Science.gov

Sample records for replica symmetric spin

  1. The Replica Symmetric Approximation of the Analogical Neural Network

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Genovese, Giuseppe; Guerra, Francesco

    2010-08-01

    In this paper we continue our investigation of the analogical neural network, by introducing and studying its replica symmetric approximation in the absence of external fields. Bridging the neural network to a bipartite spin-glass, we introduce and apply a new interpolation scheme to its free energy, that naturally extends the interpolation via cavity fields or stochastic perturbations from the usual spin glass case to these models. While our methods allow the formulation of a fully broken replica symmetry scheme, in this paper we limit ourselves to the replica symmetric case, in order to give the basic essence of our interpolation method. The order parameters in this case are given by the assumed averages of the overlaps for the original spin variables, and for the new Gaussian variables. As a result, we obtain the free energy of the system as a sum rule, which, at least at the replica symmetric level, can be solved exactly, through a self-consistent mini-max variational principle. The so gained replica symmetric approximation turns out to be exactly correct in the ergodic region, where it coincides with the annealed expression for the free energy, and in the low density limit of stored patterns. Moreover, in the spin glass limit it gives the correct expression for the replica symmetric approximation in this case. We calculate also the entropy density in the low temperature region, where we find that it becomes negative, as expected for this kind of approximation. Interestingly, in contrast with the case where the stored patterns are digital, no phase transition is found in the low temperature limit, as a function of the density of stored patterns.

  2. Replica bounds for diluted non-Poissonian spin systems

    NASA Astrophysics Data System (ADS)

    Franz, Silvio; Leone, Michele; Lucio Toninelli, Fabio

    2003-10-01

    In this paper we extend replica bounds and free energy subadditivity arguments to diluted spin-glass models on graphs with arbitrary, non-Poissonian degree distribution. The new difficulties specific of this case are overcome introducing an interpolation procedure that stresses the relation between interpolation methods and the cavity method. As a byproduct we obtain self-averaging identities that generalize the Ghirlanda-Guerra ones to the multi-overlap case.

  3. Replica analysis of the generalized p-spin interaction glass model.

    SciTech Connect

    Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2011-10-13

    We investigate the stability of replica symmetry breaking solutions in generalized p-spin models. It is shown that the kind of the transition to the one-step replica symmetry breaking state depends not only on the presence or absence of the reflection symmetry of the generalized 'spin'-operators {cflx U} but on the number of interacting operators and their individual characteristics.

  4. Random SU(2)-symmetric spin-S chains

    NASA Astrophysics Data System (ADS)

    Quito, V. L.; Hoyos, José A.; Miranda, E.

    2016-08-01

    We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.

  5. On one-step replica symmetry breaking in the Edwards–Anderson spin glass model

    NASA Astrophysics Data System (ADS)

    Del Ferraro, Gino; Wang, Chuang; Zhou, Hai-Jun; Aurell, Erik

    2016-07-01

    We consider a one-step replica symmetry breaking description of the Edwards–Anderson spin glass model in 2D. The ingredients of this description are a Kikuchi approximation to the free energy and a second-level statistical model built on the extremal points of the Kikuchi approximation, which are also fixed points of a generalized belief propagation (GBP) scheme. We show that a generalized free energy can be constructed where these extremal points are exponentially weighted by their Kikuchi free energy and a Parisi parameter y, and that the Kikuchi approximation of this generalized free energy leads to second-level, one-step replica symmetry breaking (1RSB), GBP equations. We then proceed analogously to the Bethe approximation case for tree-like graphs, where it has been shown that 1RSB belief propagation equations admit a survey propagation solution. We discuss when and how the one-step-replica symmetry breaking GBP equations that we obtain also allow a simpler class of solutions which can be interpreted as a class of generalized survey propagation equations for the single instance graph case.

  6. Replica analysis of Franz-Parisi potential for sparse systems

    NASA Astrophysics Data System (ADS)

    Ueda, Masahiko; Kabashima, Yoshiyuki

    2015-04-01

    We propose a method for calculating the Franz-Parisi potential for spin glass models on sparse random graphs using the replica method under the replica symmetric ansatz. The resulting self-consistent equations have the solution with the characteristic structure of multi-body overlaps, and the self-consistent equations under this solution are equivalent to the one-step replica symmetry breaking (1RSB) cavity equation with Parisi parameter x = 1. This method is useful for the evaluation of transition temperatures of the p-spin model on regular random graphs under a uniform magnetic field.

  7. Exact Solution of the Gauge Symmetric p-Spin Glass Model on a Complete Graph

    NASA Astrophysics Data System (ADS)

    Korada, Satish Babu; Macris, Nicolas

    2009-07-01

    We consider a gauge symmetric version of the p-spin glass model on a complete graph. The gauge symmetry guarantees the absence of replica symmetry breaking and allows to fully use the interpolation scheme of Guerra (Fields Inst. Commun. 30:161, 2001) to rigorously compute the free energy. In the case of pairwise interactions ( p=2), where we have a gauge symmetric version of the Sherrington-Kirkpatrick model, we get the free energy and magnetization for all values of external parameters. Our analysis also works for even p≥4 except in a range of parameters surrounding the phase transition line, and for odd p≥3 in a more restricted region. We also obtain concentration estimates for the magnetization and overlap parameter that play a crucial role in the proofs for odd p and justify the absence of replica symmetry breaking. Our initial motivation for considering this model came from problems related to communication over a noisy channel, and is briefly explained.

  8. Spin fluids in stationary axis-symmetric space-times

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.

    1987-07-01

    The relations establishing the equivalence of an ordinary perfect fluid stress-energy tensor and a spin fluid stress-energy tensor are derived for stationary axis-symmetric space-times in general relativity. Spin fluid sources for the Gödel cosmology and the van Stockum metric are given.

  9. Higher spins in the symmetric orbifold of K3

    NASA Astrophysics Data System (ADS)

    Baggio, Marco; Gaberdiel, Matthias R.; Peng, Cheng

    2015-07-01

    The symmetric orbifold of K3 is believed to be the conformal field theory (CFT) dual of string theory on AdS3×S3×K 3 at the tensionless point. For the case when the K3 is described by the orbifold T4/Z2 , we identify a subsector of the symmetric orbifold theory that is dual to a higher spin theory on AdS3 . We analyze how the Bogomol'nyi-Prasad-Sommerfield (BPS) spectrum of string theory can be described from the higher spin perspective and determine which single-particle BPS states are accounted for by the perturbative higher spin theory.

  10. Noise Suppression Using Symmetric Exchange Gates in Spin Qubits

    NASA Astrophysics Data System (ADS)

    Martins, Frederico; Malinowski, Filip K.; Nissen, Peter D.; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.; Marcus, Charles M.; Kuemmeth, Ferdinand

    2016-03-01

    We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise.

  11. Noise Suppression Using Symmetric Exchange Gates in Spin Qubits.

    PubMed

    Martins, Frederico; Malinowski, Filip K; Nissen, Peter D; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2016-03-18

    We demonstrate a substantial improvement in the spin-exchange gate using symmetric control instead of conventional detuning in GaAs spin qubits, up to a factor of six increase in the quality factor of the gate. For symmetric operation, nanosecond voltage pulses are applied to the barrier that controls the interdot potential between quantum dots, modulating the exchange interaction while maintaining symmetry between the dots. Excellent agreement is found with a model that separately includes electrical and nuclear noise sources for both detuning and symmetric gating schemes. Unlike exchange control via detuning, the decoherence of symmetric exchange rotations is dominated by rotation-axis fluctuations due to nuclear field noise rather than direct exchange noise. PMID:27035316

  12. Short-range Ising spin glasses: the metastate interpretation of replica symmetry breaking.

    PubMed

    Read, N

    2014-09-01

    Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order W(d-ζ). These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q(x), if q(0)≠∫(0)(1)dxq(x), then the

  13. A formula for the first eigenvalue of the Dirac operator on compact spin symmetric spaces

    SciTech Connect

    Milhorat, Jean-Louis

    2006-04-15

    Let G/K be a simply connected spin compact inner irreducible symmetric space, endowed with the metric induced by the Killing form of G sign-changed. We give a formula for the square of the first eigenvalue of the Dirac operator in terms of a root system of G. As an example of application, we give the list of the first eigenvalues for the spin compact irreducible symmetric spaces endowed with a quaternion-Kaehler structure.

  14. Interface free-energy exponent in the one-dimensional Ising spin glass with long-range interactions in both the droplet and broken replica symmetry regions.

    PubMed

    Aspelmeier, T; Wang, Wenlong; Moore, M A; Katzgraber, Helmut G

    2016-08-01

    The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems. PMID:27627255

  15. Interface free-energy exponent in the one-dimensional Ising spin glass with long-range interactions in both the droplet and broken replica symmetry regions

    NASA Astrophysics Data System (ADS)

    Aspelmeier, T.; Wang, Wenlong; Moore, M. A.; Katzgraber, Helmut G.

    2016-08-01

    The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.

  16. Time-Reversal Symmetric U (1 ) Quantum Spin Liquids

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Senthil, T.

    2016-01-01

    We study possible quantum U (1 ) spin liquids in three dimensions with time-reversal symmetry. We find a total of seven families of such U (1 ) spin liquids, distinguished by the properties of their emergent electric or magnetic charges. We show how these spin liquids are related to each other. Two of these classes admit nontrivial protected surface states which we describe. We show how to access all of the seven spin liquids through slave particle (parton) constructions. We also provide intuitive loop gas descriptions of their ground-state wave functions. One of these phases is the "topological Mott insulator," conventionally described as a topological insulator of an emergent fermionic "spinon." We show that this phase admits a remarkable dual description as a topological insulator of emergent fermionic magnetic monopoles. This results in a new (possibly natural) surface phase for the topological Mott insulator and a new slave particle construction. We describe some of the continuous quantum phase transitions between the different U (1 ) spin liquids. Each of these seven families of states admits a finer distinction in terms of their surface properties, which we determine by combining these spin liquids with symmetry-protected topological phases. We discuss lessons for materials such as pyrochlore quantum spin ices which may harbor a U (1 ) spin liquid. We suggest the topological Mott insulator as a possible ground state in some range of parameters for the quantum spin ice Hamiltonian.

  17. Symmetric Z2 spin liquids and their neighboring phases on triangular lattice

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming

    2016-04-01

    Motivated by recent numerical discovery of a gapped spin liquid phase in spin-1 /2 triangular-lattice J1-J2 Heisenberg model, we classify symmetric Z2 spin liquids on triangular lattice in the Abrikosov-fermion representation. We find 20 phases with distinct spinon symmetry quantum numbers, eight of which have their counterparts in the Schwinger-boson representation. Among them we identify two promising candidates (#1 and #20), which can realize a gapped Z2 spin liquid with up to next nearest neighbor mean-field amplitudes. We analyze their neighboring magnetic orders and valence bond solid patterns, and find one state (#20) that is connected to 120-degree Neel order by a continuous quantum phase transition. We also identify gapped nematic Z2 spin liquids in the neighborhood of the symmetric states and find three promising candidates (#1, #6, and #20).

  18. Spin Entanglement with {PT} Symmetric Hamiltonian in a Curved Static Space-Time

    NASA Astrophysics Data System (ADS)

    Mebarki, N.; Morchedi, A.; Aissaoui, H.

    2015-11-01

    Entanglement of spin systems in a curved static space-time with {PT} symmetric Hamiltonian is studied. It turns out that although a bipartite initial state is non entangled, one can generate in general a non vanishing ebit of entanglement through an elapsed proper time evolution. To be more specific an application of a pure state time evolution of a wave packet in a circular geodesic motion in a Schwarchild metric and {PT} symmetric spin Hamiltonian is considered and the corresponding von Newman entanglement entropy is studied.

  19. High quality exchange rotations in spin qubits using symmetric gating

    NASA Astrophysics Data System (ADS)

    Martins, F.; Malinowski, F. K.; Nissen, P. D.; Marcus, C. M.; Kuemmeth, F.; Barnes, E.; Gardner, G. C.; Fallahi, S.; Manfra, M. J.

    We present results on a singlet-triplet qubit implemented in a GaAs/AlGaAs heterostructure and we show that exchange oscillations can be realized either by tilting the double well potential, the conventional method, or by symmetrically lowering the barrier, as originally suggested by Loss and DiVincenzo. The two methods are compared here. We find that lowering the barrier between dots has much less relative exchange noise compared to tilting the potential. Since exchange rotations are sensitive to electrical noise and relatively insensitive to nuclear noise, this yields significantly enhanced free induction decay times and quality factors. Our results are comparable to those reported recently in silicon quantum dot devices, obtained using similar techniques. Support through IARPA-MQCO, LPS-MPO-CMTC, Army Research Office, and the Danish National Research Foundation is acknowledged.

  20. High Fidelity Symmetric Telecloning and Entanglement Distribution of Spin Quantum States by Weak Measurement and Reversal

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; He, Zhi; Yao, Chun-Mei; Li, Wen-Juan

    2016-08-01

    We propose a physical realization of robust symmetric telecloning scheme for spin quantum states by employing the weak measurement and reversal (WMR) operation. Using proper WMR, the ultrahigh telecloning fidelity and long distance of quantum state transfer with certain success probability can be achieved. More interestingly, the lowest average telecloning fidelity can attain 80 %, which is almost independent of the spin chain length. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the WMR operation indeed helps for protecting distributed entanglement.

  1. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  2. The Replica Method in Optimization Problems.

    NASA Astrophysics Data System (ADS)

    Liao, Wuwell W.

    In this thesis I discuss the application of the replica method in combinatorial optimization problems. In particular, I study certain graph-partitioning problems. One problem that I consider is the following. We are given a set of vertices V = (V_1,V_2,ldots V_{N}), with N even, and a set of edges E = {(V_{i},V _{j})i not= j}. Let each edge be connected with probability P. The bipartitioning problem is to divide V into two parts of equal size, in such a way as to minimize the number of edges N _{c} connecting these two parts. We are interested in the behavior of N_{c }/N, averaged over all possible configurations of edges in the limit N --> infty , as a function of the connectivity alpha = NP. When alpha is finite, the problem is shown to be similar, but not identical, to the mean field theory of a spin glass with finite connectivity. The replica-symmetric solution is derived. It is shown to be consistent with exact results for the infinite cluster obtained by P. Erdos.

  3. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

    PubMed Central

    Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou

    2016-01-01

    Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation. PMID:26856379

  4. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices.

    PubMed

    Yang, Meiyin; Cai, Kaiming; Ju, Hailang; Edmonds, Kevin William; Yang, Guang; Liu, Shuai; Li, Baohe; Zhang, Bao; Sheng, Yu; Wang, Shouguo; Ji, Yang; Wang, Kaiyou

    2016-01-01

    Current induced magnetization switching by spin-orbit torques offers an energy-efficient means of writing information in heavy metal/ferromagnet (FM) multilayer systems. The relative contributions of field-like torques and damping-like torques to the magnetization switching induced by the electrical current are still under debate. Here, we describe a device based on a symmetric Pt/FM/Pt structure, in which we demonstrate a strong damping-like torque from the spin Hall effect and unmeasurable field-like torque from Rashba effect. The spin-orbit effective fields due to the spin Hall effect were investigated quantitatively and were found to be consistent with the switching effective fields after accounting for the switching current reduction due to thermal fluctuations from the current pulse. A non-linear dependence of deterministic switching of average Mz on the in-plane magnetic field was revealed, which could be explained and understood by micromagnetic simulation. PMID:26856379

  5. Pair-Symmetric Background of the Spin Asymmetries of the Nucleon Experiment

    NASA Astrophysics Data System (ADS)

    Ndukum, Luwani

    2013-10-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) at the Thomas Jefferson Lab National Accelerator Facility measured inclusive double spin asymmetries by scattering longitudinally polarized electrons on a longitudinally and transversely polarized NH3 target. The measurements were done at momentum transfer of 2.5 <= Q2 <= 6.5 GeV2 and Bjorken x of 0.3 <= x <= 0.8. Data were also taken at 0.2 < x < 0.3. Analysis of the pair-symmetric background used to extract asymmetries from this low x data will be discussed.

  6. An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Jayatilaka, Dylan

    1993-01-01

    A new open-shell perturbation theory is formulated in terms of symmetric spin orbitals. Only one set of spatial orbitals is required, thereby reducing the number of independent coefficients in the perturbed wavefunctions. For second order, the computational cost is shown to be similar to a closed-shell calculation. This formalism is therefore more efficient than the recently developed RMP, ROMP or RMP-MBPT theories. The perturbation theory described herein was designed to have a close correspondence with our recently proposed coupled-cluster theory based on symmetric spin orbitals. The first-order wavefunction contains contributions from only doubly excited determinants. Equilibrium structures and vibrational frequencies determined from second-order perturbation theory are presented for OH, NH, CH, 02, NH2 and CH2.

  7. Symmetric rotating-wave approximation for the generalized single-mode spin-boson system

    SciTech Connect

    Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul

    2011-10-15

    The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime. Additionally, we symmetrize the generalized form of the rotating-wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.

  8. Spin blocking effect in symmetric double quantum well due to Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Souma, Satofumi; Ogawa, Matsuto; Sekine, Yoshiaki; Sawada, Atsushi; Koga, Takaaki

    2013-03-01

    We report a theoretical study of the spin-dependent electronic current flowing laterally through the In0.53Ga0.47As/In0.52Al0.48As double quantum well (DQW) structure, where the values of the Rashba spin-orbit parameter αR are opposite in sign but equal in magnitude between the constituent quantum wells. By tuning the channel length of DQW and the magnitude of the externally applied in-plane magnetic field, one can block the transmission of one spin (e.g., spin-up) component, enabling us to obtain a spin-polarized current. Our experimental progress toward realizing the proposed device is also reported. This work was supported by JSPS KAKENHI Grant Number 23360001 and 22104007

  9. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  10. Quantum Measurement of Spin Correlations in a Symmetric Many-Body State ∖ f 1

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Kalev, Amir; Deutsch, Ivan; Cquic Team

    2016-05-01

    Continuous (nonprojective) measurement on a quantum system has been employed previously for fast, robust, and high-fidelity quantum state tomography (QST) on qudits. We expand this protocol to many-body systems in order to perform QST on the reduced one-body and two-body density matrices of a symmetric many-body state of multiple qubits. Such QST will characterize the spin correlations in the system. In this protocol, a continuous measurement is done collectively on many copies of the reduced state at the same time, and therefore, while it is weakly perturbative on each copy, yields high signal-to-noise. Simultaneously, we subject the system to an external collective control in order to generate an informationally complete measurement record. We characterize the information-gain measurement disturbance tradeoff in terms of parameters in the problem (number of qubits, control parameters, shot-noise bandwidth, and the measurement strength). Support from NSF is acknowledged.

  11. Combining symmetry-separated and bent-bond spin-coupled models of cylindrically symmetric multiple bonding

    NASA Astrophysics Data System (ADS)

    Penotti, Fabio E.; Cooper, David L.

    2015-07-01

    We examine the symmetry properties of spin-coupled (or full generalised valence bond) wavefunctions for C2H2 and N2. The symmetry-separated (σ,π) and bent-bond (ω) solutions are totally symmetric only in the D4h and D3h subgroups of D∞h, respectively. Two fairly different strategies are explored for imposing full cylindrical symmetry, with one of them (small nonorthogonal configuration interaction calculations involving rotated versions of the wavefunction) turning out to be somewhat preferable on energetic grounds to the other one (application of additional spin constraints to a single spatial configuration). It is also shown that mixing together the cylindrically symmetric symmetry-separated and bent-bond spin-coupled models leads to relatively small energy improvements unless the valence orbitals in each type of configuration are reoptimised.

  12. Distributed replica dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Chill, Samuel T.; Henkelman, Graeme

    2015-11-01

    A distributed replica dynamics (DRD) method is proposed to calculate rare-event molecular dynamics using distributed computational resources. Similar to Voter's parallel replica dynamics (PRD) method, the dynamics of independent replicas of the system are calculated on different computational clients. In DRD, each replica runs molecular dynamics from an initial state for a fixed simulation time and then reports information about the trajectory back to the server. A simulation clock on the server accumulates the simulation time of each replica until one reports a transition to a new state. Subsequent calculations are initiated from within this new state and the process is repeated to follow the state-to-state evolution of the system. DRD is designed to work with asynchronous and distributed computing resources in which the clients may not be able to communicate with each other. Additionally, clients can be added or removed from the simulation at any point in the calculation. Even with heterogeneous computing clients, we prove that the DRD method reproduces the correct probability distribution of escape times. We also show this correspondence numerically; molecular dynamics simulations of Al(100) adatom diffusion using PRD and DRD give consistent exponential distributions of escape times. Finally, we discuss guidelines for choosing the optimal number of replicas and replica trajectory length for the DRD method.

  13. Distributed replica dynamics.

    PubMed

    Zhang, Liang; Chill, Samuel T; Henkelman, Graeme

    2015-11-01

    A distributed replica dynamics (DRD) method is proposed to calculate rare-event molecular dynamics using distributed computational resources. Similar to Voter's parallel replica dynamics (PRD) method, the dynamics of independent replicas of the system are calculated on different computational clients. In DRD, each replica runs molecular dynamics from an initial state for a fixed simulation time and then reports information about the trajectory back to the server. A simulation clock on the server accumulates the simulation time of each replica until one reports a transition to a new state. Subsequent calculations are initiated from within this new state and the process is repeated to follow the state-to-state evolution of the system. DRD is designed to work with asynchronous and distributed computing resources in which the clients may not be able to communicate with each other. Additionally, clients can be added or removed from the simulation at any point in the calculation. Even with heterogeneous computing clients, we prove that the DRD method reproduces the correct probability distribution of escape times. We also show this correspondence numerically; molecular dynamics simulations of Al(100) adatom diffusion using PRD and DRD give consistent exponential distributions of escape times. Finally, we discuss guidelines for choosing the optimal number of replicas and replica trajectory length for the DRD method. PMID:26547163

  14. Symmetrizing the symmetrization postulate

    NASA Astrophysics Data System (ADS)

    York, Michael

    2000-11-01

    Reasonable requirements of (a) physical invariance under particle permutation and (b) physical completeness of state descriptions [1], enable us to deduce a Symmetric Permutation Rule(SPR): that by taking care with our state descriptions, it is always possible to construct state vectors (or wave functions) that are purely symmetric under pure permutation for all particles, regardless of type distinguishability or spin. The conventional exchange antisymmetry for two identical half-integer spin particles is shown to be due to a subtle interdependence in the individual state descriptions arising from an inherent geometrical asymmetry. For three or more such particles, however, antisymmetrization of the state vector for all pairs simultaneously is shown to be impossible and the SPR makes observably different predictions, although the usual pairwise exclusion rules are maintained. The usual caveat of fermion antisymmetrization—that composite integer spin particles (with fermionic constituents) behave only approximately like bosons—is no longer necessary.

  15. Energy level structure and quantum phase transitions of spin systems with nonaxially symmetric Hamiltonians

    NASA Astrophysics Data System (ADS)

    López-Moreno, Enrique; Grether, M.; Velázquez, Víctor

    2011-11-01

    A general spin system with a nonaxially symmetric Hamiltonian containing Jx, Jz-linear and Jz-quadratic terms, widely used in many-body fermionic and bosonic systems and in molecular magnetism, is considered for the variations of general parameters describing intensity interaction changes of each of its terms. For this model Hamiltonian, a semiclassical energy surface (ES) is obtained by means of the coherent-state formalism. An analysis of this ES function, based on catastrophe theory, determines the separatrix in the control parameter space of the system Hamiltonian: the loci of singularities representing semiclassical phase transitions. Here we show that distinct regions of qualitatively different spectrum structures, as well as a singular behavior of quantum states, are ruled by this separatrix: here we show that the separatrix not only describes ground-state singularities, which have been associated with quantum phase transitions, but also reveals the structure of the excited spectrum, distinguishing different quantum phases within the parameter space. Finally, we consider magnetic susceptibility and heat capacity of the system at finite temperature, in order to study thermal properties and thermodynamical phase transitions in the perspective of the separatrix of this Hamiltonian system.

  16. Introduction to the Replica Theory of Disordered Statistical Systems

    NASA Astrophysics Data System (ADS)

    Dotsenko, Viktor

    2005-10-01

    Preface; 1. Introduction; Part I. Spin-Glass Systems: 2. Physics of the spin glass state; 2. The mean-field theory of spin glasses; 4. Physics of replica symmetry breaking; 5. Ultrametricity; 6. Experiments; Part II. Critical Phenomena and Quenched Disorder: 7. Scaling theory of the critical phenomena; 8. Critical behaviour in systems with disorder; 9. Spin glass effects in the critical phenomena; 10. Two dimensional Ising model with disorder; Part III. Other Types of Disordered Systems: 11. Ising systems with quenched random fields; 12. One dimensional directed polymers in random potentials; 13. Vector breaking of replica symmetry; 14. Conclusions; References.

  17. Local excitations in mean-field spin glasses

    NASA Astrophysics Data System (ADS)

    Krzakala, F.; Parisi, G.

    2004-06-01

    We address the question of geometrical as well as energetic properties of local excitations in mean-field Ising spin glasses. We study analytically the Random Energy Model and numerically a dilute mean-field model, first on tree-like graphs, equivalent to a replica-symmetric computation, and then directly on finite-connectivity random lattices. In the first model, characterized by a discontinuous replica symmetry breaking, we found that the energy of finite-volume excitation is infinite, whereas in the dilute mean-field model, described by a continuous replica symmetry breaking, it slowly decreases with sizes and saturates at a finite value, in contrast with what would be naively expected. The geometrical properties of these excitations are similar to those of lattice animals or branched polymers. We discuss the meaning of these results in terms of replica symmetry breaking and also possible relevance in finite-dimensional systems.

  18. Spin-orbital interaction for face-sharing octahedra: Realization of a highly symmetric SU(4) model

    NASA Astrophysics Data System (ADS)

    Kugel, K. I.; Khomskii, D. I.; Sboychakov, A. O.; Streltsov, S. V.

    2015-04-01

    Specific features of orbital and spin structure of transition-metal compounds in the case of the face-sharing MO6 octahedra are analyzed. In this geometry, we consider the form of the spin-orbital Hamiltonian for transition-metal ions with double (egσ) or triple (t2 g) orbital degeneracy. Trigonal distortions typical of the structures with face-sharing octahedra lead to splitting of t2 g orbitals into an a1 g singlet and egπ doublet. For both doublets (egσ and egπ), in the case of one electron or hole per site, we arrive at a symmetric model with the orbital and spin interaction of the Heisenberg type and the Hamiltonian of unexpectedly high symmetry: SU(4). Thus, many real materials with this geometry can serve as a testing ground for checking the prediction of this interesting theoretical model. We also compare general trends in the spin-orbital ("Kugel-Khomskii") exchange interaction for three typical situations: those of MO6 octahedra with common corner, common edge, and the present case of common face, which has not been considered yet.

  19. Dynamic stability of a spinning tube conveying a fluid through a symmetrical noncircular cross-section

    SciTech Connect

    Benedetti, G.A.

    1990-11-01

    When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.

  20. A Symmetrical Quasi-Classical Spin-Mapping Model for the Electronic Degrees of Freedom in Non-Adiabatic Processes.

    PubMed

    Cotton, Stephen J; Miller, William H

    2015-12-17

    A recent series of papers has shown that a symmetrical quasi-classical (SQC) windowing procedure applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides a very good treatment of electronically nonadiabatic processes in a variety of benchmark model systems, including systems that exhibit strong quantum coherence effects and some which other approximate approaches have difficulty in describing correctly. In this paper, a different classical electronic Hamiltonian for the treatment of electronically nonadiabatic processes is proposed (and "quantized" via the SQC windowing approach), which maps the dynamics of F coupled electronic states to a set of F spin-(1)/2 degrees of freedom (DOF), similar to the Fermionic spin model described by Miller and White (J. Chem. Phys. 1986, 84, 5059). It is noted that this spin-mapping (SM) Hamiltonian is an exact Hamiltonian if treated as a quantum mechanical (QM) operator-and thus QM'ly equivalent to the MM Hamiltonian-but that an analytically distinct classical analogue is obtained by replacing the QM spin-operators with their classical counterparts. Due to their analytic differences, a practical comparison is then made between the MM and SM Hamiltonians (when quantized with the SQC technique) by applying the latter to many of the same benchmark test problems successfully treated in our recent work with the SQC/MM model. We find that for every benchmark problem the MM model provides (slightly) better agreement with the correct quantum nonadiabatic transition probabilities than does the new SM model. This is despite the fact that one might expect, a priori, a more natural description of electronic state populations (occupied versus unoccupied) to be provided by DOF with only two states, i.e., spin-(1)/2 DOF, rather than by harmonic oscillator DOF which have an infinite manifold of states (though only two of these are ever occupied). PMID:26299361

  1. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation

    NASA Astrophysics Data System (ADS)

    Reed, Matthew

    Gated semiconductor quantum dots controlled with the exchange interaction are attractive candidates for quantum information processing because of their long coherence time and electrical controllability. Exchange is conventionally modulated by detuning the chemical potentials of neighboring dots over a fixed tunnel barrier, an approach whose precision is limited by charge noise. In this talk we demonstrate a ''symmetric'' mode of operation which substantially reduces the sensitivity of exchange operations to gate fluctuations. The method involves biasing a double-dot symmetrically between the charge-state anti-crossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We propose a metric, insensitivity, to quantify the technique's improvement and find that it increases by at least a factor of five between operating regimes. We also demonstrate a substantial increase in the number of Rabi fringes observed.

  2. Instantaneous mode contamination and parametric combination instability of spinning cyclically symmetric ring structures with expanding application to planetary gear ring

    NASA Astrophysics Data System (ADS)

    Wang, Shiyu; Sun, Wenjia; Wang, Yaoyao

    2016-08-01

    This work addresses the free and parametric elastic vibrations of the spinning cyclically symmetric ring structures. The focus is on the instantaneous mode contamination, parametric combination instability and their connections. An analytical model is developed by using the Hamilton's principle for the in-plane bending deflection, the distinction of which is in the arbitrary distributions of the attached mass and stiffness. A special case with equally-spaced discrete mass particles and spinning springs is detailed. The uneven tangential force and the time-invariant deflection caused by the mass particles are formulated. The results imply that the order of such deflection is equal to the number of the mass particles. The instantaneous mode contamination and parametric combination instability are captured by the perturbation and superposition mode shapes of the stationary smooth ring by introducing complex coefficients. The contamination rule is similar to that of the stationary structure but the contamination strength is time-variant due to the spinning springs. New analytical results and quantitative explanations on the contamination and instability especially their connections are presented. As an application of the proposed method, the free and parametric vibrations of the planetary gear ring are formulated. Main results are demonstrated by means of the numerical simulations and compared with the existing studies.

  3. Robust adaptive spin-axis stabilization of a symmetric spacecraft using two bounded torques

    NASA Astrophysics Data System (ADS)

    Gui, Haichao; Vukovich, George

    2015-12-01

    The spin-axis stabilization of an axisymmetric spacecraft by two control torques perpendicular to the symmetry axis is addressed. Two control laws are designed to align the symmetry axis along a desired inertial direction despite the revolution around the symmetry axis. The first controller takes a saturated proportional-derivative form and can stabilize the spin-axis to the desired direction with a priori bounded torques in the absence of modeling uncertainties. In order to achieve better robustness, an adaptive controller is then designed to account for the inertia uncertainties and disturbances, in addition to actuator saturation. Numerical examples are presented to demonstrate the advantageous features of the proposed algorithm compared with conventional spin-axis stabilization methods.

  4. Spin and pseudospin symmetric Dirac particles in the field of Tietz—Hua potential including Coulomb tensor interaction

    NASA Astrophysics Data System (ADS)

    Sameer, M. Ikhdair; Majid, Hamzavi

    2013-09-01

    Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.

  5. Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; Maune, B. M.; Andrews, R. W.; Borselli, M. G.; Eng, K.; Jura, M. P.; Kiselev, A. A.; Ladd, T. D.; Merkel, S. T.; Milosavljevic, I.; Pritchett, E. J.; Rakher, M. T.; Ross, R. S.; Schmitz, A. E.; Smith, A.; Wright, J. A.; Gyure, M. F.; Hunter, A. T.

    2016-03-01

    We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double dot symmetrically between the charge-state anticrossings, where the derivative of the exchange energy with respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling. We find that this method reduces the dephasing effect of charge noise by more than a factor of 5 in comparison to operation near a charge-state anticrossing, increasing the number of observable exchange oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast quantum operations.

  6. Anti-symmetric spin-orbit force in the effective interaction for the shell model and its effect on nuclear structure

    SciTech Connect

    Tsunoda, N.; Shimizu, N.; Otsuka, T.; Suzuki, T.

    2011-05-06

    Anti-symmetric spin-orbit force (ALS) in the effective interaction for the shell model and its effect on nuclear structure is discussed. We investigate possible origins of the ALS and the effects on the level schemes of several nuclei.

  7. Compressible Sherrington-Kirkpatrick spin-glass model

    NASA Astrophysics Data System (ADS)

    Liarte, Danilo B.; Salinas, Silvio R.; Yokoi, Carlos S. O.

    2009-05-01

    We introduce a Sherrington-Kirkpatrick spin-glass model with the addition of elastic degrees of freedom. The problem is formulated in terms of an effective four-spin Hamiltonian in the pressure ensemble, which can be treated by the replica method. In the replica-symmetric approximation, we analyze the pressure-temperature phase diagram, and obtain expressions for the critical boundaries between the disordered and the ordered (spin-glass and ferromagnetic) phases. The second-order para-ferromagnetic border ends at a tricritical point, beyond which the transition becomes discontinuous. We use these results to make contact with the temperature-concentration phase diagrams of mixtures of hydrogen-bonded crystals.

  8. Symmetric structure of field algebra of G-spin models determined by a normal subgroup

    SciTech Connect

    Xin, Qiaoling Jiang, Lining

    2014-09-15

    Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.

  9. About a solvable mean field model of a Gaussian spin glass

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Genovese, Giuseppe; Guerra, Francesco; Tantari, Daniele

    2014-04-01

    In a series of papers, we have studied a modified Hopfield model of a neural network, with learned words characterized by a Gaussian distribution. The model can be represented as a bipartite spin glass, with one party described by dichotomic Ising spins, and the other party by continuous spin variables, with an a priori Gaussian distribution. By application of standard interpolation methods, we have found it useful to compare the neural network model (bipartite) from one side, with two spin glass models, each monopartite, from the other side. Of these, the first is the usual Sherrington-Kirkpatrick model, the second is a spin glass model, with continuous spins and inbuilt highly nonlinear smooth cut-off interactions. This model is an invaluable laboratory for testing all techniques which have been useful in the study of spin glasses. The purpose of this paper is to give a synthetic description of the most peculiar aspects, by stressing the necessary novelties in the treatment. In particular, it will be shown that the control of the infinite volume limit, according to the well-known Guerra-Toninelli strategy, requires in addition one to consider the involvement of the cut-off interaction in the interpolation procedure. Moreover, the control of the ergodic region, the annealed case, cannot be directly achieved through the standard application of the Borel-Cantelli lemma, but requires previous modification of the interaction. This remark could find useful application in other cases. The replica symmetric expression for the free energy can be easily reached through a suitable version of the doubly stochastic interpolation technique. However, this model shares the unique property that the fully broken replica symmetry ansatz can be explicitly calculated. A very simple sum rule connects the general expression of the fully broken free energy trial function with the replica symmetric one. The definite sign of the error term shows that the replica solution is optimal. Then

  10. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  11. Mean field bipartite spin models treated with mechanical techniques

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Pizzoferrato, Andrea; Tantari, Daniele

    2014-03-01

    Inspired by a continuously increasing interest in modeling and framing complex systems in a thermodynamic rationale, in this paper we continue our investigation in adapting well-known techniques (originally stemmed in fields of physics and mathematics far from the present) for solving for the free energy of mean field spin models in a statistical mechanics scenario. Focusing on the test cases of bipartite spin systems embedded with all the possible interactions (self and reciprocal), we show that both the fully interacting bipartite ferromagnet, as well as the spin glass counterpart, at least at the replica symmetric level, can be solved via the fundamental theorem of calculus, trough an analogy with the Hamilton-Jacobi theory and lastly with a mapping to a Fourier diffusion problem. All these technologies are shown symmetrically for ferromagnets and spin-glasses in full details and contribute as powerful tools in the investigation of complex systems.

  12. On a characteristic of the first eigenvalue of the Dirac operator on compact spin symmetric spaces with a Kähler or Quaternion-Kähler structure

    NASA Astrophysics Data System (ADS)

    Milhorat, Jean-Louis

    2015-04-01

    It is shown that on a compact spin symmetric space with a Kähler or Quaternion-Kähler structure, the first eigenvalue of the Dirac operator is linked to a "lowest" action of the holonomy, given by the fiberwise action on spinors of the canonical forms characterized by this holonomy. The result is also verified for the symmetric space F4 /Spin9, proving that it is valid for all the "possible" holonomies in Berger's list occurring in that context. The proof is based on a characterization of the first eigenvalue of the Dirac operator given in Milhorat (2005) and Milhorat (2006). By the way, we review an incorrect statement in the proof of the first lemma in Milhorat (2005).

  13. General Method to Determine Replica Symmetry Breaking Transitions

    NASA Astrophysics Data System (ADS)

    Marinari, E.; Naitza, C.; Zuliani, F.; Parisi, G.; Picco, M.; Ritort, F.

    1998-08-01

    We introduce a new parameter to investigate replica symmetry breaking transitions using finite-size scaling methods. Based on exact equalities initially derived by F. Guerra this parameter is a direct check of the self-averaging character of the spin-glass order parameter. This new parameter can be used to study models with time reversal symmetry but its greatest interest lies in models where this symmetry is absent. We apply the method to long-range and short-range Ising spin-glasses with and without a magnetic field as well as short-range multispin interaction spin-glasses.

  14. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  15. The phenomenon of spontaneous replica symmetry breaking in complex statistical mechanics systems

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco

    2013-06-01

    We analyze the main aspects of the phenomenon of spontaneous replica symmetry breaking, introduced by Giorgio Parisi. We work in the frame of real replicas, by taking into account the simple case of the random energy model. In particular, we study the phase space diagram for systems of coupled replicas, and the connected phase transitions. Our considerations can be generalized to the more complicated models of mean field spin glasses and neural networks. We report also about a letter of Ettore Majorana, written in December 1937 to his uncle Dante, very interesting for its methodological content.

  16. Experimental evidence of replica symmetry breaking in random lasers

    NASA Astrophysics Data System (ADS)

    Ghofraniha, N.; Viola, I.; di Maria, F.; Barbarella, G.; Gigli, G.; Leuzzi, L.; Conti, C.

