Science.gov

Sample records for replication proteins mcm5

  1. The DNA replication factor MCM5 is essential for Stat1-mediated transcriptional activation

    PubMed Central

    Snyder, Marylynn; He, Wei; Zhang, J. Jillian

    2005-01-01

    The eukaryotic minichromosome maintenance (MCM) family of proteins (MCM2–MCM7) is evolutionarily conserved from yeast to human. These proteins are essential for DNA replication. The signal transducer and activator of transcription proteins are critical for the signal transduction of a multitude of cytokines and growth factors leading to the regulation of gene expression. We previously identified a strong interaction between Stat1 and MCM5. However, the physiological significance of this interaction was not clear. We show here by chromatin immunoprecipitation (ChIP) analyses that the MCM5 protein, as well as other members of the MCM family, is inducibly recruited to Stat1 target gene promoters in response to cytokine stimulation. Furthermore, the MCM proteins are shown to move along with the RNA polymerase II during transcription elongation. We have also identified an independent domain in MCM5 that mediates the interaction between Stat1 and MCM5; overexpression of this domain can disrupt the interaction between Stat1 and MCM5 and inhibit Stat1 transcriptional activity. Finally, we used the RNA interference technique to show that MCM5 is essential for transcription activation of Stat1 target genes. Together, these results demonstrate that, in addition to their roles in DNA replication, the MCM proteins are also necessary for transcription activation. PMID:16199513

  2. MCM5 as a target of BET inhibitors in thyroid cancer cells.

    PubMed

    Mio, Catia; Lavarone, Elisa; Conzatti, Ketty; Baldan, Federica; Toffoletto, Barbara; Puppin, Cinzia; Filetti, Sebastiano; Durante, Cosimo; Russo, Diego; Orlacchio, Arturo; Di Cristofano, Antonio; Di Loreto, Carla; Damante, Giuseppe

    2016-04-01

    Anaplastic thyroid carcinoma (ATC) is an extremely aggressive thyroid cancer subtype, refractory to the current medical treatment. Among various epigenetic anticancer drugs, bromodomain and extra-terminal inhibitors (BETis) are considered to be an appealing novel class of compounds. BETi target the bromodomain and extra-terminal of BET proteins that act as regulators of gene transcription, interacting with histone acetyl groups. The goal of this study is to delineate which pathway underlies the biological effects derived from BET inhibition, in order to find new potential therapeutic targets in ATC. We investigated the effects of BET inhibition on two human anaplastic thyroid cancer-derived cell lines (FRO and SW1736). The treatment with two BETis, JQ1 and I-BET762, decreased cell viability, reduced cell cycle S-phase, and determined cell death. In order to find BETi effectors, FRO and SW1736 were subjected to a global transcriptome analysis after JQ1 treatment. A significant portion of deregulated genes belongs to cell cycle regulators. Among them, MCM5 was decreased at both mRNA and protein levels in both tested cell lines. Chromatin immunoprecipitation (ChIP) experiments indicate that MCM5 is directly bound by the BET protein BRD4. MCM5 silencing reduced cell proliferation, thus underlining its involvement in the block of proliferation induced by BETis. Furthermore, MCM5 immunohistochemical evaluation in human thyroid tumor tissues demonstrated its overexpression in several papillary thyroid carcinomas and in all ATCs. MCM5 was also overexpressed in a murine model of ATC, and JQ1 treatment reduced Mcm5 mRNA expression in two murine ATC cell lines. Thus, MCM5 could represent a new target in the therapeutic approach against ATC. PMID:26911376

  3. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  4. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  5. Inhibition of virus DNA replication by artificial zinc finger proteins.

    PubMed

    Sera, Takashi

    2005-02-01

    Prevention of virus infections is a major objective in agriculture and human health. One attractive approach to the prevention is inhibition of virus replication. To demonstrate this concept in vivo, an artificial zinc finger protein (AZP) targeting the replication origin of the Beet severe curly top virus (BSCTV), a model DNA virus, was created. In vitro DNA binding assays indicated that the AZP efficiently blocked binding of the viral replication protein (Rep), which initiates virus replication, to the replication origin. All of the transgenic Arabidopsis plants expressing the AZP showed phenotypes strongly resistant to virus infection, and 84% of the transgenic plants showed no symptom. Southern blot analysis demonstrated that BSCTV replication was completely suppressed in the transgenic plants. Since the mechanism of viral DNA replication is well conserved among plants and mammals, this approach could be applied not only to agricultural crop protection but also to the prevention of virus infections in humans. PMID:15681461

  6. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication

    PubMed Central

    Carr, Stephen B.; Phillips, Simon E.V.; Thomas, Christopher D.

    2016-01-01

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  7. Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication.

    PubMed

    Carr, Stephen B; Phillips, Simon E V; Thomas, Christopher D

    2016-03-18

    Antibiotic resistance in pathogenic bacteria is a continual threat to human health, often residing in extrachromosomal plasmid DNA. Plasmids of the pT181 family are widespread and confer various antibiotic resistances to Staphylococcus aureus. They replicate via a rolling circle mechanism that requires a multi-functional, plasmid-encoded replication protein to initiate replication, recruit a helicase to the site of initiation and terminate replication after DNA synthesis is complete. We present the first atomic resolution structures of three such replication proteins that reveal distinct, functionally relevant conformations. The proteins possess a unique active site and have been shown to contain a catalytically essential metal ion that is bound in a manner distinct from that of any other rolling circle replication proteins. These structures are the first examples of the Rep_trans Pfam family providing insights into the replication of numerous antibiotic resistance plasmids from Gram-positive bacteria, Gram-negative phage and the mobilisation of DNA by conjugative transposons. PMID:26792891

  8. Activation of a human chromosomal replication origin by protein tethering

    PubMed Central

    Chen, Xiaomi; Liu, Guoqi; Leffak, Michael

    2013-01-01

    The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences. PMID:23658226

  9. Physical Interaction between Replication Protein A (RPA) and MRN

    PubMed Central

    Oakley, Greg; Tillison, Kristin; Opiyo, Stephen; Glanzer, Jason; Horn, Jeffrey M.; Patrick, Steve M.

    2009-01-01

    Replication protein A (RPA) is a heterotrimeric protein consisting of RPA1, RPA2 and RPA3 subunits that binds to ssDNA with high affinity. The response to replication stress requires the recruitment of RPA and the MRE11/RAD50/NBS1 (MRN) complex. RPA bound to ssDNA stabilizes stalled replication forks by recruiting checkpoint proteins involved in fork stabilization. MRN can bind DNA structures encountered at stalled or collapsed replication forks, such as ssDNA-dsDNA junctions or breaks and promote the restart of DNA replication. Here, we demonstrate that RPA2 phosphorylation regulates the assembly of DNA damage-induced RPA and MRN foci. Using purified proteins, we observe a direct interaction between RPA with both NBS1 and MRE11. By utilizing RPA bound to ssDNA, we demonstrate that substituting RPA with phosphorylated RPA or a phosphomimetic decreases the interaction with the MRN complex. Also, the N-terminus of RPA1 is a critical component of the RPA-MRN protein-protein interaction. Deletion of the N-terminal oligonucleotide-oligosaccharide binding fold (OB-fold) of RPA1 abrogates RPA interactions with MRN and individual proteins of the MRN complex. Further identification of residues critical for MRN binding in the N-terminus of RPA1 show that substitution of Arg31 and Arg41 with alanines disrupts the RPA-MRN interaction and alters cell cycle progression in response to DNA damage. Thus, the N-terminus of RPA1 and phosphorylation of RPA2 regulate RPA-MRN interactions and are important in the response to DNA damage. PMID:19586055

  10. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    PubMed Central

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  11. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells

    PubMed Central

    Zhang, Ya; Huang, Liang; Fu, Haiqing; Smith, Owen K.; Lin, Chii Mei; Utani, Koichi; Rao, Mishal; Reinhold, William C.; Redon, Christophe E.; Ryan, Michael; Kim, RyangGuk; You, Yang; Hanna, Harlington; Boisclair, Yves; Long, Qiaoming; Aladjem, Mirit I.

    2016-01-01

    Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins. PMID:27272143

  12. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells.

    PubMed

    Zhang, Ya; Huang, Liang; Fu, Haiqing; Smith, Owen K; Lin, Chii Mei; Utani, Koichi; Rao, Mishal; Reinhold, William C; Redon, Christophe E; Ryan, Michael; Kim, RyangGuk; You, Yang; Hanna, Harlington; Boisclair, Yves; Long, Qiaoming; Aladjem, Mirit I

    2016-01-01

    Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins. PMID:27272143

  13. Functionality of host proteins in Cucumber mosaic virus replication: GAPDH is obligatory to promote interaction between replication-associated proteins.

    PubMed

    Chaturvedi, Sonali; Seo, Jang-Kyun; Rao, A L N

    2016-07-01

    Here, we evaluated the role of two host proteins, a Bromo domain containing RNA binding protein (BRP1) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), in the replication of Cucumber mosaic virus (CMV). LC-MS/MS analysis of host/viral proteins pull down against BRP1 from CMV-infected plants co-infiltrated with BRP1-FLAG agroconstruct identified that BRP1 specifically interacts with a ten amino acid motif (843-SPQDVVPLVR-852) encompassing the helicase domain of replicase protein p1a. The interaction between BRP1 and p1a was subsequently confirmed using a BiFC assay. Among fourteen other host proteins identified to interact with BRP1 during CMV infection, six were found to block accumulation of viral progeny in Arabidopsis thaliana lines defective in each of these host proteins. Additional BiFC assays followed by trans-complementation assays identified that plant lines defective in the expression of GAPDH blocked CMV replication by interfering with p1a:p2a interaction. Distinct roles of BRP1 and GAPDH in the replication of CMV are discussed. PMID:27077230

  14. Adaptor Protein 1A Facilitates Dengue Virus Replication

    PubMed Central

    Yasamut, Umpa; Tongmuang, Nopprarat; Yenchitsomanus, Pa-thai; Junking, Mutita; Noisakran, Sansanee; Puttikhunt, Chunya; Chu, Justin Jang Hann; Limjindaporn, Thawornchai

    2015-01-01

    Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication. PMID:26090672

  15. Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication

    PubMed Central

    Kawamura-Nagaya, Kazue; Ishibashi, Kazuhiro; Huang, Ying-Ping; Miyashita, Shuhei; Ishikawa, Masayuki

    2014-01-01

    Genomic RNA of positive-strand RNA viruses replicate via complementary (i.e., negative-strand) RNA in membrane-bound replication complexes. Before replication complex formation, virus-encoded replication proteins specifically recognize genomic RNA molecules and recruit them to sites of replication. Moreover, in many of these viruses, selection of replication templates by the replication proteins occurs preferentially in cis. This property is advantageous to the viruses in several aspects of viral replication and evolution, but the underlying molecular mechanisms have not been characterized. Here, we used an in vitro translation system to show that a 126-kDa replication protein of tobacco mosaic virus (TMV), a positive-strand RNA virus, binds a 5′-terminal ∼70-nucleotide region of TMV RNA cotranslationally, but not posttranslationally. TMV mutants that carried nucleotide changes in the 5′-terminal region and showed a defect in the binding were unable to synthesize negative-strand RNA, indicating that this binding is essential for template selection. A C-terminally truncated 126-kDa protein, but not the full-length 126-kDa protein, was able to posttranslationally bind TMV RNA in vitro, suggesting that binding of the 126-kDa protein to the 70-nucleotide region occurs during translation and before synthesis of the C-terminal inhibitory domain. We also show that binding of the 126-kDa protein prevents further translation of the bound TMV RNA. These data provide a mechanistic explanation of how the 126-kDa protein selects replication templates in cis and how fatal collision between translating ribosomes and negative-strand RNA-synthesizing polymerases on the genomic RNA is avoided. PMID:24711385

  16. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  17. Diffusion of human Replication Protein A along single stranded DNA

    PubMed Central

    Nguyen, Binh; Sokoloski, Joshua; Galletto, Roberto; Elson, Elliot L.; Wold, Marc S.; Lohman, Timothy M.

    2014-01-01

    Replication Protein A (RPA) is a eukaryotic single stranded (ss) DNA binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single molecule fluorescence approaches to examine human RPA diffusion along ssDNA and find that an hRPA hetero-trimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1 ~5000 nucleotide2s−1 at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA. PMID:25058683

  18. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. PMID:27053724

  19. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    SciTech Connect

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D.

    2014-12-15

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.

  20. Aquareovirus NS80 Initiates Efficient Viral Replication by Retaining Core Proteins within Replication-Associated Viral Inclusion Bodies

    PubMed Central

    Yan, Liming; Zhang, Jie; Guo, Hong; Yan, Shicui; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2015-01-01

    Viral inclusion bodies (VIBs) are specific intracellular compartments for reoviruses replication and assembly. Aquareovirus nonstructural protein NS80 has been identified to be the major constituent for forming globular VIBs in our previous study. In this study, we investigated the role of NS80 in viral structural proteins expression and viral replication. Immunofluorescence assays showed that NS80 could retain five core proteins or inner-capsid proteins (VP1-VP4 and VP6), but not outer-capsid proteins (VP5 and VP7), within VIBs in co-transfected or infected cells. Further co-immunoprecipitation analysis confirmed that NS80 could interact with each core protein respectively. In addition, we found that newly synthesized viral RNAs co-localized with VIBs. Furthermore, time-course analysis of viral structural proteins expression showed that the expression of NS80 was detected first, followed by the detection of inner shell protein VP3, and then of other inner-capsid proteins, suggesting that VIBs were essential for the formation of viral core frame or progeny virion. Moreover, knockdown of NS80 by shRNA not only inhibited the expression of aquareovirus structural proteins, but also inhibited viral infection. These results indicated that NS80-based VIBs were formed at earlier stage of infection, and NS80 was able to coordinate the expression of viral structural proteins and viral replication. PMID:25938226

  1. Improved artificial origins for phage Φ29 terminal protein-primed replication. Insights into early replication events

    PubMed Central

    Gella, Pablo; Salas, Margarita; Mencía, Mario

    2014-01-01

    The replication machinery of bacteriophage Φ29 is a paradigm for protein-primed replication and it holds great potential for applied purposes. To better understand the early replication events and to find improved origins for DNA amplification based on the Φ29 system, we have studied the end-structure of a double-stranded DNA replication origin. We have observed that the strength of the origin is determined by a combination of factors. The strongest origin (30-fold respect to wt) has the sequence CCC at the 3′ end of the template strand, AAA at the 5′ end of the non-template strand and 6 nucleotides as optimal unpairing at the end of the origin. We also show that the presence of a correctly positioned displaced strand is important because origins with 5′ or 3′ ssDNA regions have very low activity. Most of the effect of the improved origins takes place at the passage between the terminal protein-primed and the DNA-primed modes of replication by the DNA polymerase suggesting the existence of a thermodynamic barrier at that point. We suggest that the template and non-template strands of the origin and the TP/DNA polymerase complex form series of interactions that control the critical start of terminal protein-primed replication. PMID:25081208

  2. Human DNA Helicase B (HDHB) Binds to Replication Protein A and Facilitates Cellular Recovery from Replication Stress*

    PubMed Central

    Guler, Gulfem Dilek; Liu, Hanjian; Vaithiyalingam, Sivaraja; Arnett, Diana R.; Kremmer, Elisabeth; Chazin, Walter J.; Fanning, Ellen

    2012-01-01

    Maintenance of genomic stability in proliferating cells depends on a network of proteins that coordinate chromosomal replication with DNA damage responses. Human DNA helicase B (HELB or HDHB) has been implicated in chromosomal replication, but its role in this coordinated network remains undefined. Here we report that cellular exposure to UV irradiation, camptothecin, or hydroxyurea induces accumulation of HDHB on chromatin in a dose- and time-dependent manner, preferentially in S phase cells. Replication stress-induced recruitment of HDHB to chromatin is independent of checkpoint signaling but correlates with the level of replication protein A (RPA) recruited to chromatin. We show using purified proteins that HDHB physically interacts with the N-terminal domain of the RPA 70-kDa subunit (RPA70N). NMR spectroscopy and site-directed mutagenesis reveal that HDHB docks on the same RPA70N surface that recruits S phase checkpoint signaling proteins to chromatin. Consistent with this pattern of recruitment, cells depleted of HDHB display reduced recovery from replication stress. PMID:22194613

  3. The adenovirus terminal protein influences binding of replication proteins and changes the origin structure.

    PubMed Central

    Pronk, R; van der Vliet, P C

    1993-01-01

    The adenovirus terminal protein (TP) is covalently linked to the 5' ends of the adenovirus genome and enhances DNA replication in vitro by increasing template activity. To study the effect of TP in more detail we isolated short origin fragments containing functional TP using anion exchange chromatography. These fragments were highly active as templates for DNA replication in a reconstituted system. Employing band-shift assays we found that the affinity of the precursor terminal protein-DNA polymerase complex for the TP-containing origin was increased 2 to 3-fold. Binding affinities of two other replication stimulating proteins, NFI and Oct-1, were not influenced by the terminal protein. Upon DNaseI footprinting we observed, unexpectedly, that the breakdown pattern had changed at various positions in the origin, notably in the area 3-6 and 41-51 by the presence of TP. Some differences in the footprint pattern of NFI and Oct-1 were also found. Our results indicate that TP induces subtle changes in the origin structure that influence the interaction of other replication proteins. Images PMID:8506126

  4. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication

    PubMed Central

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and

  5. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

    PubMed

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  6. Coat protein activation of alfalfa mosaic virus replication is concentration dependent.

    PubMed

    Guogas, Laura M; Laforest, Siana M; Gehrke, Lee

    2005-05-01

    Alfalfa mosaic virus (AMV) and ilarvirus RNAs are infectious only in the presence of the viral coat protein; therefore, an understanding of coat protein's function is important for defining viral replication mechanisms. Based on in vitro replication experiments, the conformational switch model states that AMV coat protein blocks minus-strand RNA synthesis (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999), while another report states that coat protein present in an inoculum is required to permit minus-strand synthesis (L. Neeleman and J. F. Bol, Virology 254:324-333, 1999). Here, we report on experiments that address these contrasting results with a goal of defining coat protein's function in the earliest stages of AMV replication. To detect coat-protein-activated AMV RNA replication, we designed and characterized a subgenomic luciferase reporter construct. We demonstrate that activation of viral RNA replication by coat protein is concentration dependent; that is, replication was strongly stimulated at low coat protein concentrations but decreased progressively at higher concentrations. Genomic RNA3 mutations preventing coat protein mRNA translation or disrupting coat protein's RNA binding domain diminished replication. The data indicate that RNA binding and an ongoing supply of coat protein are required to initiate replication on progeny genomic RNA transcripts. The data do not support the conformational switch model's claim that coat protein inhibits the initial stages of viral RNA replication. Replication activation may correlate with low local coat protein concentrations and low coat protein occupancy on the multiple binding sites present in the 3' untranslated regions of the viral RNAs. PMID:15827190

  7. Guanylylation-competent replication proteins of Tomato mosaic virus are disulfide-linked.

    PubMed

    Nishikiori, Masaki; Meshi, Tetsuo; Ishikawa, Masayuki

    2012-12-01

    The 130-kDa and 180-kDa replication proteins of Tomato mosaic virus (ToMV) covalently bind guanylate and transfer it to the 5' end of RNA to form a cap. We found that guanylylation-competent ToMV replication proteins are in membrane-bound, disulfide-linked complexes. Guanylylation-competent replication proteins of Brome mosaic virus and Cucumber mosaic virus behaved similarly. To investigate the roles of disulfide bonding in the functioning of ToMV replication proteins, each of the 19 cysteine residues in the 130-kDa protein was replaced by a serine residue. Interestingly, three mutant proteins (C179S, C186S and C581S) failed not only to be guanylylated, but also to bind to the replication template and membranes. These mutants could trans-complement viral RNA replication. Considering that ToMV replication proteins recognize the replication templates, bind membranes, and are guanylylated in the cytoplasm that provides a reducing condition, we discuss the roles of cysteine residues and disulfide bonds in ToMV RNA replication. PMID:23062762

  8. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication

    PubMed Central

    Zhang, Alice Tianbu; Langley, Alexander R.; Christov, Christo P.; Kheir, Eyemen; Shafee, Thomas; Gardiner, Timothy J.; Krude, Torsten

    2011-01-01

    Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular ‘catch and release’ mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors. PMID:21610089

  9. Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells.

    PubMed

    Traylen, Chris; Ramasubramanyan, Sharada; Zuo, Jianmin; Rowe, Martin; Almohammad, Rajaei; Heesom, Kate; Sweet, Steve M M; Matthews, David A; Sinclair, Alison J

    2015-01-01

    The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the OPEN ACCESS Pathogens 2015, 4 740 EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications. PMID:26529022

  10. Identification of Epstein-Barr Virus Replication Proteins in Burkitt’s Lymphoma Cells

    PubMed Central

    Traylen, Chris; Ramasubramanyan, Sharada; Zuo, Jianmin; Rowe, Martin; Almohammad, Rajaei; Heesom, Kate; Sweet, Steve M. M.; Matthews, David A.; Sinclair, Alison J.

    2015-01-01

    The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications. PMID:26529022

  11. Assembly of Alphavirus Replication Complexes from RNA and Protein Components in a Novel trans-Replication System in Mammalian Cells ▿

    PubMed Central

    Spuul, Pirjo; Balistreri, Giuseppe; Hellström, Kirsi; Golubtsov, Andrey V.; Jokitalo, Eija; Ahola, Tero

    2011-01-01

    For positive-strand RNA viruses, the viral genomic RNA also acts as an mRNA directing the translation of the replicase proteins of the virus. Replication takes place in association with cytoplasmic membranes, which are heavily modified to create specific replication compartments. Here we have expressed by plasmid DNA transfection the large replicase polyprotein of Semliki Forest virus (SFV) in mammalian cells from a nonreplicating mRNA and provided a separate RNA containing the replication signals. The replicase proteins were able to efficiently and specifically replicate the template in trans, leading to accumulation of RNA and marker gene products expressed from the template RNA. The replicase proteins and double-stranded RNA replication intermediates localized to structures similar to those seen in SFV-infected cells. Using correlative light electron microscopy (CLEM) with fluorescent marker proteins to relocate those transfected cells, in which active replication was ongoing, abundant membrane modifications, representing the replication complex spherules, were observed both at the plasma membrane and in intracellular endolysosomes. Thus, replication complexes are faithfully assembled and localized in the trans-replication system. We demonstrated, using CLEM, that the replication proteins alone or a polymerase-negative polyprotein mutant together with the template did not give rise to spherule formation. Thus, the trans-replication system is suitable for cell biological dissection and examination in a mammalian cell environment, and similar systems may be possible for other positive-strand RNA viruses. PMID:21389137

  12. Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli

    SciTech Connect

    Yung, B.Y.; Kornberg, A.

    1988-10-01

    ADP and ATP are tightly bound to dnaA protein and are crucial to its function in DNA replication; the exchange of these nucleotides is effected specifically by the acidic phospholipids (cardiolipin and phosphatidylglycerol) present in Escherichia coli membranes. We now find that phospholipids derived from membranes lacking an unsaturated fatty acid (e.g., oleic acid) are unable to promote the exchange. This observation correlates strikingly with the long-known effect of 3-decynoyl-N-acetylcysteamine, a ''suicide analog'' that prevents initiation of a cycle of replication in E. coli by inhibiting the synthesis of oleic acid, an inhibition that can be overcome by providing the cells with oleic acid. Profound influences on the specific binding of dnaA protein to phospholipids by temperature, the content of unsaturated fatty acids, and the inclusion of cholesterol can be explained by the need for the phospholipids to be in fluid-phase vesicles. These findings suggest that membrane attachment of dnaA protein is vital for its function in the initiation of chromosome replication in E. coli.

  13. Separation of the transcriptional activation and replication functions of the bovine papillomavirus-1 E2 protein.

    PubMed

    Winokur, P L; McBride, A A

    1992-11-01

    Replication of bovine papillomavirus-1 (BPV-1) DNA requires two viral gene products, the E1 protein and the full-length E2 protein. The 48 kDa E2 protein is a site-specific DNA-binding protein that binds to several sites which lie adjacent to the BPV-1 origin of replication. The 85 amino acid C-terminal domain contains the specific DNA binding and dimerization properties of the protein. The approximately 200 amino acid N-terminal domain is crucial for transcriptional activation. Both of these domains are highly conserved among different papillomaviruses. An internal hinge region separates the two functional domains. The region varies in amino acid sequence and length among the E2 proteins of different papillomaviruses. A series of mutations were constructed within the E2 open reading frame which delete various regions of the conserved DNA binding and transactivation domains as well as the internal hinge region. Two mutated E2 proteins that lack portions of the conserved DNA-binding domain but which support DNA replication were identified using transient replication assays. These mutated E2 proteins were unable to function as transcriptional activators. Conversely, two E2 proteins containing large deletions of the hinge region were able to activate transcription, but were defective for replication. Thus, the replication and transactivation functions of the E2 protein are separable. PMID:1327758

  14. Modulation of Hepatitis C Virus Genome Replication by Glycosphingolipids and Four-Phosphate Adaptor Protein 2

    PubMed Central

    Khan, Irfan; Katikaneni, Divya S.; Han, Qingxia; Sanchez-Felipe, Lorena; Hanada, Kentaro; Ambrose, Rebecca L.; Mackenzie, Jason M.

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) assembles its replication complex on cytosolic membrane vesicles often clustered in a membranous web (MW). During infection, HCV NS5A protein activates PI4KIIIα enzyme, causing massive production and redistribution of phosphatidylinositol 4-phosphate (PI4P) lipid to the replication complex. However, the role of PI4P in the HCV life cycle is not well understood. We postulated that PI4P recruits host effectors to modulate HCV genome replication or virus particle production. To test this hypothesis, we generated cell lines for doxycycline-inducible expression of short hairpin RNAs (shRNAs) targeting the PI4P effector, four-phosphate adaptor protein 2 (FAPP2). FAPP2 depletion attenuated HCV infectivity and impeded HCV RNA synthesis. Indeed, FAPP2 has two functional lipid-binding domains specific for PI4P and glycosphingolipids. While expression of the PI4P-binding mutant protein was expected to inhibit HCV replication, a marked drop in replication efficiency was observed unexpectedly with the glycosphingolipid-binding mutant protein. These data suggest that both domains are crucial for the role of FAPP2 in HCV genome replication. We also found that HCV significantly increases the level of some glycosphingolipids, whereas adding these lipids to FAPP2-depleted cells partially rescued replication, further arguing for the importance of glycosphingolipids in HCV RNA synthesis. Interestingly, FAPP2 is redistributed to the replication complex (RC) characterized by HCV NS5A, NS4B, or double-stranded RNA (dsRNA) foci. Additionally, FAPP2 depletion disrupts the RC and alters the colocalization of HCV replicase proteins. Altogether, our study implies that HCV coopts FAPP2 for virus genome replication via PI4P binding and glycosphingolipid transport to the HCV RC. IMPORTANCE Like most viruses with a positive-sense RNA genome, HCV replicates its RNA on remodeled host membranes composed of lipids hijacked from various internal membrane compartments

  15. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    SciTech Connect

    Mathew, Shomita S.; Bridge, Eileen

    2007-09-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci.

  16. Host ESCRT Proteins Are Required for Bromovirus RNA Replication Compartment Assembly and Function

    PubMed Central

    Diaz, Arturo; Zhang, Jiantao; Ollwerther, Abigail; Wang, Xiaofeng; Ahlquist, Paul

    2015-01-01

    Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV) RNA replication occurs on perinuclear endoplasmic reticulum (ER) membranes in ~70 nm vesicular invaginations (spherules). BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport) membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV) spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance. PMID:25748299

  17. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein

    PubMed Central

    Barajas, Daniel; Nagy, Peter D.

