex vivo by measuring DA uptake in this preparation and few reports investigating DAT-protein interactions have utilized this preparation. Following SDS-PAGE and colloidal Coomassie staining, selected protein bands from a DAT-immunoprecipitate were excised, digested with trypsin, extracted, and analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). From the analysis of the tryptic peptides, several proteins were identified including DAT, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) β, CaMKII δ, protein kinase C (PKC) β, and PKC γ. Co-immunoprecipitation of PKC, CaMKII, and protein interacting with C kinase-1 with DAT was confirmed by Western blotting. Thus, the present study highlights a method to immunoprecipitate DAT and to identify co-immunoprecipitating proteins using LC/MS/MS and Western blotting. This method can be utilized to evaluate DAT protein-protein interactions but also to assess interactions involving other synaptic proteins. Ex vivo identification of protein-protein interactions will provide new insight into the function and regulation of a variety of synaptic, membrane-associated proteins, including DAT. PMID:21291912

  17. Characterization of epiphycan, a small proteoglycan with a leucine-rich repeat core protein.

    PubMed

    Johnson, H J; Rosenberg, L; Choi, H U; Garza, S; Höök, M; Neame, P J

    1997-07-25

    The epiphysis of developing bones is a cartilaginous structure that is eventually replaced by bone during skeletal maturation. We have separated a dermatan sulfate proteoglycan, epiphycan, from decorin and biglycan by using dissociative extraction of bovine fetal epiphyseal cartilage, followed by sequential ion-exchange, gel permeation, hydrophobic, and Zn2+ chelate chromatographic steps. Epiphycan is a member of the small leucine-rich proteoglycan family, contains seven leucine-rich repeats (LRRs), is related to osteoglycin (osteoinductive factor) (Bentz, H., Nathan, R. M., Rosen, D. M., Armstrong, R. M., Thompson, A. Y., Segarini, P. R., Mathews, M. C., Dasch, J., Piez, K. A., and Seyedin, S. M. (1989) J. Biol. Chem. 264, 20805-20810), and appears to be the bovine equivalent of the chick proteoglycan PG-Lb (Shinomura, T., and Kimata, K. (1992) J. Biol. Chem. 267, 1265-1270). The intact proteoglycan had a median size of approximately 133 kDa. The core protein was 46 kDa by electrophoretic analysis, had a calculated size of 34,271 Da, and had two approximately equimolar N termini (APTLES ... and ETYDAT ... ) separated by 11 amino acids. There were at least three O-linked oligosaccharides in the N-terminal region of the protein, based on blank cycles in Edman degradation and corresponding serine or threonine residues in the translated cDNA sequence. The glycosaminoglycans ranged in size from 23 to 34 kDa were more heterogeneous than those in other dermatan sulfate small leucine-rich proteoglycans and were found in the acidic N-terminal region of the protein core, N-terminal to the LRRs. A four-cysteine cluster was present at the N terminus of the LRRs, and a disulfide-bonded cysteine pair was present at the C terminus of the protein core. The seventh LRR and an N-linked oligosaccharide were between the two C-terminal cysteines. An additional potential N-glycosylation site near the C terminus did not appear to be substituted at a significant level. PMID:9228042

  18. Downregulation of Notch-regulated Ankyrin Repeat Protein Exerts Antitumor Activities against Growth of Thyroid Cancer

    PubMed Central

    Chu, Bing-Feng; Qin, Yi-Yu; Zhang, Sheng-Lai; Quan, Zhi-Wei; Zhang, Ming-Di; Bi, Jian-Wei

    2016-01-01

    Background: The Notch-regulated ankyrin repeat protein (NRARP) is recently found to promote proliferation of breast cancer cells. The role of NRARP in carcinogenesis deserves extensive investigations. This study attempted to investigate the expression of NRARP in thyroid cancer tissues and assess the influence of NRARP on cell proliferation, apoptosis, cell cycle, and invasion in thyroid cancer. Methods: Thirty-four cases with thyroid cancer were collected from the Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine between 2011 and 2012. Immunohistochemistry was used to detect the level of NRARP in cancer tissues. Lentivirus carrying NRARP-shRNA (Lenti-NRARP-shRNA) was applied to down-regulate NRARP expression. Cell viability was tested after treatment with Lenti-NRARP-shRNA using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis and cell cycle distribution were determined by flow cytometry. Cell invasion was tested using Transwell invasion assay. In addition, expressions of several cell cycle-associated and apoptosis-associated proteins were examined using Western blotting after transfection. Student's t-test, one-way analysis of variance (ANOVA), or Kaplan–Meier were used to analyze the differences between two group or three groups. Results: NRARP was highly expressed in thyroid cancer tissues. Lenti-NRARP-shRNA showed significantly inhibitory activities against cell growth at a multiplicity of infection of 10 or higher (P < 0.05). Lenti-NRARP-shRNA-induced G1 arrest (BHT101: 72.57% ± 5.32%; 8305C: 75.45% ± 5.26%) by promoting p21 expression, induced apoptosis by promoting bax expression and suppressing bcl-2 expression, and inhibited cell invasion by suppressing matrix metalloproteinase-9 expression. Conclusion: Downregulation of NRARP expression exerts significant antitumor activities against cell growth and invasion of thyroid cancer, that suggests a potential role of NRARP in