    2015-01-01

    Spin-glass theory is one of the leading paradigms of complex physics and describes condensed matter, neural networks and biological systems, ultracold atoms, random photonics and many other research fields. According to this theory, identical systems under identical conditions may reach different states. This effect is known as replica symmetry breaking and is revealed by the shape of the probability distribution function of an order parameter named the Parisi overlap. However, a direct experimental evidence in any field of research is still missing. Here we investigate pulse-to-pulse fluctuations in random lasers, we introduce and measure the analogue of the Parisi overlap in independent experimental realizations of the same disordered sample, and we find that the distribution function yields evidence of a transition to a glassy light phase compatible with a replica symmetry breaking.

  17. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M.; Mitra, Robi D.

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  18. Variational Approach to Interfaces in Random Media: Negative Variances and Replica Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Saakian, D. B.; Nieuwenhuizen, Th. M.

    1997-12-01

    A Gaussian variational approximation is often used to study interfaces in random media. By considering the 1+1 dimensional directed polymer in a random medium, it is shown here that the variational Ansatz typically leads to a negative variance of the free energy. The situation improves by taking into account more and more steps of replica symmetry breaking. For infinite order breaking the variance is zero (i.e. subextensive). This situation is reminiscent of the negative entropies in mean field spin glass models, which were also eliminated by considering infinite order replica symmetry breaking.

  19. Secrets of the Chinese magic mirror replica

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Yip, Din-yan

    2001-03-01

    We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.

  20. Generalized gravitational entropy without replica symmetry

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Kelly, William R.

    2015-03-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  1. Optimizing replica exchange moves for molecular dynamics.

    PubMed

    Nadler, Walter; Hansmann, Ulrich H E

    2007-11-01

    We sketch the statistical physics framework of the replica exchange technique when applied to molecular dynamics simulations. In particular, we draw attention to generalized move sets that allow a variety of optimizations as well as new applications of the method. PMID:18233794

  2. Instituto de Fisica, UFRGS, CP 15051, 91501-970, Porto Alegre RS, Brazil: Replica theory of granular media

    NASA Astrophysics Data System (ADS)

    Arenzon, Jeferson J.

    1999-03-01

    An infinite range spin-glass-like model for granular systems is introduced and studied through the replica mean-field formalism. Equilibrium, density-dependent properties under vibration and gravity are obtained that qualitatively resemble the results from real and numerical experiments.

  3. Symmetric textures

    SciTech Connect

    Ramond, P. . Dept. of Physics)

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.

  4. Symmetric textures

    SciTech Connect

    Ramond, P.

    1993-04-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.

  5. Effect of modularity on the Glauber dynamics of the dilute spin glass model

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Man

    2014-11-01

    We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r < 1/2 and q = (-1+4 r 2)/(32 r 4) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ and q = (-1+8 r 2)/(128 r 4) which is stable for r > 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.

  6. Finite-connectivity spin-glass phase diagrams and low-density parity check codes

    NASA Astrophysics Data System (ADS)

    Migliorini, Gabriele; Saad, David

    2006-02-01

    We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=1/4 , an RS critical transition point at pc≃0.67 while the critical RSB transition point is located at pc≃0.7450±0.0050 , to be compared with the corresponding Shannon bound 1-R . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.

  7. DIRAC File Replica and Metadata Catalog

    NASA Astrophysics Data System (ADS)

    Tsaregorodtsev, A.; Poss, S.

    2012-12-01

    File replica and metadata catalogs are essential parts of any distributed data management system, which are largely determining its functionality and performance. A new File Catalog (DFC) was developed in the framework of the DIRAC Project that combines both replica and metadata catalog functionality. The DFC design is based on the practical experience with the data management system of the LHCb Collaboration. It is optimized for the most common patterns of the catalog usage in order to achieve maximum performance from the user perspective. The DFC supports bulk operations for replica queries and allows quick analysis of the storage usage globally and for each Storage Element separately. It supports flexible ACL rules with plug-ins for various policies that can be adopted by a particular community. The DFC catalog allows to store various types of metadata associated with files and directories and to perform efficient queries for the data based on complex metadata combinations. Definition of file ancestor-descendent relation chains is also possible. The DFC catalog is implemented in the general DIRAC distributed computing framework following the standard grid security architecture. In this paper we describe the design of the DFC and its implementation details. The performance measurements are compared with other grid file catalog implementations. The experience of the DFC Catalog usage in the CLIC detector project are discussed.

  8. The 3-SAT problem with large number of clauses in the ∞-replica symmetry breaking scheme

    NASA Astrophysics Data System (ADS)

    Crisanti, A.; Leuzzi, L.; Parisi, G.

    2002-01-01

    In this paper we analyse the structure of the UNSAT-phase of the over-constrained 3-SAT model by studying the low temperature phase of the associated disordered spin model. We derived the full replica symmetry breaking (RSB) equations for a general class of disordered spin models which includes the Sherrington-Kirkpatrick (SK) model, the Ising p-spin model as well as the over-constrained 3-SAT model as particular cases. We have numerically solved the ∞-RSB equations using a pseudo-spectral code down to and including zero temperature. We find that the UNSAT-phase of the over-constrained 3-SAT is of the ∞-RSB kind: in order to get a stable solution the replica symmetry has to be broken in a continuous way, similarly to the SK model in an external magnetic field.

  9. Reliability of the impression replica technique.

    PubMed

    Falk, Anders; Vult von Steyern, Per; Fransson, Håkan; Thorén, Margareta Molin

    2015-01-01

    The aim of this study was to evaluate the reliability of the impression replica technique with a four-unit zirconia fixed dental prosthesis (FDP). Marginal and internal fit were measured by repeatedly placing the FDP on an epoxy cast using light-body silicone material corresponding to cement. All measured marginal and internal fit points showed varying values. The greatest variations were seen at the most distal margin (33 μm) and at the distal abutment of the FDP (77 μm). The results showed that the technique gives moderate variations and is a useful method to evaluate marginal and internal fit. PMID:25822305

  10. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Pivkin, Igor V.; Shea, Joan-Emma

    2016-07-01

    In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble.

  11. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica.

    PubMed

    Peter, Emanuel K; Pivkin, Igor V; Shea, Joan-Emma

    2016-07-28

    In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble. PMID:27475393

  12. A spin glass approach to the directed feedback vertex set problem

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Jun

    2016-07-01

    A directed graph (digraph) is formed by vertices and arcs (directed edges) from one vertex to another. A feedback vertex set (FVS) is a set of vertices that contains at least one vertex of every directed cycle in this digraph. The directed feedback vertex set problem aims at constructing a FVS of minimum cardinality. This is a fundamental cycle-constrained hard combinatorial optimization problem with wide practical applications. In this paper we construct a spin glass model for the directed FVS problem by converting the global cycle constraints into local arc constraints, and study this model through the replica-symmetric (RS) mean field theory of statistical physics. We then implement a belief propagation-guided decimation (BPD) algorithm for single digraph instances. The BPD algorithm slightly outperforms the simulated annealing algorithm on large random graph instances. The RS mean field results and algorithmic results can be further improved by working on a more restrictive (and more difficult) spin glass model.

  13. Mean field spin glasses treated with PDE techniques

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele

    2013-07-01

    Following an original idea of Guerra, in these notes we analyze the Sherrington-Kirkpatrick model from different perspectives, all sharing the underlying approach which consists in linking the resolution of the statistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation (PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved in their native field and lastly bringing back the solution in the proper statistical mechanics framework. Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering the phase transition). Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities (namely of Aizenman-Contucci type, but merged within the Guerra's broken replica measures), whose interest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization to the ultrametric tree predicted by Parisi.

  14. Asynchronous replica exchange software for grid and heterogeneous computing

    NASA Astrophysics Data System (ADS)

    Gallicchio, Emilio; Xia, Junchao; Flynn, William F.; Zhang, Baofeng; Samlalsingh, Sade; Mentes, Ahmet; Levy, Ronald M.

    2015-11-01

    Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.

  15. Spin-glass phase transitions and minimum energy of the random feedback vertex set problem.

    PubMed

    Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun

    2016-08-01

    A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved by converting it into an appropriate spin-glass model [H.-J. Zhou, Eur. Phys. J. B 86, 455 (2013)EPJBFY1434-602810.1140/epjb/e2013-40690-1]. In the present work we study the spin-glass phase transitions and the minimum energy density of the random FVS problem by the first-step replica-symmetry-breaking (1RSB) mean-field theory. For both regular random graphs and Erdös-Rényi graphs, we determine the inverse temperature β_{l} at which the replica-symmetric mean-field theory loses its local stability, the inverse temperature β_{d} of the dynamical (clustering) phase transition, and the inverse temperature β_{s} of the static (condensation) phase transition. These critical inverse temperatures all change with the mean vertex degree in a nonmonotonic way, and β_{d} is distinct from β_{s} for regular random graphs of vertex degrees K>60, while β_{d} are identical to β_{s} for Erdös-Rényi graphs at least up to mean vertex degree c=512. We then derive the zero-temperature limit of the 1RSB theory and use it to compute the minimum FVS cardinality. PMID:27627285

  16. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  17. Shuttle Replica On The Way To Space Center Houston

    NASA Video Gallery

    Atop a barge, the space shuttle full-scale replica nears the completion of its eight-day journey from the Kennedy Space Center destined for permanent retention at Space Center Houston, near the NAS...

  18. SRF Cavity Surface Topography Characterization Using Replica Techniques

    SciTech Connect

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  19. Replica-symmetry-breaking transitions and off-equilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Rizzo, Tommaso

    2013-09-01

    I consider branches of replica-symmetry-breaking (RSB) solutions in glassy systems that display a dynamical transition at a temperature Td characterized by a mode-coupling-theory dynamical behavior. Below Td these branches of solutions are considered to be relevant to the system complexity and to off-equilibrium dynamics. Under general assumptions I argue that near Td it is not possible to stabilize the one-step (1RSB) solution beyond the marginal point by making a full RSB (FRSB) ansatz. However, depending on the model, there may exist a temperature T* strictly lower than Td below which the 1RSB branch can be continued to a FRSB branch. Such a temperature certainly exists for models that display the so-called Gardner transition and in this case TGspin model with p=3 by means of a numerical solution of the FRSB equations. The results are discussed in connection with off-equilibrium dynamics within Cugliandolo-Kurchan theory. In this context I assume that the RSB solution relevant for off-equilibrium dynamics is the 1RSB marginal solution in the whole range (T*,Td) and it is the end point of the FRSB branch for T

  20. JavaFIRE: A Replica and File System for Grids

    NASA Astrophysics Data System (ADS)

    Petek, Marko; da Silva Gomes, Diego; Resin Geyer, Claudio Fernando; Santoro, Alberto; Gowdy, Stephen

    2012-12-01

    The work is focused on the creation of a replica and file transfers system for Computational Grids inspired on the needs of the High Energy Physics (HEP). Due to the high volume of data created by the HEP experiments, an efficient file and dataset replica system may play an important role on the computing model. Data replica systems allow the creation of copies, distributed between the different storage elements on the Grid. In the HEP context, the data files are basically immutable. This eases the task of the replica system, because given sufficient local storage resources any dataset just needs to be replicated to a particular site once. Concurrent with the advent of computational Grids, another important theme in the distributed systems area that has also seen some significant interest is that of peer-to-peer networks (p2p). P2p networks are an important and evolving mechanism that eases the use of distributed computing and storage resources by end users. One common technique to achieve faster file download from possibly overloaded storage elements over congested networks is to split the files into smaller pieces. This way, each piece can be transferred from a different replica, in parallel or not, optimizing the moments when the network conditions are better suited to the transfer. The main tasks achieved by the system are: the creation of replicas, the development of a system for replicas transfer (RFT) and for replicas location (RLS) with a different architecture that the one provided by Globus and the development of a system for file transfer in pieces on computational grids with interfaces for several storage elements. The RLS uses a p2p overlay based on the Kademlia algorithm.

  1. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations. PMID:26723635

  2. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  3. Accelerating ring-polymer molecular dynamics with parallel-replica dynamics.

    PubMed

    Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F

    2016-06-28

    Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach. PMID:27369499

  4. Accelerating ring-polymer molecular dynamics with parallel-replica dynamics

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F.

    2016-06-01

    Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach.

  5. Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas

    PubMed Central

    Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.

    2009-01-01

    BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626

  6. Error and efficiency of replica exchange molecular dynamics simulations

    PubMed Central

    Rosta, Edina; Hummer, Gerhard

    2009-01-01

    We derive simple analytical expressions for the error and computational efficiency of replica exchange molecular dynamics (REMD) simulations (and by analogy replica exchange Monte Carlo simulations). The theory applies to the important case of systems whose dynamics at long times is dominated by the slow interconversion between two metastable states. As a specific example, we consider the folding and unfolding of a protein. The efficiency is defined as the rate with which the error in an estimated equilibrium property, as measured by the variance of the estimator over repeated simulations, decreases with simulation time. For two-state systems, this rate is in general independent of the particular property. Our main result is that, with comparable computational resources used, the relative efficiency of REMD and molecular dynamics (MD) simulations is given by the ratio of the number of transitions between the two states averaged over all replicas at the different temperatures, and the number of transitions at the single temperature of the MD run. This formula applies if replica exchange is frequent, as compared to the transition times. High efficiency of REMD is thus achieved by including replica temperatures in which the frequency of transitions is higher than that at the temperature of interest. In tests of the expressions for the error in the estimator, computational efficiency, and the rate of equilibration we find quantitative agreement with the results both from kinetic models of REMD and from actual all-atom simulations of the folding of a peptide in water. PMID:19894977

  7. Error and efficiency of replica exchange molecular dynamics simulations.

    PubMed

    Rosta, Edina; Hummer, Gerhard

    2009-10-28

    We derive simple analytical expressions for the error and computational efficiency of replica exchange molecular dynamics (REMD) simulations (and by analogy replica exchange Monte Carlo simulations). The theory applies to the important case of systems whose dynamics at long times is dominated by the slow interconversion between two metastable states. As a specific example, we consider the folding and unfolding of a protein. The efficiency is defined as the rate with which the error in an estimated equilibrium property, as measured by the variance of the estimator over repeated simulations, decreases with simulation time. For two-state systems, this rate is in general independent of the particular property. Our main result is that, with comparable computational resources used, the relative efficiency of REMD and molecular dynamics (MD) simulations is given by the ratio of the number of transitions between the two states averaged over all replicas at the different temperatures, and the number of transitions at the single temperature of the MD run. This formula applies if replica exchange is frequent, as compared to the transition times. High efficiency of REMD is thus achieved by including replica temperatures in which the frequency of transitions is higher than that at the temperature of interest. In tests of the expressions for the error in the estimator, computational efficiency, and the rate of equilibration we find quantitative agreement with the results both from kinetic models of REMD and from actual all-atom simulations of the folding of a peptide in water. PMID:19894977

  8. Fiber deposition pattern in two human respiratory tract replicas.

    PubMed

    Su, Wei-Chung; Cheng, Yung Sung

    2006-09-01

    This study consisted of a series of experiments to investigate the factors that might affect the fiber deposition pattern in the human respiratory tract. Carbon fibers with uniform diameter and polydispersed length were chosen as the test material. Two geometry-defined human respiratory tract replicas encompassing the oral cavity, oropharynx, larynx, trachea, and first few bifurcations of the tracheobronchial airways were used in this research. Deposition studies were conducted by delivering aerosolized carbon fibers into the replicas at constant inspiratory flow rates of 15, 43.5, and 60 L/min. The results showed that impaction is the dominant deposition mechanism for both replicas. Most of the fibers with high momentum deposited in the oral airway (oral cavity to larynx), and fibers with low momentum were found to pass through the entire replica easily. When comparing the results between the two replicas, fiber length, inspiratory flow rate, and the geometry of the oral airway were found to be factors that might affect the fiber deposition pattern in the human respiratory tract. PMID:16774864

  9. Symmetric Novikov superalgebras

    SciTech Connect

    Ayadi, Imen; Benayadi, Saied

    2010-02-15

    We study Novikov superalgebras with nondegenerate associative supersymmetric bilinear forms which are called symmetric Novikov superalgebras. We show that Novikov symmetric superalgebras are associative superalgebras with additional condition. Several examples of symmetric Novikov superalgebras are included, in particular, examples of symmetric Novikov superalgebras which are not 2-nilpotent. Finally, we introduce some notions of double extensions in order to give inductive descriptions of symmetric Novikov superalgebras.

  10. Image replica detection based on support vector classifier

    NASA Astrophysics Data System (ADS)

    Maret, Y.; Dufaux, F.; Ebrahimi, T.

    2005-08-01

    In this paper, we propose a technique for image replica detection. By replica, we mean equivalent versions of a given reference image, e.g. after it has undergone operations such as compression, filtering or resizing. Applications of this technique include discovery of copyright infringement or detection of illicit content. The technique is based on the extraction of multiple features from an image, namely texture, color, and spatial distribution of colors. Similar features are then grouped into groups and the similarity between two images is given by several partial distances. The decision function to decide whether a test image is a replica of a given reference image is finally derived using Support Vector Classifier (SVC). In this paper, we show that this technique achieves good results on a large database of images. For instance, for a false negative rate of 5 % the system yields a false positive rate of only 6 " 10-5.

  11. A Biologically Inspired Self-Adaptation of Replica Density Control

    NASA Astrophysics Data System (ADS)

    Izumi, Tomoko; Izumi, Taisuke; Ooshita, Fukuhito; Kakugawa, Hirotsugu; Masuzawa, Toshimitsu

    Biologically-inspired approaches are one of the most promising approaches to realize highly-adaptive distributed systems. Biological systems inherently have self-* properties, such as self-stabilization, self-adaptation, self-configuration, self-optimization and self-healing. Thus, the application of biological systems into distributed systems has attracted a lot of attention recently. In this paper, we present one successful result of bio-inspired approach: we propose distributed algorithms for resource replication inspired by the single species population model. Resource replication is a crucial technique for improving system performance of distributed applications with shared resources. In systems using resource replication, generally, a larger number of replicas lead to shorter time to reach a replica of a requested resource but consume more storage of the hosts. Therefore, it is indispensable to adjust the number of replicas appropriately for the resource sharing application. This paper considers the problem for controlling the densities of replicas adaptively in dynamic networks and proposes two bio-inspired distributed algorithms for the problem. In the first algorithm, we try to control the replica density for a single resource. However, in a system where multiple resources coexist, the algorithm needs high network cost and the exact knowledge at each node about all resources in the network. In the second algorithm, the densities of all resources are controlled by the single algorithm without high network cost and the exact knowledge about all resources. This paper shows by simulations that these two algorithms realize self-adaptation of the replica density in dynamic networks.

  12. Folding proteins by first-passage-times-optimized replica exchange.

    PubMed

    Nadler, Walter; Meinke, Jan H; Hansmann, Ulrich H E

    2008-12-01

    Replica exchange simulations have become the method of choice in computational protein science, but they still often do not allow an efficient sampling of low-energy protein configurations. Here, we reconstruct replica flow in the temperature ladder from first passage times and use it for temperature optimization, thereby maximizing sampling. The method is applied in simulations of folding thermodynamics for a number of proteins starting from the pentapeptide Met-enkephalin, through the 36-residue HP-36, up to the 67-residue protein GS-alpha3W. PMID:19256866

  13. Optimized explicit-solvent replica exchange molecular dynamics from scratch.

    PubMed

    Nadler, Walter; Hansmann, Ulrich H E

    2008-08-28

    Replica exchange molecular dynamics (REMD) simulations have become an important tool to study proteins and other biological molecules in silico. However, such investigations require considerable, and often prohibitive, numerical effort when the molecules are simulated in explicit solvents. In this communication we show that in this case the cost can be minimized by choosing the number of replicas as N(opt) approximately 1+0.594 radical C ln(Tmax/Tmin), where C is the specific heat, and the temperatures distributed according to Ti(opt) approximately T min(Tmax/Tmin)(i-1)/(N-1). PMID:18671362

  14. Patrol detection for replica attacks on wireless sensor networks.

    PubMed

    Wang, Liang-Min; Shi, Yang

    2011-01-01

    Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods. PMID:22163752

  15. Creating technical heritage object replicas in a virtual environment

    NASA Astrophysics Data System (ADS)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  16. Mutually connected component of networks of networks with replica nodes

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2015-01-01

    We describe the emergence of the giant mutually connected component in networks of networks in which each node has a single replica node in any layer and can be interdependent only on its replica nodes in the interdependent layers. We prove that if, in these networks, all the nodes of one network (layer) are interdependent on the nodes of the same other interconnected layer, then, remarkably, the mutually connected component does not depend on the topology of the network of networks. This component coincides with the mutual component of the fully connected network of networks constructed from the same set of layers, i.e., a multiplex network.

  17. Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.

    PubMed

    Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M

    2016-08-25

    Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations. PMID:27079355

  18. The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra

    PubMed Central

    Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca

    2015-01-01

    The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194

  19. Sparks and Shocks: Replicas of Historical Instruments in Museum Education

    ERIC Educational Resources Information Center

    Rhees, David J.

    2015-01-01

    This paper discusses the variety of ways in which The Bakken Museum has made use of replicas or simulations of historical instruments and experiments and demonstrations in education programs and exhibits for school children, families with children, and other museum audiences. Early efforts were stimulated in the mid-1980s by a collaboration with…

  20. Hierarchical indexing using R-trees for replica detection

    NASA Astrophysics Data System (ADS)

    Maret, Yannick; Marimón, David; Dufaux, Frédéric; Ebrahimi, Touradj

    2006-08-01

    Replica detection is a prerequisite for the discovery of copyright infringement and detection of illicit content. For this purpose, content-based systems can be an efficient alternative to watermarking. Rather than imperceptibly embedding a signal, content-based systems rely on content similarity concepts. Certain content-based systems use adaptive classifiers to detect replicas. In such systems, a suspected content is tested against every original, which can become computationally prohibitive as the number of original contents grows. In this paper, we propose an image detection approach which hierarchically estimates the partition of the image space where the replicas (of an original) lie by means of R-trees. Experimental results show that the proposed system achieves high performance. For instance, a fraction of 0.99975 of the test images are filtered by the system when the test images are unrelated to any of the originals while only a fraction of 0.02 of the test images are rejected when the test image is a replica of one of the originals.

  1. Fabrication of vascular replicas from magnetic resonance images.

    PubMed

    Friedman, M H; Kuban, B D; Schmalbrock, P; Smith, K; Altan, T

    1995-08-01

    Image processing and Computer Numerical Controlled (CNC) machining techniques have been used to prepare a large-than-life investment cast of an aortic bifurcation from magnetic resonance images of a replica of the vessel. The technique will facilitate experimental studies of vascular fluid dynamics and permit the in vitro reproduction of flows in living subjects. PMID:8618391

  2. Replica Registration Service - Functional Interface Specification1.0

    SciTech Connect

    Shoshani, Arie; Sim, Alex; Stockinger, Kurt

    2005-02-28

    The goal of the Replica Registration Service (RRS) is toprovide a uniform interface to various file catalogs, replica catalogs,and metadata catalogs. It can be thought of as an abstraction of theconcepts used in such systems to register files and their replicas. Someexperiments may prefer to support their own file catalogs (which may havetheir own specialized structures, semantics, and implementations) ratherthan use a standard replica catalog. Providing an RRS that can interactwith such a catalog (for example by invoking a script) can permit thatcatalog to be invoked as a service in the same way that other replicacatalogs do. If at a later time the experiment wishes to change toanother file catalog or an RLS, it is only a matter of developing an RRSfor that new catalog and replacing the existing catalog. In addition,some systems use metadata catalogs or other catalogs to manage the filename spaces. Our goal is to provide a single interface that supports theregistration of files into such name spaces as well as retrieving thisinformation.

  3. Rotational partition functions for symmetric-top molecules

    NASA Astrophysics Data System (ADS)

    McDowell, Robin S.

    1990-08-01

    An improved expression is found for the rotational partition functions of symmetric-top molecules. The expression includes the effect of nuclear spin for molecules of C(3v) symmetry. The effect that centrifugal distortion of the rotating molecules has on these rigid-rotator formulations is considered. The nuclear-spin correction is generalized to symmetric-top molecules of other symmetries. The treatment is extended to nonplanar molecules that exhibit inversion doubling, with particular attention given to NH3.

  4. 75 FR 282 - Restricting the Mailing of Replica or Inert Explosive Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... 111 Restricting the Mailing of Replica or Inert Explosive Devices AGENCY: Postal Service TM . ACTION... the mailing of replica or inert explosive devices, such as grenades, be sent by Registered Mail TM... Service published a Federal Register proposed rule (73 FR 12321) on March 7, 2008 to prohibit replica...

  5. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  6. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  7. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  8. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  9. 10 CFR 1002.12 - Use of replicas, reproductions, and embossing seals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Use of replicas, reproductions, and embossing seals. 1002... FLAG Official Seal § 1002.12 Use of replicas, reproductions, and embossing seals. (a) The Secretary and his designees are authorized to affix replicas, reproductions, and embossing seals to...

  10. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  11. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  12. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  13. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  14. 10 CFR 1.53 - Use of NRC seal or replicas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of NRC seal or replicas. 1.53 Section 1.53 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION NRC Seal and Flag § 1.53 Use of NRC seal or replicas. (a) The use of the seal or replicas is restricted to the following:...

  15. Accuracy of three-dimensional printing for manufacturing replica teeth

    PubMed Central

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol

    2015-01-01

    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Results Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. Conclusions This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment. PMID:26445716

  16. Walking freely in the energy and temperature space by the modified replica exchange molecular dynamics method.

    PubMed

    Chen, Changjun; Huang, Yanzhao

    2016-06-30

    Replica Exchange Molecular Dynamics (REMD) method is a powerful sampling tool in molecular simulations. Recently, we made a modification to the standard REMD method. It places some inactive replicas at different temperatures as well as the active replicas. The method completely decouples the number of the active replicas and the number of the temperature levels. In this article, we make a further modification to our previous method. It uses the inactive replicas in a different way. The inactive replicas first sample in their own knowledge-based energy databases and then participate in the replica exchange operations in the REMD simulation. In fact, this method is a hybrid between the standard REMD method and the simulated tempering method. Using different active replicas, one can freely control the calculation quantity and the convergence speed of the simulation. To illustrate the performance of the method, we apply it to some small models. The distribution functions of the replicas in the energy space and temperature space show that the modified REMD method in this work can let the replicas walk freely in both of the two spaces. With the same number of the active replicas, the free energy surface in the simulation converges faster than the standard REMD. © 2016 Wiley Periodicals, Inc. PMID:27059441

  17. Storing files in a parallel computing system using list-based index to identify replica files

    DOEpatents

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Zhang, Zhenhua; Grider, Gary

    2015-07-21

    Improved techniques are provided for storing files in a parallel computing system using a list-based index to identify file replicas. A file and at least one replica of the file are stored in one or more storage nodes of the parallel computing system. An index for the file comprises at least one list comprising a pointer to a storage location of the file and a storage location of the at least one replica of the file. The file comprises one or more of a complete file and one or more sub-files. The index may also comprise a checksum value for one or more of the file and the replica(s) of the file. The checksum value can be evaluated to validate the file and/or the file replica(s). A query can be processed using the list.

  18. Novel resist for replica preparation of mold for imprint lithography

    NASA Astrophysics Data System (ADS)

    Matsukawa, Daisaku; Wakayama, Hiroyuki; Mitsukura, Kazuyuki; Okamura, Haruyuki; Hirai, Yoshihiko; Shirai, Masamitsu

    2009-03-01

    Two types of dimethacrylate which have hemiacetal ester moiety in a molecule were synthesized from difunctional vinyl ethers and methacrylic acid. UV curing of the monomers and photo-induced degradation of the UV cured resins were investigated. On UV irradiation at 365 nm under N2 atmosphere, these dimethacrylates containing 2,2-dimethoxy-2-phenylacetophenone and triphenylsulfonium triflate became insoluble in methanol. The UV cured resins degraded if acids were generated in the system. Present resins were applied to make a plastic replica of mold for imprint lithography and the plastic replica was prepared in good form. The effect of imprint conditions on volume shrinkage of methacrylates was investigated. Dimethacrylate that has adamantyl unit showed a low-shrinkage property.

  19. Image tube. [deriving electron beam replica of image

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Johnson, C. B. (Inventor)

    1974-01-01

    An optical image is projected onto a planar surface of a photocathode that derives an electron beam replica of the image. A target electrode displaced relative to the photocathode so that it does not obstruct the optical image includes a planar surface for receiving and deriving an accurate replica of the electron beam image. The two planar surfaces are parallel. The electron beam image is focused on the target electrode by providing throughout a region that extends between the planar surfaces of the photocathode and receiving electrode, constant homogeneous dc electric and magnetic fields. The electric field extends in a direction perpendicular to the planar surfaces while the magnetic field extends along a straight line that intersects the photocathode and target electrode at an acute angle.

  20. Augmentation of Cavity Optical Inspection by Replicas Without Performance Degradation

    SciTech Connect

    Ge, M.; Burk, D.; Hicks, D.; Wu, G.; Thompson, C.; Cooley, L.D.; /Fermilab

    2009-01-01

    Although cavity optical inspection systems provide a huge amount of qualitative information about surface features, the amount of quantitative topographic informa-tion is limited. Here, we report the use of silicone-based RTV for replicas and moldings that provide increased details of topographic data associated with the optical cavity images. Profilometry scans of the molds yield mi-crometer-scale details associated with equator weld struc-tures and weld pits. This confirms at least two different types of pits, one which is bowl-shaped, and one which has a small peak at the bottom. The contour information extracted from profilometry can be used to evaluate mechanisms by which pits and other features limit RF performance. We present calculations based on a con-formal transformation of the profiles above. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  1. Local Unitary Invariant Spin-Squeezing in Multiqubit States

    NASA Astrophysics Data System (ADS)

    Divyamani, B. G.; Sudha; Usha Devi, A. R.

    2016-05-01

    We investiage Local Unitary Invariant Spin Squeezing (LUISS) in symmetric and non-symmetric multiqubit states. On developing an operational procedure to evaluate Local Unitary Invariant Spin Squeezing parameters, we explicitly evaluate these parameters for pure as well as mixed non-symmetric multiqubit states. We show that the existence of local unitary invariant version of Kitegawa-Ueda spin squeezing may not witness pairwise entanglement whereas the local unitary invariant analogue of Wineland spin squeezing necessarily implies pairwise entanglement.

  2. Development of CFRP Mirrors for Space Telescopes Using Replica Technique

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo

    2012-07-01

    Ultra-lightweight and high-accuracy CFRP (Carbon Fiber Reinforced Plastics) mirrors for space telescopes have developed and their feasibility for ultrared applications was demonstrated. The CTE (Coefficient of Thermal Expansion) of the all-CFRP sandwich panels was tailored in ±1x10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 0.8 μm RMS (Root Mean Square) as fabricated and the surface smoothness was improved to 5 nm RMS. The surface of front face skins of sandwich panels was coated with epoxy resin and surface accuracy and smoothness were transcribed from an optically-polished glass tool of λ/20 accuracy by replica technique. Surface preciseness was measured before and after replica coating using a 3D optical profiler of white light interferometer. Observed patterns of the asperity of mirror surfaces were classified into four categories, overall warping and line patterns of fiber tows and core patterns and print-through of individual fibers. Replica improved all kinds of asperity.

  3. Theory of spin-phonon coupling in multiferroic manganese perovskites RMnO3

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masahito; Furukawa, Nobuo; Nagaosa, Naoto

    2011-10-01

    Magnetoelectric phase diagrams of the rare-earth (R) Mn perovskites RMnO3 are theoretically studied by focusing on crucial roles of the symmetric magnetostriction or the Peierls-type spin-phonon coupling through extending our previous work [M. Mochizuki , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.037205 105, 037205 (2010)]. We first construct a microscopic classical Heisenberg model for RMnO3 including the frustrated spin exchanges, single-ion anisotropy, and Dzyaloshinskii-Moriya interaction. We also incorporate the lattice degree of freedom coupled to the Mn spins via the Peierls-type magnetostriction. By analyzing this model using the replica-exchange Monte Carlo technique, we reproduce the entire phase diagram of RMnO3 in the plane of temperature and magnitude of the orthorhombic lattice distortion. Surprisingly it is found that in the ab-plane spiral spin phase, the (S·S)-type magnetostriction plays an important role for the ferroelectric order with polarization P∥a whose contribution is comparable to or larger than the contribution from the (S×S)-type magnetostriction, whereas in the bc-plane spiral phase, the ferroelectric order with P∥c is purely of (S×S) origin. This explains much larger P in the ab-plane spiral phase than the bc-plane spiral phase as observed experimentally and gives a clue how to enhance the magnetoelectric coupling in the spin-spiral-based multiferroics. We also predict a noncollinear deformation of the E-type spin structure resulting in the finite (S×S) contribution to the ferroelectric order with P∥a, and a wide coexisting regime of the commensurate E and incommensurate spiral states, which resolve several experimental puzzles.

  4. PELDOR in rotationally symmetric homo-oligomers

    NASA Astrophysics Data System (ADS)

    Giannoulis, Angeliki; Ward, Richard; Branigan, Emma; Naismith, James H.; Bode, Bela E.

    2013-10-01

    Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.

  5. Cylindrically symmetric electrohydrodynamic patterning.

    PubMed

    Deshpande, Paru; Pease, Leonard F; Chen, Lei; Chou, Stephen Y; Russel, William B

    2004-10-01

    Cylindrically symmetric structures such as concentric rings and rosettes arise out of thin polymeric films subjected to strong electric fields. Experiments that formed concentric rings and theory capable of explaining these and other cylindrical structures are presented. These rings represent an additional member of a class of structures, including pillars and holes, formed by electrohydrodynamic patterning of thin films, occasionally referred to as lithographically induced self-assembly. Fabrication of a set of concentric rings begins by spin coating a thin poly(methyl methacrylate) film onto a silicon wafer. A mask is superimposed parallel to the film leaving a similarly thin air gap. Electric fields, acting in opposition to surface tension, destabilize the free interface when raised above the glass transition temperature. Central pillars nucleate under small cylindrical protrusions patterned on the mask. Rings then emerge sequentially, with larger systems having as many as 10 fully formed rings. Ring-to-ring spacings and annular widths, typically on the order of a micron, are approximately constant within a concentric cluster. The formation rate is proportional to the viscosity and, consequently, has the expected Williams-Landel-Ferry dependence on temperature. In light of these developments we have undertaken a linear stability analysis in cylindrical coordinates to describe these rings and ringlike structures. The salient feature of this analysis is the use of perturbations that incorporate their radial dependence in terms of Bessel functions as opposed to the traditional sinusoids of Cartesian coordinates. The theory predicts approximately constant ring-to-ring spacings, constant annular widths, and growth rates that agree with experiment. A secondary instability is observed at higher temperatures, which causes the rings to segment into arcs or pillar arrays. The cylindrical theory may be generalized to describe hexagonal pillar/hole packing, gratings, and

  6. Replica exchange molecular dynamics simulations of amyloid peptide aggregation

    NASA Astrophysics Data System (ADS)

    Cecchini, M.; Rao, F.; Seeber, M.; Caflisch, A.

    2004-12-01

    The replica exchange molecular dynamics (REMD) approach is applied to four oligomeric peptide systems. At physiologically relevant temperature values REMD samples conformation space and aggregation transitions more efficiently than constant temperature molecular dynamics (CTMD). During the aggregation process the energetic and structural properties are essentially the same in REMD and CTMD. A condensation stage toward disordered aggregates precedes the β-sheet formation. Two order parameters, borrowed from anisotropic fluid analysis, are used to monitor the aggregation process. The order parameters do not depend on the peptide sequence and length and therefore allow to compare the amyloidogenic propensity of different peptides.

  7. The decoupling of the glass transitions in the two-component p-spin spherical model

    NASA Astrophysics Data System (ADS)

    Ikeda, Harukuni; Ikeda, Atsushi

    2016-07-01

    Binary mixtures of large and small particles with a disparate size ratio exhibit a rich phenomenology at their glass transition points. In order to gain insights on such systems, we introduce and study a two-component version of the p-spin spherical spin glass model. We employ the replica method to calculate the free energy and the phase diagram. We show that when the strengths of the interactions of each component are not widely separated, the model has only one glass phase characterized by the conventional one-step replica symmetry breaking. However when the strengths of the interactions are well separated, the model has three glass phases depending on the temperature and component ratio. One is the ‘single’ glass phase in which only the spins of one component are frozen while the spins of the other component remain mobile. This phase is characterized by the one-step replica symmetry breaking. The second is the ‘double’ glass phase obtained by cooling the single glass phase further, in which the spins of the remaining mobile component are also frozen. This phase is characterized by the two-step replica symmetry breaking. The third is also the ‘double’ glass phase, which, however, is formed by the simultaneous freezing of the spins of both components at the same temperatures and is characterized by the one-step replica symmetry breaking. We discuss the implications of these results for the glass transitions of binary mixtures.

  8. Symmetric continued fractions

    SciTech Connect

    Panprasitwech, Oranit; Laohakosol, Vichian; Chaichana, Tuangrat

    2010-11-11

    Explicit formulae for continued fractions with symmetric patterns in their partial quotients are constructed in the field of formal power series. Similar to the work of Cohn in 1996, which generalized the so-called folding lemma to {kappa}-fold symmetry, the notion of {kappa}-duplicating symmetric continued fractions is investigated using a modification of the 1995 technique due to Clemens, Merrill and Roeder.

  9. Thermostat artifacts in replica exchange molecular dynamics simulations.

    PubMed

    Rosta, Edina; Buchete, Nicolae-Viorel; Hummer, Gerhard

    2009-01-01

    We explore the effects of thermostats in replica exchange molecular dynamics (REMD) simulations. For thermostats that do not produce a canonical ensemble, REMD simulations are found to distort the configuration-space distributions. For bulk water, we find small deviations of the average potential energies, the buildup of tails in the potential energy distributions, and artificial correlations between the energies at different temperatures. If a solute is present, as in protein folding simulations, its conformational equilibrium can be altered. In REMD simulations of a helix-forming peptide with a weak-coupling (Berendsen) thermostat, we find that the folded state is overpopulated by about 10% at low temperatures, and underpopulated at high temperatures. As a consequence, the enthalpy of folding deviates by almost 3 kcal/mol from the correct value. The reason for this population shift is that non-canonical ensembles with narrowed potential energy fluctuations artificially bias toward replica exchanges between low-energy folded structures at the high temperature and high-energy unfolded structures at the low temperature. We conclude that REMD simulations should only be performed in conjunction with thermostats that produce a canonical ensemble. PMID:20046980

  10. Thermostat artifacts in replica exchange molecular dynamics simulations

    PubMed Central

    Rosta, Edina; Buchete, Nicolae-Viorel; Hummer, Gerhard

    2009-01-01

    We explore the effects of thermostats in replica exchange molecular dynamics (REMD) simulations. For thermostats that do not produce a canonical ensemble, REMD simulations are found to distort the configuration-space distributions. For bulk water, we find small deviations of the average potential energies, the buildup of tails in the potential energy distributions, and artificial correlations between the energies at different temperatures. If a solute is present, as in protein folding simulations, its conformational equilibrium can be altered. In REMD simulations of a helix-forming peptide with a weak-coupling (Berendsen) thermostat, we find that the folded state is overpopulated by about 10% at low temperatures, and underpopulated at high temperatures. As a consequence, the enthalpy of folding deviates by almost 3 kcal/mol from the correct value. The reason for this population shift is that non-canonical ensembles with narrowed potential energy fluctuations artificially bias toward replica exchanges between low-energy folded structures at the high temperature and high-energy unfolded structures at the low temperature. We conclude that REMD simulations should only be performed in conjunction with thermostats that produce a canonical ensemble. PMID:20046980

  11. Replica inference approach to unsupervised multiscale image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Ronhovde, Peter; Nussinov, Zohar

    2012-01-01

    We apply a replica-inference-based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of “community detection” and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters (“communities” or “solutes”) against a background or “solvent.” Within our multiresolution approach, we compute information-theory-based correlations among multiple solutions (“replicas”) of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations manifest by information theory overlaps. We further employ such information theory measures (such as normalized mutual information and variation of information), thermodynamic quantities such as the system entropy and energy, and dynamic measures monitoring the convergence time to viable solutions as metrics for transitions between various solvable and unsolvable phases. Within the solvable phase, transitions between contending solutions (such as those corresponding to segmentations on different scales) may also appear. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed at both zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentations appear within the “easy phase” of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.