    2009-01-01

    Summary Post-translational modifications of viral replication proteins could be widespread phenomena during the replication of plus-stranded RNA viruses. In this paper, we identify two lysines in the tombusvirus p33 replication co-factor involved in ubiquitination and show that the same lysines are also important for the p33 to interact with the host Vps23p ESCRT-I factor. We find that the interaction of p33 with Vps23p is also affected by a "late-domain"-like sequence in p33. The combined mutations of the two lysines and the late-domain-like sequences in p33 reduced replication of a replicon RNA of Tomato bushy stunt virus in yeast model host, in plant protoplasts and plant leaves, suggesting that p33-Vps23p ESCRT protein interaction affects tombusvirus replication. Using ubiquitin-mimicking p33 chimeras, we demonstrate that high level of p33 ubiquitination is inhibitory for TBSV replication. These findings argue that optimal level of p33 ubiquitination plays a regulatory role during tombusvirus infections. PMID:20004458

  18. Functional Analysis of DNA Replication Fork Reversal Catalyzed by Mycobacterium tuberculosis RuvAB Proteins*

    PubMed Central

    Khanduja, Jasbeer Singh; Muniyappa, K.

    2012-01-01

    Initially discovered in Escherichia coli, RuvAB proteins are ubiquitous in bacteria and play a dual role as molecular motor proteins responsible for branch migration of the Holliday junction(s) and reversal of stalled replication forks. Despite mounting genetic evidence for a crucial role of RuvA and RuvB proteins in reversal of stalled replication forks, the mechanistic aspects of this process are still not fully understood. Here, we elucidate the ability of Mycobacterium tuberculosis RuvAB (MtRuvAB) complex to catalyze the reversal of replication forks using a range of DNA replication fork substrates. Our studies show that MtRuvAB, unlike E. coli RuvAB, is able to drive replication fork reversal via the formation of Holliday junction intermediates, suggesting that RuvAB-catalyzed fork reversal involves concerted unwinding and annealing of nascent leading and lagging strands. We also demonstrate the reversal of replication forks carrying hemi-replicated DNA, indicating that MtRuvAB complex-catalyzed fork reversal is independent of symmetry at the fork junction. The fork reversal reaction catalyzed by MtRuvAB is coupled to ATP hydrolysis, is processive, and culminates in the formation of an extended reverse DNA arm. Notably, we found that sequence heterology failed to impede the fork reversal activity of MtRuvAB. We discuss the implications of these results in the context of recognition and processing of varied types of replication fork structures by RuvAB proteins. PMID:22094465

  19. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    SciTech Connect

    Kanginakudru, Sriramana; DeSmet, Marsha; Thomas, Yanique; Morgan, Iain M.; Androphy, Elliot J.

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.

  20. P1 plasmid replication: measurement of initiator protein concentration in vivo.

    PubMed Central

    Swack, J A; Pal, S K; Mason, R J; Abeles, A L; Chattoraj, D K

    1987-01-01

    To study the functions of the mini-P1 replication initiation protein RepA quantitatively, we have developed a method to measure RepA concentration by using immunoblotting. In vivo, there are about 20 RepA dimers per unit-copy plasmid DNA. RepA was deduced to be a dimer from gel filtration of the purified protein. Since there are 14 binding sites of the protein per replicon, the physiological concentration of the protein appears to be sufficiently low to be a rate-limiting factor for replication. Autoregulation is apparently responsible for the low protein level; at the physiological concentration of the protein, the repA promoter retains only 0.1% of its full activity as determined by gene fusions to lacZ. When the concentration is further decreased by a factor of 3 or increased by a factor of 40, replication is no longer detectable. Images PMID:3611028

  1. Human cytomegalovirus RL13 protein interacts with host NUDT14 protein affecting viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanping; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-03-01

    The interaction between the host and human cytomegalovirus (HCMV) is important in determining the outcome of a viral infection. The HCMV RL13 gene product exerts independent, inhibitory effects on viral growth in fibroblasts and epithelial cells. At present, there are few reports on the interactions between the HCMV RL13 protein and human host proteins. The present study provided direct evidence for the specific interaction between HCMV RL13 and host nucleoside diphosphate linked moiety X (nudix)‑type motif 14 (NUDT14), a UDP‑glucose pyrophosphatase, using two‑hybrid screening, an in vitro glutathione S‑transferase pull‑down assay, and co‑immunoprecipitation in human embryonic kidney HEK293 cells. Additionally, the RL13 protein was shown to co‑localize with the NUDT14 protein in the HEK293 cell membrane and cytoplasm, demonstrated using fluorescence confocal microscopy. Decreasing the expression level of NUDT14 via NUDT14‑specific small interfering RNAs increased the number of viral DNA copies in the HCMV‑infected cells. However, the overexpression of NUDT14 in a stably expressing cell line did not affect viral DNA levels significantly in the HCMV infected cells. Based on the known functions of NUDT14, the results of the present study suggested that the interaction between the RL13 protein and NUDT14 protein may be involved in HCMV DNA replication, and that NUDT14 may offer potential in the modulation of viral infection. PMID:26781650

  2. Helicases that underpin replication of protein-bound DNA in Escherichia coli.

    PubMed

    McGlynn, Peter

    2011-04-01

    A pre-requisite for successful cell division in any organism is synthesis of an accurate copy of the genetic information needed for survival. This copying process is a mammoth task, given the amount of DNA that must be duplicated, but potential blocks to replication fork movement also pose a challenge for genome duplication. Damage to the template inhibits the replication machinery but proteins bound to the template such as RNA polymerases also present barriers to replication. This review discusses recent results from Escherichia coli that shed light on the roles of helicases in overcoming protein-DNA barriers to replication and that may illustrate fundamental aspects of how duplication of protein-bound DNA is underpinned in all organisms. PMID:21428948

  3. Novel Mechanism of Regulation of Tomato Bushy Stunt Virus Replication by Cellular WW-Domain Proteins

    PubMed Central

    Barajas, Daniel; Kovalev, Nikolay; Qin, Jun

    2014-01-01

    ABSTRACT Replication of (+)RNA viruses depends on several co-opted host proteins but is also under the control of cell-intrinsic restriction factors (CIRFs). By using tombusviruses, small model viruses of plants, we dissect the mechanism of inhibition of viral replication by cellular WW-domain-containing proteins, which act as CIRFs. By using fusion proteins between the WW domain and the p33 replication protein, we show that the WW domain inhibits the ability of p33 to bind to the viral RNA and to other p33 and p92 replication proteins leading to inhibition of viral replication in yeast and in a cell extract. Overexpression of WW-domain protein in yeast also leads to reduction of several co-opted host factors in the viral replicase complex (VRC). These host proteins, such as eEF1A, Cdc34 E2 ubiquitin-conjugating enzyme, and ESCRT proteins (Bro1p and Vps4p), are known to be involved in VRC assembly. Simultaneous coexpression of proviral cellular factors with WW-domain protein partly neutralizes the inhibitory effect of the WW-domain protein. We propose that cellular WW-domain proteins act as CIRFs and also as regulators of tombusvirus replication by inhibiting the assembly of new membrane-bound VRCs at the late stage of infection. We suggest that tombusviruses could sense the status of the infected cells via the availability of cellular susceptibility factors versus WW-domain proteins for binding to p33 replication protein that ultimately controls the formation of new VRCs. This regulatory mechanism might explain how tombusviruses could adjust the efficiency of RNA replication to the limiting resources of the host cells during infections. IMPORTANCE Replication of positive-stranded RNA viruses, which are major pathogens of plants, animals, and humans, is inhibited by several cell-intrinsic restriction factors (CIRFs) in infected cells. We define here the inhibitory roles of the cellular Rsp5 ubiquitin ligase and its WW domain in plant-infecting tombusvirus

  4. Interaction between Brome Mosaic Virus Proteins and RNAs: Effects on RNA Replication, Protein Expression, and RNA Stability

    PubMed Central

    Gopinath, K.; Dragnea, B.; Kao, C.

    2005-01-01

    Brome mosaic virus (BMV) RNA replication has been examined in a number of systems, including Saccharomyces cerevisiae. We developed an efficient T-DNA-based gene delivery system using Agrobacterium tumefaciens to transiently express BMV RNAs in Nicotiana benthamiana. The expressed RNAs can systemically infect plants and provide material to extract BMV replicase that can perform template-dependent RNA-dependent RNA synthesis in vitro. We also expressed the four BMV-encoded proteins from nonreplicating RNAs and analyzed their effects on BMV RNA accumulation. The capsid protein that coinfiltrated with constructs expressing RNA1 and RNA2 suppressed minus-strand levels but increased plus-strand RNA accumulation. The replication proteins 1a and 2a could function in trans to replicate and transcribe the BMV RNAs. None of the BMV proteins or RNA could efficiently suppress posttranscriptional silencing. However, 1a expressed in trans will suppress the production of a recombinant green fluorescent protein expressed from the nontranslated portions of BMV RNA1 and RNA2, suggesting that 1a may regulate translation from BMV RNAs. BMV replicase proteins 1a did not affect the accumulation of the BMV RNAs in the absence of RNA replication, unlike the situation reported for S. cerevisiae. This work demonstrates that the Agrobacterium-mediated gene delivery system can be used to study the cis- and trans-acting requirements for BMV RNA replication in plants and that significant differences can exist for BMV RNA replication in different hosts. PMID:16254357

  5. Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins

    PubMed Central

    Voineagu, Irina; Narayanan, Vidhya; Lobachev, Kirill S.; Mirkin, Sergei M.

    2008-01-01

    DNA inverted repeats (IRs) are hotspots of genomic instability in both prokaryotes and eukaryotes. This feature is commonly attributed to their ability to fold into hairpin- or cruciform-like DNA structures interfering with DNA replication and other genetic processes. However, direct evidence that IRs are replication stall sites in vivo is currently lacking. Here, we show by 2D electrophoretic analysis of replication intermediates that replication forks stall at IRs in bacteria, yeast, and mammalian cells. We found that DNA hairpins, rather than DNA cruciforms, are responsible for the replication stalling by comparing the effects of specifically designed imperfect IRs with varying lengths of their central spacer. Finally, we report that yeast fork-stabilizing proteins, Tof1 and Mrc1, are required to counteract repeat-mediated replication stalling. We show that the function of the Tof1 protein at DNA structure-mediated stall sites is different from its previously described effect on protein-mediated replication fork barriers. PMID:18632578

  6. A novel DNA replication origin identified in the human heat shock protein 70 gene promoter.

    PubMed Central

    Taira, T; Iguchi-Ariga, S M; Ariga, H

    1994-01-01

    A general and sensitive method for the mapping of initiation sites of DNA replication in vivo, developed by Vassilev and Johnson, has revealed replication origins in the region of simian virus 40 ori, in the regions upstream from the human c-myc gene and downstream from the Chinese hamster dihydrofolate reductase gene, and in the enhancer region of the mouse immunoglobulin heavy-chain gene. Here we report that the region containing the promoter of the human heat shock protein 70 (hsp70) gene was identified as a DNA replication origin in HeLa cells by this method. Several segments of the region were cloned into pUC19 and examined for autonomously replicating sequence (ARS) activity. The plasmids carrying the segments replicated episomally and semiconservatively when transfected into HeLa cells. The segments of ARS activity contained the sequences previously identified as binding sequences for a c-myc protein complex (T. Taira, Y. Negishi, F. Kihara, S. M. M. Iguchi-Ariga, and H. Ariga, Biochem. Biophys. Acta 1130:166-174, 1992). Mutations introduced within the c-myc protein complex binding sequences abolished the ARS activity. Moreover, the ARS plasmids stably replicated at episomal state for a long time in established cell lines. The results suggest that the promoter region of the human hsp70 gene plays a role in DNA replication as well as in transcription. Images PMID:8065368

  7. Different roles of the human Orc6 protein in the replication initiation process.

    PubMed

    Thomae, Andreas W; Baltin, Jens; Pich, Dagmar; Deutsch, Manuel J; Ravasz, Máté; Zeller, Krisztina; Gossen, Manfred; Hammerschmidt, Wolfgang; Schepers, Aloys

    2011-11-01

    In eukaryotes, binding of the six-subunit origin recognition complex (ORC) to DNA provides an interactive platform for the sequential assembly of pre-replicative complexes. This process licenses replication origins competent for the subsequent initiation step. Here, we analyze the contribution of human Orc6, the smallest subunit of ORC, to DNA binding and pre-replicative complex formation. We show that Orc6 not only interacts with Orc1-Orc5 but also with the initiation factor Cdc6. Biochemical and imaging experiments reveal that this interaction is required for licensing DNA replication competent. Furthermore, we demonstrate that Orc6 contributes to the interaction of ORC with the chaperone protein HMGA1a (high mobility group protein A1a). Binding of human ORC to replication origins is not specified at the level of DNA sequence and the functional organization of origins is poorly understood. We have identified HMGA1a as one factor that might direct ORC to AT-rich heterochromatic regions. The systematic analysis of the interaction between ORC and HMGA1a revealed that Orc6 interacts with the acidic C-terminus of HMGA1a and also with its AT-hooks. Both domains support autonomous replication if targeted to DNA templates. As such, Orc6 functions at different stages of the replication initiation process. Orc6 can interact with ORC chaperone proteins such as HMGA1a to facilitate chromatin binding of ORC and is also an essential factor for pre-RC formation. PMID:21461783

  8. Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex

    PubMed Central

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmunoprecipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme

  9. A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus

    PubMed Central

    Barajas, Daniel; Jiang, Yi; Nagy, Peter D.

    2009-01-01

    Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Δ or vps24Δ yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery. PMID:20041173

  10. Protein aggregates are associated with replicative aging without compromising protein quality control

    PubMed Central

    Saarikangas, Juha; Barral, Yves

    2015-01-01

    Differentiation of cellular lineages is facilitated by asymmetric segregation of fate determinants between dividing cells. In budding yeast, various aging factors segregate to the aging (mother)-lineage, with poorly understood consequences. In this study, we show that yeast mother cells form a protein aggregate during early replicative aging that is maintained as a single, asymmetrically inherited deposit over the remaining lifespan. Surprisingly, deposit formation was not associated with stress or general decline in proteostasis. Rather, the deposit-containing cells displayed enhanced degradation of cytosolic proteasome substrates and unimpaired clearance of stress-induced protein aggregates. Deposit formation was dependent on Hsp42, which collected non-random client proteins of the Hsp104/Hsp70-refolding machinery, including the prion Sup35. Importantly, loss of Hsp42 resulted in symmetric inheritance of its constituents and prolonged the lifespan of the mother cell. Together, these data suggest that protein aggregation is an early aging-associated differentiation event in yeast, having a two-faceted role in organismal fitness. DOI: http://dx.doi.org/10.7554/eLife.06197.001 PMID:26544680

  11. Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins.

    PubMed

    Takenaka, Kosuke; Koshino-Kimura, Yoshihiro; Aoyama, Yasuhiro; Sera, Takashi

    2007-01-01

    Previously, we designed an artificial zinc-finger protein (AZP) for blocking a replication protein (Rep) of beet severe curly top virus (BSCTV) from binding to its replication origin and demonstrated that transgenic Arabidopsis plants expressing the AZP are completely resistant to the virus infection. Here we applied the AZP technology to tomato yellow leaf curl virus (TYLCV) infective to an important agricultural crop, tomato. We designed an AZP binding to the direct repeat to block the TYLCV Rep binding and confirmed in gel shift assays that the designed AZP has a higher affinity to the replication origin than that of Rep. Furthermore, we demonstrated in competitive binding assays that the AZP effectively inhibited the Rep binding in vitro. We discuss properties of the AZP for inhibition of TYLCV replication in detail. PMID:18029770

  12. A Novel DNA Motif Contributes to Selective Replication of a Geminivirus-Associated Betasatellite by a Helper Virus-Encoded Replication-Related Protein

    PubMed Central

    Zhang, Tong; Xu, Xiongbiao; Huang, Changjun; Qian, Yajuan; Li, Zhenghe

    2015-01-01

    ABSTRACT Rolling-circle replication of single-stranded genomes of plant geminiviruses is initiated by sequence-specific DNA binding of the viral replication-related protein (Rep) to its cognate genome at the replication origin. Monopartite begomovirus-associated betasatellites can be trans replicated by both cognate and some noncognate helper viruses, but the molecular basis of replication promiscuity of betasatellites remains uncharacterized. Earlier studies showed that when tomato yellow leaf curl China virus (TYLCCNV) or tobacco curly shoot virus (TbCSV) is coinoculated with both cognate and noncognate betasatellites, the cognate betasatellite dominates over the noncognate one at the late stages of infection. In this study, we constructed reciprocal chimeric betasatellites between tomato yellow leaf curl China betasatellite and tobacco curly shoot betasatellite and assayed their competitiveness against wild-type betasatellite when coinoculated with TYLCCNV or TbCSV onto plants. We mapped a region immediately upstream of the conserved rolling-circle cruciform structure of betasatellite origin that confers the cognate Rep-mediated replication advantage over the noncognate satellite. DNase I protection and in vitro binding assays further identified a novel sequence element termed Rep-binding motif (RBM), which specifically binds to the cognate Rep protein and to the noncognate Rep, albeit at lower affinity. Furthermore, we showed that RBM-Rep binding affinity is correlated with betasatellite replication efficiency in protoplasts. Our data suggest that although strict specificity of Rep-mediated replication does not exist, betasatellites have adapted to their cognate Reps for efficient replication during coevolution. IMPORTANCE Begomoviruses are numerous circular DNA viruses that cause devastating diseases of crops worldwide. Monopartite begomoviruses are frequently associated with betasatellites which are essential for induction of typical disease symptoms

  13. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication.

    PubMed

    Nishikiori, Masaki; Mori, Masashi; Dohi, Koji; Okamura, Hideyasu; Katoh, Etsuko; Naito, Satoshi; Meshi, Tetsuo; Ishikawa, Masayuki

    2011-12-01

    Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions. PMID:22174675

  14. A Host Small GTP-binding Protein ARL8 Plays Crucial Roles in Tobamovirus RNA Replication

    PubMed Central

    Nishikiori, Masaki; Mori, Masashi; Dohi, Koji; Okamura, Hideyasu; Katoh, Etsuko; Naito, Satoshi; Meshi, Tetsuo; Ishikawa, Masayuki

    2011-01-01

    Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5′-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions. PMID:22174675

  15. HIV Vpr protein upregulates microRNA-122 expression and stimulates hepatitis C virus replication

    PubMed Central

    Peng, Milin; Xiao, Xinqiang; He, Yan; Jiang, Yongfang; Zhang, Min; Peng, Feng; Tian, Yi; Xu, Yun

    2015-01-01

    Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infection is characterized by higher serum HCV RNA loads compared with HCV mono-infection. However, the relationship between HIV and HCV replication remains to be clarified. HIV Vpr has been shown to play an essential role in HIV replication. In this study, we aimed to explore the role of Vpr in HCV replication and pathogenesis. We therefore used the genotype 2a full-length HCV strain JFH1 infection system and the genotype 1b full-length HCV replicon OR6 cell line to analyse the effects of Vpr on HCV replication. We found that Vpr promoted HCV 5′ UTR activity, HCV RNA replication and HCV protein expression in two HCV infection cell models. Additionally, lymphocyte-produced Vpr significantly induced HCV 5′ UTR activity and HCV replication in hepatocytes. We also found that Vpr upregulated the expression of miR-122 by stimulating its promoter activity. Furthermore, an miR-122 inhibitor suppressed the Vpr-mediated enhancement of both HCV 5′ UTR activity and HCV replication. In summary, our results revealed that the Vpr-upregulated expression of miR-122 is closely related to the stimulation of HCV 5′ UTR activity and HCV replication by Vpr, providing new evidence for how HIV interacts with HCV during HIV/HCV co-infection. PMID:25920531

  16. Structure and Function of the PriC DNA Replication Restart Protein.

    PubMed

    Wessel, Sarah R; Cornilescu, Claudia C; Cornilescu, Gabriel; Metz, Alice; Leroux, Maxime; Hu, Kaifeng; Sandler, Steven J; Markley, John L; Keck, James L

    2016-08-26

    Collisions between DNA replication complexes (replisomes) and barriers such as damaged DNA or tightly bound protein complexes can dissociate replisomes from chromosomes prematurely. Replisomes must be reloaded under these circumstances to avoid incomplete replication and cell death. Bacteria have evolved multiple pathways that initiate DNA replication restart by recognizing and remodeling abandoned replication forks and reloading the replicative helicase. In vitro, the simplest of these pathways is mediated by the single-domain PriC protein, which, along with the DnaC helicase loader, can load the DnaB replicative helicase onto DNA bound by the single-stranded DNA (ssDNA)-binding protein (SSB). Previous biochemical studies have identified PriC residues that mediate interactions with ssDNA and SSB. However, the mechanisms by which PriC drives DNA replication restart have remained poorly defined due to the limited structural information available for PriC. Here, we report the NMR structure of full-length PriC from Cronobacter sakazakii PriC forms a compact bundle of α-helices that brings together residues involved in ssDNA and SSB binding at adjacent sites on the protein surface. Disruption of these interaction sites and of other conserved residues leads to decreased DnaB helicase loading onto SSB-bound DNA. We also demonstrate that PriC can directly interact with DnaB and the DnaB·DnaC complex. These data lead to a model in which PriC acts as a scaffold for recruiting DnaB·DnaC to SSB/ssDNA sites present at stalled replication forks. PMID:27382050

  17. 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway.

    PubMed

    Hsieh, Li-En; Huang, Wei-Pang; Tang, Da-Jay; Wang, Ying-Ting; Chen, Ching-Tang; Chueh, Ling-Ling

    2013-12-01

    Feline coronavirus (FCoV) can cause either asymptomatic enteric infection or fatal peritonitis in cats. Although the mutation of FCoV accessory gene 3c has been suggested to be related to the occurrence of feline infectious peritonitis (FIP), how the 3C protein is involved in this phenomenon remains unknown. To investigate the role of the 3C protein, a full-length 3c gene was transiently expressed and the cytoplasmic distribution of the protein was found to be primarily in the perinuclear region. Using 3c-stable expression cells, the replication of a 3c-defective FCoV strain was titrated and a significant decrease in replication (p<0.05) was observed. The mechanism underlying the decreased FIPV replication caused by the 3C protein was further investigated; neither the induction nor inhibition of autophagy rescued the viral replication. Taken together, our data suggest that the 3C protein might have a virulence-suppressing effect in FCoV-infected cats. Deletion of the 3c gene could therefore cause more efficient viral replication, which leads to a fatal infection. PMID:24050534

  18. Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein

    PubMed Central

    Xu, Chongfeng; Sun, Lei; Chen, Jilong; Zhang, Lianfeng; Liu, Wenjun

    2012-01-01

    Cyclophilin A (CypA) is a typical member of the cyclophilin family of peptidyl-prolyl isomerases and is involved in the replication of several viruses. Previous studies indicate that CypA interacts with influenza virus M1 protein and impairs the early stage of the viral replication. To further understand the molecular mechanism by which CypA impairs influenza virus replication, a 293T cell line depleted for endogenous CypA was established. The results indicated that CypA inhibited the initiation of virus replication. In addition, the infectivity of influenza virus increased in the absence of CypA. Further studies indicated that CypA had no effect on the stages of virus genome replication or transcription and also did not impair the nuclear export of the viral mRNA. However, CypA decreased the viral protein level. Additional studies indicated that CypA enhanced the degradation of M1 through the ubiquitin/proteasome-dependent pathway. Our results suggest that CypA restricts influenza virus replication through accelerating degradation of the M1 protein. PMID:22347431

  19. phiX174 cistron A protein is a multifunctional enzyme in DNA replication.

    PubMed

    Eisenberg, S; Griffith, J; Kornberg, A

    1977-08-01

    The cistron A protein induced by phage varphiX174 nicks (produces a single-strand break in) the viral strand of the superhelical varphiX duplex DNA, thereby forming a complex with the DNA. The protein, seen bound to the DNA in the electron microscope, was located in the restriction endonuclease fragment between nucleotides 4290 and 4330 on the varphiX map [Sanger, F., Air, G. M., Barrel, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., III, Slocomb, P. M. Y. & Smith, M. (1977) Nature 265, 687-695]. Replication also was initiated at this point, thus identifying the site of cistron A protein nicking and binding as the origin of replication. The cisA-DNA complex (separated from free cistron A protein), upon the addition of Escherichia coli rep protein, ATP, and DNA binding protein, is unwound to generate a single-stranded linear [presumably the nicked (+) strand] and a circular [presumably the (-) strand] molecule. The cisA-DNA complex, upon the further addition of DNA polymerase III holoenzyme and deoxynucleoside triphosphates, supports replication to generate viral, single-stranded circles, as many as 15 circles per cisA-DNA complex. The replicating intermediates seen in the electron microscope are a novel form of "rolling circle" [Gilbert, W. & Dressler, D. H. (1969) Cold Spring Harbor Symp. Quant. Biol. 33, 473-485]. The 5' end (presumably with the cistron A protein bound to it) is locked in the replication fork and loops back to accompany the strand-separation and replication fork around the template [(-) strand] circle. Thus, the multiple functions of cistron A protein include: (i) nicking the viral strand at the origin of replication to initiate a round of replication, (ii) participating in a complex which supports fork movement in strand separation and replication, (iii) nicking again at the regenerated origin to produce a unit-length DNA, and (iv) ligating the newly generated 3'-OH end to the 5'-phosphate-complexed end to form a circular

  20. Identification and functional characterization of Bet protein as a negative regulator of BFV3026 replication.

    PubMed

    Bing, Tiejun; Wu, Kai; Cui, Xiaoxu; Shao, Peng; Zhang, Qicheng; Bai, Xiaobo; Tan, Juan; Qiao, Wentao

    2014-06-01

    Foamy virus (FV) establishes persistent infection in the host without causing apparent disease. Besides the transactivator Tas protein, another auxiliary protein--Bet--has been reported in prototype foamy virus, equine foamy virus, and feline foamy virus. Here, we found the putative bbet gene in clone C74 from a cDNA library of bovine foamy virus strain 3026 (BFV3026) by comparison of gene localization, composition, and splicing features with other known bet genes. Subsequently, BBet protein was detected in BFV3026-infected cells by Western blot and immunofluorescence analyses. Analysis of the BBet mutant infectious clone (pBS-BFVdelBBet) revealed that BBet could inhibit BFV3026 replication. Consistent with this result, overexpression of BBet in Cf2Th cells reduced BFV replication by approximately threefold. Furthermore, virus replication levels similarly were reduced by approximately threefold in pBS-BFV-transfected and BFV3026-infected Cf2Th cells stably expressing BBet compared with control cells. After three passages, BFV3026 replicated more slowly in BBet-expressing cells. This study implicates BBet as a negative regulator of BFV replication and provides a resource for future studies on the function of this protein in the virus lifecycle. PMID:24615636

  1. A versatile transreplication-based system to identify cellular proteins involved in geminivirus replication.

    PubMed

    Morilla, Gabriel; Castillo, Araceli G; Preiss, Werner; Jeske, Holger; Bejarano, Eduardo R

    2006-04-01

    A versatile green fluorescent protein (GFP) expression cassette containing the replication origins of the monopartite begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV) is described. Transgenic Nicotiana benthamiana plants containing one copy of the cassette stably integrated into their genome were superinfected with TYLCSV, which mobilized and replicated the cassette as an episomal replicon. The expression of the reporter gene (the GFP gene) was thereby modified. Whereas GFP fluorescence was dimmed in the intercostal areas, an increase of green fluorescence in veins of all leaves placed above the inoculation site, as well as in transport tissues of roots and stems, was observed. The release of episomal trans replicons from the transgene and the increase in GFP expression were dependent on the cognate geminiviral replication-associated protein (Rep) and required interaction between Rep and the intergenic region of TYLCSV. This expression system is able to monitor the replication status of TYLCSV in plants, as induction of GFP expression is only produced in those tissues where Rep is present. To further confirm this notion, the expression of a host factor required for geminivirus replication, the proliferating cellular nuclear antigen (PCNA) was transiently silenced. Inhibition of PCNA prevented GFP induction in veins and reduced viral DNA. We propose that these plants could be widely used to easily identify host factors required for geminivirus replication by virus-induced gene silencing. PMID:16537630

  2. A Versatile Transreplication-Based System To Identify Cellular Proteins Involved in Geminivirus Replication

    PubMed Central

    Morilla, Gabriel; Castillo, Araceli G.; Preiss, Werner; Jeske, Holger; Bejarano, Eduardo R.