  19. SorLA Complement-type Repeat Domains Protect the Amyloid Precursor Protein against Processing*

    PubMed Central

    Mehmedbasic, Arnela; Christensen, Sofie K.; Nilsson, Jonas; Rüetschi, Ulla; Gustafsen, Camilla; Poulsen, Annemarie Svane Aavild; Rasmussen, Rikke W.; Fjorback, Anja N.; Larson, Göran; Andersen, Olav M.

    2015-01-01

    SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-β peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease. PMID:25525276

  20. SorLA complement-type repeat domains protect the amyloid precursor protein against processing.

    PubMed

    Mehmedbasic, Arnela; Christensen, Sofie K; Nilsson, Jonas; Rüetschi, Ulla; Gustafsen, Camilla; Poulsen, Annemarie Svane Aavild; Rasmussen, Rikke W; Fjorback, Anja N; Larson, Göran; Andersen, Olav M

    2015-02-01

    SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-β peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease. PMID:25525276

  1. Group B Streptococcal Serine-Rich Repeat Proteins Promote Interaction With Fibrinogen and Vaginal Colonization

    PubMed Central

    Wang, Nai-Yu; Patras, Kathryn A.; Seo, Ho Seong; Cavaco, Courtney K.; Rösler, Berenice; Neely, Melody N.; Sullam, Paul M.; Doran, Kelly S.

    2014-01-01

    Group B streptococcus (GBS) can cause severe disease in susceptible hosts, including newborns, pregnant women, and the elderly. GBS serine-rich repeat (Srr) surface glycoproteins are important adhesins/invasins in multiple host tissues, including the vagina. However, exact molecular mechanisms contributing to their importance in colonization are unknown. We have recently determined that Srr proteins contain a fibrinogen-binding region (BR) and hypothesize that Srr-mediated fibrinogen binding may contribute to GBS cervicovaginal colonization. In this study, we observed that fibrinogen enhanced wild-type GBS attachment to cervical and vaginal epithelium, and that this was dependent on Srr1. Moreover, purified Srr1-BR peptide bound directly to host cells, and peptide administration in vivo reduced GBS recovery from the vaginal tract. Furthermore, a GBS mutant strain lacking only the Srr1 “latching” domain exhibited decreased adherence in vitro and decreased persistence in a mouse model of GBS vaginal colonization, suggesting the importance of Srr–fibrinogen interactions in the female reproductive tract. PMID:24620021

  2. Structural Reconstruction of Protein-Protein Complexes Involved in Intracellular Signaling.

    PubMed

    Kirsch, Klára; Sok, Péter; Reményi, Attila

    2016-01-01

    Signaling complexes within the cell convert extracellular cues into physiological outcomes. Their assembly involves signaling enzymes, allosteric regulators and scaffold proteins that often contain long stretches of disordered protein regions, display multi-domain architectures, and binding affinity between individual components is low. These features are indispensable for their central roles as dynamic information processing hubs, on the other hand they also make reconstruction of structurally homogeneous complex samples highly challenging. In this present chapter we discuss protein machinery which influences extracellular signal reception, intracellular pathway activity, and cytoskeletal or transcriptional activity. PMID:27165334

  3. WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression

    PubMed Central

    Bogoyevitch, Marie A.; Yeap, Yvonne Y. C.; Qu, Zhengdong; Ngoei, Kevin R.; Yip, Yan Y.; Zhao, Teresa T.; Heng, Julian I.; Ng, Dominic C. H.