  12. Enhanced perceptual distance functions and indexing for image replica recognition.

    PubMed

    Qamra, Arun; Meng, Yan; Chang, Edward Y

    2005-03-01

    The proliferation of digital images and the widespread distribution of digital data that has been made possible by the Internet has increased problems associated with copyright infringement on digital images. Watermarking schemes have been proposed to safeguard copyrighted images, but watermarks are vulnerable to image processing and geometric distortions and may not be very effective. Thus, the content-based detection of pirated images has become an important application. In this paper, we discuss two important aspects of such a replica detection system: distance functions for similarity measurement and scalability. We extend our previous work on perceptual distance functions, which proposed the Dynamic Partial Function (DPF), and present enhanced techniques that overcome the limitations of DPF. These techniques include the Thresholding, Sampling, and Weighting schemes. Experimental evaluations show superior performance compared to DPF and other distance functions. We then address the issue of using these perceptual distance functions to efficiently detect replicas in large image data sets. The problem of indexing is made challenging by the high-dimensionality and the nonmetric nature of the distance functions. We propose using Locality Sensitive Hashing (LSH) to index images while using the above perceptual distance functions and demonstrate good performance through empirical studies on a very large database of diverse images. PMID:15747793

  13. A Symmetrized Basis for Transitions in the Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Haydock, Roger; Nex, C. M. M.

    2013-03-01

    The spin-S Heisenberg model has 2S+1 states on each site, for which there are (2S+1)2 possible transitions between these states. For N sites there are (2S+1)N states and (2S+1)2N transitions between states. This rapid increase in the number of transitions with sites appears to limit calculations to just a few sites. However for transitions induced by spin-spin interactions, we construct a symmetrized basis which only grows as 2N-3, making possible computations for much larger systems. Supported by the Richmond F. Snyder Fund.

  14. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  15. Categorization of Real and Replica Objects by 14- and 18-month-old Infants

    PubMed Central

    Arterberry, Martha E.; Bornstein, Marc H.

    2012-01-01

    In studies of infant categorization (especially sequential touching), replicas of real objects are utilized on the assumption that infants treat replicas as they do reals. Do infants categorize replicas of objects in the same way as they categorize real objects? This question was addressed in a sequential touching task, where 14- and 18-month-olds were presented with four sets of objects: real phones and hairbrushes, real lemons and pears, replica phones and hairbrushes, and replica lemons and pears. On the whole, mean run length and number of contacts did not differ between real and replica objects. Moreover, mean run length was significantly greater than chance for phones and hairbrushes, but not for lemons and pears; both ages categorized the former sets but not the latter. The findings suggest that infants of this age treat replicas as equivalent to reals and that replicas are appropriate stimuli to use in the sequential touching procedure to address questions of young children’s categorization. PMID:22742988

  16. Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics.

    PubMed

    Sanbonmatsu, K Y; García, A E

    2002-02-01

    Replica exchange molecular dynamics (MD) simulations of Met-enkephalin in explicit solvent reveal helical and nonhelical structures. Four predominant structures of Met-enkephalin are sampled with comparable probabilities (two helical and two nonhelical). The energy barriers between these configurations are low, suggesting that Met-enkephalin switches easily between configurations. This is consistent with the requirement that Met-enkephalin be sufficiently flexible to bind to several different receptors. Replica exchange simulations of 32 ns are shown to sample approximately five times more configurational space than constant temperature MD simulations of the same duration. The energy landscape for the replica exchange simulation is presented. A detailed study of replica trajectories demonstrates that the significant increases in temperature provided by the replica exchange technique enable transitions from nonhelical to helical structures that would otherwise be prevented by kinetic trapping. Met-enkephalin (Type Entrez Proteins; Value A61445; Service Entrez Proteins). PMID:11807951

  17. Integrability and symmetric spaces

    SciTech Connect

    Ferreira, L.A.

    1989-01-01

    It is shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a Fundamental Poisson bracket Relation, and consequently charges in involution, is that it must be a symmetric space. The conditions, a Hamiltonian, or any functions of the canonical variables, has to satisfy in order to commute with these charges, are studied. It is show that, for the case of the noncompact symmetric spaces, these conditions lead to an algebraic structure which lays an important role in the construction of conserved quantities.

  18. Braids, shuffles and symmetrizers

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Ogievetsky, O. V.

    2009-07-01

    Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.

  19. Searching near-replicas of images via clustering

    NASA Astrophysics Data System (ADS)

    Chang, Edward Y.; Li, Chen; Wang, James Z.; Mork, Peter; Wiederhold, Gio

    1999-08-01

    Internet piracy has been one of the major concerns for Web publishing. In this study we present a system, RIME, that we have prototyped for detecting unauthorized image copying on the WWW. To speed up the copy detection, RIME uses a new clustering/hashing approach that first clusters similar images on adjacent disk cylinders and then builds indexes to access the clusters made in this way. Searching for the replicas of an image often takes just one IO to loop up the location of the cluster containing similar objects and one sequential file IO to read in this cluster. Our experimental results show that RIME can detect images copies both more efficiently and effectively than the traditional content- based image retrieval systems that use tree-like structures to index images. In addition, RIME copes well with image format conversion, resampling, requantization and geometric transformation.

  20. Replica exchange Monte Carlo applied to hard spheres.

    PubMed

    Odriozola, Gerardo

    2009-10-14

    In this work a replica exchange Monte Carlo scheme which considers an extended isobaric-isothermal ensemble with respect to pressure is applied to study hard spheres (HSs). The idea behind the proposal is expanding volume instead of increasing temperature to let crowded systems characterized by dominant repulsive interactions to unblock, and so, to produce sampling from disjoint configurations. The method produces, in a single parallel run, the complete HS equation of state. Thus, the first order fluid-solid transition is captured. The obtained results well agree with previous calculations. This approach seems particularly useful to treat purely entropy-driven systems such as hard body and nonadditive hard mixtures, where temperature plays a trivial role. PMID:19831433

  1. Conversion of three-dimensional nanostructured biosilica templates into non-oxide replicas

    NASA Astrophysics Data System (ADS)

    Bao, Zhihao

    Diatoms possess characteristics such as abundance, diversity, and high reproductivity, which make their nano-structured frustules (diatom frustules) attractive for a wide range of applications. To overcome the limitation of their silica based frustule composition, diatom frustules have been converted into a variety of materials including silicon, silicon carbide, silver, gold, palladium and carbon in the present study. The compositions and the extent of shape preservation of the replicas are examined and evaluated with different characterization methods such as X-ray diffraction, SEM, TEM and FTIR analyses. These replicas still retained the complex 3D structures and nano-scaled features of the starting diatom frustules. Some properties and possible applications of converted materials are explored and the kinetics and thermodynamics related to the successful replications (conversions) are also studied and discussed: (1) A low temperature (650°C) magnesiothermic reaction was used to convert three dimensional (3-D) nano-structured diatom frustules into microporous nanocrystalline silicon replicas. These silicon replicas possessed a very high surface area (>500 m2/g) and a large population of micropores (≤2 nm). The oxidized silicon frustule replicas exhibited photoluminescence under UV light. A microsensor fabricated from such a silicon frustule replica exhibited rapid (≤25 s) and sensitive nitric oxide gas detection (1 p.p.m.) with very low applied biased voltage (100 mV). This suggested a possible application in microscale gas sensing. The magnesium vapor partial pressure was the key parameter in controlling the products from the magnesiothermic reaction. Magnesium silicide is suggested as the source of magnesium gas to avoid the formation of a magnesium silicide product during the magnesiothermic reaction. (2) Metallic frustule replicas (e.g., Ag, Au, Pd) were obtained by immersing the microporous nanocrystalline silicon replicas in electroless plating

  2. PT-symmetric strings

    SciTech Connect

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German

    2014-04-15

    We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.

  3. PT-symmetric kinks

    SciTech Connect

    Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.

    2007-06-15

    Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.

  4. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements.

    PubMed

    Gomes, Anderson S L; Raposo, Ernesto P; Moura, André L; Fewo, Serge I; Pincheira, Pablo I R; Jerez, Vladimir; Maia, Lauro J Q; de Araújo, Cid B

    2016-01-01

    Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research. PMID:27292095

  5. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements

    NASA Astrophysics Data System (ADS)

    Gomes, Anderson S. L.; Raposo, Ernesto P.; Moura, André L.; Fewo, Serge I.; Pincheira, Pablo I. R.; Jerez, Vladimir; Maia, Lauro J. Q.; de Araújo, Cid B.

    2016-06-01

    Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research.

  6. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements

    PubMed Central

    Gomes, Anderson S. L.; Raposo, Ernesto P.; Moura, André L.; Fewo, Serge I.; Pincheira, Pablo I. R.; Jerez, Vladimir; Maia, Lauro J. Q.; de Araújo, Cid B.

    2016-01-01

    Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research. PMID:27292095

  7. pH Replica-Exchange Method based on discrete protonation states

    PubMed Central

    Itoh, Satoru G.; Damjanović, Ana; Brooks, Bernard R.

    2012-01-01

    We propose a new algorithm for obtaining proton titration curves of ionizable residues. The algorithm is a pH replica-exchange method (PHREM) which is based on the constant pH algorithm of Mongan et al. [1]. In the original replica-exchange method, simulations of different replicas are performed at different temperature, and the temperatures are exchanged between the replicas. In our pH replica-exchange method, simulations of different replicas are performed at different pH values, and the pHs are exchanged between the replicas. The PHREM was applied to a blocked amino acid and to two protein systems (Snake Cardiotoxin and Turkey Ovomucoid Third Domain), in conjunction with a generalized Born implicit solvent. The performance and accuracy of this algorithm and the original constant pH method (PHMD) were compared. For a single set of simulations at different pHs, the use of PHREM yields more accurate Hill coefficients of titratable residues. By performing multiple sets of constant pH simulations started with different initial states the accuracy of predicted pKa values and Hill coefficients obtained with PHREM and PHMD methods becomes comparable. However, the PHREM algorithm exhibits better samplings of the protonation states of titratable residues and less scatter of the titration points and thus better precision of measured pKa values and Hill coefficients. In addition, PHREM exhibits faster convergence of individual simulations than the original constant pH algorithm. PMID:22002801

  8. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  9. Chaos in Temperature in Generic 2p-Spin Models

    NASA Astrophysics Data System (ADS)

    Panchenko, Dmitry

    2016-02-01

    We prove chaos in temperature for even p-spin models which include sufficiently many p-spin interaction terms. Our approach is based on a new invariance property for coupled asymptotic Gibbs measures, similar in spirit to the invariance property that appeared in the proof of ultrametricity in Panchenko (Ann Math (2) 177(1):383-393, 2013), used in combination with Talagrand's analogue of Guerra's replica symmetry breaking bound for coupled systems.

  10. Replica-exchange-with-tunneling for fast exploration of protein landscapes

    NASA Astrophysics Data System (ADS)

    Yaşar, Fatih; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.

    2015-12-01

    While the use of replica-exchange molecular dynamics in protein simulations has become ubiquitous, its utility is limited in many practical applications. We propose to overcome some shortcomings that hold back its use in settings such as multi-scale or explicit solvent simulations by integrating ideas of hybrid MC/MD into the replica-exchange protocol. This Replica-Exchange-with-Tunneling method is tested by simulating the Trp-cage protein, a system often used in molecular biophysics for testing sampling techniques.

  11. A replica technique for extracting precipitates from zirconium alloys for transmission electron microscopy analysis.

    PubMed

    Ng-Yelim, J; Woo, O T; Carpenter, G J

    1990-08-01

    A reliable two-stage carbon replica technique has been developed to extract precipitates from zirconium alloys. Using this technique, all precipitating phases can be extracted from Zircaloy-2, Zr-Cr-Fe, and Zr-Nb-Fe alloys. Precipitate identification using EDS X-ray analysis and convergent beam electron diffraction was greatly facilitated in comparison to thin foils. In addition, the sensitivity for the detection of trace elements in particles was increased using extraction replicas. The chemical compositions of the precipitates as determined from both replica and thin foils were in excellent agreement. PMID:2391566

  12. One more discussion of the replica trick: the example of the exact solution

    NASA Astrophysics Data System (ADS)

    Dotsenko, Victor

    2012-01-01

    Systematic replica field theory calculations are analysed using the examples of two particular one-dimensional 'toy' random models with Gaussian disorder. Due to the simplicity of the models an integer n-th power of the partition function can be calculated here exactly. However, further analytic continuation for non-integer values of the replica parameter n inevitably involves the usual replica method of 'cheating', which nevertheless allows us to derive correct and rather non-trivial results for the entire free energy distribution functions both for a finite system size and in the thermodynamic limit.

  13. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  14. Static cylindrically symmetric spacetimes

    NASA Astrophysics Data System (ADS)

    Fjällborg, Mikael

    2007-05-01

    We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.

  15. Multiple symmetric lipomatosis.

    PubMed

    Lee, M S; Lee, M H; Hur, K B

    1988-12-01

    Multiple symmetric lipomatosis (MSL) is an extremely uncommon disorder. In the medical literatures about 200 cases have been reported. MSL is not associated with other generalized lipomatous disorders, nor are these patient to be necessarily obese. The cause of MSL is unknown. The disorder usually occurs in middle-aged males and there is frequently a history of alcoholism. Some instances of familial occurrence have been reported, but the majority of cases are sporadic. Two cases of MSL are presented. PMID:3267365

  16. Anisotropic symmetric exchange as a new mechanism for multiferroicity

    NASA Astrophysics Data System (ADS)

    Feng, J. S.; Xiang, H. J.

    2016-05-01

    Discovering new magnetoelectric multiferroics is an exciting research area. Very recently, a collinear antiferromagnetic spin order was found to induce a ferroelectric polarization in a highly symmetric cubic perovskite LaMn3Cr4O12 . This spin-driven ferroelectricity could not be explained by any of the existing multiferroic models. Here, we put forward a new model, i.e., anisotropic symmetric exchange, to understand this phenomenon, which was confirmed by density functional calculations and tight-binding simulations. Furthermore, our perturbation analysis shows that the anisotropic symmetric exchange term can be even stronger than the conventional contributions in some 5 d systems. Our multiferroic model can not only explain the experimental results, but also may open a new avenue for exploring exotic magnetoelectric coupling effects.

  17. The symmetric orbifold of {N}=2 minimal models

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias R.; Kelm, Maximilian

    2016-07-01

    cThe large level limit of the {N}=2 minimal models that appear in the duality with the {N}=2 supersymmetric higher spin theory on AdS3 is shown to be a natural subsector of a certain symmetric orbifold theory. We study the relevant decompositions in both the untwisted and the twisted sector, and analyse the structure of the higher spin representations in the twisted sector in some detail. These results should help to identify the string background of which the higher spin theory is expected to describe the leading Regge trajectory in the tensionless limit.

  18. G-factors of hole bound states in spherically symmetric potentials in cubic semiconductors

    NASA Astrophysics Data System (ADS)

    Miserev, Dmitry; Sushkov, Oleg

    2016-03-01

    Holes in cubic semiconductors have effective spin 3/2 and very strong spin orbit interaction. Due to these factors properties of hole bound states are highly unusual. We consider a single hole bound by a spherically symmetric potential, this can be an acceptor or a spherically symmetric quantum dot. Linear response to an external magnetic field is characterized by the bound state Lande g-factor. We calculate analytically g-factors of all bound states.

  19. Higher spin currents in Wolf space for generic N

    NASA Astrophysics Data System (ADS)

    Ahn, Changhyun; Kim, Hyunsu

    2014-12-01

    We obtain the 16 higher spin currents with spins , , and in the superconformal Wolf space coset . The antisymmetric second rank tensor occurs in the quadratic spin- Kac-Moody currents of the higher spin-1 current. Each higher spin- current contains the above antisymmetric second rank tensor and three symmetric (and traceless) second rank tensors (i.e. three antisymmetric almost complex structures contracted by the above antisymmetric tensor) in the product of spin- and spin-1 Kac-Moody currents respectively. Moreover, the remaining higher spin currents of spins contain the combinations of the (symmetric) metric, the three almost complex structures, the antisymmetric tensor or the three symmetric tensors in the multiple product of the above Kac-Moody currents as well as the composite currents from the large nonlinear superconformal algebra.

  20. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    DOE PAGESBeta

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The methodmore » is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.« less

  1. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    SciTech Connect

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The method is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.

  2. Fabrication and gas-sensing properties of hierarchical ZnO replica using down as template

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Li, Songzhan; Xu, Jie; Zhou, Yingshan; Gu, Shaojin; Tao, Yongzhen; Liu, Li; Fang, Dong; Xu, Weilin

    2016-06-01

    Hierarchical ZnO replica using down as template fabricated by a combination of low-temperature plasma treatment and sonochemical method was used in gas sensor for the detection of ethanol and formaldehyde. The morphologies and crystal structures of the hierarchical ZnO replica were characterized by field-emission scanning electron microscopy and X-ray diffraction, respectively. Results showed that the hierarchical ZnO replica retained the initial down morphology and consisted of hexagonal wurtzite structure ZnO nanocrystals. The results of resistance-temperature characteristics and responses to ethanol and formaldehyde indicated that the hierarchical ZnO film had low activation energy (0.1118 eV) and a low optimum operating temperature and that the response time was longer than recovery time. These behaviors were well explained in relation to three-dimensional network structures and the high specific surface area of the hierarchical ZnO replica.

  3. Application of Replica Technique and SEM in Accuracy Measurement of Ceramic Crowns

    NASA Astrophysics Data System (ADS)

    Trifkovic, B.; Budak, I.; Todorovic, A.; Hodolic, J.; Puskar, T.; Jevremovic, D.; Vukelic, D.

    2012-01-01

    The paper presents a comparative study of the measuring values of the marginal gap related to the ceramic crowns made by dental CAD/CAM system using the replica technique and SEM. The study was conducted using three experimental groups, which consisted of ceramic crowns manufactured by the Cerec CAD/CAM system. The scanning procedure was carried out using three specialized dental 3D digitization systems from the Cerec family - two types of extraoral optical scanning systems and an intraoral optical scanner. Measurements of the marginal gap were carried out using the replica technique and SEM. The comparison of aggregate values of the marginal gap using the replica technique showed a statistically significant difference between the systems. The measured values of marginal gaps of ceramic crowns using the replica technique were significantly lower compared to those measured by SEM. The results indicate that the choice of technique for measuring the accuracy of ceramic crowns influences the final results of investigation.

  4. 75 FR 30300 - Restricting the Mailing of Replica or Inert Explosive Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ..., 2010 (75 FR 282-283), which added restrictions to the mailing of replica and inert explosive devices in... discovered in the mail. Such evacuations resulted in unnecessary expense and loss of productivity to...

  5. Gold replica of olive branch left on moons surface by Apollo 11

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A gold replica of an olive branch, the traditional symbol of peace, which was left on the Moon's surface by the Apollo 11 crew members. Astronaut Neil A. Armstrong, commander, was in charge of placing the replica (less than half a foot in length) on the Moon. The gesture represents a fresh wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  6. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    NASA Astrophysics Data System (ADS)

    Kamberaj, Hiqmet

    2015-09-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4, 5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  7. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    SciTech Connect

    Kamberaj, Hiqmet

    2015-09-28

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  8. Symmetrization for redundant channels

    NASA Technical Reports Server (NTRS)

    Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)

    1988-01-01

    A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.

  9. Symmetric Waveguide Orthomode Junctions

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Grammer, W.

    2003-01-01

    Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-old symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.

  10. Symmetric Waveguide Orthomode Junctions

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Grammer, W.

    2003-01-01

    Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-fold symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.

  11. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  12. Geometry and Symmetric Coherent States of Three Qubits Systems

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Kan

    2016-06-01

    In this paper, we first generalize the previous results that relate 1- and 2-qubit geometries to complex and quaternionic Möbius transformations respectively, to the case of 3-qubit states under octonionic Möbius transformations. This completes the correspondence between the qubit geometries and the four normed division algebras. Thereby, new systems of symmetric coherent states with 2 and 3 qubits can be constructed by mapping the spin coherent states to their antipodal symmetric ponits on the generalized Bloch spheres via Möbius transformations in corresponding dimensions. Finally, potential applications of the normed division algebras in physics are discussed.

  13. Classical mutual information in mean-field spin glass models

    NASA Astrophysics Data System (ADS)

    Alba, Vincenzo; Inglis, Stephen; Pollet, Lode

    2016-03-01

    We investigate the classical Rényi entropy Sn and the associated mutual information In in the Sherrington-Kirkpatrick (S-K) model, which is the paradigm model of mean-field spin glasses. Using classical Monte Carlo simulations and analytical tools we investigate the S-K model in the n -sheet booklet. This is achieved by gluing together n independent copies of the model, and it is the main ingredient for constructing the Rényi entanglement-related quantities. We find a glassy phase at low temperatures, whereas at high temperatures the model exhibits paramagnetic behavior, consistent with the regular S-K model. The temperature of the paramagnetic-glassy transition depends nontrivially on the geometry of the booklet. At high temperatures we provide the exact solution of the model by exploiting the replica symmetry. This is the permutation symmetry among the fictitious replicas that are used to perform disorder averages (via the replica trick). In the glassy phase the replica symmetry has to be broken. Using a generalization of the Parisi solution, we provide analytical results for Sn and In and for standard thermodynamic quantities. Both Sn and In exhibit a volume law in the whole phase diagram. We characterize the behavior of the corresponding densities, Sn/N and In/N , in the thermodynamic limit. Interestingly, at the critical point the mutual information does not exhibit any crossing for different system sizes, in contrast with local spin models.

  14. Enhanced exchange algorithm without detailed balance condition for replica exchange method

    NASA Astrophysics Data System (ADS)

    Kondo, Hiroko X.; Taiji, Makoto

    2013-06-01

    The replica exchange method (REM) is a powerful tool for the conformational sampling of biomolecules. In this study, we propose an enhanced exchange algorithm for REM not meeting the detailed balance condition (DBC), but satisfying the balance condition in all considered exchanges between two replicas. Breaking the DBC can minimize the rejection rate and make an exchange process rejection-free as the number of replicas increases. To enhance the efficiency of REM, all possible pairs—not only the nearest neighbor—were considered in the exchange process. The test simulations of the alanine dipeptide confirmed the correctness of our method. The average traveling distance of each replica in the temperature distribution was also increased in proportion to an increase in the exchange rate. Furthermore, we applied our algorithm to the conformational sampling of the 10-residue miniprotein, chignolin, with an implicit solvent model. The results showed a faster convergence in the calculation of its free energy landscape, compared to that achieved using the normal exchange method of adjacent pairs. This algorithm can also be applied to the conventional near neighbor method and is expected to reduce the required number of replicas.

  15. A distance-aware replica adaptive data gathering protocol for Delay Tolerant Mobile Sensor Networks.

    PubMed

    Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin

    2011-01-01

    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node's limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes. PMID:22163839

  16. Screening for antimicrobial resistance in fecal samples by the replica plating method.

    PubMed Central

    Osterblad, M; Leistevuo, T; Huovinen, P

    1995-01-01

    Replica plating can be used for the detection of antibiotic resistance in normal flora. We have evaluated this application of the replica plating method by comparing it with a five-colony method. The replica plating method uses a single plate for each antibiotic, with a concentration just above that for borderline resistance. By the five-colony method, five colonies per sample were picked, chosen to represent all different colony morphologies present, and MICs were determined by a standard agar dilution method. The gram-negative, aerobic floras of 131 fecal samples were screened for resistance to ampicillin, cefuroxime, nalidixic acid, trimethoprim, sulfamethoxazole, and tetracycline by both methods. The rate of resistance detection by the two methods did not differ statistically for any of the antibiotics tested. The breakpoint concentrations used for the replica plates in the study gave results similar to those produced by the agar dilution method and the breakpoint values of the National Committee for Clinical Laboratory Standards and can thus be recommended. As the only currently used resistance detection method, replica plating facilitates an exact determination of the percentage of resistant colonies/total number of colonies (between 1 and 100%) in a sample. This revealed an uneven distribution, with only 23% of the samples having resistance frequencies in the range of 10 to 85%; usually, the resistant flora either was a small minority or was very dominant in samples with resistance. This phenomenon was present for all of the antibiotics. PMID:8586690

  17. Assessment of hydro/oleophobicity for shark skin replica with riblets.

    PubMed

    Kim, Tae Wan

    2014-10-01

    The shark skin has a unique skin structure which enables the shark to swim faster and more efficiently due to an intriguing three-dimensional rib pattern. Shark skin has also known as having functional performances such as self cleaning and anti-fouling as well as excellent drag reduction due to a hierarchical structure built up by micro grooves and nano-long chain mucus drag reduction interface around the shark body. In this study, the wetting properties for the biomimetic surfaces that replicate shark skin are assessed. First of all, the shark skin replicas are obtained using the micro molding technique directly from a shark skin template. The quantitative replication precision of the shark skin replicas is evaluated comparing with the geometry of shark skin template using 3D and 2D surface profiles are measured. Then contact angles in the conditions of solid-air-water, solid-air-oil and solid-water-oil interfaces are evaluated for shark skin replicas. The effect of Teflon coating on the wetting properties of shark skin replicas is also observed. The results show the shark skin replica by the micro molding technique gives better effect on the wetting performance, and the micro riblets on shark skin improve the wettability feature. PMID:25942826

  18. Silica/Ultraviolet-Cured Resin Nanocomposites for Replica Molds in Ultraviolet Nanoimprinting

    NASA Astrophysics Data System (ADS)

    Yun, Cheol Min; Kudo, Shimpei; Nagase, Koichi; Kubo, Shoichi; Nakagawa, Masaru

    2012-06-01

    Fluid UV-curable composite resins made with methacrylate-modified silica nanoparticles (NPs), a diacrylate monomer, and a photoinitiator without nonreactive solvents were prepared to develop composite replica molds in UV nanoimprinting. 1,4-Bis(acryloyloxy)butane was compatible with NPs up to an inorganic silica component of 60 wt %, and its cured composite films showed a high transmittance of >89% at an i-line wavelength of 365 nm. The fluorinated antisticking layer obtained from an antisticking reagent was formed effectively on a composite surface at which bare silica surfaces of NPs appeared by photooxidation of the composite film surface. Composite replica molds could be fabricated by putting a droplet of the composite resin on a silica substrate modified with a reactive adhesion layer, filling cavities of a fluorinated master mold with the resin under a pentafluoropropane (PFP) atmosphere, curing the molded resin by exposure to UV light, and treating the surface of the cured resin with the antisticking reagent after demolding. It was confirmed that the composite replica molds were available for step-and-repeat UV nanoimprinting using an acrylate-type UV-curable resin in PFP. The composite replica molds showed remarkably smaller release energies than the replica mold without NPs.

  19. Resource Letter SS-1: The Spin-Statistics Connection

    NASA Astrophysics Data System (ADS)

    Curceanu, Catalina; Gillaspy, J. D.; Hilborn, Robert C.

    2012-07-01

    This Resource Letter provides a guide to the literature on the spin-statistics connection and related issues such as the Pauli exclusion principle and particle indistinguishability. Journal articles and books are cited for the following topics: basic resources, general aspects of spin-statistics, the spin-statistics theorem, theories that go beyond the standard spin-statistics theorem, and experimental tests of the spin-statistics theorem and the symmetrization postulate.

  20. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology.

    PubMed

    Pan, Zhengwei; Lerch, Sarah J L; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y; Mahurin, Shannon M; Dai, Sheng; Hildebrand, Mark

    2014-01-01

    The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739

  1. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology

    NASA Astrophysics Data System (ADS)

    Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark

    2014-08-01

    The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis.

  2. Conformally symmetric traversable wormholes

    SciTech Connect

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.

  3. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering

    PubMed Central

    2015-01-01

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation. PMID:25328493

  4. Optimal cloning of qubits from replicas of a qubit and its orthogonal states

    SciTech Connect

    Kato, Go

    2010-09-15

    We consider the situation where s replicas of a qubit with an unknown state and its orthogonal k replicas are given as an input, and we try to make c clones of the qubit with the unknown state. As a function of s, k, and c, we obtain the optimal fidelity between the qubit with an unknown state and the clone by explicitly giving a completely positive trace-preserving (CPTP) map that represents a cloning machine. We discuss dependency of the fidelity on the values of the parameters s, k, and c.

  5. Implementation of replica-exchange umbrella sampling in the DFTB + semiempirical quantum chemistry package

    NASA Astrophysics Data System (ADS)

    Ito, Shingo; Irle, Stephan; Okamoto, Yuko

    2016-07-01

    The replica-exchange umbrella sampling (REUS) method combines replica-exchange and umbrella sampling methods and allows larger conformational sampling than conventional simulation methods. This method has been used in many studies to understand docking mechanisms and the functions of molecules. However, REUS has not been combined with quantum chemical codes. Therefore, we implemented the REUS simulation technique in the DFTB + quantum chemistry code utilizing approximate density functional theory. We performed REUS simulations of an intra-molecular proton transfer reaction of malonaldehyde and a formation of a phthalocyanine from four phthalonitriles and one iron atom to validate the reliability of our implemented REUS-DFTB + combination.

  6. Exchange interactions and zero-field splittings in C3-symmetric Mn(III)6Fe(III): using molecular recognition for the construction of a series of high spin complexes based on the triplesalen ligand.

    PubMed

    Glaser, Thorsten; Heidemeier, Maik; Krickemeyer, Erich; Bögge, Hartmut; Stammler, Anja; Fröhlich, Roland; Bill, Eckhard; Schnack, Jürgen

    2009-01-19

    The reaction of the tris(tetradentate) triplesalen ligand H6talen(t-Bu2), which provides three salen-like coordination environments bridged in a meta-phenylene arrangement by a phloroglucinol backbone, with Mn(II) salts under aerobic conditions affords, in situ, the trinuclear Mn(III) triplesalen complexes [(talen(t-Bu2)){Mn(III)(solv)n}3]3+. These can be used as molecular building blocks in the reaction with [Fe(CN)6]3- as a hexaconnector to form the heptanuclear complex [{(talen(t-Bu2)){Mn(III)(solv)n}3}2{Fe(III)(CN)6}]3+ ([Mn(III)6Fe(III)]3+). The regular ligand folding observed in the trinuclear triplesalen complexes preorganizes the three metal ions for the reaction of three facially coordinated nitrogen atoms of a hexacyanometallate and provides a driving force for the formation of the heptanuclear complexes [M(t)6M(c)]n+ (M(t), terminal metal ion of the triplesalen building block; M(c), central metal ion of the hexacyanometallate) by molecular recognition, as has already been demonstrated for the single-molecule magnet [Mn(III)6Cr(III)]3+. [{(talen(t-Bu2))(Mn(III)(MeOH))3}2{Fe(III)(CN)6}][Fe(III)(CN)6] (1) was characterized by single-crystal X-ray diffraction, FTIR, ESI- and MALDI-TOF-MS, Mössbauer spectroscopy, and magnetic measurements. The molecular structure of [Mn(III)6Fe(III)]3+ is overall identical to that of [Mn(III)6Cr(III)]3+ but exhibits a different ligand folding of the Mn(III) salen subunits with a helical distortion. The Mössbauer spectra demonstrate a stronger distortion from octahedral symmetry for the central [Fe(CN)6]3- in comparison to the ionic [Fe(CN)6]3-. At low temperatures in zero magnetic fields, the Mössbauer spectra show magnetic splittings indicative of slow relaxation of the magnetization on the Mössbauer time scale. Variable-temperature-variable-field and mu(eff) versus T magnetic data have been analyzed in detail by full-matrix diagonalization of the appropriate spin-Hamiltonian, consisting of isotropic exchange, zero

  7. Spin-Tunnel Investigation of A 1/40-Scale Model of the F-111A Airplane with Store Loadings and with Supplementary Spin-Recovery Devices

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; White, William L.

    1974-01-01

    An investigation has been made in the Langley spin tunnel to determine the spin and spin-recovery characteristics of the F-111A airplane in the symmetric and asymmetric stores loading conditions. Tests were also made with the model in the clean condition to determine whether the spin-recovery characteristics could be improved by the use of supplementary devices.

  8. Comment on "Replica-exchange-with-tunneling for fast exploration of protein landscapes" [J. Chem. Phys. 143, 224102 (2015)

    NASA Astrophysics Data System (ADS)

    Sakuraba, Shun

    2016-08-01

    In "Replica-exchange-with-tunneling for fast exploration of protein landscapes" [F. Yaşar et al., J. Chem. Phys. 143, 224102 (2015)], a novel sampling algorithm called "Replica Exchange with Tunneling" was proposed. However, due to its violation of the detailed balance, the algorithm fails to sample from the correct canonical ensemble.

  9. Achromatic axially symmetric wave plate.

    PubMed

    Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru

    2012-12-31

    An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751

  10. Investigation of the Airflow inside Realistic and Semi-Realistic Replicas of Human Airways

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Belka, Miloslav; Zaremba, Matous; Maly, Milan; Jicha, Miroslav

    2015-05-01

    Measurement of velocity in human lungs during breathing cycle is a challenging task for researchers, since the measuring location is accessible only with significant difficulties. A special measuring rig consisting of optically transparent replica of human lungs, breathing simulator, particle generator and Laser-Doppler anemometer was developed and used for investigation of the velocity in specific locations of lungs during simulated breathing cycle. Experiments were performed on two different replicas of human lungs in corresponding measuring points to facilitate the analysis of the influence of the geometry and its simplification on the flow. The analysis of velocity course and turbulence intensity revealed that special attention should be devoted to the modelling of vocal cords position during breathing, as the position of laryngeal jet created by vocal cords significantly influences velocity profiles in trachea. The shapes of velocity courses during expiration proved to be consistent for both replicas; however magnitudes of peak expiratory velocity differ between the corresponding measuring points in both the replicas.

  11. Realization of a poro-elastic ultrasound replica of pulmonary tissue.

    PubMed

    Spinelli, Andrea; Vinci, Bruna; Tirella, Annalisa; Matteucci, Marco; Gargani, Luna; Ahluwalia, Arti; Domenici, Claudio; Picano, Eugenio; Chiarelli, Piero

    2012-01-01

    In this work we describe the fabrication of a biocompatible hydrophilic scaffold composed of cross-linked gelatin that mimics the porous three-dimensional structure of pulmonary tissue as well as its water content and mechanical properties. The lung replica also reproduces the characteristic sonographic signs of pulmonary interstitial syndrome, the B-lines or ultrasound lung comets. PMID:23507784

  12. Comparison of Replica-Permutation Molecular Dynamics Simulations with and without Detailed Balance Condition

    NASA Astrophysics Data System (ADS)

    Nishizawa, Hiroaki; Okumura, Hisashi

    2015-07-01

    In the replica-permutation method (RPM), temperatures are not only exchanged between two replicas but also permutated among more than two replicas using the Suwa-Todo algorithm, which minimizes the rejection ratio in Monte Carlo trials. We verify the sampling efficiency of RPM that adopts Suwa-Todo algorithms with and without a detailed balance condition (DBC). To compare these techniques, molecular dynamics simulations of RPM with and without the DBC and the replica-exchange method (REM) were carried out for a chignolin molecule in explicit water. Although no difference in the numbers of folding and unfolding events was observed, the numbers of tunneling events of the two RPM simulations were larger than that of REM. This indicates that the minimization of the rejection ratio by the Suwa-Todo algorithm in RPM realizes efficient sampling. Furthermore, the sampling efficiency was slightly higher in the RPM without the DBC than in that with the DBC. The reason for this difference is also discussed.

  13. Deterministic replica-exchange method without pseudo random numbers for simulations of complex systems

    NASA Astrophysics Data System (ADS)

    Urano, Ryo; Okamoto, Yuko

    2015-12-01

    We propose a replica-exchange method (REM) which does not use pseudo random numbers. For this purpose, we first give a conditional probability for Gibbs sampling replica-exchange method (GSREM) based on the heat bath method. In GSREM, replica exchange is performed by conditional probability based on the weight of states using pseudo random numbers. From the conditional probability, we propose a new method called deterministic replica-exchange method (DETREM) that produces thermal equilibrium distribution based on a differential equation instead of using pseudo random numbers. This method satisfies the detailed balance condition using a conditional probability of Gibbs heat bath method and thus results can reproduce the Boltzmann distribution within the condition of the probability. We confirmed that the equivalent results were obtained by REM and DETREM with two-dimensional Ising model. DETREM can avoid problems of choice of seeds in pseudo random numbers for parallel computing of REM and gives analytic method for REM using a differential equation.

  14. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    SciTech Connect

    Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E; Landau, David P

    2015-01-01

    We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.

  15. Symmetric Composite Laminate Stress Analysis

    NASA Technical Reports Server (NTRS)

    Wang, T.; Smolinski, K. F.; Gellin, S.

    1985-01-01

    It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.

  16. Spinning bodies in curved spacetime

    NASA Astrophysics Data System (ADS)

    d'Ambrosi, G.; Satish Kumar, S.; van de Vis, J.; van Holten, J. W.

    2016-02-01

    We study the motion of neutral and charged spinning bodies in curved spacetime in the test-particle limit. We construct equations of motion using a closed covariant Poisson-Dirac bracket formulation that allows for different choices of the Hamiltonian. We derive conditions for the existence of constants of motion and apply the formalism to the case of spherically symmetric spacetimes. We show that the periastron of a spinning body in a stable orbit in a Schwarzschild or Reissner-Nordstrøm background not only precesses but also varies radially. By analyzing the stability conditions for circular motion we find the innermost stable circular orbit (ISCO) as a function of spin. It turns out that there is an absolute lower limit on the ISCOs for increasing prograde spin. Finally we establish that the equations of motion can also be derived from the Einstein equations using an appropriate energy-momentum tensor for spinning particles.