    2006-01-01

    A versatile green fluorescent protein (GFP) expression cassette containing the replication origins of the monopartite begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV) is described. Transgenic Nicotiana benthamiana plants containing one copy of the cassette stably integrated into their genome were superinfected with TYLCSV, which mobilized and replicated the cassette as an episomal replicon. The expression of the reporter gene (the GFP gene) was thereby modified. Whereas GFP fluorescence was dimmed in the intercostal areas, an increase of green fluorescence in veins of all leaves placed above the inoculation site, as well as in transport tissues of roots and stems, was observed. The release of episomal trans replicons from the transgene and the increase in GFP expression were dependent on the cognate geminiviral replication-associated protein (Rep) and required interaction between Rep and the intergenic region of TYLCSV. This expression system is able to monitor the replication status of TYLCSV in plants, as induction of GFP expression is only produced in those tissues where Rep is present. To further confirm this notion, the expression of a host factor required for geminivirus replication, the proliferating cellular nuclear antigen (PCNA) was transiently silenced. Inhibition of PCNA prevented GFP induction in veins and reduced viral DNA. We propose that these plants could be widely used to easily identify host factors required for geminivirus replication by virus-induced gene silencing. PMID:16537630

  3. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch

    SciTech Connect

    Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.; Rustad, Tige; Ollodart, Anja R.; Wright, Aaron T.; Sherman, David R.; Grundner, Christoph

    2014-01-07

    In the majority of cases, Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by little or no bacterial replication and drug tolerance. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Mtb encodes eleven serine/threonine protein kinases, a family of signaling molecules known to regulate similar replicative adaptations in other bacteria. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in hypoxia. Activity-based protein profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle - active disease, latency, and reactivation.

  4. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication.

    PubMed

    Kanginakudru, Sriramana; DeSmet, Marsha; Thomas, Yanique; Morgan, Iain M; Androphy, Elliot J

    2015-04-01

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. PMID:25666521

  5. ITRACONAZOLE INHIBITS ENTEROVIRUS REPLICATION BY TARGETING THE OXYSTEROL-BINDING PROTEIN

    PubMed Central

    Strating, Jeroen R.P.M.; van der Linden, Lonneke; Albulescu, Lucian; Bigay, Joëlle; Arita, Minetaro; Delang, Leen; Leyssen, Pieter; van der Schaar, Hilde M.; Lanke, Kjerstin H.W.; Thibaut, Hendrik Jan; Ulferts, Rachel; Drin, Guillaume; Schlinck, Nina; Wubbolts, Richard W.; Sever, Navdar; Head, Sarah A.; Liu, Jun O.; Beachy, Philip A.; De Matteis, Maria A.; Shair, Matthew D.; Olkkonen, Vesa M.; Neyts, Johan; van Kuppeveld, Frank J.M.

    2015-01-01

    SUMMARY Itraconazole (ITZ) is a well-known antifungal agent that also has anti-cancer activity. In this study, we identified ITZ as a broad-spectrum inhibitor of enteroviruses (e.g. poliovirus, coxsackievirus, enterovirus-71, rhinovirus). We demonstrate that ITZ inhibits viral RNA replication by targeting oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4). Consistently, OSW-1, a specific OSBP/ORP4 antagonist, also inhibits enterovirus replication. Knockdown of OSBP inhibits virus replication whereas overexpression of OSBP or ORP4 counteracts the antiviral effects of ITZ and OSW-1. ITZ binds OSBP and inhibits its function, i.e. shuttling of cholesterol and phosphatidylinositol-4-phosphate between membranes, thereby likely perturbing the virus-induced membrane alterations essential for viral replication organelle formation. ITZ also inhibits hepatitis C virus replication, which also relies on OSBP. Together, these data implicate OSBP/ORP4 as novel molecular targets of ITZ and point to an essential role of OSBP/ORP4-mediated lipid exchange in virus replication that can be targeted by antiviral drugs. PMID:25640182

  6. Characterization of the nuclear localization signals of duck circovirus replication proteins.

    PubMed

    Wang, X; Wu, Z; Xiang, Q; Li, Z; Zhang, R; Chen, J; Xia, L; Lin, S; Yu, W; Ma, Z; Xie, Z; Jiang, S

    2015-12-01

    Duck circovirus (DuCV) possess a circular, single-stranded DNA genome that requires the replication protein (Rep) for its replication. Based on the viral genotype, there are two categories of Rep proteins: Rep1 and Rep2. To characterize the nuclear localization signals (NLSs) conferring the nuclear localization of the Rep proteins, defined coding regions of the rep gene of two genotypes of DuCV were cloned and co-expressed with the red fluorescent protein DsRed2. The results showed that deleting the putative N-terminal NLS located at amino acid residues 10-37 of Rep1 and Rep2 abrogated nuclear translocation, while deleting the putative C-terminal NLS located at residues 244-274 of Rep1 did not significantly alter its subcellular localization, confirming that only the NLS located at residues 10-37 in the N-termini of the Rep proteins had nuclear targeting activity. PMID:26666192

  7. Regulation of DNA replication proteins in parasitic protozoans: possible role of CDK-like kinases.

    PubMed

    Deshmukh, Abhijit S; Agarwal, Meetu; Dhar, Suman Kumar

    2016-08-01

    Regulatory roles of CDKs in fundamental processes including cell cycle progression and transcription are well conserved in metazoans. This family of proteins has undergone significant evolutionary divergence and specialization. Several CDK-like kinases have been identified and characterized in parasitic protozoans. However, clear functional role and physiological relevance of these proteins in protozoans still remain elusive. In continuation with the recent finding that CDK-like protein PfPK5 regulates important DNA replication protein like origin recognition complex subunit 1 in Plasmodium falciparum, here we have discussed the emerging significance of CDK1/2 homologs in DNA replication of parasitic protozoans. In fact, involvement of these proteins in crucial cellular processes projects them as potential drug targets. The possibilities that CDKs offer as potential therapeutic targets in controlling parasite progression have also been explored. PMID:26780367

  8. Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions Using a Fragment Linking Approach

    PubMed Central

    Frank, Andreas O.; Feldkamp, Michael D.; Kennedy, J. Phillip; Waterson, Alex G.; Pelz, Nicholas F.; Patrone, James D.; Vangamudi, Bhavatarini; Camper, DeMarco V.; Rossanese, Olivia W.; Chazin, Walter J.; Fesik, Stephen W.

    2013-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is involved in nearly all cellular DNA transactions. The RPA N-terminal domain (RPA70N) is a recruitment site for proteins involved in DNA damage response and repair. Selective inhibition of these protein-protein interactions has the potential to inhibit the DNA damage response and sensitize cancer cells to DNA-damaging agents without affecting other functions of RPA. To discover a potent, selective inhibitor of the RPA70N protein-protein interactions to test this hypothesis, we used NMR spectroscopy to identify fragment hits that bind to two adjacent sites in the basic cleft of RPA70N. High-resolution X-ray crystal structures of RPA70N-ligand complexes revealed how these fragments bind to RPA and guided the design of linked compounds that simultaneously occupy both sites. We have synthesized linked molecules that bind to RPA70N with submicromolar affinity and minimal disruption of RPA’s interaction with ssDNA. PMID:24147804

  9. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication

    PubMed Central

    Ou, Horng D.; May, Andrew P.

    2010-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  10. The critical protein interactions and structures that elicit growth deregulation in cancer and viral replication.

    PubMed

    Ou, Horng D; May, Andrew P; O'Shea, Clodagh C

    2011-01-01

    One of the greatest challenges in biomedicine is to define the critical targets and network interactions that are subverted to elicit growth deregulation in human cells. Understanding and developing rational treatments for cancer requires a definition of the key molecular targets and how they interact to elicit the complex growth deregulation phenotype. Viral proteins provide discerning and powerful probes to understand both how cells work and how they can be manipulated using a minimal number of components. The small DNA viruses have evolved to target inherent weaknesses in cellular protein interaction networks to hijack the cellular DNA and protein replication machinery. In the battle to escape the inevitability of senescence and programmed cell death, cancers have converged on similar mechanisms, through the acquisition and selection of somatic mutations that drive unchecked cellular replication in tumors. Understanding the dynamic mechanisms through which a minimal number of viral proteins promote host cells to undergo unscheduled and pathological replication is a powerful strategy to identify critical targets that are also disrupted in cancer. Viruses can therefore be used as tools to probe the system-wide protein-protein interactions and structures that drive growth deregulation in human cells. Ultimately this can provide a path for developing system context-dependent therapeutics. This review will describe ongoing experimental approaches using viruses to study pathways deregulated in cancer, with a particular focus on viral cellular protein-protein interactions and structures. PMID:21061422

  11. Molecular insights into replication initiation by Qβ replicase using ribosomal protein S1

    PubMed Central

    Takeshita, Daijiro; Yamashita, Seisuke; Tomita, Kozo

    2014-01-01

    Ribosomal protein S1, consisting of six contiguous OB-folds, is the largest ribosomal protein and is essential for translation initiation in Escherichia coli. S1 is also one of the three essential host-derived subunits of Qβ replicase, together with EF-Tu and EF-Ts, for Qβ RNA replication in E. coli. We analyzed the crystal structure of Qβ replicase, consisting of the virus-encoded RNA-dependent RNA polymerase (β-subunit), EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication. Structural and biochemical studies revealed that the two N-terminal OB-folds of S1 anchor S1 onto the β-subunit, and the third OB-fold is mobile and protrudes beyond the surface of the β-subunit. The third OB-fold mainly interacts with a specific RNA fragment derived from the internal region of Qβ RNA, and its RNA-binding ability is required for replication initiation of Qβ RNA. Thus, the third mobile OB-fold of S1, which is spatially anchored near the surface of the β-subunit, primarily recruits the Qβ RNA toward the β-subunit, leading to the specific and efficient replication initiation of Qβ RNA, and S1 functions as a replication initiation factor, beyond its established function in protein synthesis. PMID:25122749

  12. The Escherichia coli Fis protein prevents initiation of DNA replication from oriC in vitro.

    PubMed Central

    Wold, S; Crooke, E; Skarstad, K

    1996-01-01

    Fis protein participates in the normal control of chromosomal replication in Escherichia coli. However, the mechanism by which it executes its effect is largely unknown. We demonstrate an inhibitory influence of purified Fis protein on replication from oriC in vitro. Fis inhibits DNA synthesis equally well in replication systems either dependent upon or independent of RNA polymerase, even when the latter is stimulated by the presence of HU or IHF. The extent of inhibition by Fis is modulated by the concentrations of DnaA protein and RNA polymerase; the more limiting the amounts of these, the more severe the inhibition by Fis. Thus, the level of inhibition seems to depend on the ease with which the open complex can be formed. Fis-mediated inhibition of DNA replication does not depend on a functional primary Fis binding site between DnaA boxes R2 and R3 in oriC, as mutations that cause reduced binding of Fis to this site do not affect the degree of inhibition. The data presented suggest that Fis prevents formation of an initiation-proficient structure at oriC by forming an alternative, initiation-preventive complex. This indicates a negative role for Fis in the regulation of replication initiation. PMID:8836178

  13. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    SciTech Connect

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  14. Protein import, replication, and inheritance of a vestigial mitochondrion.

    PubMed

    Regoes, Attila; Zourmpanou, Danai; León-Avila, Gloria; van der Giezen, Mark; Tovar, Jorge; Hehl, Adrian B

    2005-08-26

    Mitochondrial remnant organelles (mitosomes) that exist in a range of "amitochondrial" eukaryotic organisms represent ideal models for the study of mitochondrial evolution and for the establishment of the minimal set of proteins required for the biogenesis of an endosymbiosis-derived organelle. Giardia intestinalis, often described as the earliest branching eukaryote, contains double membrane-bounded structures involved in iron-sulfur cluster biosynthesis, an essential function of mitochondria. Here we present evidence that Giardia mitosomes also harbor Cpn60, mtHsp70, and ferredoxin and that despite their advanced state of reductive evolution they have retained vestiges of presequence-dependent and -independent protein import pathways akin to those that operate in mammalian mitochondria. Although import of IscU and ferredoxin is still reliant on their amino-terminal presequences, targeting of Giardia Cpn60, IscS, or mtHsp70 into mitosomes no longer requires cleavable presequences, a derived feature from their mitochondrial homologues. In addition, we found that division and segregation of a single centrally positioned mitosome tightly associated with the microtubular cytoskeleton is coordinated with the cell cycle, whereas peripherally located mitosomes are inherited into daughter cells stochastically. PMID:15985435

  15. Replication of alfamo- and ilarviruses: role of the coat protein.

    PubMed

    Bol, John F

    2005-01-01

    In the family Bromoviridae, a mixture of the three genomic RNAs of bromo-, cucumo-, and oleaviruses is infectious as such, whereas the RNAs of alfamo- and ilarviruses require binding of a few molecules of coat protein (CP) to the 3' end to initiate infection. Most studies on the early function of CP have been done on the alfamovirus Alfalfa mosaic virus (AMV). The 3' 112 nucleotides of AMV RNAs can adopt two different conformations. One conformer consists of a tRNA-like structure that, together with an upstream hairpin, is required for minus-strand promoter activity. The other conformer consists of four hairpins interspersed by AUGC-sequences and represents a strong binding site for CP. Binding of CP to this conformer enhances the translational efficiency of viral RNAs in vivo 40-fold and blocks viral minus-strand RNA synthesis in vitro. AMV CP is proposed to initiate infection by mimicking the function of the poly(A)-binding protein. PMID:16078876

  16. Subcellular localization of host and viral proteins associated with tobamovirus RNA replication.

    PubMed

    Hagiwara, Yuka; Komoda, Keisuke; Yamanaka, Takuya; Tamai, Atsushi; Meshi, Tetsuo; Funada, Ryo; Tsuchiya, Tomohiro; Naito, Satoshi; Ishikawa, Masayuki

    2003-01-15

    Arabidopsis TOM1 (AtTOM1) and TOM2A (AtTOM2A) are integral membrane proteins genetically identified to be necessary for efficient intracellular multiplication of tobamoviruses. AtTOM1 interacts with the helicase domain polypeptide of tobamovirus-encoded replication proteins and with AtTOM2A, suggesting that both AtTOM1 and AtTOM2A are integral components of the tobamovirus replication complex. We show here that AtTOM1 and AtTOM2A proteins tagged with green fluorescent protein (GFP) are targeted to the vacuolar membrane (tonoplast)-like structures in plant cells. In subcellular fractionation analyses, GFP-AtTOM2A, AtTOM2A and its tobacco homolog NtTOM2A were predominantly fractionated to low-density tonoplast-rich fractions, whereas AtTOM1-GFP, AtTOM1 and its tobacco homolog NtTOM1 were distributed mainly into the tonoplast-rich fractions and partially into higher-buoyant-density fractions containing membranes from several other organelles. The tobamovirus-encoded replication proteins were co-fractionated with both NtTOM1 and viral RNA-dependent RNA polymerase activity. The replication proteins were also found in the fractions containing non-membrane-bound proteins, but neither NtTOM1 nor the polymerase activity was detected there. These observations suggest that the formation of tobamoviral RNA replication complex occurs on TOM1-containing membranes and is facilitated by TOM2A. PMID:12514140

  17. Inhibition of HIV-1 Replication by Balsamin, a Ribosome Inactivating Protein of Momordica balsamina

    PubMed Central

    Ahmed, Zahra; Blanchet, Fabien P.; Mangeat, Bastien; Piguet, Vincent

    2013-01-01

    Ribosome-inactivating proteins (RIPs) are endowed with several medicinal properties, including antiviral activity. We demonstrate here that the recently identified type I RIP from Momordica balsamina also possesses antiviral activity, as determined by viral growth curve assays and single-round infection experiments. Importantly, this activity is at play even as doses where the RIP has no cytotoxic effect. In addition, balsamin inhibits HIV-1 replication not only in T cell lines but also in human primary CD4+ T cells. This antiviral compound exerts its activity at a viral replicative step occurring later than reverse-transcription, most likely on viral protein translation, prior to viral budding and release. Finally, we demonstrate that balsamin antiviral activity is broad since it also impedes influenza virus replication. Altogether our results demonstrate that type I RIP can exert a potent anti-HIV-1 activity which paves the way for new therapeutic avenues for the treatment of viral infections. PMID:24040067

  18. HBx protein of hepatitis B virus promotes reinitiation of DNA replication by regulating expression and intracellular stability of replication licensing factor CDC6.

    PubMed

    Pandey, Vijaya; Kumar, Vijay

    2012-06-01

    Prevention of re-replication via negative regulation of replication initiator proteins, such as CDC6, is key to maintenance of genomic integrity, whereas their up-regulation is generally associated with perturbation in cell cycle, genomic instability, and potentially, tumorigenesis. The HBx oncoprotein of hepatitis B virus is well known to deregulate cell cycle and has been intricately linked to development of hepatocellular carcinoma. Despite a clear understanding of the proliferative effects of HBx on cell cycle, a mechanistic link between HBx-mediated hepatocarcinogenesis and host cell DNA replication remains poorly perused. Here we show that HBx overexpression in both the cellular as well as the transgenic environment resulted in the accumulation of CDC6 through transcriptional and post-translational up-regulation. The HBx-mediated increase in CDK2 activity altered the E2F1-Rb (retinoblastoma) balance, which favored CDC6 gene expression by E2F1. Besides, HBx impaired the APC(Cdh1)-dependent protein degradation pathway and conferred intracellular stability to CDC6 protein. Increase in CDC6 levels correlated with increase in CDC6 occupancy on the β-globin origin of replication, suggesting increment in origin licensing and re-replication. In conclusion, our findings strongly suggest a novel role for CDC6 in abetting the oncogenic sabotage carried out by HBx and support the paradigm that pre-replicative complex proteins have a role in oncogenic transformation. PMID:22523071

  19. Replication protein A subunit 3 and the iron efficiency response in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In soybean [Glycine max (L.) Merr.], iron deficiency results in interveinal chlorosis and decreased photosynthetic capacity, leading to stunting and yield loss. In this study, gene expression analyses investigated the role of soybean replication protein A (RPA) subunits during iron stress. Nine RP...

  20. Cellular Casein Kinase 2 and Protein Phosphatase 2A Modulate Replication Site Assembly of Bluetongue Virus*

    PubMed Central

    Mohl, Bjorn-Patrick; Roy, Polly

    2016-01-01

    A number of cytoplasmic replicating viruses produce cytoplasmic inclusion bodies or protein aggregates; however, a hallmark of viruses of the Reoviridae family is that they utilize these sites for purposes of replication and capsid assembly, functioning as viral assembly factories. Here we have used bluetongue virus (BTV) as a model system for this broad family of important viruses to understand the mechanisms regulating inclusion body assembly. Newly synthesized viral proteins interact with sequestered viral RNA molecules prior to capsid assembly and double-stranded RNA synthesis within viral inclusion bodies (VIBs). VIBs are predominantly comprised of a BTV-encoded non-structural protein 2 (NS2). Previous in vitro studies indicated that casein kinase 2 (CK2) mediated the phosphorylation of NS2, which regulated the propensity of NS2 to form larger aggregates. Using targeted pharmacological reagents, specific mutation in the viral genome by reverse genetics and confocal microscopy, here we demonstrate that CK2 activity is important for BTV replication. Furthermore, we show that a novel host cell factor, protein phosphatase 2A, is involved in NS2 dephosphorylation and that, together with CK2, it regulates VIB morphology and virus replication. Thus, these two host enzymes influence the dynamic nature of VIB assembly/disassembly, and these concerted activities may be relevant to the assembly and the release of these cores from VIBs. PMID:27226558

  1. The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes.

    PubMed Central

    Makunin, I V; Volkova, E I; Belyaeva, E S; Nabirochkina, E N; Pirrotta, V; Zhimulev, I F

    2002-01-01

    In many late-replicating euchromatic regions of salivary gland polytene chromosomes, DNA is underrepresented. A mutation in the SuUR gene suppresses underreplication and leads to normal levels of DNA polytenization in these regions. We identified the SuUR gene and determined its structure. In the SuUR mutant stock a 6-kb insertion was found in the fourth exon of the gene. A single SuUR transcript is present at all stages of Drosophila development and is most abundant in adult females and embryos. The SuUR gene encodes a protein of 962 amino acids whose putative sequence is similar to the N-terminal part of SNF2/SWI2 proteins. Staining of salivary gland polytene chromosomes with antibodies directed against the SuUR protein shows that the protein is localized mainly in late-replicating regions and in regions of intercalary and pericentric heterochromatin. PMID:11901119

  2. Novel checkpoint response to genotoxic stress mediated by nucleolin-replication protein a complex formation.

    PubMed

    Kim, Kyung; Dimitrova, Diana D; Carta, Kristine M; Saxena, Anjana; Daras, Mariza; Borowiec, James A

    2005-03-01

    Human replication protein A (RPA), the primary single-stranded DNA-binding protein, was previously found to be inhibited after heat shock by complex formation with nucleolin. Here we show that nucleolin-RPA complex formation is stimulated after genotoxic stresses such as treatment with camptothecin or exposure to ionizing radiation. Complex formation in vitro and in vivo requires a 63-residue glycine-arginine-rich (GAR) domain located at the extreme C terminus of nucleolin, with this domain sufficient to inhibit DNA replication in vitro. Fluorescence resonance energy transfer studies demonstrate that the nucleolin-RPA interaction after stress occurs both in the nucleoplasm and in the nucleolus. Expression of the GAR domain or a nucleolin mutant (TM) with a constitutive interaction with RPA is sufficient to inhibit entry into S phase. Increasing cellular RPA levels by overexpression of the RPA2 subunit minimizes the inhibitory effects of nucleolin GAR or TM expression on chromosomal DNA replication. The arrest is independent of p53 activation by ATM or ATR and does not involve heightened expression of p21. Our data reveal a novel cellular mechanism that represses genomic replication in response to genotoxic stress by inhibition of an essential DNA replication factor. PMID:15743838

  3. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Leach, Robert W.; Wang, Jianmin; Shenoy, Rajani M.

    2015-01-01

    Minichromosome maintenance (MCM) proteins are loaded onto chromatin during G1-phase and define potential locations of DNA replication initiation. MCM protein deficiency results in genome instability and high rates of cancer in mouse models. Here we develop a method of nascent strand capture and release and show that MCM2 deficiency reduces DNA replication initiation in gene-rich regions of the genome. DNA structural properties are shown to correlate with sequence motifs associated with replication origins and with locations that are preferentially affected by MCM2 deficiency. Reduced nascent strand density correlates with sites of recurrent focal CNVs in tumors arising in MCM2-deficient mice, consistent with a direct relationship between sites of reduced DNA replication initiation and genetic damage. Between 10% and 90% of human tumors, depending on type, carry heterozygous loss or mutation of one or more MCM2-7 genes, which is expected to compromise DNA replication origin licensing and result in elevated rates of genome damage at a subset of gene-rich locations. PMID:25762552

  4. SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication

    PubMed Central

    Su, Chan-I; Tseng, Chung-Hsin

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) participates in a reversible posttranslational modification process (SUMOylation) that regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, the roles of viral protein SUMOylation in dengue virus (DENV) infection have not been elucidated. In this study, we found that the SUMOylation pathway was involved in the DENV life cycle, since DENV replication was reduced by silencing the cellular gene Ubc9, which encodes the sole E2-conjugating enzyme required for SUMOylation. By in vivo and in vitro SUMOylation assays, the DENV NS5 protein was identified as an authentic SUMO-targeted protein. By expressing various NS5 mutants, we found that the SUMO acceptor sites are located in the N-terminal domain of NS5 and that a putative SUMO-interacting motif (SIM) of this domain is crucial for its SUMOylation. A DENV replicon harboring the SUMOylation-defective SIM mutant showed a severe defect in viral RNA replication, supporting the notion that NS5 SUMOylation is required for DENV replication. SUMOylation-defective mutants also failed to suppress the induction of STAT2-mediated host antiviral interferon signaling. Furthermore, the SUMOylation of NS5 significantly increased the stability of NS5 protein, which could account for most of the biological functions of SUMOylated NS5. Collectively, these findings suggest that the SUMOylation of DENV NS5 is one of the mechanisms regulating DENV replication. IMPORTANCE SUMOylation is a common posttranslational modification that regulates cellular protein functions but has not been reported in the proteins of dengue virus. Here, we found that the replicase of DENV, nonstructural protein 5 (NS5), can be SUMOylated. It is well known that providing RNA-dependent RNA polymerase activity and antagonizing host antiviral IFN signaling are a “double indemnity” of NS5 to support DENV replication. Without SUMOylation, NS5 fails to

  5. DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae.

    PubMed

    Wang, H; Elledge, S J

    1999-03-30

    In addition to DNA polymerase complexes, DNA replication requires the coordinate action of a series of proteins, including regulators Cdc28/Clb and Dbf4/Cdc7 kinases, Orcs, Mcms, Cdc6, Cdc45, and Dpb11. Of these, Dpb11, an essential BRCT repeat protein, has remained particularly enigmatic. The Schizosaccharomyces pombe homolog of DPB11, cut5, has been implicated in the DNA replication checkpoint as has the POL2 gene with which DPB11 genetically interacts. Here we describe a gene, DRC1, isolated as a dosage suppressor of dpb11-1. DRC1 is an essential cell cycle-regulated gene required for DNA replication. We show that both Dpb11 and Drc1 are required for the S-phase checkpoint, including the proper activation of the Rad53 kinase in response to DNA damage and replication blocks. Dpb11 is the second BRCT-repeat protein shown to control Rad53 function, possibly indicating a general function for this class of proteins. DRC1 and DPB11 show synthetic lethality and reciprocal dosage suppression. The Drc1 and Dpb11 proteins physically associate and function together to coordinate DNA replication and the cell cycle. PMID:10097122

  6. Discovery of a Potent Inhibitor of Replication Protein A Protein-Protein Interactions Using a Fragment-Linking Approach

    SciTech Connect

    Frank, Andreas O.; Feldkamp, Michael D.; Kennedy, J. Phillip; Waterson, Alex G.; Pelz, Nicholas F.; Patrone, James D.; Vangamudi, Bhavatarini; Camper, DeMarco V.; Rossanese, Olivia W.; Chazin, Walter J.; Fesik, Stephen W.

    2013-10-22

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA)-binding protein, is involved in nearly all cellular DNA transactions. The RPA N-terminal domain (RPA70N) is a recruitment site for proteins involved in DNA-damage response and repair. Selective inhibition of these protein–protein interactions has the potential to inhibit the DNA-damage response and to sensitize cancer cells to DNA-damaging agents without affecting other functions of RPA. To discover a potent, selective inhibitor of the RPA70N protein–protein interactions to test this hypothesis, we used NMR spectroscopy to identify fragment hits that bind to two adjacent sites in the basic cleft of RPA70N. High-resolution X-ray crystal structures of RPA70N–ligand complexes revealed how these fragments bind to RPA and guided the design of linked compounds that simultaneously occupy both sites. We have synthesized linked molecules that bind to RPA70N with submicromolar affinity and minimal disruption of RPA’s interaction with ssDNA.