    2012-01-01

    Summary The impact of aberrant centrosomes and/or spindles on asymmetric cell division in embryonic development indicates the tight regulation of bipolar spindle formation and positioning that is required for mitotic progression and cell fate determination. WD40-repeat protein 62 (WDR62) was recently identified as a spindle pole protein linked to the neurodevelopmental defect of microcephaly but its roles in mitosis have not been defined. We report here that the in utero electroporation of neuroprogenitor cells with WDR62 siRNAs induced their cell cycle exit and reduced their proliferative capacity. In cultured cells, we demonstrated cell-cycle-dependent accumulation of WDR62 at the spindle pole during mitotic entry that persisted until metaphase–anaphase transition. Utilizing siRNA depletion, we revealed WDR62 function in stabilizing the mitotic spindle specifically during metaphase. WDR62 loss resulted in spindle orientation defects, decreased the integrity of centrosomes displaced from the spindle pole and delayed mitotic progression. Additionally, we revealed JNK phosphorylation of WDR62 is required for maintaining metaphase spindle organization during mitosis. Our study provides the first functional characterization of WDR62 and has revealed requirements for JNK/WDR62 signaling in mitotic spindle regulation that may be involved in coordinating neurogenesis. PMID:22899712

  4. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins▿

    PubMed Central

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-01-01

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 Å, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface. PMID:20089642

  5. Protein Acetylation Is Involved in Salmonella enterica Serovar Typhimurium Virulence.

    PubMed

    Sang, Yu; Ren, Jie; Ni, Jinjing; Tao, Jing; Lu, Jie; Yao, Yu-Feng

    2016-06-01

    Salmonella causes a range of diseases in different hosts, including enterocolitis and systemic infection. Lysine acetylation regulates many eukaryotic cellular processes, but its function in bacteria is largely unexplored. The acetyltransferase Pat and NAD(+)-dependent deacetylase CobB are involved in the reversible protein acetylation in Salmonella Typhimurium. Here, we used cell and animal models to evaluate the virulence of pat and cobB deletion mutants in S. Typhimurium and found that pat is critical for bacterial intestinal colonization and systemic infection. Next, to understand the underlying mechanism, genome-wide transcriptome was analyzed. RNA sequencing data showed that the expression of Salmonella pathogenicity island 1 (SPI-1) is partially dependent on pat In addition, we found that HilD, a key transcriptional regulator of SPI-1, is a substrate of Pat. The acetylation of HilD by Pat maintained HilD stability and was essential for the transcriptional activation of HilA. Taken together, these results suggest that a protein acetylation system regulates SPI-1 expression by controlling HilD in a posttranslational manner to mediate S. Typhimurium virulence. PMID:26810370

  6. ANK6, a mitochondrial ankyrin repeat protein, is required for male-female gamete recognition in Arabidopsis thaliana

    PubMed Central

    Yu, Feng; Shi, Jia; Zhou, Jiye; Gu, Jianing; Chen, Qihui; Li, Jian; Cheng, Wei; Mao, Dandan; Tian, Lianfu; Buchanan, Bob B.; Li, Legong; Chen, Liangbi; Li, Dongping; Luan, Sheng

    2010-01-01

    Double fertilization in angiosperms involves several successive steps, including guidance and reception of the pollen tube and male-female gamete recognition. Each step entails extensive communication and interaction between two different reproductive cell or tissue types. Extensive research has focused on the pollen tube, namely, its interaction with the stigma and reception by maternal cells. Little is known, however, about the mechanism by which the gametes recognize each other and interact to form a zygote. We report that an ankyrin repeat protein (ANK6) is essential for fertilization, specifically for gamete recognition. ANK6 (At5g61230) was highly expressed in the male and female gametophytes before and during but not after fertilization. Genetic analysis of a T-DNA insertional mutant suggested that loss of function of ANK6 results in embryonic lethality. Moreover, male-female gamete recognition was found to be impaired only when an ank6 male gamete reached an ank6 female gamete, thereby preventing formation of homozygous zygotes. ANK6 was localized to the mitochondria, where it interacted with SIG5, a transcription initiation factor previously found to be essential for fertility. These results show that ANK6 plays a central role in male-female gamete recognition, possibly by regulating mitochondrial gene expression. PMID:21123745

  7. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    PubMed Central

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  8. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia.

    PubMed

    Patel-King, Ramila S; King, Stephen M

    2016-04-15

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarianSchmidtea mediterraneaand were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  9. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K.

    PubMed

    Morgan, Cecilia A; Lukehart, Sheila A; Van Voorhis, Wesley C

    2003-10-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V regions. Immunization with TprK confers significant protection against infection with the homologous strain. We hypothesize that the antigenic diversity of TprK is involved in immune evasion, which contributes to the lack of heterologous protection. Here, using the rabbit model, we show a correlation between limited heterologous protection and tprK diversity in the challenge inoculum. We demonstrate that antibody responses to the V regions of one TprK molecule show limited cross-reactivity with heterologous TprK V regions. PMID:14500480

  10. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033