  17. Spin polarization of the split Kondo state.

    PubMed

    von Bergmann, Kirsten; Ternes, Markus; Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2015-02-20

    Spin-resolved scanning tunneling microscopy is employed to quantitatively determine the spin polarization of the magnetic field-split Kondo state. Tunneling conductance spectra of a Kondo-screened magnetic atom are evaluated within a simple model taking into account inelastic tunneling due to spin excitations and two Kondo peaks positioned symmetrically around the Fermi energy. We fit the spin state of the Kondo-screened atom with a spin Hamiltonian independent of the Kondo effect and account for Zeeman splitting of the Kondo peak in the magnetic field. We find that the width and the height of the Kondo peaks scales with the Zeeman energy. Our observations are consistent with full spin polarization of the Kondo peaks, i.e., a majority spin peak below the Fermi energy and a minority spin peak above. PMID:25763966

  18. Pairwise Quantum Discord for a Symmetric Multi-Qubit System in Different Types of Noisy Channels

    NASA Astrophysics Data System (ADS)

    Guo, You-Neng; Zeng, Ke; Wang, Guo-You

    2016-06-01

    We study the pairwise quantum discord (QD) for a symmetric multi-qubit system in different types of noisy channels, such as phase-flip, amplitude damping, phase-damping, and depolarizing channels. Using the QD and geometric quantum discord (GMQD) to quantify quantum correlations, some analytical and numerical results are presented. The results show that, the QD dynamics is strongly related to the number of spin particles N as well as the initial parameter 𝜃 of the one-axis twisting collective state. With the number of spin particles N increasing, the amount of the QD increases. However, when the amount of the QD arrives at a stable maximal value, the QD is independence of the number of spin particles N increasing. The behavior of the QD is symmetrical during a period 0 ≤ 𝜃 ≤ 2 π. Moreover, we compare the QD dynamics with the GMQD for a symmetric multi-qubit system in different types of noisy channels.

  19. Mode conversion by symmetry breaking of propagating spin waves.

    SciTech Connect

    Clausen, P.; Vogt, K.; Schultheiss, H.; Schafer, S.; Obry, B.; Wolf, G.; Pirro, P.; Leven, B.; Hillebrands, B.

    2011-10-01

    We study spin-wave transport in a microstructured Ni{sub 81}Fe{sub 19} waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n = 1, 3,... into a mixed set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripe's width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes.

  20. Non-differentiability of the effective potential and the replica symmetry breaking in the random energy model

    NASA Astrophysics Data System (ADS)

    Mukaida, Hisamitsu

    2016-01-01

    The effective potential for the two-replica system of the random energy model is exactly derived. It is an analytic function of the magnetizations of two replicas, {\\varphi }1 and {\\varphi }2 in the high-temperature phase. In the low-temperature phase, where the replica symmetry breaking takes place, the effective potential becomes non-analytic when {\\varphi }1={\\varphi }2. The non-analyticity is considered as a consequence of the condensation of the Boltzmann measure, which is a typical property of a glass phase.

  1. Looking for symmetric Bell inequalities

    NASA Astrophysics Data System (ADS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-09-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  2. Neutron and gamma-ray dose-rates from the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distance from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.

  3. Neutron and gamma dose and spectra measurements on the Little Boy replica

    SciTech Connect

    Hoots, S.; Wadsworth, D.

    1984-06-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.

  4. Shape and feature size control of colloidal crystal-based patterns using stretched polydimethylsiloxane replica molds.

    PubMed

    Choi, Hong Kyoon; Im, Sang Hyuk; Park, O Ok

    2009-10-20

    In this work, we fabricated various patterns using colloidal crystals as master molds via the soft lithography method. Even though colloidal crystals consist of spherical colloidal particles, nonspherical shaped patterns such as rectangular or elongated hexagonal shaped patterns can be fabricated using a stretched polydimethylsiloxane (PDMS) replica mold. The pattern shape and feature size can be easily controlled by changing the stretching axis and ratio of the PDMS replica mold. The deformations of the PDMS mold were simulated using the finite element method, and they are consistent with experimental results. The elongated patterns were used as templates to offer new types of colloidal crystal superlattice structures. A proposed pattern-control method will significantly expand the usefulness and diversity of micro/nanopatterning technology. PMID:19821618

  5. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-05-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  6. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-09-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  7. Correlative super-resolution fluorescence and metal replica transmission electron microscopy

    PubMed Central

    Sochacki, Kem A.; Shtengel, Gleb; van Engelenburg, Schuyler B.; Hess, Harald F.; Taraska, Justin W.

    2014-01-01

    Super-resolution localization microscopy is combined with a complementary imaging technique, transmission electron microscopy of metal replicas, to locate proteins on the landscape of the cellular plasma membrane at the nanoscale. Robust correlation on the scale of 20 nm is validated by imaging endogenous clathrin (with 2D and 3D PALM/TEM) and the method is further used to find the previously unknown 3D position of epsin on clathrin coated structures. PMID:24464288

  8. A new paradigm for petascale Monte Carlo simulation: Replica exchange Wang Landau sampling

    SciTech Connect

    Li, Ying Wai; Vogel, Thomas; Wuest, Thomas; Landau, David P

    2014-01-01

    We introduce a generic, parallel Wang Landau method that is naturally suited to implementation on massively parallel, petaflop supercomputers. The approach introduces a replica-exchange framework in which densities of states for overlapping sub-windows in energy space are determined iteratively by traditional Wang Landau sampling. The advantages and general applicability of the method are demonstrated for several distinct systems that possess discrete or continuous degrees of freedom, including those with complex free energy landscapes and topological constraints.

  9. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lin, Zhixiong; van Gunsteren, Wilfred F.

    2015-07-01

    In a molecular dynamics (MD) simulation, various thermostat algorithms, including Langevin dynamics (LD), Nosé-Hoover (NH), and weak-coupling (WC) thermostats, can be used to keep the simulation temperature constant. A canonical ensemble is generated by the use of LD and NH, while the nature of the ensemble produced by WC has not yet been identified. A few years ago, it was shown that when using a WC thermostat with particular values of the temperature coupling time for liquid water at ambient temperature and pressure, the distribution of the potential energy is less wide than the canonical one. This led to an artifact in temperature replica-exchange molecular dynamics (T-REMD) simulations in which the potential energy distributions appear not to be equal to the ones of standard MD simulations. In this paper, we re-investigate this problem. We show that this artifact is probably due to the ensemble generated by WC being incompatible with the T-REMD replica-exchange criterion, which assumes a canonical configurational ensemble. We also show, however, that this artifact can be reduced or even eliminated by particular choices of the temperature coupling time of WC and the replica-exchange time period of T-REMD, i.e., when the temperature coupling time is chosen very close to the MD time step or when the exchange time period is chosen large enough. An attempt to develop a T-REMD replica-exchange criterion which is likely to be more compatible with the WC configurational ensemble is reported. Furthermore, an exchange criterion which is compatible with a microcanonical ensemble is used in total energy REMD simulations.

  10. Replicas of Snoopy and Charlie Brown decorate top of console in MCC

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Replicas of Snoopy and Charlie Brown, the two characters from Charles Schulz's syndicated comic strip 'Peanuts', decorate the top of a console in the Mission Operations Control Room in the Mission Control Center, bldg 30, on the first day of the Apollo 10 lunar orbit mission. During the Apollo 10 lunar orbit operations the Lunar Module will be called Snoopy when it is separated from the Command/Service Modules. The code words for the Command Module will be Charlie Brown.

  11. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods

    PubMed Central

    2015-01-01

    Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency. PMID:24625009

  12. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  13. Bumblebee preference for symmetrical flowers.

    PubMed

    Møller, A P

    1995-03-14

    Fluctuating asymmetry, which represents small random deviations from otherwise bilateral symmetry, is a measure of the phenotypic quality of individuals indicating the ability of controlled development under given environmental and genetic conditions. I tested whether floral symmetry reliably reflects phenotypic quality measured in terms of pollinator rewards and whether pollinators respond to floral symmetry in a series of observations and experiments on Epilobium angustifolium (Onagraceae). Lower petal asymmetry was negatively related to mean lower petal length, whereas asymmetry in leaf width was positively related to mean leaf width. Flowers visited by bumblebees were larger and more symmetrical than the nearest neighboring flower. This relationship between pollinator preference for large and symmetrical flowers was demonstrated to be causal in experiments in which the lower petals were manipulated symmetrically or asymmetrically. Nectar production was larger in symmetrical flowers, and this may explain the bumblebee preference for flower symmetry. Floral symmetry therefore reliably reflects nectar production and hence enhances pollen transport. Extensive embryo abortion has been documented in E. angustifolium and other outcrossing plant species. Floral fluctuating asymmetry, which reflects general developmental homeostasis, may explain such developmental selection in these plants. PMID:11607519

  14. A scheme for symmetrization verification

    NASA Astrophysics Data System (ADS)

    Sancho, Pedro

    2011-08-01

    We propose a scheme for symmetrization verification in two-particle systems, based on one-particle detection and state determination. In contrast to previous proposals, it does not follow a Hong-Ou-Mandel-type approach. Moreover, the technique can be used to generate superposition states of single particles.

  15. Intensity-symmetric Airy beams.

    PubMed

    Vaveliuk, P; Lencina, Alberto; Rodrigo, Jose A; Martnez-Matos, Ó

    2015-03-01

    Theoretical, numerical, and experimental research on a novel family of Airy beams in rectangular coordinates having a symmetric transverse pattern of light intensity is presented. The intensity-symmetric Airy beams include both the symmetric Airy beam whose field amplitude is an even function of the transverse coordinates and the antisymmetric Airy beam whose field amplitude is an odd function of such coordinates. The theoretical foundations are based on the relationship of the symmetries of the spectral phase with the cosine and sine Fourier transforms. These beams are analyzed in a propagation range also including the region preceding the Fourier plane. These beams exhibit autofocusing, collapse, self-bending, and reversal propagation. Moreover, the intensity distribution is strongly asymmetric with respect to the Fourier plane. All these peculiar features were not reported for other classes of paraxial beams in a rectangular frame. The experimental generation of intensity-symmetric Airy beams is demonstrated supporting the theoretical predictions. Possible applications in planar waveguide writing and optical trapping are also discussed. PMID:26366655

  16. Prior Distributions on Symmetric Groups

    ERIC Educational Resources Information Center

    Gupta, Jayanti; Damien, Paul

    2005-01-01

    Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…

  17. pH-replica exchange molecular dynamics in proteins using a discrete protonation method.

    PubMed

    Sabri Dashti, Danial; Meng, Yilin; Roitberg, Adrian E

    2012-08-01

    Protonation equilibria in biological molecules modulates structure, dynamics, and function. A pH-replica exchange molecular dynamics (pH-REMD) method is described here to improve the coupling between conformational and protonation sampling. Under a Hamiltonian replica exchange setup, conformations are swapped between two neighboring replicas, which themselves are at different pHs. The method has been validated on a series of biological systems. We applied pH-REMD to a series of model compounds, to an terminally charged ADFDA pentapeptide, and to a heptapeptide derived from the ovomucoid third domain (OMTKY3). In all of those systems, the predicted pK(a) by pH-REMD is very close to the experimental value and almost identical to the ones obtained by constant pH molecular dynamics (CpH MD). The method presented here, pH-REMD, has the advantage of faster convergence properties due to enhanced sampling of both conformation and protonation spaces. PMID:22694266

  18. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  19. Novel grinding stone used for polishing 3D plastic replica with rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Niikura, Yoshihiro; Sato, Toshio; Kawashima, Norimichi

    2006-01-01

    Rapid prototyping (RP) apparatus accepts a specific format translated from CAD data (patient's CT) and "slices" it into two-dimensional cross sections for laser photo curing. Surgeon can conduct safer surgery by reappearing on an actual model using 3D plastic replica in the preoperative. Polishing has to be used to eliminate the marks after removal of supports and the build layer pitches. Complicated and narrow areas of the 3D replica are difficult to be polished with the conventional grinding stone. This study proposes a novel grinding stone and introduces its producing process and characteristics. The novel grinding stone has many advantages as follows; (1) Preparation is possible of grinding stone that follows the complicated shape. (2) Grinding stone with uniformly dispersed abrasive grains can be prepared using magnetic particles and magnetic field. (3) Reshaping of grinding stone by heating is possible since the binder is made of a thermoplastic resin. (4) Every process can easily be carried out. We could polish to eliminate the marks after removal of supports and the build layer pitches on 3D plastic replica surface with the grinding stone.

  20. Effect of roughness and material strength on the mechanical properties of fracture replicas

    SciTech Connect

    Wibowo, J.; Amadei, B.; Sture, S.

    1995-08-01

    This report presents the results of 11 rotary shear tests conducted on replicas of three hollow cylinders of natural fractures with JRC values of 7.7, 9.4 and 12.0. The JRC values were determined from the results of laser profilometer measurements. The replicas were created from gypsum cement. By varying the water-to-gypsum cement ratio from 30 to 45%, fracture replicas with different values of compressive strength (JCS) were created. The rotary shear experiments were performed under constant normal (nominal) stresses ranging between 0.2 and 1.6 MPa. In this report, the shear test results are compared with predictions using Barton`s empirical peak shear strength equation. observations during the experiments indicate that only certain parts of the fracture profiles influence fracture shear strength and dilatancy. Under relatively low applied normal stresses, the JCS does not seem to have a significant effect on shear behavior. As an alternative, a new procedure for predicting the shear behavior of fractures was developed. The approach is based on basic fracture properties such as fracture surface profile data and the compressive strength, modulus of elasticity, and Poisson`s ratio of the fracture walls. Comparison between predictions and actual shear test results shows that the alternative procedure is a reliable method.

  1. A digital approach to fabricating an abutment replica to control cement volume in a cement-retained implant prosthesis.

    PubMed

    Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok

    2016-07-01

    If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology. PMID:26946917

  2. Quantumness of spin-1 states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, Fabian; Braun, D.; Giraud, O.

    2016-01-01

    We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry of symmetric entangled states.

  3. Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices

    NASA Astrophysics Data System (ADS)

    Dhesi, G. S.; Ausloos, M.

    2016-06-01

    Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N ×N matrices to order 1 /N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression.

  4. Conformally flat static spherically symmetric perfect-fluid distribution in Einstein-Cartan theory

    NASA Astrophysics Data System (ADS)

    Kalyanshetti, S. B.; Waghmode, B. B.

    1983-06-01

    We consider the static, conformally flat spherically symmetric perfect-fluid distribution in Einstein-Cartan theory and obtain the field equations. These field equations are solved by adopting Hehl's approach with the assumption that the spins of the particles composing the fluid are all aligned in the radial direction only and the reality conditions are discussed.

  5. Skyrmions and vector mesons: a symmetric approach

    SciTech Connect

    Caldi, D.G.

    1984-01-01

    We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references.

  6. Viscosity in spherically symmetric accretion

    NASA Astrophysics Data System (ADS)

    Ray, Arnab K.

    2003-10-01

    The influence of viscosity on the flow behaviour in spherically symmetric accretion has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length scale has been compared with the conventional understanding of the so-called `accretion radius' for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions - an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system than has been seen for the case of inviscid spherically symmetric inflows.

  7. Symmetric Discrete Orthonormal Stockwell Transform

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Orchard, Jeff

    2008-09-01

    The Stockwell Transform (ST) is a time-frequency signal decomposition that is gaining in popularity, likely because of its direct relation with the Fourier Transform (FT). A discrete and non-redundant version of the ST, denoted the Discrete Orthonormal Stockwell Transform (DOST), has made the use of the ST more feasible. However, the matrix multiplication required by the DOST can still be a formidable computation, especially for high-dimensional data. Moreover, the symmetric property of the ST and FT is not present in the DOST. In this paper, we investigate a new Symmetric Discrete Orthonormal Stockwell Transform (SDOST) that still keeps the non-redundant multiresolution features of the DOST, while maintaining a symmetry property similar to that of the FT. First, we give a brief introduction for the ST and the DOST. Then we analyze the DOST coefficients and modify the transform to get a symmetric version. A small experiment shows that the SDOST has kept the abilities of the DOST and demonstrates the advantage of symmetry when applying the SDOST.

  8. PT-symmetric quantum theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    2015-07-01

    The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.

  9. Spinning fluids in the Einstein-Cartan theory

    NASA Technical Reports Server (NTRS)

    Ray, J. R.; Smalley, L. L.

    1983-01-01

    An Eulerian variational principle for a spinning fluid in the Einstein-Cartan metric-torsion theory is presented. The variational principle yields the complete set of field equations for the system. The symmetric energy-momentum tensor is a sum of a perfect-fluid term and a spin term.

  10. High spin-filter efficiency and Seebeck effect through spin-crossover iron-benzene complex.

    PubMed

    Yan, Qiang; Zhou, Liping; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz)2 using density functional theory combined with non-equilibrium Green's function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics. PMID:27389217

  11. Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting.

    PubMed

    Zhou, Xinxing; Ling, Xiaohui

    2016-02-01

    The photonic spin Hall effect (SHE) manifests itself as the spin-dependent splitting of light beam. Usually, it shows a symmetric spin-dependent splitting, i.e., the left- and right-handed circularly polarized components are equally separated in position and intensity for linear polarization incidence. In this paper, we theoretically propose an asymmetric spin-dependent splitting at an air-glass interface under the illumination of elliptical polarization beam and experimentally demonstrate it with the weak measurement method. The left- and right-handed circularly polarized components show expectedly unequal intensity distributions and unexpectedly different spin-dependent shifts. Remarkably, the asymmetric spin-dependent splitting can be modulated by adjusting the handedness of incident polarization. The inherent physics behind this interesting phenomenon is attributed to the additional spatial Imbert-Fedorov shift. These findings offer us potential methods for developing new spin-based nanophotonic applications. PMID:26906868

  12. High spin-filter efficiency and Seebeck effect through spin-crossover iron-benzene complex

    NASA Astrophysics Data System (ADS)

    Yan, Qiang; Zhou, Liping; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng

    2016-04-01

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz)2 using density functional theory combined with non-equilibrium Green's function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  13. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    NASA Astrophysics Data System (ADS)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-07-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  14. Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins

    NASA Astrophysics Data System (ADS)

    Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou

    2016-02-01

    We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.

  15. Inferring Predator Behavior from Attack Rates on Prey-Replicas That Differ in Conspicuousness

    PubMed Central

    2012-01-01

    Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator’s ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators’ direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined. PMID:23119039

  16. Non-analytic quantum oscillator image of complete replica symmetry breaking

    NASA Astrophysics Data System (ADS)

    Oppermann, R.; Schenck, H.

    2012-01-01

    We describe the effect of replica symmetry breaking in the field distribution function P(h) of the T = 0 Sherrington-Kirkpatrick (SK) model as the difference between a split Gaussian and the first excited state ψ1 of a weakly anharmonic oscillator with non-analytic shift by means of the analogy P(h) ↔ |ψ1(x)|. New numerical calculations of the leading 100 orders of replica symmetry breaking (RSB) were performed in order to obtain P(h), employing the exact mapping between the density of states ρ(E) of the fermionic SK model and P(h) of the standard model, as derived by Perez-Castillo and Sherrington. Fast convergence towards a fixed point function ρ(E) for infinite steps of RSB is observed. A surprisingly small number of harmonic oscillator wavefunctions suffices to represent this fixed point function. This allows us to determine an anharmonic potential V(x) with non-analytic shift, whose first excited state represents ρ(E) and hence P(h). The harmonic potential with unconventional shift V 2(x) ∼ (|x| - x 0)2 = (x - x 0 sign(x))2 already yields a very good approximation, since anharmonic couplings of V(x) - V 2(x) ∼ |x| m , m > 2, decay rapidly with increasing m. We compare the pseudo-gap-forming effect of replica symmetry breaking, hosted by the fermionic SK model, with the analogous effect in the Coulomb glass as designed by Davies, Lee and Rice, and described by Müller and Pankov.

  17. Routine characterization of 3-D profiles of SRF cavity defects using replica techniques

    SciTech Connect

    Ge, M.; Wu, G.; Burk, D.; Ozelis, J.; Harms, E.; Sergatskov, D.; Hicks, D.; Cooley, L.D.; /Fermilab

    2010-09-01

    Recent coordination of thermometry with optical images has shown that obvious defects at specific locations produce heat or even quench superconducting radio frequency (SRF) cavities, imposing a significant limit on the overall accelerating gradient produced by the cavity. Characterization of the topography at such locations provides clues about how the defects originated, from which schemes for their prevention might be devised. Topographic analyses also provide understanding of the electromagnetic mechanism by which defects limit cavity performance, from which viability of repair techniques might be assessed. In this article we discuss how a variety of two-component silicone-based room-temperature vulcanizing agents can be routinely used to make replicas of the cavity surface and extract topographic details of cavity defects. Previously, this level of detail could only be obtained by cutting suspect regions from the cavity, thus destroying the cavity. We show 3-D profiles extracted from several different 1.3 GHz cavities. The defect locations, which were all near cavity welds, compelled us to develop extraction techniques for both equator and iris welds as well as from deep inside long 9-cell cavities. Profilometry scans of the replicas yield micrometer-scale information, and we describe various curious features, such as small peaks at the bottom of pits, which were not apparent in previous optical inspections. We also discuss contour information in terms of electromagnetic mechanisms proposed by others for local cavity heating. We show that production of the replica followed by high-pressure rinsing dose not adversely affect the cavity RF performance.

  18. Replica-exchange Wang Landau sampling: pushing the limits of Monte Carlo simulations in materials sciences

    SciTech Connect

    Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus; Vogel, Thomas; Landau, David P

    2015-01-01

    We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.

  19. Rapid fabrication of microdevices using laser direct writing and replica moulding technique

    NASA Astrophysics Data System (ADS)

    Antończak, A. J.; Stepak, B. D.; Abramski, K. M.

    2016-03-01

    This paper presents a method that enables fast and low-cost fabrication of microchannels with oval cross-section. The procedure is based on formation of a concave meniscus at the interface between an initially cured PDMS and a polymeric mould fabricated using excimer laser. The replica is formed by expanding gas trapped within the structures of the mould during thermal curing. A second shaping factor is connected with surface phenomena at the interface between the mould, gas and partially cured PDMS. The final shape of the meniscus is determined when the PDMS reaches the high cure extent.

  20. Intermediate Thermodynamic States Contribute Equally to Free Energy Convergence: A Demonstration with Replica Exchange.

    PubMed

    Nguyen, Trung Hai; Minh, David D L

    2016-05-10

    We investigate the relationship between the number of intermediate thermodynamic states along a pathway and the precision of free energy estimates. With a sufficient number of states, the asymptotic variance collapses as a function of the total sample size. Our analytical result is corroborated by replica exchange molecular dynamics simulations of model systems in which the neighbor exchange rate exceeds 35%. Precision collapse is also observed in heat capacity estimates based on the multistate Bennett acceptance ratio. In contrast to the relaxation and mean first-passage times, the autocorrelation time of state indices is found to be relevant to free energy convergence. PMID:27054658

  1. Polyurethane Foam-Filled Skull Replica of Craniosynostosis for Surgical Training.

    PubMed

    Jeong, Yeon Jin; Lee, Jun Yong

    2016-05-01

    Craniosynostosis has a relatively low incidence in the general population and its treatment requires cautious approaches. For these reasons, patients are usually referred to several specialists or a medical center. Therefore, most trainees and young surgeons do not have any chances to experience patients of craniosynostosis, but learn about it only from textbooks. And for a surgeon who tries to operate on a craniosynostosis patient, it is hard to make a proper preoperative plan.The authors suggest a polyurethane foam-filled skull replica of craniosynostosis for trainees that can also be used in planning a craniosynostosis operation. PMID:27054421

  2. Communication: equation of state of hard oblate ellipsoids by replica exchange Monte Carlo.

    PubMed

    Odriozola, G; Guevara-Rodríguez, F de J

    2011-05-28

    We implemented the replica exchange Monte Carlo technique to produce the equation of state of hard 1:5 aspect-ratio oblate ellipsoids for a wide density range. For this purpose, we considered the analytical approximation of the overlap distance given by Bern and Pechukas and the exact numerical solution given by Perram and Wertheim. For both cases we capture the expected isotropic-nematic transition at low densities and a nematic-crystal transition at larger densities. For the exact case, these transitions occur at the volume fraction 0.341, and in the interval 0.584-0.605, respectively. PMID:21639414

  3. A modified procedure for replica plating of mammalian cells allowing selection of clones based on gene expression.

    PubMed

    Hornsby, P J; Yang, L; Lala, D S; Cheng, C Y; Salmons, B

    1992-02-01

    The polyester cloth replica-plating technique for selection of mammalian cell clones was modified by growing cells in colonies on a flexible polytetrafluoroethylene membrane and then transferring them completely to polyester cloth (27-microns mesh), from which a replica was made by allowing cells to transfer to a cloth of smaller pore size (17-microns mesh). Using this technique, two phenotype selection methods are demonstrated here: in situ hybridization for detection of a specific mRNA and a photographic film assay for detection of luciferase expression. Cells were transfected with pSV2AL-A delta 5' in which firefly luciferase cDNA is under the control of the simian virus 40 promoter. The luciferase assay was adapted for colonies on polyester cloth; cells were permeabilized with digitonin to allow access of ATP and luciferin to the cell without disruption of colonies. Clones selected for expression or nonexpression of luciferase by the photographic film assay were positive or negative for expression after isolation from the cloth replica and subsequent growth under conventional culture conditions. The replica-plating procedure described here should be generally applicable to most mammalian cell types. The ability to produce replicas of colonies, combined with in situ hybridization or assays that can be adapted to in situ detection, provides phenotype selection for clones based on gene expression independent of growth characteristics. PMID:1616718

  4. Characterization of the three-dimensional free energy manifold for the uracil ribonucleoside from asynchronous replica exchange simulations.

    PubMed

    Radak, Brian K; Romanus, Melissa; Lee, Tai-Sung; Chen, Haoyuan; Huang, Ming; Treikalis, Antons; Balasubramanian, Vivekanandan; Jha, Shantenu; York, Darrin M

    2015-02-10

    Replica exchange molecular dynamics has emerged as a powerful tool for efficiently sampling free energy landscapes for conformational and chemical transitions. However, daunting challenges remain in efficiently getting such simulations to scale to the very large number of replicas required to address problems in state spaces beyond two dimensions. The development of enabling technology to carry out such simulations is in its infancy, and thus it remains an open question as to which applications demand extension into higher dimensions. In the present work, we explore this problem space by applying asynchronous Hamiltonian replica exchange molecular dynamics with a combined quantum mechanical/molecular mechanical potential to explore the conformational space for a simple ribonucleoside. This is done using a newly developed software framework capable of executing >3,000 replicas with only enough resources to run 2,000 simultaneously. This may not be possible with traditional synchronous replica exchange approaches. Our results demonstrate 1.) the necessity of high dimensional sampling simulations for biological systems, even as simple as a single ribonucleoside, and 2.) the utility of asynchronous exchange protocols in managing simultaneous resource requirements expected in high dimensional sampling simulations. It is expected that more complicated systems will only increase in computational demand and complexity, and thus the reported asynchronous approach may be increasingly beneficial in order to make such applications available to a broad range of computational scientists. PMID:26580900

  5. Phase transitions in continuum ferromagnets with unbounded spins

    SciTech Connect

    Daletskii, Alexei; Kondratiev, Yuri; Kozitsky, Yuri

    2015-11-15

    States of thermal equilibrium of an infinite system of interacting particles in ℝ{sup d} are studied. The particles bear “unbounded” spins with a given symmetric a priori distribution. The interaction between the particles is pairwise and splits into position-position and spin-spin parts. The position-position part is described by a superstable potential, and the spin-spin part is attractive and of finite range. Thermodynamic states of the system are defined as tempered Gibbs measures on the space of marked configurations. It is proved that the set of such measures contains at least two elements if the activity is big enough.

  6. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    SciTech Connect

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun

    2014-04-07

    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide.

  7. Symmetric spaces of exceptional groups

    SciTech Connect

    Boya, L. J.

    2010-02-15

    We address the problem of the reasons for the existence of 12 symmetric spaces with the exceptional Lie groups. The 1 + 2 cases for G{sub 2} and F{sub 4}, respectively, are easily explained from the octonionic nature of these groups. The 4 + 3 + 2 cases on the E{sub 6,7,8} series require the magic square of Freudenthal and, for the split case, an appeal to the supergravity chain in 5, 4, and 3 space-time dimensions.

  8. Nuclear research emulsion neutron spectrometry at the Little-Boy replica

    SciTech Connect

    Gold, R.; Roberts, J.H.; Preston, C.C.

    1985-10-01

    Nuclear research emulsions (NRE) have been used to characterize the neutron spectrum emitted by the Little-Boy replica. NRE were irradiated at the Little-Boy surface as well as approximately 2 m from the center of the Little-Boy replica using polar angles of 0/sup 0/, 30/sup 0/, 60/sup 0/ and 90/sup 0/. For the NRE exposed at 2 m, neutron background was determined using shadow shields of borated polyethylene. Emulsion scanning to date has concentrated exclusively on the 2-m, 0/sup 0/ and 2-m, 90/sup 0/ locations. Approximately 5000 proton-recoil tracks have been measured in NRE irradiated at each of these locations. Neutron spectra obtained from these NRE proton-recoil spectra are compared with both liquid scintillator neutron spectrometry and Monte Carlo calculations. NRE and liquid scintillator neutron spectra generally agree within experimental uncertainties at the 2-m, 90/sup 0/ location. However, at the 2-m, 0/sup 0/ location, the neutron spectra derived from these two independent experimental methods differ significantly. NRE spectra and Monte Carlo calculations exhibit general agreement with regard to both intensity as well as energy dependence. Better agreement is attained between theory and experiment at the 2-m, 90/sup 0/ location, where the neutron intensity is considerably higher. 14 refs., 18 figs., 11 tabs.

  9. Reconstructing the Most Probable Folding Transition Path from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Jimenez-Cruz, Camilo Andres; Garcia, Angel E

    2013-08-13

    The characterization of transition pathways between long-lived states, and the identification of the corresponding transition state ensembles are useful tools in the study of rare events such as protein folding. In this work we demonstrate how the most probable transition path between metastable states can be recovered from replica exchange molecular dynamic simulation data by using the dynamic string method. The local drift vector in collective variables is determined via short continuous trajectories between replica exchanges at a given temperature, and points along the string are updated based on this drift vector to produce reaction pathways between the folded and unfolded state. The method is applied to a designed beta hairpin-forming peptide to obtain information on the folding mechanism and transition state using different sets of collective variables at various temperatures. Two main folding pathways differing in the order of events are found and discussed, and the relative free energy differences for each path estimated. Finally, the structures near the transition state are found and described. PMID:26584126

  10. High-Fidelity Replica Molding of Glassy Liquid Crystalline Polymer Microstructures.

    PubMed

    Zhao, Hangbo; Wie, Jeong Jae; Copic, Davor; Oliver, C Ryan; Orbaek White, Alvin; Kim, Sanha; Hart, A John

    2016-03-01

    Liquid crystalline polymers have recently been engineered to exhibit complex macroscopic shape adaptivity, including optically- and thermally driven bending, self-sustaining oscillation, torsional motion, and three-dimensional folding. Miniaturization of these novel materials is of great interest for both fundamental study of processing conditions and for the development of shape-changing microdevices. Here, we present a scalable method for high-fidelity replica molding of glassy liquid crystalline polymer networks (LCNs), by vacuum-assisted replica molding, along with magnetic field-induced control of the molecular alignment. We find that an oxygen-free environment is essential to establish high-fidelity molding with low surface roughness. Identical arrays of homeotropic and polydomain LCN microstructures are fabricated to assess the influence of molecular alignment on the elastic modulus (E = 1.48 GPa compared to E = 0.54 GPa), and side-view imaging is used to quantify the reversible thermal actuation of individual LCN micropillars by high-resolution tracking of edge motion. The methods and results from this study will be synergistic with future advances in liquid crystalline polymer chemistry, and could enable the scalable manufacturing of stimuli-responsive surfaces for applications including microfluidics, tunable optics, and surfaces with switchable wetting and adhesion. PMID:26943057

  11. Simulating replica exchange simulations of protein folding with a kinetic network model

    PubMed Central

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M.

    2007-01-01

    Replica exchange (RE) is a generalized ensemble simulation method for accelerating the exploration of free-energy landscapes, which define many challenging problems in computational biophysics, including protein folding and binding. Although temperature RE (T-RE) is a parallel simulation technique whose implementation is relatively straightforward, kinetics and the approach to equilibrium in the T-RE ensemble are very complicated; there is much to learn about how to best employ T-RE to protein folding and binding problems. We have constructed a kinetic network model for RE studies of protein folding and used this reduced model to carry out “simulations of simulations” to analyze how the underlying temperature dependence of the conformational kinetics and the basic parameters of RE (e.g., the number of replicas, the RE rate, and the temperature spacing) all interact to affect the number of folding transitions observed. When protein folding follows anti-Arrhenius kinetics, we observe a speed limit for the number of folding transitions observed at the low temperature of interest, which depends on the maximum of the harmonic mean of the folding and unfolding transition rates at high temperature. The results shown here for the network RE model suggest ways to improve atomic-level RE simulations such as the use of “training” simulations to explore some aspects of the temperature dependence for folding of the atomic-level models before performing RE studies. PMID:17878309

  12. Snow replica method for three-dimensional X-ray microtomographic imaging

    NASA Astrophysics Data System (ADS)

    Heggli, Martin; Frei, Esther; Schneebeli, Martin

    Visualization and quantification of snow structures at a scale of a few millimetres is important in understanding the mechanical, thermal and electromagnetic properties of snow. Surface sections and, to an even greater degree, three-dimensional (3-D) reconstructions of cast snow samples are difficult to prepare, and automatic image processing is notoriously difficult and often requires manual evaluation. Here, we present a new method to measure the 3-D structure of cast snow samples. Snow samples cast with diethyl phthalate (DEP) and frozen are cut to a sample size a few centimetres in diameter and up to 10 cm in height. The ice of these samples is then sublimated in high vacuum and the remaining negative structure (replica) is imaged using X-ray microtomography (micro-CT). The accuracy of the method is demonstrated by comparing micro-CT scans of the original snow structure and the replica. The method described here allows easy transportation of samples, requires little manual interaction, has a very high spatial resolution of up to 10 μm and is environmentally friendly.

  13. Replica theory for learning curves for Gaussian processes on random graphs

    NASA Astrophysics Data System (ADS)

    Urry, M. J.; Sollich, P.

    2012-10-01

    We use a statistical physics approach to derive accurate predictions for the challenging problem of predicting the performance of Gaussian process regression. Performance is quantified by the learning curve, defined as the average error versus number of training examples. We assume the Gaussian process prior is defined by a random walk kernel, inputs are vertices on a random graph and the outputs are noisy function values. We show that replica techniques can be used to obtain exact performance predictions in the limit of large graphs, after first rewriting the average error in terms of a graphical model. Conventionally, the Gaussian process kernel is only globally normalized, so that the prior variance can differ between vertices. As a more principled alternative we also consider local normalization, where the prior variance is uniform. The normalization constants for the prior then have to be defined as thermal averages in an unnormalized model and this requires the introduction of a second, auxiliary set of replicas. Our results for both types of kernel normalization apply generically to all random graph ensembles constrained by a fixed but arbitrary degree distribution. We compare with numerically simulated learning curves and find excellent agreement, a significant improvement over existing approximations.

  14. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  15. Progress on flow visualization and relative permeability measurement in transparent replicas of natural fractures from Yucca Mountain

    SciTech Connect

    Persoff, P.; Pruess, K.; Petersen, L.P.

    1995-01-01

    Small sections (75 mm x 75 mm) of two natural rock fractures from outcrop boulders of Tiva Canyon tuff have been reproduced as transparent replicas. Aperture maps were drawn from images of the replicas filled with dye. Apertures were measured by the areas occupied by liquid drops of known volume. For both these fractures, the average aperture is about 350 {mu}m, while the hydraulic aperture is less (72 and 130 {mu}m). Two-phase (air-water) flow experiments have been conducted in these replicas to measure relative permeability and capillary pressures. The results obtained confirm the results of previous fracture experiments, and theoretical analysis, that the sum of relative permeabilities is much less than 1 at intermediate saturations. The welded tuffs in the vadose zone of Yucca Mountain, Nevada, are being investigated as the potential site of a geological repository for high-level nuclear wastes.

  16. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    SciTech Connect

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-08-29

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed.

  17. A soft-core Gay-Berne model for the simulation of liquid crystals by Hamiltonian replica exchange

    NASA Astrophysics Data System (ADS)

    Berardi, Roberto; Zannoni, Claudio; Lintuvuori, Juho S.; Wilson, Mark R.

    2009-11-01

    The Gay-Berne (GB) potential has proved highly successful in the simulation of liquid crystal phases, although it is fairly demanding in terms of resources for simulations of large (e.g., N >105) systems, as increasingly required in applications. Here, we introduce a soft-core GB model, which exhibits both liquid crystal phase behavior and rapid equilibration. We show that the Hamiltonian replica exchange method, coupled with the newly introduced soft-core GB model, can effectively speed up the equilibration of a GB liquid crystal phase by frequent exchange of configurations between replicas, while still recovering the mesogenic properties of the standard GB potential.

  18. A soft-core Gay-Berne model for the simulation of liquid crystals by Hamiltonian replica exchange.

    PubMed

    Berardi, Roberto; Zannoni, Claudio; Lintuvuori, Juho S; Wilson, Mark R

    2009-11-01

    The Gay-Berne (GB) potential has proved highly successful in the simulation of liquid crystal phases, although it is fairly demanding in terms of resources for simulations of large (e.g., N>10(5)) systems, as increasingly required in applications. Here, we introduce a soft-core GB model, which exhibits both liquid crystal phase behavior and rapid equilibration. We show that the Hamiltonian replica exchange method, coupled with the newly introduced soft-core GB model, can effectively speed up the equilibration of a GB liquid crystal phase by frequent exchange of configurations between replicas, while still recovering the mesogenic properties of the standard GB potential. PMID:19894998

  19. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    SciTech Connect

    Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  20. Magnetic control of Rashba splittings in symmetric InAs quantum wells

    NASA Astrophysics Data System (ADS)

    Matsuura, Toru; Faniel, Sébastien; Monta, Nozomu; Koga, Takaaki

    2010-09-01

    We propose a mechanism to control the Rashba-induced subband splitting by a magnetic field using a symmetric double quantum well (QW) system, where the lowest two subbands are coupled by a position-dependent Rashba parameter α(z). In such a system, all subbands are spin degenerate due to the time reversal symmetry and the spatial inversion symmetry at zero magnetic field, despite the presence of the Rashba spin-orbit interaction. Applying an external magnetic field parallel to the QW plane ( B∥y^) lifts this spin degeneracy breaking the time reversal symmetry, where the spin splitting energies are controllable in the range between zero and 2.9 meV, the latter being on the same order of magnitude as a typical Rashba splitting in a narrow asymmetric QW. We find that the first and second subband energy levels for a selected spin state with k∥=(kF,0,0) anticross each other, and that the energy of the subband splitting Δ0, equivalent to the Rashba splitting for the case of single QWs, can be determined from the value of the anticrossing magnetic field Bac. These results suggest that the investigation in the symmetric double QWs would provide useful approaches for quantitative understanding of the Rashba spin-orbit interaction.