  7. The heat-shock DnaK protein is required for plasmid R1 replication and it is dispensable for plasmid ColE1 replication.

    PubMed Central

    Giraldo-Suárez, R; Fernández-Tresguerres, E; Díaz-Orejas, R; Malki, A; Kohiyama, M

    1993-01-01

    Plasmid R1 replication in vitro is inactive in extracts prepared from a dnaK756 strain but is restored to normal levels upon addition of purified DnaK protein. Replication of R1 in extracts of a dnaKwt strain can be specifically inhibited with polyclonal antibodies against DnaK. RepA-dependent replication of R1 in dnaK756 extracts supplemented with DnaKwt protein at maximum concentration is partially inhibited by rifampicin and it is severely inhibited at sub-optimal concentrations of DnaK protein. The copy number of a run-away R1 vector is reduced in a dnaK756 background at 30 degrees C and at 42 degrees C the amplification of the run-away R1 vector is prevented. However a runaway R1 vector containing dnaK gene allows the amplification of the plasmid at high temperature. These data indicate that DnaK is required for both in vitro and in vivo replication of plasmid R1 and show a partial compensation for the low level of DnaK by RNA polymerase. In contrast ColE1 replication is not affected by DnaK as indicated by the fact that ColE1 replicates with the same efficiency in extracts from dnaKwt and dnaK756 strains. Images PMID:8265367

  8. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli.

    PubMed

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid; Løbner-Olesen, Anders

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaA(ATP) is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells. PMID:27446932

  9. Multiple DNA Binding Proteins Contribute to Timing of Chromosome Replication in E. coli

    PubMed Central

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid; Løbner-Olesen, Anders

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. DnaA associated with either ATP or ADP binds to a set of strong DnaA binding sites in oriC, whereas only DnaAATP is capable of binding additional and weaker sites to promote initiation. Additional DNA binding proteins act to ensure that initiation occurs timely by affecting either the cellular mass at which DNA replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on oriC for modulation of its activity but also at additional regulatory sites to control the nucleotide bound status of DnaA. Here we review the contribution of key DNA binding proteins to the tight regulation of chromosome replication in E. coli cells. PMID:27446932

  10. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    SciTech Connect

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga; Kang, Misun; Rho, Jaerang

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  11. A Critical Role of a Cellular Membrane Traffic Protein in Poliovirus RNA Replication

    PubMed Central

    Belov, George A.; Feng, Qian; Nikovics, Krisztina; Jackson, Catherine L.; Ehrenfeld, Ellie

    2008-01-01

    Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA), implicating some components(s) of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA. PMID:19023417

  12. Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein.

    PubMed Central

    van Bergen, B G; van der Ley, P A; van Driel, W; van Mansfeld, A D; van der Vliet, P C

    1983-01-01

    Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication. Images PMID:6300787

  13. Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase

    PubMed Central

    Bruck, Irina; Kaplan, Daniel L.

    2015-01-01

    Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase. PMID:26305950

  14. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  15. Rabies virus phosphoprotein interacts with ribosomal protein L9 and affects rabies virus replication.

    PubMed

    Li, Youwen; Dong, Wanyu; Shi, Yuejun; Deng, Feng; Chen, Xi; Wan, Chunyun; Zhou, Ming; Zhao, Ling; Fu, Zhen F; Peng, Guiqing

    2016-01-15

    Rabies virus is a highly neurotropic virus that can cause fatal infection of the central nervous system in warm-blooded animals. The RABV phosphoprotein (P), an essential cofactor of the virus RNA-dependent RNA polymerase, is required for virus replication. In this study, the ribosomal protein L9, which has functions in protein translation, is identified as P-interacting cellular factor using phage display analysis. Direct binding between the L9 and P was confirmed by protein pull-down and co-immunoprecipitation analyses. It was further demonstrated that L9 translocates from the nucleus to the cytoplasm, where it colocalizes with P in cells infected with RABV or transfected with P gene. RABV replication was reduced with L9 overexpression and enhanced with L9 knockdown. Thus, we propose that during RABV infection, P binds to L9 that translocates from the nucleus to the cytoplasm, inhibiting the initial stage of RABV transcription. PMID:26655239

  16. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  17. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid

    PubMed Central

    Muñoz-Espín, Daniel; Holguera, Isabel; Ballesteros-Plaza, David; Carballido-López, Rut; Salas, Margarita

    2010-01-01

    The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1–73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid. PMID:20823229

  18. Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus.

    PubMed

    Enemark, E J; Chen, G; Vaughn, D E; Stenlund, A; Joshua-Tor, L

    2000-07-01

    Papillomaviral infection causes both benign and malignant lesions and is a necessary cause of cervical carcinoma. Replication of this virus requires the replication initiation proteins E1 and E2, which bind cooperatively at the origin of replication (ori) as an (E1)2-(E2)2-DNA complex. This is a precursor to larger E1 complexes that distort and unwind the ori. We present the crystal structure of the E1 DNA binding domain refined to 1.9 A resolution. Residues critical for DNA binding are located on an extended loop and an alpha helix. We identify the E1 dimerization surface by selective mutations at an E1/E1 interface observed in the crystal and propose a model for the (E1)2-DNA complex. These and other observations suggest how the E1 DNA binding domain orchestrates assembly of the hexameric helicase on the ori. PMID:10949036

  19. DNA-protein interaction dynamics at the Lamin B2 replication origin

    PubMed Central

    Puzzi, Luca; Marchetti, Laura; Peverali, Fiorenzo A; Biamonti, Giuseppe; Giacca, Mauro

    2015-01-01

    To date, a complete understanding of the molecular events leading to DNA replication origin activation in mammalian cells still remains elusive. In this work, we report the results of a high resolution chromatin immunoprecipitation study to detect proteins interacting with the human Lamin B2 replication origin. In addition to the pre-RC component ORC4 and to the transcription factors USF and HOXC13, we found that 2 components of the AP-1 transcription factor, c-Fos and c-Jun, are also associated with the origin DNA during the late G1 phase of the cell cycle and that these factors interact with ORC4. Both DNA replication and AP-1 factor binding to the origin region were perturbed by cell treatment with merbarone, a topoisomerase II inhibitor, suggesting that DNA topology is essential for determining origin function.

  20. Hepatitis C Virus NS2 Protein Triggers Endoplasmic Reticulum Stress and Suppresses its Own Viral Replication

    PubMed Central

    von dem Bussche, Annette; Machida, Raiki; Li, Ke; Loevinsohn, Gideon; Khander, Amrin; Wang, Jianguo; Wakita, Takaji; Wands, Jack R.; Li, Jisu

    2010-01-01

    Background & Aims We previously reported that the NS2 protein of hepatitis C virus (HCV) inhibits the expression of reporter genes driven by a variety of cellular and viral promoters. The aim of the study was to determine whether the broad transcriptional repression is caused by endoplasmic reticulum (ER) stress. Methods Phosphorylation of the translation initiation factor eIF2α and HCV replication were detected by Western and Northern blot, respectively. De novo protein synthesis was measured by metabolic labeling. Activation of ER stress responsive genes was determined by promoter reporter assay, as well as mRNA and protein measurement by real time PCR and Western blot. Results Transient or inducible NS2 protein expression increased eIF2α phosphorylation and reduced de novo protein synthesis. It up-regulated promoter activities and transcript levels of ER stress inducible genes including GRP78, ATF6, and GADD153, as well as GRP78 protein level. The same effect was observed when NS2 was synthesized as part of the core-E1-E2-p7-NS2 polypeptide. NS2 protein also inhibited reporter gene expression from the HCV internal ribosome entry site and consequently reduced HCV replication. The full-length HCV replicon activated GRP78, ATF6, and GADD153 promoters more efficiently than the subgenomic replicon lacking the coding sequence for both the structural proteins and NS2. Abrogation of HCV infection/replication, by an inhibitor of the NS3 protease, relieved ER stress. Conclusions HCV infection can induce ER stress, with NS2 protein being a major mediator. The stress can be relieved by a feedback mechanism. PMID:20801537

  1. Mycobacterium tuberculosis Ser/Thr Protein Kinase B Mediates an Oxygen-Dependent Replication Switch

    PubMed Central

    Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.; Rustad, Tige; Ollodart, Anja R.; Wright, Aaron T.; Sherman, David R.; Grundner, Christoph

    2014-01-01

    The majority of Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by drug tolerance and little or no bacterial replication. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in reaeration. Activity-based protein profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability and gross morphological defects in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle—active disease, latency, and reactivation. PMID:24409094

  2. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase

    PubMed Central

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT↓ AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring ≥6 nt space for its efficient activity, translocates in the 3′→5′ direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation (∼24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV). PMID:17142233

  3. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    PubMed

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency. PMID:26994425

  4. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  5. The role of bacteriophage T7 gene 2 protein in DNA replication.

    PubMed Central

    Mooney, P Q; North, R; Molineux, I J

    1980-01-01

    The in vivo function of the gene 2 protein of bacteriophage T7 has been examined. The gene 2 protein appears to modulate the activity of the gene 3 endonuclease in order to prevent the premature degradation of any newly-formed DNA concatemers. This modulation is not however a direct interacton between the two proteins. In single-burst experiments rifamycin can substitute for the gene 2 protein, allowing formation of fast-sedimenting replicative DNA intermediates and progeny phage production. This suggests that the sole function of the gene 2 protein is inhibition of the host RNA polymerase and that the latter enzyme directs or promotes the endonucleolytic action of the gene 3 protein. PMID:7001361

  6. Macrophage Replication Screen Identifies a Novel Francisella Hydroperoxide Resistance Protein Involved in Virulence

    PubMed Central

    Llewellyn, Anna C.; Bina, James E.; Weiss, David S.

    2011-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is

  7. Role of the Escherichia coli nucleotide excision repair proteins in DNA replication.

    PubMed

    Moolenaar, G F; Moorman, C; Goosen, N

    2000-10-01

    DNA polymerase I (PolI) functions both in nucleotide excision repair (NER) and in the processing of Okazaki fragments that are generated on the lagging strand during DNA replication. Escherichia coli cells completely lacking the PolI enzyme are viable as long as they are grown on minimal medium. Here we show that viability is fully dependent on the presence of functional UvrA, UvrB, and UvrD (helicase II) proteins but does not require UvrC. In contrast, delta polA cells grow even better when the uvrC gene has been deleted. Apparently UvrA, UvrB, and UvrD are needed in a replication backup system that replaces the PolI function, and UvrC interferes with this alternative replication pathway. With specific mutants of UvrC we could show that the inhibitory effect of this protein is related to its catalytic activity that on damaged DNA is responsible for the 3' incision reaction. Specific mutants of UvrA and UvrB were also studied for their capacity to support the PolI-independent replication. Deletion of the UvrC-binding domain of UvrB resulted in a phenotype similar to that caused by deletion of the uvrC gene, showing that the inhibitory incision activity of UvrC is mediated via binding to UvrB. A mutation in the N-terminal zinc finger domain of UvrA does not affect NER in vivo or in vitro. The same mutation, however, does give inviability in combination with the delta polA mutation. Apparently the N-terminal zinc-binding domain of UvrA has specifically evolved for a function outside DNA repair. A model for the function of the UvrA, UvrB, and UvrD proteins in the alternative replication pathway is discussed. PMID:11004168

  8. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    SciTech Connect

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.; Duggin, Iain G.; Wake, R. Gerry; Wilce, Matthew C.J.; Wilce, Jacqueline A. . E-mail: Jackie.Wilce@med.monash.edu.au

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.

  9. Synthesis of Site-Specific DNA–Protein Conjugates and Their Effects on DNA Replication

    PubMed Central

    2015-01-01

    DNA–protein cross-links (DPCs) are bulky, helix-distorting DNA lesions that form in the genome upon exposure to common antitumor drugs, environmental/occupational toxins, ionizing radiation, and endogenous free-radical-generating systems. As a result of their considerable size and their pronounced effects on DNA–protein interactions, DPCs can interfere with DNA replication, transcription, and repair, potentially leading to mutagenesis, genotoxicity, and cytotoxicity. However, the biological consequences of these ubiquitous lesions are not fully understood due to the difficulty of generating DNA substrates containing structurally defined, site-specific DPCs. In the present study, site-specific cross-links between the two biomolecules were generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil in DNA and an azide group within engineered proteins/polypeptides. The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases η, κ, ν, and ι. We found that DPC lesions to the green fluorescent protein and a 23-mer peptide completely blocked DNA replication, while the cross-link to a 10-mer peptide was bypassed. These results indicate that the polymerases cannot read through the larger DPC lesions and further suggest that proteolytic degradation may be required to remove the replication block imposed by bulky DPC adducts. PMID:24918113

  10. Synthesis of site-specific DNA-protein conjugates and their effects on DNA replication.

    PubMed

    Yeo, Jung Eun; Wickramaratne, Susith; Khatwani, Santoshkumar; Wang, Yen-Chih; Vervacke, Jeffrey; Distefano, Mark D; Tretyakova, Natalia Y

    2014-08-15

    DNA-protein cross-links (DPCs) are bulky, helix-distorting DNA lesions that form in the genome upon exposure to common antitumor drugs, environmental/occupational toxins, ionizing radiation, and endogenous free-radical-generating systems. As a result of their considerable size and their pronounced effects on DNA-protein interactions, DPCs can interfere with DNA replication, transcription, and repair, potentially leading to mutagenesis, genotoxicity, and cytotoxicity. However, the biological consequences of these ubiquitous lesions are not fully understood due to the difficulty of generating DNA substrates containing structurally defined, site-specific DPCs. In the present study, site-specific cross-links between the two biomolecules were generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil in DNA and an azide group within engineered proteins/polypeptides. The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases η, κ, ν, and ι. We found that DPC lesions to the green fluorescent protein and a 23-mer peptide completely blocked DNA replication, while the cross-link to a 10-mer peptide was bypassed. These results indicate that the polymerases cannot read through the larger DPC lesions and further suggest that proteolytic degradation may be required to remove the replication block imposed by bulky DPC adducts. PMID:24918113

  11. Dynamic binding of replication protein a is required for DNA repair.

    PubMed

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H; Spies, Maria; Wold, Marc S

    2016-07-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA-DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  12. Dynamic binding of replication protein a is required for DNA repair

    PubMed Central

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.

    2016-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  13. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins

    PubMed Central

    Gillespie, Peter J.; Gambus, Agnieszka; Blow, J. Julian

    2012-01-01

    The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication. PMID:22521908

  14. Coxiella burnetii Effector Proteins That Localize to the Parasitophorous Vacuole Membrane Promote Intracellular Replication

    PubMed Central

    Larson, Charles L.; Beare, Paul A.; Voth, Daniel E.; Howe, Dale; Cockrell, Diane C.; Bastidas, Robert J.; Valdivia, Raphael H.

    2014-01-01

    The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages. PMID:25422265

  15. A conserved OmpA-like protein in Legionella pneumophila required for efficient intracellular replication.

    PubMed

    Goodwin, Ian P; Kumova, Ogan K; Ninio, Shira

    2016-08-01

    The OmpA-like protein domain has been associated with peptidoglycan-binding proteins, and is often found in virulence factors of bacterial pathogens. The intracellular pathogen Legionella pneumophila encodes for six proteins that contain the OmpA-like domain, among them the highly conserved uncharacterized protein we named CmpA. Here we set out to characterize the CmpA protein and determine its contribution to intracellular survival of L. pneumophila Secondary structure analysis suggests that CmpA is an inner membrane protein with a peptidoglycan-binding domain at the C-teminus. A cmpA mutant was able to replicate normally in broth, but failed to compete with an isogenic wild-type strain in an intracellular growth competition assay. The cmpA mutant also displayed significant intracellular growth defects in both the protozoan host Acanthamoeba castellanii and in primary bone marrow-derived macrophages, where uptake into the cells was also impaired. The cmpA phenotypes were completely restored upon expression of CmpA in trans The data presented here establish CmpA as a novel virulence factor of L. pneumophila that is required for efficient intracellular replication in both mammalian and protozoan hosts. PMID:27421957

  16. The expression of N-terminal deletion DNA pilot proteins inhibits the early stages of phiX174 replication.

    PubMed

    Ruboyianes, Mark V; Chen, Min; Dubrava, Mathew S; Cherwa, James E; Fane, Bentley A

    2009-10-01

    The phiX174 DNA pilot protein H contains four predicted C-terminal coiled-coil domains. The region of the gene encoding these structures was cloned, expressed in vivo, and found to strongly inhibit wild-type replication. DNA and protein synthesis was investigated in the absence of de novo H protein synthesis and in wild-type-infected cells expressing the inhibitory proteins (DeltaH). The expression of the DeltaH proteins interfered with early stages of DNA replication, which did not require de novo H protein synthesis, suggesting that the inhibitory proteins interfere with the wild-type H protein that enters the cell with the penetrating DNA. As transcription and protein synthesis are dependent on DNA replication in positive single-stranded DNA life cycles, viral protein synthesis was also reduced. However, unlike DNA synthesis, efficient viral protein synthesis required de novo H protein synthesis, a novel function for this protein. A single amino acid change in the C terminus of protein H was both necessary and sufficient to confer resistance to the inhibitory DeltaH proteins, restoring both DNA and protein synthesis to wild-type levels. DeltaH proteins derived from the resistant mutant did not inhibit wild-type or resistant mutant replication. The inhibitory effects of the DeltaH proteins were lessened by the coexpression of the internal scaffolding protein, which may suppress H-H protein interactions. While coexpression relieved the block in DNA biosynthesis, viral protein synthesis remained suppressed. These data indicate that protein H's role in DNA replication and stimulating viral protein synthesis can be uncoupled. PMID:19640994

  17. Intramitochondrial localization of universal minicircle sequence-binding protein, a trypanosomatid protein that binds kinetoplast minicircle replication origins.

    PubMed

    Abu-Elneel, K; Robinson, D R; Drew, M E; Englund, P T; Shlomai, J

    2001-05-14

    Kinetoplast DNA (kDNA), the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a unique structure containing 5,000 DNA minicircles topologically linked into a massive network. In vivo, the network is condensed into a disk-shaped structure. Replication of minicircles initiates at unique origins that are bound by universal minicircle sequence (UMS)-binding protein (UMSBP), a sequence-specific DNA-binding protein. This protein, encoded by a nuclear gene, localizes within the cell's single mitochondrion. Using immunofluorescence, we found that UMSBP localizes exclusively to two neighboring sites adjacent to the face of the kDNA disk nearest the cell's flagellum. This site is distinct from the two antipodal positions at the perimeter of the disk that is occupied by DNA polymerase beta, topoisomerase II, and a structure-specific endonuclease. Although we found constant steady-state levels of UMSBP mRNA and protein and a constant rate of UMSBP synthesis throughout the cell cycle, immunofluorescence indicated that UMSBP localization within the kinetoplast is not static. The intramitochondrial localization of UMSBP and other kDNA replication enzymes significantly clarifies our understanding of the process of kDNA replication. PMID:11352934

  18. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    PubMed

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  19. Investigating the role of the Est3 protein in yeast telomere replication

    PubMed Central

    Lee, Jaesung; Mandell, Edward K.; Rao, Timsi; Wuttke, Deborah S.; Lundblad, Victoria

    2010-01-01

    The Est3 subunit of yeast telomerase, which adopts a predicted OB-fold, is essential for telomere replication. To assess the possible contributions that Est3 might make to enzyme catalysis, we compared telomerase activity from wild type and est3-Δ strains of Saccharomyces castellii, which revealed that loss of the Est3 subunit results in a 2- to 3-fold decline in nucleotide addition. This effect was not primer-specific, based on assessment of a panel of primers that spanned the template of the S. castellii telomerase RNA. Furthermore, using nuclear magnetic resonance chemical shift perturbation, no chemical shift change was observed at any site in the protein upon addition of single-stranded DNA, arguing against a role for Est3 in recognition of telomeric substrates by telomerase. Addition of exogenous Est3 protein, including mutant Est3 proteins that are severely impaired for telomere replication in vivo, fully restored activity in est3-Δ telomerase reactions. Thus, Est3 performs an in vivo regulatory function in telomere replication, which is distinct from any potential contribution that Est3 might make to telomerase activity. PMID:20047960

  20. HMGB1 Protein Binds to Influenza Virus Nucleoprotein and Promotes Viral Replication

    PubMed Central

    Moisy, Dorothée; Avilov, Sergiy V.; Jacob, Yves; Laoide, Brid M.; Ge, Xingyi; Baudin, Florence; Jestin, Jean-Luc

    2012-01-01

    Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses. PMID:22696656

  1. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria

    PubMed Central

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-01-01

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  2. Intracellular Locations of Replication Proteins and the Origin of Replication during Chromosome Duplication in the Slowly Growing Human Pathogen Helicobacter pylori

    PubMed Central

    Sharma, Atul; Kamran, Mohammad; Verma, Vijay

    2014-01-01

    We followed the position of the replication complex in the pathogenic bacterium Helicobacter pylori using antibodies raised against the single-stranded DNA binding protein (HpSSB) and the replicative helicase (HpDnaB). The position of the replication origin, oriC, was also localized in growing cells by fluorescence in situ hybridization (FISH) with fluorescence-labeled DNA sequences adjacent to the origin. The replisome assembled at oriC near one of the cell poles, and the two forks moved together toward the cell center as replication progressed in the growing cell. Termination and resolution of the forks occurred near midcell, on one side of the septal membrane. The duplicated copies of oriC did not separate until late in elongation, when the daughter chromosomes segregated into bilobed nucleoids, suggesting sister chromatid cohesion at or near the oriC region. Components of the replication machinery, viz., HpDnaB and HpDnaG (DNA primase), were found associated with the cell membrane. A model for the assembly and location of the H. pylori replication machinery during chromosomal duplication is presented. PMID:24363345

  3. Proteome-Wide Overexpression of Host Proteins for Identification of Factors Affecting Tombusvirus RNA Replication: an Inhibitory Role of Protein Kinase C

    PubMed Central

    Shah Nawaz-ul-Rehman, Muhammad; Martinez-Ochoa, Natalia; Pascal, Helene; Sasvari, Zsuzsanna; Herbst, Christin; Xu, Kai; Baker, Jannine; Sharma, Monika; Herbst, Alan

    2012-01-01

    To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts. PMID:22718827

  4. Genetic Confirmation that the H5 Protein Is Required for Vaccinia Virus DNA Replication

    PubMed Central

    Boyle, Kathleen A.; Greseth, Matthew D.

    2015-01-01

    ABSTRACT The duplication of the poxvirus double-stranded DNA genome occurs in cytoplasmic membrane-delimited factories. This physical autonomy from the host nucleus suggests that poxvirus genomes encode the full repertoire of proteins committed for genome replication. Biochemical and genetic analyses have confirmed that six viral proteins are required for efficient DNA synthesis; indirect evidence has suggested that the multifunctional H5 protein may also have a role. Here we show that H5 localizes to replication factories, as visualized by immunofluorescence and immunoelectron microscopy, and can be retrieved upon purification of the viral polymerase holoenzyme complex. The temperature-sensitive (ts) mutant Dts57, which was generated by chemical mutagenesis and has a lesion in H5, exhibits defects in DNA replication and morphogenesis under nonpermissive conditions, depending upon the experimental protocol. The H5 variant encoded by the genome of this mutant is ts for function but not stability. For a more precise investigation of how H5 contributes to DNA synthesis, we placed the ts57 H5 allele in an otherwise wild-type viral background and also performed small interfering RNA-mediated depletion of H5. Finally, we generated a complementing cell line, CV-1–H5, which allowed us to generate a viral recombinant in which the H5 open reading frame was deleted and replaced with mCherry (vΔH5). Analysis of vΔH5 allowed us to demonstrate conclusively that viral DNA replication is abrogated in the absence of H5. The loss of H5 does not compromise the accumulation of other early viral replication proteins or the uncoating of the virion core, suggesting that H5 plays a direct and essential role in facilitating DNA synthesis. IMPORTANCE Variola virus, the causative agent of smallpox, is the most notorious member of the Poxviridae family. Poxviruses are unique among DNA viruses that infect mammalian cells, in that their replication is restricted to the cytoplasm of the cell

  5. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio

    PubMed Central

    Katorcha, Elizaveta; Makarava, Natallia; Savtchenko, Regina; Baskakov, Ilia V.

    2015-01-01

    Prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded and aggregated form of a sialoglycoprotein called prion protein or PrPC. PrPC has two sialylated N-linked carbohydrates. In PrPSc, the glycans are directed outward, with the terminal sialic acid residues creating a negative charge on the surface of prion particles. The current study proposes a new hypothesis that electrostatic repulsion between sialic residues creates structural constraints that control prion replication and PrPSc glycoform ratio. In support of this hypothesis, here we show that diglycosylated PrPC molecules that have more sialic groups per molecule than monoglycosylated PrPC were preferentially excluded from conversion. However, when partially desialylated PrPC was used as a substrate, recruitment of three glycoforms into PrPSc was found to be proportional to their respective populations in the substrate. In addition, hypersialylated molecules were also excluded from conversion in the strains with the strongest structural constraints, a strategy that helped reduce electrostatic repulsion. Moreover, as predicted by the hypothesis, partial desialylation of PrPC significantly increased the replication rate. This study illustrates that sialylation of N-linked glycans creates a prion replication barrier that controls replication rate and glycoform ratios and has broad implications. PMID:26576925

  6. Herpes simplex virus origin-binding protein (UL9) loops and distorts the viral replication origin.

    PubMed Central

    Koff, A; Schwedes, J F; Tegtmeyer, P

    1991-01-01

    To investigate the role of the herpes simplex virus origin-binding protein (UL9) in the initiation of DNA replication, we have examined the effect of UL9 binding on the structure of the viral origin of replication. UL9 loops and alters the DNA helix of the origin regardless of the phasing of the binding sites. DNase I and micrococcal nuclease footprinting show that UL9 binds two sites in the origin and loops the AT-rich DNA between them independent of the topology of the DNA. KMnO4 and dimethyl sulfate footprinting further show that UL9 alters the DNA helix in the AT region. In contrast to the looping reaction, however, helical distortion requires the free energy of supercoiled DNA. UL9 also loops and distorts the origin DNA of a replication-defective mutant with a 6-bp insertion in the AT region. Because the helical distortion of this mutant DNA is different from that of functional origins, we conclude that an imperfect tertiary structure of the mutant DNA may contribute to its loss of replication function. Images PMID:1851878

  7. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation

    PubMed Central

    Di Paola, Domenic; Rampakakis, Emmanouil; Chan, Man Kid; Arvanitis, Dina N.; Zannis-Hadjopoulos, Maria

    2010-01-01

    Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2–3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2–3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation. PMID:20064876

  8. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication

    PubMed Central

    Zhang, Jie; Guo, Hong; Chen, Qingxiu; Zhang, Fuxian; Fang, Qin

    2016-01-01

    Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1–471) of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection. PMID:26871941

  9. Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incompatibility group P-1 (incP-1) includes broad host range plasmids of Gram negative bacteria and are classified into five subgroups (alpha, beta, gamma, delta, and epsilon). The incP-1 replication module consists of the trfA gene, encoding the replication initiator protein TrfA, and the origin o...

  10. Foot and mouth disease virus non structural protein 2C interacts with Beclin1 modulating virus replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease (FMD), is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in th...

  11. Diverse roles of host RNA binding proteins in RNA virus replication.

    PubMed

    Li, Zhenghe; Nagy, Peter D

    2011-01-01

    Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology. PMID:21505273

  12. UvrD controls the access of recombination proteins to blocked replication forks

    PubMed Central

    Lestini, Roxane; Michel, Bénédicte

    2007-01-01

    Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA. PMID:17641684

  13. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins

    PubMed Central

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-01-01

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy. PMID:26114473

  14. UvrD controls the access of recombination proteins to blocked replication forks.

    PubMed

    Lestini, Roxane; Michel, Bénédicte

    2007-08-22

    Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA. PMID:17641684

  15. Interactome Analysis of the Influenza A Virus Transcription/Replication Machinery Identifies Protein Phosphatase 6 as a Cellular Factor Required for Efficient Virus Replication

    PubMed Central

    York, Ashley; Hutchinson, Edward C.

    2014-01-01

    ABSTRACT The negative-sense RNA genome of influenza A virus is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRP). The viral RdRP is an important host range determinant, indicating that its function is affected by interactions with cellular factors. However, the identities and the roles of most of these factors remain unknown. Here, we employed affinity purification followed by mass spectrometry to identify cellular proteins that interact with the influenza A virus RdRP in infected human cells. We purified RdRPs using a recombinant influenza virus in which the PB2 subunit of the RdRP is fused to a Strep-tag. When this tagged subunit was purified from infected cells, copurifying proteins included the other RdRP subunits (PB1 and PA) and the viral nucleoprotein and neuraminidase, as well as 171 cellular proteins. Label-free quantitative mass spectrometry revealed that the most abundant of these host proteins were chaperones, cytoskeletal proteins, importins, proteins involved in ubiquitination, kinases and phosphatases, and mitochondrial and ribosomal proteins. Among the phosphatases, we identified three subunits of the cellular serine/threonine protein phosphatase 6 (PP6), including the catalytic subunit PPP6C and regulatory subunits PPP6R1 and PPP6R3. PP6 was found to interact directly with the PB1 and PB2 subunits of the viral RdRP, and small interfering RNA (siRNA)-mediated knockdown of the catalytic subunit of PP6 in infected cells resulted in the reduction of viral RNA accumulation and the attenuation of virus growth. These results suggest that PP6 interacts with and positively regulates the activity of the influenza virus RdRP. IMPORTANCE Influenza A viruses are serious clinical and veterinary pathogens, causing substantial health and economic impacts. In addition to annual seasonal epidemics, occasional global pandemics occur when viral strains adapt to humans from other species. To replicate efficiently and cause disease, influenza

  16. Apoptosis, autophagy and unfolded protein response pathways in Arbovirus replication and pathogenesis.

    PubMed

    Iranpour, Mahmoud; Moghadam, Adel Rezaei; Yazdi, Mina; Ande, Sudharsana R; Alizadeh, Javad; Wiechec, Emilia; Lindsay, Robbin; Drebot, Michael; Coombs, Kevin M; Ghavami, Saeid

    2016-01-01

    Arboviruses are pathogens that widely affect the health of people in different communities around the world. Recently, a few successful approaches toward production of effective vaccines against some of these pathogens have been developed, but treatment and prevention of the resulting diseases remain a major health and research concern. The arbovirus infection and replication processes are complex, and many factors are involved in their regulation. Apoptosis, autophagy and the unfolded protein response (UPR) are three mechanisms that are involved in pathogenesis of many viruses. In this review, we focus on the importance of these pathways in the arbovirus replication and infection processes. We provide a brief introduction on how apoptosis, autophagy and the UPR are initiated and regulated, and then discuss the involvement of these pathways in regulation of arbovirus pathogenesis. PMID:26781343

  17. Active site of the replication protein of the rolling circle plasmid pC194.

    PubMed Central

    Noirot-Gros, M F; Bidnenko, V; Ehrlich, S D

    1994-01-01

    Mutation analysis of the rolling circle (RC) replication initiator protein RepA of plasmid pC194 was targeted to tyrosine and acidic amino acids (glutamate and aspartate) which are well conserved among numerous related plasmids. The effect of mutations was examined by an in vivo activity test. Mutations of one tyrosine and two glutamate residues were found to greatly impair or abolish activity, without affecting affinity for the origin, as deduced from in vitro gel mobility assays. We conclude that all three amino acids have a catalytic role. Tyrosine residues were found previously in active sites of different RC plasmid Rep proteins and topoisomerases, but not in association with acidic residues, which are a hallmark of the active sites of DNA hydrolyzing enzymes, such as the exo- and endonucleases. We propose that the active site of RepA contains two different catalytic centers, corresponding to a tyrosine and a glutamate. The former may be involved in the formation of the covalent DNA-protein intermediate at the initiation step of RC replication, and the latter may catalyze the release of the protein from the intermediate at the termination step. Images PMID:7925284

  18. Hepatitis C virus RNA codes for proteins and replicates: does it also trigger the interferon response?

    PubMed

    Branch, A D

    2000-01-01

    Hepatitis C virus (HCV) is a positive sense virus with a genomic RNA molecule roughly 9,600 nucleotides in length. The single-stranded genomic RNA has a nontranslated region (NTR) at each end and a long open reading frame (coding region) in between. The 5'NTR and portions of the 3'NTR are the most conserved parts of HCV RNA. These conserved regions contain signals for replication and translation. Much of the 5'NTR is folded into a structure that binds ribosomes. This structure, an internal ribosome entry site, promotes the initiation of protein synthesis and is critical for HCV gene expression. The ribosome binding site may extend into the coding region; its exact boundaries are not known. The open reading frame encodes the HCV polyprotein, which is slightly more than 3,000 amino acids in length. The 3'NTR plays a key role in HCV replication and may also influence the rate of HCV protein synthesis. During replication, the genomic RNA is copied by virally encoded enzymes into a complementary antigenomic RNA, which itself is a template for the synthesis of progeny RNAs. At steady state, genomic strands outnumber antigenomic strands about 10 to 1. HCV RNA replication is thought to take place in the cytoplasm and is an error-prone process. It generates a mixed population of RNA sequences (quasispecies), including mutants that may be more fit than the parental type, less fit, or equally fit (but distinct). Natural selection acts upon the progeny RNAs, causing the population to change and drift. Over time, mutation, selection, and population bottlenecks led to the evolution of varied genotypes. The HCV replication complex is a potential source of double-stranded RNA, a powerful inducer of interferon. Thus, HCV-specific double-stranded RNA may trigger the first steps of innate immunity; however, for unknown reasons, the immune system often fails to clear the infection. The plasticity of the HCV genome and the low level of HCV gene expression may counterbalance any

  19. Regulation of DNA Replication Timing on Human Chromosome by a Cell-Type Specific DNA Binding Protein SATB1

    PubMed Central

    Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao

    2012-01-01

    Background Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as “replication domains”, and recent findings indicate that replication timing is under developmental and cell type-specific regulation. Methodology/Principal Findings We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Conclusions Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome. PMID:22879953

  20. Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories

    PubMed Central

    Sanfaçon, Hélène

    2013-01-01

    Formation of plant virus membrane-associated replication factories requires the association of viral replication proteins and viral RNA with intracellular membranes, the recruitment of host factors and the modification of membranes to form novel structures that house the replication complex. Many viruses encode integral membrane proteins that act as anchors for the replication complex. These hydrophobic proteins contain transmembrane domains and/or amphipathic helices that associate with the membrane and modify its structure. The comovirus Co-Pro and NTP-binding (NTB, putative helicase) proteins and the cognate nepovirus X2 and NTB proteins are among the best characterized plant virus integral membrane replication proteins and are functionally related to the picornavirus 2B, 2C, and 3A membrane proteins. The identification of membrane association domains and analysis of the membrane topology of these proteins is discussed. The evidence suggesting that these proteins have the ability to induce membrane proliferation, alter the structure and integrity of intracellular membranes, and modulate the induction of symptoms in infected plants is also reviewed. Finally, areas of research that need further investigation are highlighted. PMID:23439982

  1. NB protein does not affect influenza B virus replication in vitro and is not required for replication in or transmission between ferrets.

    PubMed

    Elderfield, Ruth A; Koutsakos, Marios; Frise, Rebecca; Bradley, Konrad; Ashcroft, Jonathan; Miah, Shanhjahan; Lackenby, Angie; Barclay, Wendy S

    2016-03-01

    The influenza B virus encodes a unique protein, NB, a membrane protein whose function in the replication cycle is not, as yet, understood. We engineered a recombinant influenza B virus lacking NB expression, with no concomitant difference in expression or activity of viral neuraminidase (NA) protein, an important caveat since NA is encoded on the same segment and initiated from a start codon just 4 nt downstream of NB. Replication of the virus lacking NB was not different to wild-type virus with full-length NB in clonal immortalized or complex primary cell cultures. In the mouse model, virus lacking NB induced slightly lower IFN-α levels in infected lungs, but this did not affect virus titres or weight loss. In ferrets infected with a mixture of viruses that did or did not express NB, there was no fitness advantage for the virus that retained NB. Moreover, virus lacking NB protein was transmitted following respiratory droplet exposure of sentinel animals. These data suggest no role for NB in supporting replication or transmission in vivo in this animal model. The role of NB and the nature of selection to retain it in all natural influenza B viruses remain unclear. PMID:26703440

  2. Involvement of Fis protein in replication of the Escherichia coli chromosome.

    PubMed Central

    Filutowicz, M; Ross, W; Wild, J; Gourse, R L

    1992-01-01

    We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo. Images PMID:1309527

  3. Cloning of two sea urchin DNA-binding proteins involved in mitochondrial DNA replication and transcription.

    PubMed

    Loguercio Polosa, Paola; Megli, Fiammetta; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2002-03-01

    The cloning of the cDNA for two mitochondrial proteins involved in sea urchin mtDNA replication and transcription is reported here. The cDNA for the mitochondrial D-loop binding protein (mtDBP) from the sea urchin Strongylocentrotus purpuratus has been cloned by a polymerase chain reaction-based approach. The protein displays a very high similarity with the Paracentrotus lividus homologue as it contains also the two leucine zipper-like domains which are thought to be involved in intramolecular interactions needed to expose the two DNA binding domains in the correct position for contacting DNA. The cDNA for the mitochondrial single-stranded DNA-binding protein (mtSSB) from P. lividus has been also cloned by a similar approach. The precursor protein is 146 amino acids long with a presequence of 16 residues. The deduced amino acid sequence shows the highest homology with the Xenopus laevis protein and the lowest with the Drosophila mtSSB. The computer modeling of the tertiary structure of P. lividus mtSSB shows a structure very similar to that experimentally determined for human mtSSB, with the conservation of the main residues involved in protein tetramerization and in DNA binding. PMID:11943466

  4. Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication

    PubMed Central

    Phillips, Stacia L.; Soderblom, Erik J.

    2016-01-01

    ABSTRACT Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA)-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches. PMID:26733069

  5. A small molecule directly inhibits the p53 transactivation domain from binding to replication protein A

    PubMed Central

    Glanzer, Jason G.; Carnes, Katie A.; Soto, Patricia; Liu, Shengqin; Parkhurst, Lawrence J.; Oakley, Gregory G.

    2013-01-01

    Replication protein A (RPA), essential for DNA replication, repair and DNA damage signalling, possesses six ssDNA-binding domains (DBDs), including DBD-F on the N-terminus of the largest subunit, RPA70. This domain functions as a binding site for p53 and other DNA damage and repair proteins that contain amphipathic alpha helical domains. Here, we demonstrate direct binding of both ssDNA and the transactivation domain 2 of p53 (p53TAD2) to DBD-F, as well as DBD-F-directed dsDNA strand separation by RPA, all of which are inhibited by fumaropimaric acid (FPA). FPA binds directly to RPA, resulting in a conformational shift as determined through quenching of intrinsic tryptophan fluorescence in full length RPA. Structural analogues of FPA provide insight on chemical properties that are required for inhibition. Finally, we confirm the inability of RPA possessing R41E and R43E mutations to bind to p53, destabilize dsDNA and quench tryptophan fluorescence by FPA, suggesting that protein binding, DNA modulation and inhibitor binding all occur within the same site on DBD-F. The disruption of p53–RPA interactions by FPA may disturb the regulatory functions of p53 and RPA, thereby inhibiting cellular pathways that control the cell cycle and maintain the integrity of the human genome. PMID:23267009

  6. Gene A protein cleavage of recombinant plasmids containing the phi X174 replication origin.

    PubMed Central

    Fluit, A C; Baas, P D; Van Boom, J H; Veeneman, G H; Jansz, H S

    1984-01-01

    Synthetic oligonucleotides, DNA ligase and DNA polymerase were used to construct double-stranded DNA fragments homologous to the first 25, 27 or 30 b.p. of the origin of replication of bacteriophage phi X174 (nucleotides 4299-4328 of the phi X174 DNA sequence). The double-stranded DNA fragments were cloned into the unique SmaI or HindIII restriction sites in the kanamycin-resistance gene of pACYC177 (AmpR, KmR). Recombinant plasmids were picked up by colony hybridization. DNA sequencing showed that not only recombinant plasmids with the expected insert were formed, but also recombinant plasmids with a shorter insert. Recombinant plasmids with an insert homologous to the first 24, 25, 26, 27, 28 or all 30 b.p. of the phi X174 origin region were thus obtained. Supercoiled plasmids containing a sequence homologous to the first 27, 28 or 30 b.p. of the phi X174 origin region are nicked by the phi X174 gene A protein. However, the other supercoiled plasmids are not nicked by the phi X174 gene A protein. These results show that the first 27 b.p. of the phi X174 origin region are sufficient as well as required for the initiation step in phi X174 RF DNA replication, i.e. the cleavage by gene A protein. Images PMID:6236428

  7. Nucleotide and partner-protein control of bacterial replicative helicase structure and function

    PubMed Central

    Strycharska, Melania S.; Arias-Palomo, Ernesto; Lyubimov, Artem Y.; Erzberger, Jan P.; O’Shea, Valerie; Bustamante, Carlos J.; Berger, James M.

    2014-01-01

    Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB complexed with nucleotide reveals a new conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active, but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an auto-regulatory hub that controls the ability of the helicase to transition between different functional states in response to nucleotide and both replication initiation and elongation factors. PMID:24373746

  8. Nucleotide and partner-protein control of bacterial replicative helicase structure and function.

    PubMed

    Strycharska, Melania S; Arias-Palomo, Ernesto; Lyubimov, Artem Y; Erzberger, Jan P; O'Shea, Valerie L; Bustamante, Carlos J; Berger, James M

    2013-12-26

    Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors. PMID:24373746

  9. The importance of alfalfa mosaic virus coat protein dimers in the initiation of replication.

    PubMed

    Choi, Jiwon; Kim, Bong-Suk; Zhao, Xiaoxia; Loesch-Fries, Sue

    2003-01-01

    Deletion and substitution mutations affecting the oligomerization of alfalfa mosaic virus (AMV) coat protein (CP) were studied in protoplasts to determine their effect on genome activation, an early step in AMV replication. The CP mutants that formed dimers, CPDeltaC9 and CPC-A(R)F, were highly active in initiating replication with 63-84% of wild-type (wt) CP activity. However, all mutants that did not form dimers, CPDeltaC18, CPDeltaC19, CPC-WFP, and CPC-W, were much less active with 19-33% of wt CP activity. The accumulation and solubility of mutant CPs expressed from a virus-based vector in Nicotiana benthamiana were similar to that of wt CP. Analysis of CP-RNA interactions indicated that CP dimers and CP monomers interacted very differently with AMV RNA 3' ends. These results suggest that CP dimers are more efficient for replication than CP monomers because of differences in RNA binding rather than differences in expression and accumulation of the mutant CPs in infected cells. PMID:12504539

  10. Control of human papillomavirus type 11 origin of replication by the E2 family of transcription regulatory proteins.

    PubMed

    Chiang, C M; Dong, G; Broker, T R; Chow, L T

    1992-09-01

    Replication of human papillomavirus type 11 (HPV-11) DNA requires the full-length viral E1 and E2 proteins (C.-M. Chiang, M. Ustav, A. Stenlund, T. F. Ho, T. R. Broker, and L. T. Chow, Proc. Natl. Acad. Sci. USA 89:5799-5803, 1992). Using transient transfection of subgenomic HPV DNA into hamster CHO and human 293 cells, we have localized an origin of replication (ori) to an 80-bp segment in the upstream regulatory region spanning nucleotide 1. It overlaps the E6 promoter region and contains a short A + T-rich segment and a sequence which is homologous to the binding site of the bovine papillomavirus type 1 (BPV-1) E1 protein in the BPV-1 ori. However, unlike the BPV-1 ori, for which half an E2-responsive sequence (E2-RS) or binding site suffices, an intact binding site is essential for the HPV-11 ori. Replication was more efficient when additional E2-RSs were present. The intact HPV-11 genome also replicated in both cell lines when supplied with E1 and E2 proteins. Expression vectors of transcription repressor proteins that lack the N-terminal domain essential for E2 transcriptional trans activation did not support replication in collaboration with the E1 expression vector. Rather, cotransfection with the repressor expression vectors inhibited ori replication by the E1 and E2 proteins. These results demonstrate the importance of the N-terminal domain of the E2 protein in DNA replication and indicate that the family of E2 proteins positively and negatively regulates both viral DNA replication and E6 promoter transcription. PMID:1323690

  11. DNA-Binding Proteins Regulating pIP501 Transfer and Replication

    PubMed Central

    Grohmann, Elisabeth; Goessweiner-Mohr, Nikolaus; Brantl, Sabine

    2016-01-01

    pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling

  12. DNA-Binding Proteins Regulating pIP501 Transfer and Replication.

    PubMed

    Grohmann, Elisabeth; Goessweiner-Mohr, Nikolaus; Brantl, Sabine

    2016-01-01

    pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling

  13. Staufen1 promotes HCV replication by inhibiting protein kinase R and transporting viral RNA to the site of translation and replication in the cells.

    PubMed

    Dixit, Updesh; Pandey, Ashutosh K; Mishra, Priya; Sengupta, Amitabha; Pandey, Virendra N

    2016-06-20

    Persistent hepatitis C virus (HCV) infection leads to chronic hepatitis C (CHC), which often progresses to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The molecular mechanisms that establish CHC and cause its subsequent development into LC and HCC are poorly understood. We have identified a cytoplasmic double-stranded RNA binding protein, Stau1, which is crucial for HCV replication. In this study, Stau1 specifically interacted with the variable-stem-loop region in the 3' NTR and domain IIId of the HCV-IRES in the 5' NTR, and promoted HCV replication and translation. Stau1 coimmunoprecipitates HCV NS5B and a cell factor, protein kinase R (PKR), which is critical for interferon-induced cellular antiviral and antiproliferative responses. Like Stau1, PKR displayed binding specificity to domain IIId of HCV-IRES. Stau1 binds to PKR and strongly inhibits PKR-autophosphorylation. We demonstrated that the transport of HCV RNA on the polysomes is Stau1-dependent, being mainly localized in the monosome fractions when Stau1 is downregulated and exclusively localized in the polysomes when Stau1 is overexpressed. Our findings suggest that HCV may appropriate Stau1 to its advantage to prevent PKR-mediated inhibition of eIF2α, which is required for the synthesis of HCV proteins for translocation of viral RNA genome to the polysomes for efficient translation and replication. PMID:27106056

  14. Staufen1 promotes HCV replication by inhibiting protein kinase R and transporting viral RNA to the site of translation and replication in the cells

    PubMed Central

    Dixit, Updesh; Pandey, Ashutosh K.; Mishra, Priya; Sengupta, Amitabha; Pandey, Virendra N.

    2016-01-01

    Persistent hepatitis C virus (HCV) infection leads to chronic hepatitis C (CHC), which often progresses to liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The molecular mechanisms that establish CHC and cause its subsequent development into LC and HCC are poorly understood. We have identified a cytoplasmic double-stranded RNA binding protein, Stau1, which is crucial for HCV replication. In this study, Stau1 specifically interacted with the variable-stem-loop region in the 3′ NTR and domain IIId of the HCV-IRES in the 5′ NTR, and promoted HCV replication and translation. Stau1 coimmunoprecipitates HCV NS5B and a cell factor, protein kinase R (PKR), which is critical for interferon-induced cellular antiviral and antiproliferative responses. Like Stau1, PKR displayed binding specificity to domain IIId of HCV-IRES. Stau1 binds to PKR and strongly inhibits PKR-autophosphorylation. We demonstrated that the transport of HCV RNA on the polysomes is Stau1-dependent, being mainly localized in the monosome fractions when Stau1 is downregulated and exclusively localized in the polysomes when Stau1 is overexpressed. Our findings suggest that HCV may appropriate Stau1 to its advantage to prevent PKR-mediated inhibition of eIF2α, which is required for the synthesis of HCV proteins for translocation of viral RNA genome to the polysomes for efficient translation and replication. PMID:27106056

  15. Protein biogenesis machinery is a driver of replicative aging in yeast

    PubMed Central

    Janssens, Georges E; Meinema, Anne C; González, Javier; Wolters, Justina C; Schmidt, Alexander; Guryev, Victor; Bischoff, Rainer; Wit, Ernst C; Veenhoff, Liesbeth M; Heinemann, Matthias

    2015-01-01

    An integrated account of the molecular changes occurring during the process of cellular aging is crucial towards understanding the underlying mechanisms. Here, using novel culturing and computational methods as well as latest analytical techniques, we mapped the proteome and transcriptome during the replicative lifespan of budding yeast. With age, we found primarily proteins involved in protein biogenesis to increase relative to their transcript levels. Exploiting the dynamic nature of our data, we reconstructed high-level directional networks, where we found the same protein biogenesis-related genes to have the strongest ability to predict the behavior of other genes in the system. We identified metabolic shifts and the loss of stoichiometry in protein complexes as being consequences of aging. We propose a model whereby the uncoupling of protein levels of biogenesis-related genes from their transcript levels is causal for the changes occurring in aging yeast. Our model explains why targeting protein synthesis, or repairing the downstream consequences, can serve as interventions in aging. DOI: http://dx.doi.org/10.7554/eLife.08527.001 PMID:26422514

  16. Protein biogenesis machinery is a driver of replicative aging in yeast.

    PubMed

    Janssens, Georges E; Meinema, Anne C; González, Javier; Wolters, Justina C; Schmidt, Alexander; Guryev, Victor; Bischoff, Rainer; Wit, Ernst C; Veenhoff, Liesbeth M; Heinemann, Matthias

    2015-01-01

    An integrated account of the molecular changes occurring during the process of cellular aging is crucial towards understanding the underlying mechanisms. Here, using novel culturing and computational methods as well as latest analytical techniques, we mapped the proteome and transcriptome during the replicative lifespan of budding yeast. With age, we found primarily proteins involved in protein biogenesis to increase relative to their transcript levels. Exploiting the dynamic nature of our data, we reconstructed high-level directional networks, where we found the same protein biogenesis-related genes to have the strongest ability to predict the behavior of other genes in the system. We identified metabolic shifts and the loss of stoichiometry in protein complexes as being consequences of aging. We propose a model whereby the uncoupling of protein levels of biogenesis-related genes from their transcript levels is causal for the changes occurring in aging yeast. Our model explains why targeting protein synthesis, or repairing the downstream consequences, can serve as interventions in aging. PMID:26422514

  17. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region.

    PubMed Central

    Bienz, K; Egger, D; Troxler, M; Pasamontes, L

    1990-01-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed. Images PMID:2154600

  18. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication.

    PubMed

    Zhang, Chengcheng; Kang, Kai; Ning, Pengbo; Peng, Yangxin; Lin, Zhi; Cui, Hongjie; Cao, Zhi; Wang, Jing; Zhang, Yanming

    2015-08-01

    The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling via to its ability to interact with various cellular proteins. Here, HSP70/NS5A complex formation is confirmed by coimmunoprecipitation and GST-pulldown studies. Additionally, the N-terminal amino acids (29-240) of NS5A were identified as the interaction region through in vivo deletion analyses, and confocal microscopy showed that NS5A and HSP70 colocalized in the cytoplasm. Overexpression of HSP70 via the eukaryotic expression plasmid pDsRED N1 or lentivirus significantly promoted viral RNA synthesis. Whereas the knockdown of HSP70 by lentivirus-mediated shRNA or inhibition by quercetin markedly decreased the viral load. These data suggest that HSP70 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of HSP70 protein functions may be beneficial for developing new strategies to treat CSFV infection. PMID:25827528

  19. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication.