  1. Probabilistic cloning of three symmetric states

    SciTech Connect

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-12-15

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  2. Walking dynamics are symmetric (enough)

    PubMed Central

    Ankaralı, M. Mert; Sefati, Shahin; Madhav, Manu S.; Long, Andrew; Bastian, Amy J.; Cowan, Noah J.

    2015-01-01

    Many biological phenomena such as locomotion, circadian cycles and breathing are rhythmic in nature and can be modelled as rhythmic dynamical systems. Dynamical systems modelling often involves neglecting certain characteristics of a physical system as a modelling convenience. For example, human locomotion is frequently treated as symmetric about the sagittal plane. In this work, we test this assumption by examining human walking dynamics around the steady state (limit-cycle). Here, we adapt statistical cross-validation in order to examine whether there are statistically significant asymmetries and, even if so, test the consequences of assuming bilateral symmetry anyway. Indeed, we identify significant asymmetries in the dynamics of human walking, but nevertheless show that ignoring these asymmetries results in a more consistent and predictive model. In general, neglecting evident characteristics of a system can be more than a modelling convenience—it can produce a better model.

  3. Open String on Symmetric Product

    NASA Astrophysics Data System (ADS)

    Fuji, Hiroyuki; Matsuo, Yutaka

    We discuss some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete light-cone quantization (DLCQ). We first derive the consistent twisted boundary conditions for Annulus/Möbius/Klein Bottle diagrams and give the explicit form of the corresponding amplitude. They have the interpretation as the long open (or closed) string amplitude but the world sheet topology viewed from the short string and from the long string is in general different. Boundary (cross-cap) states of the short string are classified into three categories, the boundary (cross-cap) states of the long string and the "joint" state which connects two strings. The partition function has the typical structure of the string field theory in DLCQ. Tadpole condition is also analyzed and gives a reasonable gauge group SO(213).

  4. Solution of Euler's Equations of Motion and Eulerian Angles for near symmetric rigid bodies subject to constant moments

    NASA Technical Reports Server (NTRS)

    Longuski, J. M.

    1980-01-01

    Analytic expressions are found for Euler's Equations of Motion and for the Eulerian Angles for both symmetric and near symmetric rigid bodies under the influence of arbitrary constant body-fixed torques. These solutions provide the body-fixed angular velocities and the attitude of the body, respectively, as functions of time. They are of special interest in applications to spinning spacecraft (such as the Galileo Spacecraft to be launched in 1984) because they include the effect of time-varying spin rate. Thus they can be applied to spin-up and spin-down maneuvers as well as to error analysis for thruster misalignments. The solutions are given for arbitrary initial conditions in terms of Fresnel, Sine and Cosine Integrals. Numerical integration of the governing differential equations has verified that the approximate analytic solutions are very accurate in many physical situations of interest.

  5. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics.

    PubMed

    Turner, Robert M; Jack, Robert L; Garrahan, Juan P

    2015-08-01

    We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ɛ*(T), which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T)≳0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states. PMID:26382352

  6. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics

    NASA Astrophysics Data System (ADS)

    Turner, Robert M.; Jack, Robert L.; Garrahan, Juan P.

    2015-08-01

    We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ɛ*(T ) , which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T ) ≳0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states.

  7. Collective uncertainty in partially polarized and partially decohered spin-(1/2) systems

    SciTech Connect

    Baragiola, Ben Q.; Chase, Bradley A.; Geremia, JM

    2010-03-15

    It has become common practice to model large spin ensembles as an effective pseudospin with total angular momentum J=Nj, where j is the spin per particle. Such approaches (at least implicitly) restrict the quantum state of the ensemble to the so-called symmetric Hilbert space. Here, we argue that symmetric states are not generally well preserved under the type of decoherence typical of experiments involving large clouds of atoms or ions. In particular, symmetric states are rapidly degraded under models of decoherence that act identically but locally on the different members of the ensemble. Using an approach [Phys. Rev. A 78, 052101 (2008)] that is not limited to the symmetric Hilbert space, we explore potential pitfalls in the design and interpretation of experiments on spin-squeezing and collective atomic phenomena when the properties of the symmetric states are extended to systems where they do not apply.

  8. ADM canonical formalism for gravitating spinning objects

    SciTech Connect

    Steinhoff, Jan; Schaefer, Gerhard; Hergt, Steven

    2008-05-15

    In general relativity, systems of spinning classical particles are implemented into the canonical formalism of Arnowitt, Deser, and Misner [R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962), p. 227; arXiv:gr-qc/0405109]. The implementation is made with the aid of a symmetric stress-energy tensor and not a 4-dimensional covariant action functional. The formalism is valid to terms linear in the single spin variables and up to and including the next-to-leading order approximation in the gravitational spin-interaction part. The field-source terms for the spinning particles occurring in the Hamiltonian are obtained from their expressions in Minkowski space with canonical variables through 3-dimensional covariant generalizations as well as from a suitable shift of projections of the curved spacetime stress-energy tensor originally given within covariant spin supplementary conditions. The applied coordinate conditions are the generalized isotropic ones introduced by Arnowitt, Deser, and Misner. As applications, the Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, recently obtained by Damour, Jaranowski, and Schaefer [Phys. Rev. D 77, 064032 (2008)], is rederived and the derivation of the next-to-leading order gravitational spin(1)-spin(2) Hamiltonian, shown for the first time in [J. Steinhoff, S. Hergt, and G. Schaefer, Phys. Rev. D 77, 081501(R) (2008)], is presented.

  9. Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: Antiparallel versus parallel association

    SciTech Connect

    Vitagliano, Luigi; Esposito, Luciana; Pedone, Carlo; De Simone, Alfonso

    2008-12-26

    Protein and peptide aggregation into amyloid plaques is associated with a large variety of neurodegenerative diseases. The definition of the molecular bases of these pathologies is hampered by the transient nature of pre-fibrillar small-oligomers that are considered the toxic species. The ability of the peptide GNNQQNY to form amyloid-like structures makes it a good model to investigate the complex processes involved into amyloid fiber formation. By employing full atomistic replica exchange molecular dynamics simulations, we constructed the free energy surface of small assemblies of GNNQQNY to gain novel insights into the fiber formation process. The calculations suggest that the peptide exhibits a remarkable tendency to form both parallel and antiparallel {beta}-sheets. The data show that GNNQQNY preference for parallel or antiparallel {beta}-sheets is governed by a subtle balance of factors including assemblies' size, sidechain-sidechain interactions and pH. The samplings analysis provides a rationale to the observed trends.

  10. Neutron and gamma-ray dose measurements at various distances from the Little Boy replica

    SciTech Connect

    Huntzinger, C.J.; Hankins, D.E.

    1984-08-01

    We measured neutron and gamma-ray dose rates at various distances from the Little Boy-Comet Critical Assembly at Los Alamos National Laboratory (LANL) in April of 1983. The Little Boy-Comet Assembly is a replica of the atomic weapon detonated over Hiroshima, designed to be operated at various steady-state power levels. The selected distances for measurement ranged from 107 m to 567 m. Gamma-ray measurements were made with a Reuter-Stokes environmental ionization chamber which has a sensitivity of 1.0 ..mu..R/hour. Neutron measurements were made with a pulsed-source remmeter which has a sensitivity of 0.1 ..mu..rem/hour, designed and built at Lawrence Livermore National Laboratory (LLNL). 12 references, 7 figures, 6 tables.

  11. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    SciTech Connect

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  12. Anisotropic remastering for reducing feature sizes on UV nanoimprint lithography replica molds.

    PubMed

    Lausecker, E; Grydlik, M; Brehm, M; Bergmair, I; Mühlberger, M; Fromherz, T; Bauer, G

    2012-04-27

    We present an approach that uses existing nanoimprint molds and reduces the size of the resulting features significantly via a remastering process utilizing the anisotropic etchant tetramethylammonium hydroxide and a mold casting step. Inverted pyramidal structures and V-grooves were imprinted using these 2.5-dimensional (2.5D) replica molds. Pattern transfer into silicon (Si) substrates was established with an intermediate silicon nitride (SiN(x)) layer that can be etched with a much larger selectivity against the imprint resist than the Si substrate. The 2.5D resist profiles are thus transferred back into binary structures in the SiN(x) layer and subsequently into the Si substrate. A substantial size reduction of the diameter of pits from 91 to 33 nm and the width of lines from 600 to 142 nm was achieved. PMID:22469617

  13. A replica of the Olympic torch is recovered from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Teri McKinney, with Shuttle Crew Escape, Johnson Space Center, holds a replica of the Olympic torch carried aboard Space Shuttle Atlantis on mission STS-101. The addition of the torch to the payload was coordinated by astronaut Andy Thomas, who is from Australia. The torch will travel to Australia for the 2000 Olympic games being held there in September. . STS-101 was the third flight to the International Space Station and included repairs to the Station plus transfer of equipment and supplies to the Station for future missions. The landing of Atlantis completed a 9-day, 20-hour, 9-minute-long mission. It was the 98th flight in the Space Shuttle program and the 21st for Atlantis. The landing was the 51st at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.

  14. A replica of the Olympic torch is recovered from STS-101 Atlantis

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A replica of the Olympic torch is recovered after its journey on Space Shuttle Atlantis on mission STS-101. The addition of the torch to the payload was coordinated by astronaut Andy Thomas, who is from Australia. The torch will travel to Australia for the 2000 Olympic games being held there in September. STS-101 was the third flight to the International Space Station and included repairs to the Station plus transfer of equipment and supplies to the Station for future missions. The landing of Atlantis completed a 9-day, 20-hour, 9-minute-long mission. It was the 98th flight in the Space Shuttle program and the 21st for Atlantis. The landing was the 51st at KSC, the 22nd consecutive landing at KSC, the 14th nighttime landing in Shuttle history and the 29th in the last 30 Shuttle flights.

  15. Replica-exchange Wang-Landau simulations of the H0P lattice protein model

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Wüst, Thomas; Li, Ying Wai; Landau, David P.

    The hydrophobic-polar (HP) lattice protein model has been the subject of intensive investigation in an effort to aid our understanding of protein folding. However, the high ground state degeneracies caused by its simplification stands in contrast to the generally unique native states of natural proteins. Here we proposed a simple modification, by introducing a new type of ``neutral'' monomer, 0, i.e. neither hydrophobic nor polar, thus rendering the model more realistic without increasing the difficulties of sampling significantly. With the replica exchange Wang-Landau (REWL) scheme we investigated several widely studied HP proteins and their H0P counterparts. Dramatic differences in both ground state and thermodynamic properties have been found. For example, the H0P version of Crambin shows more clear two-step folding and 3 order of magnitudes less ground state degeneracy than its HP counterpart. Supported by NSF.

  16. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.

    PubMed

    Lucero, Jorge C; Van Hirtum, Annemie; Ruty, Nicolas; Cisonni, Julien; Pelorson, Xavier

    2009-02-01

    This paper analyzes the capability of a mucosal wave model of the vocal fold to predict values of phonation threshold lung pressure. Equations derived from the model are fitted to pressure data collected from a mechanical replica of the vocal folds. The results show that a recent extension of the model to include an arbitrary delay of the mucosal wave in its travel along the glottal channel provides a better approximation to the data than the original version of the model, which assumed a small delay. They also show that modeling the vocal tract as a simple inertive load, as has been proposed in recent analytical studies of phonation, fails to capture the effect of the vocal tract on the phonation threshold pressure with reasonable accuracy. PMID:19206840

  17. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    NASA Technical Reports Server (NTRS)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  18. Anisotropic remastering for reducing feature sizes on UV nanoimprint lithography replica molds

    NASA Astrophysics Data System (ADS)

    Lausecker, E.; Grydlik, M.; Brehm, M.; Bergmair, I.; Mühlberger, M.; Fromherz, T.; Bauer, G.

    2012-04-01

    We present an approach that uses existing nanoimprint molds and reduces the size of the resulting features significantly via a remastering process utilizing the anisotropic etchant tetramethylammonium hydroxide and a mold casting step. Inverted pyramidal structures and V-grooves were imprinted using these 2.5-dimensional (2.5D) replica molds. Pattern transfer into silicon (Si) substrates was established with an intermediate silicon nitride (SiNx) layer that can be etched with a much larger selectivity against the imprint resist than the Si substrate. The 2.5D resist profiles are thus transferred back into binary structures in the SiNx layer and subsequently into the Si substrate. A substantial size reduction of the diameter of pits from 91 to 33 nm and the width of lines from 600 to 142 nm was achieved.

  19. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view is a closeup of the ships with KSC launch complex in the distant background. View provided by KSC with alternate number KSC-92PC-968.

  20. Gamma-ray spectra and doses from the Little Boy replica

    SciTech Connect

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germanium detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10/sup 13/ fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables.

  1. Long-time atomistic simulations with the Parallel Replica Dynamics method

    NASA Astrophysics Data System (ADS)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  2. Flattening mountains: micro-fabrication of planar replicas for bullet lateral striae analysis.

    PubMed

    Cominato, Laura; Valle, Francesco; Pierini, Giovanni; Bonini, Paolo; Biscarini, Fabio; D'Elia, Marcello

    2015-02-01

    The application of replica molding has proven to be a valuable tool in the analysis of different forensic evidences in particular for its ability to extract the toolmarks from complex sample surfaces. A well known problem in the analysis of ballistic evidences is the accurate characterization of the lateral striae of real bullets seized on crime scenes after shots, due primarily to impact deformations and to unpredictable issues related to laboratory illumination setup. To overcome these problems a possible way is to confine over a flat surface all the features still preserving their three dimensionality. This can be achieved by a novel application of replica molding performed onto the relevant lateral portion of the bullet surface. A quasi-two-dimensional negative copy of the original tridimensional indented surface has been thus fabricated. It combines the real tridimensional topography of class characteristics (land and groove impressions) and of individual caracteristics (striae) impressed by rifled barrels on projectiles, moreover with the possibility of quantitative characterization of these features in a planar configuration, that will allow one-shot comparison of the "whole striae landscape" without the typical artifacts arising from the bullet shape and the illumination issue. A detailed analysis has been carried on at the morphological level by standard optical and scanning electron microscopy, while the 3D topography has been characterized by white light optical profilometry. A quantitative characterization of toolmarks of bullets derived from ammunitions shot by guns of large diffusion, as the Beretta 98 FS cal. 9×21 mm, has been performed and will be presented ranging between the whole landscape and the sub-μm resolution. To investigate the real potentiality of this technique, the experiment has been extended to highly impact-deformed projectiles. PMID:25555234

  3. Simple Continuous and Discrete Models for Simulating Replica Exchange Simulations of Protein Folding

    PubMed Central

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M.

    2010-01-01

    The efficiency of temperature replica exchange (RE) simulations hinge on their ability to enhance conformational sampling at physiological temperatures by taking advantage of more rapid conformational interconversions at higher temperatures. While temperature RE is a parallel simulation technique that is relatively straightforward to implement, kinetics in the RE ensemble is complicated and there is much to learn about how best to employ RE simulations in computational biophysics. Protein folding rates often slow down above a certain temperature due to entropic bottlenecks. This “anti-Arrhenius” behavior represents a challenge for RE. However, it is far from straightforward to systematically explore the impact of this on RE by brute force molecular simulations, since RE simulations of protein folding are very difficult to converge. To understand some of the basic mechanisms that determine the efficiency of RE it is useful to study simplified low dimensionality systems that share some of the key characteristics of molecular systems. Results are presented concerning the efficiency of temperature RE on a continuous two-dimensional potential that contains an entropic bottleneck. Optimal efficiency was obtained when the temperatures of the replicas did not exceed the temperature at which the harmonic mean of the folding and unfolding rates is maximized. This confirms a result we previously obtained using a discrete network model of RE. Comparison of the efficiencies obtained using the continuous and discrete models makes it possible to identify non-Markovian effects which slow down equilibration of the RE ensemble on the more complex continuous potential. In particular, the rate of temperature diffusion and also the efficiency of RE is limited by the timescale of conformational rearrangements within free energy basins. PMID:18251533

  4. New force replica exchange method and protein folding pathways probed by force-clamp technique

    NASA Astrophysics Data System (ADS)

    Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan

    2008-01-01

    We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the Cα-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as

  5. Continuity and Separation in Symmetric Topologies

    ERIC Educational Resources Information Center

    Harris, J.; Lynch, M.

    2007-01-01

    In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.

  6. Anticoherence of spin states with point-group symmetries

    NASA Astrophysics Data System (ADS)

    Baguette, D.; Damanet, F.; Giraud, O.; Martin, J.

    2015-11-01

    We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group-symmetric sets of points. We provide three different characterizations of anticoherence and establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic local operations with classical communication. We then investigate in detail the case of small numbers of qubits and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.

  7. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  8. Heat conduction of symmetric lattices

    NASA Astrophysics Data System (ADS)

    Nie, Linru; Yu, Lilong; Zheng, Zhigang; Shu, Changzheng

    2013-06-01

    Heat conduction of symmetric Frenkel-Kontorova (FK) lattices with a coupling displacement was investigated. Through simplifying the model, we derived analytical expression of thermal current of the system in the overdamped case. By means of numerical calculations, the results indicate that: (i) As the coupling displacement d equals to zero, temperature oscillations of the heat baths linked with the lattices can control magnitude and direction of the thermal current; (ii) Whether there is a temperature bias or not, the thermal current oscillates periodically with d, whose amplitudes become greater and greater; (iii) As d is not equal to zero, the thermal current monotonically both increases and decreases with temperature oscillation amplitude of the heat baths, dependent on values of d; (iv) The coupling displacement also induces nonmonotonic behaviors of the thermal current vs spring constant of the lattice and coupling strength of the lattices; (v) These dynamical behaviors come from interaction of the coupling displacement with periodic potential of the FK lattices. Our results have the implication that the coupling displacement plays a crucial role in the control of heat current.

  9. Parity-time-symmetric teleportation

    NASA Astrophysics Data System (ADS)

    Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.

    2016-06-01

    We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.

  10. A new model for dual-spin satellites.

    NASA Technical Reports Server (NTRS)

    Guha, A. K.

    1972-01-01

    A new mathematical model for the analysis of dissipative dual-spin satellites has been developed. This model makes explicit use of the fact that the high speed rotor is symmetric by modeling the rotor energy dissipation with symmetrically placed dampers. This permits the use of a quasi-holonomic transformation for the reduction of the periodic system of variational equations to an autonomous system in accordance with the Floquet Theory and the Liapunov Reducibility Theorem.-

  11. Spin splitting in SiGe/Si heterostructures

    NASA Astrophysics Data System (ADS)

    Nestoklon, M. O.; Golub, L. E.; Ivchenko, E. L.

    2007-04-01

    Spin and valley-orbit splittings are calculated in symmetric SiGe/Si/SiGe quantum wells (QWs) by using the tight-binding approach. In accordance with the symmetry considerations an existence of spin splitting of electronic states in perfect QWs with an odd number of Si atomic planes is demonstrated. The spin splitting oscillates with QW width and these oscillations are related to the inter-valley reflection of an electron wave from the interfaces. It is shown that the splittings under study can efficiently be described by an extended envelope-function approach taking into account the spin- and valley-dependent interface mixing.

  12. Bogomolny-Prasad-Sommerfeld monopoles and open spin chains

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia; Ioannidou, Theodora

    2011-09-01

    We construct SU(n + 1) Bogomolny-Prasad-Sommerfeld (BPS) spherically symmetric monopoles with minimal symmetry breaking by solving the full Weyl equation. In this context, we explore and discuss the existence of open spin chainlike part within the Weyl equation. For instance, in the SU(3) case the relevant spin chain is the 2-site spin 1/2 XXX chain with open boundary conditions. We exploit the existence of such a spin chain part in order to solve the full Weyl equation.

  13. Carbon-13 and tin-119 relaxation studies of some axially symmetrical organotin compounds

    NASA Astrophysics Data System (ADS)

    Chapelle, S.; Granger, P.

    We have studied a variety of axially symmetrical tin compounds by 119Sn and 13C NMR. Tin was observed at two field strengths and, except for Ph 3SnCl, T1 is field independent and governed mainly by spin-rotation. A chemical-shift anisotropy of 136 ppm is observed for 119Sn in Ph 3SnCl. Deverell's relationship provides a good estimate of the values of the spin-rotational constants and the theory of Woessner, Snowden, and Huntress leads to the values of the rotational diffusion constants.

  14. Gapless excitations of axially symmetric vortices in systems with tensorial order parameter

    SciTech Connect

    Peterson, Adam J.; Shifman, Mikhail

    2014-09-15

    We extend the results of previous work on vortices in systems with tensorial order parameters. Specifically, we focus our attention on systems with a Ginzburg–Landau free energy with a global U(1){sub P}×SO(3){sub S}×SO(3){sub L} symmetry in the phase, spin and orbital degrees of freedom. We consider axially symmetric vortices appearing on the spin–orbit locked SO(3){sub S+L} vacuum. We determine the conditions required on the Ginzburg–Landau parameters to allow for an axially symmetric vortex with off diagonal elements in the order parameter to appear. The collective coordinates of the axial symmetric vortices are determined. These collective coordinates are then quantized using the time dependent Ginzburg–Landau free energy to determine the number of gapless modes propagating along the vortex.

  15. A Note on the Guerra and Talagrand Theorems for Mean Field Spin Glasses: The Simple Case of Spherical Models

    NASA Astrophysics Data System (ADS)

    Franz, Silvio; Tria, Francesca

    2006-01-01

    The aim of this paper is to discuss the main ideas of the Talagrand proof of the Parisi Ansatz for the free-energy of Mean Field Spin Glasses with a physicist's approach. We consider the case of the spherical p-spin model, which has the following advantages: (1) the Parisi Ansatz takes the simple "one step replica symmetry breaking form," (2) the replica free-energy as a function of the order parameters is simple enough to allow for numerical maximization with arbitrary precision. We present the essential ideas of the proof, we stress its connections with the theory of effective potentials for glassy systems, and we reduce the technically more difficult part of the Talagrand's analysis to an explicit evaluation of the solution of a variational problem.

  16. Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation

    NASA Astrophysics Data System (ADS)

    Inoue, H. Y.; Harii, K.; Ando, K.; Sasage, K.; Saitoh, E.

    2007-10-01

    Electric-field generation due to the inverse spin-Hall effect (ISHE) driven by spin pumping was detected and separated experimentally from the extrinsic magnetogalvanic effects in a Ni81Fe19/Pt film. By applying a sample-cavity configuration in which the extrinsic effects are suppressed, the spin pumping using ferromagnetic resonance gives rise to a symmetric spectral shape in the electromotive force spectrum, indicating that the motive force is due entirely to ISHE. This method allows the quantitative analysis of the ISHE and the spin-pumping effect. The microwave-power dependence of the ISHE amplitude is consistent with the prediction of a direct current-spin-pumping scenario.

  17. Electromagnetic torque and force in axially symmetric liquid-crystal droplets.

    PubMed

    Jánossy, István

    2008-10-15

    Circularly polarized light exerts torque on birefringent objects. In the case of axially symmetric particles, however, the moment of radiation force balances the direct optical torque. This explains the observation that radial liquid-crystal droplets, in contrast to planar droplets, do not spin in circularly polarized light. The conclusion is in agreement with considerations based on the angular momentum conservation of light [Phys. Rev. Lett.96, 163905 (2006)]. PMID:18923626

  18. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  19. Theoretical Study on Twofold and Fourfold Symmetric Anisotropic Magnetoresistance Effect

    NASA Astrophysics Data System (ADS)

    Kokado, Satoshi; Tsunoda, Masakiyo

    We theoretically study the twofold and fourfold symmetric anisotropic magnetoresistance (AMR) effect [ 1 ] . We first extend our previous model [ 2 ] to a model including the crystal field effect [ 1 ] . Using the model, we next obtain an analytical expression of the AMR ratio, i.e., AMR (ϕ) =C0 +C2 cos (2 ϕ) +C4 cos (4 ϕ) , with C0=C2 -C4 [ 1 ] . Here, ϕ is the relative angle between the magnetization direction and the electric current direction and C2 (C4) is a coefficient of the twofold (fourfold) symmetric term. The coefficients C2 and C4 are expressed by a spin-orbit coupling constant, an exchange field, a crystal field, and s-s and s-d scattering resistivities. Using this expression, we analyze the experimental results for Fe4N [ 3 ] , in which | C2 | and | C4 | increase with decreasing temperature. The experimental results can be reproduced by assuming that the tetragonal distortion increases with decreasing temperature. [ 1 ] S. Kokado et al., J. Phys. Soc. Jpn. 84 (2015) 094710. [ 2 ] S. Kokado et al., J. Phys. Soc. Jpn. 81 (2012) 024705. [ 3 ] M. Tsunoda et al., Appl. Phys. Express 3 (2010) 113003.

  20. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Hayami, Satoru

    2016-02-01

    Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. Such a description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axis spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the "spin" of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. The derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.

  1. Adiabatic chaos in the spin orbit problem

    NASA Astrophysics Data System (ADS)

    Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio

    2008-05-01

    We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.

  2. Optimal quantum cloning via spin networks

    SciTech Connect

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-09-15

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  3. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.

    PubMed

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John

    2012-01-01

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT

  4. PT-Symmetric Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.

    2011-09-01

    In 1998 it was discovered that the requirement that a Hamiltonian be Dirac Hermitian (H = H†) can be weakened and generalized to the requirement that a Hamiltonian be PT symmetric ([H,PT] = 0); that is, invariant under combined space reflection and time reversal. Weakening the constraint of Hermiticity allows one to consider new kinds of physically acceptable Hamiltonians and, in effect, it amounts to extending quantum mechanics from the real (Hermitian) domain into the complex domain. Much work has been done on the analysis of various PT-symmetric quantum-mechanical models. However, only very little analysis has been done on PT-symmetric quantum-field-theoretic models. Here, we describe some of what has been done in the context of PT-symmetric quantum field theory and describe some possible fundamental applications.

  5. Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices

    NASA Astrophysics Data System (ADS)

    Chevillard, Laurent; Rhodes, Rémi; Vargas, Vincent

    2013-02-01

    Motivated by isotropic fully developed turbulence, we define a theory of symmetric matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the scalar theory developed by J.P. Kahane in 1985.

  6. Origin of symmetric PMNS and CKM matrices

    NASA Astrophysics Data System (ADS)

    Rodejohann, Werner; Xu, Xun-Jie

    2015-03-01

    The Pontecorvo-Maki-Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa matrices are phenomenologically close to symmetric, and a symmetric form could be used as zeroth-order approximation for both matrices. We study the possible theoretical origin of this feature in flavor symmetry models. We identify necessary geometric properties of discrete flavor symmetry groups that can lead to symmetric mixing matrices. Those properties are actually very common in discrete groups such as A4 , S4 , or Δ (96 ) . As an application of our theorem, we generate a symmetric lepton mixing scheme with θ12=θ23=36.21 ° ; θ13=12.20 ° , and δ =0 , realized with the group Δ (96 ) .

  7. Chaos in the Mixed Even-Spin Models

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Kuo

    2014-06-01

    We consider a disordered system obtained by coupling two mixed even-spin models together. The chaos problem is concerned with the behavior of the coupled system when the external parameters in the two models, such as, temperature, disorder, or external field, are slightly different. It is conjectured that the overlap between two independently sampled spin configurations from, respectively, the Gibbs measures of the two models is essentially concentrated around a constant under the coupled Gibbs measure. Using the extended Guerra replica symmetry breaking bound together with a recent development of controlling the overlap using the Ghirlanda-Guerra identities as well as a new family of identities, we present rigorous results on chaos in temperature. In addition, chaos in disorder and in external field are addressed.

  8. Scattering properties of PT-symmetric objects

    NASA Astrophysics Data System (ADS)

    Miri, Mohammad-Ali; Eftekhar, Mohammad Amin; Facao, Margarida; Abouraddy, Ayman F.; Bakry, Ahmed; Razvi, Mir A. N.; Alshahrie, Ahmed; Alù, Andrea; Christodoulides, Demetrios N.

    2016-07-01

    We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Such structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.

  9. Lax Operator for Macdonald Symmetric Functions

    NASA Astrophysics Data System (ADS)

    Nazarov, Maxim; Sklyanin, Evgeny

    2015-07-01

    Using the Lax operator formalism, we construct a family of pairwise commuting operators such that the Macdonald symmetric functions of infinitely many variables and of two parameters q, t are their eigenfunctions. We express our operators in terms of the Hall-Littlewood symmetric functions of the variables and of the parameter t corresponding to the partitions with one part only. Our expression is based on the notion of Baker-Akhiezer function.

  10. Image registration under symmetric conditions: novel approach

    NASA Astrophysics Data System (ADS)

    Duraisamy, Prakash; Yousef, Amr; Buckles, Bill; Jackson, Steve

    2015-03-01

    Registering the 2D images is one of the important pre-processing steps in many computer vision applications like 3D reconstruction, building panoramic images. Contemporary registration algorithm like SIFT (Scale Invariant Feature transform) was not quite success in registering the images under symmetric conditions and under poor illuminations using DoF (Difference of Gaussian) features. In this paper, we introduced a novel approach for registering the images under symmetric conditions.

  11. Symmetric states: Their nonlocality and entanglement

    SciTech Connect

    Wang, Zizhu; Markham, Damian

    2014-12-04

    The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.

  12. Spin ejector

    DOEpatents

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  13. Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas

    SciTech Connect

    Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; Awad, Yasmine H.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan

    2014-12-08

    Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.

  14. Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas

    DOE PAGESBeta

    Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; Awad, Yasmine H.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan

    2014-12-08

    Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further highmore » temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. Ultimately, the simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.« less

  15. Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas

    PubMed Central

    Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; Awad, Yasmine H.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan

    2014-01-01

    Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. The simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials. PMID:25482611

  16. Synthetic fossilization of soft biological tissues and their shape-preserving transformation into silica or electron-conductive replicas

    NASA Astrophysics Data System (ADS)

    Townson, Jason L.; Lin, Yu-Shen; Chou, Stanley S.; Awad, Yasmine H.; Coker, Eric N.; Brinker, C. Jeffrey; Kaehr, Bryan

    2014-12-01

    Structural preservation of complex biological systems from the subcellular to whole organism level in robust forms, enabling dissection and imaging while preserving 3D context, represents an enduring grand challenge in biology. Here we report a simple immersion method for structurally preserving intact organisms via conformal stabilization within silica. This self-limiting process, which we refer to as silica bioreplication, occurs by condensation of water-soluble silicic acid proximally to biomolecular interfaces throughout the organism. Conformal nanoscopic silicification of all biomolecular features imparts structural rigidity enabling the preservation of shape and nano-to-macroscale dimensional features upon drying to form a biocomposite and further high temperature oxidative calcination to form silica replicas or reductive pyrolysis to form electrically conductive carbon replicas of complete organisms. The simplicity and generalizability of this approach should facilitate efforts in biological preservation and analysis and could enable the development of new classes of biomimetic composite materials.

  17. Replica Analysis of Multiuser Detection for Code Division Multiple Access with M-Ary Phase-Shift Keying

    NASA Astrophysics Data System (ADS)

    Kato, Hiroyuki; Okada, Masato; Miyoshi, Seiji

    2013-07-01

    We analyze the performance of the maximizer of the posterior marginals (MPM) detector for code division multiple access (CDMA) multiuser detection with M-ary phase shift keying (M-ary PSK) in the large system limit by the replica method. The obtained theory agrees with computer simulation reasonably well. We also derive the theory in the case of the large M limit and discuss the dependence of the properties of M-ary PSK CDMA communication on M. We show that the waterfall phenomenon occurs for both the finite and infinite values of M. We also show that a value of M for which the decoded phase information on the original user symbol becomes minimum exists. Furthermore, we discuss the relationship between the theory based on the replica method and that based on self-consistent signal-to-noise analysis (SCSNA).

  18. Conformation study of ɛ-cyclodextrin: Replica exchange molecular dynamics simulations.

    PubMed

    Khuntawee, Wasinee; Rungrotmongkol, Thanyada; Wolschann, Peter; Pongsawasdi, Piamsook; Kungwan, Nawee; Okumura, Hisashi; Hannongbua, Supot

    2016-05-01

    There is growing interest in large-ring cyclodextrins (LR-CDs) which are known to be good host molecules for larger ligands. The isolation of a defined size LR-CD is an essential prerequisite for studying their structural properties. Unfortunately the purification procedure of these substances turned out to be very laborious. Finally the problem could be circumvented by a theoretical consideration: the highly advantageous replica exchange molecular dynamics (REMD) simulation (particularly suitable for studies of conformational changes) offers an ideal approach for studying the conformational change of ɛ-cyclodextrin (CD10), a smaller representative of LR-CDs. Three carbohydrate force fields and three solvent models were tested. The conformational behavior of CD10 was analyzed in terms of the flip (turn) of the glucose subunits within the macrocyclic ring. In addition a ranking of conformations with various numbers of turns was preformed. Our findings might be also helpful in the temperature controlled synthesis of LR-CDs as well as other experimental conditions, in particular for the host-guest reaction. PMID:26877001

  19. Enhancing dry adhesives and replica molding with ethyl cyano-acrylate

    NASA Astrophysics Data System (ADS)

    Bovero, E.; Menon, C.

    2014-08-01

    The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation.

  20. Topography of Lipid Droplet-Associated Proteins: Insights from Freeze-Fracture Replica Immunogold Labeling

    PubMed Central

    Robenek, Horst; Buers, Insa; Robenek, Mirko J.; Hofnagel, Oliver; Ruebel, Anneke; Troyer, David; Severs, Nicholas J.

    2011-01-01

    Lipid droplets are not merely storage depots for superfluous intracellular lipids in times of hyperlipidemic stress, but metabolically active organelles involved in cellular homeostasis. Our concepts on the metabolic functions of lipid droplets have come from studies on lipid droplet-associated proteins. This realization has made the study of proteins, such as PAT family proteins, caveolins, and several others that are targeted to lipid droplets, an intriguing and rapidly developing area of intensive inquiry. Our existing understanding of the structure, protein organization, and biogenesis of the lipid droplet has relied heavily on microscopical techniques that lack resolution and the ability to preserve native cellular and protein composition. Freeze-fracture replica immunogold labeling overcomes these disadvantages and can be used to define at high resolution the precise location of lipid droplet-associated proteins. In this paper illustrative examples of how freeze-fracture immunocytochemistry has contributed to our understanding of the spatial organization in the membrane plane and function of PAT family proteins and caveolin-1 are presented. By revisiting the lipid droplet with freeze-fracture immunocytochemistry, new perspectives have emerged which challenge prevailing concepts of lipid droplet biology and may hopefully provide a timely impulse for many ongoing studies. PMID:21490801

  1. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    DOE PAGESBeta

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less

  2. Hydrogel Inverse Replicas of Breath Figures Exhibit Superoleophobicity Due to Patterned Surface Roughness.

    PubMed

    Arora, Jaspreet Singh; Cremaldi, Joseph C; Holleran, Mary Kathleen; Ponnusamy, Thiruselvam; He, Jibao; Pesika, Noshir S; John, Vijay T

    2016-02-01

    The wetting behavior of a surface depends on both its surface chemistry and the characteristics of surface morphology and topography. Adding structure to a flat hydrophobic or oleophobic surface increases the effective contact angle and thus the hydrophobicity or oleophobicity of the surface, as exemplified by the lotus leaf analogy. We describe a simple strategy to introduce micropatterned roughness on surfaces of soft materials, utilizing the template of hexagonally packed pores of breath figures as molds. The generated inverse replicas represent micron scale patterned beadlike protrusions on hydrogel surfaces. This added roughness imparts superoleophobic properties (contact angle of the order of 150° and greater) to an inherently oleophobic flat hydrogel surface, when submerged. The introduced pattern on the hydrogel surface changes morphology as it swells in water to resemble morphologies remarkably analogous to the compound eye. Analysis of the wetting behavior using the Cassie-Baxter approximation leads to estimation of the contact angle in the superoleophobic regime and in agreement with the experimental value. PMID:26752016

  3. Comparison of Replica Exchange Simulations of a Kinetically Trapped Protein Conformational State and its Native Form.

    PubMed

    Olson, Mark A; Legler, Patricia M; Goldman, Ellen R

    2016-03-10

    Recently an X-ray crystallographic structure of a single-domain antibody was reported with the protein chain trapped in a rare homodimeric form. One of the conformers appears to exhibit a misfolded region, and thus presumably the configurational stability is less favorable. To investigate whether simulation methods can detect any difference between the conformers and buttress the notion that one conformation is trapped on a pathway that incurs lower activation energy to unfold, adaptive temperature-based replica exchange simulations were applied to each chain to model conformational transitions. Simulation results found that the observed crystallographic difference between the two chains in the complementarity determining region CDR2 induces a stark distinction in conformational populations on the energy landscape. An appraisal of the energetic difference between the CDR2 conformations at 300 K revealed a localized order-disorder free-energy transition of roughly equivalent to two peptide hydrogen bonds in solution. It was also found that interconversion between the conformers is slower than the rate to unfold and that near an unfolding transition temperature one conformer retained a greater fraction of native-like contacts and energy over a longer time span before fully populating the denatured state, thus verifying the coexistence of a metastable conformation in the crystallographic assembly. PMID:26886055

  4. Efficient Determination of Relative Entropy Using Combined Temperature and Hamiltonian Replica-Exchange Molecular Dynamics.

    PubMed

    Jo, Sunhwan; Chipot, Christophe; Roux, Benoît

    2015-05-12

    The performance and accuracy of different simulation schemes for estimating the entropy inferred from free energy calculations are tested. The results obtained from replica-exchange molecular dynamics (REMD) simulations based on a simplified toy model are compared to exact numerically derived ones to assess accuracy and convergence. It is observed that the error in entropy estimation decreases by at least an order of magnitude and the quantities of interest converge much faster when the simulations are coupled via a temperature REMD algorithm and the trajectories from different temperatures are combined. Simulations with the infinite-swapping method and its variants show some improvement over the traditional nearest-neighbor REMD algorithms, but they are more computationally expensive. To test the methodologies further, the free energy profile for the reversible association of two methane molecules in explicit water was calculated and decomposed into its entropic and enthalpic contributions. Finally, a strategy based on umbrella sampling computations carried out via simultaneous temperature and Hamiltonian REMD simulations is shown to yield the most accurate entropy estimation. The entropy profile between the two methane molecules displays the characteristic signature of a hydrophobic interaction. PMID:26574422

  5. Deposition of ultrafine aerosols and thoron progeny in replicas of nasal airways of children

    SciTech Connect

    Cheng, Y.S.; Smith, S.M.; Yeh, H.C.; Kim, D.B.; Cheng, K.H.; Swift, D.L.