    PubMed

    Murphy, Christopher M; Xu, Yanping; Li, Feng; Nio, Kouki; Reszka-Blanco, Natalia; Li, Xiaodong; Wu, Yaxu; Yu, Yanbao; Xiong, Yue; Su, Lishan

    2016-09-13

    The hepatitis B virus (HBV) regulatory protein X (HBx) activates gene expression from the HBV covalently closed circular DNA (cccDNA) genome. Interaction of HBx with the DDB1-CUL4-ROC1 (CRL4) E3 ligase is critical for this function. Using substrate-trapping proteomics, we identified the structural maintenance of chromosomes (SMC) complex proteins SMC5 and SMC6 as CRL4(HBx) substrates. HBx expression and HBV infection degraded the SMC5/6 complex in human hepatocytes in vitro and in humanized mice in vivo. HBx targets SMC5/6 for ubiquitylation by the CRL4(HBx) E3 ligase and subsequent degradation by the proteasome. Using a minicircle HBV (mcHBV) reporter system with HBx-dependent activity, we demonstrate that SMC5/6 knockdown, or inhibition with a dominant-negative SMC6, enhance HBx null mcHBV-Gluc gene expression. Furthermore, SMC5/6 knockdown rescued HBx-deficient HBV replication in human hepatocytes. These results indicate that a primary function of HBx is to degrade SMC5/6, which restricts HBV replication by inhibiting HBV gene expression. PMID:27626656

  20. Cofolding organizes alfalfa mosaic virus RNA and coat protein for replication.

    PubMed

    Guogas, Laura M; Filman, David J; Hogle, James M; Gehrke, Lee

    2004-12-17

    Alfalfa mosaic virus genomic RNAs are infectious only when the viral coat protein binds to the RNA 3' termini. The crystal structure of an alfalfa mosaic virus RNA-peptide complex reveals that conserved AUGC repeats and Pro-Thr-x-Arg-Ser-x-x-Tyr coat protein amino acids cofold upon interacting. Alternating AUGC residues have opposite orientation, and they base pair in different adjacent duplexes. Localized RNA backbone reversals stabilized by arginine-guanine interactions place the adenosines and guanines in reverse order in the duplex. The results suggest that a uniform, organized 3' conformation, similar to that found on viral RNAs with transfer RNA-like ends, may be essential for replication. PMID:15604410

  1. The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein.

    PubMed

    Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Choudhury, Nirupam Roy; Karjee, Sumona; Mukherjee, Sunil Kumar

    2007-01-01

    Mung bean yellow mosaic India virus (MYMIV) is a member of genus begomoviridae and its genome comprises of bipartite (two components, namely DNA-A and DNA-B), single-stranded, circular DNA of about 2.7 kb. During rolling circle replication (RCR) of the DNA, the stability of the genome and maintenance of the stem-loop structure of the replication origin is crucial. Hence the role of host single-stranded DNA-binding protein, Replication protein A (RPA), in the RCR of MYMIV was examined. Two RPA subunits, namely the RPA70 kDa and RPA32 kDa, were isolated from pea and their roles were validated in a yeast system in which MYMIV DNA replication has been modelled. Here, we present evidences that only the RPA32 kDa subunit directly interacted with the carboxy terminus of MYMIV-Rep both in vitro as well as in yeast two-hybrid system. RPA32 modulated the functions of Rep by enhancing its ATPase and down regulating its nicking and closing activities. The possible role of these modulations in the context of viral DNA replication has been discussed. Finally, we showed the positive involvement of RPA32 in transient replication of the plasmid DNA bearing MYMIV replication origin using an in planta based assay. PMID:17182628

  2. Relative, label-free protein quantitation: spectral counting error statistics from nine replicate MudPIT samples.

    PubMed

    Cooper, Bret; Feng, Jian; Garrett, Wesley M

    2010-09-01

    Nine replicate samples of peptides from soybean leaves, each spiked with a different concentration of bovine apotransferrin peptides, were analyzed on a mass spectrometer using multidimensional protein identification technology (MudPIT). Proteins were detected from the peptide tandem mass spectra, and the numbers of spectra were statistically evaluated for variation between samples. The results corroborate prior knowledge that combining spectra from replicate samples increases the number of identifiable proteins and that a summed spectral count for a protein increases linearly with increasing molar amounts of protein. Furthermore, statistical analysis of spectral counts for proteins in two- and three-way comparisons between replicates and combined replicates revealed little significant variation arising from run-to-run differences or data-dependent instrument ion sampling that might falsely suggest differential protein accumulation. In these experiments, spectral counting was enabled by PANORAMICS, probability-based software that predicts proteins detected by sets of observed peptides. Three alternative approaches to counting spectra were also evaluated by comparison. As the counting thresholds were changed from weaker to more stringent, the accuracy of ratio determination also changed. These results suggest that thresholds for counting can be empirically set to improve relative quantitation. All together, the data confirm the accuracy and reliability of label-free spectral counting in the relative, quantitative analysis of proteins between samples. PMID:20541435

  3. Dynamics of replication proteins during lagging strand synthesis: A crossroads for genomic instability and cancer.

    PubMed

    Deshmukh, Amit Laxmikant; Kumar, Chandan; Singh, Deependra Kumar; Maurya, Pooja; Banerjee, Dibyendu

    2016-06-01

    DNA replication is a complex phenomenon that requires the concerted action of several enzymes, together with their protein and non-protein cofactors. In the nucleus, the two DNA strands are duplicated by two completely independent methods due to their anti-parallel orientation and the restrictive nature of DNA polymerases that allow DNA synthesis in the 5'-3' direction only. In this review, we focus on the proteins that are involved in the more complex and discontinuous process of lagging strand DNA synthesis by the formation of small DNA fragments called Okazaki fragments which are later sealed to form a continuous strand of DNA. We try and connect all the protein-protein interactions important for lagging strand synthesis in the S-phase of the cell cycle, describe the dynamics of these interactions and go on to discuss the post-translational modifications that affect them. We also look at how mutations in any of the players of the lagging strand synthesis can cause genomic instability leading to cancer and discuss if any of the players may be targeted for cancer therapy. PMID:27161865

  4. DNA translocation activity of the multifunctional replication protein ORF904 from the archaeal plasmid pRN1

    PubMed Central

    Sanchez, Martin; Drechsler, Markus; Stark, Holger; Lipps, Georg

    2009-01-01

    The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin. PMID:19762479

  5. Coordinate effects of human immunodeficiency virus type 1 protein Tat and cellular protein Puralpha on DNA replication initiated at the JC virus origin.

    PubMed

    Daniel, D C; Wortman, M J; Schiller, R J; Liu, H; Gan, L; Mellen, J S; Chang, C F; Gallia, G L; Rappaport, J; Khalili, K; Johnson, E M

    2001-07-01

    JC virus (JCV) causes progressive multifocal leukoencephalopathy, a demyelinating disease in brains of individuals with AIDS. Previous work has shown that the Tat protein, encoded by human immunodeficiency virus type 1 (HIV-1), can interact with cellular protein Puralpha to enhance both TAR-dependent HIV-1 transcription and JCV late gene transcription. Tat has been shown to activate JCV transcription through interaction with Puralpha, which binds to promoter sequence elements near the JCV origin of replication. DNA footprinting has shown that Puralpha and large T-antigen cooperatively interact at several binding sites in the origin and transcriptional control region. Overexpression of Puralpha inhibits replication initiated at the JCV origin by T-antigen. In transfected glial cells Tat reversed this inhibition and enhanced DNA replication. In an in vitro replication system maximal activation by Tat, more than sixfold the levels achieved with T-antigen alone, was achieved in the presence of Puralpha. Effects of mutant Tat proteins on both activation of replication and binding to Puralpha have revealed that Cys22 exerts a conformational effect that affects both activities. The origin of an archetypal strain of JCV was less susceptible to activation of replication by Tat relative to the rearranged Mad-1 strain. These results have revealed a previously undocumented role for Tat in DNA replication and have indicated a regulatory role for JCV origin auxiliary sequences in replication and activation by Tat. PMID:11413364

  6. The "tobacco mosaic virus" 126-kDa protein associated with virus replication and movement suppresses RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic symptoms induced on "Nicotiana tabacum" cv. Xanthi by "Tobacco mosaic virus" (TMV) are modulated by one or both amino-coterminal viral 126- and 183-kDa proteins, proteins involved in virus replication and cell-to-cell movement. Here we compare the systemic accumulation and gene silencing c...

  7. Relative, label-free protein quantitation: spectral counting error statistics from nine replicate MudPIT samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine replicate samples of peptides from soybean leaves, each spiked with a different concentration of bovine apotransferrin peptides, were analyzed on a mass spectrometer using multidimensional protein identification technology (MudPIT). Proteins were detected from the peptide tandem mass spectra a...

  8. Selective serotonin reuptake inhibitor fluoxetine inhibits replication of human enteroviruses B and D by targeting viral protein 2C.

    PubMed

    Ulferts, Rachel; van der Linden, Lonneke; Thibaut, Hendrik Jan; Lanke, Kjerstin H W; Leyssen, Pieter; Coutard, Bruno; De Palma, Armando M; Canard, Bruno; Neyts, Johan; van Kuppeveld, Frank J M

    2013-04-01

    Although the genus Enterovirus contains many important human pathogens, there is no licensed drug for either the treatment or the prophylaxis of enterovirus infections. We report that fluoxetine (Prozac)--a selective serotonin reuptake inhibitor--inhibits the replication of human enterovirus B (HEV-B) and HEV-D but does not affect the replication of HEV-A and HEV-C or human rhinovirus A or B. We show that fluoxetine interferes with viral RNA replication, and we identified viral protein 2C as the target of this compound. PMID:23335743

  9. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing.

    PubMed

    Kubota, Kenji; Tsuda, Shinya; Tamai, Atsushi; Meshi, Tetsuo

    2003-10-01

    Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L(11) and L(11)A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L(11)A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed. PMID:14512550

  10. Theoretical prediction of the binding free energy for mutants of replication protein A.

    PubMed

    Carra, Claudio; Saha, Janapriya; Cucinotta, Francis A

    2012-07-01

    The replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), single stranded DNA (ssDNA) binding protein required for pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Studies based on deletions and mutations have identified the high affinity ssDNA binding domains in the 70 kDa subunit of RPA, regions A and B. Individually, the domain A and B have a low affinity for ssDNA, while tandems composed of AA, AB, BB, and BA sequences bind the ssDNA with moderate to high affinity. Single and double point mutations on polar residues in the binding domains leads to a reduction in affinity of RPA for ssDNA, in particular when two hydrophilic residues are involved. In view of these results, we performed a study based on molecular dynamics simulation aimed to reproduce the experimental change in binding free energy, ΔΔG, of RPA70 mutants to further elucidate the nature of the protein-ssDNA interaction. The MM-PB(GB)SA methods implemented in Amber10 and the code FoldX were used to estimate the binding free energy. The theoretical and experimental ΔΔG values correlate better when the results are obtained by MM-PBSA calculated on individual trajectories for each mutant. In these conditions, the correlation coefficient between experimental and theoretical ΔΔG reaches a value of 0.95 despite the overestimation of the energy change by one order of magnitude. The decomposition of the MM-GBSA energy per residue allows us to correlate the change of the affinity with the residue polarity and energy contribution to the binding. The method revealed reliable predictions of the change in the affinity in function of mutations, and can be used to identify new mutants with distinct binding properties. PMID:22160652

  11. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    SciTech Connect

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N. . E-mail: micano@ibb.unesp.br

    2007-06-29

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres.

  12. Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants

    PubMed Central

    Aklilu, Behailu B.; Culligan, Kevin M.

    2016-01-01

    Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species. PMID:26858742

  13. Rift Valley Fever Virus Nonstructural Protein NSs Promotes Viral RNA Replication and Transcription in a Minigenome System

    PubMed Central

    Ikegami, Tetsuro; Peters, C. J.; Makino, Shinji

    2005-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-α/β) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-α/β production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis. PMID:15827175

  14. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    SciTech Connect

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  15. Three different proteins recognize a multifunctional determinant that controls replication initiation, fork arrest and transcription in Tetrahymena.

    PubMed

    Mohammad, M; Saha, S; Kapler, G M

    2000-02-01

    Type I elements regulate the initiation of DNA replication, elongation of replication forks and transcription of the Tetrahymena thermophila rDNA minichromosome. Previous studies identified a 24 kDa protein, ssA-TIBF, which binds the A-rich strand of type I elements. Here we describe two additional type I element binding activities (native mol. wt approximately 65 and approximately 250 kDa) that interact with DNA via previously unidentified 32 and 110 kDa polypeptides. The 65 kDa activity was purified to homogeneity and consists of a homodimer of a 32 kDa polypeptide. In contrast to the other type I element binding factors, the 65 kDa activity partitions preferentially to the nuclear fraction during isolation. Levels of the 65 kDa activity increase dramatically in starved cells, raising the possibility that it might negatively regulate replication or transcription. By comparison, the other two binding activities were elevated slightly during macronuclear development, when the rDNA was undergoing DNA replication. Previous studies indicate that the initiation of rDNA replication is regulated by long range interactions between dispersed type I elements. Competitive DNA binding or cooperative protein-protein interactions between the factors described here may play a regulatory role in replication or expression of the rDNA minichromosome. PMID:10637338

  16. CTXφ Replication Depends on the Histone-Like HU Protein and the UvrD Helicase.

    PubMed

    Martínez, Eriel; Paly, Evelyne; Barre, François-Xavier

    2015-05-01

    The Vibrio cholerae bacterium is the agent of cholera. The capacity to produce the cholera toxin, which is responsible for the deadly diarrhea associated with cholera epidemics, is encoded in the genome of a filamentous phage, CTXφ. Rolling-circle replication (RCR) is central to the life cycle of CTXφ because amplification of the phage genome permits its efficient integration into the genome and its packaging into new viral particles. A single phage-encoded HUH endonuclease initiates RCR of the proto-typical filamentous phages of enterobacteriaceae by introducing a nick at a specific position of the double stranded DNA form of the phage genome. The rest of the process is driven by host factors that are either essential or crucial for the replication of the host genome, such as the Rep SF1 helicase. In contrast, we show here that the histone-like HU protein of V. cholerae is necessary for the introduction of a nick by the HUH endonuclease of CTXφ. We further show that CTXφ RCR depends on a SF1 helicase normally implicated in DNA repair, UvrD, rather than Rep. In addition to CTXφ, we show that VGJφ, a representative member of a second family of vibrio integrative filamentous phages, requires UvrD and HU for RCR while TLCφ, a satellite phage, depends on Rep and is independent from HU. PMID:25992634

  17. Replication-competent influenza A viruses expressing a red fluorescent protein

    PubMed Central

    Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2014-01-01

    Like most animal viruses, studying influenza A in model systems requires secondary methodologies to identify infected cells. To circumvent this requirement, we describe the generation of replication-competent influenza A red fluorescent viruses. These influenza A viruses encode mCherry fused to the viral non-structural 1 (NS1) protein and display comparable growth kinetics to wild-type viruses in vitro. Infection of cells with influenza A mCherry viruses was neutralized with monoclonal antibodies and inhibited with antivirals to levels similar to wild-type virus. Influenza A mCherry viruses were also able to lethally infect mice, and strikingly, dose- and time-dependent kinetics of viral replication were monitored in whole excised mouse lungs using an in vivo imaging system (IVIS). By eliminating the need for secondary labeling of infected cells, influenza A mCherry viruses provide an ideal tool in the ongoing struggle to better characterize the virus and identify new therapeutics against influenza A viral infections. PMID:25553516

  18. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle. PMID:27414795

  19. Roles of Serine and Threonine Residues of Mumps Virus P Protein in Viral Transcription and Replication

    PubMed Central

    Pickar, Adrian; Xu, Pei; Elson, Andrew; Li, Zhuo; Zengel, James

    2014-01-01

    ABSTRACT Mumps virus (MuV), a paramyxovirus containing a negative-sense nonsegmented RNA genome, is a human pathogen that causes an acute infection with symptoms ranging from parotitis to mild meningitis and severe encephalitis. Vaccination against mumps virus has been effective in reducing mumps cases. However, recently large outbreaks have occurred in vaccinated populations. There is no anti-MuV drug. Understanding replication of MuV may lead to novel antiviral strategies. MuV RNA-dependent RNA polymerase minimally consists of the phosphoprotein (P) and the large protein (L). The P protein is heavily phosphorylated. To investigate the roles of serine (S) and threonine (T) residues of P in viral RNA transcription and replication, P was subjected to mass spectrometry and mutational analysis. P, a 392-amino acid residue protein, has 64 S and T residues. We have found that mutating nine S/T residues significantly reduced and mutating residue T at 101 to A (T101A) significantly enhanced activity in a minigenome system. A recombinant virus containing the P-T101A mutation (rMuV-P-T101A) was recovered and analyzed. rMuV-P-T101A grew to higher titers and had increased protein expression at early time points. Together, these results suggest that phosphorylation of MuV-P-T101 plays a negative role in viral RNA synthesis. This is the first time that the P protein of a paramyxovirus has been systematically analyzed for S/T residues that are critical for viral RNA synthesis. IMPORTANCE Mumps virus (MuV) is a reemerging paramyxovirus that caused large outbreaks in the United States, where vaccination coverage is very high. There is no anti-MuV drug. In this work, we have systematically analyzed roles of Ser/Thr residues of MuV P in viral RNA synthesis. We have identified S/T residues of P critical for MuV RNA synthesis and phosphorylation sites that are important for viral RNA synthesis. This work leads to a better understanding of viral RNA synthesis as well as to potential

  20. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    SciTech Connect

    Ambrose, R.L.; Mackenzie, J.M.

    2015-07-15

    The West Nile virus strain Kunjin virus (WNV{sub KUN}) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV{sub KUN} replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV{sub KUN} replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein.

  1. Signals at the bacteriophage phi 29 DNA replication origins required for protein p6 binding and activity.

    PubMed Central

    Serrano, M; Gutiérrez, J; Prieto, I; Hermoso, J M; Salas, M

    1989-01-01

    Protein p6 of Bacillus subtilis phage phi 29 binds specifically to the ends of the viral DNA that contain the replication origins, giving rise to a nucleoprotein structure. DNA regions recognized by protein p6 have been mapped by deletion analysis and DNase I footprinting. Main protein p6-recognition signals have been located between nucleotides 62 and 125 at the right phi 29 DNA end and between nucleotides 46 and 68 at the left end. In addition, recognition signals are also present at other sites within 200-300 bp at each phi 29 DNA end. Protein p6 does not seem to recognize a specific sequence in the DNA, but rather a structural feature, which could be bendability. The formation of the protein p6-DNA nucleoprotein complex is likely to be the structural basis for the protein p6 activity in the initiation of replication. Images PMID:2767056

  2. Baculovirus DNA Replication-Specific Expression Factors Trigger Apoptosis and Shutoff of Host Protein Synthesis during Infection▿

    PubMed Central

    Schultz, Kimberly L. W.; Friesen, Paul D.

    2009-01-01

    Apoptosis is an important antivirus defense. To define the poorly understood pathways by which invertebrates respond to viruses by inducing apoptosis, we have identified replication events that trigger apoptosis in baculovirus-infected cells. We used RNA silencing to ablate factors required for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Transfection with double-stranded RNA (dsRNA) complementary to the AcMNPV late expression factors (lefs) that are designated as replicative lefs (lef-1, lef-2, lef-3, lef-11, p143, dnapol, and ie-1/ie-0) blocked virus DNA synthesis and late gene expression in permissive Spodoptera frugiperda cells. dsRNAs specific to designated nonreplicative lefs (lef-8, lef-9, p47, and pp31) blocked late gene expression without affecting virus DNA replication. Thus, both classes of lefs functioned during infection as defined. Silencing the replicative lefs prevented AcMNPV-induced apoptosis of Spodoptera cells, whereas silencing the nonreplicative lefs did not. Thus, the activity of replicative lefs or virus DNA replication is sufficient to trigger apoptosis. Confirming this conclusion, AcMNPV-induced apoptosis was suppressed by silencing the replicative lefs in cells from a divergent species, Drosophila melanogaster. Silencing replicative but not nonreplicative lefs also abrogated AcMNPV-induced shutdown of host protein synthesis, suggesting that virus DNA replication triggers inhibition of host biosynthetic processes and that apoptosis and translational arrest are linked. Our findings suggest that baculovirus DNA replication triggers a host cell response similar to the DNA damage response in vertebrates, which causes translational arrest and apoptosis. Pathways for detecting virus invasion and triggering apoptosis may therefore be conserved between insects and mammals. PMID:19706708

  3. The 1:1 N-NS protein complex of vesicular stomatitis virus is essential for efficient genome replication.

    PubMed Central

    La Ferla, F M; Peluso, R W

    1989-01-01

    We studied the effect pH had on the N-NS protein complex to determine its role in vesicular stomatitis virus (VSV) genome replication, as we had previously shown that VSV genome replication in vitro requires the interaction of the viral N and NS proteins into a 1:1 complex. A previous report showed that the growth of VSV in L cells was sensitive to the pH of the environment (M. Fiszman, J. B. Leaute, C. Chany, and M. Girard, J. Virol. 13:801-808, 1974). We hypothesized that low pH might disrupt the N-NS protein complex, and so we investigated the molecular events leading to inhibition of viral RNA replication in vitro from extracts that were prepared from VSV-infected cells incubated at pH 6.6. We found that viral genome RNA synthesis in vitro was reduced when infected cells were maintained at pH 6.6. Through immunoprecipitation analysis of the viral soluble protein pool, we found that a complex that usually exists between the N and NS proteins at pH 7.4 was altered in extracts from infected cells maintained at pH 6.6, and this was responsible for the observed effects on viral replication. The effect of low pH on the N-NS protein complex could not be abolished by increasing the concentration of the altered complex, indicating that the effects is more than simply a decrease in the level of the protein complex in the cell. Our data provide additional evidence that the 1:1 N-NS protein complex, and not the N protein alone, serves as the substrate for viral RNA replication in vivo. Images PMID:2548001

  4. Interaction of NCOR/SMRT Repressor Complexes with Papillomavirus E8^E2C Proteins Inhibits Viral Replication

    PubMed Central

    Dreer, Marcel; Fertey, Jasmin; van de Poel, Saskia; Straub, Elke; Madlung, Johannes; Macek, Boris; Iftner, Thomas; Stubenrauch, Frank

    2016-01-01

    Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins

  5. Interaction of NCOR/SMRT Repressor Complexes with Papillomavirus E8^E2C Proteins Inhibits Viral Replication.

    PubMed

    Dreer, Marcel; Fertey, Jasmin; van de Poel, Saskia; Straub, Elke; Madlung, Johannes; Macek, Boris; Iftner, Thomas; Stubenrauch, Frank

    2016-04-01

    Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins

  6. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A

    PubMed Central

    Kim, Nari; Kim, Min-Jung; Sung, Pil Soo; Bae, Yong Chul; Shin, Eui-Cheol; Yoo, Joo-Yeon

    2016-01-01

    Hepatitis C virus (HCV) utilizes autophagy to promote its propagation. Here we show the autophagy-mediated suppression of HCV replication via the endoplasmic reticulum (ER) protein SCOTIN. SCOTIN overexpression inhibits HCV replication and infectious virion production in cells infected with cell culture-derived HCV. HCV nonstructural 5A (NS5A) protein, which is a critical factor for HCV RNA replication, interacts with the IFN-β-inducible protein SCOTIN, which transports NS5A to autophagosomes for degradation. Furthermore, the suppressive effect of SCOTIN on HCV replication is impaired in both ATG7-silenced cells and cells treated with autophagy or lysosomal inhibitors. SCOTIN does not affect the overall flow of autophagy; however, it is a substrate for autophagic degradation. The physical association between the transmembrane/proline-rich domain (TMPRD) of SCOTIN and Domain-II of NS5A is essential for autophagosomal trafficking and NS5A degradation. Altogether, our findings suggest that IFN-β-induced SCOTIN recruits the HCV NS5A protein to autophagosomes for degradation, thereby restricting HCV replication. PMID:26868272

  7. A novel inhibitor of dengue virus replication that targets the capsid protein.

    PubMed

    Byrd, Chelsea M; Dai, Dongcheng; Grosenbach, Douglas W; Berhanu, Aklile; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Wineinger, Kristin A; Page, Jessica M; Harver, Chris; Stavale, Eric; Tyavanagimatt, Shanthakumar; Stone, Melialani A; Bartenschlager, Ralf; Scaturro, Pietro; Hruby, Dennis E; Jordan, Robert

    2013-01-01

    Dengue viruses (DENV) infect 50 to 100 million people worldwide per year, of which 500,000 develop severe life-threatening disease. This mosquito-borne illness is endemic in most tropical and subtropical countries and has spread significantly over the last decade. While there are several promising vaccine candidates in clinical trials, there are currently no approved vaccines or therapeutics available for treatment of dengue infection. Here, we describe a novel small-molecule compound, ST-148, that is a potent inhibitor of all four serotypes of DENV in vitro. ST-148 significantly reduced viremia and viral load in vital organs and tended to lower cytokine levels in the plasma in a nonlethal model of DENV infection in AG129 mice. Compound resistance mapped to the DENV capsid (C) gene, and a direct interaction of ST-148 with C protein is suggested by alterations of the intrinsic fluorescence of the protein in the presence of compound. Thus, ST-148 appears to interact with the DENV C protein and inhibits a distinct step(s) of the viral replication cycle. PMID:23070172

  8. Stepwise assembly of initiation proteins at budding yeast replication origins in vitro

    PubMed Central

    Seki, Takashi; Diffley, John F. X.

    2000-01-01

    The initiation of DNA replication in the budding yeast Saccharomyces cerevisiae occurs in two sequential and mutually exclusive steps. Prereplicative complexes (pre-RCs) containing origin recognition complex (ORC), Cdc6p, and the MCM2–7 proteins assemble only under conditions of low cyclin-dependent kinase (Cdk) activity during G1, whereas origin activation is driven by the increase in Cdk activity at the end of G1. As a first step toward the reconstitution of this two-step process in vitro, we describe a system in which extracts prepared from G1-arrested cells promote sequential assembly of ORC, Cdc6p, and MCM2–7 proteins onto exogenously added origin-containing DNA. This reaction requires an intact ARS consensus sequence and requires ATP for two distinct steps. Extracts from cells arrested in mitosis also can support the binding of ORC but are unable to load either Cdc6p or MCM2–7 proteins. This system should be useful for studying the mechanism and regulation of pre-RC assembly. PMID:11121019

  9. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Soustelle, Christine; Vedel, Michèle; Kolodner, Richard; Nicolas, Alain

    2002-01-01

    In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis. PMID:12072452

  10. Stem-loop binding protein is a multifaceted cellular regulator of HIV-1 replication.

    PubMed

    Li, Ming; Tucker, Lynne D; Asara, John M; Cheruiyot, Collins K; Lu, Huafei; Wu, Zhijin J; Newstein, Michael C; Dooner, Mark S; Friedman, Jennifer; Lally, Michelle A; Ramratnam, Bharat

    2016-08-01

    A rare subset of HIV-1-infected individuals is able to maintain plasma viral load (VL) at low levels without antiretroviral treatment. Identifying the mechanisms underlying this atypical response to infection may lead to therapeutic advances for treating HIV-1. Here, we developed a proteomic analysis to compare peripheral blood cell proteomes in 20 HIV-1-infected individuals who maintained either high or low VL with the aim of identifying host factors that impact HIV-1 replication. We determined that the levels of multiple histone proteins were markedly decreased in cohorts of individuals with high VL. This reduction was correlated with lower levels of stem-loop binding protein (SLBP), which is known to control histone metabolism. Depletion of cellular SLBP increased promoter engagement with the chromatin structures of the host gene high mobility group protein A1 (HMGA1) and viral long terminal repeat (LTR), which led to higher levels of HIV-1 genomic integration and proviral transcription. Further, we determined that TNF-α regulates expression of SLBP and observed that plasma TNF-α levels in HIV-1-infected individuals correlated directly with VL levels and inversely with cellular SLBP levels. Our findings identify SLBP as a potentially important cellular regulator of HIV-1, thereby establishing a link between histone metabolism, inflammation, and HIV-1 infection. PMID:27454292

  11. The role of accessory proteins in the replication of feline infectious peritonitis virus in peripheral blood monocytes.

    PubMed

    Dedeurwaerder, Annelike; Desmarets, Lowiese M; Olyslaegers, Dominique A J; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-03-23

    The ability to productively infect monocytes/macrophages is the most important difference between the low virulent feline enteric coronavirus (FECV) and the lethal feline infectious peritonitis virus (FIPV). In vitro, the replication of FECV in peripheral blood monocytes always drops after 12h post inoculation, while FIPV sustains its replication in the monocytes from 45% of the cats. The accessory proteins of feline coronaviruses have been speculated to play a prominent role in virulence as deletions were found to be associated with attenuated viruses. Still, no functions have been ascribed to them. In order to investigate if the accessory proteins of FIPV are important for sustaining its replication in monocytes, replication kinetics were determined for FIPV 79-1146 and its deletion mutants, lacking either accessory protein open reading frame 3abc (FIPV-Δ3), 7ab (FIPV-Δ7) or both (FIPV-Δ3Δ7). Results showed that the deletion mutants FIPV-Δ7 and FIPV-Δ3Δ7 could not maintain their replication, which was in sharp contrast to wt-FIPV. FIPV-Δ3 could still sustain its replication, but the percentage of infected monocytes was always lower compared to wt-FIPV. In conclusion, this study showed that ORF7 is crucial for FIPV replication in monocytes/macrophages, giving an explanation for its importance in vivo, its role in the development of FIP and its conservation in field strains. The effect of an ORF3 deletion was less pronounced, indicating only a supportive role of ORF3 encoded proteins during the infection of the in vivo target cell by FIPVs. PMID:23182908

  12. Replication of Tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Ishikawa, Masayuki

    2016-08-01

    Tobacco mosaic virus and other tobamoviruses have served as models for studying the mechanisms of viral RNA replication. In tobamoviruses, genomic RNA replication occurs via several steps: (a) synthesis of viral replication proteins by translation of the genomic RNA; (b) translation-coupled binding of the replication proteins to a 5'-terminal region of the genomic RNA; (c) recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; (d) synthesis of complementary (negative-strand) RNA in the complex; and (e) synthesis of progeny genomic RNA. This article reviews current knowledge on tobamovirus RNA replication, particularly regarding how the genomic RNA is specifically selected as a replication template and how the replication proteins are activated. We also focus on the roles of the replication proteins in evading or suppressing host defense systems. PMID:27296148

  13. Human DNA helicase B interacts with the replication initiation protein Cdc45 and facilitates Cdc45 binding onto chromatin

    PubMed Central

    Gerhardt, Jeannine; Guler, Gulfem D.; Fanning, Ellen

    2015-01-01

    The chromosomal DNA replication in eukaryotic cells begins at replication initation sites, which are marked by the assembly of the pre-replication complexes in early G1. At the G1/S transition, recruitment of additional replication initiation proteins enables origin DNA unwinding and loading of DNA polymerases. We found that depletion of the human DNA helicase B (HDHB) inhibits the initiation of DNA replication, suggesting a role of HDHB in the beginning of the DNA synthesis. To gain insight into the function of HDHB during replication initiation, we examined the physical interactions of purified recombinant HDHB with key initiation proteins. HDHB interacts directly with two initiation factors TopBP1 and Cdc45. In addition we found that both, the N-terminus and helicase domain of HDHB bind to the N-terminus of Cdc45. Furthermore depletion of HDHB from human cells diminishes Cdc45 association with chromatin, suggesting that HDHB may facilitate Cdc45 recruitment at G1/S in human cells. PMID:25933514

  14. In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication.

    PubMed

    Miralles Fusté, Javier; Shi, Yonghong; Wanrooij, Sjoerd; Zhu, Xuefeng; Jemt, Elisabeth; Persson, Örjan; Sabouri, Nasim; Gustafsson, Claes M; Falkenberg, Maria

    2014-12-01

    Mitochondrial DNA (mtDNA) encodes for proteins required for oxidative phosphorylation, and mutations affecting the genome have been linked to a number of diseases as well as the natural ageing process in mammals. Human mtDNA is replicated by a molecular machinery that is distinct from the nuclear replisome, but there is still no consensus on the exact mode of mtDNA replication. We here demonstrate that the mitochondrial single-stranded DNA binding protein (mtSSB) directs origin specific initiation of mtDNA replication. MtSSB covers the parental heavy strand, which is displaced during mtDNA replication. MtSSB blocks primer synthesis on the displaced strand and restricts initiation of light-strand mtDNA synthesis to the specific origin of light-strand DNA synthesis (OriL). The in vivo occupancy profile of mtSSB displays a distinct pattern, with the highest levels of mtSSB close to the mitochondrial control region and with a gradual decline towards OriL. The pattern correlates with the replication products expected for the strand displacement mode of mtDNA synthesis, lending strong in vivo support for this debated model for mitochondrial DNA replication. PMID:25474639

  15. Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA.