    1995-11-01

    The deposition efficiencies of ultrafine aerosols and thoron progeny were measured in youth nasal replicas. Clear polyester-resin casts of the upper airways of 1.5-yr-old (Cast G), 2.5-yr-old (Cast H), and 4-yr-old (Cast I) children were used. These casts were constructed from series of coronal magnetic resonance images of healthy children. Total deposition was measured for monodisperse NaCl or Ag aerosols between 0.0046 and 0.20 {mu}m in diameter at inspiratory and expiratory flow rates of 3, 7, and 16 L min{sup -1} (covering a near normal range of breathing rates for children of different ages). Deposition efficiency decreased with increasing particle size and flow rate, indicating that diffusion was the main deposition mechanism. Deposition efficiency also decreased with increasing age at a given flow rate and particle size. Based on information obtained and information on minute volumes for different age groups, we predicted nasal deposition in age groups ranging from 1.5- to 20-yr-old at resting breathing rates. Our results showed that the nasal deposition increases with decreasing age for a given particle size between 0.001 to 0.2 {mu}m. This information will be useful in deriving future population-wide models of respiratory tract dosimetry. 24 refs., 12 figs., 3 tabs.

  6. Replica exchange Monte Carlo simulation of human serum albumin-catechin complexes.

    PubMed

    Li, Yunqi; An, Lijia; Huang, Qingrong

    2014-09-01

    Replica exchange Monte Carlo simulation equipped with an orientation-enhanced hydrophobic interaction was utilized to study the impacts of molar ratio and ionic strength on the complex formation of human serum albumin (HSA) and catechin. Only a small amount of catechins was found to act as bridges in the formation of HSA-catechin complexes. Selective binding behavior was observed at low catechin to HSA molar ratio (R). Increase of catechin amount can suppress HSA self-aggregation and diminish the selectivity of protein binding sites. Strong saturation binding with short-range interactions was found to level off at around 4.6 catechins per HSA on average, while this number slowly increased with R when long-range interactions were taken into account. Meanwhile, among the three rings of catechin, the 3,4-dihydroxyphenyl (B-ring) shows the strongest preference to bind HSA. Neither the aggregation nor the binding sites of the HSA-catechin complex was sensitive to ionic strength, suggesting that the electrostatic interaction is not a dominant force in such complexes. These results provide a further molecular level understanding of protein-polyphenol binding, and the strategy employed in this work shows a way to bridge phase behaviors at macroscale and the distribution of binding sites at residue level. PMID:25111890

  7. Audio-visual integration of speech with time-varying sine wave speech replicas

    NASA Astrophysics Data System (ADS)

    Tuomainen, Jyrki; Andersen, Tobias; Tiippana, Kaisa; Sams, Mikko

    2002-11-01

    We tested whether listener's knowledge about the nature of the auditory stimuli had an effect on audio-visual (AV) integration of speech. First, subjects were taught to categorize two sine-wave (sw) replicas of the real speech tokens /omso/ and /onso/ into two arbitrary nonspeech categories without knowledge of the speech-like nature of the sounds. A test with congruent and incongruent AV-stimulus condition (together with auditory-only presentations of the sw stimuli) demonstrated no AV integration, but instead close to perfect categorization of stimuli in the two arbitrary categories according to the auditory presentation channel. Then, the same subjects (of which most were still under the impression that the sw-stimuli were nonspeech sounds) were taught to categorize the sw stimuli as /omso/ and /onso/, and again tested with the same AV stimuli as used in the nonspeech sw condition. This time, subjects showed highly reliable AV integration similar to integration obtained with real speech stimuli in a separate test. We suggest that AV integration only occurs when subject are in a so-called ''speech mode.''

  8. Statics, metastable states, and barriers in protein folding: A replica variational approach

    NASA Astrophysics Data System (ADS)

    Takada, Shoji; Wolynes, Peter G.

    1997-04-01

    Protein folding is analyzed using a replica variational formalism to investigate some free energy landscape characteristics relevant for dynamics. A random contact interaction model that satisfies the minimum frustration principle is used to describe the coil-globule transition (characterized by TCG), glass transitions (by TA and TK), and folding transition (by TF). Trapping on the free energy landscape is characterized by two characteristic temperatures, one dynamic (TA) and the other static [TK (TA>TK)], which are similar to those found in mean field theories of the Potts glass. (i) Above TA, the free energy landscape is monotonous and the polymer is melted both dynamically and statically. (ii) Between TA and TK, the melted phase is still dominant thermodynamically, but frozen metastable states, exponentially large in number, appear. (iii) A few lowest minima become thermodynamically dominant below TK, where the polymer is totally frozen. In the temperature range between TA and TK, barriers between metastable states are shown to grow with decreasing temperature, suggesting super-Arrhenius behavior in a sufficiently large system. Due to evolutionary constraints on fast folding, the folding temperature TF is expected to be higher than TK, but may or may not be higher than TA. Diverse scenarios of the folding kinetics are discussed based on phase diagrams that take into account the dynamical transition, as well as the static ones.

  9. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy.

    PubMed

    Wille, Marie-Luise; Langton, Christian M

    2016-02-01

    The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment. PMID:26455950

  10. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP\\H-REMD) for absolute ligand binding free energy calculations.

    SciTech Connect

    Jiang, W.; Roux, B.

    2010-09-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters '{lambda}' can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor {lambda} in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the interconversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter {lambda} and the boosting potential, in an extended dual array of coupled {lambda}- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of the T4 lysozyme was calculated. The tests demonstrate that the dual {lambda}-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  11. An investigation of the liquid to glass transition using integral equations for the pair structure of coupled replicae

    SciTech Connect

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2014-11-07

    Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a “soft-sphere” fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ε{sub 12}, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ε{sub 12} = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ε{sub 12}, two “glass” branches G{sub 1} and G{sub 2} are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ε{sub 12} → 0. Branch G{sub 2} is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical “ideal glass” phase. Branch G{sub 1} exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G{sub 2} branch. The free energies of the L and G{sub 2} branches are found to intersect at an alleged “random first-order transition” (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts.

  12. An investigation of the liquid to glass transition using integral equations for the pair structure of coupled replicae.

    PubMed

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2014-11-01

    Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a "soft-sphere" fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ɛ12, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ɛ12 = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ɛ12, two "glass" branches G1 and G2 are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ɛ12 → 0. Branch G2 is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical "ideal glass" phase. Branch G1 exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G2 branch. The free energies of the L and G2 branches are found to intersect at an alleged "random first-order transition" (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts. PMID:25381529

  13. Predictions of Tertiary Structures of α-Helical Membrane Proteins by Replica-Exchange Method with Consideration of Helix Deformations

    NASA Astrophysics Data System (ADS)

    Urano, Ryo; Kokubo, Hironori; Okamoto, Yuko

    2015-08-01

    We propose an improved prediction method of the tertiary structures of α-helical membrane proteins based on the replica-exchange method by taking into account helix deformations. Our method has wide applications because transmembrane helices of native membrane proteins are often distorted. In order to test the effectiveness of the present method, we applied it to the structure predictions of glycophorin A and phospholamban. The results were in good agreement with experiments.

  14. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. Taken from the water, the silhouettes of the three sailing ships appear in the foreground with OV-105 atop the mobile launcher platform barely visible in the distant background. View provided by KSC with alternate number KSC-92PC-976.

  15. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM

    SciTech Connect

    Poorhaydari, Kioumars . E-mail: kioumars@ualberta.ca; Ivey, Douglas G.

    2007-06-15

    In this paper, the application of carbon extraction replicas in grain-size measurements is introduced and discussed. Modern high-strength microalloyed steels, used as structural or pipeline materials, have very small grains with substructures. Replicas used in transmission electron microscopes can resolve the grain boundaries and can be used for systematic measurement of grain size in cases where the small size of the grains pushes the resolution of conventional optical microscopes. The grain-size variations obtained from replicas are compared with those obtained from optical and scanning electron microscopy. An emphasis is placed on the importance of using the correct technique for imaging and the optimal magnification. Grain-size measurements are used for estimation of grain-boundary strengthening contribution to yield strength. The variation in grain size is also correlated with hardness in the base metal of several microalloyed steels, as well as the fine-grained heat-affected zone of a weld structure with several heat inputs.

  16. The Effect of Non-equispaced Sampling Instants, Sub-period Record Epochs, and Timebase Gain on the Information Content of Discretized Replicas of Periodic Signals

    PubMed Central

    Paulter, N. G.

    2012-01-01

    The effect of non-equispaced sampling instants and timebase gain on the information content of the discretized replica of a periodic signal is examined. The effect of the duration of record epochs that are not equal to an integer number of signal periods on the information content of the discretized replica is also explored. A general model describing sampled and windowed data is provided and compared to related models developed by other researchers. PMID:26900517

  17. Quantum Spin Hall phase in multilayer graphene

    NASA Astrophysics Data System (ADS)

    Garcia, Noel; Lado, Jose Luis; Fernandez-Rossier, Joaquin; Theory of Nanostructures Team

    2015-03-01

    We address the question of whether multilayer graphene systems are Quantum Spin Hall (QSH) insulators. Since interlayer coupling coples pz orbitals to s orbitals of different layers and Spin-Orbit (SO) couples pz orbitals with px and py of opposite spins, new spins mixing channels appear in the multilayer scenario that were not present in the monolayer. These new spin-mixing channels cast a doubt on the validity of the spin-conserving Kane-Mele model for multilayers and motivates our choice of a four orbital tight-binding model in the Slater-Koster approximation with intrinsic Spin-Orbit interaction. To completely determine if the QSH phase is present we calculate for different number of layers both the Z2 invariant for different stackings (only for inversion symmetric systems), and the density of states at the edge of semi-infinite graphene ribbon with armchair termination. We find that systems with even number of layers are normal insulators while systems with odd number of layers are QSH insulators, regardless of the stacking. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  18. Kinetic theory of spin-polarized systems in electric and magnetic fields with spin-orbit coupling. I. Kinetic equation and anomalous Hall and spin-Hall effects

    NASA Astrophysics Data System (ADS)

    Morawetz, K.

    2015-12-01

    The coupled kinetic equation for density and spin Wigner functions is derived including spin-orbit coupling, electric and magnetic fields, and self-consistent Hartree mean fields suited for SU(2) transport. The interactions are assumed to be with scalar and magnetic impurities as well as scalar and spin-flip potentials among the particles. The spin-orbit interaction is used in a form suitable for solid state physics with Rashba or Dresselhaus coupling, graphene, extrinsic spin-orbit coupling, and effective nuclear matter coupling. The deficiencies of the two-fluid model are worked out consisting of the appearance of an effective in-medium spin precession. The stationary solution of all these systems shows a band splitting controlled by an effective medium-dependent Zeeman field. The self-consistent precession direction is discussed and a cancellation of linear spin-orbit coupling at zero temperature is reported. The precession of spin around this effective direction caused by spin-orbit coupling leads to anomalous charge and spin currents in an electric field. Anomalous Hall conductivity is shown to consist of the known results obtained from the Kubo formula or Berry phases and a symmetric part interpreted as an inverse Hall effect. Analogously the spin-Hall and inverse spin-Hall effects of spin currents are discussed which are present even without magnetic fields showing a spin accumulation triggered by currents. The analytical dynamical expressions for zero temperature are derived and discussed in dependence on the magnetic field and effective magnetizations. The anomalous Hall and spin-Hall effect changes sign at higher than a critical frequency dependent on the relaxation time.

  19. Symmetric Galerkin boundary formulations employing curved elements

    NASA Technical Reports Server (NTRS)

    Kane, J. H.; Balakrishna, C.

    1993-01-01

    Accounts of the symmetric Galerkin approach to boundary element analysis (BEA) have recently been published. This paper attempts to add to the understanding of this method by addressing a series of fundamental issues associated with its potential computational efficiency. A new symmetric Galerkin theoretical formulation for both the (harmonic) heat conduction and the (biharmonic) elasticity problem that employs regularized singular and hypersingular boundary integral equations (BIEs) is presented. The novel use of regularized BIEs in the Galerkin context is shown to allow straightforward incorporation of curved, isoparametric elements. A symmetric reusable intrinsic sample point (RISP) numerical integration algorithm is shown to produce a Galerkin (i.e., double) integration strategy that is competitive with its counterpart (i.e., singular) integration procedure in the collocation BEA approach when the time saved in the symmetric equation solution phase is also taken into account. This new formulation is shown to be capable of employing hypersingular BIEs while obviating the requirement of C 1 continuity, a fact that allows the employment of the popular continuous element technology. The behavior of the symmetric Galerkin BEA method with regard to both direct and iterative equation solution operations is also addressed. A series of example problems are presented to quantify the performance of this symmetric approach, relative to the more conventional unsymmetric BEA, in terms of both accuracy and efficiency. It is concluded that appropriate implementations of the symmetric Galerkin approach to BEA indeed have the potential to be competitive with, if not superior to, collocation-based BEA, for large-scale problems.

  20. Matrix isolation ESR spectroscopy and magnetic anisotropy of D{sub 3h} symmetric septet trinitrenes

    SciTech Connect

    Misochko, Eugenii Ya.; Akimov, Alexander V.; Masitov, Artem A.; Korchagin, Denis V.; Aldoshin, Sergei M.; Chapyshev, Sergei V.

    2013-05-28

    The fine-structure (FS) parameters D of a series of D{sub 3h} symmetric septet trinitrenes were analyzed theoretically using density functional theory (DFT) calculations and compared with the experimental D values derived from ESR spectra. ESR studies show that D{sub 3h} symmetric septet 1,3,5-trichloro-2,4,6-trinitrenobenzene with D=-0.0957 cm{sup -1} and E= 0 cm{sup -1} is the major paramagnetic product of the photolysis of 1,3,5-triazido-2,4,6-trichlorobenzene in solid argon matrices at 15 K. Trinitrenes of this type display in the powder X-band ESR spectra intense Z{sub 1}-transition at very low magnetic fields, the position of which allows one to precisely calculate the parameter D of such molecules. Thus, our revision of the FS parameters of well-known 1,3,5-tricyano-2,4,6-trinitrenobenzene [E. Wasserman, K. Schueller, and W. A. Yager, Chem. Phys. Lett. 2, 259 (1968)] shows that this trinitrene has Double-Vertical-Line D Double-Vertical-Line = 0.092 cm{sup -1} and E= 0 cm{sup -1}. DFT calculations reveal that, unlike C{sub 2v} symmetric septet trinitrenes, D{sub 3h} symmetric trinitrenes have the same orientations of the spin-spin coupling tensor D-caret{sub SS} and the spin-orbit coupling tensor D-caret{sub SOC} and, as a result, have negative signs for both the D{sub SS} and D{sub SOC} values. The negative magnetic anisotropy of septet 2,4,6-trinitrenobenzenes is considerably strengthened on introduction of heavy atoms in the molecules, owing to an increase in contributions of various excitation states to the D{sub SOC} term.

  1. Self-spin-controlled rotation of spatial states of a Dirac electron in a cylindrical potential via spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Leary, C. C.; Reeb, D.; Raymer, M. G.

    2008-10-01

    Solution of the Dirac equation predicts that when an electron with nonzero orbital angular momentum (OAM) propagates in a cylindrically symmetric potential, its spin and orbital degrees of freedom interact, causing the electron's phase velocity to depend on whether its spin angular momentum (SAM) and OAM vectors are oriented parallel or anti-parallel with respect to each other. This spin-orbit splitting of the electronic dispersion curves can result in a rotation of the electron's spatial state in a manner controlled by the electron's own spin z-component value. These effects persist at non-relativistic velocities. To clarify the physical origin of this effect, we compare solutions of the Dirac equation to perturbative predictions of the Schrödinger-Pauli equation with a spin-orbit term, using the standard Foldy-Wouthuysen Hamiltonian. This clearly shows that the origin of the effect is the familiar relativistic spin-orbit interaction.

  2. Zero-conductance resonances and spin polarizations in three-terminal rings in the presence of spin-orbit coupling

    SciTech Connect

    Zhai, Li-Xue; Wang, Yan; Liu, Jian-Jun

    2014-11-28

    Spin dependent transport in one-dimensional (1D) three-terminal rings is investigated in the presence of the Rashba spin-orbit coupling (RSOC). We focus on zero-conductance resonances and spin polarizations. For these purposes, the transmission functions are derived analytically. The total conductances are analyzed in the complex energy plane with a focus on the zero-pole structure characteristic of transmission (anti)resonances. The spin polarizations in symmetrically and asymmetrically coupled three-terminal rings are studied as a function of the incident electron energy. It is found that in the absence of the RSOC there are three kinds of conductance zeros. In the presence of the RSOC, the zeros of the first and the third kinds are lifted, while some of the second kind persist. The lifting of the conductance zeros is related to the breaking of the spin-reversal symmetry, and the lifted conductance zeros evolve into spin polarization zeros.

  3. Spin pumping and spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Saitoh, Eiji

    2012-02-01

    Utilization of a spin current, a flow of electrons' spins in a solid, is the key technology in spintronics that will allow the achievement of efficient magnetic memories and computing devices. In this technology, generation and detection of spin currents are necessary. Here, we review inverse spin-Hall effect and spin-current-generation phenomena recently discovered both in metals and insulators: inverse spin-Hall effect, spin pumping, and spin Seebeck effect. (1)Spin pumping and spin torque in a Mott insulator system We found that spin pumping and spin torque effects appear also at an interface between Pt and an insulator YIG.. This means that we can connect a spin current carried by conduction electrons and a spin-wave spin current flowing in insulators. We demonstrate electric signal transmission by using these effects and interconversion of the spin currents [1]. (2) Spin Seebeck effect We have observed, by using the inverse spin-Hall effect [2], spin voltage generation from a heat current in a NiFe, named the spin-Seebeck effect [3]. Surprisingly, spin-Seebeck effect was found to appear even in insulators [4], a situation completely different from conventional charge Seebeck effect. The result implies an important role of elementary excitation in solids beside charge in the spin Seebeck effect. In the talk, we review the recent progress of the research on this effect. This research is collaboration with K. Ando, K. Uchida, Y. Kajiwara, S. Maekawa, G. E. W. Bauer, S. Takahashi, and J. Ieda. [4pt] [1] Y. Kajiwara and E. Saitoh et al. Nature 464 (2010) 262. [0pt] [2] E. Saitoh et al., Appl. Phys. Lett. 88 (2006) 182509. [0pt] [3] K. Uchida and E. Saitoh et al., Nature 455 (2008)778. [0pt] [4] K. Uchida and E. Saitoh et al.,Nature materials 9 (2010) 894 - 897.

  4. Disorder-promoted C4-symmetric magnetic order in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Hoyer, Mareike; Fernandes, Rafael M.; Levchenko, Alex; Schmalian, Jörg

    2016-04-01

    In most iron-based superconductors, the transition to the magnetically ordered state is closely linked to a lowering of structural symmetry from tetragonal (C4) to orthorhombic (C2). However, recently, a regime of C4-symmetric magnetic order has been reported in certain hole-doped iron-based superconductors. This novel magnetic ground state can be understood as a double-Q spin density wave characterized by two order parameters M1 and M2 related to each of the two Q vectors. Depending on the relative orientations of the order parameters, either a noncollinear spin-vortex crystal or a nonuniform charge-spin density wave could form. Experimentally, Mössbauer spectroscopy, neutron scattering, and muon spin rotation established the latter as the magnetic configuration of some of these optimally hole-doped iron-based superconductors. Theoretically, low-energy itinerant models do support a transition from single-Q to double-Q magnetic order, but with nearly degenerate spin-vortex crystal and charge-spin density wave states. In fact, extensions of these low-energy models including additional electronic interactions tip the balance in favor of the spin-vortex crystal, in apparent contradiction with the recent experimental findings. In this paper we revisit the phase diagram of magnetic ground states of low-energy multiband models in the presence of weak disorder. We show that impurity scattering not only promotes the transition from C2 to C4-magnetic order, but it also favors the charge-spin density wave over the spin-vortex crystal phase. Additionally, in the single-Q phase, our analysis of the nematic coupling constant in the presence of disorder supports the experimental finding that the splitting between the structural and stripe-magnetic transition is enhanced by disorder.

  5. Emergent spin

    SciTech Connect

    Creutz, Michael

    2014-03-15

    Quantum mechanics and relativity in the continuum imply the well known spin–statistics connection. However for particles hopping on a lattice, there is no such constraint. If a lattice model yields a relativistic field theory in a continuum limit, this constraint must “emerge” for physical excitations. We discuss a few models where a spin-less fermion hopping on a lattice gives excitations which satisfy the continuum Dirac equation. This includes such well known systems such as graphene and staggered fermions. -- Highlights: •The spin–statistics theorem is not required for particles on a lattice. •Spin emerges dynamically when spinless fermions have a relativistic continuum limit. •Graphene and staggered fermions are examples of this phenomenon. •The phenomenon is intimately tied to chiral symmetry and fermion doubling. •Anomaly cancellation is a crucial feature of any valid lattice fermion action.

  6. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas

    NASA Astrophysics Data System (ADS)

    Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia

    2014-09-01

    We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm-1 and an increase in bands in the region 1730-1680 cm-1 due to carbonyl stretching. We found a broad band around 1635 cm-1 likely due to Cdbnd O stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm-1 was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork (“Racconta storie”, 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable.

  7. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-01

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876

  8. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas.

    PubMed

    Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia

    2014-09-15

    We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm(-1) and an increase in bands in the region 1730-1680 cm(-1) due to carbonyl stretching. We found a broad band around 1635 cm(-1) likely due to CO stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm(-1) was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork ("Racconta storie", 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable. PMID:24792194

  9. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.

    PubMed

    Nakano, Miki; Ebina, Kuniyoshi; Tanaka, Shigenori

    2013-04-01

    Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington's disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases. PMID:23288093

  10. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange.

    PubMed

    Lee, Michael S; Olson, Mark A

    2010-08-10

    Computer simulations are increasingly being used to predict thermodynamic observables for folding small proteins. Key to continued progress in this area is the development of algorithms that accelerate conformational sampling. Temperature-based replica exchange (ReX) is a commonly used protocol whereby simulations at several temperatures are simultaneously performed and temperatures are exchanged between simulations via a Metropolis criterion. Another method, self-guided Langevin dynamics (SGLD), expedites conformational sampling by accelerating low-frequency, large-scale motions through the addition of an ad hoc momentum memory term. In this work, we combined these two complementary techniques and compared the results against conventional ReX formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All simulations were performed with CHARMM using the PARAM22+CMAP force field and the generalized Born molecular volume implicit solvent model. While SGLD-ReX does not fold up the protein significantly faster than the two conventional ReX approaches, there is some evidence that the method improves sampling convergence by reducing topological folding barriers between energetically similar near-native states. Unlike MD-ReX and LD-ReX, SGLD-ReX predicts melting temperatures, heat capacity curves, and folding free energies that are closer in agreement to the experimental observations. However, this favorable result may be due to distortions of the relative free energies of the folded and unfolded conformational basins caused by the ad hoc force term in the SGLD model. PMID:26613500

  11. Visualization of foam/oil in a new, high resolution, sandstone replica micromodel

    SciTech Connect

    Hornbrook, J.W.; Pettit, P.; Castanier, L.M.

    1992-08-01

    A new micromodel construction procedure has been developed as a tool to better understand and model pore level events in porous media. The construction procedure allows for the almost exact two-dimensional replication of any porous medium of interest. For the case presented here a berea sandstone was chosen. Starting with a thin section of the porous medium of interest, a two-dimensional replica of the flow path is etched into a silicon wafer to a prescribed depth. Bonding the etched pattern to a flat glass plate isolates the flow path and allows the pore level flow events to be studied. The high resolution micromodels constructed with the new procedure were used to study the effects of oil on the displacement characteristics of foam in a porous medium of intermediate wettability. A crude oil was injected into the micromodel, partially filling it. The oil was then produced under two different displacement schemes. First, a slug of surfactant was used. Second, foam generated in situ, far from the oil bank, was used to displace the oil. Qualitative observations indicate significant differences at the interface between the oil and the displacing phase. When slug surfactant injection is used, the oil appears to wet the surface. The oil displacement process is efficient due to a large fractional production of oil from the large pores before the surfactant breaks through. When in-situ foam is the displacing phase, the foam is observed to break near the oil interface. The liquid phase in the foam becomes the wetting phase. It is observed to reside in the small pores and to coat most of the grain surfaces. Displacement of oil under this injection scheme is inefficient due to transfer of the surfactant along grain edges and subsequent early breakthrough of the surfactant.

  12. Communication-avoiding symmetric-indefinite factorization

    SciTech Connect

    Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro

    2014-11-13

    We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTLTPT where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.

  13. Communication-avoiding symmetric-indefinite factorization

    DOE PAGESBeta

    Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; Dongarra, Jack; Druinsky, Alex; Peled, Inon; Schwartz, Oded; Toledo, Sivan; Yamazaki, Ichitaro

    2014-11-13

    We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTLTPT where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. As a result,more » the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less

  14. The Robust Assembly of Small Symmetric Nanoshells

    PubMed Central

    Wagner, Jef; Zandi, Roya

    2015-01-01

    Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253

  15. The Robust Assembly of Small Symmetric Nanoshells.

    PubMed

    Wagner, Jef; Zandi, Roya

    2015-09-01

    Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine. PMID:26331253

  16. Symmetric extension of two-qubit states

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Ji, Zhengfeng; Kribs, David; Lütkenhaus, Norbert; Zeng, Bei

    2014-09-01

    A bipartite state ρAB is symmetric extendible if there exists a tripartite state ρABB' whose AB and AB' marginal states are both identical to ρAB. Symmetric extendibility of bipartite states is of vital importance in quantum information because of its central role in separability tests, one-way distillation of Einstein-Podolsky-Rosen pairs, one-way distillation of secure keys, quantum marginal problems, and antidegradable quantum channels. We establish a simple analytic characterization for symmetric extendibility of any two-qubit quantum state ρAB; specifically, tr(ρB2)≥tr(ρAB2)-4√ detρAB . As a special case we solve the bosonic three-representability problem for the two-body reduced density matrix.

  17. CAST: Contraction Algorithm for Symmetric Tensors

    SciTech Connect

    Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei; Stock, Kevin; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy

    2014-09-22

    Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution that can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.

  18. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.

  19. Multi-Q hexagonal spin density waves and dynamically generated spin-orbit coupling: Time-reversal invariant analog of the chiral spin density wave

    NASA Astrophysics Data System (ADS)

    Venderbos, J. W. F.

    2016-03-01

    We study hexagonal spin-channel ("triplet") density waves with commensurate M -point propagation vectors. We first show that the three Q =M components of the singlet charge density and charge-current density waves can be mapped to multicomponent Q =0 nonzero angular momentum order in three dimensions (3D) with cubic crystal symmetry. This one-to-one correspondence is exploited to define a symmetry classification for triplet M -point density waves using the standard classification of spin-orbit coupled electronic liquid crystal phases of a cubic crystal. Through this classification we naturally identify a set of noncoplanar spin density and spin-current density waves: the chiral spin density wave and its time-reversal invariant analog. These can be thought of as 3 DL =2 and 4 spin-orbit coupled isotropic β -phase orders. In contrast, uniaxial spin density waves are shown to correspond to α phases. The noncoplanar triple-M spin-current density wave realizes a novel 2 D semimetal state with three flavors of four-component spin-momentum locked Dirac cones, protected by a crystal symmetry akin to nonsymmorphic symmetry, and sits at the boundary between a trivial and topological insulator. In addition, we point out that a special class of classical spin states, defined as classical spin states respecting all lattice symmetries up to global spin rotation, are naturally obtained from the symmetry classification of electronic triplet density waves. These symmetric classical spin states are the classical long-range ordered limits of chiral spin liquids.

  20. Self-bending symmetric cusp beams

    SciTech Connect

    Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan

    2015-12-07

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  1. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  2. Symmetric and irregular aromatic silicon nanoclusters

    NASA Astrophysics Data System (ADS)

    Vach, Holger

    2014-10-01

    Based on first-principles calculations, we predict the existence of two classes of aromatic hydrogenated silicon nanoclusters. Despite their completely different structure, they both exhibit quite comparable physical and chemical properties due to the common presence of overcoordinated silicon atoms inducing extensive electron delocalization. Due to a complex interplay between strain relaxation and aromatic stabilization, apparently ill-defined nanoclusters might sometimes turn out to be more stable than their symmetric counterparts. Both symmetric and irregular aromatic silicon nanoclusters are extremely stable at ambient conditions and might readily find applications in future nano-technological devices.

  3. Observational tests of Baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.

  4. Self-bending symmetric cusp beams

    NASA Astrophysics Data System (ADS)

    Gong, Lei; Liu, Wei-Wei; Ren, Yu-Xuan; Lu, Yao; Li, Yin-Mei

    2015-12-01

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  5. Familial multiple symmetric lipomatosis with peripheral neuropathy.

    PubMed

    Chalk, C H; Mills, K R; Jacobs, J M; Donaghy, M

    1990-08-01

    We describe coexisting peripheral neuropathy and multiple symmetric lipomatosis in 4 of 7 siblings. The absence of either condition in 3 other generations of this family suggests autosomal recessive inheritance. None of the affected siblings were alcoholic, a factor some have proposed to explain the frequent occurrence of peripheral neuropathy in sporadic multiple symmetric lipomatosis. Serum lipid studies, including apoprotein A levels, were normal. Sural nerve biopsy from 1 patient showed nerve fiber loss, predominantly affecting large myelinated fibers. The relationship between myelin sheath thickness and axon diameter was normal, arguing that this neuropathy is not due to primary axonal atrophy. PMID:2166247

  6. Symmetric splitting of very light systems

    SciTech Connect

    Grotowski, K.; Majka, Z.; Planeta, R.; Szczodrak, M.; Chan, Y.; Guarino, G.; Moretto, L.G.; Morrissey, D.J.; Sobotka, L.G.; Stokstad, R.G.; Tserruya, I.; Wald, S.; Wozniak, G.J.

    1984-10-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV /sup 12/C+ /sup 40/Ca, 141 MeV /sup 9/Be+ /sup 40/Ca, and 153 MeV /sup 6/Li+ /sup 40/Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics.

  7. Numerical Analysis of the Symmetric Methods

    NASA Astrophysics Data System (ADS)

    Xu, Ji-Hong; Zhang, A.-Li

    1995-03-01

    Aimed at the initial value problem of the particular second-order ordinary differential equations,y ″=f(x, y), the symmetric methods (Quinlan and Tremaine, 1990) and our methods (Xu and Zhang, 1994) have been compared in detail by integrating the artificial earth satellite orbits in this paper. In the end, we point out clearly that the integral accuracy of numerical integration of the satellite orbits by applying our methods is obviously higher than that by applying the same order formula of the symmetric methods when the integration time-interval is not greater than 12000 periods.

  8. Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions

    DOE PAGESBeta

    Lin, Shi-Zeng; Hayami, Satoru

    2016-02-01

    Magnetic skyrmions have attracted considerable attention recently for their huge potential in spintronic applications. Generally skyrmions are big compared to the atomic lattice constant, which allows for the Ginzburg-Landau type description in the continuum limit. This description successfully captures the main experimental observations on skyrmions in B20 compound without inversion symmetry. Skyrmions can also exist in inversion-symmetric magnets with competing interactions. Here, we derive a general Ginzburg-Landau theory for skyrmions in these magnets valid in the long-wavelength limit. We study the unusual static and dynamical properties of skyrmions based on the derived Ginzburg-Landau theory. We show that an easy axismore » spin anisotropy is sufficient to stabilize a skyrmion lattice. Interestingly, the skyrmion in inversion-symmetric magnets has a new internal degree of freedom associated with the rotation of helicity, i.e., the “spin” of the skyrmion as a particle, in addition to the usual translational motion of skyrmions (orbital motion). The orbital and spin degree of freedoms of an individual skyrmion can couple to each other, and give rise to unusual behavior that is absent for the skyrmions stabilized by the Dzyaloshinskii-Moriya interaction. Finally, the derived Ginzburg-Landau theory provides a convenient and general framework to discuss skyrmion physics and will facilitate the search for skyrmions in inversion-symmetric magnets.« less

  9. Spin-one matter fields

    NASA Astrophysics Data System (ADS)

    Napsuciale, M.; Rodríguez, S.; Ferro-Hernández, Rodolfo; Gómez-Ávila, Selim

    2016-04-01

    Spin-one matter fields are relevant both for the description of hadronic states and as potential extensions of the Standard Model. In this work we present a formalism for the description of massive spin-one fields transforming in the (1 ,0 )⊕(0 ,1 ) representation of the Lorentz group, based on the covariant projection onto parity eigenspaces and Poincaré orbits. The formalism yields a constrained dynamics. We solve the constraints and perform the canonical quantization accordingly. This formulation uses the recent construction of a parity-based covariant basis for matrix operators acting on the (j ,0 )⊕(0 ,j ) representations. The algebraic properties of the covariant basis play an important role in solving the constraints and allowing the canonical quantization of the theory. We study the chiral structure of the theory and conclude that it is not chirally symmetric in the massless limit, hence it is not possible to have chiral gauge interactions. However, spin-one matter fields can have vector gauge interactions. Also, the dimension of the field makes self-interactions naively renormalizable. Using the covariant basis, we classify all possible self-interaction terms.

  10. Synthesis of hierarchically porous structured CaCO3 and TiO2 replicas by sol-gel method using lotus root as template.

    PubMed

    Chen, Jui-Yi; Yang, Ching-Yu; Chen, Po-Yu

    2016-10-01

    Intensive attention has been put in mimicking the morphologies in nature owing to their uniqueness, complexity, and diversity. One of the effective approaches to mimic bio-morphologies is through biotemplating - the technique of using biological structures as template to reproduce intricate structure in other forms of materials. This work presents a facile sol-gel technique that can be widely used to convert various carbon-rich bio-structures into different materials. Lotus root, a biomorphic template with high porosity at varying length scales, was selected as the example to demonstrate this approach. The experiment was conducted by infiltrating precursors - titanium (IV) n-butoxide (TnBT) and acetic acid calcium solution - into the lotus root template under vacuum system, followed by calcination. After the treatment, the replicas were calcite CaCO3 and anatase TiO2. In both CaCO3 and TiO2 replicas, the intact structure of the template was preserved. In spite of the overall similarity of the CaCO3 and TiO2 lotus root replicas, some respective differences were found. TiO2 replica was covered with nanowire bundles of 100-200nm in diameter, formed by preferable crystallization of particles, while CaCO3 replica presented the gradient-distributed pores of 10-100μm, which greatly resembled the microstructure of lotus root template. In the BET result, TiO2 replica was mesoporous structure with pores centralizing in 3-4nm. On the other hand, CaCO3 replica had pores in a wider distribution ranging from micro to macro scale. In addition, the surface area was greatly enhanced in both cases. The synthesized materials with hierarchical biomorphic structures may have great potential for purification applications due to their large specific surface area, photocatalytic property, and high adsorption rate. PMID:27287102

  11. Dissociative recombination of highly symmetric polyatomic ions.

    PubMed

    Douguet, Nicolas; Orel, Ann E; Greene, Chris H; Kokoouline, Viatcheslav

    2012-01-13

    A general first-principles theory of dissociative recombination is developed for highly symmetric molecular ions and applied to H(3)O(+) and CH(3)(+), which play an important role in astrophysical, combustion, and laboratory plasma environments. The theoretical cross sections obtained for the dissociative recombination of the two ions are in good agreement with existing experimental data from storage ring experiments. PMID:22324682

  12. Onthe static and spherically symmetric gravitational field

    NASA Astrophysics Data System (ADS)

    Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra

    Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.

  13. Small diameter symmetric networks from linear groups

    NASA Technical Reports Server (NTRS)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  14. Amplituhedron Cells and Stanley Symmetric Functions

    NASA Astrophysics Data System (ADS)

    Lam, Thomas

    2016-05-01

    The amplituhedron was recently introduced in the study of scattering amplitudes in {N = 4} super Yang-Mills. We compute the cohomology class of a tree amplituhedron subvariety of the Grassmannian to be the truncation of an affine Stanley symmetric function.

  15. Symmetric stiffness matrix for incompressible hyperelastic materials

    NASA Technical Reports Server (NTRS)

    Takamatsu, T.; Stricklin, J. A.; Key, J. E.

    1976-01-01

    Symmetric structure matrices are derived for solving plane strain and axisymmetric problems involving incompressible hyperelastic materials. An infinite hollow cylinder subjected to internal pressure is considered as an example. Displacement and hydrostatic pressure profiles are calculated using the Newton-Raphson iteration technique. The results are in good agreement with the exact curves.

  16. Super-symmetric informationally complete measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun

    2015-11-01

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg-Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg-Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  17. Conformal cylindrically symmetric spacetimes in modified gravity

    NASA Astrophysics Data System (ADS)

    Türkog˜lu, Murat Metehan; Dog˜ru, Melis Ulu

    2015-11-01

    We investigate cylindrically symmetric spacetimes in the context of f(R) gravity. We firstly attain conformal symmetry of the cylindrically symmetric spacetime. We obtain solutions to use features of the conformal symmetry, field equations and their solutions for cylindrically symmetric spacetime filled with various cosmic matters such as vacuum state, perfect fluid, anisotropic fluid, massive scalar field and their combinations. With the vacuum state solutions, we show that source of the spacetime curvature is considered as Casimir effect. Casimir force for given spacetime is found using Wald’s axiomatic analysis. We expose that the Casimir force for Boulware, Hartle-Hawking and Unruh vacuum states could have attractive, repulsive and ineffective features. In the perfect fluid state, we show that matter form of the perfect fluid in given spacetime must only be dark energy. Also, we offer that potential of massive and massless scalar field are developed as an exact solution from the modified field equations. All solutions of field equations for vacuum case, perfect fluid and scalar field give a special f(R) function convenient to Λ-CDM model. In addition to these solutions, we introduce conformal cylindrical symmetric solutions in the cases of different f(R) models. Finally, geometrical and physical results of the solutions are discussed.

  18. Miniaturized symmetrization optics for junction laser

    NASA Technical Reports Server (NTRS)

    Hammer, Jacob M. (Inventor); Kaiser, Charlie J. (Inventor); Neil, Clyde C. (Inventor)

    1982-01-01

    Miniaturized optics comprising transverse and lateral cylindrical lenses composed of millimeter-sized rods with diameters, indices-of-refraction and spacing such that substantially all the light emitted as an asymmetrical beam from the emitting junction of the laser is collected and translated to a symmetrical beam.

  19. The deuterium puzzle in the symmetric universe

    NASA Technical Reports Server (NTRS)

    Leroy, B.; Nicolle, J. P.; Schatzman, E.