    PubMed

    Scholefield, Graham; Errington, Jeff; Murray, Heath

    2012-03-21

    Control of DNA replication initiation is essential for normal cell growth. A unifying characteristic of DNA replication initiator proteins across the kingdoms of life is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains, that in vitro stretches DNA to promote replication origin opening. The Bacillus subtilis protein Soj/ParA has previously been shown to regulate DnaA-dependent DNA replication initiation; however, the mechanism underlying this control was unknown. Here, we report that Soj directly interacts with the AAA+ domain of DnaA and specifically regulates DnaA helix assembly. We also provide critical biochemical evidence indicating that DnaA assembles into a helical oligomer in vivo and that the frequency of replication initiation correlates with the extent of DnaA oligomer formation. This work defines a significant new regulatory mechanism for the control of DNA replication initiation in bacteria. PMID:22286949

  16. GBF1- and ACBD3-Independent Recruitment of PI4KIIIβ to Replication Sites by Rhinovirus 3A Proteins

    PubMed Central

    Dorobantu, Cristina M.; Ford-Siltz, Lauren A.; Sittig, Simone P.; Lanke, Kjerstin H. W.; Belov, George A.; van der Schaar, Hilde M.

    2014-01-01

    PI4KIIIβ recruitment to Golgi membranes relies on GBF1/Arf and ACBD3. Enteroviruses such as poliovirus and coxsackievirus recruit PI4KIIIβ to their replication sites via their 3A proteins. Here, we show that human rhinovirus (HRV) 3A also recruited PI4KIIIβ to replication sites. Unlike other enterovirus 3A proteins, HRV 3A failed to bind GBF1. Although HRV 3A was previously shown to interact with ACBD3, our data suggest that PI4KIIIβ recruitment occurred independently of both GBF1 and ACBD3. PMID:25410869

  17. Transcriptional and replicational activation functions in the bovine papillomavirus type 1 E2 protein are encoded by different structural determinants.

    PubMed Central

    Abroi, A; Kurg, R; Ustav, M

    1996-01-01

    A set of E2 proteins with mutations in the amino-terminal transactivation domain was made by a scheme called clustered charged-to-alanine scan. These mutant E2 proteins were tested for expression, stability, and compartmentalization in cells and for sequence-specific DNA binding, as well as in functional assays for transcriptional and replicational activation. We identified four groups of mutants. First, mutants K111A, K112A, and E176A were unable to activate replication and transcription because of oligomerization-induced retention of oligomers in the cytoplasm. Second, although fractions of the mutant proteins E74A and D143A/ R172C existed in the oligomeric form, they were localized in the nucleus. Certain fractions of these proteins existed as a dimer able to form a specific complex and activate replication; however, these proteins were inactive in transcriptional activation. Third, mutants R37A and D122A were localized in the nucleus, existed in the dimeric form, supported replication efficiently, and were severely crippled in transcriptional activation. The fourth group of mutants did not differ considerably from the wild-type protein. The activation of transcription by the wild type as well as mutant E2 proteins was dependent on the concentration of input E2 expression vector DNA and had a bell-like shape. We suggest that the reduction of transcriptional activation at higher E2 concentrations, the self-squelching activity, is caused by oligomerization of the E2 transactivator and is one of the mechanisms for the regulation of E2 activity. Our results also show that transcriptional and replicational activation activities are encoded by different determinants in the E2 protein. PMID:8709243

  18. NIRF, a Novel Ubiquitin Ligase, Inhibits Hepatitis B Virus Replication Through Effect on HBV Core Protein and H3 Histones.

    PubMed

    Qian, Guanhua; Hu, Bin; Zhou, Danlin; Xuan, Yanyan; Bai, Lu; Duan, Changzhu

    2015-05-01

    Np95/ICBP90-like RING finger protein (NIRF), a novel E3 ubiquitin ligase, has been shown to interact with HBc and promote its degradation. This study investigated the effects of NIRF on replication of hepatitis B virus (HBV) and the mechanisms. We have shown that NIRF inhibits replication of HBV DNA and secretion of HBsAg and HBeAg in HepG2 cells transfected with pAAV-HBV1.3. NIRF also inhibits the replication and secretion of HBV in a mouse model that expressed HBV. NIRF reduces acetylation of HBV cccDNA-bound H3 histones. These results showed that NIRF is involved in the HBV replication cycle not only through direct interaction with HBc but also reduces acetylation of HBV cccDNA-bound H3 histones. PMID:25664994

  19. MCMV-mediated Inhibition of the Pro-apoptotic Bak Protein Is Required for Optimal In Vivo Replication

    PubMed Central

    Fleming, Peter; Kvansakul, Marc; Voigt, Valentina; Kile, Benjamin T.; Kluck, Ruth M.; Huang, David C. S.; Degli-Esposti, Mariapia A.; Andoniou, Christopher E.

    2013-01-01

    Successful replication and transmission of large DNA viruses such as the cytomegaloviruses (CMV) family of viruses depends on the ability to interfere with multiple aspects of the host immune response. Apoptosis functions as a host innate defence mechanism against viral infection, and the capacity to interfere with this process is essential for the replication of many viruses. The Bcl-2 family of proteins are the principle regulators of apoptosis, with two pro-apoptotic members, Bax and Bak, essential for apoptosis to proceed. The m38.5 protein encoded by murine CMV (MCMV) has been identified as Bax-specific inhibitor of apoptosis. Recently, m41.1, a protein product encoded by the m41 open reading frame (ORF) of MCMV, has been shown to inhibit Bak activity in vitro. Here we show that m41.1 is critical for optimal MCMV replication in vivo. Growth of a m41.1 mutant was attenuated in multiple organs, a defect that was not apparent in Bak−/− mice. Thus, m41.1 promotes MCMV replication by inhibiting Bak-dependent apoptosis during in vivo infection. The results show that Bax and Bak mediate non-redundant functions during MCMV infection and that the virus produces distinct inhibitors for each protein to counter the activity of these proteins. PMID:23468630

  20. Bluetongue Virus Nonstructural Protein NS3/NS3a Is Not Essential for Virus Replication

    PubMed Central

    van Gennip, René G. P.; van de Water, Sandra G. P.; van Rijn, Piet A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector. PMID:24465709

  1. A new structural framework for integrating replication protein A into DNA processing machinery

    SciTech Connect

    Brosey, Chris A; Yan, Chunli; Tsutakawa, Susan E; Heller, William T; Rambo, Robert P; Tainer, John A; Ivanov, Ivaylo; Chazin, Walter J

    2013-01-01

    By coupling the protection and organization of ssDNA with the recruitment and alignment of DNA processing factors, Replication Protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA manages to coordinate the biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA s DNA binding activity, combining small-angle x-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA s DNA-binding core. It has been long held that RPA engages ssDNA in three stages, but our data reveal that RPA undergoes two rather than three transitions as it binds ssDNA. In contrast to previous models, RPA is more compact when fully engaged on 20-30 nucleotides of ssDNA than when DNA-free, and there is no evidence for significant population of a highly compacted structure in the initial 8-10 nucleotide binding mode. These results provide a new framework for understanding the integration of ssDNA into DNA processing machinery and how binding partners may manipulate RPA architecture to gain access to the substrate.

  2. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    PubMed Central

    Shin, David S.; Pratt, Ashley J.; Tainer, John A.

    2014-01-01

    As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine. PMID:24701133

  3. Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus Replication Complex

    PubMed Central

    Rust, René C.; Landmann, Lukas; Gosert, Rainer; Tang, Bor Luen; Hong, Wanjin; Hauri, Hans-Peter; Egger, Denise; Bienz, Kurt

    2001-01-01

    Poliovirus (PV) replicates its genome in association with membranous vesicles in the cytoplasm of infected cells. To elucidate the origin and mode of formation of PV vesicles, immunofluorescence labeling with antibodies against the viral vesicle marker proteins 2B and 2BC, as well as cellular markers of the endoplasmic reticulum (ER), anterograde transport vesicles, and the Golgi complex, was performed in BT7-H cells. Optical sections obtained by confocal laser scanning microscopy were subjected to a deconvolution process to enhance resolution and signal-to-noise ratio and to allow for a three-dimensional representation of labeled membrane structures. The mode of formation of the PV vesicles was, on morphological grounds, similar to the formation of anterograde membrane traffic vesicles in uninfected cells. ER-resident membrane markers were excluded from both types of vesicles, and the COPII components Sec13 and Sec31 were both found to be colocalized on the vesicular surface, indicating the presence of a functional COPII coat. PV vesicle formation during early time points of infection did not involve the Golgi complex. The expression of PV protein 2BC or the entire P2 and P3 genomic region led to the production of vesicles carrying a COPII coat and showing the same mode of formation as vesicles produced after PV infection. These results indicate that PV vesicles are formed at the ER by the cellular COPII budding mechanism and thus are homologous to the vesicles of the anterograde membrane transport pathway. PMID:11559814

  4. A new structural framework for integrating replication protein A into DNA processing machinery

    SciTech Connect

    Brosey, Chris; Yan, Chunli; Tsutakawa, Susan; Heller, William; Rambo, Robert; Tainer, John; Ivanov, Ivaylo; Chazin, Walter

    2013-01-17

    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.

  5. Interplay of DNA damage and cell cycle signaling at the level of human replication protein A.

    PubMed

    Borgstahl, Gloria E O; Brader, Kerry; Mosel, Adam; Liu, Shengqin; Kremmer, Elisabeth; Goettsch, Kaitlin A; Kolar, Carol; Nasheuer, Heinz-Peter; Oakley, Greg G

    2014-09-01

    Replication protein A (RPA) is the main human single-stranded DNA (ssDNA)-binding protein. It is essential for cellular DNA metabolism and has important functions in human cell cycle and DNA damage signaling. RPA is indispensable for accurate homologous recombination (HR)-based DNA double-strand break (DSB) repair and its activity is regulated by phosphorylation and other post-translational modifications. HR occurs only during S and G2 phases of the cell cycle. All three subunits of RPA contain phosphorylation sites but the exact set of HR-relevant phosphorylation sites on RPA is unknown. In this study, a high resolution capillary isoelectric focusing immunoassay, used under native conditions, revealed the isoforms of the RPA heterotrimer in control and damaged cell lysates in G2. Moreover, the phosphorylation sites of chromatin-bound and cytosolic RPA in S and G2 phases were identified by western and IEF analysis with all available phosphospecific antibodies for RPA2. Strikingly, most of the RPA heterotrimers in control G2 cells are phosphorylated with 5 isoforms containing up to 7 phosphates. These isoforms include RPA2 pSer23 and pSer33. DNA damaged cells in G2 had 9 isoforms with up to 14 phosphates. DNA damage isoforms contained pSer4/8, pSer12, pThr21, pSer23, and pSer33 on RPA2 and up to 8 unidentified phosphorylation sites. PMID:25091156

  6. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    PubMed

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance. PMID:27398742

  7. A single-molecule view of DNA replication: the dynamic nature of multi-protein complexes revealed.

    PubMed

    Geertsema, Hylkje J; van Oijen, Antoine M

    2013-10-01

    Recent advances in the development of single-molecule approaches have made it possible to study the dynamics of biomolecular systems in great detail. More recently, such tools have been applied to study the dynamic nature of large multi-protein complexes that support multiple enzymatic activities. In this review, we will discuss single-molecule studies of the replisome, the protein complex responsible for the coordinated replication of double-stranded DNA. In particular, we will focus on new insights obtained into the dynamic nature of the composition of the DNA-replication machinery and how the dynamic replacement of components plays a role in the regulation of the DNA-replication process. PMID:23890728

  8. The FIS protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli.

    PubMed Central

    Gille, H; Egan, J B; Roth, A; Messer, W

    1991-01-01

    The FIS protein (factor for inversion stimulation) is known to stimulate site-specific recombination processes, such as the inversion of the G segment of bacteriophage Mu, by binding to specific enhancer sequences. It has also been shown to activate transcription from rRNA promoters both in vitro and in vivo. We have identified a specific binding site for FIS in the center of the origin of chromosomal DNA replication, oriC. The DNA bends upon FIS binding. Occupation of the FIS site and binding of DnaA, the initiator protein, to its adjacent binding site (R3) are mutually exclusive. A fis mutant strain can not be efficiently transformed with plasmids which carry and replicate from oriC, suggesting that FIS is required for minichromosome replication. Images PMID:1870971

  9. Temporal expression of a membrane-associated protein putatively involved in repression of initiation of DNA replication in Bacillus subtilis.

    PubMed Central

    Eident-Wilkinson, B; Mele, L; Laffan, J; Firshein, W

    1992-01-01

    A Bacillus subtilis membrane-associated protein that binds specifically to the origin region of DNA replication may act as an inhibitor of DNA replication (J. Laffan and W. Firshein, Proc. Natl. Acad. Sci. USA 85:7452-7456, 1988). This protein, originally estimated to be 64 kDa, had a slightly lower molecular size (57 kDa), as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis during these studies. The size difference may be due to processing that results in modification of the protein. The protein can be extracted from both cytosol and membrane fractions, and the amounts in these fractions vary during the developmental cycle of B. subtilis. A complex pattern of expression in which significant levels were detected in spores was revealed; levels decreased dramatically during germination and increased after the first round of DNA replication. The decrease during germination was due to protease activity, as demonstrated by the addition of protease inhibitors and radioactive-labeling chase experiments. During vegetative growth, the protein levels increased until stationary phase, after which there was another decrease during sporulation. The decrease during sporulation may be partially due to sequestering of the protein into forespores, since as the putative repressor protein decreased in the mother cell, it increased in the forespores. However, protease activity was also involved in the decrease in the mother cell. The changes in expression of this protein are consistent with its role as a repressor of initiation of DNA replication. Additional studies, including sequence analysis and further antibody analysis, show that this protein is not a subunit of the pyruvate dehydrogenase complex. This relationship had been a possibility based upon the results of others (H. Hemila, A. Pavla, L. Paulin, S. Arvidson, and I. Palva, J. Bacteriol. 172:5052-5063, 1990). Images PMID:1729239

  10. Two homologous host proteins interact with potato virus X RNAs and CPs and affect viral replication and movement

    PubMed Central

    Choi, Hoseong; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Because viruses encode only a small number of proteins, all steps of virus infection rely on specific interactions between viruses and hosts. We previously screened several Nicotiana benthamiana (Nb) proteins that interact with the stem-loop 1 (SL1) RNA structure located at the 5′ end of the potato virus X (PVX) genome. In this study, we characterized two of these proteins (NbCPIP2a and NbCPIP2b), which are homologous and are induced upon PVX infection. Electrophoretic mobility shift assay confirmed that both proteins bind to either SL1(+) or SL1(−) RNAs of PVX. The two proteins also interact with the PVX capsid protein (CP) in planta. Overexpression of NbCPIP2a positively regulated systemic movement of PVX in N. benthamiana, whereas NbCPIP2b overexpression did not affect systemic movement of PVX. Transient overexpression and silencing experiments demonstrated that NbCPIP2a and NbCPIP2b are positive regulators of PVX replication and that the effect on replication was greater for NbCPIP2a than for NbCPIP2b. Although these two host proteins are associated with plasma membranes, PVX infection did not affect their subcellular localization. Taken together, these results indicate that NbCPIP2a and NbCPIP2b specifically bind to PVX SL1 RNAs as well as to CP and enhance PVX replication and movement. PMID:27353522

  11. Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

    PubMed

    Rocheleau, Gail; Petrillo, Jessica; Guogas, Laura; Gehrke, Lee

    2004-08-01

    The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity. PMID:15254175

  12. Are the SSB-Interacting Proteins RecO, RecG, PriA and the DnaB-Interacting Protein Rep Bound to Progressing Replication Forks in Escherichia coli?

    PubMed

    Bentchikou, Esma; Chagneau, Carine; Long, Emilie; Matelot, Mélody; Allemand, Jean-François; Michel, Bénédicte

    2015-01-01

    In all organisms several enzymes that are needed upon replication impediment are targeted to replication forks by interaction with a replication protein. In most cases these proteins interact with the polymerase clamp or with single-stranded DNA binding proteins (SSB). In Escherichia coli an accessory replicative helicase was also shown to interact with the DnaB replicative helicase. Here we have used cytological observation of Venus fluorescent fusion proteins expressed from their endogenous loci in live E. coli cells to determine whether DNA repair and replication restart proteins that interact with a replication protein travel with replication forks. A custom-made microscope that detects active replisome molecules provided that they are present in at least three copies was used. Neither the recombination proteins RecO and RecG, nor the replication accessory helicase Rep are detected specifically in replicating cells in our assay, indicating that either they are not present at progressing replication forks or they are present in less than three copies. The Venus-PriA fusion protein formed foci even in the absence of replication forks, which prevented us from reaching a conclusion. PMID:26244508

  13. Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays.

    PubMed Central

    Fixman, E D; Hayward, G S; Hayward, S D

    1995-01-01

    Using a transient replication assay in which cosmid DNAs were cotransfected into Vero cells, we had previously demonstrated that oriLyt replication required six Epstein-Barr virus (EBV)-encoded replication genes. No oriLyt origin-binding protein was identified in this study, but oriLyt replication in the cotransfection assay was also dependent on the three lytic cycle transactivators Zta, Rta, and Mta and an activity encoded by the EBV Sal/I F fragment. We have now used expression plasmids for the six known replication proteins to further examine the question of the requirement for an oriLyt origin-binding protein. The activity in Sal/I-F was shown to be encoded by BKRF3. The predicted product of this open reading frame is an enzyme, uracyl DNA glycosylase, not an origin-binding protein, and is dispensable for replication in assays using expression plasmids. BBLF2, which is positionally related to the gene for the herpes simplex virus (HSV) UL9 origin-binding protein, was confirmed to be expressed as a spliced transcript with BBLF3 and not as an independent product. Examination of the requirement for the EBV transactivators revealed that Rta, while contributing to replication efficiency, was dispensable. Mta could be substituted by HSV IE63, and in complementation experiments with HSV replication genes, Mta was no longer required for replication of EBV oriLyt, suggesting that the contribution of Mta to replication may be indirect. Zta continued to be required for detectable oriLyt replication both with the EBV replication proteins and in the complementation assays with HSV replication proteins. We conclude that EBV does not encode an equivalent of HSV UL9 and that Zta is the sole virally encoded protein serving an essential origin-binding function. PMID:7707526

  14. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells

    PubMed Central

    Lin, C.; Agnes, J. T.; Behrens, N.; Tagawa, Y.; Gershwin, L. J.; Corbeil, L. B.

    2016-01-01

    Our previous studies showed that bovine respiratory syncytial virus (BRSV) followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2) epithelial cells with H. somni concentrated culture supernatant (CCS) stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2—RSAD2) and ISG15 (IFN-stimulated gene 15—ubiquitin-like modifier) were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT) upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide) but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt) does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo. PMID:26859677

  15. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells.

    PubMed

    Lin, C; Agnes, J T; Behrens, N; Shao, M; Tagawa, Y; Gershwin, L J; Corbeil, L B

    2016-01-01

    Our previous studies showed that bovine respiratory syncytial virus (BRSV) followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2) epithelial cells with H. somni concentrated culture supernatant (CCS) stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2--RSAD2) and ISG15 (IFN-stimulated gene 15--ubiquitin-like modifier) were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT) upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide) but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt) does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo. PMID:26859677

  16. Novel Salmonella enterica serovar Typhimurium protein that is indispensable for virulence and intracellular replication.

    PubMed

    van der Straaten, T; van Diepen, A; Kwappenberg, K; van Voorden, S; Franken, K; Janssen, R; Kusters, J G; Granger, D L; van Dissel, J T

    2001-12-01

    Upon contact with host cells, the intracellular pathogen Salmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribed Salmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonella chromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 10(4) to 10(7) bacteria in C3H/HeN and 10(1) to 10(4) bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity. PMID:11705915

  17. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  18. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription.

    PubMed

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  19. DNA Helicase Activity Is Associated with the Replication Initiator Protein Rep of Tomato Yellow Leaf Curl Geminivirus▿

    PubMed Central

    Clérot, Danielle; Bernardi, Françoise

    2006-01-01

    The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3′ overhang and 3′-to-5′ polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein. PMID:16943286

  20. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication.

    PubMed

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Kaptein, Suzanne J F; Davidson, Andrew D; Jacobs, Michael; Neyts, Johan; van Kuppeveld, Frank J M; van Rij, Ronald P

    2013-08-01

    Dengue virus (DENV) is an important human arthropod-borne virus with a major impact on public health. Nevertheless, a licensed vaccine or specific treatment is still lacking. We therefore screened the NIH Clinical Collection (NCC), a library of drug-like small molecules, for inhibitors of DENV replication using a cell line that contains a stably replicating DENV serotype 2 (DENV2) subgenomic replicon. The most potent DENV inhibitor in the NCC was δ opioid receptor antagonist SDM25N. This compound showed antiviral activity against wild-type DENV2 in both Hela and BHK-21 cells, but not in the C6/36 cell line derived from the mosquito Aedes albopictus. The structurally related compound naltrindole also inhibited DENV replication, albeit less potently. Using a transient subgenomic replicon, we demonstrate that SDM25N restricts genomic RNA replication rather than translation of the viral genome. We identified a single amino acid substitution (F164L) in the NS4B protein that confers resistance to SDM25N. Remarkably, an NS4B amino acid substitution (P104L), which was previously shown to confer resistance to the DENV inhibitor NITD-618, also provided resistance to SDM25N. In conclusion, we have identified a new DENV inhibitor, SDM25N, which restricts genomic RNA replication by - directly or indirectly - targeting the viral NS4B protein. PMID:23735301

  1. Mutant Rep protein of the porcine circovirus type 2 N-glycosylation:23-25aa, 256-258aa mutation reduced virus replication but 286-288aa mutation enhanced virus replication in PK-15 cells.

    PubMed

    Shi, Jianli; Peng, Zhe; Fu, Fang; Xu, Shaojian; Xu, Shengnan; Cong, Xiaoyan; Yuan, Xiaoyuan; Yu, Jiang; Wu, Jiaqiang; Sun, Wenbo; Du, Yijun; Li, Jun; Wang, Jinbao

    2015-06-12

    Porcine circovirus type 2 (PCV2) Rep protein and the splice variant Rep' protein impact genome replication. The Rep protein contains three potential N-glycosylation at positions 23-25aa (NPS), 256-258aa (NQT) and 286-288aa (NAT). Three double copy infectious clones with Rep protein N-glycosylation at positions mutations 23-25aa (DPS), 256-258aa (DQT) and 286-288aa (DAT) were constructed and their function in virus replication in PK-15 cells was investigated. The results showed that the double copy infectious clone with N-glycosylation site mutation could be rescued in vitro and 23-25aa, 256-258aa mutation reduced virus replication but 286-288aa mutation enhanced virus replication. PMID:25829242

  2. Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation.

    PubMed

    Pyeon, Dohun; Timani, Khalid Amine; Gulraiz, Fahad; He, Johnny J; Park, In-Woo

    2016-09-01

    HIV-1 Nef is necessary and may be sufficient for HIV-1-associated AIDS pathogenicity, in that knockout of Nef alone can protect HIV-infected patients from AIDS. We therefore investigated the feasibility of physical knockout of Nef, using the host ubiquitin proteasome system in HIV-1-infected cells. Our co-immunoprecipitation analysis demonstrated that Nef interacted with ubiquitin specific protease 15 (USP15), and that USP15, which is known to stabilize cellular proteins, degraded Nef. Nef could also cause decay of USP15, although Nef-mediated degradation of USP15 was weaker than USP15-mediated Nef degradation. Direct interaction between Nef and USP15 was essential for the observed reciprocal decay of the proteins. Further, USP15 degraded not only Nef but also HIV-1 structural protein, Gag, thereby substantially inhibiting HIV-1 replication. However, Gag did not degrade USP15, indicating that the Nef and USP15 complex, in distinction to other viral proteins, play an integral role in coordinating viral protein degradation and hence HIV-1 replication. Moreover, Nef and USP15 globally suppressed ubiquitylation of cellular proteins, indicating that these proteins are major determinants for the stability of cellular as well as viral proteins. Taken together, these data indicate that Nef and USP15 are vital in regulating degradation of viral and cellular proteins and thus HIV-1 replication, and specific degradation of viral, not cellular proteins, by USP15 points to USP15 as a candidate therapeutic agent to combat AIDS by eliminating viral proteins from the infected cells via USP15-mediated proteosomal degradation. PMID:27460547

  3. 14-3-3sigma is a cruciform DNA binding protein and associates in vivo with origins of DNA replication.

    PubMed

    Alvarez, David; Novac, Olivia; Callejo, Mario; Ruiz, Marcia T; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2002-01-01

    A human cruciform binding protein (CBP) was previously shown to bind to cruciform DNA in a structure-specific manner and be a member of the 14-3-3 protein family. CBP had been found to contain the 14-3-3 isoforms beta, gamma, epsilon, and zeta. Here, we show by Western blot analysis that the CBP-cruciform DNA complex eluted from band-shift polyacrylamide gels also contains the 14-3-3sigma isoform, which is present in HeLa cell nuclear extracts. An antibody specific for the 14-3-3sigma isoform was able to interfere with the formation of the CBP-cruciform DNA complex. The effect of the same anti-14-3-3sigma antibody in the in vitro replication of p186, a plasmid containing the minimal replication origin of the monkey origin ors8, was also analyzed. Pre-incubation of total HeLa cell extracts with this antibody decreased p186 in vitro replication to approximately 30% of control levels, while non-specific antibodies had no effect. 14-3-3sigma was found to associate in vivo with the monkey origins of DNA replication ors8 and ors12 in a cell cycle-dependent manner, as assayed by a chromatin immunoprecipitation (ChIP) assay that involved formaldehyde cross-linking, followed by immunoprecipitation with anti-14-3-3sigma antibody and quantitative PCR. The association of 14-3-3sigma with the replication origins was maximal at the G(1)/S phase. The results indicate that 14-3-3sigma is an origin binding protein involved in the regulation of DNA replication via cruciform DNA binding. PMID:12244572

  4. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    PubMed Central

    Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas

    2016-01-01

    Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839

  5. Expression of Raf kinase inhibitor protein is downregulated in response to Newcastle disease virus infection to promote viral replication.