    1973-01-01

    An attempt was made to use deuterium abundance in the symmetric universe to prove that no nucleosynthesis takes place during annihilation and therefore neutrons were loss before nucleosynthesis. Data cover nucleosynthesis during the radiative era, cross section estimates, maximum abundance of He-4 at the end of nucleosynthesis area, and loss rate.

  20. Resonances for Symmetric Two-Barrier Potentials

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2011-01-01

    We describe a method for the accurate calculation of bound-state and resonance energies for one-dimensional potentials. We calculate the shape resonances for symmetric two-barrier potentials and compare them with those coming from the Siegert approximation, the complex scaling method and the box-stabilization method. A comparison of the…

  1. Entanglement classes of symmetric Werner states

    SciTech Connect

    Lyons, David W.; Walck, Scott N.

    2011-10-15

    The symmetric Werner states for n qubits, important in the study of quantum nonlocality and useful for applications in quantum information, have a surprisingly simple and elegant structure in terms of tensor products of Pauli matrices. Further, each of these states forms a unique local unitary equivalence class, that is, no two of these states are interconvertible by local unitary operations.

  2. Symmetrical peripheral gangrene caused by septic shock

    PubMed Central

    Shimbo, Keisuke; Yokota, Kazunori; Miyamoto, Junpei; Okuhara, Yukako; Ochi, Mitsuo

    2015-01-01

    We report three cases of symmetrical peripheral gangrene (SPG) caused by septic shock. Most of sepsis survivors with SPG require amputation of the affected extremities. To preserve the length of the thumb and fingers, we performed surgical amputation and used flaps to cover the amputated peripheral extremities.

  3. Spin injection into semiconductors

    NASA Astrophysics Data System (ADS)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  4. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  5. 3D profilometric characterization of the aged skin surface using a skin replica and alicona Mex software.

    PubMed

    Pirisinu, Marco; Mazzarello, Vittorio

    2016-05-01

    The skin's surface is characterized by a network of furrows and wrinkles showing different height and depth. Different studies showed that processes such as aging, photo aging and cancer may alter dermal ultrastructure surface. The quantitative analysis of skin topography is a key point for understanding health condition of the skin. Here, for the first time, the skin fine structure was studied via a new approach where replica method was combined with Mex Alicona software and scanning electron microscopy (SEM). The skin texture of cheek and forearm were studied in 120 healthy sardinian volunteers. Patients were divided into three different aged groups. The skin areas of interest were reproduced by the silicone replica method, each replica was explored by SEM and digital images were taken. By using Mex Alicona software were created 3D imagine and a list of 24 surface texture parameters were obtained, of these the most representative were chosen in order to assess eventual changes between groups. The skin's texture of forearm and cheek showed a gradually loss of its typical polyhedric mesh with increasing age group. In particular, the photoexposition increased loss of dermal texture. At today, Alicona mex technology was exclusively used on palaeontology studies, our results showed that a deep analyze of skin texture was performed and support Mex alicona software as a new promising tool on dermatological research. This new analytical approach provided an easy and fast process to appreciate skin texture and its changes, by using high quality 3D dimension images. SCANNING 38:213-220, 2016. © 2015 Wiley Periodicals, Inc. PMID:26258960

  6. Influence of 8-Oxoguanosine on the Fine Structure of DNA Studied with Biasing-Potential Replica Exchange Simulations

    PubMed Central

    Kara, Mahmut; Zacharias, Martin

    2013-01-01

    Chemical modification or radiation can cause DNA damage, which plays a crucial role for mutagenesis of DNA, carcinogenesis, and aging. DNA damage can also alter the fine structure of DNA that may serve as a recognition signal for DNA repair enzymes. A new, advanced sampling replica-exchange method has been developed to specifically enhance the sampling of conformational substates in duplex DNA during molecular dynamics (MD) simulations. The approach employs specific biasing potentials acting on pairs of pseudodihedral angles of the nucleic acid backbone that are added in the replica simulations to promote transitions of the most common substates of the DNA backbone. The sampled states can exchange with a reference simulation under the control of the original force field. The application to 7,8-dihydro-8oxo-guanosine, one of the most common oxidative damage in DNA indicated better convergence of sampled states during 10 ns simulations compared to 20 times longer standard MD simulations. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions, including explicit solvent and ions. The biasing potential-replica exchange MD simulations indicated significant differences in the population of nucleic acid backbone substates in the case of 7,8-dihydro-8oxo-guanosine compared to a regular guanosine in the same sequence context. This concerns both the ratio of the B-DNA substates BI and BII associated with the backbone dihedral angles ε and ζ but also coupled changes in the backbone dihedral angles α and γ. Such differences may play a crucial role in the initial recognition of damaged DNA by repair enzymes. PMID:23473492

  7. Influence of 8-Oxoguanosine on the Fine Structure of DNA Studied with Biasing-Potential Replica Exchange Simulations

    SciTech Connect

    Kara, Mahmut; Zacharias, Martin W.

    2013-03-05

    Chemical modification or radiation can cause DNA damage, which plays a crucial role for mutagenesis of DNA, carcinogenesis, and aging. DNA damage can also alter the fine structure of DNA that may serve as a recognition signal for DNA repair enzymes. A new, advanced sampling replica-exchange method has been developed to specifically enhance the sampling of conformational substates in duplex DNA during molecular dynamics (MD) simulations. The approach employs specific biasing potentials acting on pairs of pseudodihedral angles of the nucleic acid backbone that are added in the replica simulations to promote transitions of the most common substates of the DNA backbone. The sampled states can exchange with a reference simulation under the control of the original force field. The application to 7,8-dihydro-8oxo-guanosine, one of the most common oxidative damage in DNA indicated better convergence of sampled states during 10 ns simulations compared to 20 times longer standard MD simulations. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions, including explicit solvent and ions. The biasing potential-replica exchange MD simulations indicated significant differences in the population of nucleic acid backbone substates in the case of 7,8-dihydro-8oxo-guanosine compared to a regular guanosine in the same sequence context. This concerns both the ratio of the B-DNA substates BI and BII associated with the backbone dihedral angles ε and z but also coupled changes in the backbone dihedral angles a and g. Such differences may play a crucial role in the initial recognition of damaged DNA by repair enzymes.

  8. Quantum spin Hall phase and surface spin current in Bi and Sb

    NASA Astrophysics Data System (ADS)

    Murakami, Shuichi

    2007-03-01

    In the quantum spin Hall (QSH) phase, the bulk is gapped while edge states are gapless and carry spin currents. Experimental studies for the QSH phase are called for. To search for candidates of the 2D QSH phase, we relate the spin Hall conductivity in insulators with magnetic response of the orbital magnetization to the Zeeman field. In this respect, bismuth is promising since it is a strong diamagnet enhanced by spin-orbit coupling. For a 2D (111)-bilayer bismuth, we calculate the Z2 topological number, the band structure for the strip geometry, the spin Chern number, and the parity at the time-reversal symmetric wavenumbers. We predict that the (111)-bilayer bismuth will be a QSH phase [1]. On the other hand, it was proposed recently that 3D bismuth is a simple insulator, and not the QSH phase, by parity consideration [2]. Transition from the 2D QSH topological phase to the 3D simple insulator phase is described by gradually increasing inter-bilayer hopping, thereby band-touching occurs at high- symmetry points and parities of the wavefunctions are exchanged. Similar discussion applies for Sb, where 2D bilayer is a simple insulator and 3D bulk is the QSH phase. Finally, we compare the theory with the ARPES data showing surface spin-splitting (spin current) for various surfaces of Bi and Sb. [1] S. Murakami, cond-mat/0607001 (to appear in Phys. Rev. Lett.). [2] L. Fu, C. L. Kane, cond-mat/0611341.

  9. Spin noise in mixed Spin Systems

    NASA Astrophysics Data System (ADS)

    Bauch, Erik; Junghyun, Paul; Singh, Swati; Devakul, Trithep; Feguin, Adrian; Hart, Connor; Walsworth, Ronald

    2016-05-01

    The spin noise due to interaction of multiple spin species in mixed spin systems provides a fundamental limit to ultra-sensitive ensemble sensing and quantum information applications. In our work, we investigate the interaction of dense nuclear 13C spins with electronic nitrogen spins using Nitrogen-Vacancy centers in diamond. Our work shows experimentally and theoretically, that under certain conditions, spin noise is greatly suppressed and the coherence time of NV centers improved by order of magnitudes, providing a pathway to engineering high density ensemble samples with long coherence times at room temperature.

  10. A Hamiltonian replica exchange method for building protein-protein interfaces applied to a leucine zipper

    NASA Astrophysics Data System (ADS)

    Cukier, Robert I.

    2011-01-01

    Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] Hamiltonian temperature replica exchange method (HTREM), which scales the Hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the Hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer

  11. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    SciTech Connect

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  12. Performance of Replica-Exchange Wang-Landau Sampling for the 2D Ising Model: A Brief Survey

    SciTech Connect

    Zhao, Yiwei; Cheung, Siu Wun; Li, Ying Wai; Eisenbach, Markus

    2014-01-01

    We report a brief performance study of the replica-exchange Wang-Landau algorithm, a recently proposed parallel realization of Wang-Landau sampling, using the 2D Ising model as a test case. The simulation time is found to scale inversely with the square root of the number of subwindows (and thus number of processors) used to span the global parameter space. We also investigate the time profiles for random walkers in dierent subwindows to complete iterations, which will aid the development of and adaptive load-balancing scheme.

  13. Stereolithographic vascular replicas from CT scans: choosing treatment strategies, teaching, and research from live patient scan data.

    PubMed

    Knox, Kimberly; Kerber, Charles W; Singel, Soren A; Bailey, Michael J; Imbesi, Steven G

    2005-01-01

    Our goal was to develop a system that would allow us to recreate live patient arterial pathology by using an industrial technique known as stereolithography (or rapid prototyping). In industry, drawings rendered into dicom files can be exported to a computer programmed to drive various industrial tools. Those tools then make a 3D structure shown by the original drawings. We manipulated CT scan dicom files to drive a stereolithography machine and were able to make replicas of the vascular diseases of three patients. PMID:15956511

  14. Isobaric Molecular Dynamics Version of the Generalized Replica Exchange Method (gREM): Liquid-Vapor Equilibrium.

    PubMed

    Małolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-10-22

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed to simulate first-order phase transitions. The properties of the isobaric gREM ensemble are discussed, and a study is presented for the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. Phase diagrams, critical parameters, and a law of corresponding states are obtained. PMID:26398582

  15. Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte Carlo simulations.

    PubMed

    Odriozola, Gerardo; Berthier, Ludovic

    2011-02-01

    We use replica exchange Monte Carlo simulations to measure the equilibrium equation of state of the disordered fluid state for a binary hard sphere mixture up to very large densities where standard Monte Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes we use (up to N = 100), we find no sign of a pressure discontinuity near the location of dynamic glass singularities extrapolated using either algebraic or simple exponential divergences, suggesting they do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed for the fate of the fluid state in the thermodynamic limit. PMID:21303135

  16. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships silhouetted in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-970.

  17. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships silhouetted in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-971.

  18. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view was taken from the water showing the three ships in the foreground with OV-105 on mobile launcher platform profiled against fixed service structure (FSS) tower and rectracted rotating service structure (RSS) in the background. Next to the launch pad (at right) are the sound suppression water system tower and the liquid hydrogen (LH2) storage tank. View provided by KSC with alternate number KSC-92PC-967.

  19. Replicas of the Santa Maria, Nina, Pinta sail by OV-105 on KSC LC Pad 39B

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Replicas of Christopher Columbus' sailing ships Santa Maria, Nina, and Pinta sail by Endeavour, Orbiter Vehicle (OV) 105, on Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B awaiting liftoff on its maiden voyage, STS-49. This view, taken from behind the fixed service structure (FSS) tower and retracted rotating service structure (RSS), shows the three ships as they sail by in the distance. OV-105 and its orange external tank (ET) are only partially visible. View provided by KSC with alternate KSC number KSC-92PC-977.

  20. w-REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations

    PubMed Central

    2012-01-01

    Free energy governs the equilibrium extent of many biological processes. High barriers separating free energy minima often limit the sampling in molecular dynamics (MD) simulations, leading to inaccurate free energies. Here, we demonstrate enhanced sampling and improved free energy calculations, relative to conventional MD, using windowed accelerated MD within a Hamiltonian replica exchange framework (w-REXAMD). We show that for a case in which multiple conformations are separated by large free energy barriers, w-REXAMD is a useful enhanced sampling technique, without any necessary reweighting. PMID:23316122

  1. Projective symmetry group classification of chiral spin liquids

    NASA Astrophysics Data System (ADS)

    Bieri, Samuel; Lhuillier, Claire; Messio, Laura

    2016-03-01

    We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.

  2. Investigation of dominant spin wave modes by domain walls collision

    SciTech Connect

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S.

    2014-06-28

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.

  3. Strain-modulation of spin-dependent transport in graphene

    SciTech Connect

    Cao, Zhen-Zhou Hou, Jin; Cheng, Yan-Fu; Li, Guan-Qiang

    2014-10-27

    We investigate strain modulation of the spin-dependent electron transport in a graphene junction using the transfer matrix method. As an analogy to optics, we define the modulation depth in the electron optics domain. Additionally, we discuss the transport properties and show that the modulation depth and the conductance depend on the spin-orbit coupling strength, the strain magnitude, the width of the strained area, and the energy of the incident electron. The conductances of the spin-down and spin-up electrons have opposite and symmetrical variations, which results in the analogous features of their modulation depths. The maximum conditions for both the modulation depth and the electron spin upset rate are also analyzed.

  4. Changes in the unoccupied electronic structure of the spin crossover molecule [Co(dpzca)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Xin; Enders, Axel; Dowben, Peter; Luo, Jian; Zhang, Jian; N'diaye, Alpha

    We have investigated the changes in the unoccupied electronic structure of the spin crossover molecule - [Co(dpzca)2] using X-ray absorption spectroscopy (XAS) and have compared the results with magnetometry (SQUID) measurements. The studies of the variable temperature of the electronic structure of this cobalt complex with symmetric pyrazine imide ligands, -(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, i.e. [Co(dpzca)2], are consistent with density functional theory (DFT). The temperature dependence of the occupancy of the high-spin state and low-spin state molecular orbital states, the unoccupied eg/t2g ratio from XAS and high spin state to low spin state ratio from molecular magnetic susceptibility χMT indicates that the low spin state is not a zero spin state, but simply a lower moment state that would occur below the spin crossover transition of [Co(dpzca)2].

  5. Shaping ability of Reciproc and TF Adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas

    PubMed Central

    ORDINOLA-ZAPATA, Ronald; BRAMANTE, Clovis Monteiro; DUARTE, Marco Antonio Húngaro; CAVENAGO, Bruno Cavalini; JARAMILLO, David; VERSIANI, Marco Aurélio

    2014-01-01

    Objective: To evaluate the shaping ability of Reciproc and Twisted-File Adaptive systems in rapid prototyping replicas. Material and Methods: Two mandibular molars showing S-shaped and 62-degree curvatures in the mesial root were scanned by using a microcomputed tomography (μCT) system. The data were exported in the stereolitograhic format and 20 samples of each molar were printed at 16 µm resolution. The mesial canals of 10 replicas of each specimen were prepared with each system. Transportation was measured by overlapping radiographs taken before and after preparation and resin thickness after instrumentation was measured by μCT. Results: Both systems maintained the original shape of the apical third in both anatomies (P>0.05). Overall, considering the resin thickness in the 62-degree replicas, no statistical difference was found between the systems (P>0.05). In the S-shaped curvature replica, Reciproc significantly decreased the thickness of the resin walls in comparison with TF Adaptive. Conclusions: The evaluated systems were able to maintain the original shape at the apical third of severely curved mesial canals of molar replicas. PMID:24918662

  6. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  7. Structural approaches to spin glasses and optimization problems

    NASA Astrophysics Data System (ADS)

    de Sanctis, Luca

    We introduce the concept of Random Multi-Overlap Structure (RaMOSt) as a generalization of the one introduced by M. Aizenman et al. for non-diluted spin glasses. We use this concept to find generalized bounds for the free energy of the Viana-Bray model of diluted spin glasses and to formulate and prove the Extended Variational Principle that implicitly provides the free energy of the model. Then we exhibit a theorem for the limiting RaMOSt, analogous to the one found by F. Guerra for the Sherrington-Kirkpatrick model, that describes some stability properties of the model. We also show how our technique can be used to prove the existence of the thermodynamic limit of the free energy. We then propose an ultrametric breaking of replica symmetry for diluted spin glasses in the framework of Random Multi-Overlap Structures (RaMOSt). Such a proposal is closer to the Parisi theory for non-diluted spin glasses than the theory based on the iterative approach. Our approach allows to formulate an ansatz in which the Broken Replica Symmetry trial function depends on a set of numbers, over which one has to take the infimum (as opposed to a nested chain of probabilty distributions). Our scheme suggests that the order parameter is determined by the probability distribution of the multi-overlap in a similar sense as in the non-diluted case, and it is not necessarily a functional. Such results are then extended to the K-SAT and p-XOR-SAT optimization problems, and to the spherical mean field spin glass. The ultrametric structure exhibits a factorization property similar to the one of the optimal structures for the Viana-Bray model. The present work paves the way to a revisited Parisi theory for diluted spin systems. Moreover, it emphasizes some structural analogies among different models, which also seem to be plausible for models that still escape good mathematical control. This structural analysis seems quite promising both mathematically and physically.

  8. Higher order explicit symmetric integrators for inseparable forms of coordinates and momenta

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Xin; Huang, Guoqing; Liu, Fuyao

    2016-06-01

    Pihajoki proposed the extended phase-space second-order explicit symmetric leapfrog methods for inseparable Hamiltonian systems. On the basis of this work, we survey a critical problem on how to mix the variables in the extended phase space. Numerical tests show that sequent permutations of coordinates and momenta can make the leapfrog-like methods yield the most accurate results and the optimal long-term stabilized error behaviour. We also present a novel method to construct many fourth-order extended phase-space explicit symmetric integration schemes. Each scheme represents the symmetric production of six usual second-order leapfrogs without any permutations. This construction consists of four segments: the permuted coordinates, triple product of the usual second-order leapfrog without permutations, the permuted momenta and the triple product of the usual second-order leapfrog without permutations. Similarly, extended phase-space sixth, eighth and other higher order explicit symmetric algorithms are available. We used several inseparable Hamiltonian examples, such as the post-Newtonian approach of non-spinning compact binaries, to show that one of the proposed fourth-order methods is more efficient than the existing methods; examples include the fourth-order explicit symplectic integrators of Chin and the fourth-order explicit and implicit mixed symplectic integrators of Zhong et al. Given a moderate choice for the related mixing and projection maps, the extended phase-space explicit symplectic-like methods are well suited for various inseparable Hamiltonian problems. Samples of these problems involve the algorithmic regularization of gravitational systems with velocity-dependent perturbations in the Solar system and post-Newtonian Hamiltonian formulations of spinning compact objects.

  9. Exact solution of the one-dimensional super-symmetric t-J model with unparallel boundary fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2014-04-01

    The exact solution of the one-dimensional super-symmetric t-J model under generic integrable boundary conditions is obtained via the Bethe ansatz methods. With the coordinate Bethe ansatz, the corresponding R-matrix and K-matrices are derived for the second eigenvalue problem associated with spin degrees of freedom. It is found that the second eigenvalue problem can be transformed into that of the transfer matrix of the inhomogeneous XXX spin chain, which allows us to obtain the spectrum of the Hamiltonian and the associated Bethe ansatz equations by the off-diagonal Bethe ansatz method.

  10. Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.

    2015-10-01

    We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.

  11. Coherent Spin Dynamics in Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    2004-03-01

    Manipulation of coherent spins in semiconductors without laboratory AC (or in some cases DC) magnetic fields can be driven with the electronic spin-orbit interaction. This relativistic effect produces ``pseudomagnetic'' fields surpassing plausible laboratory magnetic fields by orders of magnitude. The theory of two principal examples will be described here: the coupling between light fields and electron spin in quantum dots, and the use of DC electric fields to manipulate spin coherence times in quantum wells. We find that intense coherent optical illumination of quantum dots can generate ultrafast ˜ 1000 Tesla pseudomagnetic fields suitable for electron spin rotation. These effective fields are roughly spherically symmetric for colloidal quantum dots, but for structurally aspherical quantum dots (such as self-assembled dots during molecular beam epitaxy growth) these pseudomagnetic fields are highly anisotropic - large parallel to the growth direction and often a factor of five or ten smaller along perpendicular directions. The structural anisotropy also leads to very anisotropic selection rules for light emission in quantum dot spin-light-emitting-diodes. For the second principal example, manipulation of spin coherence times in quantum wells, the zero-field spin coherence times and the tuning ranges depend strongly on the crystalline orientation of the growth axis. Near room temperature in (110)-grown structures for applied electric fields of 10-100 kV/cm, the tuning range can exceed several orders of magnitude. This work was done in collaboration with W. H. Lau and C. E. Pryor and was supported by DARPA/ARO and an ARO MURI.

  12. Coarse kMC-based replica exchange algorithms for the accelerated simulation of protein folding in explicit solvent.

    PubMed

    Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V

    2016-05-14

    In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules. PMID:27111190

  13. A 10-bit 250 MSPS charge-domain pipelined ADC with replica controlled PVT insensitive BCT circuit

    NASA Astrophysics Data System (ADS)

    Songren, Huang; Hong, Zhang; Zhenhai, Chen; Shuang, Zhu; Zongguang, Yu; Hongwen, Qian; Yue, Hao

    2015-05-01

    A low power 10-bit 250 MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) is introduced. The ADC is implemented in MOS bucket-brigade devices (BBDs) based CD pipelined architecture. A replica controlled boosted charge transfer (BCT) circuit is introduced to reject the influence of PVT variations on the charge transfer process. Based on replica controlled BCT, the CD pipelined ADC is designed and realized in a 1P6M 0.18 μm CMOS process. The ADC achieves an SFDR of 64.4 dB, an SNDR of 56.9 dB and an ENOB of 9.2 for a 9.9 MHz input; and an SFDR of 63.1 dB, an SNR of 55.2 dB, an SNDR of 54.5 dB and an ENOB of 8.7 for a 220.5 MHz input at full sampling rate. The DNL is +0.5/ -0.55 LSB and INL is +0.8/ -0.85 LSB. The power consumption of the prototype ADC is only 45 mW at 1.8 V supply and it occupies an active die area of 1.56 mm2. Project supported by the National Natural Science Foundation of China (No. 61106027).

  14. A generic implementation of replica exchange with solute tempering (REST2) algorithm in NAMD for complex biophysical simulations

    NASA Astrophysics Data System (ADS)

    Jo, Sunhwan; Jiang, Wei

    2015-12-01

    Replica Exchange with Solute Tempering (REST2) is a powerful sampling enhancement algorithm of molecular dynamics (MD) in that it needs significantly smaller number of replicas but achieves higher sampling efficiency relative to standard temperature exchange algorithm. In this paper, we extend the applicability of REST2 for quantitative biophysical simulations through a robust and generic implementation in greatly scalable MD software NAMD. The rescaling procedure of force field parameters controlling REST2 "hot region" is implemented into NAMD at the source code level. A user can conveniently select hot region through VMD and write the selection information into a PDB file. The rescaling keyword/parameter is written in NAMD Tcl script interface that enables an on-the-fly simulation parameter change. Our implementation of REST2 is within communication-enabled Tcl script built on top of Charm++, thus communication overhead of an exchange attempt is vanishingly small. Such a generic implementation facilitates seamless cooperation between REST2 and other modules of NAMD to provide enhanced sampling for complex biomolecular simulations. Three challenging applications including native REST2 simulation for peptide folding-unfolding transition, free energy perturbation/REST2 for absolute binding affinity of protein-ligand complex and umbrella sampling/REST2 Hamiltonian exchange for free energy landscape calculation were carried out on IBM Blue Gene/Q supercomputer to demonstrate efficacy of REST2 based on the present implementation.

  15. Novel approach to the fabrication of an artificial small bone using a combination of sponge replica and electrospinning methods

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hee; Lee, Byong-Taek

    2011-06-01

    In this study, a novel artificial small bone consisting of ZrO2-biphasic calcium phosphate/polymethylmethacrylate-polycaprolactone-hydroxyapatite (ZrO2-BCP/PMMA-PCL-HAp) was fabricated using a combination of sponge replica and electrospinning methods. To mimic the cancellous bone, the ZrO2/BCP scaffold was composed of three layers, ZrO2, ZrO2/BCP and BCP, fabricated by the sponge replica method. The PMMA-PCL fibers loaded with HAp powder were wrapped around the ZrO2/BCP scaffold using the electrospinning process. To imitate the Haversian canal region of the bone, HAp-loaded PMMA-PCL fibers were wrapped around a steel wire of 0.3 mm diameter. As a result, the bundles of fiber wrapped around the wires imitated the osteon structure of the cortical bone. Finally, the ZrO2/BCP scaffold was surrounded by HAp-loaded PMMA-PCL composite bundles. After removal of the steel wires, the ZrO2/BCP scaffold and bundles of HAp-loaded PMMA-PCL formed an interconnected structure resembling the human bone. Its diameter, compressive strength and porosity were approximately 12 mm, 5 MPa and 70%, respectively, and the viability of MG-63 osteoblast-like cells was determined to be over 90% by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. This artificial bone shows excellent cytocompatibility and is a promising bone regeneration material.

  16. Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation.

    PubMed

    Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M

    2016-05-10

    Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable. PMID:27070865

  17. Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Data analysis

    SciTech Connect

    Wibowo, J.; Amadei, B.; Sture, S.; Price, R.H.

    1994-04-01

    Assessing the shear behavior of intact rock & rock fractures is an important issue in the design of a potential nuclear waste repository at Yucca Mountain Nevada. Cyclic direct shear experiments were conducted on replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff. The tests were carried out under constant normal loads or constant normal stiffnesses with different initial normal load levels. Each test consisted of five cycles of forward and reverse shear motion. Based on the results of the shear tests conducted under constant normal load, the shear behavior of the joint replicas tested under constant normal stiffness was predicted by using the graphical analysis method of Saeb (1989), and Amadei and Saeb (1990). Comparison between the predictions and the actual constant stiffness direct shear experiment results can be found in a report by Wibowo et al. (1993b). Results of the constant normal load shear experiments are analyzed using several constitutive models proposed in the rock mechanics literature for joint shear strength, dilatancy, and joint surface damage. It is shown that some of the existing models have limitations. New constitutive models are proposed and are included in a mathematical analysis tool that can be used to predict joint behavior under various boundary conditions.

  18. High-Resolution Infrared Spectroscopy Slit-Jet Cooled Hydroxymethyl Radical (CH_2OH): CH Symmetric Stretching Mode

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David

    2014-06-01

    Hydroxymethyl radical (CH_2OH) plays an important role in combustion and environmental chemistry as a reactive intermediate. Reisler's group published the first rotationally resolved spectroscopy of CH_2OH with determined band origins for fundamental CH symmetric stretch state, CH asymmetric stretch state and OH stretch state, respectively. Here CH_2OH was first studied via sub-Doppler infrared spectroscopy in a slit-jet supersonic discharge expansion source. Rotationally resolved direct absorption spectra in the CH symmetric stretching mode were recorded. As a result of the low rotational temperature and sub-Doppler linewidths, the tunneling splittings due to the large amplitude of COH torsion slightly complicate the spectra. Each of the ground vibration state and the CH symmetric stretch state includes two levels. One level, with a 3:1 nuclear spin statistic ratio for Ka=0+/Ka=1+, is labeled as ``+". The other tunneling level, labeled as ``-", has Ka=0-/Ka=1- states with 1:3 nuclear spin statistics. Except for the Ka=0+ ← 0+ band published before, more bands (Ka=1+ ← 1+, Ka=0- ← 0- and Ka=1- ← 1-) were identified. The assigned transitions were fit to a Watson A-reduced symmetric top Hamiltonian to improve the accuracy of the band origin of CH symmetric state. The rotational parameters for both ground and CH symmetric stretch state were well determined. L. Feng, J. Wei and H. Reisler, J. Phys. Chem. A, Vol. 108. M. A. Roberts, E. N. Sharp-Williams and D. J. Nesbitt, J. Phys. Chem. A 2013, 117, 7042-7049

  19. Observational tests of baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1983-01-01

    Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of Pi(O)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the gamma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurements of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed. Previously announced in STAR as N83-10996

  20. Integrability of PT-symmetric dimers

    NASA Astrophysics Data System (ADS)

    Pickton, J.; Susanto, H.

    2013-12-01

    The coupled discrete linear and Kerr nonlinear Schrödinger equations with gain and loss describing transport on dimers with parity-time (PT)-symmetric potentials are considered. The model is relevant among others to experiments in optical couplers and proposals on Bose-Einstein condensates in PT-symmetric double-well potentials. It is known that the models are integrable. Here, the integrability is exploited further to construct the phase portraits of the system. A pendulum equation with a linear potential and a constant force for the phase difference between the fields is obtained, which explains the presence of unbounded solutions above a critical threshold parameter. The behavior of all solutions of the system, including changes in the topological structure of the phase plane, is then discussed.

  1. Static spherically symmetric wormholes with isotropic pressure

    NASA Astrophysics Data System (ADS)

    Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo

    2016-06-01

    In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there are no spherically symmetric traversable wormholes sustained by sources with a linear equation of state p = ωρ for the isotropic pressure, independently of the form of the redshift function ϕ (r). We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.

  2. Cusped Wilson lines in symmetric representations

    NASA Astrophysics Data System (ADS)

    Correa, Diego H.; Massolo, Fidel I. Schaposnik; Trancanelli, Diego

    2015-08-01

    We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank- k symmetric representation of the gauge group U( N) for super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and . This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of k ≫ N, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large k, independently of the contour on which they are supported.

  3. Quantum Adiabatic Algorithms and Large Spin Tunnelling

    NASA Technical Reports Server (NTRS)

    Boulatov, A.; Smelyanskiy, V. N.

    2003-01-01

    We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in this paper. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamiltonians H (r) that preserve the bit symmetry of the underlying optimization problem. In the case where the ground state of H(0) coincides with the totally-symmetric state of an n-qubit system the algorithm dynamics is completely described in terms of the motion of a spin-n/2. We show that different control Hamiltonians can be parameterized by a set of independent parameters that are expansion coefficients of H (r) in a certain universal set of operators. Only one of these operators can be responsible for avoiding the tunnelling in the spin-n/2 system during the quantum adiabatic algorithm. We show that it is possible to select a coefficient for this operator that guarantees a polynomial complexity of the algorithm for all problem instances. We show that a successful evolution path of the algorithm always corresponds to the trajectory of a classical spin-n/2 and provide a complete characterization of such paths.

  4. Symmetric space description of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Caselle, Michele; Magnea, Ulrika

    2006-01-01

    Using an innovative technique arising from the theory of symmetric spaces, we obtain an approximate analytic solution of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation in the insulating regime of a metallic carbon nanotube with symplectic symmetry and an odd number of conducting channels. This symmetry class is characterized by the presence of a perfectly conducting channel in the limit of infinite length of the nanotube. The derivation of the DMPK equation for this system has recently been performed by Takane, who also obtained the average conductance both analytically and numerically. Using the Jacobian corresponding to the transformation to radial coordinates and the parametrization of the transfer matrix given by Takane, we identify the ensemble of transfer matrices as the symmetric space of negative curvature SO*(4m + 2)/[SU(2m + 1) × U(1)] belonging to the DIII-odd Cartan class. We rederive the leading-order correction to the conductance of the perfectly conducting channel \\langle \\ln \\delta g \\rangle and its variance Var(ln δg). Our results are in complete agreement with Takane's. In addition, our approach based on the mapping to a symmetric space enables us to obtain new universal quantities: a universal group theoretical expression for the ratio \\mathrm {Var}(\\ln \\delta g)/\\langle \\ln \\delta g\\rangle , and as a by-product a novel expression for the localization length for the most general case of a symmetric space with BCm root system, in which all three types of roots are present.

  5. Wave equation on spherically symmetric Lorentzian metrics

    SciTech Connect

    Bokhari, Ashfaque H.; Al-Dweik, Ahmad Y.; Zaman, F. D.; Kara, A. H.; Karim, M.

    2011-06-15

    Wave equation on a general spherically symmetric spacetime metric is constructed. Noether symmetries of the equation in terms of explicit functions of {theta} and {phi} are derived subject to certain differential constraints. By restricting the metric to flat Friedman case the Noether symmetries of the wave equation are presented. Invertible transformations are constructed from a specific subalgebra of these Noether symmetries to convert the wave equation with variable coefficients to the one with constant coefficients.

  6. Spherically symmetric solutions in a FRW background

    NASA Astrophysics Data System (ADS)

    Moradpour, H.; Riazi, N.

    2015-02-01

    We impose perfect fluid concept along with slow expansion approximation to derive new solutions which, considering non-static spherically symmetric metrics, can be treated as Black Holes (BHs). We will refer to these solutions as Quasi BHs. Mathematical and physical features such as Killing vectors, singularities, and mass have been studied. Their horizons and thermodynamic properties have also been investigated. In addition, relationship with other related works (including McVittie's) are described.

  7. Compensator configurations for load currents' symmetrization

    NASA Astrophysics Data System (ADS)

    Rusinaru, D.; Manescu, L. G.; Dinu, R. C.

    2016-02-01

    This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.

  8. Hamiltonian of a spinning test particle in curved spacetime

    SciTech Connect

    Barausse, Enrico; Racine, Etienne; Buonanno, Alessandra

    2009-11-15

    Using a Legendre transformation, we compute the unconstrained Hamiltonian of a spinning test particle in a curved spacetime at linear order in the particle spin. The equations of motion of this unconstrained Hamiltonian coincide with the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac brackets to derive the constrained Hamiltonian and the corresponding phase space algebra in the Newton-Wigner spin supplementary condition, suitably generalized to curved spacetime, and find that the phase space algebra (q,p,S) is canonical at linear order in the particle spin. We provide explicit expressions for this Hamiltonian in a spherically symmetric spacetime, both in isotropic and spherical coordinates, and in the Kerr spacetime in Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when expanded in post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner canonical Hamiltonian computed in PN theory in the test particle limit. Notably, we recover the known spin-orbit couplings through 2.5PN order and the spin-spin couplings of type S{sub Kerr}S (and S{sub Kerr}{sup 2}) through 3PN order, S{sub Kerr} being the spin of the Kerr spacetime. Our method allows one to compute the PN Hamiltonian at any order, in the test particle limit and at linear order in the particle spin. As an application we compute it at 3.5PN order.

  9. Tail venting for enhanced yaw damping at spinning conditions

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Whipple, Raymond D.; Fremaux, C. M.

    1991-01-01

    An investigation was conducted in the NASA Langley 20-ft Vertical Spin Tunnel to determine the spin and spin-recovery characteristics of a 1/11-scale model of a low-wing general aviation airplane with a horizontal tail modified with variable-size gaps to allow ventilation of the vertical stabilizer and rudder. Erect spins at symmetric loadings were tested with varying gap sizes on either or both sides of the horizontal tail. The model results indicate that the basic airplane (with no gaps) exhibits a fast, flat spin from which no recoveries can be obtained. The airplane with the modified tail has either a fast, flat spin from which no recoveries or poor recoveries may be made, or a slower, steeper spin from which fair to excellent recoveries may be obtained, depending on the size and orientation of the tail gaps. The major contribution to spin recovery was from the gap on the leeward side of the tail. Gap widths of 15-25 percent of the tail semispan were needed to produce satisfactory recovery from the flat spin.

  10. Symmetric scrolled packings of multilayered carbon nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  11. Chirally symmetric but confining dense, cold matter

    SciTech Connect

    Glozman, L. Ya.; Wagenbrunn, R. F.

    2008-03-01

    The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential {mu} and obtain a clear chiral restoration phase transition at the critical value {mu}{sub cr}. Below this value the spectrum is similar to the previously obtained one at {mu}=0. At {mu}>{mu}{sub cr} the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.

  12. Chirally symmetric but confining dense, cold matter

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Wagenbrunn, R. F.

    2008-03-01

    The folklore tradition about the QCD phase diagram is that at the chiral restoration phase transition at finite density hadrons are deconfined and there appears the quark matter. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson (gap) equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. We solve this model at T=0 and finite chemical potential μ and obtain a clear chiral restoration phase transition at the critical value μcr. Below this value the spectrum is similar to the previously obtained one at μ=0. At μ>μcr the quarks are still confined and the physical spectrum consists of bound states which are arranged into a complete set of exact chiral multiplets. This explicitly demonstrates that a chirally symmetric matter consisting of confined but chirally symmetric hadrons at finite chemical potential is also possible in QCD. If so, there must be nontrivial implications for astrophysics.

  13. Asymmetric versus symmetric pulses for cortical microstimulation.

    PubMed

    Koivuniemi, Andrew S; Otto, Kevin J

    2011-10-01

    Intracortical microstimulation (ICMS), which has shown promise in the visual, auditory and somatosensory systems as a platform for sensory prostheses, typically relies on charged balanced, symmetric, biphasic stimulation. However, neural stimulation models as well as experiments conducted in cochlear implant users have suggested that charge balanced asymmetric pulses could generate lower detection thresholds for stimulation in terms of charge per phase. For this study, rats were chronically implanted with microelectrode arrays unilaterally in their right auditory cortex and then trained to detect ICMS delivered through a single electrode site in order to determine their behavioral threshold. This model was used in two experiments. The first experiment addressed the effect of lead phase direction, asymmetry, and phase duration on detection threshold. The second experiment fixed the cathode phase duration at 123 μs and varied only the phase asymmetry and lead phase direction. Taken together, the results of these experiments suggest that, for ICMS, the primary determinant of threshold level is cathode phase duration, and that asymmetry provides no significant advantage when compared to symmetric, cathode leading pulses. However, symmetric anode leading pulses of less than or equal to 205 μs per phase consistently showed higher thresholds when compared to all other pulses of equal cathode phase duration. PMID:21968793

  14. Nonlinear waves in PT -symmetric systems

    NASA Astrophysics Data System (ADS)

    Konotop, Vladimir V.; Yang, Jianke; Zezyulin, Dmitry A.

    2016-07-01

    Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental results are described. In addition, emerging applications of PT symmetry are pointed out.

  15. Symmetric multilayer megampere X-pinch

    SciTech Connect

    Shelkovenko, T. A.; Pikuz, S. A.; McBride, R. D.; Knapp, P. F.; Wilhelm, G.; Sinars, D. B.; Hammer, D. A.; Orlov, N. Yu.

    2010-01-15

    Raising the power of X-ray emission from an X-pinch by increasing the pinch current to the megampere level requires the corresponding increase in the initial linear mass of the load. This can be achieved by increasing either the number of wires or their diameter. In both cases, special measures should be undertaken to prevent the formation of a complicated configuration with an uncontrolled spatial structure in the region of wire crossing, because such a structure breaks the symmetry of the neck formed in the crossing region, destabilizes plasma formation, and degrades X-ray generation. To improve the symmetry of the wire crossing region, X-pinch configurations with a regular multilayer arrangement of wires in this region were proposed and implemented. The results of experiments with various symmetric X-pinch configurations on the COBRA facility at currents of {approx}1MA are presented. It is shown that an X-pinch with a symmetric crossing region consisting of several layers of wires made of different materials can be successfully used in megampere facilities. The most efficient combinations of wires in symmetric multilayer X-pinches are found in which only one hot spot forms and that are characterized by a high and stable soft X-ray yield.

  16. Spherically symmetric thick branes cosmological evolution

    NASA Astrophysics Data System (ADS)

    Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão

    2015-01-01

    Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).

  17. Spin polarized current through a quantum shuttle

    NASA Astrophysics Data System (ADS)

    Villavicencio, Jorge; Maldonado, Irene; Cota, Ernesto; Platero, Gloria

    2013-03-01

    We study spin current through a vibrating triple quantum dot system in a linear arrangement, as a function of detuning across the device, in the presence of a magnetic field, taking into account non-spin-conserving tunneling processes induced by spin-orbit interaction (SOI). Using the density matrix master equation approach, we calculate the current and polarization for both the static and dynamic cases. In the former case the central dot is at rest, while in the latter it is oscillating (triple quantum dot shuttle, TQDS). In both cases, we find new resonances in the current with a definite spin polarization, for both symmetric and asymmetric Zeeman splitting. These resonances are shown to correspond to anticrossings in the energy spectrum reflecting coupling between states due to SOI. For the asymmetric TQDS we obtain a spin filter behavior in the weak coupling regime. Finanical support from DGAPA-PAPIIT IN112012 (EC); P/PIFI 2011-02MSU0020A-08 (JV); MAT 2011-24331 and ITN grant 234970 EU (GP) are gratefully acknowledged.

  18. Spin and orbital rotation of electrons and photons via spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Leary, C. C.; Raymer, M. G.; van Enk, S. J.

    2009-12-01

    We show that when an electron or photon propagates in a cylindrically symmetric waveguide, its spin angular momentum (SAM) and its orbital angular momentum (OAM) interact. Remarkably, we find that the dynamics resulting from this spin-orbit interaction are quantitatively described by a single expression applying to both electrons and photons. This leads to the prediction of several rotational effects: the spatial or time evolution of either particle’s spin-polarization vector is controlled by its OAM quantum number or, conversely, its spatial wave function is controlled by its SAM. We show that the common origin of these effects in electrons and photons is a universal geometric phase. We demonstrate how these phenomena can be used to reversibly transfer entanglement between the SAM and OAM degrees of freedom of two-particle states.

  19. Spin and Orbital Rotation of Electrons and Photons via Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Leary, Cody; Raymer, Michael; van Enk, Steven

    2010-03-01

    We show that when an electron or photon propagates in a cylindrically symmetric waveguide, its spin angular momentum (SAM) and its orbital angular momentum (OAM) interact. Remarkably, we find that the dynamics resulting from this spin- orbit interaction are quantitatively described by a single expression applying to both electrons and photons. This leads to the prediction of several novel rotational effects: the spatial or time evolution of either particle's spin/polarization vector is controlled by its OAM quantum number, or conversely, its spatial wavefunction is controlled by its SAM. We show that the common origin of these effects in electrons and photons is a universal geometric phase. We demonstrate how these phenomena can be used to reversibly transfer entanglement between the SAM and OAM degrees of freedom of two-particle states.

  20. Spin-Spin Coupling in Asteroidal Binaries

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-11-01

    Gravitationally bound binaries constitute a substantial fraction of the small body population of the solar system, and characterization of their rotational states is instrumental to understanding their formation and dynamical evolution. Unlike planets, numerous small bodies can maintain a perpetual aspheroidal shape, giving rise to a richer array of non-trivial gravitational dynamics. In this work, we explore the rotational evolution of triaxial satellites that orbit permanently deformed central objects, with specific emphasis on quadrupole-quadrupole interactions. Our analysis shows that in addition to conventional spin-orbit resonances, both prograde and retrograde spin-spin resonances naturally arise for closely orbiting, highly deformed bodies. Application of our results to the illustrative examples of (87) Sylvia and (216) Kleopatra multi-asteroid systems implies capture probabilities slightly below ~10% for leading-order spin-spin resonances. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  1. Spin-liquid condensate of spinful bosons.

    PubMed

    Lian, Biao; Zhang, Shoucheng

    2014-08-22

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S ≥ 2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond state. PMID:25192078

  2. Nonthermal and geometric effects on the symmetric and anti-symmetric surface waves in a Lorentzian dusty plasma slab

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-02-15

    The nonthermal and geometric effects on the propagation of the surface dust acoustic waves are investigated in a Lorentzian dusty plasma slab. The symmetric and anti-symmetric dispersion modes of the dust acoustic waves are obtained by the plasma dielectric function with the spectral reflection conditions the slab geometry. The variation of the nonthermal and geometric effects on the symmetric and the anti-symmetric modes of the surface plasma waves is also discussed.

  3. RHIC SPIN FLIPPER

    SciTech Connect

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  4. Spin projection chromatography

    NASA Astrophysics Data System (ADS)

    Danieli, E. P.; Pastawski, H. M.; Levstein, P. R.

    2004-01-01

    We formulate the many-body spin dynamics at high temperature within the non-equilibrium Keldysh formalism. For the simplest XY interaction, analytical expressions in terms of the one particle solutions are obtained for linear and ring configurations. For small rings of even spin number, the group velocities of excitations depend on the parity of the total spin projection. This should enable a dynamical filtering of spin projections with a given parity i.e., a spin projection chromatography.

  5. Spin effects in double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-02-15

    We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.

  6. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  7. Magnons, Spin Current and Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  8. Symmetrical band-pass loudspeaker systems

    NASA Astrophysics Data System (ADS)

    Matusiak, Grzegorz Piotr

    2001-12-01

    Loudspeaker systems are analyzed in a doctoral dissertation. The dissertation concerns loudspeaker systems, which are known as subwoofers or band-pass loudspeaker systems. Their advantages include: high- quality sound reproduction in the low-frequency range, small dimensions, small nonlinear distortions and the fact that they can be placed anywhere in a room or car. Band-pass loudspeaker systems are used widely in the so- called Home Theatre as well as to provide sound in cinema, theatre, concert, discotheque, opera, operetta, philharmonic and amphitheater halls, at open-air concerts, and so on. Various designs are mass-produced by a large number of manufacturers. The study covers an analysis of band-pass loudspeaker systems to which the frequency transformation, i.e. the reactance transformation, has been applied. Since this is a symmetrical transformation, amplitude frequency responses of the studied band-pass systems are also symmetrical (logarithmic scale of a frequency). As a result, the high-pass loudspeaker system design method, known as the Thiele-Small, Benson analysis, can be employed. The investigations include the formulation of band-pass system equations (fourth, sixth and eighth-order polynomials) and the subsequent derivation of relations for the calculation of system parameters. The obtained results enable the calculation of optimum designs for prescribed alignments, e.g. (Chebyshev) equal-ripple, (Butterworth) maximally flat, or quasi-maximally flat (QB). The analysis covers fourth, sixth and eighth-order symmetrical systems. Eighth-order systems have been divided into three kinds according to three ways of physical realization. The doctoral dissertation includes band-pass loudspeaker systems, which can be designed with active or passive filters or without the filter. Designed systems consist of a loudspeaker whose front of a diaphragm is loaded with a Helmholtz resonator, i.e. an enclosure with a vent, which radiates sound outwards. The back is

  9. 2d PDE Linear Symmetric Matrix Solver

    Energy Science and Technology Software Center (ESTSC)

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  10. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves

    SciTech Connect

    Wei, Pengjiang; Croënne, Charles; Tak Chu, Sai; Li, Jensen

    2014-03-24

    We investigate tunable acoustic absorption enabled by the coherent control of input waves. It relies on coherent perfect absorption originally proposed in optics. By designing appropriate acoustic metamaterial structures with resonating effective bulk modulus or density, we show that complete absorption of incident waves impinging on the metamaterial can be achieved for either symmetrical or anti-symmetrical inputs in the forward and backward directions. By adjusting the relative phase between the two incident beams, absorption can be tuned effectively from unity to zero, making coherent control useful in applications like acoustic modulators, noise controllers, transducers, and switches.

  11. Communities and classes in symmetric fractals

    NASA Astrophysics Data System (ADS)

    Krawczyk, Małgorzata J.

    2015-07-01

    Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analyzed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.

  12. Synthesis of controllers for symmetric systems

    NASA Astrophysics Data System (ADS)

    Ameur Abid, Chiheb; Zouari, Belhassen

    2010-11-01

    This article deals with supervisory control problem for coloured Petri (CP) nets. Considering a CP-net, we build a condensed version of the ordinary state-space, namely the symbolic reachability graph (SRG). This latter graph allows to cope with state-space explosion problem for symmetric systems. The control specification can be expressed in terms of either forbidden states or forbidden sequences of transitions. According to these specifications, we derive the controller by applying the theory of regions on the basis of the SRG. Thanks to expressiveness power of CP-nets, the obtained controller to be connected to the plant model is reduced to one single place.

  13. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-01

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  14. Stability of a dual-spin satellite with two dampers

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.; Hubert, C. H.

    1974-01-01

    The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.

  15. Spin Model of Magnetostrictions in Multiferroic Mn Perovskites

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masahito; Furukawa, Nobuo; Nagaosa, Naoto

    2010-07-01

    We theoretically study origins of the ferroelectricity in the multiferroic phases of the rare-earth (R) Mn perovskites, RMnO3, by constructing a realistic spin model including the spin-phonon coupling, which reproduces the entire experimental phase diagram in the plane of temperature and Mn-O-Mn bond angle for the first time. Surprisingly we reveal a significant contribution of the symmetric (S·S)-type magnetostriction to the ferroelectricity even in a spin-spiral-based multiferroic phase, which can be larger than the usually expected antisymmetric (S×S)-type contribution. This explains well the nontrivial behavior of the electric polarization. We also predict the noncollinear deformation of the E-type spin structure and a wide coexisting regime of the E and spiral states, which resolve several experimental puzzles.

  16. Spin model of magnetostrictions in multiferroic Mn perovskites.

    PubMed

    Mochizuki, Masahito; Furukawa, Nobuo; Nagaosa, Naoto

    2010-07-16

    We theoretically study origins of the ferroelectricity in the multiferroic phases of the rare-earth (R) Mn perovskites, RMnO(3), by constructing a realistic spin model including the spin-phonon coupling, which reproduces the entire experimental phase diagram in the plane of temperature and Mn-O-Mn bond angle for the first time. Surprisingly we reveal a significant contribution of the symmetric (S·S)-type magnetostriction to the ferroelectricity even in a spin-spiral-based multiferroic phase, which can be larger than the usually expected antisymmetric (S×S)-type contribution. This explains well the nontrivial behavior of the electric polarization. We also predict the noncollinear deformation of the E-type spin structure and a wide coexisting regime of the E and spiral states, which resolve several experimental puzzles. PMID:20867801

  17. A Trip to Rome: Physical Replicas of Historical Objects Created in a Fully Automated Way from Photos

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi

    It is normal for tourists to take photos during their holidays, which are then printed, loaded into digital frames or shared on the Internet. This paper describes a new methodology to obtain accurate 3D digital models and material replicas of real objects, starting from digital images acquired with consumer and professional cameras. The implemented software is completely automatic and provides detailed reconstructions. It stands out from other existing approaches for the high metric accuracy of the final product, the level of detail obtainable, the speed of the algorithms and its adaptability under different viewing conditions. Several examples relating to an actual trip to Rome are reported and discussed, showing what a tourist can obtain with this package. Obviously, the method can be used for many other applications in which accurate models are needed.

  18. Fabrication of Uniform DNA-Conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays

    PubMed Central

    Lewis, Christina L.; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-01-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of probe and target DNA, femtomole sensitivity, and sequence specificity. Combined these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  19. Measurement and prediction of flow through a replica segment of a mildly atherosclerotic coronary artery of man

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Radbill, J. R.; Cho, Y. I.; Crawford, D. W.

    1986-01-01

    Pressure distributions were measured along a hollow vascular axisymmetric replica of a segment of the left circumflex coronary artery of man with mildly atherosclerotic diffuse disease. A large range of physiological Reynolds numbers from about 60 to 500, including hyperemic response, was spanned in the flows investigation using a fluid simulating blood kinematic viscosity. Predicted pressure distributions from the numerical solution of the Navier-Stokes equations were similar in trend and magnitude to the measurements. Large variations in the predicted velocity profiles occurred along the lumen. The influence of the smaller scale multiple flow obstacles along the wall (lesion variations) led to sharp spikes in the predicted wall shear stresses. Reynolds number similarity was discussed, and estimates of what time averaged in vivo pressure drop and shear stress might be were given for a vessel segment.

  20. A replica exchange transition interface sampling method with multiple interface sets for investigating networks of rare events

    NASA Astrophysics Data System (ADS)

    Swenson, David W. H.; Bolhuis, Peter G.

    2014-07-01

    The multiple state transition interface sampling (TIS) framework in principle allows the simulation of a large network of complex rare event transitions, but in practice suffers from convergence problems. To improve convergence, we combine multiple state TIS [J. Rogal and P. G. Bolhuis, J. Chem. Phys. 129, 224107 (2008)] with replica exchange TIS [T. S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)]. In addition, we introduce multiple interface sets, which allow more than one order parameter to be defined for each state. We illustrate the methodology on a model system of multiple independent dimers, each with two states. For reaction networks with up to 64 microstates, we determine the kinetics in the microcanonical ensemble, and discuss the convergence properties of the sampling scheme. For this model, we find that the kinetics depend on the instantaneous composition of the system. We explain this dependence in terms of the system's potential and kinetic energy.

  1. Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays.

    PubMed

    Lewis, Christina L; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-07-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  2. A coarse-grained model for DNA-functionalized spherical colloids, revisited: effective pair potential from parallel replica simulations.

    PubMed

    Theodorakis, Panagiotis E; Dellago, Christoph; Kahl, Gerhard

    2013-01-14

    We discuss a coarse-grained model recently proposed by Starr and Sciortino [J. Phys.: Condens. Matter 18, L347 (2006)] for spherical particles functionalized with short single DNA strands. The model incorporates two key aspects of DNA hybridization, i.e., the specificity of binding between DNA bases and the strong directionality of hydrogen bonds. Here, we calculate the effective potential between two DNA-functionalized particles of equal size using a parallel replica protocol. We find that the transition from bonded to unbonded configurations takes place at considerably lower temperatures compared to those that were originally predicted using standard simulations in the canonical ensemble. We put particular focus on DNA-decorations of tetrahedral and octahedral symmetry, as they are promising candidates for the self-assembly into a single-component diamond structure. Increasing colloid size hinders hybridization of the DNA strands, in agreement with experimental findings. PMID:23320725

  3. Fabrication of superhydrophobic and heat-insulating antimony doped tin oxide/polyurethane films by cast replica micromolding.

    PubMed

    Feng, Jie; Huang, Baoyuan; Zhong, Mingqiang

    2009-08-01

    A novel process for fabricating superhydrophobic and heat-insulating polymeric nanocomposite films was developed. Briefly, antimony doped tin oxide (ATO) nanoparticles that commonly endow coats heat-insulating and transparent functions were mixed into commercial waterborne polyurethane (WPU) suspensions to obtain ATO/WPU suspensions, which were then cast onto poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from stamps, ATO/PU films with superhydrophobic surface and heat-insulating property were created, while PU films without ATO only showed high hydrophobicity. Scanning electron microscopy (SEM) imaging showed the surface of ATO/PU superhydrophobic films had unique micro- and nano-structures similar with those on the lotus leaf. On the contrary, no obvious nano-structures were found on the surface of pure PU films, demonstrating mixing functional nanoparticles into polymers is a necessary and feasible step in creating superhydrophobic and functional films by replica molding method. PMID:19394955

  4. Noncommutativity due to spin

    NASA Astrophysics Data System (ADS)

    Gomes, M.; Kupriyanov, V. G.; da Silva, A. J.

    2010-04-01

    Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, ΔxΔy≥θ2/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.

  5. Spin Rotation of Formalism for Spin Tracking

    SciTech Connect

    Luccio,A.

    2008-02-01

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  6. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  7. Cyclicity of some symmetric nilpotent centers

    NASA Astrophysics Data System (ADS)

    García, Isaac A.

    2016-03-01

    In this work we present techniques for bounding the cyclicity of a wide class of monodromic nilpotent singularities of symmetric polynomial planar vector fields. The starting point is identifying a broad family of nilpotent symmetric fields for which existence of a center is equivalent to existence of a local analytic first integral, which, unlike the degenerate case, is not true in general for nilpotent singularities. We are able to relate so-called "focus quantities" to the "Poincaré-Lyapunov quantities" arising from the Poincaré first return map. When we apply the method to concrete examples, we show in some cases that the upper bound is sharp. Our approach is based on computational algebra methods for determining a minimal basis (constructed by focus quantities instead of by Poincaré-Lyapunov quantities because of the easier computability of the former) of the associated polynomial Bautin ideal in the parameter space of the family. The case in which the Bautin ideal is not radical is also treated.

  8. Electroweak Baryogenesis in R-symmetric Supersymmetry

    SciTech Connect

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  9. Conditional symmetric instability and mesoscale rainbands

    NASA Technical Reports Server (NTRS)

    Xu, Q.

    1986-01-01

    The linear theory of conditional symmetric instability (CSI) is re-examined in a rigorous framework. In comparison with symmetric instability a new feature of CSI is that the moist updraught tends to be narrow, as with conditional buoyancy instability (CBI). As the width of the moist updraught varies from its tolerance maximum to infinitesimal, the inviscid growth rate increases from zero to its maximum and the slope of the moist updraught increases from the absolute momentum surface to the moist most unstable surface. The fact that CSI circulations absorb energy from the basic shear and moist thermal field but lose energy to the dry basic thermal field is responsible for the narrow and slant feature of the moist updraught. When a bulk viscosity is accounted for, the most rapidly growing CSI modes bear a qualitative resemblance to some observed rainbands. The stability criterion of viscous CSI also shows a better comparison with observational data than inviscid CSI. The linear CSI theory here predicts that the isolated mode is preferred to other non-isolated (periodic or irregular spacing) modes. The preference of non-isolated modes is speculated to occur in the nonlinear stage.

  10. Spherically Symmetric Solutions of Light Galileon

    NASA Astrophysics Data System (ADS)

    Momeni, D.; Houndjo, M. J. S.; Güdekli, E.; Rodrigues, M. E.; Alvarenga, F. G.; Myrzakulov, R.

    2016-02-01

    We have been studied the model of light Galileon with translational shift symmetry ϕ → ϕ + c. The matter Lagrangian is presented in the form {L}_{φ }= -η (partial φ )2+β G^{μ ν }partial _{μ }φ partial _{ν }φ . We have been addressed two issues: the first is that, we have been proven that, this type of Galileons belong to the modified matter-curvature models of gravity in type of f(R,R^{μ ν }T_{μ ν }m). Secondly, we have been investigated exact solution for spherically symmetric geometries in this model. We have been found an exact solution with singularity at r = 0 in null coordinates. We have been proven that the solution has also a non-divergence current vector norm. This solution can be considered as an special solution which has been investigated in literature before, in which the Galileon's field is non-static (time dependence). Our scalar-shift symmetrized Galileon has the simple form of ϕ = t, which it is remembered by us dilaton field.

  11. Fast numerical determination of symmetric sparsity patterns

    SciTech Connect

    Carter, R.G.

    1994-08-01

    The author considers a function g: {Re}{sup n} {yields} {Re}{sup n} for which the Jacobian is symmetric and sparse. Such functions often arise, for instance, in numerical optimization, where g is the gradient of some objective function f so that the Jacobian of g is the Hessian of f. In many such applications one can generate extremely efficient algorithms by taking advantage of the sparsity structure of the problem if this pattern is known a priori. Unfortunately, determining such sparsity structures by hand is often difficult and prone to error. If one suspects a mistake has been made, or if g is a {open_quotes}black box{close_quotes} so that the true structure is completely unknown, one often has no alternative but to compute the entire matrix by finite differences - a prohibitively expensive task for large problems. The author shows that it is possible to numerically determine symmetric sparsity patterns using a relatively small number of g evaluations. Numerical results are shown for n up to 100,000 in which all nonzeros in the Jacobian are correctly identified in about one-hundredth of the time required to estimate the sparsity structure by a full finite difference calculation. When a good initial guess for the sparsity structure is available, numerical results are presented for n up to 500,000, in which all missing nonzeros are correctly located almost five-thousand times faster than would be possible with a full finite difference calculation.

  12. Spin Circuit Representation for Spin Pumping Phenomena

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal; Datta, Supriyo

    2015-03-01

    There has been enormous progress in the field of spintronics and nanomagnetics in recent years with the discovery of many new materials and phenomena and it remains a formidable challenge to integrate these phenomena into functional devices and evaluate their potential. To facilitate this process a modular approach has been proposed whereby different phenomena are represented by spin circuit components. Unlike ordinary circuit components, these spin circuit components are characterized by 4-component voltages and currents (one for charge and three for spin). In this talk we will (1) present a spin circuit representation for spin pumping phenomena, (2) combine it with a spin circuit representation for the spin Hall effect to show that it reproduces established results obtained earlier by other means, and finally (3) use it to propose a possible method for enhancing the spin pumping efficiency by an order of magnitude through the addition of a spin sink layer. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  13. Image domain propeller fast spin echo☆

    PubMed Central

    Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland

    2013-01-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683

  14. Decay Structure for Symmetric Hyperbolic Systems with Non-Symmetric Relaxation and its Application

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro; Duan, Renjun; Kawashima, Shuichi

    2012-07-01

    This paper is concerned with the decay structure for linear symmetric hyperbolic systems with relaxation. When the relaxation matrix is symmetric, the dissipative structure of the systems is completely characterized by the Kawashima-Shizuta stability condition formulated in Umeda et al. (Jpn J Appl Math 1:435-457, 1984) and Shizuta and Kawashima (Hokkaido Math J 14:249-275, 1985) and we obtain the asymptotic stability result together with the explicit time-decay rate under that stability condition. However, some physical models which satisfy the stability condition have non-symmetric relaxation term (for example, the Timoshenko system and the Euler-Maxwell system). Moreover, it had been already known that the dissipative structure of such systems is weaker than the standard type and is of the regularity-loss type (see Duan in J Hyperbolic Differ Equ 8:375-413, 2011; Ide et al. in Math Models Meth Appl Sci 18:647-667, 2008; Ide and Kawashima in Math Models Meth Appl Sci 18:1001-1025, 2008; Ueda et al. in SIAM J Math Anal 2012; Ueda and Kawashima in Methods Appl Anal 2012). Therefore our purpose in this paper is to formulate a new structural condition which includes the Kawashima-Shizuta condition, and to analyze the weak dissipative structure for general systems with non-symmetric relaxation.

  15. Spin Seebeck power generators

    SciTech Connect

    Cahaya, Adam B.; Tretiakov, O. A.; Bauer, Gerrit E. W.

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  16. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2016-02-01

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.

  17. Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry

    NASA Astrophysics Data System (ADS)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I. P.; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S.-K.

    2015-04-01

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU (3 )1 Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  18. Topological Hall conductivity of vortex and skyrmion spin textures

    SciTech Connect

    Jalil, M. B. A. Ghee Tan, Seng; Eason, Kwaku; Kong, Jian Feng

    2014-05-07

    We analyze the topological Hall conductivity experienced by conduction electrons whose spins are strongly coupled to axially symmetric spin textures, such as magnetic vortex and skyrmion of types I and II, theoretically by gauge theory, and numerically via micromagnetic simulations. The numerical results are in agreement with the theoretical predictions. Divergence between the two is seen when the vortex/skyrmion core radius is comparable or larger than the element size, and when the skyrmion configuration breaks down at high Dzyaloshinskii-Moriya interaction strength.

  19. Neutrino mean free paths in cold symmetric nuclear matter

    SciTech Connect

    Cowell, S.; Pandharipande, V.R.

    2004-09-01

    The neutrino mean free paths (NMFP) for scattering and absorption in cold symmetric nuclear matter (SNM) are calculated using two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions and the one particle-hole (p-h) response functions are calculated using the Tamm-Dancoff approximation (TDA). For the densities {rho}=(1/2), 1 (3/2){rho}{sub 0}, where {rho}{sub 0} is the equilibrium density of SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting Fermi gas (FG). This and the weakness of effective operators compared to the bare operators, significantly reduces the cross sections, enhancing the NMFP by factors of {approx}2.5-3.5 at the densities considered. The NMFP at the equilibrium density {rho}{sub 0} are also calculated using the TDA and random phase approximation (RPA) using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may further increase the NMFP by {approx}25% to 3-4 times those in a noninteracting FG. Finally, the sums and the energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are compared with those of the 1 p-h response functions to extract the sum and mean energies of multi p-h contributions to the weak response. The relatively large mean energy of the multi p-h excitations suggests that they may not contribute significantly to low energy NMFP.

  20. The motion and stability of a dual spin satellite during the momentum wheel spin-up maneuver

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sen, S.

    1972-01-01

    The stability of a dual-spin satellite system during the momentum wheel spin-up maneuver is treated both analytically and numerically. The dual-spin system consists of: a slowly rotating or despun main-body; a momentum wheel (or rotor) which is accelerated by a torque motor to change its initial angular velocity relative to the main part to some high terminal value; and a nutation damper. A closed form solution for the case of a symmetrical satellite indicates that when the nutation damper is physically constrained for movement (i.e. by use of a mechanical clamp) the magnitude of the vector sum of the transverse angular velocity components remains bounded during the wheel spin-up under the influence of a constant motor torque. The analysis is extended to consider such effects as: the motion of the nutation damper during spin-up; a non-uniform motor torque; and the effect of a non-symmetrical mass distribution in the main spacecraft and the rotor. An approximate analytical solution using perturbation techniques is developed for the case of a slightly asymmetric main spacecraft.

  1. Symmetric instability in the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Thomas, Leif N.; Taylor, John R.; Ferrari, Raffaele; Joyce, Terrence M.

    2013-07-01

    Analyses of wintertime surveys of the Gulf Stream (GS) conducted as part of the CLIvar MOde water Dynamic Experiment (CLIMODE) reveal that water with negative potential vorticity (PV) is commonly found within the surface boundary layer (SBL) of the current. The lowest values of PV are found within the North Wall of the GS on the isopycnal layer occupied by Eighteen Degree Water, suggesting that processes within the GS may contribute to the formation of this low-PV water mass. In spite of large heat loss, the generation of negative PV was primarily attributable to cross-front advection of dense water over light by Ekman flow driven by winds with a down-front component. Beneath a critical depth, the SBL was stably stratified yet the PV remained negative due to the strong baroclinicity of the current, suggesting that the flow was symmetrically unstable. A large eddy simulation configured with forcing and flow parameters based on the observations confirms that the observed structure of the SBL is consistent with the dynamics of symmetric instability (SI) forced by wind and surface cooling. The simulation shows that both strong turbulence and vertical gradients in density, momentum, and tracers coexist in the SBL of symmetrically unstable fronts. SI is a shear instability that draws its energy from geostrophic flows. A parameterization for the rate of kinetic energy (KE) extraction by SI applied to the observations suggests that SI could result in a net dissipation of 33 mW m-2 and 1 mW m-2 for surveys with strong and weak fronts, respectively. The surveys also showed signs of baroclinic instability (BCI) in the SBL, namely thermally direct vertical circulations that advect biomass and PV. The vertical circulation was inferred using the omega equation and used to estimate the rate of release of available potential energy (APE) by BCI. The rate of APE release was found to be comparable in magnitude to the net dissipation associated with SI. This result points to an

  2. Cooperative spin decoherence in finite spin chains

    NASA Astrophysics Data System (ADS)

    Delgado, Fernando; Fernandez-Rossier, Joaquin

    2014-03-01

    Overcoming the problem of relaxation and decoherence of magnetic nanostructures is one of the mayor goals in magnetic data storage. Although spin chains with as few as 12 magnetic atoms have revealed stability in cryogenic conditions, understanding the mechanism leading to these effects is essential for the engineered of stable structures. Here we consider the problem of spin decoherence and relaxation of finite size quantum spin chains due to elastic and spin conserving interactions with an electron gas. Specifically, we consider how the decoherence (T2) and relaxation (T1) times between the two degenerate ground states of a chain of N coupled spins compares with the one of an isolated spin in the same environment. We find that the spin decoherence time of Ising chains can be either enhanced or suppressed depending on the matching between the Fermi wavelength 2 π /kF and the inter-spin distance a. In particular, we find that depending on the values of kF a , it can show, for certain values that depends on the dimensionality of the electron gas, a cooperative enhancement proportional to N2 of the decoherence, analogous to super radiance decay of atom ensembles, or a suppression.

  3. Symmetric operation and nuclear notch filtering in GaAs double quantum dots

    NASA Astrophysics Data System (ADS)

    Kuemmeth, Ferdinand

    Spin qubits based on few-electron semiconducting quantum dots are promising candidates for quantum computation, due to their potential for miniaturization, scalability and fault tolerance. In this talk I will present recent results on how to mitigate electrical and nuclear noise in GaAs singlet-triplet qubits. The traditional way of implementing exchange rotations in singlet-triplet qubits involves detuning the qubit away from the symmetric (1,1) charge configuration, thereby temporarily hybridizing with the (0,2) charge state. Due to the large dipole coupling the resulting qubit oscillation suffers from detuning noise, motivating operation at sweet spots or in the multi-electron regime. Alternatively, exchange rotations can be implemented by symmetrically lowering the middle barrier. This method yields less relative exchange noise, significantly enhanced free induction decay times, and quality factors comparable to those reported in silicon quantum dot devices using similar techniques. In order to decouple the singlet-triplet qubit from nuclear spin fluctuations, we investigate Carr-Purcell-Meiboom-Gill (CPMG) sequences in more detail. At high magnetic fields we find that qubit dephasing is limited by narrow-band high-frequency noise arising from Larmor precession of 69Ga, 71Ga, 75As nuclear spins, similar to what has been observed at intermediate magnetic field. By aligning the notches of the CPMG filter function with differences of the discrete nuclear Larmor frequencies we demonstrate a qubit coherence time of 0.87 ms, i.e. more than five orders of magnitude longer than the duration of a π exchange gate in the same device. Support through IARPA-MQCO, Army Research Office, and the Danish National Research Foundation is acknowledged.

  4. Spin structure functions

    SciTech Connect

    Jian-ping Chen, Alexandre Deur, Sebastian Kuhn, Zein-eddine Meziani

    2011-06-01

    Spin-dependent observables have been a powerful tool to probe the internal structure of the nucleon and to understand the dynamics of the strong interaction. Experiments involving spin degrees of freedom have often brought out surprises and puzzles. The so-called "spin crisis" in the 1980s revealed the limitation of naive quark-parton models and led to intensive worldwide efforts, both experimental and theoretical, to understand the nucleon spin structure. With high intensity and high polarization of both the electron beam and targets, Jefferson Lab has the world's highest polarized luminosity and the best figure-of-merit for precision spin structure measurements. It has made a strong impact in this subfield of research. This chapter will highlight Jefferson Lab's unique contributions in the measurements of valence quark spin distributions, in the moments of spin structure functions at low to intermediate Q2, and in the transverse spin structure.

  5. Operational multipartite entanglement classes for symmetric photonic qubit states

    SciTech Connect

    Kiesel, N.; Wieczorek, W.; Weinfurter, H.; Krins, S.; Bastin, T.; Solano, E.

    2010-03-15

    We present experimental schemes that allow us to study the entanglement classes of all symmetric states in multiqubit photonic systems. We compare the efficiency of the proposed schemes and highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.

  6. Radially symmetric transmon with long lifetime

    NASA Astrophysics Data System (ADS)

    Sandberg, Martin; Vissers, Michael; Gao, Jiansong; Pappas, David

    2014-03-01

    We present a radially symmetric design for a large pad transmon qubit. The symmetry reduces the dipole radiation by orders of magnitude relative to axial large pad qubits that are widely used for 3D-circuit QED experiments. The reduction in radiation allows for the use of large area structures that are needed to reduce the effects of interface losses. This enables long qubit lifetimes without the use of a high-Q cavity resonator. Energy relaxation and coherence times of up to 35 microseconds have been measured. The qubit can be implemented in a microstrip geometry. This gives the advantage of removing discontinuous ground planes that can cause stray resonances. In addition, this geometry is well suited for implementing and exploring circuits with direct qubit-qubit coupling.

  7. Symmetrical Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, N. H.; Bourne, N. K.; Field, J. E.; Rosenberg, Z.

    1998-07-01

    Brar and Bless pioneered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass but limited their studies to relatively modest stresses (1). We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test in which two rods impact one upon the other. Previous work in the laboratory has characterised the glass types (soda-lime and borosilicate)(2). These experiments identify the failure mechanisms from high-speed photography and the stress and particle velocity histories are interpreted in the light of these results. The differences in response of the glasses and the relation of the fracture to the failure wave in uniaxial strain are discussed.

  8. Scaling model for symmetric star polymers

    NASA Astrophysics Data System (ADS)

    Ramachandran, Ram; Rai, Durgesh K.; Beaucage, Gregory

    2010-03-01

    Neutron scattering data from symmetric star polymers with six poly (urethane-ether) arms, chemically bonded to a C-60 molecule are fitted using a new scaling model and scattering function. The new scaling function can describe both good solvent and theta solvent conditions as well as resolve deviations in chain conformation due to steric interactions between star arms. The scaling model quantifies the distinction between invariant topological features for this star polymer and chain tortuosity which changes with goodness of solvent and steric interaction. Beaucage G, Phys. Rev. E 70 031401 (2004).; Ramachandran R, et al. Macromolecules 41 9802-9806 (2008).; Ramachandran R, et al. Macromolecules, 42 4746-4750 (2009); Rai DK et al. Europhys. Lett., (Submitted 10/2009).

  9. Circularly symmetric light scattering from nanoplasmonic spirals.

    PubMed

    Trevino, Jacob; Cao, Hui; Dal Negro, Luca

    2011-05-11

    In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors. PMID:21466155

  10. Cracked shells under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Lelale, F.

    1982-01-01

    A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.

  11. A symmetric bipolar nebula around MWC 922.

    PubMed

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A. PMID:17431173

  12. Jamming anomaly in PT-symmetric systems

    NASA Astrophysics Data System (ADS)

    Barashenkov, I. V.; Zezyulin, D. A.; Konotop, V. V.

    2016-07-01

    The Schrödinger equation with a { P }{ T }-symmetric potential is used to model an optical structure consisting of an element with gain coupled to an element with loss. At low gain–loss amplitudes γ, raising the amplitude results in the energy flux from the active to the leaky element being boosted. We study the anomalous behaviour occurring for larger γ, where the increase of the amplitude produces a drop of the flux across the gain–loss interface. We show that this jamming anomaly is either a precursor of the exceptional point, where two real eigenvalues coalesce and acquire imaginary parts, or precedes the eigenvalue's immersion in the continuous spectrum.

  13. Manufacturing and applications of nonrotationally symmetric optics

    NASA Astrophysics Data System (ADS)

    Weck, Manfred; Klocke, Fritz; Oezmeral, H.; Hennig, Jan; Ruebenach, Olaf; Ehl, M.; Grosser, Norbert; Leiers, R.; Henning, Thomas F. E.; Unnebrink, Lars; Bernges, Joerg

    1999-09-01

    The use of lasers is more and more growing in industrial processing of different materials. Some examples of possible applications are the improvement of surface characteristics, drilling, welding, cutting and micro-structuring. An important aspect in this context is the necessity to adjust a specific intensity distribution for each application. This is usually realized by using special optics, which are able to form or shape the beam. These optics have complex geometries and in addition they have to fulfill high precision requirements regarding form and surface quality. The efficiency of laser system can be increased by using special designed optics with non-rotationally symmetric structures. Fabricating optics with these requirements is almost impossible using conventional manufacturing techniques. The only possibility for manufacturing is the use of fast tool servo system while the diamond turning process.

  14. Highly symmetric POVMs and their informational power

    NASA Astrophysics Data System (ADS)

    Słomczyński, Wojciech; Szymusiak, Anna

    2016-01-01

    We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension 2 (for qubits). In this case, we prove that the entropy is minimal, and hence, the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation, and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy, and the quantum dynamical entropy are described.

  15. Torus quantization of symmetrically excited helium

    SciTech Connect

    Mueller, J. ); Burgdoerfer, J. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6377 ); Noid, D. )

    1992-02-01

    The recent discovery by Richter and Wintgen (J. Phys. B 23, L197 (1990)) that the classical helium atom is not globally ergodic has stimulated renewed interest in its semiclassical quantization. The Einstein-Brillouin-Keller quantization of Kolmogorov-Arnold-Moser tori around stable periodic orbits becomes locally possible in a selected region of phase space. Using a hyperspherical representation we have found a dynamically confining potential allowing for a stable motion near the Wannier ridge. The resulting semiclassical eigenenergies provide a test for full quantum calculations in the limit of very high quantum numbers. The relations to frequently used group-theoretical classifications for doubly excited states and to the periodic-orbit quantization of the chaotic portion of the phase space are discussed. The extrapolation of the semiclassical quantization to low-lying states give remarkably accurate estimates for the energies of all symmetric {ital L}=0 states of helium.

  16. Symmetric Satellite Swarms and Choreographic Crystals

    NASA Astrophysics Data System (ADS)

    Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick

    2016-01-01

    In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems.

  17. Symmetric Satellite Swarms and Choreographic Crystals.

    PubMed

    Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick

    2016-01-01

    In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems. PMID:26799028

  18. Consistency of PT-symmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Brody, Dorje C.

    2016-03-01

    In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric—the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.

  19. Pseudo-Z symmetric space-times

    SciTech Connect

    Mantica, Carlo Alberto; Suh, Young Jin

    2014-04-15

    In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.

  20. Parametric separation of symmetric pure quantum states

    NASA Astrophysics Data System (ADS)

    Solís-Prosser, M. A.; Delgado, A.; Jiménez, O.; Neves, L.

    2016-01-01

    Quantum state separation is a probabilistic map that transforms a given set of pure states into another set of more distinguishable ones. Here we investigate such a map acting onto uniparametric families of symmetric linearly dependent or independent quantum states. We obtained analytical solutions for the success probability of the maps—which is shown to be optimal—as well as explicit constructions in terms of positive operator valued measures. Our results can be used for state discrimination strategies interpolating continuously between minimum-error and unambiguous (or maximum-confidence) discrimination, which, in turn, have many applications in quantum information protocols. As an example, we show that quantum teleportation through a nonmaximally entangled quantum channel can be accomplished with higher probability than the one provided by unambiguous (or maximum-confidence) discrimination and with higher fidelity than the one achievable by minimum-error discrimination. Finally, an optical network is proposed for implementing parametric state separation.