    PubMed

    Yin, Renfu; Liu, Xinxin; Bi, Yuhai; Xie, Guangyao; Zhang, Pingze; Meng, Xin; Ai, Lili; Xu, Rongyi; Sun, Yuzhang; Stoeger, Tobias; Ding, Zhuang

    2015-09-01

    Newcastle disease virus (NDV) causes a severe and economically significant disease affecting almost the entire poultry industry worldwide. However, factors that affect NDV replication in host cells are poorly understood. Raf kinase inhibitory protein (RKIP) is a physiological inhibitor of c-RAF kinase and NF-κB signalling, known for their functions in the control of immune response as well as tumour invasion and metastasis. In the present study, we investigated the consequences of overexpression of host RKIP during viral infection. We demonstrate that NDV infection represses RKIP expression thereby promoting virus replication. Experimental upregulation of RKIP in turn acts as a potential antiviral defence mechanism in host cells that restricts NDV replication by repressing the activation of Raf/MEK/ERK and IκBα/NF-κB signalling pathways. Our results not only extend the concept of linking NDV-host interactions, but also reveal RKIP as a new class of protein-kinase-inhibitor protein that affects NDV replication with therapeutic potential. PMID:26297355

  6. The interaction between the Hepatitis C proteins NS4B and NS5A is involved in viral replication

    PubMed Central

    David, Naama; Yaffe, Yakey; Hagoel, Lior; Elazar, Menashe; Glenn, Jeffrey S.; Hirschberg, Koret; Sklan, Ella H.

    2015-01-01

    Hepatitis C virus (HCV) replicates in membrane associated, highly ordered replication complexes (RCs). These complexes include viral and host proteins necessary for viral RNA genome replication. The interaction network among viral and host proteins underlying the formation of these RCs is yet to be thoroughly characterized. Here, we investigated the association between NS4B and NS5A, two critical RC components. We characterized the interaction between these proteins using fluorescence resonance energy transfer and a mammalian two-hybrid system. Specific tryptophan residues within the C-terminal domain (CTD) of NS4B were shown to mediate this interaction. Domain I of NS5A, was sufficient to mediate its interaction with NS4B. Mutations in the NS4B CTD tryptophan residues abolished viral replication. Moreover, one of these mutations also affected NS5A hyperphosphorylation. These findings provide new insights into the importance of the NS4B–NS5A interaction and serve as a starting point for studying the complex interactions between the replicase subunits. PMID:25462354

  7. Development of an Insect Vector Cell Culture and RNA Interference System To Investigate the Functional Role of Fijivirus Replication Protein

    PubMed Central

    Jia, Dongsheng; Chen, Hongyan; Zheng, Ailing; Chen, Qian; Liu, Qifei; Xie, Lianhui

    2012-01-01

    An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins. PMID:22398296

  8. Identification of a large protein network involved in epigenetic transmission in replicating DNA of embryonic stem cells

    PubMed Central

    Aranda, Sergi; Rutishauser, Dorothea; Ernfors, Patrik

    2014-01-01

    Pluripotency of embryonic stem cells (ESCs) is maintained by transcriptional activities and chromatin modifying complexes highly organized within the chromatin. Although much effort has been focused on identifying genome-binding sites, little is known on their dynamic association with chromatin across cell divisions. Here, we used a modified version of the iPOND (isolation of proteins at nascent DNA) technology to identify a large protein network enriched at nascent DNA in ESCs. This comprehensive and unbiased proteomic characterization in ESCs reveals that, in addition to the core replication machinery, proteins relevant for pluripotency of ESCs are present at DNA replication sites. In particular, we show that the chromatin remodeller HDAC1–NuRD complex is enriched at nascent DNA. Interestingly, an acute block of HDAC1 in ESCs leads to increased acetylation of histone H3 lysine 9 at nascent DNA together with a concomitant loss of methylation. Consistently, in contrast to what has been described in tumour cell lines, these chromatin marks were found to be stable during cell cycle progression of ESCs. Our results are therefore compatible with a rapid deacetylation-coupled methylation mechanism during the replication of DNA in ESCs that may participate in the preservation of pluripotency of ESCs during replication. PMID:24852249

  9. FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication.

    PubMed

    Li, Helin; Zhang, Chengcheng; Cui, Hongjie; Guo, Kangkang; Wang, Fang; Zhao, Tianyue; Liang, Wulong; Lv, Qizhuang; Zhang, Yanming

    2016-02-01

    The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling and host cellular responses via to its ability to interact with various cellular proteins. FKBP8 is also reported to promote virus replication. Here, we show that NS5A specifically interacts with FKBP8 through coimmunoprecipitation and GST-pulldown studies. Additionally, confocal microscopy study showed that NS5A and FKBP8 colocalized in the cytoplasm. Overexpression of FKBP8 via the eukaryotic expression plasmid pDsRED N1 significantly promoted viral RNA synthesis. The cells knockdown of FKBP8 by lentivirus-mediated shRNA markedly decreased the virus replication when infected with CSFV. These data suggest that FKBP8 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of FKBP8 protein functions may be beneficial for developing new strategies to treat CSFV infection. PMID:26748656

  10. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem.

    PubMed

    Dayaram, Anisha; Galatowitsch, Mark L; Argüello-Astorga, Gerardo R; van Bysterveldt, Katherine; Kraberger, Simona; Stainton, Daisy; Harding, Jon S; Roumagnac, Philippe; Martin, Darren P; Lefeuvre, Pierre; Varsani, Arvind

    2016-04-01

    Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates. PMID:26873065

  11. Proteomics analysis of EV71-infected cells reveals the involvement of host protein NEDD4L in EV71 replication.

    PubMed

    Kuo, Rei-Lin; Lin, Ya-Han; Wang, Robert Yung-Liang; Hsu, Chia-Wei; Chiu, Yi-Ting; Huang, Hsing-I; Kao, Li-Ting; Yu, Jau-Song; Shih, Shin-Ru; Wu, Chih-Ching

    2015-04-01

    Enterovirus 71 (EV71) is a human enterovirus that has seriously affected the Asia-Pacific area for the past two decades. EV71 infection can result in mild hand-foot-and-mouth disease and herpangina and may occasionally lead to severe neurological complications in children. However, the specific biological processes that become altered during EV71 infection remain unclear. To further explore host responses upon EV71 infection, we identified proteins differentially expressed in EV71-infected human glioblastoma SF268 cells using isobaric mass tag (iTRAQ) labeling coupled with multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). Network analysis of proteins altered in cells infected with EV71 revealed that the changed biological processes are related to protein and ion transport, regulation of protein degradation, and homeostatic processes. We confirmed that the levels of NEDD4L and PSMF1 were increased and reduced, respectively, in EV71-infected cells compared to mock-infected control cells. To determine the physiological relevance of our findings, we investigated the consequences of EV71 infection in cells with NEDD4L or PSMF1 depletion. We found that the depletion of NEDD4L significantly reduced the replication of EV71, whereas PSMF1 knockdown enhanced EV71 replication. Collectively, our findings provide the first evidence of proteome-wide dysregulation by EV71 infection and suggest a novel role for the host protein NEDD4L in the replication of this virus. PMID:25785312

  12. Activity-based protein profiling identifies a host enzyme, carboxylesterase 1, which is differentially active during hepatitis C virus replication.

    PubMed

    Blais, David R; Lyn, Rodney K; Joyce, Michael A; Rouleau, Yanouchka; Steenbergen, Rineke; Barsby, Nicola; Zhu, Lin-Fu; Pegoraro, Adrian F; Stolow, Albert; Tyrrell, David L; Pezacki, John Paul

    2010-08-13

    Hepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication. Profiling of hydrolases in Huh7 cells replicating HCV identified CES1 (carboxylesterase 1) as a differentially active enzyme. CES1 is an endogenous liver protein involved in processing of triglycerides and cholesterol. We observe that CES1 expression and activity were altered in the presence of HCV. The knockdown of CES1 with siRNA resulted in lower levels of HCV replication, and up-regulation of CES1 was observed to favor HCV propagation, implying an important role for this host cell protein. Experiments in HCV JFH1-infected cells suggest that CES1 facilitates HCV release because less intracellular HCV core protein was observed, whereas HCV titers remained high. CES1 activity was observed to increase the size and density of lipid droplets, which are necessary for the maturation of very low density lipoproteins, one of the likely vehicles for HCV release. In transgenic mice containing human-mouse chimeric livers, HCV infection also correlates with higher levels of endogenous CES1, providing further evidence that CES1 has an important role in HCV propagation. PMID:20530478

  13. Functions of Saccharomyces cerevisiae 14-3-3 proteins in response to DNA damage and to DNA replication stress.

    PubMed Central

    Lottersberger, Francisca; Rubert, Fabio; Baldo, Veronica; Lucchini, Giovanna; Longhese, Maria Pia

    2003-01-01

    Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Delta mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polalpha-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Delta and bmh1-170 bmh2Delta mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability. PMID:14704161

  14. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  15. Interaction of HTLV-1 Tax with minichromosome maintenance proteins accelerates the replication timing program.

    PubMed

    Boxus, Mathieu; Twizere, Jean-Claude; Legros, Sébastien; Kettmann, Richard; Willems, Luc

    2012-01-01

    The Tax oncoprotein encoded by the human T-cell leukemia virus type 1 plays a pivotal role in viral persistence and pathogenesis. Human T-cell leukemia virus type 1-infected cells proliferate faster than normal lymphocytes, expand through mitotic division, and accumulate genomic lesions. Here, we show that Tax associates with the minichromosome maintenance MCM2-7 helicase complex and localizes to origins of replication. Tax modulates the spatiotemporal program of origin activation and fires supplementary origins at the onset of S phase. Thereby, Tax increases the DNA replication rate, accelerates S phase progression, but also generates a replicative stress characterized by the presence of genomic lesions. Mechanistically, Tax favors p300 recruitment and histone hyperacetylation at late replication domains, advancing their replication timing in early S phase. PMID:22058115

  16. Dengue virus NS1 protein interacts with the ribosomal protein RPL18: this interaction is required for viral translation and replication in Huh-7 cells.

    PubMed

    Cervantes-Salazar, Margot; Angel-Ambrocio, Antonio H; Soto-Acosta, Ruben; Bautista-Carbajal, Patricia; Hurtado-Monzon, Arianna M; Alcaraz-Estrada, Sofia L; Ludert, Juan E; Del Angel, Rosa M

    2015-10-01

    Given dengue virus (DENV) genome austerity, it uses cellular molecules and structures for virion entry, translation and replication of the genome. NS1 is a multifunctional protein key to viral replication and pathogenesis. Identification of cellular proteins that interact with NS1 may help in further understanding the functions of NS1. In this paper we isolated a total of 64 proteins from DENV infected human hepatic cells (Huh-7) that interact with NS1 by affinity chromatography and immunoprecipitation assays. The subcellular location and expression levels during infection of the ribosomal proteins RPS3a, RPL7, RPL18, RPL18a plus GAPDH were determined. None of these proteins changed their expression levels during infection; however, RPL-18 was redistributed to the perinuclear region after 48hpi. Silencing of the RPL-18 does not affect cell translation efficiency or viability, but it reduces significantly viral translation, replication and viral yield, suggesting that the RPL-18 is required during DENV replicative cycle. PMID:26092250

  17. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability*

    PubMed Central

    Xiao, Zhenyu; Chang, Jer-Gung; Hendriks, Ivo A.; Sigurðsson, Jón Otti; Olsen, Jesper V.; Vertegaal, Alfred C.O.

    2015-01-01

    Genotoxic agents can cause replication fork stalling in dividing cells because of DNA lesions, eventually leading to replication fork collapse when the damage is not repaired. Small Ubiquitin-like Modifiers (SUMOs) are known to counteract replication stress, nevertheless, only a small number of relevant SUMO target proteins are known. To address this, we have purified and identified SUMO-2 target proteins regulated by replication stress in human cells. The developed methodology enabled single step purification of His10-SUMO-2 conjugates under denaturing conditions with high yield and high purity. Following statistical analysis on five biological replicates, a total of 566 SUMO-2 targets were identified. After 2 h of hydroxyurea treatment, 10 proteins were up-regulated for SUMOylation and two proteins were down-regulated for SUMOylation, whereas after 24 h, 35 proteins were up-regulated for SUMOylation, and 13 proteins were down-regulated for SUMOylation. A site-specific approach was used to map over 1000 SUMO-2 acceptor lysines in target proteins. The methodology is generic and is widely applicable in the ubiquitin field. A large subset of these identified proteins function in one network that consists of interacting replication factors, transcriptional regulators, DNA damage response factors including MDC1, ATR-interacting protein ATRIP, the Bloom syndrome protein and the BLM-binding partner RMI1, the crossover junction endonuclease EME1, BRCA1, and CHAF1A. Furthermore, centromeric proteins and signal transducers were dynamically regulated by SUMOylation upon replication stress. Our results uncover a comprehensive network of SUMO target proteins dealing with replication damage and provide a framework for detailed understanding of the role of SUMOylation to counteract replication stress. Ultimately, our study reveals how a post-translational modification is able to orchestrate a large variety of different proteins to integrate different nuclear processes with the

  18. Host Acyl Coenzyme A Binding Protein Regulates Replication Complex Assembly and Activity of a Positive-Strand RNA Virus

    PubMed Central

    Zhang, Jiantao; Diaz, Arturo; Mao, Lan; Ahlquist, Paul

    2012-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly. PMID:22345450

  19. Replication Protein A Unfolds G-Quadruplex Structures with a Varying Degree of Efficiency

    PubMed Central

    Qureshi, Mohammad H.; Ray, Sujay; Sewell, Abby L.; Basu, Soumitra; Balci, Hamza

    2012-01-01

    Replication Protein A (RPA) is known to interact with G-rich sequences that adopt G-quadruplex (GQ) structures. Most studies in the literature have been performed on GQ formed by homogenous sequences, such as the human telomeric repeat, and RPA’s ability to unfold GQ structures of differing stability is not known. We compared the thermal stability of three potential GQ forming DNA sequences (PQS) to their stability against RPA mediated unfolding using single molecule FRET and bulk biophysical and biochemical experiments. One of these sequences is the human telomeric repeat and the other two located in the promoter region of tyrosine hydroxylase gene are highly heterogeneous sequences, which better represent PQS in the genome. The three GQ constructs have thermal stabilities that are significantly different from each other. Our measurements showed that the most thermally stable structure (Tm= 86 °C) was also the most stable against RPA mediated unfolding, although the least thermally stable structure (Tm= 69 °C) had at least an order of magnitude higher stability against RPA mediated unfolding compared to the structure with intermediate thermal stability (Tm= 78 °C). The significance of this observation becomes more evident when considered within the context of cellular environment where protein-DNA interactions can be an important determinant of GQ viability. Considering these, we conclude that thermal stability is not necessarily an adequate criterion for predicting physiological viability of GQ structures. Finally, we measured the time it takes for an RPA molecule to unfold a GQ from a fully folded to a fully unfolded conformation using a single molecule stopped-flow type method. All three GQ structures were unfolded within Δt≈0.30±0.10 sec, a surprising result as the unfolding time does not correlate with thermal stability or stability against RPA mediated unfolding. These results suggest that the limiting step in G-quadruplex unfolding by RPA is simply

  20. The N Terminus of the Retinoblastoma Protein Inhibits DNA Replication via a Bipartite Mechanism Disrupted in Partially Penetrant Retinoblastomas.

    PubMed

    Borysov, Sergiy I; Nepon-Sixt, Brook S; Alexandrow, Mark G

    2015-01-01

    The N-terminal domain of the retinoblastoma (Rb) tumor suppressor protein (RbN) harbors in-frame exon deletions in partially penetrant hereditary retinoblastomas and is known to impair cell growth and tumorigenesis. However, how such RbN deletions contribute to Rb tumor- and growth-suppressive functions is unknown. Here we establish that RbN directly inhibits DNA replication initiation and elongation using a bipartite mechanism involving N-terminal exons lost in cancer. Specifically, Rb exon 7 is necessary and sufficient to target and inhibit the replicative CMG helicase, resulting in the accumulation of inactive CMGs on chromatin. An independent N-terminal loop domain, which forms a projection, specifically blocks DNA polymerase α (Pol-α) and Ctf4 recruitment without affecting DNA polymerases ε and δ or the CMG helicase. Individual disruption of exon 7 or the projection in RbN or Rb, as occurs in inherited cancers, partially impairs the ability of Rb/RbN to inhibit DNA replication and block G1-to-S cell cycle transit. However, their combined loss abolishes these functions of Rb. Thus, Rb growth-suppressive functions include its ability to block replicative complexes via bipartite, independent, and additive N-terminal domains. The partial loss of replication, CMG, or Pol-α control provides a potential molecular explanation for how N-terminal Rb loss-of-function deletions contribute to the etiology of partially penetrant retinoblastomas. PMID:26711265

  1. DNA Replication Catalyzed by Herpes Simplex Virus Type 1 Proteins Reveals Trombone Loops at the Fork*♦

    PubMed Central

    Bermek, Oya; Willcox, Smaranda; Griffith, Jack D.

    2015-01-01

    Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis. PMID:25471368

  2. Thioredoxin 2 Is a Novel E2-Interacting Protein That Inhibits the Replication of Classical Swine Fever Virus

    PubMed Central

    Li, Su; Wang, Jinghan; He, Wen-Rui; Feng, Shuo; Li, Yongfeng; Wang, Xiao; Liao, Yajin; Qin, Hua-Yang; Li, Lian-Feng; Dong, Hong; Sun, Yuan; Luo, Yuzi

    2015-01-01

    ABSTRACT The E2 protein of classical swine fever virus (CSFV) is an envelope glycoprotein that is involved in virus attachment and entry. To date, the E2-interacting cellular proteins and their involvement in viral replication have been poorly documented. In this study, thioredoxin 2 (Trx2) was identified to be a novel E2-interacting partner using yeast two-hybrid screening from a porcine macrophage cDNA library. Trx2 is a mitochondrion-associated protein that participates in diverse cellular events. The Trx2-E2 interaction was further confirmed by glutathione S-transferase (GST) pulldown, in situ proximity ligation, and laser confocal assays. The thioredoxin domain of Trx2 and the asparagine at position 37 (N37) in the E2 protein were shown to be critical for the interaction. Silencing of the Trx2 expression in PK-15 cells by small interfering RNAs significantly promotes CSFV replication, and conversely, overexpression of Trx2 markedly inhibits viral replication of the wild-type (wt) CSFV and to a greater extent that of the CSFV N37D mutant, which is defective in binding Trx2. The wt CSFV but not the CSFV N37D mutant was shown to reduce the Trx2 protein expression in PK-15 cells. Furthermore, we demonstrated that Trx2 increases nuclear factor kappa B (NF-κB) promoter activity by promoting the nuclear translocation of the p65 subunit of NF-κB. Notably, activation of the NF-κB signaling pathway induced by tumor necrosis factor alpha (TNF-α) significantly inhibits CSFV replication in PK-15 cells, whereas blocking the NF-κB activation in Trx2-overexpressing cells no longer suppresses CSFV replication. Taken together, our findings reveal that Trx2 inhibits CSFV replication via the NF-κB signaling pathway. IMPORTANCE Thioredoxin 2 (Trx2) is a mitochondrion-associated protein that participates in diverse cellular events, such as antioxidative and antiapoptotic processes and the modulation of transcription factors. However, little is known about the involvement of

  3. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro

    SciTech Connect

    Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.; Sinning, Allan; Henegar, Jeffrey; Norcross, Erin; Chinchar, V. Gregory

    2010-09-30

    Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granular bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.

  4. EXPRESSION, PURIFICATION, AND SMALL ANGLE X-RAY SCATTERING OF DNA REPLICATION AND REPAIR PROTEINS FROM THE HYPERTHERMOPHILE SULFOLOBUS SOLFATARICUS

    SciTech Connect

    Patterson, S.M.; Hatherill, J.R.; Hammel, M.; Hura, G.L.; Tainer, J.A.; Yannone, S.M.

    2008-01-01

    Vital molecular processes such as DNA replication, transcription, translation, and maintenance occur through transient protein interactions. Elucidating the mechanisms by which these protein complexes and interactions function could lead to treatments for diseases related to DNA damage and cell division control. In the recent decades since its introduction as a third domain, Archaea have shown to be simpler models for complicated eukaryotic processes such as DNA replication, repair, transcription, and translation. Sulfolobus solfataricus is one such model organism. A hyperthermophile with an optimal growth temperature of 80°C, Sulfolobus protein-protein complexes and transient protein interactions should be more stable at moderate temperatures, providing a means to isolate and study their structure and function. Here we provide the initial steps towards characterizing three DNA-related Sulfolobus proteins with small angle X-ray scattering (SAXS): Sso0257, a cell division control and origin recognition complex homolog, Sso0768, the small subunit of the replication factor C, and Sso3167, a Mut-T like protein. SAXS analysis was performed at multiple concentrations for both short and long exposure times. The Sso0257 sample was determined to be either a mixture of monomeric and dimeric states or a population of dynamic monomers in various conformational states in solution, consistent with a fl exible winged helix domain. Sso0768 was found to be a complex mixture of multimeric states in solution. Finally, molecular envelope reconstruction from SAXS data for Sso3167 revealed a novel structural component which may function as a disordered to ordered region in the presence of its substrates and/or protein partners.

  5. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    SciTech Connect

    Lalime, Erin N.; Pekosz, Andrew

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  6. Bromovirus RNA replication and transcription require compatibility between the polymerase- and helicase-like viral RNA synthesis proteins.

    PubMed Central

    Dinant, S; Janda, M; Kroner, P A; Ahlquist, P

    1993-01-01

    The positive-strand RNA bromoviruses encode two nonstructural proteins, 1a and 2a, involved in RNA-dependent RNA replication. These proteins have extensive sequence similarities with methyltransferase, helicase, and polymerase proteins of other plant and animal viruses. 1a and 2a can also form a complex in vitro. To explore whether 1a-2a interaction is required for RNA replication in vivo, we reassorted the 1a and 2a genes from two different bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV). 1a and 2a were expressed independently of viral replication by using RNA- or DNA-based transient expression, and their in vivo RNA replication activities were tested in protoplasts with BMV and CCMV RNA3 templates. RNA-based transient expression confirmed prior indications that bromovirus RNA replication is more sensitive to reductions in 1a expression than to reductions in 2a expression. DNA-based expression of the homologous combinations of 1a and 2a supported high levels of RNA synthesis, but both 1a-2a heterologous combinations exhibited RNA synthesis defects. The combination of CCMV 1a and BMV 2a did not support detectable synthesis of negative-strand, positive-strand, or subgenomic RNA. The converse combination of BMV 1a and CCMV 2a was preferentially defective in positive-strand and subgenomic RNA accumulation, showing that 1a-2a interaction is involved in these processes in ways distinct from negative-strand RNA synthesis, which was only slightly affected. These results indicate that at least some functions of 1a and 2a operate in a mutually dependent manner in vivo and that the mechanisms of positive- and negative-strand RNA synthesis are differentiated in part by features of such interactions. Images PMID:8230440

  7. The N-terminus of porcine circovirus type 2 replication protein is required for nuclear localization and ori binding activities

    SciTech Connect

    Lin, W.-L.; Chien, M.-S.; Du, Y.-W.; Wu, P.-C.; Huang Chienjin

    2009-02-20

    Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.

  8. Versatile Trans-Replication Systems for Chikungunya Virus Allow Functional Analysis and Tagging of Every Replicase Protein

    PubMed Central

    Utt, Age; Quirin, Tania; Saul, Sirle; Hellström, Kirsi; Ahola, Tero; Merits, Andres

    2016-01-01

    Chikungunya virus (CHIKV; genus Alphavirus, family Togaviridae) has recently caused several major outbreaks affecting millions of people. There are no licensed vaccines or antivirals, and the knowledge of the molecular biology of CHIKV, crucial for development of efficient antiviral strategies, remains fragmentary. CHIKV has a 12 kb positive-strand RNA genome, which is translated to yield a nonstructural (ns) or replicase polyprotein. CHIKV structural proteins are expressed from a subgenomic RNA synthesized in infected cells. Here we have developed CHIKV trans-replication systems, where replicase expression and RNA replication are uncoupled. Bacteriophage T7 RNA polymerase or cellular RNA polymerase II were used for production of mRNAs for CHIKV ns polyprotein and template RNAs, which are recognized by CHIKV replicase and encode for reporter proteins. CHIKV replicase efficiently amplified such RNA templates and synthesized large amounts of subgenomic RNA in several cell lines. This system was used to create tagged versions of ns proteins including nsP1 fused with enhanced green fluorescent protein and nsP4 with an immunological tag. Analysis of these constructs and a matching set of replicon vectors revealed that the replicases containing tagged ns proteins were functional and maintained their subcellular localizations. When cells were co-transfected with constructs expressing template RNA and wild type or tagged versions of CHIKV replicases, formation of characteristic replicase complexes (spherules) was observed. Analysis of mutations associated with noncytotoxic phenotype in CHIKV replicons showed that a low level of RNA replication is not a pre-requisite for reduced cytotoxicity. The CHIKV trans-replicase does not suffer from genetic instability and represents an efficient, sensitive and reliable tool for studies of different aspects of CHIKV RNA replication process. PMID:26963103

  9. The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication.

    PubMed

    Li, Ling; Wu, Rui; Zheng, Fengwei; Zhao, Cheng; Pan, Zishu

    2015-12-01

    Pestivirus nonstructural protein 2 (NS2) is a multifunctional, hydrophobic protein with an important but poorly understood role in viral RNA replication and infectious virus production. In the present study, based on sequence analysis, we mutated several representative conserved residues within the N-terminus of NS2 of classical swine fever virus (CSFV) and investigated how these mutations affected viral RNA replication and infectious virus production. Our results demonstrated that the mutation of two aspartic acids, NS2/D60A or NS2/D60K and NS2/D78K, in the N-terminus of NS2 abolished infectious virus production and that the substitution of arginine for alanine at position 100 (NS2/R100A) resulted in significantly decreased viral titer. The serial passage of cells containing viral genomic RNA molecules generated the revertants NS2/A60D, NS2/K60D and NS2/K78D, leading to the recovery of infectious virus. In the context of the NS2/R100A mutant, the NS2/I90L mutation compensated for infectious virus production. The regulatory roles of the indicated amino acid residues were identified to occur at the viral RNA replication level. These results revealed a novel function for the NS2 N-terminus of CSFV in modulating viral RNA replication. PMID:26232654

  10. Lipid Droplet-Binding Protein TIP47 Regulates Hepatitis C Virus RNA Replication through Interaction with the Viral NS5A Protein

    PubMed Central

    Vogt, Dorothee A.; Camus, Grégory; Herker, Eva; Webster, Brian R.; Tsou, Chia-Lin; Greene, Warner C.; Yen, Tien-Sze Benedict; Ott, Melanie

    2013-01-01

    The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web. PMID:23593007